xref: /linux/include/uapi/drm/xe_drm.h (revision 77613a2e10087b1e613649ecb337c4922900421c)
1 /* SPDX-License-Identifier: MIT */
2 /*
3  * Copyright © 2023 Intel Corporation
4  */
5 
6 #ifndef _UAPI_XE_DRM_H_
7 #define _UAPI_XE_DRM_H_
8 
9 #include "drm.h"
10 
11 #if defined(__cplusplus)
12 extern "C" {
13 #endif
14 
15 /*
16  * Please note that modifications to all structs defined here are
17  * subject to backwards-compatibility constraints.
18  * Sections in this file are organized as follows:
19  *   1. IOCTL definition
20  *   2. Extension definition and helper structs
21  *   3. IOCTL's Query structs in the order of the Query's entries.
22  *   4. The rest of IOCTL structs in the order of IOCTL declaration.
23  */
24 
25 /**
26  * DOC: Xe Device Block Diagram
27  *
28  * The diagram below represents a high-level simplification of a discrete
29  * GPU supported by the Xe driver. It shows some device components which
30  * are necessary to understand this API, as well as how their relations
31  * to each other. This diagram does not represent real hardware::
32  *
33  *   ┌──────────────────────────────────────────────────────────────────┐
34  *   │ ┌──────────────────────────────────────────────────┐ ┌─────────┐ │
35  *   │ │        ┌───────────────────────┐   ┌─────┐       │ │ ┌─────┐ │ │
36  *   │ │        │         VRAM0         ├───┤ ... │       │ │ │VRAM1│ │ │
37  *   │ │        └───────────┬───────────┘   └─GT1─┘       │ │ └──┬──┘ │ │
38  *   │ │ ┌──────────────────┴───────────────────────────┐ │ │ ┌──┴──┐ │ │
39  *   │ │ │ ┌─────────────────────┐  ┌─────────────────┐ │ │ │ │     │ │ │
40  *   │ │ │ │ ┌──┐ ┌──┐ ┌──┐ ┌──┐ │  │ ┌─────┐ ┌─────┐ │ │ │ │ │     │ │ │
41  *   │ │ │ │ │EU│ │EU│ │EU│ │EU│ │  │ │RCS0 │ │BCS0 │ │ │ │ │ │     │ │ │
42  *   │ │ │ │ └──┘ └──┘ └──┘ └──┘ │  │ └─────┘ └─────┘ │ │ │ │ │     │ │ │
43  *   │ │ │ │ ┌──┐ ┌──┐ ┌──┐ ┌──┐ │  │ ┌─────┐ ┌─────┐ │ │ │ │ │     │ │ │
44  *   │ │ │ │ │EU│ │EU│ │EU│ │EU│ │  │ │VCS0 │ │VCS1 │ │ │ │ │ │     │ │ │
45  *   │ │ │ │ └──┘ └──┘ └──┘ └──┘ │  │ └─────┘ └─────┘ │ │ │ │ │     │ │ │
46  *   │ │ │ │ ┌──┐ ┌──┐ ┌──┐ ┌──┐ │  │ ┌─────┐ ┌─────┐ │ │ │ │ │     │ │ │
47  *   │ │ │ │ │EU│ │EU│ │EU│ │EU│ │  │ │VECS0│ │VECS1│ │ │ │ │ │ ... │ │ │
48  *   │ │ │ │ └──┘ └──┘ └──┘ └──┘ │  │ └─────┘ └─────┘ │ │ │ │ │     │ │ │
49  *   │ │ │ │ ┌──┐ ┌──┐ ┌──┐ ┌──┐ │  │ ┌─────┐ ┌─────┐ │ │ │ │ │     │ │ │
50  *   │ │ │ │ │EU│ │EU│ │EU│ │EU│ │  │ │CCS0 │ │CCS1 │ │ │ │ │ │     │ │ │
51  *   │ │ │ │ └──┘ └──┘ └──┘ └──┘ │  │ └─────┘ └─────┘ │ │ │ │ │     │ │ │
52  *   │ │ │ └─────────DSS─────────┘  │ ┌─────┐ ┌─────┐ │ │ │ │ │     │ │ │
53  *   │ │ │                          │ │CCS2 │ │CCS3 │ │ │ │ │ │     │ │ │
54  *   │ │ │ ┌─────┐ ┌─────┐ ┌─────┐  │ └─────┘ └─────┘ │ │ │ │ │     │ │ │
55  *   │ │ │ │ ... │ │ ... │ │ ... │  │                 │ │ │ │ │     │ │ │
56  *   │ │ │ └─DSS─┘ └─DSS─┘ └─DSS─┘  └─────Engines─────┘ │ │ │ │     │ │ │
57  *   │ │ └───────────────────────────GT0────────────────┘ │ │ └─GT2─┘ │ │
58  *   │ └────────────────────────────Tile0─────────────────┘ └─ Tile1──┘ │
59  *   └─────────────────────────────Device0───────┬──────────────────────┘
60  *                                               │
61  *                        ───────────────────────┴────────── PCI bus
62  */
63 
64 /**
65  * DOC: Xe uAPI Overview
66  *
67  * This section aims to describe the Xe's IOCTL entries, its structs, and other
68  * Xe related uAPI such as uevents and PMU (Platform Monitoring Unit) related
69  * entries and usage.
70  *
71  * List of supported IOCTLs:
72  *  - &DRM_IOCTL_XE_DEVICE_QUERY
73  *  - &DRM_IOCTL_XE_GEM_CREATE
74  *  - &DRM_IOCTL_XE_GEM_MMAP_OFFSET
75  *  - &DRM_IOCTL_XE_VM_CREATE
76  *  - &DRM_IOCTL_XE_VM_DESTROY
77  *  - &DRM_IOCTL_XE_VM_BIND
78  *  - &DRM_IOCTL_XE_EXEC_QUEUE_CREATE
79  *  - &DRM_IOCTL_XE_EXEC_QUEUE_DESTROY
80  *  - &DRM_IOCTL_XE_EXEC_QUEUE_GET_PROPERTY
81  *  - &DRM_IOCTL_XE_EXEC
82  *  - &DRM_IOCTL_XE_WAIT_USER_FENCE
83  *  - &DRM_IOCTL_XE_OBSERVATION
84  */
85 
86 /*
87  * xe specific ioctls.
88  *
89  * The device specific ioctl range is [DRM_COMMAND_BASE, DRM_COMMAND_END) ie
90  * [0x40, 0xa0) (a0 is excluded). The numbers below are defined as offset
91  * against DRM_COMMAND_BASE and should be between [0x0, 0x60).
92  */
93 #define DRM_XE_DEVICE_QUERY		0x00
94 #define DRM_XE_GEM_CREATE		0x01
95 #define DRM_XE_GEM_MMAP_OFFSET		0x02
96 #define DRM_XE_VM_CREATE		0x03
97 #define DRM_XE_VM_DESTROY		0x04
98 #define DRM_XE_VM_BIND			0x05
99 #define DRM_XE_EXEC_QUEUE_CREATE	0x06
100 #define DRM_XE_EXEC_QUEUE_DESTROY	0x07
101 #define DRM_XE_EXEC_QUEUE_GET_PROPERTY	0x08
102 #define DRM_XE_EXEC			0x09
103 #define DRM_XE_WAIT_USER_FENCE		0x0a
104 #define DRM_XE_OBSERVATION		0x0b
105 
106 /* Must be kept compact -- no holes */
107 
108 #define DRM_IOCTL_XE_DEVICE_QUERY		DRM_IOWR(DRM_COMMAND_BASE + DRM_XE_DEVICE_QUERY, struct drm_xe_device_query)
109 #define DRM_IOCTL_XE_GEM_CREATE			DRM_IOWR(DRM_COMMAND_BASE + DRM_XE_GEM_CREATE, struct drm_xe_gem_create)
110 #define DRM_IOCTL_XE_GEM_MMAP_OFFSET		DRM_IOWR(DRM_COMMAND_BASE + DRM_XE_GEM_MMAP_OFFSET, struct drm_xe_gem_mmap_offset)
111 #define DRM_IOCTL_XE_VM_CREATE			DRM_IOWR(DRM_COMMAND_BASE + DRM_XE_VM_CREATE, struct drm_xe_vm_create)
112 #define DRM_IOCTL_XE_VM_DESTROY			DRM_IOW(DRM_COMMAND_BASE + DRM_XE_VM_DESTROY, struct drm_xe_vm_destroy)
113 #define DRM_IOCTL_XE_VM_BIND			DRM_IOW(DRM_COMMAND_BASE + DRM_XE_VM_BIND, struct drm_xe_vm_bind)
114 #define DRM_IOCTL_XE_EXEC_QUEUE_CREATE		DRM_IOWR(DRM_COMMAND_BASE + DRM_XE_EXEC_QUEUE_CREATE, struct drm_xe_exec_queue_create)
115 #define DRM_IOCTL_XE_EXEC_QUEUE_DESTROY		DRM_IOW(DRM_COMMAND_BASE + DRM_XE_EXEC_QUEUE_DESTROY, struct drm_xe_exec_queue_destroy)
116 #define DRM_IOCTL_XE_EXEC_QUEUE_GET_PROPERTY	DRM_IOWR(DRM_COMMAND_BASE + DRM_XE_EXEC_QUEUE_GET_PROPERTY, struct drm_xe_exec_queue_get_property)
117 #define DRM_IOCTL_XE_EXEC			DRM_IOW(DRM_COMMAND_BASE + DRM_XE_EXEC, struct drm_xe_exec)
118 #define DRM_IOCTL_XE_WAIT_USER_FENCE		DRM_IOWR(DRM_COMMAND_BASE + DRM_XE_WAIT_USER_FENCE, struct drm_xe_wait_user_fence)
119 #define DRM_IOCTL_XE_OBSERVATION		DRM_IOW(DRM_COMMAND_BASE + DRM_XE_OBSERVATION, struct drm_xe_observation_param)
120 
121 /**
122  * DOC: Xe IOCTL Extensions
123  *
124  * Before detailing the IOCTLs and its structs, it is important to highlight
125  * that every IOCTL in Xe is extensible.
126  *
127  * Many interfaces need to grow over time. In most cases we can simply
128  * extend the struct and have userspace pass in more data. Another option,
129  * as demonstrated by Vulkan's approach to providing extensions for forward
130  * and backward compatibility, is to use a list of optional structs to
131  * provide those extra details.
132  *
133  * The key advantage to using an extension chain is that it allows us to
134  * redefine the interface more easily than an ever growing struct of
135  * increasing complexity, and for large parts of that interface to be
136  * entirely optional. The downside is more pointer chasing; chasing across
137  * the __user boundary with pointers encapsulated inside u64.
138  *
139  * Example chaining:
140  *
141  * .. code-block:: C
142  *
143  *	struct drm_xe_user_extension ext3 {
144  *		.next_extension = 0, // end
145  *		.name = ...,
146  *	};
147  *	struct drm_xe_user_extension ext2 {
148  *		.next_extension = (uintptr_t)&ext3,
149  *		.name = ...,
150  *	};
151  *	struct drm_xe_user_extension ext1 {
152  *		.next_extension = (uintptr_t)&ext2,
153  *		.name = ...,
154  *	};
155  *
156  * Typically the struct drm_xe_user_extension would be embedded in some uAPI
157  * struct, and in this case we would feed it the head of the chain(i.e ext1),
158  * which would then apply all of the above extensions.
159 */
160 
161 /**
162  * struct drm_xe_user_extension - Base class for defining a chain of extensions
163  */
164 struct drm_xe_user_extension {
165 	/**
166 	 * @next_extension:
167 	 *
168 	 * Pointer to the next struct drm_xe_user_extension, or zero if the end.
169 	 */
170 	__u64 next_extension;
171 
172 	/**
173 	 * @name: Name of the extension.
174 	 *
175 	 * Note that the name here is just some integer.
176 	 *
177 	 * Also note that the name space for this is not global for the whole
178 	 * driver, but rather its scope/meaning is limited to the specific piece
179 	 * of uAPI which has embedded the struct drm_xe_user_extension.
180 	 */
181 	__u32 name;
182 
183 	/**
184 	 * @pad: MBZ
185 	 *
186 	 * All undefined bits must be zero.
187 	 */
188 	__u32 pad;
189 };
190 
191 /**
192  * struct drm_xe_ext_set_property - Generic set property extension
193  *
194  * A generic struct that allows any of the Xe's IOCTL to be extended
195  * with a set_property operation.
196  */
197 struct drm_xe_ext_set_property {
198 	/** @base: base user extension */
199 	struct drm_xe_user_extension base;
200 
201 	/** @property: property to set */
202 	__u32 property;
203 
204 	/** @pad: MBZ */
205 	__u32 pad;
206 
207 	/** @value: property value */
208 	__u64 value;
209 
210 	/** @reserved: Reserved */
211 	__u64 reserved[2];
212 };
213 
214 /**
215  * struct drm_xe_engine_class_instance - instance of an engine class
216  *
217  * It is returned as part of the @drm_xe_engine, but it also is used as
218  * the input of engine selection for both @drm_xe_exec_queue_create and
219  * @drm_xe_query_engine_cycles
220  *
221  * The @engine_class can be:
222  *  - %DRM_XE_ENGINE_CLASS_RENDER
223  *  - %DRM_XE_ENGINE_CLASS_COPY
224  *  - %DRM_XE_ENGINE_CLASS_VIDEO_DECODE
225  *  - %DRM_XE_ENGINE_CLASS_VIDEO_ENHANCE
226  *  - %DRM_XE_ENGINE_CLASS_COMPUTE
227  *  - %DRM_XE_ENGINE_CLASS_VM_BIND - Kernel only classes (not actual
228  *    hardware engine class). Used for creating ordered queues of VM
229  *    bind operations.
230  */
231 struct drm_xe_engine_class_instance {
232 #define DRM_XE_ENGINE_CLASS_RENDER		0
233 #define DRM_XE_ENGINE_CLASS_COPY		1
234 #define DRM_XE_ENGINE_CLASS_VIDEO_DECODE	2
235 #define DRM_XE_ENGINE_CLASS_VIDEO_ENHANCE	3
236 #define DRM_XE_ENGINE_CLASS_COMPUTE		4
237 #define DRM_XE_ENGINE_CLASS_VM_BIND		5
238 	/** @engine_class: engine class id */
239 	__u16 engine_class;
240 	/** @engine_instance: engine instance id */
241 	__u16 engine_instance;
242 	/** @gt_id: Unique ID of this GT within the PCI Device */
243 	__u16 gt_id;
244 	/** @pad: MBZ */
245 	__u16 pad;
246 };
247 
248 /**
249  * struct drm_xe_engine - describe hardware engine
250  */
251 struct drm_xe_engine {
252 	/** @instance: The @drm_xe_engine_class_instance */
253 	struct drm_xe_engine_class_instance instance;
254 
255 	/** @reserved: Reserved */
256 	__u64 reserved[3];
257 };
258 
259 /**
260  * struct drm_xe_query_engines - describe engines
261  *
262  * If a query is made with a struct @drm_xe_device_query where .query
263  * is equal to %DRM_XE_DEVICE_QUERY_ENGINES, then the reply uses an array of
264  * struct @drm_xe_query_engines in .data.
265  */
266 struct drm_xe_query_engines {
267 	/** @num_engines: number of engines returned in @engines */
268 	__u32 num_engines;
269 	/** @pad: MBZ */
270 	__u32 pad;
271 	/** @engines: The returned engines for this device */
272 	struct drm_xe_engine engines[];
273 };
274 
275 /**
276  * enum drm_xe_memory_class - Supported memory classes.
277  */
278 enum drm_xe_memory_class {
279 	/** @DRM_XE_MEM_REGION_CLASS_SYSMEM: Represents system memory. */
280 	DRM_XE_MEM_REGION_CLASS_SYSMEM = 0,
281 	/**
282 	 * @DRM_XE_MEM_REGION_CLASS_VRAM: On discrete platforms, this
283 	 * represents the memory that is local to the device, which we
284 	 * call VRAM. Not valid on integrated platforms.
285 	 */
286 	DRM_XE_MEM_REGION_CLASS_VRAM
287 };
288 
289 /**
290  * struct drm_xe_mem_region - Describes some region as known to
291  * the driver.
292  */
293 struct drm_xe_mem_region {
294 	/**
295 	 * @mem_class: The memory class describing this region.
296 	 *
297 	 * See enum drm_xe_memory_class for supported values.
298 	 */
299 	__u16 mem_class;
300 	/**
301 	 * @instance: The unique ID for this region, which serves as the
302 	 * index in the placement bitmask used as argument for
303 	 * &DRM_IOCTL_XE_GEM_CREATE
304 	 */
305 	__u16 instance;
306 	/**
307 	 * @min_page_size: Min page-size in bytes for this region.
308 	 *
309 	 * When the kernel allocates memory for this region, the
310 	 * underlying pages will be at least @min_page_size in size.
311 	 * Buffer objects with an allowable placement in this region must be
312 	 * created with a size aligned to this value.
313 	 * GPU virtual address mappings of (parts of) buffer objects that
314 	 * may be placed in this region must also have their GPU virtual
315 	 * address and range aligned to this value.
316 	 * Affected IOCTLS will return %-EINVAL if alignment restrictions are
317 	 * not met.
318 	 */
319 	__u32 min_page_size;
320 	/**
321 	 * @total_size: The usable size in bytes for this region.
322 	 */
323 	__u64 total_size;
324 	/**
325 	 * @used: Estimate of the memory used in bytes for this region.
326 	 *
327 	 * Requires CAP_PERFMON or CAP_SYS_ADMIN to get reliable
328 	 * accounting.  Without this the value here will always equal
329 	 * zero.
330 	 */
331 	__u64 used;
332 	/**
333 	 * @cpu_visible_size: How much of this region can be CPU
334 	 * accessed, in bytes.
335 	 *
336 	 * This will always be <= @total_size, and the remainder (if
337 	 * any) will not be CPU accessible. If the CPU accessible part
338 	 * is smaller than @total_size then this is referred to as a
339 	 * small BAR system.
340 	 *
341 	 * On systems without small BAR (full BAR), the probed_size will
342 	 * always equal the @total_size, since all of it will be CPU
343 	 * accessible.
344 	 *
345 	 * Note this is only tracked for DRM_XE_MEM_REGION_CLASS_VRAM
346 	 * regions (for other types the value here will always equal
347 	 * zero).
348 	 */
349 	__u64 cpu_visible_size;
350 	/**
351 	 * @cpu_visible_used: Estimate of CPU visible memory used, in
352 	 * bytes.
353 	 *
354 	 * Requires CAP_PERFMON or CAP_SYS_ADMIN to get reliable
355 	 * accounting. Without this the value here will always equal
356 	 * zero.  Note this is only currently tracked for
357 	 * DRM_XE_MEM_REGION_CLASS_VRAM regions (for other types the value
358 	 * here will always be zero).
359 	 */
360 	__u64 cpu_visible_used;
361 	/** @reserved: Reserved */
362 	__u64 reserved[6];
363 };
364 
365 /**
366  * struct drm_xe_query_mem_regions - describe memory regions
367  *
368  * If a query is made with a struct drm_xe_device_query where .query
369  * is equal to DRM_XE_DEVICE_QUERY_MEM_REGIONS, then the reply uses
370  * struct drm_xe_query_mem_regions in .data.
371  */
372 struct drm_xe_query_mem_regions {
373 	/** @num_mem_regions: number of memory regions returned in @mem_regions */
374 	__u32 num_mem_regions;
375 	/** @pad: MBZ */
376 	__u32 pad;
377 	/** @mem_regions: The returned memory regions for this device */
378 	struct drm_xe_mem_region mem_regions[];
379 };
380 
381 /**
382  * struct drm_xe_query_config - describe the device configuration
383  *
384  * If a query is made with a struct drm_xe_device_query where .query
385  * is equal to DRM_XE_DEVICE_QUERY_CONFIG, then the reply uses
386  * struct drm_xe_query_config in .data.
387  *
388  * The index in @info can be:
389  *  - %DRM_XE_QUERY_CONFIG_REV_AND_DEVICE_ID - Device ID (lower 16 bits)
390  *    and the device revision (next 8 bits)
391  *  - %DRM_XE_QUERY_CONFIG_FLAGS - Flags describing the device
392  *    configuration, see list below
393  *
394  *    - %DRM_XE_QUERY_CONFIG_FLAG_HAS_VRAM - Flag is set if the device
395  *      has usable VRAM
396  *    - %DRM_XE_QUERY_CONFIG_FLAG_HAS_LOW_LATENCY - Flag is set if the device
397  *      has low latency hint support
398  *    - %DRM_XE_QUERY_CONFIG_FLAG_HAS_CPU_ADDR_MIRROR - Flag is set if the
399  *      device has CPU address mirroring support
400  *  - %DRM_XE_QUERY_CONFIG_MIN_ALIGNMENT - Minimal memory alignment
401  *    required by this device, typically SZ_4K or SZ_64K
402  *  - %DRM_XE_QUERY_CONFIG_VA_BITS - Maximum bits of a virtual address
403  *  - %DRM_XE_QUERY_CONFIG_MAX_EXEC_QUEUE_PRIORITY - Value of the highest
404  *    available exec queue priority
405  */
406 struct drm_xe_query_config {
407 	/** @num_params: number of parameters returned in info */
408 	__u32 num_params;
409 
410 	/** @pad: MBZ */
411 	__u32 pad;
412 
413 #define DRM_XE_QUERY_CONFIG_REV_AND_DEVICE_ID	0
414 #define DRM_XE_QUERY_CONFIG_FLAGS			1
415 	#define DRM_XE_QUERY_CONFIG_FLAG_HAS_VRAM	(1 << 0)
416 	#define DRM_XE_QUERY_CONFIG_FLAG_HAS_LOW_LATENCY	(1 << 1)
417 	#define DRM_XE_QUERY_CONFIG_FLAG_HAS_CPU_ADDR_MIRROR	(1 << 2)
418 #define DRM_XE_QUERY_CONFIG_MIN_ALIGNMENT		2
419 #define DRM_XE_QUERY_CONFIG_VA_BITS			3
420 #define DRM_XE_QUERY_CONFIG_MAX_EXEC_QUEUE_PRIORITY	4
421 	/** @info: array of elements containing the config info */
422 	__u64 info[];
423 };
424 
425 /**
426  * struct drm_xe_gt - describe an individual GT.
427  *
428  * To be used with drm_xe_query_gt_list, which will return a list with all the
429  * existing GT individual descriptions.
430  * Graphics Technology (GT) is a subset of a GPU/tile that is responsible for
431  * implementing graphics and/or media operations.
432  *
433  * The index in @type can be:
434  *  - %DRM_XE_QUERY_GT_TYPE_MAIN
435  *  - %DRM_XE_QUERY_GT_TYPE_MEDIA
436  */
437 struct drm_xe_gt {
438 #define DRM_XE_QUERY_GT_TYPE_MAIN		0
439 #define DRM_XE_QUERY_GT_TYPE_MEDIA		1
440 	/** @type: GT type: Main or Media */
441 	__u16 type;
442 	/** @tile_id: Tile ID where this GT lives (Information only) */
443 	__u16 tile_id;
444 	/** @gt_id: Unique ID of this GT within the PCI Device */
445 	__u16 gt_id;
446 	/** @pad: MBZ */
447 	__u16 pad[3];
448 	/** @reference_clock: A clock frequency for timestamp */
449 	__u32 reference_clock;
450 	/**
451 	 * @near_mem_regions: Bit mask of instances from
452 	 * drm_xe_query_mem_regions that are nearest to the current engines
453 	 * of this GT.
454 	 * Each index in this mask refers directly to the struct
455 	 * drm_xe_query_mem_regions' instance, no assumptions should
456 	 * be made about order. The type of each region is described
457 	 * by struct drm_xe_query_mem_regions' mem_class.
458 	 */
459 	__u64 near_mem_regions;
460 	/**
461 	 * @far_mem_regions: Bit mask of instances from
462 	 * drm_xe_query_mem_regions that are far from the engines of this GT.
463 	 * In general, they have extra indirections when compared to the
464 	 * @near_mem_regions. For a discrete device this could mean system
465 	 * memory and memory living in a different tile.
466 	 * Each index in this mask refers directly to the struct
467 	 * drm_xe_query_mem_regions' instance, no assumptions should
468 	 * be made about order. The type of each region is described
469 	 * by struct drm_xe_query_mem_regions' mem_class.
470 	 */
471 	__u64 far_mem_regions;
472 	/** @ip_ver_major: Graphics/media IP major version on GMD_ID platforms */
473 	__u16 ip_ver_major;
474 	/** @ip_ver_minor: Graphics/media IP minor version on GMD_ID platforms */
475 	__u16 ip_ver_minor;
476 	/** @ip_ver_rev: Graphics/media IP revision version on GMD_ID platforms */
477 	__u16 ip_ver_rev;
478 	/** @pad2: MBZ */
479 	__u16 pad2;
480 	/** @reserved: Reserved */
481 	__u64 reserved[7];
482 };
483 
484 /**
485  * struct drm_xe_query_gt_list - A list with GT description items.
486  *
487  * If a query is made with a struct drm_xe_device_query where .query
488  * is equal to DRM_XE_DEVICE_QUERY_GT_LIST, then the reply uses struct
489  * drm_xe_query_gt_list in .data.
490  */
491 struct drm_xe_query_gt_list {
492 	/** @num_gt: number of GT items returned in gt_list */
493 	__u32 num_gt;
494 	/** @pad: MBZ */
495 	__u32 pad;
496 	/** @gt_list: The GT list returned for this device */
497 	struct drm_xe_gt gt_list[];
498 };
499 
500 /**
501  * struct drm_xe_query_topology_mask - describe the topology mask of a GT
502  *
503  * This is the hardware topology which reflects the internal physical
504  * structure of the GPU.
505  *
506  * If a query is made with a struct drm_xe_device_query where .query
507  * is equal to DRM_XE_DEVICE_QUERY_GT_TOPOLOGY, then the reply uses
508  * struct drm_xe_query_topology_mask in .data.
509  *
510  * The @type can be:
511  *  - %DRM_XE_TOPO_DSS_GEOMETRY - To query the mask of Dual Sub Slices
512  *    (DSS) available for geometry operations. For example a query response
513  *    containing the following in mask:
514  *    ``DSS_GEOMETRY    ff ff ff ff 00 00 00 00``
515  *    means 32 DSS are available for geometry.
516  *  - %DRM_XE_TOPO_DSS_COMPUTE - To query the mask of Dual Sub Slices
517  *    (DSS) available for compute operations. For example a query response
518  *    containing the following in mask:
519  *    ``DSS_COMPUTE    ff ff ff ff 00 00 00 00``
520  *    means 32 DSS are available for compute.
521  *  - %DRM_XE_TOPO_L3_BANK - To query the mask of enabled L3 banks.  This type
522  *    may be omitted if the driver is unable to query the mask from the
523  *    hardware.
524  *  - %DRM_XE_TOPO_EU_PER_DSS - To query the mask of Execution Units (EU)
525  *    available per Dual Sub Slices (DSS). For example a query response
526  *    containing the following in mask:
527  *    ``EU_PER_DSS    ff ff 00 00 00 00 00 00``
528  *    means each DSS has 16 SIMD8 EUs. This type may be omitted if device
529  *    doesn't have SIMD8 EUs.
530  *  - %DRM_XE_TOPO_SIMD16_EU_PER_DSS - To query the mask of SIMD16 Execution
531  *    Units (EU) available per Dual Sub Slices (DSS). For example a query
532  *    response containing the following in mask:
533  *    ``SIMD16_EU_PER_DSS    ff ff 00 00 00 00 00 00``
534  *    means each DSS has 16 SIMD16 EUs. This type may be omitted if device
535  *    doesn't have SIMD16 EUs.
536  */
537 struct drm_xe_query_topology_mask {
538 	/** @gt_id: GT ID the mask is associated with */
539 	__u16 gt_id;
540 
541 #define DRM_XE_TOPO_DSS_GEOMETRY	1
542 #define DRM_XE_TOPO_DSS_COMPUTE		2
543 #define DRM_XE_TOPO_L3_BANK		3
544 #define DRM_XE_TOPO_EU_PER_DSS		4
545 #define DRM_XE_TOPO_SIMD16_EU_PER_DSS	5
546 	/** @type: type of mask */
547 	__u16 type;
548 
549 	/** @num_bytes: number of bytes in requested mask */
550 	__u32 num_bytes;
551 
552 	/** @mask: little-endian mask of @num_bytes */
553 	__u8 mask[];
554 };
555 
556 /**
557  * struct drm_xe_query_engine_cycles - correlate CPU and GPU timestamps
558  *
559  * If a query is made with a struct drm_xe_device_query where .query is equal to
560  * DRM_XE_DEVICE_QUERY_ENGINE_CYCLES, then the reply uses struct drm_xe_query_engine_cycles
561  * in .data. struct drm_xe_query_engine_cycles is allocated by the user and
562  * .data points to this allocated structure.
563  *
564  * The query returns the engine cycles, which along with GT's @reference_clock,
565  * can be used to calculate the engine timestamp. In addition the
566  * query returns a set of cpu timestamps that indicate when the command
567  * streamer cycle count was captured.
568  */
569 struct drm_xe_query_engine_cycles {
570 	/**
571 	 * @eci: This is input by the user and is the engine for which command
572 	 * streamer cycles is queried.
573 	 */
574 	struct drm_xe_engine_class_instance eci;
575 
576 	/**
577 	 * @clockid: This is input by the user and is the reference clock id for
578 	 * CPU timestamp. For definition, see clock_gettime(2) and
579 	 * perf_event_open(2). Supported clock ids are CLOCK_MONOTONIC,
580 	 * CLOCK_MONOTONIC_RAW, CLOCK_REALTIME, CLOCK_BOOTTIME, CLOCK_TAI.
581 	 */
582 	__s32 clockid;
583 
584 	/** @width: Width of the engine cycle counter in bits. */
585 	__u32 width;
586 
587 	/**
588 	 * @engine_cycles: Engine cycles as read from its register
589 	 * at 0x358 offset.
590 	 */
591 	__u64 engine_cycles;
592 
593 	/**
594 	 * @cpu_timestamp: CPU timestamp in ns. The timestamp is captured before
595 	 * reading the engine_cycles register using the reference clockid set by the
596 	 * user.
597 	 */
598 	__u64 cpu_timestamp;
599 
600 	/**
601 	 * @cpu_delta: Time delta in ns captured around reading the lower dword
602 	 * of the engine_cycles register.
603 	 */
604 	__u64 cpu_delta;
605 };
606 
607 /**
608  * struct drm_xe_query_uc_fw_version - query a micro-controller firmware version
609  *
610  * Given a uc_type this will return the branch, major, minor and patch version
611  * of the micro-controller firmware.
612  */
613 struct drm_xe_query_uc_fw_version {
614 	/** @uc_type: The micro-controller type to query firmware version */
615 #define XE_QUERY_UC_TYPE_GUC_SUBMISSION 0
616 #define XE_QUERY_UC_TYPE_HUC 1
617 	__u16 uc_type;
618 
619 	/** @pad: MBZ */
620 	__u16 pad;
621 
622 	/** @branch_ver: branch uc fw version */
623 	__u32 branch_ver;
624 	/** @major_ver: major uc fw version */
625 	__u32 major_ver;
626 	/** @minor_ver: minor uc fw version */
627 	__u32 minor_ver;
628 	/** @patch_ver: patch uc fw version */
629 	__u32 patch_ver;
630 
631 	/** @pad2: MBZ */
632 	__u32 pad2;
633 
634 	/** @reserved: Reserved */
635 	__u64 reserved;
636 };
637 
638 /**
639  * struct drm_xe_query_pxp_status - query if PXP is ready
640  *
641  * If PXP is enabled and no fatal error has occurred, the status will be set to
642  * one of the following values:
643  * 0: PXP init still in progress
644  * 1: PXP init complete
645  *
646  * If PXP is not enabled or something has gone wrong, the query will be failed
647  * with one of the following error codes:
648  * -ENODEV: PXP not supported or disabled;
649  * -EIO: fatal error occurred during init, so PXP will never be enabled;
650  * -EINVAL: incorrect value provided as part of the query;
651  * -EFAULT: error copying the memory between kernel and userspace.
652  *
653  * The status can only be 0 in the first few seconds after driver load. If
654  * everything works as expected, the status will transition to init complete in
655  * less than 1 second, while in case of errors the driver might take longer to
656  * start returning an error code, but it should still take less than 10 seconds.
657  *
658  * The supported session type bitmask is based on the values in
659  * enum drm_xe_pxp_session_type. TYPE_NONE is always supported and therefore
660  * is not reported in the bitmask.
661  *
662  */
663 struct drm_xe_query_pxp_status {
664 	/** @status: current PXP status */
665 	__u32 status;
666 
667 	/** @supported_session_types: bitmask of supported PXP session types */
668 	__u32 supported_session_types;
669 };
670 
671 /**
672  * struct drm_xe_device_query - Input of &DRM_IOCTL_XE_DEVICE_QUERY - main
673  * structure to query device information
674  *
675  * The user selects the type of data to query among DRM_XE_DEVICE_QUERY_*
676  * and sets the value in the query member. This determines the type of
677  * the structure provided by the driver in data, among struct drm_xe_query_*.
678  *
679  * The @query can be:
680  *  - %DRM_XE_DEVICE_QUERY_ENGINES
681  *  - %DRM_XE_DEVICE_QUERY_MEM_REGIONS
682  *  - %DRM_XE_DEVICE_QUERY_CONFIG
683  *  - %DRM_XE_DEVICE_QUERY_GT_LIST
684  *  - %DRM_XE_DEVICE_QUERY_HWCONFIG - Query type to retrieve the hardware
685  *    configuration of the device such as information on slices, memory,
686  *    caches, and so on. It is provided as a table of key / value
687  *    attributes.
688  *  - %DRM_XE_DEVICE_QUERY_GT_TOPOLOGY
689  *  - %DRM_XE_DEVICE_QUERY_ENGINE_CYCLES
690  *  - %DRM_XE_DEVICE_QUERY_PXP_STATUS
691  *
692  * If size is set to 0, the driver fills it with the required size for
693  * the requested type of data to query. If size is equal to the required
694  * size, the queried information is copied into data. If size is set to
695  * a value different from 0 and different from the required size, the
696  * IOCTL call returns -EINVAL.
697  *
698  * For example the following code snippet allows retrieving and printing
699  * information about the device engines with DRM_XE_DEVICE_QUERY_ENGINES:
700  *
701  * .. code-block:: C
702  *
703  *     struct drm_xe_query_engines *engines;
704  *     struct drm_xe_device_query query = {
705  *         .extensions = 0,
706  *         .query = DRM_XE_DEVICE_QUERY_ENGINES,
707  *         .size = 0,
708  *         .data = 0,
709  *     };
710  *     ioctl(fd, DRM_IOCTL_XE_DEVICE_QUERY, &query);
711  *     engines = malloc(query.size);
712  *     query.data = (uintptr_t)engines;
713  *     ioctl(fd, DRM_IOCTL_XE_DEVICE_QUERY, &query);
714  *     for (int i = 0; i < engines->num_engines; i++) {
715  *         printf("Engine %d: %s\n", i,
716  *             engines->engines[i].instance.engine_class ==
717  *                 DRM_XE_ENGINE_CLASS_RENDER ? "RENDER":
718  *             engines->engines[i].instance.engine_class ==
719  *                 DRM_XE_ENGINE_CLASS_COPY ? "COPY":
720  *             engines->engines[i].instance.engine_class ==
721  *                 DRM_XE_ENGINE_CLASS_VIDEO_DECODE ? "VIDEO_DECODE":
722  *             engines->engines[i].instance.engine_class ==
723  *                 DRM_XE_ENGINE_CLASS_VIDEO_ENHANCE ? "VIDEO_ENHANCE":
724  *             engines->engines[i].instance.engine_class ==
725  *                 DRM_XE_ENGINE_CLASS_COMPUTE ? "COMPUTE":
726  *             "UNKNOWN");
727  *     }
728  *     free(engines);
729  */
730 struct drm_xe_device_query {
731 	/** @extensions: Pointer to the first extension struct, if any */
732 	__u64 extensions;
733 
734 #define DRM_XE_DEVICE_QUERY_ENGINES		0
735 #define DRM_XE_DEVICE_QUERY_MEM_REGIONS		1
736 #define DRM_XE_DEVICE_QUERY_CONFIG		2
737 #define DRM_XE_DEVICE_QUERY_GT_LIST		3
738 #define DRM_XE_DEVICE_QUERY_HWCONFIG		4
739 #define DRM_XE_DEVICE_QUERY_GT_TOPOLOGY		5
740 #define DRM_XE_DEVICE_QUERY_ENGINE_CYCLES	6
741 #define DRM_XE_DEVICE_QUERY_UC_FW_VERSION	7
742 #define DRM_XE_DEVICE_QUERY_OA_UNITS		8
743 #define DRM_XE_DEVICE_QUERY_PXP_STATUS		9
744 #define DRM_XE_DEVICE_QUERY_EU_STALL		10
745 	/** @query: The type of data to query */
746 	__u32 query;
747 
748 	/** @size: Size of the queried data */
749 	__u32 size;
750 
751 	/** @data: Queried data is placed here */
752 	__u64 data;
753 
754 	/** @reserved: Reserved */
755 	__u64 reserved[2];
756 };
757 
758 /**
759  * struct drm_xe_gem_create - Input of &DRM_IOCTL_XE_GEM_CREATE - A structure for
760  * gem creation
761  *
762  * The @flags can be:
763  *  - %DRM_XE_GEM_CREATE_FLAG_DEFER_BACKING
764  *  - %DRM_XE_GEM_CREATE_FLAG_SCANOUT
765  *  - %DRM_XE_GEM_CREATE_FLAG_NEEDS_VISIBLE_VRAM - When using VRAM as a
766  *    possible placement, ensure that the corresponding VRAM allocation
767  *    will always use the CPU accessible part of VRAM. This is important
768  *    for small-bar systems (on full-bar systems this gets turned into a
769  *    noop).
770  *    Note1: System memory can be used as an extra placement if the kernel
771  *    should spill the allocation to system memory, if space can't be made
772  *    available in the CPU accessible part of VRAM (giving the same
773  *    behaviour as the i915 interface, see
774  *    I915_GEM_CREATE_EXT_FLAG_NEEDS_CPU_ACCESS).
775  *    Note2: For clear-color CCS surfaces the kernel needs to read the
776  *    clear-color value stored in the buffer, and on discrete platforms we
777  *    need to use VRAM for display surfaces, therefore the kernel requires
778  *    setting this flag for such objects, otherwise an error is thrown on
779  *    small-bar systems.
780  *
781  * @cpu_caching supports the following values:
782  *  - %DRM_XE_GEM_CPU_CACHING_WB - Allocate the pages with write-back
783  *    caching. On iGPU this can't be used for scanout surfaces. Currently
784  *    not allowed for objects placed in VRAM.
785  *  - %DRM_XE_GEM_CPU_CACHING_WC - Allocate the pages as write-combined. This
786  *    is uncached. Scanout surfaces should likely use this. All objects
787  *    that can be placed in VRAM must use this.
788  *
789  * This ioctl supports setting the following properties via the
790  * %DRM_XE_GEM_CREATE_EXTENSION_SET_PROPERTY extension, which uses the
791  * generic @drm_xe_ext_set_property struct:
792  *
793  *  - %DRM_XE_GEM_CREATE_SET_PROPERTY_PXP_TYPE - set the type of PXP session
794  *    this object will be used with. Valid values are listed in enum
795  *    drm_xe_pxp_session_type. %DRM_XE_PXP_TYPE_NONE is the default behavior, so
796  *    there is no need to explicitly set that. Objects used with session of type
797  *    %DRM_XE_PXP_TYPE_HWDRM will be marked as invalid if a PXP invalidation
798  *    event occurs after their creation. Attempting to flip an invalid object
799  *    will cause a black frame to be displayed instead. Submissions with invalid
800  *    objects mapped in the VM will be rejected.
801  */
802 struct drm_xe_gem_create {
803 #define DRM_XE_GEM_CREATE_EXTENSION_SET_PROPERTY	0
804 #define   DRM_XE_GEM_CREATE_SET_PROPERTY_PXP_TYPE	0
805 	/** @extensions: Pointer to the first extension struct, if any */
806 	__u64 extensions;
807 
808 	/**
809 	 * @size: Size of the object to be created, must match region
810 	 * (system or vram) minimum alignment (&min_page_size).
811 	 */
812 	__u64 size;
813 
814 	/**
815 	 * @placement: A mask of memory instances of where BO can be placed.
816 	 * Each index in this mask refers directly to the struct
817 	 * drm_xe_query_mem_regions' instance, no assumptions should
818 	 * be made about order. The type of each region is described
819 	 * by struct drm_xe_query_mem_regions' mem_class.
820 	 */
821 	__u32 placement;
822 
823 #define DRM_XE_GEM_CREATE_FLAG_DEFER_BACKING		(1 << 0)
824 #define DRM_XE_GEM_CREATE_FLAG_SCANOUT			(1 << 1)
825 #define DRM_XE_GEM_CREATE_FLAG_NEEDS_VISIBLE_VRAM	(1 << 2)
826 	/**
827 	 * @flags: Flags, currently a mask of memory instances of where BO can
828 	 * be placed
829 	 */
830 	__u32 flags;
831 
832 	/**
833 	 * @vm_id: Attached VM, if any
834 	 *
835 	 * If a VM is specified, this BO must:
836 	 *
837 	 *  1. Only ever be bound to that VM.
838 	 *  2. Cannot be exported as a PRIME fd.
839 	 */
840 	__u32 vm_id;
841 
842 	/**
843 	 * @handle: Returned handle for the object.
844 	 *
845 	 * Object handles are nonzero.
846 	 */
847 	__u32 handle;
848 
849 #define DRM_XE_GEM_CPU_CACHING_WB                      1
850 #define DRM_XE_GEM_CPU_CACHING_WC                      2
851 	/**
852 	 * @cpu_caching: The CPU caching mode to select for this object. If
853 	 * mmaping the object the mode selected here will also be used. The
854 	 * exception is when mapping system memory (including data evicted
855 	 * to system) on discrete GPUs. The caching mode selected will
856 	 * then be overridden to DRM_XE_GEM_CPU_CACHING_WB, and coherency
857 	 * between GPU- and CPU is guaranteed. The caching mode of
858 	 * existing CPU-mappings will be updated transparently to
859 	 * user-space clients.
860 	 */
861 	__u16 cpu_caching;
862 	/** @pad: MBZ */
863 	__u16 pad[3];
864 
865 	/** @reserved: Reserved */
866 	__u64 reserved[2];
867 };
868 
869 /**
870  * struct drm_xe_gem_mmap_offset - Input of &DRM_IOCTL_XE_GEM_MMAP_OFFSET
871  *
872  * The @flags can be:
873  *  - %DRM_XE_MMAP_OFFSET_FLAG_PCI_BARRIER - For user to query special offset
874  *    for use in mmap ioctl. Writing to the returned mmap address will generate a
875  *    PCI memory barrier with low overhead (avoiding IOCTL call as well as writing
876  *    to VRAM which would also add overhead), acting like an MI_MEM_FENCE
877  *    instruction.
878  *
879  * Note: The mmap size can be at most 4K, due to HW limitations. As a result
880  * this interface is only supported on CPU architectures that support 4K page
881  * size. The mmap_offset ioctl will detect this and gracefully return an
882  * error, where userspace is expected to have a different fallback method for
883  * triggering a barrier.
884  *
885  * Roughly the usage would be as follows:
886  *
887  * .. code-block:: C
888  *
889  *     struct drm_xe_gem_mmap_offset mmo = {
890  *         .handle = 0, // must be set to 0
891  *         .flags = DRM_XE_MMAP_OFFSET_FLAG_PCI_BARRIER,
892  *     };
893  *
894  *     err = ioctl(fd, DRM_IOCTL_XE_GEM_MMAP_OFFSET, &mmo);
895  *     map = mmap(NULL, size, PROT_WRITE, MAP_SHARED, fd, mmo.offset);
896  *     map[i] = 0xdeadbeaf; // issue barrier
897  */
898 struct drm_xe_gem_mmap_offset {
899 	/** @extensions: Pointer to the first extension struct, if any */
900 	__u64 extensions;
901 
902 	/** @handle: Handle for the object being mapped. */
903 	__u32 handle;
904 
905 #define DRM_XE_MMAP_OFFSET_FLAG_PCI_BARRIER     (1 << 0)
906 	/** @flags: Flags */
907 	__u32 flags;
908 
909 	/** @offset: The fake offset to use for subsequent mmap call */
910 	__u64 offset;
911 
912 	/** @reserved: Reserved */
913 	__u64 reserved[2];
914 };
915 
916 /**
917  * struct drm_xe_vm_create - Input of &DRM_IOCTL_XE_VM_CREATE
918  *
919  * The @flags can be:
920  *  - %DRM_XE_VM_CREATE_FLAG_SCRATCH_PAGE
921  *  - %DRM_XE_VM_CREATE_FLAG_LR_MODE - An LR, or Long Running VM accepts
922  *    exec submissions to its exec_queues that don't have an upper time
923  *    limit on the job execution time. But exec submissions to these
924  *    don't allow any of the flags DRM_XE_SYNC_FLAG_SYNCOBJ,
925  *    DRM_XE_SYNC_FLAG_TIMELINE_SYNCOBJ, DRM_XE_SYNC_FLAG_DMA_BUF,
926  *    used as out-syncobjs, that is, together with DRM_XE_SYNC_FLAG_SIGNAL.
927  *    LR VMs can be created in recoverable page-fault mode using
928  *    DRM_XE_VM_CREATE_FLAG_FAULT_MODE, if the device supports it.
929  *    If that flag is omitted, the UMD can not rely on the slightly
930  *    different per-VM overcommit semantics that are enabled by
931  *    DRM_XE_VM_CREATE_FLAG_FAULT_MODE (see below), but KMD may
932  *    still enable recoverable pagefaults if supported by the device.
933  *  - %DRM_XE_VM_CREATE_FLAG_FAULT_MODE - Requires also
934  *    DRM_XE_VM_CREATE_FLAG_LR_MODE. It allows memory to be allocated on
935  *    demand when accessed, and also allows per-VM overcommit of memory.
936  *    The xe driver internally uses recoverable pagefaults to implement
937  *    this.
938  */
939 struct drm_xe_vm_create {
940 	/** @extensions: Pointer to the first extension struct, if any */
941 	__u64 extensions;
942 
943 #define DRM_XE_VM_CREATE_FLAG_SCRATCH_PAGE	(1 << 0)
944 #define DRM_XE_VM_CREATE_FLAG_LR_MODE	        (1 << 1)
945 #define DRM_XE_VM_CREATE_FLAG_FAULT_MODE	(1 << 2)
946 	/** @flags: Flags */
947 	__u32 flags;
948 
949 	/** @vm_id: Returned VM ID */
950 	__u32 vm_id;
951 
952 	/** @reserved: Reserved */
953 	__u64 reserved[2];
954 };
955 
956 /**
957  * struct drm_xe_vm_destroy - Input of &DRM_IOCTL_XE_VM_DESTROY
958  */
959 struct drm_xe_vm_destroy {
960 	/** @vm_id: VM ID */
961 	__u32 vm_id;
962 
963 	/** @pad: MBZ */
964 	__u32 pad;
965 
966 	/** @reserved: Reserved */
967 	__u64 reserved[2];
968 };
969 
970 /**
971  * struct drm_xe_vm_bind_op - run bind operations
972  *
973  * The @op can be:
974  *  - %DRM_XE_VM_BIND_OP_MAP
975  *  - %DRM_XE_VM_BIND_OP_UNMAP
976  *  - %DRM_XE_VM_BIND_OP_MAP_USERPTR
977  *  - %DRM_XE_VM_BIND_OP_UNMAP_ALL
978  *  - %DRM_XE_VM_BIND_OP_PREFETCH
979  *
980  * and the @flags can be:
981  *  - %DRM_XE_VM_BIND_FLAG_READONLY - Setup the page tables as read-only
982  *    to ensure write protection
983  *  - %DRM_XE_VM_BIND_FLAG_IMMEDIATE - On a faulting VM, do the
984  *    MAP operation immediately rather than deferring the MAP to the page
985  *    fault handler. This is implied on a non-faulting VM as there is no
986  *    fault handler to defer to.
987  *  - %DRM_XE_VM_BIND_FLAG_NULL - When the NULL flag is set, the page
988  *    tables are setup with a special bit which indicates writes are
989  *    dropped and all reads return zero. In the future, the NULL flags
990  *    will only be valid for DRM_XE_VM_BIND_OP_MAP operations, the BO
991  *    handle MBZ, and the BO offset MBZ. This flag is intended to
992  *    implement VK sparse bindings.
993  *  - %DRM_XE_VM_BIND_FLAG_CHECK_PXP - If the object is encrypted via PXP,
994  *    reject the binding if the encryption key is no longer valid. This
995  *    flag has no effect on BOs that are not marked as using PXP.
996  *  - %DRM_XE_VM_BIND_FLAG_CPU_ADDR_MIRROR - When the CPU address mirror flag is
997  *    set, no mappings are created rather the range is reserved for CPU address
998  *    mirroring which will be populated on GPU page faults or prefetches. Only
999  *    valid on VMs with DRM_XE_VM_CREATE_FLAG_FAULT_MODE set. The CPU address
1000  *    mirror flag are only valid for DRM_XE_VM_BIND_OP_MAP operations, the BO
1001  *    handle MBZ, and the BO offset MBZ.
1002  */
1003 struct drm_xe_vm_bind_op {
1004 	/** @extensions: Pointer to the first extension struct, if any */
1005 	__u64 extensions;
1006 
1007 	/**
1008 	 * @obj: GEM object to operate on, MBZ for MAP_USERPTR, MBZ for UNMAP
1009 	 */
1010 	__u32 obj;
1011 
1012 	/**
1013 	 * @pat_index: The platform defined @pat_index to use for this mapping.
1014 	 * The index basically maps to some predefined memory attributes,
1015 	 * including things like caching, coherency, compression etc.  The exact
1016 	 * meaning of the pat_index is platform specific and defined in the
1017 	 * Bspec and PRMs.  When the KMD sets up the binding the index here is
1018 	 * encoded into the ppGTT PTE.
1019 	 *
1020 	 * For coherency the @pat_index needs to be at least 1way coherent when
1021 	 * drm_xe_gem_create.cpu_caching is DRM_XE_GEM_CPU_CACHING_WB. The KMD
1022 	 * will extract the coherency mode from the @pat_index and reject if
1023 	 * there is a mismatch (see note below for pre-MTL platforms).
1024 	 *
1025 	 * Note: On pre-MTL platforms there is only a caching mode and no
1026 	 * explicit coherency mode, but on such hardware there is always a
1027 	 * shared-LLC (or is dgpu) so all GT memory accesses are coherent with
1028 	 * CPU caches even with the caching mode set as uncached.  It's only the
1029 	 * display engine that is incoherent (on dgpu it must be in VRAM which
1030 	 * is always mapped as WC on the CPU). However to keep the uapi somewhat
1031 	 * consistent with newer platforms the KMD groups the different cache
1032 	 * levels into the following coherency buckets on all pre-MTL platforms:
1033 	 *
1034 	 *	ppGTT UC -> COH_NONE
1035 	 *	ppGTT WC -> COH_NONE
1036 	 *	ppGTT WT -> COH_NONE
1037 	 *	ppGTT WB -> COH_AT_LEAST_1WAY
1038 	 *
1039 	 * In practice UC/WC/WT should only ever used for scanout surfaces on
1040 	 * such platforms (or perhaps in general for dma-buf if shared with
1041 	 * another device) since it is only the display engine that is actually
1042 	 * incoherent.  Everything else should typically use WB given that we
1043 	 * have a shared-LLC.  On MTL+ this completely changes and the HW
1044 	 * defines the coherency mode as part of the @pat_index, where
1045 	 * incoherent GT access is possible.
1046 	 *
1047 	 * Note: For userptr and externally imported dma-buf the kernel expects
1048 	 * either 1WAY or 2WAY for the @pat_index.
1049 	 *
1050 	 * For DRM_XE_VM_BIND_FLAG_NULL bindings there are no KMD restrictions
1051 	 * on the @pat_index. For such mappings there is no actual memory being
1052 	 * mapped (the address in the PTE is invalid), so the various PAT memory
1053 	 * attributes likely do not apply.  Simply leaving as zero is one
1054 	 * option (still a valid pat_index). Same applies to
1055 	 * DRM_XE_VM_BIND_FLAG_CPU_ADDR_MIRROR bindings as for such mapping
1056 	 * there is no actual memory being mapped.
1057 	 */
1058 	__u16 pat_index;
1059 
1060 	/** @pad: MBZ */
1061 	__u16 pad;
1062 
1063 	union {
1064 		/**
1065 		 * @obj_offset: Offset into the object, MBZ for CLEAR_RANGE,
1066 		 * ignored for unbind
1067 		 */
1068 		__u64 obj_offset;
1069 
1070 		/** @userptr: user pointer to bind on */
1071 		__u64 userptr;
1072 
1073 		/**
1074 		 * @cpu_addr_mirror_offset: Offset from GPU @addr to create
1075 		 * CPU address mirror mappings. MBZ with current level of
1076 		 * support (e.g. 1 to 1 mapping between GPU and CPU mappings
1077 		 * only supported).
1078 		 */
1079 		__s64 cpu_addr_mirror_offset;
1080 	};
1081 
1082 	/**
1083 	 * @range: Number of bytes from the object to bind to addr, MBZ for UNMAP_ALL
1084 	 */
1085 	__u64 range;
1086 
1087 	/** @addr: Address to operate on, MBZ for UNMAP_ALL */
1088 	__u64 addr;
1089 
1090 #define DRM_XE_VM_BIND_OP_MAP		0x0
1091 #define DRM_XE_VM_BIND_OP_UNMAP		0x1
1092 #define DRM_XE_VM_BIND_OP_MAP_USERPTR	0x2
1093 #define DRM_XE_VM_BIND_OP_UNMAP_ALL	0x3
1094 #define DRM_XE_VM_BIND_OP_PREFETCH	0x4
1095 	/** @op: Bind operation to perform */
1096 	__u32 op;
1097 
1098 #define DRM_XE_VM_BIND_FLAG_READONLY	(1 << 0)
1099 #define DRM_XE_VM_BIND_FLAG_IMMEDIATE	(1 << 1)
1100 #define DRM_XE_VM_BIND_FLAG_NULL	(1 << 2)
1101 #define DRM_XE_VM_BIND_FLAG_DUMPABLE	(1 << 3)
1102 #define DRM_XE_VM_BIND_FLAG_CHECK_PXP	(1 << 4)
1103 #define DRM_XE_VM_BIND_FLAG_CPU_ADDR_MIRROR	(1 << 5)
1104 	/** @flags: Bind flags */
1105 	__u32 flags;
1106 
1107 	/**
1108 	 * @prefetch_mem_region_instance: Memory region to prefetch VMA to.
1109 	 * It is a region instance, not a mask.
1110 	 * To be used only with %DRM_XE_VM_BIND_OP_PREFETCH operation.
1111 	 */
1112 	__u32 prefetch_mem_region_instance;
1113 
1114 	/** @pad2: MBZ */
1115 	__u32 pad2;
1116 
1117 	/** @reserved: Reserved */
1118 	__u64 reserved[3];
1119 };
1120 
1121 /**
1122  * struct drm_xe_vm_bind - Input of &DRM_IOCTL_XE_VM_BIND
1123  *
1124  * Below is an example of a minimal use of @drm_xe_vm_bind to
1125  * asynchronously bind the buffer `data` at address `BIND_ADDRESS` to
1126  * illustrate `userptr`. It can be synchronized by using the example
1127  * provided for @drm_xe_sync.
1128  *
1129  * .. code-block:: C
1130  *
1131  *     data = aligned_alloc(ALIGNMENT, BO_SIZE);
1132  *     struct drm_xe_vm_bind bind = {
1133  *         .vm_id = vm,
1134  *         .num_binds = 1,
1135  *         .bind.obj = 0,
1136  *         .bind.obj_offset = to_user_pointer(data),
1137  *         .bind.range = BO_SIZE,
1138  *         .bind.addr = BIND_ADDRESS,
1139  *         .bind.op = DRM_XE_VM_BIND_OP_MAP_USERPTR,
1140  *         .bind.flags = 0,
1141  *         .num_syncs = 1,
1142  *         .syncs = &sync,
1143  *         .exec_queue_id = 0,
1144  *     };
1145  *     ioctl(fd, DRM_IOCTL_XE_VM_BIND, &bind);
1146  *
1147  */
1148 struct drm_xe_vm_bind {
1149 	/** @extensions: Pointer to the first extension struct, if any */
1150 	__u64 extensions;
1151 
1152 	/** @vm_id: The ID of the VM to bind to */
1153 	__u32 vm_id;
1154 
1155 	/**
1156 	 * @exec_queue_id: exec_queue_id, must be of class DRM_XE_ENGINE_CLASS_VM_BIND
1157 	 * and exec queue must have same vm_id. If zero, the default VM bind engine
1158 	 * is used.
1159 	 */
1160 	__u32 exec_queue_id;
1161 
1162 	/** @pad: MBZ */
1163 	__u32 pad;
1164 
1165 	/** @num_binds: number of binds in this IOCTL */
1166 	__u32 num_binds;
1167 
1168 	union {
1169 		/** @bind: used if num_binds == 1 */
1170 		struct drm_xe_vm_bind_op bind;
1171 
1172 		/**
1173 		 * @vector_of_binds: userptr to array of struct
1174 		 * drm_xe_vm_bind_op if num_binds > 1
1175 		 */
1176 		__u64 vector_of_binds;
1177 	};
1178 
1179 	/** @pad2: MBZ */
1180 	__u32 pad2;
1181 
1182 	/** @num_syncs: amount of syncs to wait on */
1183 	__u32 num_syncs;
1184 
1185 	/** @syncs: pointer to struct drm_xe_sync array */
1186 	__u64 syncs;
1187 
1188 	/** @reserved: Reserved */
1189 	__u64 reserved[2];
1190 };
1191 
1192 /**
1193  * struct drm_xe_exec_queue_create - Input of &DRM_IOCTL_XE_EXEC_QUEUE_CREATE
1194  *
1195  * This ioctl supports setting the following properties via the
1196  * %DRM_XE_EXEC_QUEUE_EXTENSION_SET_PROPERTY extension, which uses the
1197  * generic @drm_xe_ext_set_property struct:
1198  *
1199  *  - %DRM_XE_EXEC_QUEUE_SET_PROPERTY_PRIORITY - set the queue priority.
1200  *    CAP_SYS_NICE is required to set a value above normal.
1201  *  - %DRM_XE_EXEC_QUEUE_SET_PROPERTY_TIMESLICE - set the queue timeslice
1202  *    duration in microseconds.
1203  *  - %DRM_XE_EXEC_QUEUE_SET_PROPERTY_PXP_TYPE - set the type of PXP session
1204  *    this queue will be used with. Valid values are listed in enum
1205  *    drm_xe_pxp_session_type. %DRM_XE_PXP_TYPE_NONE is the default behavior, so
1206  *    there is no need to explicitly set that. When a queue of type
1207  *    %DRM_XE_PXP_TYPE_HWDRM is created, the PXP default HWDRM session
1208  *    (%XE_PXP_HWDRM_DEFAULT_SESSION) will be started, if isn't already running.
1209  *    Given that going into a power-saving state kills PXP HWDRM sessions,
1210  *    runtime PM will be blocked while queues of this type are alive.
1211  *    All PXP queues will be killed if a PXP invalidation event occurs.
1212  *
1213  * The example below shows how to use @drm_xe_exec_queue_create to create
1214  * a simple exec_queue (no parallel submission) of class
1215  * &DRM_XE_ENGINE_CLASS_RENDER.
1216  *
1217  * .. code-block:: C
1218  *
1219  *     struct drm_xe_engine_class_instance instance = {
1220  *         .engine_class = DRM_XE_ENGINE_CLASS_RENDER,
1221  *     };
1222  *     struct drm_xe_exec_queue_create exec_queue_create = {
1223  *          .extensions = 0,
1224  *          .vm_id = vm,
1225  *          .num_bb_per_exec = 1,
1226  *          .num_eng_per_bb = 1,
1227  *          .instances = to_user_pointer(&instance),
1228  *     };
1229  *     ioctl(fd, DRM_IOCTL_XE_EXEC_QUEUE_CREATE, &exec_queue_create);
1230  *
1231  *     Allow users to provide a hint to kernel for cases demanding low latency
1232  *     profile. Please note it will have impact on power consumption. User can
1233  *     indicate low latency hint with flag while creating exec queue as
1234  *     mentioned below,
1235  *
1236  *     struct drm_xe_exec_queue_create exec_queue_create = {
1237  *          .flags = DRM_XE_EXEC_QUEUE_LOW_LATENCY_HINT,
1238  *          .extensions = 0,
1239  *          .vm_id = vm,
1240  *          .num_bb_per_exec = 1,
1241  *          .num_eng_per_bb = 1,
1242  *          .instances = to_user_pointer(&instance),
1243  *     };
1244  *     ioctl(fd, DRM_IOCTL_XE_EXEC_QUEUE_CREATE, &exec_queue_create);
1245  *
1246  */
1247 struct drm_xe_exec_queue_create {
1248 #define DRM_XE_EXEC_QUEUE_EXTENSION_SET_PROPERTY		0
1249 #define   DRM_XE_EXEC_QUEUE_SET_PROPERTY_PRIORITY		0
1250 #define   DRM_XE_EXEC_QUEUE_SET_PROPERTY_TIMESLICE		1
1251 #define   DRM_XE_EXEC_QUEUE_SET_PROPERTY_PXP_TYPE		2
1252 	/** @extensions: Pointer to the first extension struct, if any */
1253 	__u64 extensions;
1254 
1255 	/** @width: submission width (number BB per exec) for this exec queue */
1256 	__u16 width;
1257 
1258 	/** @num_placements: number of valid placements for this exec queue */
1259 	__u16 num_placements;
1260 
1261 	/** @vm_id: VM to use for this exec queue */
1262 	__u32 vm_id;
1263 
1264 #define DRM_XE_EXEC_QUEUE_LOW_LATENCY_HINT	(1 << 0)
1265 	/** @flags: flags to use for this exec queue */
1266 	__u32 flags;
1267 
1268 	/** @exec_queue_id: Returned exec queue ID */
1269 	__u32 exec_queue_id;
1270 
1271 	/**
1272 	 * @instances: user pointer to a 2-d array of struct
1273 	 * drm_xe_engine_class_instance
1274 	 *
1275 	 * length = width (i) * num_placements (j)
1276 	 * index = j + i * width
1277 	 */
1278 	__u64 instances;
1279 
1280 	/** @reserved: Reserved */
1281 	__u64 reserved[2];
1282 };
1283 
1284 /**
1285  * struct drm_xe_exec_queue_destroy - Input of &DRM_IOCTL_XE_EXEC_QUEUE_DESTROY
1286  */
1287 struct drm_xe_exec_queue_destroy {
1288 	/** @exec_queue_id: Exec queue ID */
1289 	__u32 exec_queue_id;
1290 
1291 	/** @pad: MBZ */
1292 	__u32 pad;
1293 
1294 	/** @reserved: Reserved */
1295 	__u64 reserved[2];
1296 };
1297 
1298 /**
1299  * struct drm_xe_exec_queue_get_property - Input of &DRM_IOCTL_XE_EXEC_QUEUE_GET_PROPERTY
1300  *
1301  * The @property can be:
1302  *  - %DRM_XE_EXEC_QUEUE_GET_PROPERTY_BAN
1303  */
1304 struct drm_xe_exec_queue_get_property {
1305 	/** @extensions: Pointer to the first extension struct, if any */
1306 	__u64 extensions;
1307 
1308 	/** @exec_queue_id: Exec queue ID */
1309 	__u32 exec_queue_id;
1310 
1311 #define DRM_XE_EXEC_QUEUE_GET_PROPERTY_BAN	0
1312 	/** @property: property to get */
1313 	__u32 property;
1314 
1315 	/** @value: property value */
1316 	__u64 value;
1317 
1318 	/** @reserved: Reserved */
1319 	__u64 reserved[2];
1320 };
1321 
1322 /**
1323  * struct drm_xe_sync - sync object
1324  *
1325  * The @type can be:
1326  *  - %DRM_XE_SYNC_TYPE_SYNCOBJ
1327  *  - %DRM_XE_SYNC_TYPE_TIMELINE_SYNCOBJ
1328  *  - %DRM_XE_SYNC_TYPE_USER_FENCE
1329  *
1330  * and the @flags can be:
1331  *  - %DRM_XE_SYNC_FLAG_SIGNAL
1332  *
1333  * A minimal use of @drm_xe_sync looks like this:
1334  *
1335  * .. code-block:: C
1336  *
1337  *     struct drm_xe_sync sync = {
1338  *         .flags = DRM_XE_SYNC_FLAG_SIGNAL,
1339  *         .type = DRM_XE_SYNC_TYPE_SYNCOBJ,
1340  *     };
1341  *     struct drm_syncobj_create syncobj_create = { 0 };
1342  *     ioctl(fd, DRM_IOCTL_SYNCOBJ_CREATE, &syncobj_create);
1343  *     sync.handle = syncobj_create.handle;
1344  *         ...
1345  *         use of &sync in drm_xe_exec or drm_xe_vm_bind
1346  *         ...
1347  *     struct drm_syncobj_wait wait = {
1348  *         .handles = &sync.handle,
1349  *         .timeout_nsec = INT64_MAX,
1350  *         .count_handles = 1,
1351  *         .flags = 0,
1352  *         .first_signaled = 0,
1353  *         .pad = 0,
1354  *     };
1355  *     ioctl(fd, DRM_IOCTL_SYNCOBJ_WAIT, &wait);
1356  */
1357 struct drm_xe_sync {
1358 	/** @extensions: Pointer to the first extension struct, if any */
1359 	__u64 extensions;
1360 
1361 #define DRM_XE_SYNC_TYPE_SYNCOBJ		0x0
1362 #define DRM_XE_SYNC_TYPE_TIMELINE_SYNCOBJ	0x1
1363 #define DRM_XE_SYNC_TYPE_USER_FENCE		0x2
1364 	/** @type: Type of the this sync object */
1365 	__u32 type;
1366 
1367 #define DRM_XE_SYNC_FLAG_SIGNAL	(1 << 0)
1368 	/** @flags: Sync Flags */
1369 	__u32 flags;
1370 
1371 	union {
1372 		/** @handle: Handle for the object */
1373 		__u32 handle;
1374 
1375 		/**
1376 		 * @addr: Address of user fence. When sync is passed in via exec
1377 		 * IOCTL this is a GPU address in the VM. When sync passed in via
1378 		 * VM bind IOCTL this is a user pointer. In either case, it is
1379 		 * the users responsibility that this address is present and
1380 		 * mapped when the user fence is signalled. Must be qword
1381 		 * aligned.
1382 		 */
1383 		__u64 addr;
1384 	};
1385 
1386 	/**
1387 	 * @timeline_value: Input for the timeline sync object. Needs to be
1388 	 * different than 0 when used with %DRM_XE_SYNC_FLAG_TIMELINE_SYNCOBJ.
1389 	 */
1390 	__u64 timeline_value;
1391 
1392 	/** @reserved: Reserved */
1393 	__u64 reserved[2];
1394 };
1395 
1396 /**
1397  * struct drm_xe_exec - Input of &DRM_IOCTL_XE_EXEC
1398  *
1399  * This is an example to use @drm_xe_exec for execution of the object
1400  * at BIND_ADDRESS (see example in @drm_xe_vm_bind) by an exec_queue
1401  * (see example in @drm_xe_exec_queue_create). It can be synchronized
1402  * by using the example provided for @drm_xe_sync.
1403  *
1404  * .. code-block:: C
1405  *
1406  *     struct drm_xe_exec exec = {
1407  *         .exec_queue_id = exec_queue,
1408  *         .syncs = &sync,
1409  *         .num_syncs = 1,
1410  *         .address = BIND_ADDRESS,
1411  *         .num_batch_buffer = 1,
1412  *     };
1413  *     ioctl(fd, DRM_IOCTL_XE_EXEC, &exec);
1414  *
1415  */
1416 struct drm_xe_exec {
1417 	/** @extensions: Pointer to the first extension struct, if any */
1418 	__u64 extensions;
1419 
1420 	/** @exec_queue_id: Exec queue ID for the batch buffer */
1421 	__u32 exec_queue_id;
1422 
1423 	/** @num_syncs: Amount of struct drm_xe_sync in array. */
1424 	__u32 num_syncs;
1425 
1426 	/** @syncs: Pointer to struct drm_xe_sync array. */
1427 	__u64 syncs;
1428 
1429 	/**
1430 	 * @address: address of batch buffer if num_batch_buffer == 1 or an
1431 	 * array of batch buffer addresses
1432 	 */
1433 	__u64 address;
1434 
1435 	/**
1436 	 * @num_batch_buffer: number of batch buffer in this exec, must match
1437 	 * the width of the engine
1438 	 */
1439 	__u16 num_batch_buffer;
1440 
1441 	/** @pad: MBZ */
1442 	__u16 pad[3];
1443 
1444 	/** @reserved: Reserved */
1445 	__u64 reserved[2];
1446 };
1447 
1448 /**
1449  * struct drm_xe_wait_user_fence - Input of &DRM_IOCTL_XE_WAIT_USER_FENCE
1450  *
1451  * Wait on user fence, XE will wake-up on every HW engine interrupt in the
1452  * instances list and check if user fence is complete::
1453  *
1454  *	(*addr & MASK) OP (VALUE & MASK)
1455  *
1456  * Returns to user on user fence completion or timeout.
1457  *
1458  * The @op can be:
1459  *  - %DRM_XE_UFENCE_WAIT_OP_EQ
1460  *  - %DRM_XE_UFENCE_WAIT_OP_NEQ
1461  *  - %DRM_XE_UFENCE_WAIT_OP_GT
1462  *  - %DRM_XE_UFENCE_WAIT_OP_GTE
1463  *  - %DRM_XE_UFENCE_WAIT_OP_LT
1464  *  - %DRM_XE_UFENCE_WAIT_OP_LTE
1465  *
1466  * and the @flags can be:
1467  *  - %DRM_XE_UFENCE_WAIT_FLAG_ABSTIME
1468  *  - %DRM_XE_UFENCE_WAIT_FLAG_SOFT_OP
1469  *
1470  * The @mask values can be for example:
1471  *  - 0xffu for u8
1472  *  - 0xffffu for u16
1473  *  - 0xffffffffu for u32
1474  *  - 0xffffffffffffffffu for u64
1475  */
1476 struct drm_xe_wait_user_fence {
1477 	/** @extensions: Pointer to the first extension struct, if any */
1478 	__u64 extensions;
1479 
1480 	/**
1481 	 * @addr: user pointer address to wait on, must qword aligned
1482 	 */
1483 	__u64 addr;
1484 
1485 #define DRM_XE_UFENCE_WAIT_OP_EQ	0x0
1486 #define DRM_XE_UFENCE_WAIT_OP_NEQ	0x1
1487 #define DRM_XE_UFENCE_WAIT_OP_GT	0x2
1488 #define DRM_XE_UFENCE_WAIT_OP_GTE	0x3
1489 #define DRM_XE_UFENCE_WAIT_OP_LT	0x4
1490 #define DRM_XE_UFENCE_WAIT_OP_LTE	0x5
1491 	/** @op: wait operation (type of comparison) */
1492 	__u16 op;
1493 
1494 #define DRM_XE_UFENCE_WAIT_FLAG_ABSTIME	(1 << 0)
1495 	/** @flags: wait flags */
1496 	__u16 flags;
1497 
1498 	/** @pad: MBZ */
1499 	__u32 pad;
1500 
1501 	/** @value: compare value */
1502 	__u64 value;
1503 
1504 	/** @mask: comparison mask */
1505 	__u64 mask;
1506 
1507 	/**
1508 	 * @timeout: how long to wait before bailing, value in nanoseconds.
1509 	 * Without DRM_XE_UFENCE_WAIT_FLAG_ABSTIME flag set (relative timeout)
1510 	 * it contains timeout expressed in nanoseconds to wait (fence will
1511 	 * expire at now() + timeout).
1512 	 * When DRM_XE_UFENCE_WAIT_FLAG_ABSTIME flat is set (absolute timeout) wait
1513 	 * will end at timeout (uses system MONOTONIC_CLOCK).
1514 	 * Passing negative timeout leads to neverending wait.
1515 	 *
1516 	 * On relative timeout this value is updated with timeout left
1517 	 * (for restarting the call in case of signal delivery).
1518 	 * On absolute timeout this value stays intact (restarted call still
1519 	 * expire at the same point of time).
1520 	 */
1521 	__s64 timeout;
1522 
1523 	/** @exec_queue_id: exec_queue_id returned from xe_exec_queue_create_ioctl */
1524 	__u32 exec_queue_id;
1525 
1526 	/** @pad2: MBZ */
1527 	__u32 pad2;
1528 
1529 	/** @reserved: Reserved */
1530 	__u64 reserved[2];
1531 };
1532 
1533 /**
1534  * enum drm_xe_observation_type - Observation stream types
1535  */
1536 enum drm_xe_observation_type {
1537 	/** @DRM_XE_OBSERVATION_TYPE_OA: OA observation stream type */
1538 	DRM_XE_OBSERVATION_TYPE_OA,
1539 	/** @DRM_XE_OBSERVATION_TYPE_EU_STALL: EU stall sampling observation stream type */
1540 	DRM_XE_OBSERVATION_TYPE_EU_STALL,
1541 };
1542 
1543 /**
1544  * enum drm_xe_observation_op - Observation stream ops
1545  */
1546 enum drm_xe_observation_op {
1547 	/** @DRM_XE_OBSERVATION_OP_STREAM_OPEN: Open an observation stream */
1548 	DRM_XE_OBSERVATION_OP_STREAM_OPEN,
1549 
1550 	/** @DRM_XE_OBSERVATION_OP_ADD_CONFIG: Add observation stream config */
1551 	DRM_XE_OBSERVATION_OP_ADD_CONFIG,
1552 
1553 	/** @DRM_XE_OBSERVATION_OP_REMOVE_CONFIG: Remove observation stream config */
1554 	DRM_XE_OBSERVATION_OP_REMOVE_CONFIG,
1555 };
1556 
1557 /**
1558  * struct drm_xe_observation_param - Input of &DRM_XE_OBSERVATION
1559  *
1560  * The observation layer enables multiplexing observation streams of
1561  * multiple types. The actual params for a particular stream operation are
1562  * supplied via the @param pointer (use __copy_from_user to get these
1563  * params).
1564  */
1565 struct drm_xe_observation_param {
1566 	/** @extensions: Pointer to the first extension struct, if any */
1567 	__u64 extensions;
1568 	/** @observation_type: observation stream type, of enum @drm_xe_observation_type */
1569 	__u64 observation_type;
1570 	/** @observation_op: observation stream op, of enum @drm_xe_observation_op */
1571 	__u64 observation_op;
1572 	/** @param: Pointer to actual stream params */
1573 	__u64 param;
1574 };
1575 
1576 /**
1577  * enum drm_xe_observation_ioctls - Observation stream fd ioctl's
1578  *
1579  * Information exchanged between userspace and kernel for observation fd
1580  * ioctl's is stream type specific
1581  */
1582 enum drm_xe_observation_ioctls {
1583 	/** @DRM_XE_OBSERVATION_IOCTL_ENABLE: Enable data capture for an observation stream */
1584 	DRM_XE_OBSERVATION_IOCTL_ENABLE = _IO('i', 0x0),
1585 
1586 	/** @DRM_XE_OBSERVATION_IOCTL_DISABLE: Disable data capture for a observation stream */
1587 	DRM_XE_OBSERVATION_IOCTL_DISABLE = _IO('i', 0x1),
1588 
1589 	/** @DRM_XE_OBSERVATION_IOCTL_CONFIG: Change observation stream configuration */
1590 	DRM_XE_OBSERVATION_IOCTL_CONFIG = _IO('i', 0x2),
1591 
1592 	/** @DRM_XE_OBSERVATION_IOCTL_STATUS: Return observation stream status */
1593 	DRM_XE_OBSERVATION_IOCTL_STATUS = _IO('i', 0x3),
1594 
1595 	/** @DRM_XE_OBSERVATION_IOCTL_INFO: Return observation stream info */
1596 	DRM_XE_OBSERVATION_IOCTL_INFO = _IO('i', 0x4),
1597 };
1598 
1599 /**
1600  * enum drm_xe_oa_unit_type - OA unit types
1601  */
1602 enum drm_xe_oa_unit_type {
1603 	/**
1604 	 * @DRM_XE_OA_UNIT_TYPE_OAG: OAG OA unit. OAR/OAC are considered
1605 	 * sub-types of OAG. For OAR/OAC, use OAG.
1606 	 */
1607 	DRM_XE_OA_UNIT_TYPE_OAG,
1608 
1609 	/** @DRM_XE_OA_UNIT_TYPE_OAM: OAM OA unit */
1610 	DRM_XE_OA_UNIT_TYPE_OAM,
1611 };
1612 
1613 /**
1614  * struct drm_xe_oa_unit - describe OA unit
1615  */
1616 struct drm_xe_oa_unit {
1617 	/** @extensions: Pointer to the first extension struct, if any */
1618 	__u64 extensions;
1619 
1620 	/** @oa_unit_id: OA unit ID */
1621 	__u32 oa_unit_id;
1622 
1623 	/** @oa_unit_type: OA unit type of @drm_xe_oa_unit_type */
1624 	__u32 oa_unit_type;
1625 
1626 	/** @capabilities: OA capabilities bit-mask */
1627 	__u64 capabilities;
1628 #define DRM_XE_OA_CAPS_BASE		(1 << 0)
1629 #define DRM_XE_OA_CAPS_SYNCS		(1 << 1)
1630 #define DRM_XE_OA_CAPS_OA_BUFFER_SIZE	(1 << 2)
1631 #define DRM_XE_OA_CAPS_WAIT_NUM_REPORTS	(1 << 3)
1632 
1633 	/** @oa_timestamp_freq: OA timestamp freq */
1634 	__u64 oa_timestamp_freq;
1635 
1636 	/** @reserved: MBZ */
1637 	__u64 reserved[4];
1638 
1639 	/** @num_engines: number of engines in @eci array */
1640 	__u64 num_engines;
1641 
1642 	/** @eci: engines attached to this OA unit */
1643 	struct drm_xe_engine_class_instance eci[];
1644 };
1645 
1646 /**
1647  * struct drm_xe_query_oa_units - describe OA units
1648  *
1649  * If a query is made with a struct drm_xe_device_query where .query
1650  * is equal to DRM_XE_DEVICE_QUERY_OA_UNITS, then the reply uses struct
1651  * drm_xe_query_oa_units in .data.
1652  *
1653  * OA unit properties for all OA units can be accessed using a code block
1654  * such as the one below:
1655  *
1656  * .. code-block:: C
1657  *
1658  *	struct drm_xe_query_oa_units *qoa;
1659  *	struct drm_xe_oa_unit *oau;
1660  *	u8 *poau;
1661  *
1662  *	// malloc qoa and issue DRM_XE_DEVICE_QUERY_OA_UNITS. Then:
1663  *	poau = (u8 *)&qoa->oa_units[0];
1664  *	for (int i = 0; i < qoa->num_oa_units; i++) {
1665  *		oau = (struct drm_xe_oa_unit *)poau;
1666  *		// Access 'struct drm_xe_oa_unit' fields here
1667  *		poau += sizeof(*oau) + oau->num_engines * sizeof(oau->eci[0]);
1668  *	}
1669  */
1670 struct drm_xe_query_oa_units {
1671 	/** @extensions: Pointer to the first extension struct, if any */
1672 	__u64 extensions;
1673 	/** @num_oa_units: number of OA units returned in oau[] */
1674 	__u32 num_oa_units;
1675 	/** @pad: MBZ */
1676 	__u32 pad;
1677 	/**
1678 	 * @oa_units: struct @drm_xe_oa_unit array returned for this device.
1679 	 * Written below as a u64 array to avoid problems with nested flexible
1680 	 * arrays with some compilers
1681 	 */
1682 	__u64 oa_units[];
1683 };
1684 
1685 /**
1686  * enum drm_xe_oa_format_type - OA format types as specified in PRM/Bspec
1687  * 52198/60942
1688  */
1689 enum drm_xe_oa_format_type {
1690 	/** @DRM_XE_OA_FMT_TYPE_OAG: OAG report format */
1691 	DRM_XE_OA_FMT_TYPE_OAG,
1692 	/** @DRM_XE_OA_FMT_TYPE_OAR: OAR report format */
1693 	DRM_XE_OA_FMT_TYPE_OAR,
1694 	/** @DRM_XE_OA_FMT_TYPE_OAM: OAM report format */
1695 	DRM_XE_OA_FMT_TYPE_OAM,
1696 	/** @DRM_XE_OA_FMT_TYPE_OAC: OAC report format */
1697 	DRM_XE_OA_FMT_TYPE_OAC,
1698 	/** @DRM_XE_OA_FMT_TYPE_OAM_MPEC: OAM SAMEDIA or OAM MPEC report format */
1699 	DRM_XE_OA_FMT_TYPE_OAM_MPEC,
1700 	/** @DRM_XE_OA_FMT_TYPE_PEC: PEC report format */
1701 	DRM_XE_OA_FMT_TYPE_PEC,
1702 };
1703 
1704 /**
1705  * enum drm_xe_oa_property_id - OA stream property id's
1706  *
1707  * Stream params are specified as a chain of @drm_xe_ext_set_property
1708  * struct's, with @property values from enum @drm_xe_oa_property_id and
1709  * @drm_xe_user_extension base.name set to @DRM_XE_OA_EXTENSION_SET_PROPERTY.
1710  * @param field in struct @drm_xe_observation_param points to the first
1711  * @drm_xe_ext_set_property struct.
1712  *
1713  * Exactly the same mechanism is also used for stream reconfiguration using the
1714  * @DRM_XE_OBSERVATION_IOCTL_CONFIG observation stream fd ioctl, though only a
1715  * subset of properties below can be specified for stream reconfiguration.
1716  */
1717 enum drm_xe_oa_property_id {
1718 #define DRM_XE_OA_EXTENSION_SET_PROPERTY	0
1719 	/**
1720 	 * @DRM_XE_OA_PROPERTY_OA_UNIT_ID: ID of the OA unit on which to open
1721 	 * the OA stream, see @oa_unit_id in 'struct
1722 	 * drm_xe_query_oa_units'. Defaults to 0 if not provided.
1723 	 */
1724 	DRM_XE_OA_PROPERTY_OA_UNIT_ID = 1,
1725 
1726 	/**
1727 	 * @DRM_XE_OA_PROPERTY_SAMPLE_OA: A value of 1 requests inclusion of raw
1728 	 * OA unit reports or stream samples in a global buffer attached to an
1729 	 * OA unit.
1730 	 */
1731 	DRM_XE_OA_PROPERTY_SAMPLE_OA,
1732 
1733 	/**
1734 	 * @DRM_XE_OA_PROPERTY_OA_METRIC_SET: OA metrics defining contents of OA
1735 	 * reports, previously added via @DRM_XE_OBSERVATION_OP_ADD_CONFIG.
1736 	 */
1737 	DRM_XE_OA_PROPERTY_OA_METRIC_SET,
1738 
1739 	/** @DRM_XE_OA_PROPERTY_OA_FORMAT: OA counter report format */
1740 	DRM_XE_OA_PROPERTY_OA_FORMAT,
1741 	/*
1742 	 * OA_FORMAT's are specified the same way as in PRM/Bspec 52198/60942,
1743 	 * in terms of the following quantities: a. enum @drm_xe_oa_format_type
1744 	 * b. Counter select c. Counter size and d. BC report. Also refer to the
1745 	 * oa_formats array in drivers/gpu/drm/xe/xe_oa.c.
1746 	 */
1747 #define DRM_XE_OA_FORMAT_MASK_FMT_TYPE		(0xffu << 0)
1748 #define DRM_XE_OA_FORMAT_MASK_COUNTER_SEL	(0xffu << 8)
1749 #define DRM_XE_OA_FORMAT_MASK_COUNTER_SIZE	(0xffu << 16)
1750 #define DRM_XE_OA_FORMAT_MASK_BC_REPORT		(0xffu << 24)
1751 
1752 	/**
1753 	 * @DRM_XE_OA_PROPERTY_OA_PERIOD_EXPONENT: Requests periodic OA unit
1754 	 * sampling with sampling frequency proportional to 2^(period_exponent + 1)
1755 	 */
1756 	DRM_XE_OA_PROPERTY_OA_PERIOD_EXPONENT,
1757 
1758 	/**
1759 	 * @DRM_XE_OA_PROPERTY_OA_DISABLED: A value of 1 will open the OA
1760 	 * stream in a DISABLED state (see @DRM_XE_OBSERVATION_IOCTL_ENABLE).
1761 	 */
1762 	DRM_XE_OA_PROPERTY_OA_DISABLED,
1763 
1764 	/**
1765 	 * @DRM_XE_OA_PROPERTY_EXEC_QUEUE_ID: Open the stream for a specific
1766 	 * @exec_queue_id. OA queries can be executed on this exec queue.
1767 	 */
1768 	DRM_XE_OA_PROPERTY_EXEC_QUEUE_ID,
1769 
1770 	/**
1771 	 * @DRM_XE_OA_PROPERTY_OA_ENGINE_INSTANCE: Optional engine instance to
1772 	 * pass along with @DRM_XE_OA_PROPERTY_EXEC_QUEUE_ID or will default to 0.
1773 	 */
1774 	DRM_XE_OA_PROPERTY_OA_ENGINE_INSTANCE,
1775 
1776 	/**
1777 	 * @DRM_XE_OA_PROPERTY_NO_PREEMPT: Allow preemption and timeslicing
1778 	 * to be disabled for the stream exec queue.
1779 	 */
1780 	DRM_XE_OA_PROPERTY_NO_PREEMPT,
1781 
1782 	/**
1783 	 * @DRM_XE_OA_PROPERTY_NUM_SYNCS: Number of syncs in the sync array
1784 	 * specified in @DRM_XE_OA_PROPERTY_SYNCS
1785 	 */
1786 	DRM_XE_OA_PROPERTY_NUM_SYNCS,
1787 
1788 	/**
1789 	 * @DRM_XE_OA_PROPERTY_SYNCS: Pointer to struct @drm_xe_sync array
1790 	 * with array size specified via @DRM_XE_OA_PROPERTY_NUM_SYNCS. OA
1791 	 * configuration will wait till input fences signal. Output fences
1792 	 * will signal after the new OA configuration takes effect. For
1793 	 * @DRM_XE_SYNC_TYPE_USER_FENCE, @addr is a user pointer, similar
1794 	 * to the VM bind case.
1795 	 */
1796 	DRM_XE_OA_PROPERTY_SYNCS,
1797 
1798 	/**
1799 	 * @DRM_XE_OA_PROPERTY_OA_BUFFER_SIZE: Size of OA buffer to be
1800 	 * allocated by the driver in bytes. Supported sizes are powers of
1801 	 * 2 from 128 KiB to 128 MiB. When not specified, a 16 MiB OA
1802 	 * buffer is allocated by default.
1803 	 */
1804 	DRM_XE_OA_PROPERTY_OA_BUFFER_SIZE,
1805 
1806 	/**
1807 	 * @DRM_XE_OA_PROPERTY_WAIT_NUM_REPORTS: Number of reports to wait
1808 	 * for before unblocking poll or read
1809 	 */
1810 	DRM_XE_OA_PROPERTY_WAIT_NUM_REPORTS,
1811 };
1812 
1813 /**
1814  * struct drm_xe_oa_config - OA metric configuration
1815  *
1816  * Multiple OA configs can be added using @DRM_XE_OBSERVATION_OP_ADD_CONFIG. A
1817  * particular config can be specified when opening an OA stream using
1818  * @DRM_XE_OA_PROPERTY_OA_METRIC_SET property.
1819  */
1820 struct drm_xe_oa_config {
1821 	/** @extensions: Pointer to the first extension struct, if any */
1822 	__u64 extensions;
1823 
1824 	/** @uuid: String formatted like "%\08x-%\04x-%\04x-%\04x-%\012x" */
1825 	char uuid[36];
1826 
1827 	/** @n_regs: Number of regs in @regs_ptr */
1828 	__u32 n_regs;
1829 
1830 	/**
1831 	 * @regs_ptr: Pointer to (register address, value) pairs for OA config
1832 	 * registers. Expected length of buffer is: (2 * sizeof(u32) * @n_regs).
1833 	 */
1834 	__u64 regs_ptr;
1835 };
1836 
1837 /**
1838  * struct drm_xe_oa_stream_status - OA stream status returned from
1839  * @DRM_XE_OBSERVATION_IOCTL_STATUS observation stream fd ioctl. Userspace can
1840  * call the ioctl to query stream status in response to EIO errno from
1841  * observation fd read().
1842  */
1843 struct drm_xe_oa_stream_status {
1844 	/** @extensions: Pointer to the first extension struct, if any */
1845 	__u64 extensions;
1846 
1847 	/** @oa_status: OA stream status (see Bspec 46717/61226) */
1848 	__u64 oa_status;
1849 #define DRM_XE_OASTATUS_MMIO_TRG_Q_FULL		(1 << 3)
1850 #define DRM_XE_OASTATUS_COUNTER_OVERFLOW	(1 << 2)
1851 #define DRM_XE_OASTATUS_BUFFER_OVERFLOW		(1 << 1)
1852 #define DRM_XE_OASTATUS_REPORT_LOST		(1 << 0)
1853 
1854 	/** @reserved: reserved for future use */
1855 	__u64 reserved[3];
1856 };
1857 
1858 /**
1859  * struct drm_xe_oa_stream_info - OA stream info returned from
1860  * @DRM_XE_OBSERVATION_IOCTL_INFO observation stream fd ioctl
1861  */
1862 struct drm_xe_oa_stream_info {
1863 	/** @extensions: Pointer to the first extension struct, if any */
1864 	__u64 extensions;
1865 
1866 	/** @oa_buf_size: OA buffer size */
1867 	__u64 oa_buf_size;
1868 
1869 	/** @reserved: reserved for future use */
1870 	__u64 reserved[3];
1871 };
1872 
1873 /**
1874  * enum drm_xe_pxp_session_type - Supported PXP session types.
1875  *
1876  * We currently only support HWDRM sessions, which are used for protected
1877  * content that ends up being displayed, but the HW supports multiple types, so
1878  * we might extend support in the future.
1879  */
1880 enum drm_xe_pxp_session_type {
1881 	/** @DRM_XE_PXP_TYPE_NONE: PXP not used */
1882 	DRM_XE_PXP_TYPE_NONE = 0,
1883 	/**
1884 	 * @DRM_XE_PXP_TYPE_HWDRM: HWDRM sessions are used for content that ends
1885 	 * up on the display.
1886 	 */
1887 	DRM_XE_PXP_TYPE_HWDRM = 1,
1888 };
1889 
1890 /* ID of the protected content session managed by Xe when PXP is active */
1891 #define DRM_XE_PXP_HWDRM_DEFAULT_SESSION 0xf
1892 
1893 /**
1894  * enum drm_xe_eu_stall_property_id - EU stall sampling input property ids.
1895  *
1896  * These properties are passed to the driver at open as a chain of
1897  * @drm_xe_ext_set_property structures with @property set to these
1898  * properties' enums and @value set to the corresponding values of these
1899  * properties. @drm_xe_user_extension base.name should be set to
1900  * @DRM_XE_EU_STALL_EXTENSION_SET_PROPERTY.
1901  *
1902  * With the file descriptor obtained from open, user space must enable
1903  * the EU stall stream fd with @DRM_XE_OBSERVATION_IOCTL_ENABLE before
1904  * calling read(). EIO errno from read() indicates HW dropped data
1905  * due to full buffer.
1906  */
1907 enum drm_xe_eu_stall_property_id {
1908 #define DRM_XE_EU_STALL_EXTENSION_SET_PROPERTY		0
1909 	/**
1910 	 * @DRM_XE_EU_STALL_PROP_GT_ID: @gt_id of the GT on which
1911 	 * EU stall data will be captured.
1912 	 */
1913 	DRM_XE_EU_STALL_PROP_GT_ID = 1,
1914 
1915 	/**
1916 	 * @DRM_XE_EU_STALL_PROP_SAMPLE_RATE: Sampling rate in
1917 	 * GPU cycles from @sampling_rates in struct @drm_xe_query_eu_stall
1918 	 */
1919 	DRM_XE_EU_STALL_PROP_SAMPLE_RATE,
1920 
1921 	/**
1922 	 * @DRM_XE_EU_STALL_PROP_WAIT_NUM_REPORTS: Minimum number of
1923 	 * EU stall data reports to be present in the kernel buffer
1924 	 * before unblocking a blocked poll or read.
1925 	 */
1926 	DRM_XE_EU_STALL_PROP_WAIT_NUM_REPORTS,
1927 };
1928 
1929 /**
1930  * struct drm_xe_query_eu_stall - Information about EU stall sampling.
1931  *
1932  * If a query is made with a struct @drm_xe_device_query where .query
1933  * is equal to @DRM_XE_DEVICE_QUERY_EU_STALL, then the reply uses
1934  * struct @drm_xe_query_eu_stall in .data.
1935  */
1936 struct drm_xe_query_eu_stall {
1937 	/** @extensions: Pointer to the first extension struct, if any */
1938 	__u64 extensions;
1939 
1940 	/** @capabilities: EU stall capabilities bit-mask */
1941 	__u64 capabilities;
1942 #define DRM_XE_EU_STALL_CAPS_BASE		(1 << 0)
1943 
1944 	/** @record_size: size of each EU stall data record */
1945 	__u64 record_size;
1946 
1947 	/** @per_xecore_buf_size: internal per XeCore buffer size */
1948 	__u64 per_xecore_buf_size;
1949 
1950 	/** @reserved: Reserved */
1951 	__u64 reserved[5];
1952 
1953 	/** @num_sampling_rates: Number of sampling rates in @sampling_rates array */
1954 	__u64 num_sampling_rates;
1955 
1956 	/**
1957 	 * @sampling_rates: Flexible array of sampling rates
1958 	 * sorted in the fastest to slowest order.
1959 	 * Sampling rates are specified in GPU clock cycles.
1960 	 */
1961 	__u64 sampling_rates[];
1962 };
1963 
1964 #if defined(__cplusplus)
1965 }
1966 #endif
1967 
1968 #endif /* _UAPI_XE_DRM_H_ */
1969