xref: /linux/include/uapi/drm/drm_fourcc.h (revision 260f6f4fda93c8485c8037865c941b42b9cba5d2)
1 /*
2  * Copyright 2011 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * VA LINUX SYSTEMS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
19  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21  * OTHER DEALINGS IN THE SOFTWARE.
22  */
23 
24 #ifndef DRM_FOURCC_H
25 #define DRM_FOURCC_H
26 
27 #include "drm.h"
28 
29 #if defined(__cplusplus)
30 extern "C" {
31 #endif
32 
33 /**
34  * DOC: overview
35  *
36  * In the DRM subsystem, framebuffer pixel formats are described using the
37  * fourcc codes defined in `include/uapi/drm/drm_fourcc.h`. In addition to the
38  * fourcc code, a Format Modifier may optionally be provided, in order to
39  * further describe the buffer's format - for example tiling or compression.
40  *
41  * Format Modifiers
42  * ----------------
43  *
44  * Format modifiers are used in conjunction with a fourcc code, forming a
45  * unique fourcc:modifier pair. This format:modifier pair must fully define the
46  * format and data layout of the buffer, and should be the only way to describe
47  * that particular buffer.
48  *
49  * Having multiple fourcc:modifier pairs which describe the same layout should
50  * be avoided, as such aliases run the risk of different drivers exposing
51  * different names for the same data format, forcing userspace to understand
52  * that they are aliases.
53  *
54  * Format modifiers may change any property of the buffer, including the number
55  * of planes and/or the required allocation size. Format modifiers are
56  * vendor-namespaced, and as such the relationship between a fourcc code and a
57  * modifier is specific to the modifier being used. For example, some modifiers
58  * may preserve meaning - such as number of planes - from the fourcc code,
59  * whereas others may not.
60  *
61  * Modifiers must uniquely encode buffer layout. In other words, a buffer must
62  * match only a single modifier. A modifier must not be a subset of layouts of
63  * another modifier. For instance, it's incorrect to encode pitch alignment in
64  * a modifier: a buffer may match a 64-pixel aligned modifier and a 32-pixel
65  * aligned modifier. That said, modifiers can have implicit minimal
66  * requirements.
67  *
68  * For modifiers where the combination of fourcc code and modifier can alias,
69  * a canonical pair needs to be defined and used by all drivers. Preferred
70  * combinations are also encouraged where all combinations might lead to
71  * confusion and unnecessarily reduced interoperability. An example for the
72  * latter is AFBC, where the ABGR layouts are preferred over ARGB layouts.
73  *
74  * There are two kinds of modifier users:
75  *
76  * - Kernel and user-space drivers: for drivers it's important that modifiers
77  *   don't alias, otherwise two drivers might support the same format but use
78  *   different aliases, preventing them from sharing buffers in an efficient
79  *   format.
80  * - Higher-level programs interfacing with KMS/GBM/EGL/Vulkan/etc: these users
81  *   see modifiers as opaque tokens they can check for equality and intersect.
82  *   These users mustn't need to know to reason about the modifier value
83  *   (i.e. they are not expected to extract information out of the modifier).
84  *
85  * Vendors should document their modifier usage in as much detail as
86  * possible, to ensure maximum compatibility across devices, drivers and
87  * applications.
88  *
89  * The authoritative list of format modifier codes is found in
90  * `include/uapi/drm/drm_fourcc.h`
91  *
92  * Open Source User Waiver
93  * -----------------------
94  *
95  * Because this is the authoritative source for pixel formats and modifiers
96  * referenced by GL, Vulkan extensions and other standards and hence used both
97  * by open source and closed source driver stacks, the usual requirement for an
98  * upstream in-kernel or open source userspace user does not apply.
99  *
100  * To ensure, as much as feasible, compatibility across stacks and avoid
101  * confusion with incompatible enumerations stakeholders for all relevant driver
102  * stacks should approve additions.
103  */
104 
105 #define fourcc_code(a, b, c, d) ((__u32)(a) | ((__u32)(b) << 8) | \
106 				 ((__u32)(c) << 16) | ((__u32)(d) << 24))
107 
108 #define DRM_FORMAT_BIG_ENDIAN (1U<<31) /* format is big endian instead of little endian */
109 
110 /* Reserve 0 for the invalid format specifier */
111 #define DRM_FORMAT_INVALID	0
112 
113 /* color index */
114 #define DRM_FORMAT_C1		fourcc_code('C', '1', ' ', ' ') /* [7:0] C0:C1:C2:C3:C4:C5:C6:C7 1:1:1:1:1:1:1:1 eight pixels/byte */
115 #define DRM_FORMAT_C2		fourcc_code('C', '2', ' ', ' ') /* [7:0] C0:C1:C2:C3 2:2:2:2 four pixels/byte */
116 #define DRM_FORMAT_C4		fourcc_code('C', '4', ' ', ' ') /* [7:0] C0:C1 4:4 two pixels/byte */
117 #define DRM_FORMAT_C8		fourcc_code('C', '8', ' ', ' ') /* [7:0] C */
118 
119 /* 1 bpp Darkness (inverse relationship between channel value and brightness) */
120 #define DRM_FORMAT_D1		fourcc_code('D', '1', ' ', ' ') /* [7:0] D0:D1:D2:D3:D4:D5:D6:D7 1:1:1:1:1:1:1:1 eight pixels/byte */
121 
122 /* 2 bpp Darkness (inverse relationship between channel value and brightness) */
123 #define DRM_FORMAT_D2		fourcc_code('D', '2', ' ', ' ') /* [7:0] D0:D1:D2:D3 2:2:2:2 four pixels/byte */
124 
125 /* 4 bpp Darkness (inverse relationship between channel value and brightness) */
126 #define DRM_FORMAT_D4		fourcc_code('D', '4', ' ', ' ') /* [7:0] D0:D1 4:4 two pixels/byte */
127 
128 /* 8 bpp Darkness (inverse relationship between channel value and brightness) */
129 #define DRM_FORMAT_D8		fourcc_code('D', '8', ' ', ' ') /* [7:0] D */
130 
131 /* 1 bpp Red (direct relationship between channel value and brightness) */
132 #define DRM_FORMAT_R1		fourcc_code('R', '1', ' ', ' ') /* [7:0] R0:R1:R2:R3:R4:R5:R6:R7 1:1:1:1:1:1:1:1 eight pixels/byte */
133 
134 /* 2 bpp Red (direct relationship between channel value and brightness) */
135 #define DRM_FORMAT_R2		fourcc_code('R', '2', ' ', ' ') /* [7:0] R0:R1:R2:R3 2:2:2:2 four pixels/byte */
136 
137 /* 4 bpp Red (direct relationship between channel value and brightness) */
138 #define DRM_FORMAT_R4		fourcc_code('R', '4', ' ', ' ') /* [7:0] R0:R1 4:4 two pixels/byte */
139 
140 /* 8 bpp Red (direct relationship between channel value and brightness) */
141 #define DRM_FORMAT_R8		fourcc_code('R', '8', ' ', ' ') /* [7:0] R */
142 
143 /* 10 bpp Red (direct relationship between channel value and brightness) */
144 #define DRM_FORMAT_R10		fourcc_code('R', '1', '0', ' ') /* [15:0] x:R 6:10 little endian */
145 
146 /* 12 bpp Red (direct relationship between channel value and brightness) */
147 #define DRM_FORMAT_R12		fourcc_code('R', '1', '2', ' ') /* [15:0] x:R 4:12 little endian */
148 
149 /* 16 bpp Red (direct relationship between channel value and brightness) */
150 #define DRM_FORMAT_R16		fourcc_code('R', '1', '6', ' ') /* [15:0] R little endian */
151 
152 /* 16 bpp RG */
153 #define DRM_FORMAT_RG88		fourcc_code('R', 'G', '8', '8') /* [15:0] R:G 8:8 little endian */
154 #define DRM_FORMAT_GR88		fourcc_code('G', 'R', '8', '8') /* [15:0] G:R 8:8 little endian */
155 
156 /* 32 bpp RG */
157 #define DRM_FORMAT_RG1616	fourcc_code('R', 'G', '3', '2') /* [31:0] R:G 16:16 little endian */
158 #define DRM_FORMAT_GR1616	fourcc_code('G', 'R', '3', '2') /* [31:0] G:R 16:16 little endian */
159 
160 /* 8 bpp RGB */
161 #define DRM_FORMAT_RGB332	fourcc_code('R', 'G', 'B', '8') /* [7:0] R:G:B 3:3:2 */
162 #define DRM_FORMAT_BGR233	fourcc_code('B', 'G', 'R', '8') /* [7:0] B:G:R 2:3:3 */
163 
164 /* 16 bpp RGB */
165 #define DRM_FORMAT_XRGB4444	fourcc_code('X', 'R', '1', '2') /* [15:0] x:R:G:B 4:4:4:4 little endian */
166 #define DRM_FORMAT_XBGR4444	fourcc_code('X', 'B', '1', '2') /* [15:0] x:B:G:R 4:4:4:4 little endian */
167 #define DRM_FORMAT_RGBX4444	fourcc_code('R', 'X', '1', '2') /* [15:0] R:G:B:x 4:4:4:4 little endian */
168 #define DRM_FORMAT_BGRX4444	fourcc_code('B', 'X', '1', '2') /* [15:0] B:G:R:x 4:4:4:4 little endian */
169 
170 #define DRM_FORMAT_ARGB4444	fourcc_code('A', 'R', '1', '2') /* [15:0] A:R:G:B 4:4:4:4 little endian */
171 #define DRM_FORMAT_ABGR4444	fourcc_code('A', 'B', '1', '2') /* [15:0] A:B:G:R 4:4:4:4 little endian */
172 #define DRM_FORMAT_RGBA4444	fourcc_code('R', 'A', '1', '2') /* [15:0] R:G:B:A 4:4:4:4 little endian */
173 #define DRM_FORMAT_BGRA4444	fourcc_code('B', 'A', '1', '2') /* [15:0] B:G:R:A 4:4:4:4 little endian */
174 
175 #define DRM_FORMAT_XRGB1555	fourcc_code('X', 'R', '1', '5') /* [15:0] x:R:G:B 1:5:5:5 little endian */
176 #define DRM_FORMAT_XBGR1555	fourcc_code('X', 'B', '1', '5') /* [15:0] x:B:G:R 1:5:5:5 little endian */
177 #define DRM_FORMAT_RGBX5551	fourcc_code('R', 'X', '1', '5') /* [15:0] R:G:B:x 5:5:5:1 little endian */
178 #define DRM_FORMAT_BGRX5551	fourcc_code('B', 'X', '1', '5') /* [15:0] B:G:R:x 5:5:5:1 little endian */
179 
180 #define DRM_FORMAT_ARGB1555	fourcc_code('A', 'R', '1', '5') /* [15:0] A:R:G:B 1:5:5:5 little endian */
181 #define DRM_FORMAT_ABGR1555	fourcc_code('A', 'B', '1', '5') /* [15:0] A:B:G:R 1:5:5:5 little endian */
182 #define DRM_FORMAT_RGBA5551	fourcc_code('R', 'A', '1', '5') /* [15:0] R:G:B:A 5:5:5:1 little endian */
183 #define DRM_FORMAT_BGRA5551	fourcc_code('B', 'A', '1', '5') /* [15:0] B:G:R:A 5:5:5:1 little endian */
184 
185 #define DRM_FORMAT_RGB565	fourcc_code('R', 'G', '1', '6') /* [15:0] R:G:B 5:6:5 little endian */
186 #define DRM_FORMAT_BGR565	fourcc_code('B', 'G', '1', '6') /* [15:0] B:G:R 5:6:5 little endian */
187 
188 /* 24 bpp RGB */
189 #define DRM_FORMAT_RGB888	fourcc_code('R', 'G', '2', '4') /* [23:0] R:G:B little endian */
190 #define DRM_FORMAT_BGR888	fourcc_code('B', 'G', '2', '4') /* [23:0] B:G:R little endian */
191 
192 /* 32 bpp RGB */
193 #define DRM_FORMAT_XRGB8888	fourcc_code('X', 'R', '2', '4') /* [31:0] x:R:G:B 8:8:8:8 little endian */
194 #define DRM_FORMAT_XBGR8888	fourcc_code('X', 'B', '2', '4') /* [31:0] x:B:G:R 8:8:8:8 little endian */
195 #define DRM_FORMAT_RGBX8888	fourcc_code('R', 'X', '2', '4') /* [31:0] R:G:B:x 8:8:8:8 little endian */
196 #define DRM_FORMAT_BGRX8888	fourcc_code('B', 'X', '2', '4') /* [31:0] B:G:R:x 8:8:8:8 little endian */
197 
198 #define DRM_FORMAT_ARGB8888	fourcc_code('A', 'R', '2', '4') /* [31:0] A:R:G:B 8:8:8:8 little endian */
199 #define DRM_FORMAT_ABGR8888	fourcc_code('A', 'B', '2', '4') /* [31:0] A:B:G:R 8:8:8:8 little endian */
200 #define DRM_FORMAT_RGBA8888	fourcc_code('R', 'A', '2', '4') /* [31:0] R:G:B:A 8:8:8:8 little endian */
201 #define DRM_FORMAT_BGRA8888	fourcc_code('B', 'A', '2', '4') /* [31:0] B:G:R:A 8:8:8:8 little endian */
202 
203 #define DRM_FORMAT_XRGB2101010	fourcc_code('X', 'R', '3', '0') /* [31:0] x:R:G:B 2:10:10:10 little endian */
204 #define DRM_FORMAT_XBGR2101010	fourcc_code('X', 'B', '3', '0') /* [31:0] x:B:G:R 2:10:10:10 little endian */
205 #define DRM_FORMAT_RGBX1010102	fourcc_code('R', 'X', '3', '0') /* [31:0] R:G:B:x 10:10:10:2 little endian */
206 #define DRM_FORMAT_BGRX1010102	fourcc_code('B', 'X', '3', '0') /* [31:0] B:G:R:x 10:10:10:2 little endian */
207 
208 #define DRM_FORMAT_ARGB2101010	fourcc_code('A', 'R', '3', '0') /* [31:0] A:R:G:B 2:10:10:10 little endian */
209 #define DRM_FORMAT_ABGR2101010	fourcc_code('A', 'B', '3', '0') /* [31:0] A:B:G:R 2:10:10:10 little endian */
210 #define DRM_FORMAT_RGBA1010102	fourcc_code('R', 'A', '3', '0') /* [31:0] R:G:B:A 10:10:10:2 little endian */
211 #define DRM_FORMAT_BGRA1010102	fourcc_code('B', 'A', '3', '0') /* [31:0] B:G:R:A 10:10:10:2 little endian */
212 
213 /* 48 bpp RGB */
214 #define DRM_FORMAT_RGB161616 fourcc_code('R', 'G', '4', '8') /* [47:0] R:G:B 16:16:16 little endian */
215 #define DRM_FORMAT_BGR161616 fourcc_code('B', 'G', '4', '8') /* [47:0] B:G:R 16:16:16 little endian */
216 
217 /* 64 bpp RGB */
218 #define DRM_FORMAT_XRGB16161616	fourcc_code('X', 'R', '4', '8') /* [63:0] x:R:G:B 16:16:16:16 little endian */
219 #define DRM_FORMAT_XBGR16161616	fourcc_code('X', 'B', '4', '8') /* [63:0] x:B:G:R 16:16:16:16 little endian */
220 
221 #define DRM_FORMAT_ARGB16161616	fourcc_code('A', 'R', '4', '8') /* [63:0] A:R:G:B 16:16:16:16 little endian */
222 #define DRM_FORMAT_ABGR16161616	fourcc_code('A', 'B', '4', '8') /* [63:0] A:B:G:R 16:16:16:16 little endian */
223 
224 /*
225  * Half-Floating point - 16b/component
226  * IEEE 754-2008 binary16 half-precision float
227  * [15:0] sign:exponent:mantissa 1:5:10
228  */
229 #define DRM_FORMAT_XRGB16161616F fourcc_code('X', 'R', '4', 'H') /* [63:0] x:R:G:B 16:16:16:16 little endian */
230 #define DRM_FORMAT_XBGR16161616F fourcc_code('X', 'B', '4', 'H') /* [63:0] x:B:G:R 16:16:16:16 little endian */
231 
232 #define DRM_FORMAT_ARGB16161616F fourcc_code('A', 'R', '4', 'H') /* [63:0] A:R:G:B 16:16:16:16 little endian */
233 #define DRM_FORMAT_ABGR16161616F fourcc_code('A', 'B', '4', 'H') /* [63:0] A:B:G:R 16:16:16:16 little endian */
234 
235 #define DRM_FORMAT_R16F          fourcc_code('R', ' ', ' ', 'H') /* [15:0] R 16 little endian */
236 #define DRM_FORMAT_GR1616F       fourcc_code('G', 'R', ' ', 'H') /* [31:0] G:R 16:16 little endian */
237 #define DRM_FORMAT_BGR161616F    fourcc_code('B', 'G', 'R', 'H') /* [47:0] B:G:R 16:16:16 little endian */
238 
239 /*
240  * Floating point - 32b/component
241  * IEEE 754-2008 binary32 float
242  * [31:0] sign:exponent:mantissa 1:8:23
243  */
244 #define DRM_FORMAT_R32F          fourcc_code('R', ' ', ' ', 'F') /* [31:0] R 32 little endian */
245 #define DRM_FORMAT_GR3232F       fourcc_code('G', 'R', ' ', 'F') /* [63:0] R:G 32:32 little endian */
246 #define DRM_FORMAT_BGR323232F    fourcc_code('B', 'G', 'R', 'F') /* [95:0] R:G:B 32:32:32 little endian */
247 #define DRM_FORMAT_ABGR32323232F fourcc_code('A', 'B', '8', 'F') /* [127:0] R:G:B:A 32:32:32:32 little endian */
248 
249 /*
250  * RGBA format with 10-bit components packed in 64-bit per pixel, with 6 bits
251  * of unused padding per component:
252  */
253 #define DRM_FORMAT_AXBXGXRX106106106106 fourcc_code('A', 'B', '1', '0') /* [63:0] A:x:B:x:G:x:R:x 10:6:10:6:10:6:10:6 little endian */
254 
255 /* packed YCbCr */
256 #define DRM_FORMAT_YUYV		fourcc_code('Y', 'U', 'Y', 'V') /* [31:0] Cr0:Y1:Cb0:Y0 8:8:8:8 little endian */
257 #define DRM_FORMAT_YVYU		fourcc_code('Y', 'V', 'Y', 'U') /* [31:0] Cb0:Y1:Cr0:Y0 8:8:8:8 little endian */
258 #define DRM_FORMAT_UYVY		fourcc_code('U', 'Y', 'V', 'Y') /* [31:0] Y1:Cr0:Y0:Cb0 8:8:8:8 little endian */
259 #define DRM_FORMAT_VYUY		fourcc_code('V', 'Y', 'U', 'Y') /* [31:0] Y1:Cb0:Y0:Cr0 8:8:8:8 little endian */
260 
261 #define DRM_FORMAT_AYUV		fourcc_code('A', 'Y', 'U', 'V') /* [31:0] A:Y:Cb:Cr 8:8:8:8 little endian */
262 #define DRM_FORMAT_AVUY8888	fourcc_code('A', 'V', 'U', 'Y') /* [31:0] A:Cr:Cb:Y 8:8:8:8 little endian */
263 #define DRM_FORMAT_XYUV8888	fourcc_code('X', 'Y', 'U', 'V') /* [31:0] X:Y:Cb:Cr 8:8:8:8 little endian */
264 #define DRM_FORMAT_XVUY8888	fourcc_code('X', 'V', 'U', 'Y') /* [31:0] X:Cr:Cb:Y 8:8:8:8 little endian */
265 #define DRM_FORMAT_VUY888	fourcc_code('V', 'U', '2', '4') /* [23:0] Cr:Cb:Y 8:8:8 little endian */
266 #define DRM_FORMAT_VUY101010	fourcc_code('V', 'U', '3', '0') /* Y followed by U then V, 10:10:10. Non-linear modifier only */
267 
268 /*
269  * packed Y2xx indicate for each component, xx valid data occupy msb
270  * 16-xx padding occupy lsb
271  */
272 #define DRM_FORMAT_Y210         fourcc_code('Y', '2', '1', '0') /* [63:0] Cr0:0:Y1:0:Cb0:0:Y0:0 10:6:10:6:10:6:10:6 little endian per 2 Y pixels */
273 #define DRM_FORMAT_Y212         fourcc_code('Y', '2', '1', '2') /* [63:0] Cr0:0:Y1:0:Cb0:0:Y0:0 12:4:12:4:12:4:12:4 little endian per 2 Y pixels */
274 #define DRM_FORMAT_Y216         fourcc_code('Y', '2', '1', '6') /* [63:0] Cr0:Y1:Cb0:Y0 16:16:16:16 little endian per 2 Y pixels */
275 
276 /*
277  * packed Y4xx indicate for each component, xx valid data occupy msb
278  * 16-xx padding occupy lsb except Y410
279  */
280 #define DRM_FORMAT_Y410         fourcc_code('Y', '4', '1', '0') /* [31:0] A:Cr:Y:Cb 2:10:10:10 little endian */
281 #define DRM_FORMAT_Y412         fourcc_code('Y', '4', '1', '2') /* [63:0] A:0:Cr:0:Y:0:Cb:0 12:4:12:4:12:4:12:4 little endian */
282 #define DRM_FORMAT_Y416         fourcc_code('Y', '4', '1', '6') /* [63:0] A:Cr:Y:Cb 16:16:16:16 little endian */
283 
284 #define DRM_FORMAT_XVYU2101010	fourcc_code('X', 'V', '3', '0') /* [31:0] X:Cr:Y:Cb 2:10:10:10 little endian */
285 #define DRM_FORMAT_XVYU12_16161616	fourcc_code('X', 'V', '3', '6') /* [63:0] X:0:Cr:0:Y:0:Cb:0 12:4:12:4:12:4:12:4 little endian */
286 #define DRM_FORMAT_XVYU16161616	fourcc_code('X', 'V', '4', '8') /* [63:0] X:Cr:Y:Cb 16:16:16:16 little endian */
287 
288 /*
289  * packed YCbCr420 2x2 tiled formats
290  * first 64 bits will contain Y,Cb,Cr components for a 2x2 tile
291  */
292 /* [63:0]   A3:A2:Y3:0:Cr0:0:Y2:0:A1:A0:Y1:0:Cb0:0:Y0:0  1:1:8:2:8:2:8:2:1:1:8:2:8:2:8:2 little endian */
293 #define DRM_FORMAT_Y0L0		fourcc_code('Y', '0', 'L', '0')
294 /* [63:0]   X3:X2:Y3:0:Cr0:0:Y2:0:X1:X0:Y1:0:Cb0:0:Y0:0  1:1:8:2:8:2:8:2:1:1:8:2:8:2:8:2 little endian */
295 #define DRM_FORMAT_X0L0		fourcc_code('X', '0', 'L', '0')
296 
297 /* [63:0]   A3:A2:Y3:Cr0:Y2:A1:A0:Y1:Cb0:Y0  1:1:10:10:10:1:1:10:10:10 little endian */
298 #define DRM_FORMAT_Y0L2		fourcc_code('Y', '0', 'L', '2')
299 /* [63:0]   X3:X2:Y3:Cr0:Y2:X1:X0:Y1:Cb0:Y0  1:1:10:10:10:1:1:10:10:10 little endian */
300 #define DRM_FORMAT_X0L2		fourcc_code('X', '0', 'L', '2')
301 
302 /*
303  * 1-plane YUV 4:2:0
304  * In these formats, the component ordering is specified (Y, followed by U
305  * then V), but the exact Linear layout is undefined.
306  * These formats can only be used with a non-Linear modifier.
307  */
308 #define DRM_FORMAT_YUV420_8BIT	fourcc_code('Y', 'U', '0', '8')
309 #define DRM_FORMAT_YUV420_10BIT	fourcc_code('Y', 'U', '1', '0')
310 
311 /*
312  * 2 plane RGB + A
313  * index 0 = RGB plane, same format as the corresponding non _A8 format has
314  * index 1 = A plane, [7:0] A
315  */
316 #define DRM_FORMAT_XRGB8888_A8	fourcc_code('X', 'R', 'A', '8')
317 #define DRM_FORMAT_XBGR8888_A8	fourcc_code('X', 'B', 'A', '8')
318 #define DRM_FORMAT_RGBX8888_A8	fourcc_code('R', 'X', 'A', '8')
319 #define DRM_FORMAT_BGRX8888_A8	fourcc_code('B', 'X', 'A', '8')
320 #define DRM_FORMAT_RGB888_A8	fourcc_code('R', '8', 'A', '8')
321 #define DRM_FORMAT_BGR888_A8	fourcc_code('B', '8', 'A', '8')
322 #define DRM_FORMAT_RGB565_A8	fourcc_code('R', '5', 'A', '8')
323 #define DRM_FORMAT_BGR565_A8	fourcc_code('B', '5', 'A', '8')
324 
325 /*
326  * 2 plane YCbCr
327  * index 0 = Y plane, [7:0] Y
328  * index 1 = Cr:Cb plane, [15:0] Cr:Cb little endian
329  * or
330  * index 1 = Cb:Cr plane, [15:0] Cb:Cr little endian
331  */
332 #define DRM_FORMAT_NV12		fourcc_code('N', 'V', '1', '2') /* 2x2 subsampled Cr:Cb plane */
333 #define DRM_FORMAT_NV21		fourcc_code('N', 'V', '2', '1') /* 2x2 subsampled Cb:Cr plane */
334 #define DRM_FORMAT_NV16		fourcc_code('N', 'V', '1', '6') /* 2x1 subsampled Cr:Cb plane */
335 #define DRM_FORMAT_NV61		fourcc_code('N', 'V', '6', '1') /* 2x1 subsampled Cb:Cr plane */
336 #define DRM_FORMAT_NV24		fourcc_code('N', 'V', '2', '4') /* non-subsampled Cr:Cb plane */
337 #define DRM_FORMAT_NV42		fourcc_code('N', 'V', '4', '2') /* non-subsampled Cb:Cr plane */
338 /*
339  * 2 plane YCbCr
340  * index 0 = Y plane, [39:0] Y3:Y2:Y1:Y0 little endian
341  * index 1 = Cr:Cb plane, [39:0] Cr1:Cb1:Cr0:Cb0 little endian
342  */
343 #define DRM_FORMAT_NV15		fourcc_code('N', 'V', '1', '5') /* 2x2 subsampled Cr:Cb plane */
344 #define DRM_FORMAT_NV20		fourcc_code('N', 'V', '2', '0') /* 2x1 subsampled Cr:Cb plane */
345 #define DRM_FORMAT_NV30		fourcc_code('N', 'V', '3', '0') /* non-subsampled Cr:Cb plane */
346 
347 /*
348  * 2 plane YCbCr MSB aligned
349  * index 0 = Y plane, [15:0] Y:x [10:6] little endian
350  * index 1 = Cr:Cb plane, [31:0] Cr:x:Cb:x [10:6:10:6] little endian
351  */
352 #define DRM_FORMAT_P210		fourcc_code('P', '2', '1', '0') /* 2x1 subsampled Cr:Cb plane, 10 bit per channel */
353 
354 /*
355  * 2 plane YCbCr MSB aligned
356  * index 0 = Y plane, [15:0] Y:x [10:6] little endian
357  * index 1 = Cr:Cb plane, [31:0] Cr:x:Cb:x [10:6:10:6] little endian
358  */
359 #define DRM_FORMAT_P010		fourcc_code('P', '0', '1', '0') /* 2x2 subsampled Cr:Cb plane 10 bits per channel */
360 
361 /*
362  * 2 plane YCbCr MSB aligned
363  * index 0 = Y plane, [15:0] Y:x [12:4] little endian
364  * index 1 = Cr:Cb plane, [31:0] Cr:x:Cb:x [12:4:12:4] little endian
365  */
366 #define DRM_FORMAT_P012		fourcc_code('P', '0', '1', '2') /* 2x2 subsampled Cr:Cb plane 12 bits per channel */
367 
368 /*
369  * 2 plane YCbCr MSB aligned
370  * index 0 = Y plane, [15:0] Y little endian
371  * index 1 = Cr:Cb plane, [31:0] Cr:Cb [16:16] little endian
372  */
373 #define DRM_FORMAT_P016		fourcc_code('P', '0', '1', '6') /* 2x2 subsampled Cr:Cb plane 16 bits per channel */
374 
375 /* 2 plane YCbCr420.
376  * 3 10 bit components and 2 padding bits packed into 4 bytes.
377  * index 0 = Y plane, [31:0] x:Y2:Y1:Y0 2:10:10:10 little endian
378  * index 1 = Cr:Cb plane, [63:0] x:Cr2:Cb2:Cr1:x:Cb1:Cr0:Cb0 [2:10:10:10:2:10:10:10] little endian
379  */
380 #define DRM_FORMAT_P030		fourcc_code('P', '0', '3', '0') /* 2x2 subsampled Cr:Cb plane 10 bits per channel packed */
381 
382 /* 3 plane non-subsampled (444) YCbCr
383  * 16 bits per component, but only 10 bits are used and 6 bits are padded
384  * index 0: Y plane, [15:0] Y:x [10:6] little endian
385  * index 1: Cb plane, [15:0] Cb:x [10:6] little endian
386  * index 2: Cr plane, [15:0] Cr:x [10:6] little endian
387  */
388 #define DRM_FORMAT_Q410		fourcc_code('Q', '4', '1', '0')
389 
390 /* 3 plane non-subsampled (444) YCrCb
391  * 16 bits per component, but only 10 bits are used and 6 bits are padded
392  * index 0: Y plane, [15:0] Y:x [10:6] little endian
393  * index 1: Cr plane, [15:0] Cr:x [10:6] little endian
394  * index 2: Cb plane, [15:0] Cb:x [10:6] little endian
395  */
396 #define DRM_FORMAT_Q401		fourcc_code('Q', '4', '0', '1')
397 
398 /*
399  * 3 plane YCbCr LSB aligned
400  * In order to use these formats in a similar fashion to MSB aligned ones
401  * implementation can multiply the values by 2^6=64. For that reason the padding
402  * must only contain zeros.
403  * index 0 = Y plane, [15:0] z:Y [6:10] little endian
404  * index 1 = Cr plane, [15:0] z:Cr [6:10] little endian
405  * index 2 = Cb plane, [15:0] z:Cb [6:10] little endian
406  */
407 #define DRM_FORMAT_S010	fourcc_code('S', '0', '1', '0') /* 2x2 subsampled Cb (1) and Cr (2) planes 10 bits per channel */
408 #define DRM_FORMAT_S210	fourcc_code('S', '2', '1', '0') /* 2x1 subsampled Cb (1) and Cr (2) planes 10 bits per channel */
409 #define DRM_FORMAT_S410	fourcc_code('S', '4', '1', '0') /* non-subsampled Cb (1) and Cr (2) planes 10 bits per channel */
410 
411 /*
412  * 3 plane YCbCr LSB aligned
413  * In order to use these formats in a similar fashion to MSB aligned ones
414  * implementation can multiply the values by 2^4=16. For that reason the padding
415  * must only contain zeros.
416  * index 0 = Y plane, [15:0] z:Y [4:12] little endian
417  * index 1 = Cr plane, [15:0] z:Cr [4:12] little endian
418  * index 2 = Cb plane, [15:0] z:Cb [4:12] little endian
419  */
420 #define DRM_FORMAT_S012	fourcc_code('S', '0', '1', '2') /* 2x2 subsampled Cb (1) and Cr (2) planes 12 bits per channel */
421 #define DRM_FORMAT_S212	fourcc_code('S', '2', '1', '2') /* 2x1 subsampled Cb (1) and Cr (2) planes 12 bits per channel */
422 #define DRM_FORMAT_S412	fourcc_code('S', '4', '1', '2') /* non-subsampled Cb (1) and Cr (2) planes 12 bits per channel */
423 
424 /*
425  * 3 plane YCbCr
426  * index 0 = Y plane, [15:0] Y little endian
427  * index 1 = Cr plane, [15:0] Cr little endian
428  * index 2 = Cb plane, [15:0] Cb little endian
429  */
430 #define DRM_FORMAT_S016	fourcc_code('S', '0', '1', '6') /* 2x2 subsampled Cb (1) and Cr (2) planes 16 bits per channel */
431 #define DRM_FORMAT_S216	fourcc_code('S', '2', '1', '6') /* 2x1 subsampled Cb (1) and Cr (2) planes 16 bits per channel */
432 #define DRM_FORMAT_S416	fourcc_code('S', '4', '1', '6') /* non-subsampled Cb (1) and Cr (2) planes 16 bits per channel */
433 
434 /*
435  * 3 plane YCbCr
436  * index 0: Y plane, [7:0] Y
437  * index 1: Cb plane, [7:0] Cb
438  * index 2: Cr plane, [7:0] Cr
439  * or
440  * index 1: Cr plane, [7:0] Cr
441  * index 2: Cb plane, [7:0] Cb
442  */
443 #define DRM_FORMAT_YUV410	fourcc_code('Y', 'U', 'V', '9') /* 4x4 subsampled Cb (1) and Cr (2) planes */
444 #define DRM_FORMAT_YVU410	fourcc_code('Y', 'V', 'U', '9') /* 4x4 subsampled Cr (1) and Cb (2) planes */
445 #define DRM_FORMAT_YUV411	fourcc_code('Y', 'U', '1', '1') /* 4x1 subsampled Cb (1) and Cr (2) planes */
446 #define DRM_FORMAT_YVU411	fourcc_code('Y', 'V', '1', '1') /* 4x1 subsampled Cr (1) and Cb (2) planes */
447 #define DRM_FORMAT_YUV420	fourcc_code('Y', 'U', '1', '2') /* 2x2 subsampled Cb (1) and Cr (2) planes */
448 #define DRM_FORMAT_YVU420	fourcc_code('Y', 'V', '1', '2') /* 2x2 subsampled Cr (1) and Cb (2) planes */
449 #define DRM_FORMAT_YUV422	fourcc_code('Y', 'U', '1', '6') /* 2x1 subsampled Cb (1) and Cr (2) planes */
450 #define DRM_FORMAT_YVU422	fourcc_code('Y', 'V', '1', '6') /* 2x1 subsampled Cr (1) and Cb (2) planes */
451 #define DRM_FORMAT_YUV444	fourcc_code('Y', 'U', '2', '4') /* non-subsampled Cb (1) and Cr (2) planes */
452 #define DRM_FORMAT_YVU444	fourcc_code('Y', 'V', '2', '4') /* non-subsampled Cr (1) and Cb (2) planes */
453 
454 
455 /*
456  * Format Modifiers:
457  *
458  * Format modifiers describe, typically, a re-ordering or modification
459  * of the data in a plane of an FB.  This can be used to express tiled/
460  * swizzled formats, or compression, or a combination of the two.
461  *
462  * The upper 8 bits of the format modifier are a vendor-id as assigned
463  * below.  The lower 56 bits are assigned as vendor sees fit.
464  */
465 
466 /* Vendor Ids: */
467 #define DRM_FORMAT_MOD_VENDOR_NONE    0
468 #define DRM_FORMAT_MOD_VENDOR_INTEL   0x01
469 #define DRM_FORMAT_MOD_VENDOR_AMD     0x02
470 #define DRM_FORMAT_MOD_VENDOR_NVIDIA  0x03
471 #define DRM_FORMAT_MOD_VENDOR_SAMSUNG 0x04
472 #define DRM_FORMAT_MOD_VENDOR_QCOM    0x05
473 #define DRM_FORMAT_MOD_VENDOR_VIVANTE 0x06
474 #define DRM_FORMAT_MOD_VENDOR_BROADCOM 0x07
475 #define DRM_FORMAT_MOD_VENDOR_ARM     0x08
476 #define DRM_FORMAT_MOD_VENDOR_ALLWINNER 0x09
477 #define DRM_FORMAT_MOD_VENDOR_AMLOGIC 0x0a
478 #define DRM_FORMAT_MOD_VENDOR_MTK     0x0b
479 #define DRM_FORMAT_MOD_VENDOR_APPLE   0x0c
480 
481 /* add more to the end as needed */
482 
483 #define DRM_FORMAT_RESERVED	      ((1ULL << 56) - 1)
484 
485 #define fourcc_mod_get_vendor(modifier) \
486 	(((modifier) >> 56) & 0xff)
487 
488 #define fourcc_mod_is_vendor(modifier, vendor) \
489 	(fourcc_mod_get_vendor(modifier) == DRM_FORMAT_MOD_VENDOR_## vendor)
490 
491 #define fourcc_mod_code(vendor, val) \
492 	((((__u64)DRM_FORMAT_MOD_VENDOR_## vendor) << 56) | ((val) & 0x00ffffffffffffffULL))
493 
494 /*
495  * Format Modifier tokens:
496  *
497  * When adding a new token please document the layout with a code comment,
498  * similar to the fourcc codes above. drm_fourcc.h is considered the
499  * authoritative source for all of these.
500  *
501  * Generic modifier names:
502  *
503  * DRM_FORMAT_MOD_GENERIC_* definitions are used to provide vendor-neutral names
504  * for layouts which are common across multiple vendors. To preserve
505  * compatibility, in cases where a vendor-specific definition already exists and
506  * a generic name for it is desired, the common name is a purely symbolic alias
507  * and must use the same numerical value as the original definition.
508  *
509  * Note that generic names should only be used for modifiers which describe
510  * generic layouts (such as pixel re-ordering), which may have
511  * independently-developed support across multiple vendors.
512  *
513  * In future cases where a generic layout is identified before merging with a
514  * vendor-specific modifier, a new 'GENERIC' vendor or modifier using vendor
515  * 'NONE' could be considered. This should only be for obvious, exceptional
516  * cases to avoid polluting the 'GENERIC' namespace with modifiers which only
517  * apply to a single vendor.
518  *
519  * Generic names should not be used for cases where multiple hardware vendors
520  * have implementations of the same standardised compression scheme (such as
521  * AFBC). In those cases, all implementations should use the same format
522  * modifier(s), reflecting the vendor of the standard.
523  */
524 
525 #define DRM_FORMAT_MOD_GENERIC_16_16_TILE DRM_FORMAT_MOD_SAMSUNG_16_16_TILE
526 
527 /*
528  * Invalid Modifier
529  *
530  * This modifier can be used as a sentinel to terminate the format modifiers
531  * list, or to initialize a variable with an invalid modifier. It might also be
532  * used to report an error back to userspace for certain APIs.
533  */
534 #define DRM_FORMAT_MOD_INVALID	fourcc_mod_code(NONE, DRM_FORMAT_RESERVED)
535 
536 /*
537  * Linear Layout
538  *
539  * Just plain linear layout. Note that this is different from no specifying any
540  * modifier (e.g. not setting DRM_MODE_FB_MODIFIERS in the DRM_ADDFB2 ioctl),
541  * which tells the driver to also take driver-internal information into account
542  * and so might actually result in a tiled framebuffer.
543  */
544 #define DRM_FORMAT_MOD_LINEAR	fourcc_mod_code(NONE, 0)
545 
546 /*
547  * Deprecated: use DRM_FORMAT_MOD_LINEAR instead
548  *
549  * The "none" format modifier doesn't actually mean that the modifier is
550  * implicit, instead it means that the layout is linear. Whether modifiers are
551  * used is out-of-band information carried in an API-specific way (e.g. in a
552  * flag for drm_mode_fb_cmd2).
553  */
554 #define DRM_FORMAT_MOD_NONE	0
555 
556 /* Intel framebuffer modifiers */
557 
558 /*
559  * Intel X-tiling layout
560  *
561  * This is a tiled layout using 4Kb tiles (except on gen2 where the tiles 2Kb)
562  * in row-major layout. Within the tile bytes are laid out row-major, with
563  * a platform-dependent stride. On top of that the memory can apply
564  * platform-depending swizzling of some higher address bits into bit6.
565  *
566  * Note that this layout is only accurate on intel gen 8+ or valleyview chipsets.
567  * On earlier platforms the is highly platforms specific and not useful for
568  * cross-driver sharing. It exists since on a given platform it does uniquely
569  * identify the layout in a simple way for i915-specific userspace, which
570  * facilitated conversion of userspace to modifiers. Additionally the exact
571  * format on some really old platforms is not known.
572  */
573 #define I915_FORMAT_MOD_X_TILED	fourcc_mod_code(INTEL, 1)
574 
575 /*
576  * Intel Y-tiling layout
577  *
578  * This is a tiled layout using 4Kb tiles (except on gen2 where the tiles 2Kb)
579  * in row-major layout. Within the tile bytes are laid out in OWORD (16 bytes)
580  * chunks column-major, with a platform-dependent height. On top of that the
581  * memory can apply platform-depending swizzling of some higher address bits
582  * into bit6.
583  *
584  * Note that this layout is only accurate on intel gen 8+ or valleyview chipsets.
585  * On earlier platforms the is highly platforms specific and not useful for
586  * cross-driver sharing. It exists since on a given platform it does uniquely
587  * identify the layout in a simple way for i915-specific userspace, which
588  * facilitated conversion of userspace to modifiers. Additionally the exact
589  * format on some really old platforms is not known.
590  */
591 #define I915_FORMAT_MOD_Y_TILED	fourcc_mod_code(INTEL, 2)
592 
593 /*
594  * Intel Yf-tiling layout
595  *
596  * This is a tiled layout using 4Kb tiles in row-major layout.
597  * Within the tile pixels are laid out in 16 256 byte units / sub-tiles which
598  * are arranged in four groups (two wide, two high) with column-major layout.
599  * Each group therefore consists out of four 256 byte units, which are also laid
600  * out as 2x2 column-major.
601  * 256 byte units are made out of four 64 byte blocks of pixels, producing
602  * either a square block or a 2:1 unit.
603  * 64 byte blocks of pixels contain four pixel rows of 16 bytes, where the width
604  * in pixel depends on the pixel depth.
605  */
606 #define I915_FORMAT_MOD_Yf_TILED fourcc_mod_code(INTEL, 3)
607 
608 /*
609  * Intel color control surface (CCS) for render compression
610  *
611  * The framebuffer format must be one of the 8:8:8:8 RGB formats.
612  * The main surface will be plane index 0 and must be Y/Yf-tiled,
613  * the CCS will be plane index 1.
614  *
615  * Each CCS tile matches a 1024x512 pixel area of the main surface.
616  * To match certain aspects of the 3D hardware the CCS is
617  * considered to be made up of normal 128Bx32 Y tiles, Thus
618  * the CCS pitch must be specified in multiples of 128 bytes.
619  *
620  * In reality the CCS tile appears to be a 64Bx64 Y tile, composed
621  * of QWORD (8 bytes) chunks instead of OWORD (16 bytes) chunks.
622  * But that fact is not relevant unless the memory is accessed
623  * directly.
624  */
625 #define I915_FORMAT_MOD_Y_TILED_CCS	fourcc_mod_code(INTEL, 4)
626 #define I915_FORMAT_MOD_Yf_TILED_CCS	fourcc_mod_code(INTEL, 5)
627 
628 /*
629  * Intel color control surfaces (CCS) for Gen-12 render compression.
630  *
631  * The main surface is Y-tiled and at plane index 0, the CCS is linear and
632  * at index 1. A 64B CCS cache line corresponds to an area of 4x1 tiles in
633  * main surface. In other words, 4 bits in CCS map to a main surface cache
634  * line pair. The main surface pitch is required to be a multiple of four
635  * Y-tile widths.
636  */
637 #define I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS fourcc_mod_code(INTEL, 6)
638 
639 /*
640  * Intel color control surfaces (CCS) for Gen-12 media compression
641  *
642  * The main surface is Y-tiled and at plane index 0, the CCS is linear and
643  * at index 1. A 64B CCS cache line corresponds to an area of 4x1 tiles in
644  * main surface. In other words, 4 bits in CCS map to a main surface cache
645  * line pair. The main surface pitch is required to be a multiple of four
646  * Y-tile widths. For semi-planar formats like NV12, CCS planes follow the
647  * Y and UV planes i.e., planes 0 and 1 are used for Y and UV surfaces,
648  * planes 2 and 3 for the respective CCS.
649  */
650 #define I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS fourcc_mod_code(INTEL, 7)
651 
652 /*
653  * Intel Color Control Surface with Clear Color (CCS) for Gen-12 render
654  * compression.
655  *
656  * The main surface is Y-tiled and is at plane index 0 whereas CCS is linear
657  * and at index 1. The clear color is stored at index 2, and the pitch should
658  * be 64 bytes aligned. The clear color structure is 256 bits. The first 128 bits
659  * represents Raw Clear Color Red, Green, Blue and Alpha color each represented
660  * by 32 bits. The raw clear color is consumed by the 3d engine and generates
661  * the converted clear color of size 64 bits. The first 32 bits store the Lower
662  * Converted Clear Color value and the next 32 bits store the Higher Converted
663  * Clear Color value when applicable. The Converted Clear Color values are
664  * consumed by the DE. The last 64 bits are used to store Color Discard Enable
665  * and Depth Clear Value Valid which are ignored by the DE. A CCS cache line
666  * corresponds to an area of 4x1 tiles in the main surface. The main surface
667  * pitch is required to be a multiple of 4 tile widths.
668  */
669 #define I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS_CC fourcc_mod_code(INTEL, 8)
670 
671 /*
672  * Intel Tile 4 layout
673  *
674  * This is a tiled layout using 4KB tiles in a row-major layout. It has the same
675  * shape as Tile Y at two granularities: 4KB (128B x 32) and 64B (16B x 4). It
676  * only differs from Tile Y at the 256B granularity in between. At this
677  * granularity, Tile Y has a shape of 16B x 32 rows, but this tiling has a shape
678  * of 64B x 8 rows.
679  */
680 #define I915_FORMAT_MOD_4_TILED         fourcc_mod_code(INTEL, 9)
681 
682 /*
683  * Intel color control surfaces (CCS) for DG2 render compression.
684  *
685  * The main surface is Tile 4 and at plane index 0. The CCS data is stored
686  * outside of the GEM object in a reserved memory area dedicated for the
687  * storage of the CCS data for all RC/RC_CC/MC compressible GEM objects. The
688  * main surface pitch is required to be a multiple of four Tile 4 widths.
689  */
690 #define I915_FORMAT_MOD_4_TILED_DG2_RC_CCS fourcc_mod_code(INTEL, 10)
691 
692 /*
693  * Intel color control surfaces (CCS) for DG2 media compression.
694  *
695  * The main surface is Tile 4 and at plane index 0. For semi-planar formats
696  * like NV12, the Y and UV planes are Tile 4 and are located at plane indices
697  * 0 and 1, respectively. The CCS for all planes are stored outside of the
698  * GEM object in a reserved memory area dedicated for the storage of the
699  * CCS data for all RC/RC_CC/MC compressible GEM objects. The main surface
700  * pitch is required to be a multiple of four Tile 4 widths.
701  */
702 #define I915_FORMAT_MOD_4_TILED_DG2_MC_CCS fourcc_mod_code(INTEL, 11)
703 
704 /*
705  * Intel Color Control Surface with Clear Color (CCS) for DG2 render compression.
706  *
707  * The main surface is Tile 4 and at plane index 0. The CCS data is stored
708  * outside of the GEM object in a reserved memory area dedicated for the
709  * storage of the CCS data for all RC/RC_CC/MC compressible GEM objects. The
710  * main surface pitch is required to be a multiple of four Tile 4 widths. The
711  * clear color is stored at plane index 1 and the pitch should be 64 bytes
712  * aligned. The format of the 256 bits of clear color data matches the one used
713  * for the I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS_CC modifier, see its description
714  * for details.
715  */
716 #define I915_FORMAT_MOD_4_TILED_DG2_RC_CCS_CC fourcc_mod_code(INTEL, 12)
717 
718 /*
719  * Intel Color Control Surfaces (CCS) for display ver. 14 render compression.
720  *
721  * The main surface is tile4 and at plane index 0, the CCS is linear and
722  * at index 1. A 64B CCS cache line corresponds to an area of 4x1 tiles in
723  * main surface. In other words, 4 bits in CCS map to a main surface cache
724  * line pair. The main surface pitch is required to be a multiple of four
725  * tile4 widths.
726  */
727 #define I915_FORMAT_MOD_4_TILED_MTL_RC_CCS fourcc_mod_code(INTEL, 13)
728 
729 /*
730  * Intel Color Control Surfaces (CCS) for display ver. 14 media compression
731  *
732  * The main surface is tile4 and at plane index 0, the CCS is linear and
733  * at index 1. A 64B CCS cache line corresponds to an area of 4x1 tiles in
734  * main surface. In other words, 4 bits in CCS map to a main surface cache
735  * line pair. The main surface pitch is required to be a multiple of four
736  * tile4 widths. For semi-planar formats like NV12, CCS planes follow the
737  * Y and UV planes i.e., planes 0 and 1 are used for Y and UV surfaces,
738  * planes 2 and 3 for the respective CCS.
739  */
740 #define I915_FORMAT_MOD_4_TILED_MTL_MC_CCS fourcc_mod_code(INTEL, 14)
741 
742 /*
743  * Intel Color Control Surface with Clear Color (CCS) for display ver. 14 render
744  * compression.
745  *
746  * The main surface is tile4 and is at plane index 0 whereas CCS is linear
747  * and at index 1. The clear color is stored at index 2, and the pitch should
748  * be ignored. The clear color structure is 256 bits. The first 128 bits
749  * represents Raw Clear Color Red, Green, Blue and Alpha color each represented
750  * by 32 bits. The raw clear color is consumed by the 3d engine and generates
751  * the converted clear color of size 64 bits. The first 32 bits store the Lower
752  * Converted Clear Color value and the next 32 bits store the Higher Converted
753  * Clear Color value when applicable. The Converted Clear Color values are
754  * consumed by the DE. The last 64 bits are used to store Color Discard Enable
755  * and Depth Clear Value Valid which are ignored by the DE. A CCS cache line
756  * corresponds to an area of 4x1 tiles in the main surface. The main surface
757  * pitch is required to be a multiple of 4 tile widths.
758  */
759 #define I915_FORMAT_MOD_4_TILED_MTL_RC_CCS_CC fourcc_mod_code(INTEL, 15)
760 
761 /*
762  * Intel Color Control Surfaces (CCS) for graphics ver. 20 unified compression
763  * on integrated graphics
764  *
765  * The main surface is Tile 4 and at plane index 0. For semi-planar formats
766  * like NV12, the Y and UV planes are Tile 4 and are located at plane indices
767  * 0 and 1, respectively. The CCS for all planes are stored outside of the
768  * GEM object in a reserved memory area dedicated for the storage of the
769  * CCS data for all compressible GEM objects.
770  */
771 #define I915_FORMAT_MOD_4_TILED_LNL_CCS fourcc_mod_code(INTEL, 16)
772 
773 /*
774  * Intel Color Control Surfaces (CCS) for graphics ver. 20 unified compression
775  * on discrete graphics
776  *
777  * The main surface is Tile 4 and at plane index 0. For semi-planar formats
778  * like NV12, the Y and UV planes are Tile 4 and are located at plane indices
779  * 0 and 1, respectively. The CCS for all planes are stored outside of the
780  * GEM object in a reserved memory area dedicated for the storage of the
781  * CCS data for all compressible GEM objects. The GEM object must be stored in
782  * contiguous memory with a size aligned to 64KB
783  */
784 #define I915_FORMAT_MOD_4_TILED_BMG_CCS fourcc_mod_code(INTEL, 17)
785 
786 /*
787  * Tiled, NV12MT, grouped in 64 (pixels) x 32 (lines) -sized macroblocks
788  *
789  * Macroblocks are laid in a Z-shape, and each pixel data is following the
790  * standard NV12 style.
791  * As for NV12, an image is the result of two frame buffers: one for Y,
792  * one for the interleaved Cb/Cr components (1/2 the height of the Y buffer).
793  * Alignment requirements are (for each buffer):
794  * - multiple of 128 pixels for the width
795  * - multiple of  32 pixels for the height
796  *
797  * For more information: see https://linuxtv.org/downloads/v4l-dvb-apis/re32.html
798  */
799 #define DRM_FORMAT_MOD_SAMSUNG_64_32_TILE	fourcc_mod_code(SAMSUNG, 1)
800 
801 /*
802  * Tiled, 16 (pixels) x 16 (lines) - sized macroblocks
803  *
804  * This is a simple tiled layout using tiles of 16x16 pixels in a row-major
805  * layout. For YCbCr formats Cb/Cr components are taken in such a way that
806  * they correspond to their 16x16 luma block.
807  */
808 #define DRM_FORMAT_MOD_SAMSUNG_16_16_TILE	fourcc_mod_code(SAMSUNG, 2)
809 
810 /*
811  * Qualcomm Compressed Format
812  *
813  * Refers to a compressed variant of the base format that is compressed.
814  * Implementation may be platform and base-format specific.
815  *
816  * Each macrotile consists of m x n (mostly 4 x 4) tiles.
817  * Pixel data pitch/stride is aligned with macrotile width.
818  * Pixel data height is aligned with macrotile height.
819  * Entire pixel data buffer is aligned with 4k(bytes).
820  */
821 #define DRM_FORMAT_MOD_QCOM_COMPRESSED	fourcc_mod_code(QCOM, 1)
822 
823 /*
824  * Qualcomm Tiled Format
825  *
826  * Similar to DRM_FORMAT_MOD_QCOM_COMPRESSED but not compressed.
827  * Implementation may be platform and base-format specific.
828  *
829  * Each macrotile consists of m x n (mostly 4 x 4) tiles.
830  * Pixel data pitch/stride is aligned with macrotile width.
831  * Pixel data height is aligned with macrotile height.
832  * Entire pixel data buffer is aligned with 4k(bytes).
833  */
834 #define DRM_FORMAT_MOD_QCOM_TILED3	fourcc_mod_code(QCOM, 3)
835 
836 /*
837  * Qualcomm Alternate Tiled Format
838  *
839  * Alternate tiled format typically only used within GMEM.
840  * Implementation may be platform and base-format specific.
841  */
842 #define DRM_FORMAT_MOD_QCOM_TILED2	fourcc_mod_code(QCOM, 2)
843 
844 
845 /* Vivante framebuffer modifiers */
846 
847 /*
848  * Vivante 4x4 tiling layout
849  *
850  * This is a simple tiled layout using tiles of 4x4 pixels in a row-major
851  * layout.
852  */
853 #define DRM_FORMAT_MOD_VIVANTE_TILED		fourcc_mod_code(VIVANTE, 1)
854 
855 /*
856  * Vivante 64x64 super-tiling layout
857  *
858  * This is a tiled layout using 64x64 pixel super-tiles, where each super-tile
859  * contains 8x4 groups of 2x4 tiles of 4x4 pixels (like above) each, all in row-
860  * major layout.
861  *
862  * For more information: see
863  * https://github.com/etnaviv/etna_viv/blob/master/doc/hardware.md#texture-tiling
864  */
865 #define DRM_FORMAT_MOD_VIVANTE_SUPER_TILED	fourcc_mod_code(VIVANTE, 2)
866 
867 /*
868  * Vivante 4x4 tiling layout for dual-pipe
869  *
870  * Same as the 4x4 tiling layout, except every second 4x4 pixel tile starts at a
871  * different base address. Offsets from the base addresses are therefore halved
872  * compared to the non-split tiled layout.
873  */
874 #define DRM_FORMAT_MOD_VIVANTE_SPLIT_TILED	fourcc_mod_code(VIVANTE, 3)
875 
876 /*
877  * Vivante 64x64 super-tiling layout for dual-pipe
878  *
879  * Same as the 64x64 super-tiling layout, except every second 4x4 pixel tile
880  * starts at a different base address. Offsets from the base addresses are
881  * therefore halved compared to the non-split super-tiled layout.
882  */
883 #define DRM_FORMAT_MOD_VIVANTE_SPLIT_SUPER_TILED fourcc_mod_code(VIVANTE, 4)
884 
885 /*
886  * Vivante TS (tile-status) buffer modifiers. They can be combined with all of
887  * the color buffer tiling modifiers defined above. When TS is present it's a
888  * separate buffer containing the clear/compression status of each tile. The
889  * modifiers are defined as VIVANTE_MOD_TS_c_s, where c is the color buffer
890  * tile size in bytes covered by one entry in the status buffer and s is the
891  * number of status bits per entry.
892  * We reserve the top 8 bits of the Vivante modifier space for tile status
893  * clear/compression modifiers, as future cores might add some more TS layout
894  * variations.
895  */
896 #define VIVANTE_MOD_TS_64_4               (1ULL << 48)
897 #define VIVANTE_MOD_TS_64_2               (2ULL << 48)
898 #define VIVANTE_MOD_TS_128_4              (3ULL << 48)
899 #define VIVANTE_MOD_TS_256_4              (4ULL << 48)
900 #define VIVANTE_MOD_TS_MASK               (0xfULL << 48)
901 
902 /*
903  * Vivante compression modifiers. Those depend on a TS modifier being present
904  * as the TS bits get reinterpreted as compression tags instead of simple
905  * clear markers when compression is enabled.
906  */
907 #define VIVANTE_MOD_COMP_DEC400           (1ULL << 52)
908 #define VIVANTE_MOD_COMP_MASK             (0xfULL << 52)
909 
910 /* Masking out the extension bits will yield the base modifier. */
911 #define VIVANTE_MOD_EXT_MASK              (VIVANTE_MOD_TS_MASK | \
912                                            VIVANTE_MOD_COMP_MASK)
913 
914 /* NVIDIA frame buffer modifiers */
915 
916 /*
917  * Tegra Tiled Layout, used by Tegra 2, 3 and 4.
918  *
919  * Pixels are arranged in simple tiles of 16 x 16 bytes.
920  */
921 #define DRM_FORMAT_MOD_NVIDIA_TEGRA_TILED fourcc_mod_code(NVIDIA, 1)
922 
923 /*
924  * Generalized Block Linear layout, used by desktop GPUs starting with NV50/G80,
925  * and Tegra GPUs starting with Tegra K1.
926  *
927  * Pixels are arranged in Groups of Bytes (GOBs).  GOB size and layout varies
928  * based on the architecture generation.  GOBs themselves are then arranged in
929  * 3D blocks, with the block dimensions (in terms of GOBs) always being a power
930  * of two, and hence expressible as their log2 equivalent (E.g., "2" represents
931  * a block depth or height of "4").
932  *
933  * Chapter 20 "Pixel Memory Formats" of the Tegra X1 TRM describes this format
934  * in full detail.
935  *
936  *       Macro
937  * Bits  Param Description
938  * ----  ----- -----------------------------------------------------------------
939  *
940  *  3:0  h     log2(height) of each block, in GOBs.  Placed here for
941  *             compatibility with the existing
942  *             DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK()-based modifiers.
943  *
944  *  4:4  -     Must be 1, to indicate block-linear layout.  Necessary for
945  *             compatibility with the existing
946  *             DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK()-based modifiers.
947  *
948  *  8:5  -     Reserved (To support 3D-surfaces with variable log2(depth) block
949  *             size).  Must be zero.
950  *
951  *             Note there is no log2(width) parameter.  Some portions of the
952  *             hardware support a block width of two gobs, but it is impractical
953  *             to use due to lack of support elsewhere, and has no known
954  *             benefits.
955  *
956  * 11:9  -     Reserved (To support 2D-array textures with variable array stride
957  *             in blocks, specified via log2(tile width in blocks)).  Must be
958  *             zero.
959  *
960  * 19:12 k     Page Kind.  This value directly maps to a field in the page
961  *             tables of all GPUs >= NV50.  It affects the exact layout of bits
962  *             in memory and can be derived from the tuple
963  *
964  *               (format, GPU model, compression type, samples per pixel)
965  *
966  *             Where compression type is defined below.  If GPU model were
967  *             implied by the format modifier, format, or memory buffer, page
968  *             kind would not need to be included in the modifier itself, but
969  *             since the modifier should define the layout of the associated
970  *             memory buffer independent from any device or other context, it
971  *             must be included here.
972  *
973  * 21:20 g     GOB Height and Page Kind Generation.  The height of a GOB changed
974  *             starting with Fermi GPUs.  Additionally, the mapping between page
975  *             kind and bit layout has changed at various points.
976  *
977  *               0 = Gob Height 8, Fermi - Volta, Tegra K1+ Page Kind mapping
978  *               1 = Gob Height 4, G80 - GT2XX Page Kind mapping
979  *               2 = Gob Height 8, Turing+ Page Kind mapping
980  *               3 = Reserved for future use.
981  *
982  * 22:22 s     Sector layout.  On Tegra GPUs prior to Xavier, there is a further
983  *             bit remapping step that occurs at an even lower level than the
984  *             page kind and block linear swizzles.  This causes the layout of
985  *             surfaces mapped in those SOC's GPUs to be incompatible with the
986  *             equivalent mapping on other GPUs in the same system.
987  *
988  *               0 = Tegra K1 - Tegra Parker/TX2 Layout.
989  *               1 = Desktop GPU and Tegra Xavier+ Layout
990  *
991  * 25:23 c     Lossless Framebuffer Compression type.
992  *
993  *               0 = none
994  *               1 = ROP/3D, layout 1, exact compression format implied by Page
995  *                   Kind field
996  *               2 = ROP/3D, layout 2, exact compression format implied by Page
997  *                   Kind field
998  *               3 = CDE horizontal
999  *               4 = CDE vertical
1000  *               5 = Reserved for future use
1001  *               6 = Reserved for future use
1002  *               7 = Reserved for future use
1003  *
1004  * 55:25 -     Reserved for future use.  Must be zero.
1005  */
1006 #define DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(c, s, g, k, h) \
1007 	fourcc_mod_code(NVIDIA, (0x10 | \
1008 				 ((h) & 0xf) | \
1009 				 (((k) & 0xff) << 12) | \
1010 				 (((g) & 0x3) << 20) | \
1011 				 (((s) & 0x1) << 22) | \
1012 				 (((c) & 0x7) << 23)))
1013 
1014 /* To grandfather in prior block linear format modifiers to the above layout,
1015  * the page kind "0", which corresponds to "pitch/linear" and hence is unusable
1016  * with block-linear layouts, is remapped within drivers to the value 0xfe,
1017  * which corresponds to the "generic" kind used for simple single-sample
1018  * uncompressed color formats on Fermi - Volta GPUs.
1019  */
1020 static inline __u64
1021 drm_fourcc_canonicalize_nvidia_format_mod(__u64 modifier)
1022 {
1023 	if (!(modifier & 0x10) || (modifier & (0xff << 12)))
1024 		return modifier;
1025 	else
1026 		return modifier | (0xfe << 12);
1027 }
1028 
1029 /*
1030  * 16Bx2 Block Linear layout, used by Tegra K1 and later
1031  *
1032  * Pixels are arranged in 64x8 Groups Of Bytes (GOBs). GOBs are then stacked
1033  * vertically by a power of 2 (1 to 32 GOBs) to form a block.
1034  *
1035  * Within a GOB, data is ordered as 16B x 2 lines sectors laid in Z-shape.
1036  *
1037  * Parameter 'v' is the log2 encoding of the number of GOBs stacked vertically.
1038  * Valid values are:
1039  *
1040  * 0 == ONE_GOB
1041  * 1 == TWO_GOBS
1042  * 2 == FOUR_GOBS
1043  * 3 == EIGHT_GOBS
1044  * 4 == SIXTEEN_GOBS
1045  * 5 == THIRTYTWO_GOBS
1046  *
1047  * Chapter 20 "Pixel Memory Formats" of the Tegra X1 TRM describes this format
1048  * in full detail.
1049  */
1050 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(v) \
1051 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 0, 0, 0, (v))
1052 
1053 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_ONE_GOB \
1054 	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(0)
1055 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_TWO_GOB \
1056 	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(1)
1057 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_FOUR_GOB \
1058 	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(2)
1059 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_EIGHT_GOB \
1060 	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(3)
1061 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_SIXTEEN_GOB \
1062 	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(4)
1063 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_THIRTYTWO_GOB \
1064 	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(5)
1065 
1066 /*
1067  * Some Broadcom modifiers take parameters, for example the number of
1068  * vertical lines in the image. Reserve the lower 32 bits for modifier
1069  * type, and the next 24 bits for parameters. Top 8 bits are the
1070  * vendor code.
1071  */
1072 #define __fourcc_mod_broadcom_param_shift 8
1073 #define __fourcc_mod_broadcom_param_bits 48
1074 #define fourcc_mod_broadcom_code(val, params) \
1075 	fourcc_mod_code(BROADCOM, ((((__u64)params) << __fourcc_mod_broadcom_param_shift) | val))
1076 #define fourcc_mod_broadcom_param(m) \
1077 	((int)(((m) >> __fourcc_mod_broadcom_param_shift) &	\
1078 	       ((1ULL << __fourcc_mod_broadcom_param_bits) - 1)))
1079 #define fourcc_mod_broadcom_mod(m) \
1080 	((m) & ~(((1ULL << __fourcc_mod_broadcom_param_bits) - 1) <<	\
1081 		 __fourcc_mod_broadcom_param_shift))
1082 
1083 /*
1084  * Broadcom VC4 "T" format
1085  *
1086  * This is the primary layout that the V3D GPU can texture from (it
1087  * can't do linear).  The T format has:
1088  *
1089  * - 64b utiles of pixels in a raster-order grid according to cpp.  It's 4x4
1090  *   pixels at 32 bit depth.
1091  *
1092  * - 1k subtiles made of a 4x4 raster-order grid of 64b utiles (so usually
1093  *   16x16 pixels).
1094  *
1095  * - 4k tiles made of a 2x2 grid of 1k subtiles (so usually 32x32 pixels).  On
1096  *   even 4k tile rows, they're arranged as (BL, TL, TR, BR), and on odd rows
1097  *   they're (TR, BR, BL, TL), where bottom left is start of memory.
1098  *
1099  * - an image made of 4k tiles in rows either left-to-right (even rows of 4k
1100  *   tiles) or right-to-left (odd rows of 4k tiles).
1101  */
1102 #define DRM_FORMAT_MOD_BROADCOM_VC4_T_TILED fourcc_mod_code(BROADCOM, 1)
1103 
1104 /*
1105  * Broadcom SAND format
1106  *
1107  * This is the native format that the H.264 codec block uses.  For VC4
1108  * HVS, it is only valid for H.264 (NV12/21) and RGBA modes.
1109  *
1110  * The image can be considered to be split into columns, and the
1111  * columns are placed consecutively into memory.  The width of those
1112  * columns can be either 32, 64, 128, or 256 pixels, but in practice
1113  * only 128 pixel columns are used.
1114  *
1115  * The pitch between the start of each column is set to optimally
1116  * switch between SDRAM banks. This is passed as the number of lines
1117  * of column width in the modifier (we can't use the stride value due
1118  * to various core checks that look at it , so you should set the
1119  * stride to width*cpp).
1120  *
1121  * Note that the column height for this format modifier is the same
1122  * for all of the planes, assuming that each column contains both Y
1123  * and UV.  Some SAND-using hardware stores UV in a separate tiled
1124  * image from Y to reduce the column height, which is not supported
1125  * with these modifiers.
1126  *
1127  * The DRM_FORMAT_MOD_BROADCOM_SAND128_COL_HEIGHT modifier is also
1128  * supported for DRM_FORMAT_P030 where the columns remain as 128 bytes
1129  * wide, but as this is a 10 bpp format that translates to 96 pixels.
1130  */
1131 
1132 #define DRM_FORMAT_MOD_BROADCOM_SAND32_COL_HEIGHT(v) \
1133 	fourcc_mod_broadcom_code(2, v)
1134 #define DRM_FORMAT_MOD_BROADCOM_SAND64_COL_HEIGHT(v) \
1135 	fourcc_mod_broadcom_code(3, v)
1136 #define DRM_FORMAT_MOD_BROADCOM_SAND128_COL_HEIGHT(v) \
1137 	fourcc_mod_broadcom_code(4, v)
1138 #define DRM_FORMAT_MOD_BROADCOM_SAND256_COL_HEIGHT(v) \
1139 	fourcc_mod_broadcom_code(5, v)
1140 
1141 #define DRM_FORMAT_MOD_BROADCOM_SAND32 \
1142 	DRM_FORMAT_MOD_BROADCOM_SAND32_COL_HEIGHT(0)
1143 #define DRM_FORMAT_MOD_BROADCOM_SAND64 \
1144 	DRM_FORMAT_MOD_BROADCOM_SAND64_COL_HEIGHT(0)
1145 #define DRM_FORMAT_MOD_BROADCOM_SAND128 \
1146 	DRM_FORMAT_MOD_BROADCOM_SAND128_COL_HEIGHT(0)
1147 #define DRM_FORMAT_MOD_BROADCOM_SAND256 \
1148 	DRM_FORMAT_MOD_BROADCOM_SAND256_COL_HEIGHT(0)
1149 
1150 /* Broadcom UIF format
1151  *
1152  * This is the common format for the current Broadcom multimedia
1153  * blocks, including V3D 3.x and newer, newer video codecs, and
1154  * displays.
1155  *
1156  * The image consists of utiles (64b blocks), UIF blocks (2x2 utiles),
1157  * and macroblocks (4x4 UIF blocks).  Those 4x4 UIF block groups are
1158  * stored in columns, with padding between the columns to ensure that
1159  * moving from one column to the next doesn't hit the same SDRAM page
1160  * bank.
1161  *
1162  * To calculate the padding, it is assumed that each hardware block
1163  * and the software driving it knows the platform's SDRAM page size,
1164  * number of banks, and XOR address, and that it's identical between
1165  * all blocks using the format.  This tiling modifier will use XOR as
1166  * necessary to reduce the padding.  If a hardware block can't do XOR,
1167  * the assumption is that a no-XOR tiling modifier will be created.
1168  */
1169 #define DRM_FORMAT_MOD_BROADCOM_UIF fourcc_mod_code(BROADCOM, 6)
1170 
1171 /*
1172  * Arm Framebuffer Compression (AFBC) modifiers
1173  *
1174  * AFBC is a proprietary lossless image compression protocol and format.
1175  * It provides fine-grained random access and minimizes the amount of data
1176  * transferred between IP blocks.
1177  *
1178  * AFBC has several features which may be supported and/or used, which are
1179  * represented using bits in the modifier. Not all combinations are valid,
1180  * and different devices or use-cases may support different combinations.
1181  *
1182  * Further information on the use of AFBC modifiers can be found in
1183  * Documentation/gpu/afbc.rst
1184  */
1185 
1186 /*
1187  * The top 4 bits (out of the 56 bits allotted for specifying vendor specific
1188  * modifiers) denote the category for modifiers. Currently we have three
1189  * categories of modifiers ie AFBC, MISC and AFRC. We can have a maximum of
1190  * sixteen different categories.
1191  */
1192 #define DRM_FORMAT_MOD_ARM_CODE(__type, __val) \
1193 	fourcc_mod_code(ARM, ((__u64)(__type) << 52) | ((__val) & 0x000fffffffffffffULL))
1194 
1195 #define DRM_FORMAT_MOD_ARM_TYPE_AFBC 0x00
1196 #define DRM_FORMAT_MOD_ARM_TYPE_MISC 0x01
1197 
1198 #define DRM_FORMAT_MOD_ARM_AFBC(__afbc_mode) \
1199 	DRM_FORMAT_MOD_ARM_CODE(DRM_FORMAT_MOD_ARM_TYPE_AFBC, __afbc_mode)
1200 
1201 /*
1202  * AFBC superblock size
1203  *
1204  * Indicates the superblock size(s) used for the AFBC buffer. The buffer
1205  * size (in pixels) must be aligned to a multiple of the superblock size.
1206  * Four lowest significant bits(LSBs) are reserved for block size.
1207  *
1208  * Where one superblock size is specified, it applies to all planes of the
1209  * buffer (e.g. 16x16, 32x8). When multiple superblock sizes are specified,
1210  * the first applies to the Luma plane and the second applies to the Chroma
1211  * plane(s). e.g. (32x8_64x4 means 32x8 Luma, with 64x4 Chroma).
1212  * Multiple superblock sizes are only valid for multi-plane YCbCr formats.
1213  */
1214 #define AFBC_FORMAT_MOD_BLOCK_SIZE_MASK      0xf
1215 #define AFBC_FORMAT_MOD_BLOCK_SIZE_16x16     (1ULL)
1216 #define AFBC_FORMAT_MOD_BLOCK_SIZE_32x8      (2ULL)
1217 #define AFBC_FORMAT_MOD_BLOCK_SIZE_64x4      (3ULL)
1218 #define AFBC_FORMAT_MOD_BLOCK_SIZE_32x8_64x4 (4ULL)
1219 
1220 /*
1221  * AFBC lossless colorspace transform
1222  *
1223  * Indicates that the buffer makes use of the AFBC lossless colorspace
1224  * transform.
1225  */
1226 #define AFBC_FORMAT_MOD_YTR     (1ULL <<  4)
1227 
1228 /*
1229  * AFBC block-split
1230  *
1231  * Indicates that the payload of each superblock is split. The second
1232  * half of the payload is positioned at a predefined offset from the start
1233  * of the superblock payload.
1234  */
1235 #define AFBC_FORMAT_MOD_SPLIT   (1ULL <<  5)
1236 
1237 /*
1238  * AFBC sparse layout
1239  *
1240  * This flag indicates that the payload of each superblock must be stored at a
1241  * predefined position relative to the other superblocks in the same AFBC
1242  * buffer. This order is the same order used by the header buffer. In this mode
1243  * each superblock is given the same amount of space as an uncompressed
1244  * superblock of the particular format would require, rounding up to the next
1245  * multiple of 128 bytes in size.
1246  */
1247 #define AFBC_FORMAT_MOD_SPARSE  (1ULL <<  6)
1248 
1249 /*
1250  * AFBC copy-block restrict
1251  *
1252  * Buffers with this flag must obey the copy-block restriction. The restriction
1253  * is such that there are no copy-blocks referring across the border of 8x8
1254  * blocks. For the subsampled data the 8x8 limitation is also subsampled.
1255  */
1256 #define AFBC_FORMAT_MOD_CBR     (1ULL <<  7)
1257 
1258 /*
1259  * AFBC tiled layout
1260  *
1261  * The tiled layout groups superblocks in 8x8 or 4x4 tiles, where all
1262  * superblocks inside a tile are stored together in memory. 8x8 tiles are used
1263  * for pixel formats up to and including 32 bpp while 4x4 tiles are used for
1264  * larger bpp formats. The order between the tiles is scan line.
1265  * When the tiled layout is used, the buffer size (in pixels) must be aligned
1266  * to the tile size.
1267  */
1268 #define AFBC_FORMAT_MOD_TILED   (1ULL <<  8)
1269 
1270 /*
1271  * AFBC solid color blocks
1272  *
1273  * Indicates that the buffer makes use of solid-color blocks, whereby bandwidth
1274  * can be reduced if a whole superblock is a single color.
1275  */
1276 #define AFBC_FORMAT_MOD_SC      (1ULL <<  9)
1277 
1278 /*
1279  * AFBC double-buffer
1280  *
1281  * Indicates that the buffer is allocated in a layout safe for front-buffer
1282  * rendering.
1283  */
1284 #define AFBC_FORMAT_MOD_DB      (1ULL << 10)
1285 
1286 /*
1287  * AFBC buffer content hints
1288  *
1289  * Indicates that the buffer includes per-superblock content hints.
1290  */
1291 #define AFBC_FORMAT_MOD_BCH     (1ULL << 11)
1292 
1293 /* AFBC uncompressed storage mode
1294  *
1295  * Indicates that the buffer is using AFBC uncompressed storage mode.
1296  * In this mode all superblock payloads in the buffer use the uncompressed
1297  * storage mode, which is usually only used for data which cannot be compressed.
1298  * The buffer layout is the same as for AFBC buffers without USM set, this only
1299  * affects the storage mode of the individual superblocks. Note that even a
1300  * buffer without USM set may use uncompressed storage mode for some or all
1301  * superblocks, USM just guarantees it for all.
1302  */
1303 #define AFBC_FORMAT_MOD_USM	(1ULL << 12)
1304 
1305 /*
1306  * Arm Fixed-Rate Compression (AFRC) modifiers
1307  *
1308  * AFRC is a proprietary fixed rate image compression protocol and format,
1309  * designed to provide guaranteed bandwidth and memory footprint
1310  * reductions in graphics and media use-cases.
1311  *
1312  * AFRC buffers consist of one or more planes, with the same components
1313  * and meaning as an uncompressed buffer using the same pixel format.
1314  *
1315  * Within each plane, the pixel/luma/chroma values are grouped into
1316  * "coding unit" blocks which are individually compressed to a
1317  * fixed size (in bytes). All coding units within a given plane of a buffer
1318  * store the same number of values, and have the same compressed size.
1319  *
1320  * The coding unit size is configurable, allowing different rates of compression.
1321  *
1322  * The start of each AFRC buffer plane must be aligned to an alignment granule which
1323  * depends on the coding unit size.
1324  *
1325  * Coding Unit Size   Plane Alignment
1326  * ----------------   ---------------
1327  * 16 bytes           1024 bytes
1328  * 24 bytes           512  bytes
1329  * 32 bytes           2048 bytes
1330  *
1331  * Coding units are grouped into paging tiles. AFRC buffer dimensions must be aligned
1332  * to a multiple of the paging tile dimensions.
1333  * The dimensions of each paging tile depend on whether the buffer is optimised for
1334  * scanline (SCAN layout) or rotated (ROT layout) access.
1335  *
1336  * Layout   Paging Tile Width   Paging Tile Height
1337  * ------   -----------------   ------------------
1338  * SCAN     16 coding units     4 coding units
1339  * ROT      8  coding units     8 coding units
1340  *
1341  * The dimensions of each coding unit depend on the number of components
1342  * in the compressed plane and whether the buffer is optimised for
1343  * scanline (SCAN layout) or rotated (ROT layout) access.
1344  *
1345  * Number of Components in Plane   Layout      Coding Unit Width   Coding Unit Height
1346  * -----------------------------   ---------   -----------------   ------------------
1347  * 1                               SCAN        16 samples          4 samples
1348  * Example: 16x4 luma samples in a 'Y' plane
1349  *          16x4 chroma 'V' values, in the 'V' plane of a fully-planar YUV buffer
1350  * -----------------------------   ---------   -----------------   ------------------
1351  * 1                               ROT         8 samples           8 samples
1352  * Example: 8x8 luma samples in a 'Y' plane
1353  *          8x8 chroma 'V' values, in the 'V' plane of a fully-planar YUV buffer
1354  * -----------------------------   ---------   -----------------   ------------------
1355  * 2                               DONT CARE   8 samples           4 samples
1356  * Example: 8x4 chroma pairs in the 'UV' plane of a semi-planar YUV buffer
1357  * -----------------------------   ---------   -----------------   ------------------
1358  * 3                               DONT CARE   4 samples           4 samples
1359  * Example: 4x4 pixels in an RGB buffer without alpha
1360  * -----------------------------   ---------   -----------------   ------------------
1361  * 4                               DONT CARE   4 samples           4 samples
1362  * Example: 4x4 pixels in an RGB buffer with alpha
1363  */
1364 
1365 #define DRM_FORMAT_MOD_ARM_TYPE_AFRC 0x02
1366 
1367 #define DRM_FORMAT_MOD_ARM_AFRC(__afrc_mode) \
1368 	DRM_FORMAT_MOD_ARM_CODE(DRM_FORMAT_MOD_ARM_TYPE_AFRC, __afrc_mode)
1369 
1370 /*
1371  * AFRC coding unit size modifier.
1372  *
1373  * Indicates the number of bytes used to store each compressed coding unit for
1374  * one or more planes in an AFRC encoded buffer. The coding unit size for chrominance
1375  * is the same for both Cb and Cr, which may be stored in separate planes.
1376  *
1377  * AFRC_FORMAT_MOD_CU_SIZE_P0 indicates the number of bytes used to store
1378  * each compressed coding unit in the first plane of the buffer. For RGBA buffers
1379  * this is the only plane, while for semi-planar and fully-planar YUV buffers,
1380  * this corresponds to the luma plane.
1381  *
1382  * AFRC_FORMAT_MOD_CU_SIZE_P12 indicates the number of bytes used to store
1383  * each compressed coding unit in the second and third planes in the buffer.
1384  * For semi-planar and fully-planar YUV buffers, this corresponds to the chroma plane(s).
1385  *
1386  * For single-plane buffers, AFRC_FORMAT_MOD_CU_SIZE_P0 must be specified
1387  * and AFRC_FORMAT_MOD_CU_SIZE_P12 must be zero.
1388  * For semi-planar and fully-planar buffers, both AFRC_FORMAT_MOD_CU_SIZE_P0 and
1389  * AFRC_FORMAT_MOD_CU_SIZE_P12 must be specified.
1390  */
1391 #define AFRC_FORMAT_MOD_CU_SIZE_MASK 0xf
1392 #define AFRC_FORMAT_MOD_CU_SIZE_16 (1ULL)
1393 #define AFRC_FORMAT_MOD_CU_SIZE_24 (2ULL)
1394 #define AFRC_FORMAT_MOD_CU_SIZE_32 (3ULL)
1395 
1396 #define AFRC_FORMAT_MOD_CU_SIZE_P0(__afrc_cu_size) (__afrc_cu_size)
1397 #define AFRC_FORMAT_MOD_CU_SIZE_P12(__afrc_cu_size) ((__afrc_cu_size) << 4)
1398 
1399 /*
1400  * AFRC scanline memory layout.
1401  *
1402  * Indicates if the buffer uses the scanline-optimised layout
1403  * for an AFRC encoded buffer, otherwise, it uses the rotation-optimised layout.
1404  * The memory layout is the same for all planes.
1405  */
1406 #define AFRC_FORMAT_MOD_LAYOUT_SCAN (1ULL << 8)
1407 
1408 /*
1409  * Arm 16x16 Block U-Interleaved modifier
1410  *
1411  * This is used by Arm Mali Utgard and Midgard GPUs. It divides the image
1412  * into 16x16 pixel blocks. Blocks are stored linearly in order, but pixels
1413  * in the block are reordered.
1414  */
1415 #define DRM_FORMAT_MOD_ARM_16X16_BLOCK_U_INTERLEAVED \
1416 	DRM_FORMAT_MOD_ARM_CODE(DRM_FORMAT_MOD_ARM_TYPE_MISC, 1ULL)
1417 
1418 /*
1419  * Allwinner tiled modifier
1420  *
1421  * This tiling mode is implemented by the VPU found on all Allwinner platforms,
1422  * codenamed sunxi. It is associated with a YUV format that uses either 2 or 3
1423  * planes.
1424  *
1425  * With this tiling, the luminance samples are disposed in tiles representing
1426  * 32x32 pixels and the chrominance samples in tiles representing 32x64 pixels.
1427  * The pixel order in each tile is linear and the tiles are disposed linearly,
1428  * both in row-major order.
1429  */
1430 #define DRM_FORMAT_MOD_ALLWINNER_TILED fourcc_mod_code(ALLWINNER, 1)
1431 
1432 /*
1433  * Amlogic Video Framebuffer Compression modifiers
1434  *
1435  * Amlogic uses a proprietary lossless image compression protocol and format
1436  * for their hardware video codec accelerators, either video decoders or
1437  * video input encoders.
1438  *
1439  * It considerably reduces memory bandwidth while writing and reading
1440  * frames in memory.
1441  *
1442  * The underlying storage is considered to be 3 components, 8bit or 10-bit
1443  * per component YCbCr 420, single plane :
1444  * - DRM_FORMAT_YUV420_8BIT
1445  * - DRM_FORMAT_YUV420_10BIT
1446  *
1447  * The first 8 bits of the mode defines the layout, then the following 8 bits
1448  * defines the options changing the layout.
1449  *
1450  * Not all combinations are valid, and different SoCs may support different
1451  * combinations of layout and options.
1452  */
1453 #define __fourcc_mod_amlogic_layout_mask 0xff
1454 #define __fourcc_mod_amlogic_options_shift 8
1455 #define __fourcc_mod_amlogic_options_mask 0xff
1456 
1457 #define DRM_FORMAT_MOD_AMLOGIC_FBC(__layout, __options) \
1458 	fourcc_mod_code(AMLOGIC, \
1459 			((__layout) & __fourcc_mod_amlogic_layout_mask) | \
1460 			(((__options) & __fourcc_mod_amlogic_options_mask) \
1461 			 << __fourcc_mod_amlogic_options_shift))
1462 
1463 /* Amlogic FBC Layouts */
1464 
1465 /*
1466  * Amlogic FBC Basic Layout
1467  *
1468  * The basic layout is composed of:
1469  * - a body content organized in 64x32 superblocks with 4096 bytes per
1470  *   superblock in default mode.
1471  * - a 32 bytes per 128x64 header block
1472  *
1473  * This layout is transferrable between Amlogic SoCs supporting this modifier.
1474  */
1475 #define AMLOGIC_FBC_LAYOUT_BASIC		(1ULL)
1476 
1477 /*
1478  * Amlogic FBC Scatter Memory layout
1479  *
1480  * Indicates the header contains IOMMU references to the compressed
1481  * frames content to optimize memory access and layout.
1482  *
1483  * In this mode, only the header memory address is needed, thus the
1484  * content memory organization is tied to the current producer
1485  * execution and cannot be saved/dumped neither transferrable between
1486  * Amlogic SoCs supporting this modifier.
1487  *
1488  * Due to the nature of the layout, these buffers are not expected to
1489  * be accessible by the user-space clients, but only accessible by the
1490  * hardware producers and consumers.
1491  *
1492  * The user-space clients should expect a failure while trying to mmap
1493  * the DMA-BUF handle returned by the producer.
1494  */
1495 #define AMLOGIC_FBC_LAYOUT_SCATTER		(2ULL)
1496 
1497 /* Amlogic FBC Layout Options Bit Mask */
1498 
1499 /*
1500  * Amlogic FBC Memory Saving mode
1501  *
1502  * Indicates the storage is packed when pixel size is multiple of word
1503  * boundaries, i.e. 8bit should be stored in this mode to save allocation
1504  * memory.
1505  *
1506  * This mode reduces body layout to 3072 bytes per 64x32 superblock with
1507  * the basic layout and 3200 bytes per 64x32 superblock combined with
1508  * the scatter layout.
1509  */
1510 #define AMLOGIC_FBC_OPTION_MEM_SAVING		(1ULL << 0)
1511 
1512 /* MediaTek modifiers
1513  * Bits  Parameter                Notes
1514  * ----- ------------------------ ---------------------------------------------
1515  *   7: 0 TILE LAYOUT              Values are MTK_FMT_MOD_TILE_*
1516  *  15: 8 COMPRESSION              Values are MTK_FMT_MOD_COMPRESS_*
1517  *  23:16 10 BIT LAYOUT            Values are MTK_FMT_MOD_10BIT_LAYOUT_*
1518  *
1519  */
1520 
1521 #define DRM_FORMAT_MOD_MTK(__flags)		fourcc_mod_code(MTK, __flags)
1522 
1523 /*
1524  * MediaTek Tiled Modifier
1525  * The lowest 8 bits of the modifier is used to specify the tiling
1526  * layout. Only the 16L_32S tiling is used for now, but we define an
1527  * "untiled" version and leave room for future expansion.
1528  */
1529 #define MTK_FMT_MOD_TILE_MASK     0xf
1530 #define MTK_FMT_MOD_TILE_NONE     0x0
1531 #define MTK_FMT_MOD_TILE_16L32S   0x1
1532 
1533 /*
1534  * Bits 8-15 specify compression options
1535  */
1536 #define MTK_FMT_MOD_COMPRESS_MASK (0xf << 8)
1537 #define MTK_FMT_MOD_COMPRESS_NONE (0x0 << 8)
1538 #define MTK_FMT_MOD_COMPRESS_V1   (0x1 << 8)
1539 
1540 /*
1541  * Bits 16-23 specify how the bits of 10 bit formats are
1542  * stored out in memory
1543  */
1544 #define MTK_FMT_MOD_10BIT_LAYOUT_MASK      (0xf << 16)
1545 #define MTK_FMT_MOD_10BIT_LAYOUT_PACKED    (0x0 << 16)
1546 #define MTK_FMT_MOD_10BIT_LAYOUT_LSBTILED  (0x1 << 16)
1547 #define MTK_FMT_MOD_10BIT_LAYOUT_LSBRASTER (0x2 << 16)
1548 
1549 /* alias for the most common tiling format */
1550 #define DRM_FORMAT_MOD_MTK_16L_32S_TILE  DRM_FORMAT_MOD_MTK(MTK_FMT_MOD_TILE_16L32S)
1551 
1552 /*
1553  * Apple GPU-tiled layouts.
1554  *
1555  * Apple GPUs support nonlinear tilings with optional lossless compression.
1556  *
1557  * GPU-tiled images are divided into 16KiB tiles:
1558  *
1559  *     Bytes per pixel  Tile size
1560  *     ---------------  ---------
1561  *                   1  128x128
1562  *                   2  128x64
1563  *                   4  64x64
1564  *                   8  64x32
1565  *                  16  32x32
1566  *
1567  * Tiles are raster-order. Pixels within a tile are interleaved (Morton order).
1568  *
1569  * Compressed images pad the body to 128-bytes and are immediately followed by a
1570  * metadata section. The metadata section rounds the image dimensions to
1571  * powers-of-two and contains 8 bytes for each 16x16 compression subtile.
1572  * Subtiles are interleaved (Morton order).
1573  *
1574  * All images are 128-byte aligned.
1575  *
1576  * These layouts fundamentally do not have meaningful strides. No matter how we
1577  * specify strides for these layouts, userspace unaware of Apple image layouts
1578  * will be unable to use correctly the specified stride for any purpose.
1579  * Userspace aware of the image layouts do not use strides. The most "correct"
1580  * convention would be setting the image stride to 0. Unfortunately, some
1581  * software assumes the stride is at least (width * bytes per pixel). We
1582  * therefore require that stride equals (width * bytes per pixel). Since the
1583  * stride is arbitrary here, we pick the simplest convention.
1584  *
1585  * Although containing two sections, compressed image layouts are treated in
1586  * software as a single plane. This is modelled after AFBC, a similar
1587  * scheme. Attempting to separate the sections to be "explicit" in DRM would
1588  * only generate more confusion, as software does not treat the image this way.
1589  *
1590  * For detailed information on the hardware image layouts, see
1591  * https://docs.mesa3d.org/drivers/asahi.html#image-layouts
1592  */
1593 #define DRM_FORMAT_MOD_APPLE_GPU_TILED fourcc_mod_code(APPLE, 1)
1594 #define DRM_FORMAT_MOD_APPLE_GPU_TILED_COMPRESSED fourcc_mod_code(APPLE, 2)
1595 
1596 /*
1597  * AMD modifiers
1598  *
1599  * Memory layout:
1600  *
1601  * without DCC:
1602  *   - main surface
1603  *
1604  * with DCC & without DCC_RETILE:
1605  *   - main surface in plane 0
1606  *   - DCC surface in plane 1 (RB-aligned, pipe-aligned if DCC_PIPE_ALIGN is set)
1607  *
1608  * with DCC & DCC_RETILE:
1609  *   - main surface in plane 0
1610  *   - displayable DCC surface in plane 1 (not RB-aligned & not pipe-aligned)
1611  *   - pipe-aligned DCC surface in plane 2 (RB-aligned & pipe-aligned)
1612  *
1613  * For multi-plane formats the above surfaces get merged into one plane for
1614  * each format plane, based on the required alignment only.
1615  *
1616  * Bits  Parameter                Notes
1617  * ----- ------------------------ ---------------------------------------------
1618  *
1619  *   7:0 TILE_VERSION             Values are AMD_FMT_MOD_TILE_VER_*
1620  *  12:8 TILE                     Values are AMD_FMT_MOD_TILE_<version>_*
1621  *    13 DCC
1622  *    14 DCC_RETILE
1623  *    15 DCC_PIPE_ALIGN
1624  *    16 DCC_INDEPENDENT_64B
1625  *    17 DCC_INDEPENDENT_128B
1626  * 19:18 DCC_MAX_COMPRESSED_BLOCK Values are AMD_FMT_MOD_DCC_BLOCK_*
1627  *    20 DCC_CONSTANT_ENCODE
1628  * 23:21 PIPE_XOR_BITS            Only for some chips
1629  * 26:24 BANK_XOR_BITS            Only for some chips
1630  * 29:27 PACKERS                  Only for some chips
1631  * 32:30 RB                       Only for some chips
1632  * 35:33 PIPE                     Only for some chips
1633  * 55:36 -                        Reserved for future use, must be zero
1634  */
1635 #define AMD_FMT_MOD fourcc_mod_code(AMD, 0)
1636 
1637 #define IS_AMD_FMT_MOD(val) (((val) >> 56) == DRM_FORMAT_MOD_VENDOR_AMD)
1638 
1639 /* Reserve 0 for GFX8 and older */
1640 #define AMD_FMT_MOD_TILE_VER_GFX9 1
1641 #define AMD_FMT_MOD_TILE_VER_GFX10 2
1642 #define AMD_FMT_MOD_TILE_VER_GFX10_RBPLUS 3
1643 #define AMD_FMT_MOD_TILE_VER_GFX11 4
1644 #define AMD_FMT_MOD_TILE_VER_GFX12 5
1645 
1646 /*
1647  * 64K_S is the same for GFX9/GFX10/GFX10_RBPLUS and hence has GFX9 as canonical
1648  * version.
1649  */
1650 #define AMD_FMT_MOD_TILE_GFX9_64K_S 9
1651 
1652 /*
1653  * 64K_D for non-32 bpp is the same for GFX9/GFX10/GFX10_RBPLUS and hence has
1654  * GFX9 as canonical version.
1655  *
1656  * 64K_D_2D on GFX12 is identical to 64K_D on GFX11.
1657  */
1658 #define AMD_FMT_MOD_TILE_GFX9_64K_D 10
1659 #define AMD_FMT_MOD_TILE_GFX9_4K_D_X 22
1660 #define AMD_FMT_MOD_TILE_GFX9_64K_S_X 25
1661 #define AMD_FMT_MOD_TILE_GFX9_64K_D_X 26
1662 #define AMD_FMT_MOD_TILE_GFX9_64K_R_X 27
1663 #define AMD_FMT_MOD_TILE_GFX11_256K_R_X 31
1664 
1665 /* Gfx12 swizzle modes:
1666  *    0 - LINEAR
1667  *    1 - 256B_2D  - 2D block dimensions
1668  *    2 - 4KB_2D
1669  *    3 - 64KB_2D
1670  *    4 - 256KB_2D
1671  *    5 - 4KB_3D   - 3D block dimensions
1672  *    6 - 64KB_3D
1673  *    7 - 256KB_3D
1674  */
1675 #define AMD_FMT_MOD_TILE_GFX12_256B_2D 1
1676 #define AMD_FMT_MOD_TILE_GFX12_4K_2D 2
1677 #define AMD_FMT_MOD_TILE_GFX12_64K_2D 3
1678 #define AMD_FMT_MOD_TILE_GFX12_256K_2D 4
1679 
1680 #define AMD_FMT_MOD_DCC_BLOCK_64B 0
1681 #define AMD_FMT_MOD_DCC_BLOCK_128B 1
1682 #define AMD_FMT_MOD_DCC_BLOCK_256B 2
1683 
1684 #define AMD_FMT_MOD_TILE_VERSION_SHIFT 0
1685 #define AMD_FMT_MOD_TILE_VERSION_MASK 0xFF
1686 #define AMD_FMT_MOD_TILE_SHIFT 8
1687 #define AMD_FMT_MOD_TILE_MASK 0x1F
1688 
1689 /* Whether DCC compression is enabled. */
1690 #define AMD_FMT_MOD_DCC_SHIFT 13
1691 #define AMD_FMT_MOD_DCC_MASK 0x1
1692 
1693 /*
1694  * Whether to include two DCC surfaces, one which is rb & pipe aligned, and
1695  * one which is not-aligned.
1696  */
1697 #define AMD_FMT_MOD_DCC_RETILE_SHIFT 14
1698 #define AMD_FMT_MOD_DCC_RETILE_MASK 0x1
1699 
1700 /* Only set if DCC_RETILE = false */
1701 #define AMD_FMT_MOD_DCC_PIPE_ALIGN_SHIFT 15
1702 #define AMD_FMT_MOD_DCC_PIPE_ALIGN_MASK 0x1
1703 
1704 #define AMD_FMT_MOD_DCC_INDEPENDENT_64B_SHIFT 16
1705 #define AMD_FMT_MOD_DCC_INDEPENDENT_64B_MASK 0x1
1706 #define AMD_FMT_MOD_DCC_INDEPENDENT_128B_SHIFT 17
1707 #define AMD_FMT_MOD_DCC_INDEPENDENT_128B_MASK 0x1
1708 #define AMD_FMT_MOD_DCC_MAX_COMPRESSED_BLOCK_SHIFT 18
1709 #define AMD_FMT_MOD_DCC_MAX_COMPRESSED_BLOCK_MASK 0x3
1710 
1711 /*
1712  * DCC supports embedding some clear colors directly in the DCC surface.
1713  * However, on older GPUs the rendering HW ignores the embedded clear color
1714  * and prefers the driver provided color. This necessitates doing a fastclear
1715  * eliminate operation before a process transfers control.
1716  *
1717  * If this bit is set that means the fastclear eliminate is not needed for these
1718  * embeddable colors.
1719  */
1720 #define AMD_FMT_MOD_DCC_CONSTANT_ENCODE_SHIFT 20
1721 #define AMD_FMT_MOD_DCC_CONSTANT_ENCODE_MASK 0x1
1722 
1723 /*
1724  * The below fields are for accounting for per GPU differences. These are only
1725  * relevant for GFX9 and later and if the tile field is *_X/_T.
1726  *
1727  * PIPE_XOR_BITS = always needed
1728  * BANK_XOR_BITS = only for TILE_VER_GFX9
1729  * PACKERS = only for TILE_VER_GFX10_RBPLUS
1730  * RB = only for TILE_VER_GFX9 & DCC
1731  * PIPE = only for TILE_VER_GFX9 & DCC & (DCC_RETILE | DCC_PIPE_ALIGN)
1732  */
1733 #define AMD_FMT_MOD_PIPE_XOR_BITS_SHIFT 21
1734 #define AMD_FMT_MOD_PIPE_XOR_BITS_MASK 0x7
1735 #define AMD_FMT_MOD_BANK_XOR_BITS_SHIFT 24
1736 #define AMD_FMT_MOD_BANK_XOR_BITS_MASK 0x7
1737 #define AMD_FMT_MOD_PACKERS_SHIFT 27
1738 #define AMD_FMT_MOD_PACKERS_MASK 0x7
1739 #define AMD_FMT_MOD_RB_SHIFT 30
1740 #define AMD_FMT_MOD_RB_MASK 0x7
1741 #define AMD_FMT_MOD_PIPE_SHIFT 33
1742 #define AMD_FMT_MOD_PIPE_MASK 0x7
1743 
1744 #define AMD_FMT_MOD_SET(field, value) \
1745 	((__u64)(value) << AMD_FMT_MOD_##field##_SHIFT)
1746 #define AMD_FMT_MOD_GET(field, value) \
1747 	(((value) >> AMD_FMT_MOD_##field##_SHIFT) & AMD_FMT_MOD_##field##_MASK)
1748 #define AMD_FMT_MOD_CLEAR(field) \
1749 	(~((__u64)AMD_FMT_MOD_##field##_MASK << AMD_FMT_MOD_##field##_SHIFT))
1750 
1751 #if defined(__cplusplus)
1752 }
1753 #endif
1754 
1755 #endif /* DRM_FOURCC_H */
1756