xref: /linux/drivers/gpu/drm/msm/disp/dpu1/dpu_encoder.c (revision e9ef810dfee7a2227da9d423aecb0ced35faddbe)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2013 Red Hat
4  * Copyright (c) 2014-2018, 2020-2021 The Linux Foundation. All rights reserved.
5  * Copyright (c) 2022-2024 Qualcomm Innovation Center, Inc. All rights reserved.
6  *
7  * Author: Rob Clark <robdclark@gmail.com>
8  */
9 
10 #define pr_fmt(fmt)	"[drm:%s:%d] " fmt, __func__, __LINE__
11 #include <linux/debugfs.h>
12 #include <linux/kthread.h>
13 #include <linux/seq_file.h>
14 
15 #include <drm/drm_atomic.h>
16 #include <drm/drm_crtc.h>
17 #include <drm/drm_file.h>
18 #include <drm/drm_probe_helper.h>
19 #include <drm/drm_framebuffer.h>
20 
21 #include "msm_drv.h"
22 #include "dpu_kms.h"
23 #include "dpu_hwio.h"
24 #include "dpu_hw_catalog.h"
25 #include "dpu_hw_intf.h"
26 #include "dpu_hw_ctl.h"
27 #include "dpu_hw_cwb.h"
28 #include "dpu_hw_dspp.h"
29 #include "dpu_hw_dsc.h"
30 #include "dpu_hw_merge3d.h"
31 #include "dpu_hw_cdm.h"
32 #include "dpu_formats.h"
33 #include "dpu_encoder_phys.h"
34 #include "dpu_crtc.h"
35 #include "dpu_trace.h"
36 #include "dpu_core_irq.h"
37 #include "disp/msm_disp_snapshot.h"
38 
39 #define DPU_DEBUG_ENC(e, fmt, ...) DRM_DEBUG_ATOMIC("enc%d " fmt,\
40 		(e) ? (e)->base.base.id : -1, ##__VA_ARGS__)
41 
42 #define DPU_ERROR_ENC(e, fmt, ...) DPU_ERROR("enc%d " fmt,\
43 		(e) ? (e)->base.base.id : -1, ##__VA_ARGS__)
44 
45 #define DPU_ERROR_ENC_RATELIMITED(e, fmt, ...) DPU_ERROR_RATELIMITED("enc%d " fmt,\
46 		(e) ? (e)->base.base.id : -1, ##__VA_ARGS__)
47 
48 /*
49  * Two to anticipate panels that can do cmd/vid dynamic switching
50  * plan is to create all possible physical encoder types, and switch between
51  * them at runtime
52  */
53 #define NUM_PHYS_ENCODER_TYPES 2
54 
55 #define MAX_PHYS_ENCODERS_PER_VIRTUAL \
56 	(MAX_H_TILES_PER_DISPLAY * NUM_PHYS_ENCODER_TYPES)
57 
58 #define MAX_CHANNELS_PER_ENC 2
59 
60 #define IDLE_SHORT_TIMEOUT	1
61 
62 /* timeout in frames waiting for frame done */
63 #define DPU_ENCODER_FRAME_DONE_TIMEOUT_FRAMES 5
64 
65 /**
66  * enum dpu_enc_rc_events - events for resource control state machine
67  * @DPU_ENC_RC_EVENT_KICKOFF:
68  *	This event happens at NORMAL priority.
69  *	Event that signals the start of the transfer. When this event is
70  *	received, enable MDP/DSI core clocks. Regardless of the previous
71  *	state, the resource should be in ON state at the end of this event.
72  * @DPU_ENC_RC_EVENT_FRAME_DONE:
73  *	This event happens at INTERRUPT level.
74  *	Event signals the end of the data transfer after the PP FRAME_DONE
75  *	event. At the end of this event, a delayed work is scheduled to go to
76  *	IDLE_PC state after IDLE_TIMEOUT time.
77  * @DPU_ENC_RC_EVENT_PRE_STOP:
78  *	This event happens at NORMAL priority.
79  *	This event, when received during the ON state, leave the RC STATE
80  *	in the PRE_OFF state. It should be followed by the STOP event as
81  *	part of encoder disable.
82  *	If received during IDLE or OFF states, it will do nothing.
83  * @DPU_ENC_RC_EVENT_STOP:
84  *	This event happens at NORMAL priority.
85  *	When this event is received, disable all the MDP/DSI core clocks, and
86  *	disable IRQs. It should be called from the PRE_OFF or IDLE states.
87  *	IDLE is expected when IDLE_PC has run, and PRE_OFF did nothing.
88  *	PRE_OFF is expected when PRE_STOP was executed during the ON state.
89  *	Resource state should be in OFF at the end of the event.
90  * @DPU_ENC_RC_EVENT_ENTER_IDLE:
91  *	This event happens at NORMAL priority from a work item.
92  *	Event signals that there were no frame updates for IDLE_TIMEOUT time.
93  *	This would disable MDP/DSI core clocks and change the resource state
94  *	to IDLE.
95  */
96 enum dpu_enc_rc_events {
97 	DPU_ENC_RC_EVENT_KICKOFF = 1,
98 	DPU_ENC_RC_EVENT_FRAME_DONE,
99 	DPU_ENC_RC_EVENT_PRE_STOP,
100 	DPU_ENC_RC_EVENT_STOP,
101 	DPU_ENC_RC_EVENT_ENTER_IDLE
102 };
103 
104 /*
105  * enum dpu_enc_rc_states - states that the resource control maintains
106  * @DPU_ENC_RC_STATE_OFF: Resource is in OFF state
107  * @DPU_ENC_RC_STATE_PRE_OFF: Resource is transitioning to OFF state
108  * @DPU_ENC_RC_STATE_ON: Resource is in ON state
109  * @DPU_ENC_RC_STATE_MODESET: Resource is in modeset state
110  * @DPU_ENC_RC_STATE_IDLE: Resource is in IDLE state
111  */
112 enum dpu_enc_rc_states {
113 	DPU_ENC_RC_STATE_OFF,
114 	DPU_ENC_RC_STATE_PRE_OFF,
115 	DPU_ENC_RC_STATE_ON,
116 	DPU_ENC_RC_STATE_IDLE
117 };
118 
119 /**
120  * struct dpu_encoder_virt - virtual encoder. Container of one or more physical
121  *	encoders. Virtual encoder manages one "logical" display. Physical
122  *	encoders manage one intf block, tied to a specific panel/sub-panel.
123  *	Virtual encoder defers as much as possible to the physical encoders.
124  *	Virtual encoder registers itself with the DRM Framework as the encoder.
125  * @base:		drm_encoder base class for registration with DRM
126  * @enc_spinlock:	Virtual-Encoder-Wide Spin Lock for IRQ purposes
127  * @enabled:		True if the encoder is active, protected by enc_lock
128  * @commit_done_timedout: True if there has been a timeout on commit after
129  *			enabling the encoder.
130  * @num_phys_encs:	Actual number of physical encoders contained.
131  * @phys_encs:		Container of physical encoders managed.
132  * @cur_master:		Pointer to the current master in this mode. Optimization
133  *			Only valid after enable. Cleared as disable.
134  * @cur_slave:		As above but for the slave encoder.
135  * @hw_pp:		Handle to the pingpong blocks used for the display. No.
136  *			pingpong blocks can be different than num_phys_encs.
137  * @hw_cwb:		Handle to the CWB muxes used for concurrent writeback
138  *			display. Number of CWB muxes can be different than
139  *			num_phys_encs.
140  * @hw_dsc:		Handle to the DSC blocks used for the display.
141  * @dsc_mask:		Bitmask of used DSC blocks.
142  * @cwb_mask:		Bitmask of used CWB muxes
143  * @intfs_swapped:	Whether or not the phys_enc interfaces have been swapped
144  *			for partial update right-only cases, such as pingpong
145  *			split where virtual pingpong does not generate IRQs
146  * @crtc:		Pointer to the currently assigned crtc. Normally you
147  *			would use crtc->state->encoder_mask to determine the
148  *			link between encoder/crtc. However in this case we need
149  *			to track crtc in the disable() hook which is called
150  *			_after_ encoder_mask is cleared.
151  * @connector:		If a mode is set, cached pointer to the active connector
152  * @enc_lock:			Lock around physical encoder
153  *				create/destroy/enable/disable
154  * @frame_busy_mask:		Bitmask tracking which phys_enc we are still
155  *				busy processing current command.
156  *				Bit0 = phys_encs[0] etc.
157  * @frame_done_timeout_ms:	frame done timeout in ms
158  * @frame_done_timeout_cnt:	atomic counter tracking the number of frame
159  * 				done timeouts
160  * @frame_done_timer:		watchdog timer for frame done event
161  * @disp_info:			local copy of msm_display_info struct
162  * @idle_pc_supported:		indicate if idle power collaps is supported
163  * @rc_lock:			resource control mutex lock to protect
164  *				virt encoder over various state changes
165  * @rc_state:			resource controller state
166  * @delayed_off_work:		delayed worker to schedule disabling of
167  *				clks and resources after IDLE_TIMEOUT time.
168  * @topology:                   topology of the display
169  * @idle_timeout:		idle timeout duration in milliseconds
170  * @wide_bus_en:		wide bus is enabled on this interface
171  * @dsc:			drm_dsc_config pointer, for DSC-enabled encoders
172  */
173 struct dpu_encoder_virt {
174 	struct drm_encoder base;
175 	spinlock_t enc_spinlock;
176 
177 	bool enabled;
178 	bool commit_done_timedout;
179 
180 	unsigned int num_phys_encs;
181 	struct dpu_encoder_phys *phys_encs[MAX_PHYS_ENCODERS_PER_VIRTUAL];
182 	struct dpu_encoder_phys *cur_master;
183 	struct dpu_encoder_phys *cur_slave;
184 	struct dpu_hw_pingpong *hw_pp[MAX_CHANNELS_PER_ENC];
185 	struct dpu_hw_cwb *hw_cwb[MAX_CHANNELS_PER_ENC];
186 	struct dpu_hw_dsc *hw_dsc[MAX_CHANNELS_PER_ENC];
187 
188 	unsigned int dsc_mask;
189 	unsigned int cwb_mask;
190 
191 	bool intfs_swapped;
192 
193 	struct drm_crtc *crtc;
194 	struct drm_connector *connector;
195 
196 	struct mutex enc_lock;
197 	DECLARE_BITMAP(frame_busy_mask, MAX_PHYS_ENCODERS_PER_VIRTUAL);
198 
199 	atomic_t frame_done_timeout_ms;
200 	atomic_t frame_done_timeout_cnt;
201 	struct timer_list frame_done_timer;
202 
203 	struct msm_display_info disp_info;
204 
205 	bool idle_pc_supported;
206 	struct mutex rc_lock;
207 	enum dpu_enc_rc_states rc_state;
208 	struct delayed_work delayed_off_work;
209 	struct msm_display_topology topology;
210 
211 	u32 idle_timeout;
212 
213 	bool wide_bus_en;
214 
215 	/* DSC configuration */
216 	struct drm_dsc_config *dsc;
217 };
218 
219 #define to_dpu_encoder_virt(x) container_of(x, struct dpu_encoder_virt, base)
220 
221 static u32 dither_matrix[DITHER_MATRIX_SZ] = {
222 	15, 7, 13, 5, 3, 11, 1, 9, 12, 4, 14, 6, 0, 8, 2, 10
223 };
224 
225 /**
226  * dpu_encoder_get_drm_fmt - return DRM fourcc format
227  * @phys_enc: Pointer to physical encoder structure
228  */
dpu_encoder_get_drm_fmt(struct dpu_encoder_phys * phys_enc)229 u32 dpu_encoder_get_drm_fmt(struct dpu_encoder_phys *phys_enc)
230 {
231 	struct drm_encoder *drm_enc;
232 	struct dpu_encoder_virt *dpu_enc;
233 	struct drm_display_info *info;
234 	struct drm_display_mode *mode;
235 
236 	drm_enc = phys_enc->parent;
237 	dpu_enc = to_dpu_encoder_virt(drm_enc);
238 	info = &dpu_enc->connector->display_info;
239 	mode = &phys_enc->cached_mode;
240 
241 	if (drm_mode_is_420_only(info, mode))
242 		return DRM_FORMAT_YUV420;
243 
244 	return DRM_FORMAT_RGB888;
245 }
246 
247 /**
248  * dpu_encoder_needs_periph_flush - return true if physical encoder requires
249  *	peripheral flush
250  * @phys_enc: Pointer to physical encoder structure
251  */
dpu_encoder_needs_periph_flush(struct dpu_encoder_phys * phys_enc)252 bool dpu_encoder_needs_periph_flush(struct dpu_encoder_phys *phys_enc)
253 {
254 	struct drm_encoder *drm_enc;
255 	struct dpu_encoder_virt *dpu_enc;
256 	struct msm_display_info *disp_info;
257 	struct msm_drm_private *priv;
258 	struct drm_display_mode *mode;
259 
260 	drm_enc = phys_enc->parent;
261 	dpu_enc = to_dpu_encoder_virt(drm_enc);
262 	disp_info = &dpu_enc->disp_info;
263 	priv = drm_enc->dev->dev_private;
264 	mode = &phys_enc->cached_mode;
265 
266 	return phys_enc->hw_intf->cap->type == INTF_DP &&
267 	       msm_dp_needs_periph_flush(priv->kms->dp[disp_info->h_tile_instance[0]], mode);
268 }
269 
270 /**
271  * dpu_encoder_is_widebus_enabled - return bool value if widebus is enabled
272  * @drm_enc:    Pointer to previously created drm encoder structure
273  */
dpu_encoder_is_widebus_enabled(const struct drm_encoder * drm_enc)274 bool dpu_encoder_is_widebus_enabled(const struct drm_encoder *drm_enc)
275 {
276 	const struct dpu_encoder_virt *dpu_enc;
277 	struct msm_drm_private *priv = drm_enc->dev->dev_private;
278 	const struct msm_display_info *disp_info;
279 	int index;
280 
281 	dpu_enc = to_dpu_encoder_virt(drm_enc);
282 	disp_info = &dpu_enc->disp_info;
283 	index = disp_info->h_tile_instance[0];
284 
285 	if (disp_info->intf_type == INTF_DP)
286 		return msm_dp_wide_bus_available(priv->kms->dp[index]);
287 	else if (disp_info->intf_type == INTF_DSI)
288 		return msm_dsi_wide_bus_enabled(priv->kms->dsi[index]);
289 
290 	return false;
291 }
292 
293 /**
294  * dpu_encoder_is_dsc_enabled - indicate whether dsc is enabled
295  *				for the encoder.
296  * @drm_enc:    Pointer to previously created drm encoder structure
297  */
dpu_encoder_is_dsc_enabled(const struct drm_encoder * drm_enc)298 bool dpu_encoder_is_dsc_enabled(const struct drm_encoder *drm_enc)
299 {
300 	const struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
301 
302 	return dpu_enc->dsc ? true : false;
303 }
304 
305 /**
306  * dpu_encoder_get_crc_values_cnt - get number of physical encoders contained
307  *	in virtual encoder that can collect CRC values
308  * @drm_enc:    Pointer to previously created drm encoder structure
309  * Returns:     Number of physical encoders for given drm encoder
310  */
dpu_encoder_get_crc_values_cnt(const struct drm_encoder * drm_enc)311 int dpu_encoder_get_crc_values_cnt(const struct drm_encoder *drm_enc)
312 {
313 	struct dpu_encoder_virt *dpu_enc;
314 	int i, num_intf = 0;
315 
316 	dpu_enc = to_dpu_encoder_virt(drm_enc);
317 
318 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
319 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
320 
321 		if (phys->hw_intf && phys->hw_intf->ops.setup_misr
322 				&& phys->hw_intf->ops.collect_misr)
323 			num_intf++;
324 	}
325 
326 	return num_intf;
327 }
328 
329 /**
330  * dpu_encoder_setup_misr - enable misr calculations
331  * @drm_enc:    Pointer to previously created drm encoder structure
332  */
dpu_encoder_setup_misr(const struct drm_encoder * drm_enc)333 void dpu_encoder_setup_misr(const struct drm_encoder *drm_enc)
334 {
335 	struct dpu_encoder_virt *dpu_enc;
336 
337 	int i;
338 
339 	dpu_enc = to_dpu_encoder_virt(drm_enc);
340 
341 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
342 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
343 
344 		if (!phys->hw_intf || !phys->hw_intf->ops.setup_misr)
345 			continue;
346 
347 		phys->hw_intf->ops.setup_misr(phys->hw_intf);
348 	}
349 }
350 
351 /**
352  * dpu_encoder_get_crc - get the crc value from interface blocks
353  * @drm_enc:    Pointer to previously created drm encoder structure
354  * @crcs:	array to fill with CRC data
355  * @pos:	offset into the @crcs array
356  * Returns:     0 on success, error otherwise
357  */
dpu_encoder_get_crc(const struct drm_encoder * drm_enc,u32 * crcs,int pos)358 int dpu_encoder_get_crc(const struct drm_encoder *drm_enc, u32 *crcs, int pos)
359 {
360 	struct dpu_encoder_virt *dpu_enc;
361 
362 	int i, rc = 0, entries_added = 0;
363 
364 	if (!drm_enc->crtc) {
365 		DRM_ERROR("no crtc found for encoder %d\n", drm_enc->index);
366 		return -EINVAL;
367 	}
368 
369 	dpu_enc = to_dpu_encoder_virt(drm_enc);
370 
371 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
372 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
373 
374 		if (!phys->hw_intf || !phys->hw_intf->ops.collect_misr)
375 			continue;
376 
377 		rc = phys->hw_intf->ops.collect_misr(phys->hw_intf, &crcs[pos + entries_added]);
378 		if (rc)
379 			return rc;
380 		entries_added++;
381 	}
382 
383 	return entries_added;
384 }
385 
_dpu_encoder_setup_dither(struct dpu_hw_pingpong * hw_pp,unsigned bpc)386 static void _dpu_encoder_setup_dither(struct dpu_hw_pingpong *hw_pp, unsigned bpc)
387 {
388 	struct dpu_hw_dither_cfg dither_cfg = { 0 };
389 
390 	if (!hw_pp->ops.setup_dither)
391 		return;
392 
393 	switch (bpc) {
394 	case 6:
395 		dither_cfg.c0_bitdepth = 6;
396 		dither_cfg.c1_bitdepth = 6;
397 		dither_cfg.c2_bitdepth = 6;
398 		dither_cfg.c3_bitdepth = 6;
399 		dither_cfg.temporal_en = 0;
400 		break;
401 	default:
402 		hw_pp->ops.setup_dither(hw_pp, NULL);
403 		return;
404 	}
405 
406 	memcpy(&dither_cfg.matrix, dither_matrix,
407 			sizeof(u32) * DITHER_MATRIX_SZ);
408 
409 	hw_pp->ops.setup_dither(hw_pp, &dither_cfg);
410 }
411 
dpu_encoder_helper_get_intf_type(enum dpu_intf_mode intf_mode)412 static char *dpu_encoder_helper_get_intf_type(enum dpu_intf_mode intf_mode)
413 {
414 	switch (intf_mode) {
415 	case INTF_MODE_VIDEO:
416 		return "INTF_MODE_VIDEO";
417 	case INTF_MODE_CMD:
418 		return "INTF_MODE_CMD";
419 	case INTF_MODE_WB_BLOCK:
420 		return "INTF_MODE_WB_BLOCK";
421 	case INTF_MODE_WB_LINE:
422 		return "INTF_MODE_WB_LINE";
423 	default:
424 		return "INTF_MODE_UNKNOWN";
425 	}
426 }
427 
428 /**
429  * dpu_encoder_helper_report_irq_timeout - utility to report error that irq has
430  *	timed out, including reporting frame error event to crtc and debug dump
431  * @phys_enc: Pointer to physical encoder structure
432  * @intr_idx: Failing interrupt index
433  */
dpu_encoder_helper_report_irq_timeout(struct dpu_encoder_phys * phys_enc,enum dpu_intr_idx intr_idx)434 void dpu_encoder_helper_report_irq_timeout(struct dpu_encoder_phys *phys_enc,
435 		enum dpu_intr_idx intr_idx)
436 {
437 	DRM_ERROR("irq timeout id=%u, intf_mode=%s intf=%d wb=%d, pp=%d, intr=%d\n",
438 			DRMID(phys_enc->parent),
439 			dpu_encoder_helper_get_intf_type(phys_enc->intf_mode),
440 			phys_enc->hw_intf ? phys_enc->hw_intf->idx - INTF_0 : -1,
441 			phys_enc->hw_wb ? phys_enc->hw_wb->idx - WB_0 : -1,
442 			phys_enc->hw_pp->idx - PINGPONG_0, intr_idx);
443 
444 	dpu_encoder_frame_done_callback(phys_enc->parent, phys_enc,
445 				DPU_ENCODER_FRAME_EVENT_ERROR);
446 }
447 
448 static int dpu_encoder_helper_wait_event_timeout(int32_t drm_id,
449 		u32 irq_idx, struct dpu_encoder_wait_info *info);
450 
451 /**
452  * dpu_encoder_helper_wait_for_irq - utility to wait on an irq.
453  *	note: will call dpu_encoder_helper_wait_for_irq on timeout
454  * @phys_enc: Pointer to physical encoder structure
455  * @irq_idx: IRQ index
456  * @func: IRQ callback to be called in case of timeout
457  * @wait_info: wait info struct
458  * @return: 0 or -ERROR
459  */
dpu_encoder_helper_wait_for_irq(struct dpu_encoder_phys * phys_enc,unsigned int irq_idx,void (* func)(void * arg),struct dpu_encoder_wait_info * wait_info)460 int dpu_encoder_helper_wait_for_irq(struct dpu_encoder_phys *phys_enc,
461 		unsigned int irq_idx,
462 		void (*func)(void *arg),
463 		struct dpu_encoder_wait_info *wait_info)
464 {
465 	u32 irq_status;
466 	int ret;
467 
468 	if (!wait_info) {
469 		DPU_ERROR("invalid params\n");
470 		return -EINVAL;
471 	}
472 	/* note: do master / slave checking outside */
473 
474 	/* return EWOULDBLOCK since we know the wait isn't necessary */
475 	if (phys_enc->enable_state == DPU_ENC_DISABLED) {
476 		DRM_ERROR("encoder is disabled id=%u, callback=%ps, IRQ=[%d, %d]\n",
477 			  DRMID(phys_enc->parent), func,
478 			  DPU_IRQ_REG(irq_idx), DPU_IRQ_BIT(irq_idx));
479 		return -EWOULDBLOCK;
480 	}
481 
482 	if (irq_idx == 0) {
483 		DRM_DEBUG_KMS("skip irq wait id=%u, callback=%ps\n",
484 			      DRMID(phys_enc->parent), func);
485 		return 0;
486 	}
487 
488 	DRM_DEBUG_KMS("id=%u, callback=%ps, IRQ=[%d, %d], pp=%d, pending_cnt=%d\n",
489 		      DRMID(phys_enc->parent), func,
490 		      DPU_IRQ_REG(irq_idx), DPU_IRQ_BIT(irq_idx), phys_enc->hw_pp->idx - PINGPONG_0,
491 		      atomic_read(wait_info->atomic_cnt));
492 
493 	ret = dpu_encoder_helper_wait_event_timeout(
494 			DRMID(phys_enc->parent),
495 			irq_idx,
496 			wait_info);
497 
498 	if (ret <= 0) {
499 		irq_status = dpu_core_irq_read(phys_enc->dpu_kms, irq_idx);
500 		if (irq_status) {
501 			unsigned long flags;
502 
503 			DRM_DEBUG_KMS("IRQ=[%d, %d] not triggered id=%u, callback=%ps, pp=%d, atomic_cnt=%d\n",
504 				      DPU_IRQ_REG(irq_idx), DPU_IRQ_BIT(irq_idx),
505 				      DRMID(phys_enc->parent), func,
506 				      phys_enc->hw_pp->idx - PINGPONG_0,
507 				      atomic_read(wait_info->atomic_cnt));
508 			local_irq_save(flags);
509 			func(phys_enc);
510 			local_irq_restore(flags);
511 			ret = 0;
512 		} else {
513 			ret = -ETIMEDOUT;
514 			DRM_DEBUG_KMS("IRQ=[%d, %d] timeout id=%u, callback=%ps, pp=%d, atomic_cnt=%d\n",
515 				      DPU_IRQ_REG(irq_idx), DPU_IRQ_BIT(irq_idx),
516 				      DRMID(phys_enc->parent), func,
517 				      phys_enc->hw_pp->idx - PINGPONG_0,
518 				      atomic_read(wait_info->atomic_cnt));
519 		}
520 	} else {
521 		ret = 0;
522 		trace_dpu_enc_irq_wait_success(DRMID(phys_enc->parent),
523 			func, DPU_IRQ_REG(irq_idx), DPU_IRQ_BIT(irq_idx),
524 			phys_enc->hw_pp->idx - PINGPONG_0,
525 			atomic_read(wait_info->atomic_cnt));
526 	}
527 
528 	return ret;
529 }
530 
531 /**
532  * dpu_encoder_get_vsync_count - get vsync count for the encoder.
533  * @drm_enc:    Pointer to previously created drm encoder structure
534  */
dpu_encoder_get_vsync_count(struct drm_encoder * drm_enc)535 int dpu_encoder_get_vsync_count(struct drm_encoder *drm_enc)
536 {
537 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
538 	struct dpu_encoder_phys *phys = dpu_enc ? dpu_enc->cur_master : NULL;
539 	return phys ? atomic_read(&phys->vsync_cnt) : 0;
540 }
541 
542 /**
543  * dpu_encoder_get_linecount - get interface line count for the encoder.
544  * @drm_enc:    Pointer to previously created drm encoder structure
545  */
dpu_encoder_get_linecount(struct drm_encoder * drm_enc)546 int dpu_encoder_get_linecount(struct drm_encoder *drm_enc)
547 {
548 	struct dpu_encoder_virt *dpu_enc;
549 	struct dpu_encoder_phys *phys;
550 	int linecount = 0;
551 
552 	dpu_enc = to_dpu_encoder_virt(drm_enc);
553 	phys = dpu_enc ? dpu_enc->cur_master : NULL;
554 
555 	if (phys && phys->ops.get_line_count)
556 		linecount = phys->ops.get_line_count(phys);
557 
558 	return linecount;
559 }
560 
561 /**
562  * dpu_encoder_helper_split_config - split display configuration helper function
563  *	This helper function may be used by physical encoders to configure
564  *	the split display related registers.
565  * @phys_enc: Pointer to physical encoder structure
566  * @interface: enum dpu_intf setting
567  */
dpu_encoder_helper_split_config(struct dpu_encoder_phys * phys_enc,enum dpu_intf interface)568 void dpu_encoder_helper_split_config(
569 		struct dpu_encoder_phys *phys_enc,
570 		enum dpu_intf interface)
571 {
572 	struct dpu_encoder_virt *dpu_enc;
573 	struct split_pipe_cfg cfg = { 0 };
574 	struct dpu_hw_mdp *hw_mdptop;
575 	struct msm_display_info *disp_info;
576 
577 	if (!phys_enc->hw_mdptop || !phys_enc->parent) {
578 		DPU_ERROR("invalid arg(s), encoder %d\n", phys_enc != NULL);
579 		return;
580 	}
581 
582 	dpu_enc = to_dpu_encoder_virt(phys_enc->parent);
583 	hw_mdptop = phys_enc->hw_mdptop;
584 	disp_info = &dpu_enc->disp_info;
585 
586 	if (disp_info->intf_type != INTF_DSI)
587 		return;
588 
589 	/**
590 	 * disable split modes since encoder will be operating in as the only
591 	 * encoder, either for the entire use case in the case of, for example,
592 	 * single DSI, or for this frame in the case of left/right only partial
593 	 * update.
594 	 */
595 	if (phys_enc->split_role == ENC_ROLE_SOLO) {
596 		if (hw_mdptop->ops.setup_split_pipe)
597 			hw_mdptop->ops.setup_split_pipe(hw_mdptop, &cfg);
598 		return;
599 	}
600 
601 	cfg.en = true;
602 	cfg.mode = phys_enc->intf_mode;
603 	cfg.intf = interface;
604 
605 	if (cfg.en && phys_enc->ops.needs_single_flush &&
606 			phys_enc->ops.needs_single_flush(phys_enc))
607 		cfg.split_flush_en = true;
608 
609 	if (phys_enc->split_role == ENC_ROLE_MASTER) {
610 		DPU_DEBUG_ENC(dpu_enc, "enable %d\n", cfg.en);
611 
612 		if (hw_mdptop->ops.setup_split_pipe)
613 			hw_mdptop->ops.setup_split_pipe(hw_mdptop, &cfg);
614 	}
615 }
616 
617 /**
618  * dpu_encoder_use_dsc_merge - returns true if the encoder uses DSC merge topology.
619  * @drm_enc:    Pointer to previously created drm encoder structure
620  */
dpu_encoder_use_dsc_merge(struct drm_encoder * drm_enc)621 bool dpu_encoder_use_dsc_merge(struct drm_encoder *drm_enc)
622 {
623 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
624 	int i, intf_count = 0, num_dsc = 0;
625 
626 	for (i = 0; i < MAX_PHYS_ENCODERS_PER_VIRTUAL; i++)
627 		if (dpu_enc->phys_encs[i])
628 			intf_count++;
629 
630 	for (i = 0; i < MAX_CHANNELS_PER_ENC; i++)
631 		if (dpu_enc->hw_dsc[i])
632 			num_dsc++;
633 
634 	return (num_dsc > 0) && (num_dsc > intf_count);
635 }
636 
637 /**
638  * dpu_encoder_get_dsc_config - get DSC config for the DPU encoder
639  *   This helper function is used by physical encoder to get DSC config
640  *   used for this encoder.
641  * @drm_enc: Pointer to encoder structure
642  */
dpu_encoder_get_dsc_config(struct drm_encoder * drm_enc)643 struct drm_dsc_config *dpu_encoder_get_dsc_config(struct drm_encoder *drm_enc)
644 {
645 	struct msm_drm_private *priv = drm_enc->dev->dev_private;
646 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
647 	int index = dpu_enc->disp_info.h_tile_instance[0];
648 
649 	if (dpu_enc->disp_info.intf_type == INTF_DSI)
650 		return msm_dsi_get_dsc_config(priv->kms->dsi[index]);
651 
652 	return NULL;
653 }
654 
dpu_encoder_update_topology(struct drm_encoder * drm_enc,struct msm_display_topology * topology,struct drm_atomic_state * state,const struct drm_display_mode * adj_mode)655 void dpu_encoder_update_topology(struct drm_encoder *drm_enc,
656 				 struct msm_display_topology *topology,
657 				 struct drm_atomic_state *state,
658 				 const struct drm_display_mode *adj_mode)
659 {
660 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
661 	struct msm_drm_private *priv = dpu_enc->base.dev->dev_private;
662 	struct msm_display_info *disp_info = &dpu_enc->disp_info;
663 	struct dpu_kms *dpu_kms = to_dpu_kms(priv->kms);
664 	struct drm_connector *connector;
665 	struct drm_connector_state *conn_state;
666 	struct drm_framebuffer *fb;
667 	struct drm_dsc_config *dsc;
668 
669 	int i;
670 
671 	for (i = 0; i < MAX_PHYS_ENCODERS_PER_VIRTUAL; i++)
672 		if (dpu_enc->phys_encs[i])
673 			topology->num_intf++;
674 
675 	dsc = dpu_encoder_get_dsc_config(drm_enc);
676 
677 	/* We only support 2 DSC mode (with 2 LM and 1 INTF) */
678 	if (dsc) {
679 		/*
680 		 * Use 2 DSC encoders, 2 layer mixers and 1 or 2 interfaces
681 		 * when Display Stream Compression (DSC) is enabled,
682 		 * and when enough DSC blocks are available.
683 		 * This is power-optimal and can drive up to (including) 4k
684 		 * screens.
685 		 */
686 		WARN(topology->num_intf > 2,
687 		     "DSC topology cannot support more than 2 interfaces\n");
688 		if (topology->num_intf >= 2 || dpu_kms->catalog->dsc_count >= 2)
689 			topology->num_dsc = 2;
690 		else
691 			topology->num_dsc = 1;
692 	}
693 
694 	connector = drm_atomic_get_new_connector_for_encoder(state, drm_enc);
695 	if (!connector)
696 		return;
697 	conn_state = drm_atomic_get_new_connector_state(state, connector);
698 	if (!conn_state)
699 		return;
700 
701 	/*
702 	 * Use CDM only for writeback or DP at the moment as other interfaces cannot handle it.
703 	 * If writeback itself cannot handle cdm for some reason it will fail in its atomic_check()
704 	 * earlier.
705 	 */
706 	if (disp_info->intf_type == INTF_WB && conn_state->writeback_job) {
707 		fb = conn_state->writeback_job->fb;
708 
709 		if (fb && MSM_FORMAT_IS_YUV(msm_framebuffer_format(fb)))
710 			topology->num_cdm++;
711 	} else if (disp_info->intf_type == INTF_DP) {
712 		if (msm_dp_is_yuv_420_enabled(priv->kms->dp[disp_info->h_tile_instance[0]],
713 					      adj_mode))
714 			topology->num_cdm++;
715 	}
716 }
717 
dpu_encoder_needs_modeset(struct drm_encoder * drm_enc,struct drm_atomic_state * state)718 bool dpu_encoder_needs_modeset(struct drm_encoder *drm_enc, struct drm_atomic_state *state)
719 {
720 	struct drm_connector *connector;
721 	struct drm_connector_state *conn_state;
722 	struct drm_framebuffer *fb;
723 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
724 
725 	if (!drm_enc || !state)
726 		return false;
727 
728 	connector = drm_atomic_get_new_connector_for_encoder(state, drm_enc);
729 	if (!connector)
730 		return false;
731 
732 	conn_state = drm_atomic_get_new_connector_state(state, connector);
733 
734 	/**
735 	 * These checks are duplicated from dpu_encoder_update_topology() since
736 	 * CRTC and encoder don't hold topology information
737 	 */
738 	if (dpu_enc->disp_info.intf_type == INTF_WB && conn_state->writeback_job) {
739 		fb = conn_state->writeback_job->fb;
740 		if (fb && MSM_FORMAT_IS_YUV(msm_framebuffer_format(fb))) {
741 			if (!dpu_enc->cur_master->hw_cdm)
742 				return true;
743 		} else {
744 			if (dpu_enc->cur_master->hw_cdm)
745 				return true;
746 		}
747 	}
748 
749 	return false;
750 }
751 
_dpu_encoder_update_vsync_source(struct dpu_encoder_virt * dpu_enc,struct msm_display_info * disp_info)752 static void _dpu_encoder_update_vsync_source(struct dpu_encoder_virt *dpu_enc,
753 			struct msm_display_info *disp_info)
754 {
755 	struct dpu_vsync_source_cfg vsync_cfg = { 0 };
756 	struct msm_drm_private *priv;
757 	struct dpu_kms *dpu_kms;
758 	struct dpu_hw_mdp *hw_mdptop;
759 	struct drm_encoder *drm_enc;
760 	struct dpu_encoder_phys *phys_enc;
761 	int i;
762 
763 	if (!dpu_enc || !disp_info) {
764 		DPU_ERROR("invalid param dpu_enc:%d or disp_info:%d\n",
765 					dpu_enc != NULL, disp_info != NULL);
766 		return;
767 	} else if (dpu_enc->num_phys_encs > ARRAY_SIZE(dpu_enc->hw_pp)) {
768 		DPU_ERROR("invalid num phys enc %d/%d\n",
769 				dpu_enc->num_phys_encs,
770 				(int) ARRAY_SIZE(dpu_enc->hw_pp));
771 		return;
772 	}
773 
774 	drm_enc = &dpu_enc->base;
775 	/* this pointers are checked in virt_enable_helper */
776 	priv = drm_enc->dev->dev_private;
777 
778 	dpu_kms = to_dpu_kms(priv->kms);
779 	hw_mdptop = dpu_kms->hw_mdp;
780 	if (!hw_mdptop) {
781 		DPU_ERROR("invalid mdptop\n");
782 		return;
783 	}
784 
785 	if (hw_mdptop->ops.setup_vsync_source) {
786 		for (i = 0; i < dpu_enc->num_phys_encs; i++)
787 			vsync_cfg.ppnumber[i] = dpu_enc->hw_pp[i]->idx;
788 
789 		vsync_cfg.pp_count = dpu_enc->num_phys_encs;
790 		vsync_cfg.frame_rate = drm_mode_vrefresh(&dpu_enc->base.crtc->state->adjusted_mode);
791 
792 		vsync_cfg.vsync_source = disp_info->vsync_source;
793 
794 		hw_mdptop->ops.setup_vsync_source(hw_mdptop, &vsync_cfg);
795 
796 		for (i = 0; i < dpu_enc->num_phys_encs; i++) {
797 			phys_enc = dpu_enc->phys_encs[i];
798 
799 			if (phys_enc->has_intf_te && phys_enc->hw_intf->ops.vsync_sel)
800 				phys_enc->hw_intf->ops.vsync_sel(phys_enc->hw_intf,
801 						vsync_cfg.vsync_source);
802 		}
803 	}
804 }
805 
_dpu_encoder_irq_enable(struct drm_encoder * drm_enc)806 static void _dpu_encoder_irq_enable(struct drm_encoder *drm_enc)
807 {
808 	struct dpu_encoder_virt *dpu_enc;
809 	int i;
810 
811 	if (!drm_enc) {
812 		DPU_ERROR("invalid encoder\n");
813 		return;
814 	}
815 
816 	dpu_enc = to_dpu_encoder_virt(drm_enc);
817 
818 	DPU_DEBUG_ENC(dpu_enc, "\n");
819 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
820 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
821 
822 		phys->ops.irq_enable(phys);
823 	}
824 }
825 
_dpu_encoder_irq_disable(struct drm_encoder * drm_enc)826 static void _dpu_encoder_irq_disable(struct drm_encoder *drm_enc)
827 {
828 	struct dpu_encoder_virt *dpu_enc;
829 	int i;
830 
831 	if (!drm_enc) {
832 		DPU_ERROR("invalid encoder\n");
833 		return;
834 	}
835 
836 	dpu_enc = to_dpu_encoder_virt(drm_enc);
837 
838 	DPU_DEBUG_ENC(dpu_enc, "\n");
839 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
840 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
841 
842 		phys->ops.irq_disable(phys);
843 	}
844 }
845 
_dpu_encoder_resource_enable(struct drm_encoder * drm_enc)846 static void _dpu_encoder_resource_enable(struct drm_encoder *drm_enc)
847 {
848 	struct msm_drm_private *priv;
849 	struct dpu_kms *dpu_kms;
850 	struct dpu_encoder_virt *dpu_enc;
851 
852 	dpu_enc = to_dpu_encoder_virt(drm_enc);
853 	priv = drm_enc->dev->dev_private;
854 	dpu_kms = to_dpu_kms(priv->kms);
855 
856 	trace_dpu_enc_rc_enable(DRMID(drm_enc));
857 
858 	if (!dpu_enc->cur_master) {
859 		DPU_ERROR("encoder master not set\n");
860 		return;
861 	}
862 
863 	/* enable DPU core clks */
864 	pm_runtime_get_sync(&dpu_kms->pdev->dev);
865 
866 	/* enable all the irq */
867 	_dpu_encoder_irq_enable(drm_enc);
868 }
869 
_dpu_encoder_resource_disable(struct drm_encoder * drm_enc)870 static void _dpu_encoder_resource_disable(struct drm_encoder *drm_enc)
871 {
872 	struct msm_drm_private *priv;
873 	struct dpu_kms *dpu_kms;
874 	struct dpu_encoder_virt *dpu_enc;
875 
876 	dpu_enc = to_dpu_encoder_virt(drm_enc);
877 	priv = drm_enc->dev->dev_private;
878 	dpu_kms = to_dpu_kms(priv->kms);
879 
880 	trace_dpu_enc_rc_disable(DRMID(drm_enc));
881 
882 	if (!dpu_enc->cur_master) {
883 		DPU_ERROR("encoder master not set\n");
884 		return;
885 	}
886 
887 	/* disable all the irq */
888 	_dpu_encoder_irq_disable(drm_enc);
889 
890 	/* disable DPU core clks */
891 	pm_runtime_put_sync(&dpu_kms->pdev->dev);
892 }
893 
dpu_encoder_resource_control(struct drm_encoder * drm_enc,u32 sw_event)894 static int dpu_encoder_resource_control(struct drm_encoder *drm_enc,
895 		u32 sw_event)
896 {
897 	struct dpu_encoder_virt *dpu_enc;
898 	struct msm_drm_private *priv;
899 	bool is_vid_mode = false;
900 
901 	if (!drm_enc || !drm_enc->dev || !drm_enc->crtc) {
902 		DPU_ERROR("invalid parameters\n");
903 		return -EINVAL;
904 	}
905 	dpu_enc = to_dpu_encoder_virt(drm_enc);
906 	priv = drm_enc->dev->dev_private;
907 	is_vid_mode = !dpu_enc->disp_info.is_cmd_mode;
908 
909 	/*
910 	 * when idle_pc is not supported, process only KICKOFF, STOP and MODESET
911 	 * events and return early for other events (ie wb display).
912 	 */
913 	if (!dpu_enc->idle_pc_supported &&
914 			(sw_event != DPU_ENC_RC_EVENT_KICKOFF &&
915 			sw_event != DPU_ENC_RC_EVENT_STOP &&
916 			sw_event != DPU_ENC_RC_EVENT_PRE_STOP))
917 		return 0;
918 
919 	trace_dpu_enc_rc(DRMID(drm_enc), sw_event, dpu_enc->idle_pc_supported,
920 			 dpu_enc->rc_state, "begin");
921 
922 	switch (sw_event) {
923 	case DPU_ENC_RC_EVENT_KICKOFF:
924 		/* cancel delayed off work, if any */
925 		if (cancel_delayed_work_sync(&dpu_enc->delayed_off_work))
926 			DPU_DEBUG_ENC(dpu_enc, "sw_event:%d, work cancelled\n",
927 					sw_event);
928 
929 		mutex_lock(&dpu_enc->rc_lock);
930 
931 		/* return if the resource control is already in ON state */
932 		if (dpu_enc->rc_state == DPU_ENC_RC_STATE_ON) {
933 			DRM_DEBUG_ATOMIC("id;%u, sw_event:%d, rc in ON state\n",
934 				      DRMID(drm_enc), sw_event);
935 			mutex_unlock(&dpu_enc->rc_lock);
936 			return 0;
937 		} else if (dpu_enc->rc_state != DPU_ENC_RC_STATE_OFF &&
938 				dpu_enc->rc_state != DPU_ENC_RC_STATE_IDLE) {
939 			DRM_DEBUG_ATOMIC("id;%u, sw_event:%d, rc in state %d\n",
940 				      DRMID(drm_enc), sw_event,
941 				      dpu_enc->rc_state);
942 			mutex_unlock(&dpu_enc->rc_lock);
943 			return -EINVAL;
944 		}
945 
946 		if (is_vid_mode && dpu_enc->rc_state == DPU_ENC_RC_STATE_IDLE)
947 			_dpu_encoder_irq_enable(drm_enc);
948 		else
949 			_dpu_encoder_resource_enable(drm_enc);
950 
951 		dpu_enc->rc_state = DPU_ENC_RC_STATE_ON;
952 
953 		trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
954 				 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
955 				 "kickoff");
956 
957 		mutex_unlock(&dpu_enc->rc_lock);
958 		break;
959 
960 	case DPU_ENC_RC_EVENT_FRAME_DONE:
961 		/*
962 		 * mutex lock is not used as this event happens at interrupt
963 		 * context. And locking is not required as, the other events
964 		 * like KICKOFF and STOP does a wait-for-idle before executing
965 		 * the resource_control
966 		 */
967 		if (dpu_enc->rc_state != DPU_ENC_RC_STATE_ON) {
968 			DRM_DEBUG_KMS("id:%d, sw_event:%d,rc:%d-unexpected\n",
969 				      DRMID(drm_enc), sw_event,
970 				      dpu_enc->rc_state);
971 			return -EINVAL;
972 		}
973 
974 		/*
975 		 * schedule off work item only when there are no
976 		 * frames pending
977 		 */
978 		if (dpu_crtc_frame_pending(drm_enc->crtc) > 1) {
979 			DRM_DEBUG_KMS("id:%d skip schedule work\n",
980 				      DRMID(drm_enc));
981 			return 0;
982 		}
983 
984 		queue_delayed_work(priv->kms->wq, &dpu_enc->delayed_off_work,
985 				   msecs_to_jiffies(dpu_enc->idle_timeout));
986 
987 		trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
988 				 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
989 				 "frame done");
990 		break;
991 
992 	case DPU_ENC_RC_EVENT_PRE_STOP:
993 		/* cancel delayed off work, if any */
994 		if (cancel_delayed_work_sync(&dpu_enc->delayed_off_work))
995 			DPU_DEBUG_ENC(dpu_enc, "sw_event:%d, work cancelled\n",
996 					sw_event);
997 
998 		mutex_lock(&dpu_enc->rc_lock);
999 
1000 		if (is_vid_mode &&
1001 			  dpu_enc->rc_state == DPU_ENC_RC_STATE_IDLE) {
1002 			_dpu_encoder_irq_enable(drm_enc);
1003 		}
1004 		/* skip if is already OFF or IDLE, resources are off already */
1005 		else if (dpu_enc->rc_state == DPU_ENC_RC_STATE_OFF ||
1006 				dpu_enc->rc_state == DPU_ENC_RC_STATE_IDLE) {
1007 			DRM_DEBUG_KMS("id:%u, sw_event:%d, rc in %d state\n",
1008 				      DRMID(drm_enc), sw_event,
1009 				      dpu_enc->rc_state);
1010 			mutex_unlock(&dpu_enc->rc_lock);
1011 			return 0;
1012 		}
1013 
1014 		dpu_enc->rc_state = DPU_ENC_RC_STATE_PRE_OFF;
1015 
1016 		trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
1017 				 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
1018 				 "pre stop");
1019 
1020 		mutex_unlock(&dpu_enc->rc_lock);
1021 		break;
1022 
1023 	case DPU_ENC_RC_EVENT_STOP:
1024 		mutex_lock(&dpu_enc->rc_lock);
1025 
1026 		/* return if the resource control is already in OFF state */
1027 		if (dpu_enc->rc_state == DPU_ENC_RC_STATE_OFF) {
1028 			DRM_DEBUG_KMS("id: %u, sw_event:%d, rc in OFF state\n",
1029 				      DRMID(drm_enc), sw_event);
1030 			mutex_unlock(&dpu_enc->rc_lock);
1031 			return 0;
1032 		} else if (dpu_enc->rc_state == DPU_ENC_RC_STATE_ON) {
1033 			DRM_ERROR("id: %u, sw_event:%d, rc in state %d\n",
1034 				  DRMID(drm_enc), sw_event, dpu_enc->rc_state);
1035 			mutex_unlock(&dpu_enc->rc_lock);
1036 			return -EINVAL;
1037 		}
1038 
1039 		/**
1040 		 * expect to arrive here only if in either idle state or pre-off
1041 		 * and in IDLE state the resources are already disabled
1042 		 */
1043 		if (dpu_enc->rc_state == DPU_ENC_RC_STATE_PRE_OFF)
1044 			_dpu_encoder_resource_disable(drm_enc);
1045 
1046 		dpu_enc->rc_state = DPU_ENC_RC_STATE_OFF;
1047 
1048 		trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
1049 				 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
1050 				 "stop");
1051 
1052 		mutex_unlock(&dpu_enc->rc_lock);
1053 		break;
1054 
1055 	case DPU_ENC_RC_EVENT_ENTER_IDLE:
1056 		mutex_lock(&dpu_enc->rc_lock);
1057 
1058 		if (dpu_enc->rc_state != DPU_ENC_RC_STATE_ON) {
1059 			DRM_ERROR("id: %u, sw_event:%d, rc:%d !ON state\n",
1060 				  DRMID(drm_enc), sw_event, dpu_enc->rc_state);
1061 			mutex_unlock(&dpu_enc->rc_lock);
1062 			return 0;
1063 		}
1064 
1065 		/*
1066 		 * if we are in ON but a frame was just kicked off,
1067 		 * ignore the IDLE event, it's probably a stale timer event
1068 		 */
1069 		if (dpu_enc->frame_busy_mask[0]) {
1070 			DRM_ERROR("id:%u, sw_event:%d, rc:%d frame pending\n",
1071 				  DRMID(drm_enc), sw_event, dpu_enc->rc_state);
1072 			mutex_unlock(&dpu_enc->rc_lock);
1073 			return 0;
1074 		}
1075 
1076 		if (is_vid_mode)
1077 			_dpu_encoder_irq_disable(drm_enc);
1078 		else
1079 			_dpu_encoder_resource_disable(drm_enc);
1080 
1081 		dpu_enc->rc_state = DPU_ENC_RC_STATE_IDLE;
1082 
1083 		trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
1084 				 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
1085 				 "idle");
1086 
1087 		mutex_unlock(&dpu_enc->rc_lock);
1088 		break;
1089 
1090 	default:
1091 		DRM_ERROR("id:%u, unexpected sw_event: %d\n", DRMID(drm_enc),
1092 			  sw_event);
1093 		trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
1094 				 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
1095 				 "error");
1096 		break;
1097 	}
1098 
1099 	trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
1100 			 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
1101 			 "end");
1102 	return 0;
1103 }
1104 
1105 /**
1106  * dpu_encoder_prepare_wb_job - prepare writeback job for the encoder.
1107  * @drm_enc:    Pointer to previously created drm encoder structure
1108  * @job:        Pointer to the current drm writeback job
1109  */
dpu_encoder_prepare_wb_job(struct drm_encoder * drm_enc,struct drm_writeback_job * job)1110 void dpu_encoder_prepare_wb_job(struct drm_encoder *drm_enc,
1111 		struct drm_writeback_job *job)
1112 {
1113 	struct dpu_encoder_virt *dpu_enc;
1114 	int i;
1115 
1116 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1117 
1118 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1119 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1120 
1121 		if (phys->ops.prepare_wb_job)
1122 			phys->ops.prepare_wb_job(phys, job);
1123 
1124 	}
1125 }
1126 
1127 /**
1128  * dpu_encoder_cleanup_wb_job - cleanup writeback job for the encoder.
1129  * @drm_enc:    Pointer to previously created drm encoder structure
1130  * @job:        Pointer to the current drm writeback job
1131  */
dpu_encoder_cleanup_wb_job(struct drm_encoder * drm_enc,struct drm_writeback_job * job)1132 void dpu_encoder_cleanup_wb_job(struct drm_encoder *drm_enc,
1133 		struct drm_writeback_job *job)
1134 {
1135 	struct dpu_encoder_virt *dpu_enc;
1136 	int i;
1137 
1138 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1139 
1140 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1141 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1142 
1143 		if (phys->ops.cleanup_wb_job)
1144 			phys->ops.cleanup_wb_job(phys, job);
1145 
1146 	}
1147 }
1148 
dpu_encoder_virt_atomic_mode_set(struct drm_encoder * drm_enc,struct drm_crtc_state * crtc_state,struct drm_connector_state * conn_state)1149 static void dpu_encoder_virt_atomic_mode_set(struct drm_encoder *drm_enc,
1150 					     struct drm_crtc_state *crtc_state,
1151 					     struct drm_connector_state *conn_state)
1152 {
1153 	struct dpu_encoder_virt *dpu_enc;
1154 	struct msm_drm_private *priv;
1155 	struct dpu_kms *dpu_kms;
1156 	struct dpu_global_state *global_state;
1157 	struct dpu_hw_blk *hw_pp[MAX_CHANNELS_PER_ENC];
1158 	struct dpu_hw_blk *hw_ctl[MAX_CHANNELS_PER_ENC];
1159 	struct dpu_hw_blk *hw_dsc[MAX_CHANNELS_PER_ENC];
1160 	struct dpu_hw_blk *hw_cwb[MAX_CHANNELS_PER_ENC];
1161 	int num_ctl, num_pp, num_dsc;
1162 	int num_cwb = 0;
1163 	bool is_cwb_encoder;
1164 	unsigned int dsc_mask = 0;
1165 	unsigned int cwb_mask = 0;
1166 	int i;
1167 
1168 	if (!drm_enc) {
1169 		DPU_ERROR("invalid encoder\n");
1170 		return;
1171 	}
1172 
1173 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1174 	DPU_DEBUG_ENC(dpu_enc, "\n");
1175 
1176 	priv = drm_enc->dev->dev_private;
1177 	dpu_kms = to_dpu_kms(priv->kms);
1178 	is_cwb_encoder = drm_crtc_in_clone_mode(crtc_state) &&
1179 			dpu_enc->disp_info.intf_type == INTF_WB;
1180 
1181 	global_state = dpu_kms_get_existing_global_state(dpu_kms);
1182 	if (IS_ERR_OR_NULL(global_state)) {
1183 		DPU_ERROR("Failed to get global state");
1184 		return;
1185 	}
1186 
1187 	trace_dpu_enc_mode_set(DRMID(drm_enc));
1188 
1189 	/* Query resource that have been reserved in atomic check step. */
1190 	if (is_cwb_encoder) {
1191 		num_pp = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
1192 						       drm_enc->crtc,
1193 						       DPU_HW_BLK_DCWB_PINGPONG,
1194 						       hw_pp, ARRAY_SIZE(hw_pp));
1195 		num_cwb = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
1196 						       drm_enc->crtc,
1197 						       DPU_HW_BLK_CWB,
1198 						       hw_cwb, ARRAY_SIZE(hw_cwb));
1199 	} else {
1200 		num_pp = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
1201 						       drm_enc->crtc,
1202 						       DPU_HW_BLK_PINGPONG, hw_pp,
1203 						       ARRAY_SIZE(hw_pp));
1204 	}
1205 
1206 	for (i = 0; i < num_cwb; i++) {
1207 		dpu_enc->hw_cwb[i] = to_dpu_hw_cwb(hw_cwb[i]);
1208 		cwb_mask |= BIT(dpu_enc->hw_cwb[i]->idx - CWB_0);
1209 	}
1210 
1211 	dpu_enc->cwb_mask = cwb_mask;
1212 
1213 	num_ctl = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
1214 		drm_enc->crtc, DPU_HW_BLK_CTL, hw_ctl, ARRAY_SIZE(hw_ctl));
1215 
1216 	for (i = 0; i < MAX_CHANNELS_PER_ENC; i++)
1217 		dpu_enc->hw_pp[i] = i < num_pp ? to_dpu_hw_pingpong(hw_pp[i])
1218 						: NULL;
1219 
1220 	num_dsc = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
1221 						drm_enc->crtc, DPU_HW_BLK_DSC,
1222 						hw_dsc, ARRAY_SIZE(hw_dsc));
1223 	for (i = 0; i < num_dsc; i++) {
1224 		dpu_enc->hw_dsc[i] = to_dpu_hw_dsc(hw_dsc[i]);
1225 		dsc_mask |= BIT(dpu_enc->hw_dsc[i]->idx - DSC_0);
1226 	}
1227 
1228 	dpu_enc->dsc_mask = dsc_mask;
1229 
1230 	if ((dpu_enc->disp_info.intf_type == INTF_WB && conn_state->writeback_job) ||
1231 	    dpu_enc->disp_info.intf_type == INTF_DP) {
1232 		struct dpu_hw_blk *hw_cdm = NULL;
1233 
1234 		dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
1235 					      drm_enc->crtc, DPU_HW_BLK_CDM,
1236 					      &hw_cdm, 1);
1237 		dpu_enc->cur_master->hw_cdm = hw_cdm ? to_dpu_hw_cdm(hw_cdm) : NULL;
1238 	}
1239 
1240 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1241 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1242 
1243 		phys->hw_pp = dpu_enc->hw_pp[i];
1244 		if (!phys->hw_pp) {
1245 			DPU_ERROR_ENC(dpu_enc,
1246 				"no pp block assigned at idx: %d\n", i);
1247 			return;
1248 		}
1249 
1250 		/* Use first (and only) CTL if active CTLs are supported */
1251 		if (num_ctl == 1)
1252 			phys->hw_ctl = to_dpu_hw_ctl(hw_ctl[0]);
1253 		else
1254 			phys->hw_ctl = i < num_ctl ? to_dpu_hw_ctl(hw_ctl[i]) : NULL;
1255 		if (!phys->hw_ctl) {
1256 			DPU_ERROR_ENC(dpu_enc,
1257 				"no ctl block assigned at idx: %d\n", i);
1258 			return;
1259 		}
1260 
1261 		phys->cached_mode = crtc_state->adjusted_mode;
1262 		if (phys->ops.atomic_mode_set)
1263 			phys->ops.atomic_mode_set(phys, crtc_state, conn_state);
1264 	}
1265 }
1266 
_dpu_encoder_virt_enable_helper(struct drm_encoder * drm_enc)1267 static void _dpu_encoder_virt_enable_helper(struct drm_encoder *drm_enc)
1268 {
1269 	struct dpu_encoder_virt *dpu_enc = NULL;
1270 	int i;
1271 
1272 	if (!drm_enc || !drm_enc->dev) {
1273 		DPU_ERROR("invalid parameters\n");
1274 		return;
1275 	}
1276 
1277 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1278 	if (!dpu_enc || !dpu_enc->cur_master) {
1279 		DPU_ERROR("invalid dpu encoder/master\n");
1280 		return;
1281 	}
1282 
1283 
1284 	if (dpu_enc->disp_info.intf_type == INTF_DP &&
1285 		dpu_enc->cur_master->hw_mdptop &&
1286 		dpu_enc->cur_master->hw_mdptop->ops.intf_audio_select)
1287 		dpu_enc->cur_master->hw_mdptop->ops.intf_audio_select(
1288 			dpu_enc->cur_master->hw_mdptop);
1289 
1290 	if (dpu_enc->disp_info.is_cmd_mode)
1291 		_dpu_encoder_update_vsync_source(dpu_enc, &dpu_enc->disp_info);
1292 
1293 	if (dpu_enc->disp_info.intf_type == INTF_DSI &&
1294 			!WARN_ON(dpu_enc->num_phys_encs == 0)) {
1295 		unsigned bpc = dpu_enc->connector->display_info.bpc;
1296 		for (i = 0; i < MAX_CHANNELS_PER_ENC; i++) {
1297 			if (!dpu_enc->hw_pp[i])
1298 				continue;
1299 			_dpu_encoder_setup_dither(dpu_enc->hw_pp[i], bpc);
1300 		}
1301 	}
1302 }
1303 
1304 /**
1305  * dpu_encoder_virt_runtime_resume - pm runtime resume the encoder configs
1306  * @drm_enc:	encoder pointer
1307  */
dpu_encoder_virt_runtime_resume(struct drm_encoder * drm_enc)1308 void dpu_encoder_virt_runtime_resume(struct drm_encoder *drm_enc)
1309 {
1310 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1311 
1312 	mutex_lock(&dpu_enc->enc_lock);
1313 
1314 	if (!dpu_enc->enabled)
1315 		goto out;
1316 
1317 	if (dpu_enc->cur_slave && dpu_enc->cur_slave->ops.restore)
1318 		dpu_enc->cur_slave->ops.restore(dpu_enc->cur_slave);
1319 	if (dpu_enc->cur_master && dpu_enc->cur_master->ops.restore)
1320 		dpu_enc->cur_master->ops.restore(dpu_enc->cur_master);
1321 
1322 	_dpu_encoder_virt_enable_helper(drm_enc);
1323 
1324 out:
1325 	mutex_unlock(&dpu_enc->enc_lock);
1326 }
1327 
dpu_encoder_virt_atomic_enable(struct drm_encoder * drm_enc,struct drm_atomic_state * state)1328 static void dpu_encoder_virt_atomic_enable(struct drm_encoder *drm_enc,
1329 					struct drm_atomic_state *state)
1330 {
1331 	struct dpu_encoder_virt *dpu_enc = NULL;
1332 	int ret = 0;
1333 	struct drm_display_mode *cur_mode = NULL;
1334 
1335 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1336 	dpu_enc->dsc = dpu_encoder_get_dsc_config(drm_enc);
1337 
1338 	atomic_set(&dpu_enc->frame_done_timeout_cnt, 0);
1339 
1340 	mutex_lock(&dpu_enc->enc_lock);
1341 
1342 	dpu_enc->commit_done_timedout = false;
1343 
1344 	dpu_enc->connector = drm_atomic_get_new_connector_for_encoder(state, drm_enc);
1345 
1346 	cur_mode = &dpu_enc->base.crtc->state->adjusted_mode;
1347 
1348 	dpu_enc->wide_bus_en = dpu_encoder_is_widebus_enabled(drm_enc);
1349 
1350 	trace_dpu_enc_enable(DRMID(drm_enc), cur_mode->hdisplay,
1351 			     cur_mode->vdisplay);
1352 
1353 	/* always enable slave encoder before master */
1354 	if (dpu_enc->cur_slave && dpu_enc->cur_slave->ops.enable)
1355 		dpu_enc->cur_slave->ops.enable(dpu_enc->cur_slave);
1356 
1357 	if (dpu_enc->cur_master && dpu_enc->cur_master->ops.enable)
1358 		dpu_enc->cur_master->ops.enable(dpu_enc->cur_master);
1359 
1360 	ret = dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_KICKOFF);
1361 	if (ret) {
1362 		DPU_ERROR_ENC(dpu_enc, "dpu resource control failed: %d\n",
1363 				ret);
1364 		goto out;
1365 	}
1366 
1367 	_dpu_encoder_virt_enable_helper(drm_enc);
1368 
1369 	dpu_enc->enabled = true;
1370 
1371 out:
1372 	mutex_unlock(&dpu_enc->enc_lock);
1373 }
1374 
dpu_encoder_virt_atomic_disable(struct drm_encoder * drm_enc,struct drm_atomic_state * state)1375 static void dpu_encoder_virt_atomic_disable(struct drm_encoder *drm_enc,
1376 					struct drm_atomic_state *state)
1377 {
1378 	struct dpu_encoder_virt *dpu_enc = NULL;
1379 	struct drm_crtc *crtc;
1380 	struct drm_crtc_state *old_state = NULL;
1381 	int i = 0;
1382 
1383 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1384 	DPU_DEBUG_ENC(dpu_enc, "\n");
1385 
1386 	crtc = drm_atomic_get_old_crtc_for_encoder(state, drm_enc);
1387 	if (crtc)
1388 		old_state = drm_atomic_get_old_crtc_state(state, crtc);
1389 
1390 	/*
1391 	 * The encoder is already disabled if self refresh mode was set earlier,
1392 	 * in the old_state for the corresponding crtc.
1393 	 */
1394 	if (old_state && old_state->self_refresh_active)
1395 		return;
1396 
1397 	mutex_lock(&dpu_enc->enc_lock);
1398 	dpu_enc->enabled = false;
1399 
1400 	trace_dpu_enc_disable(DRMID(drm_enc));
1401 
1402 	/* wait for idle */
1403 	dpu_encoder_wait_for_tx_complete(drm_enc);
1404 
1405 	dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_PRE_STOP);
1406 
1407 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1408 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1409 
1410 		if (phys->ops.disable)
1411 			phys->ops.disable(phys);
1412 	}
1413 
1414 
1415 	/* after phys waits for frame-done, should be no more frames pending */
1416 	if (atomic_xchg(&dpu_enc->frame_done_timeout_ms, 0)) {
1417 		DPU_ERROR("enc%d timeout pending\n", drm_enc->base.id);
1418 		timer_delete_sync(&dpu_enc->frame_done_timer);
1419 	}
1420 
1421 	dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_STOP);
1422 
1423 	dpu_enc->connector = NULL;
1424 
1425 	DPU_DEBUG_ENC(dpu_enc, "encoder disabled\n");
1426 
1427 	mutex_unlock(&dpu_enc->enc_lock);
1428 }
1429 
dpu_encoder_get_intf(const struct dpu_mdss_cfg * catalog,struct dpu_rm * dpu_rm,enum dpu_intf_type type,u32 controller_id)1430 static struct dpu_hw_intf *dpu_encoder_get_intf(const struct dpu_mdss_cfg *catalog,
1431 		struct dpu_rm *dpu_rm,
1432 		enum dpu_intf_type type, u32 controller_id)
1433 {
1434 	int i = 0;
1435 
1436 	if (type == INTF_WB)
1437 		return NULL;
1438 
1439 	for (i = 0; i < catalog->intf_count; i++) {
1440 		if (catalog->intf[i].type == type
1441 		    && catalog->intf[i].controller_id == controller_id) {
1442 			return dpu_rm_get_intf(dpu_rm, catalog->intf[i].id);
1443 		}
1444 	}
1445 
1446 	return NULL;
1447 }
1448 
1449 /**
1450  * dpu_encoder_vblank_callback - Notify virtual encoder of vblank IRQ reception
1451  * @drm_enc:    Pointer to drm encoder structure
1452  * @phy_enc:	Pointer to physical encoder
1453  * Note: This is called from IRQ handler context.
1454  */
dpu_encoder_vblank_callback(struct drm_encoder * drm_enc,struct dpu_encoder_phys * phy_enc)1455 void dpu_encoder_vblank_callback(struct drm_encoder *drm_enc,
1456 		struct dpu_encoder_phys *phy_enc)
1457 {
1458 	struct dpu_encoder_virt *dpu_enc = NULL;
1459 	unsigned long lock_flags;
1460 
1461 	if (!drm_enc || !phy_enc)
1462 		return;
1463 
1464 	DPU_ATRACE_BEGIN("encoder_vblank_callback");
1465 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1466 
1467 	atomic_inc(&phy_enc->vsync_cnt);
1468 
1469 	spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1470 	if (dpu_enc->crtc)
1471 		dpu_crtc_vblank_callback(dpu_enc->crtc);
1472 	spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1473 
1474 	DPU_ATRACE_END("encoder_vblank_callback");
1475 }
1476 
1477 /**
1478  * dpu_encoder_underrun_callback - Notify virtual encoder of underrun IRQ reception
1479  * @drm_enc:    Pointer to drm encoder structure
1480  * @phy_enc:	Pointer to physical encoder
1481  * Note: This is called from IRQ handler context.
1482  */
dpu_encoder_underrun_callback(struct drm_encoder * drm_enc,struct dpu_encoder_phys * phy_enc)1483 void dpu_encoder_underrun_callback(struct drm_encoder *drm_enc,
1484 		struct dpu_encoder_phys *phy_enc)
1485 {
1486 	if (!phy_enc)
1487 		return;
1488 
1489 	DPU_ATRACE_BEGIN("encoder_underrun_callback");
1490 	atomic_inc(&phy_enc->underrun_cnt);
1491 
1492 	/* trigger dump only on the first underrun */
1493 	if (atomic_read(&phy_enc->underrun_cnt) == 1)
1494 		msm_disp_snapshot_state(drm_enc->dev);
1495 
1496 	trace_dpu_enc_underrun_cb(DRMID(drm_enc),
1497 				  atomic_read(&phy_enc->underrun_cnt));
1498 	DPU_ATRACE_END("encoder_underrun_callback");
1499 }
1500 
1501 /**
1502  * dpu_encoder_assign_crtc - Link the encoder to the crtc it's assigned to
1503  * @drm_enc:	encoder pointer
1504  * @crtc:	crtc pointer
1505  */
dpu_encoder_assign_crtc(struct drm_encoder * drm_enc,struct drm_crtc * crtc)1506 void dpu_encoder_assign_crtc(struct drm_encoder *drm_enc, struct drm_crtc *crtc)
1507 {
1508 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1509 	unsigned long lock_flags;
1510 
1511 	spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1512 	/* crtc should always be cleared before re-assigning */
1513 	WARN_ON(crtc && dpu_enc->crtc);
1514 	dpu_enc->crtc = crtc;
1515 	spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1516 }
1517 
1518 /**
1519  * dpu_encoder_toggle_vblank_for_crtc - Toggles vblank interrupts on or off if
1520  *	the encoder is assigned to the given crtc
1521  * @drm_enc:	encoder pointer
1522  * @crtc:	crtc pointer
1523  * @enable:	true if vblank should be enabled
1524  */
dpu_encoder_toggle_vblank_for_crtc(struct drm_encoder * drm_enc,struct drm_crtc * crtc,bool enable)1525 void dpu_encoder_toggle_vblank_for_crtc(struct drm_encoder *drm_enc,
1526 					struct drm_crtc *crtc, bool enable)
1527 {
1528 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1529 	unsigned long lock_flags;
1530 	int i;
1531 
1532 	trace_dpu_enc_vblank_cb(DRMID(drm_enc), enable);
1533 
1534 	spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1535 	if (dpu_enc->crtc != crtc) {
1536 		spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1537 		return;
1538 	}
1539 	spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1540 
1541 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1542 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1543 
1544 		if (phys->ops.control_vblank_irq)
1545 			phys->ops.control_vblank_irq(phys, enable);
1546 	}
1547 }
1548 
1549 /**
1550  * dpu_encoder_frame_done_callback - Notify virtual encoder that this phys
1551  *     encoder completes last request frame
1552  * @drm_enc:    Pointer to drm encoder structure
1553  * @ready_phys:	Pointer to physical encoder
1554  * @event:	Event to process
1555  */
dpu_encoder_frame_done_callback(struct drm_encoder * drm_enc,struct dpu_encoder_phys * ready_phys,u32 event)1556 void dpu_encoder_frame_done_callback(
1557 		struct drm_encoder *drm_enc,
1558 		struct dpu_encoder_phys *ready_phys, u32 event)
1559 {
1560 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1561 	unsigned int i;
1562 
1563 	if (event & (DPU_ENCODER_FRAME_EVENT_DONE
1564 			| DPU_ENCODER_FRAME_EVENT_ERROR
1565 			| DPU_ENCODER_FRAME_EVENT_PANEL_DEAD)) {
1566 
1567 		if (!dpu_enc->frame_busy_mask[0]) {
1568 			/**
1569 			 * suppress frame_done without waiter,
1570 			 * likely autorefresh
1571 			 */
1572 			trace_dpu_enc_frame_done_cb_not_busy(DRMID(drm_enc), event,
1573 					dpu_encoder_helper_get_intf_type(ready_phys->intf_mode),
1574 					ready_phys->hw_intf ? ready_phys->hw_intf->idx : -1,
1575 					ready_phys->hw_wb ? ready_phys->hw_wb->idx : -1);
1576 			return;
1577 		}
1578 
1579 		/* One of the physical encoders has become idle */
1580 		for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1581 			if (dpu_enc->phys_encs[i] == ready_phys) {
1582 				trace_dpu_enc_frame_done_cb(DRMID(drm_enc), i,
1583 						dpu_enc->frame_busy_mask[0]);
1584 				clear_bit(i, dpu_enc->frame_busy_mask);
1585 			}
1586 		}
1587 
1588 		if (!dpu_enc->frame_busy_mask[0]) {
1589 			atomic_set(&dpu_enc->frame_done_timeout_ms, 0);
1590 			timer_delete(&dpu_enc->frame_done_timer);
1591 
1592 			dpu_encoder_resource_control(drm_enc,
1593 					DPU_ENC_RC_EVENT_FRAME_DONE);
1594 
1595 			if (dpu_enc->crtc)
1596 				dpu_crtc_frame_event_cb(dpu_enc->crtc, event);
1597 		}
1598 	} else {
1599 		if (dpu_enc->crtc)
1600 			dpu_crtc_frame_event_cb(dpu_enc->crtc, event);
1601 	}
1602 }
1603 
dpu_encoder_off_work(struct work_struct * work)1604 static void dpu_encoder_off_work(struct work_struct *work)
1605 {
1606 	struct dpu_encoder_virt *dpu_enc = container_of(work,
1607 			struct dpu_encoder_virt, delayed_off_work.work);
1608 
1609 	dpu_encoder_resource_control(&dpu_enc->base,
1610 						DPU_ENC_RC_EVENT_ENTER_IDLE);
1611 
1612 	dpu_encoder_frame_done_callback(&dpu_enc->base, NULL,
1613 				DPU_ENCODER_FRAME_EVENT_IDLE);
1614 }
1615 
1616 /**
1617  * _dpu_encoder_trigger_flush - trigger flush for a physical encoder
1618  * @drm_enc: Pointer to drm encoder structure
1619  * @phys: Pointer to physical encoder structure
1620  * @extra_flush_bits: Additional bit mask to include in flush trigger
1621  */
_dpu_encoder_trigger_flush(struct drm_encoder * drm_enc,struct dpu_encoder_phys * phys,uint32_t extra_flush_bits)1622 static void _dpu_encoder_trigger_flush(struct drm_encoder *drm_enc,
1623 		struct dpu_encoder_phys *phys, uint32_t extra_flush_bits)
1624 {
1625 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1626 	struct dpu_hw_ctl *ctl;
1627 	int pending_kickoff_cnt;
1628 	u32 ret = UINT_MAX;
1629 
1630 	if (!phys->hw_pp) {
1631 		DPU_ERROR("invalid pingpong hw\n");
1632 		return;
1633 	}
1634 
1635 	ctl = phys->hw_ctl;
1636 	if (!ctl->ops.trigger_flush) {
1637 		DPU_ERROR("missing trigger cb\n");
1638 		return;
1639 	}
1640 
1641 	pending_kickoff_cnt = dpu_encoder_phys_inc_pending(phys);
1642 
1643 	/* Return early if encoder is writeback and in clone mode */
1644 	if (drm_enc->encoder_type == DRM_MODE_ENCODER_VIRTUAL &&
1645 	    dpu_enc->cwb_mask) {
1646 		DPU_DEBUG("encoder %d skip flush for concurrent writeback encoder\n",
1647 				DRMID(drm_enc));
1648 		return;
1649 	}
1650 
1651 
1652 	if (extra_flush_bits && ctl->ops.update_pending_flush)
1653 		ctl->ops.update_pending_flush(ctl, extra_flush_bits);
1654 
1655 	ctl->ops.trigger_flush(ctl);
1656 
1657 	if (ctl->ops.get_pending_flush)
1658 		ret = ctl->ops.get_pending_flush(ctl);
1659 
1660 	trace_dpu_enc_trigger_flush(DRMID(drm_enc),
1661 			dpu_encoder_helper_get_intf_type(phys->intf_mode),
1662 			phys->hw_intf ? phys->hw_intf->idx : -1,
1663 			phys->hw_wb ? phys->hw_wb->idx : -1,
1664 			pending_kickoff_cnt, ctl->idx,
1665 			extra_flush_bits, ret);
1666 }
1667 
1668 /**
1669  * _dpu_encoder_trigger_start - trigger start for a physical encoder
1670  * @phys: Pointer to physical encoder structure
1671  */
_dpu_encoder_trigger_start(struct dpu_encoder_phys * phys)1672 static void _dpu_encoder_trigger_start(struct dpu_encoder_phys *phys)
1673 {
1674 	struct dpu_encoder_virt *dpu_enc;
1675 
1676 	if (!phys) {
1677 		DPU_ERROR("invalid argument(s)\n");
1678 		return;
1679 	}
1680 
1681 	if (!phys->hw_pp) {
1682 		DPU_ERROR("invalid pingpong hw\n");
1683 		return;
1684 	}
1685 
1686 	dpu_enc = to_dpu_encoder_virt(phys->parent);
1687 
1688 	if (phys->parent->encoder_type == DRM_MODE_ENCODER_VIRTUAL &&
1689 	    dpu_enc->cwb_mask) {
1690 		DPU_DEBUG("encoder %d CWB enabled, skipping\n", DRMID(phys->parent));
1691 		return;
1692 	}
1693 
1694 	if (phys->ops.trigger_start && phys->enable_state != DPU_ENC_DISABLED)
1695 		phys->ops.trigger_start(phys);
1696 }
1697 
1698 /**
1699  * dpu_encoder_helper_trigger_start - control start helper function
1700  *	This helper function may be optionally specified by physical
1701  *	encoders if they require ctl_start triggering.
1702  * @phys_enc: Pointer to physical encoder structure
1703  */
dpu_encoder_helper_trigger_start(struct dpu_encoder_phys * phys_enc)1704 void dpu_encoder_helper_trigger_start(struct dpu_encoder_phys *phys_enc)
1705 {
1706 	struct dpu_hw_ctl *ctl;
1707 
1708 	ctl = phys_enc->hw_ctl;
1709 	if (ctl->ops.trigger_start) {
1710 		ctl->ops.trigger_start(ctl);
1711 		trace_dpu_enc_trigger_start(DRMID(phys_enc->parent), ctl->idx);
1712 	}
1713 }
1714 
dpu_encoder_helper_wait_event_timeout(int32_t drm_id,unsigned int irq_idx,struct dpu_encoder_wait_info * info)1715 static int dpu_encoder_helper_wait_event_timeout(
1716 		int32_t drm_id,
1717 		unsigned int irq_idx,
1718 		struct dpu_encoder_wait_info *info)
1719 {
1720 	int rc = 0;
1721 	s64 expected_time = ktime_to_ms(ktime_get()) + info->timeout_ms;
1722 	s64 jiffies = msecs_to_jiffies(info->timeout_ms);
1723 	s64 time;
1724 
1725 	do {
1726 		rc = wait_event_timeout(*(info->wq),
1727 				atomic_read(info->atomic_cnt) == 0, jiffies);
1728 		time = ktime_to_ms(ktime_get());
1729 
1730 		trace_dpu_enc_wait_event_timeout(drm_id,
1731 						 DPU_IRQ_REG(irq_idx), DPU_IRQ_BIT(irq_idx),
1732 						 rc, time,
1733 						 expected_time,
1734 						 atomic_read(info->atomic_cnt));
1735 	/* If we timed out, counter is valid and time is less, wait again */
1736 	} while (atomic_read(info->atomic_cnt) && (rc == 0) &&
1737 			(time < expected_time));
1738 
1739 	return rc;
1740 }
1741 
dpu_encoder_helper_hw_reset(struct dpu_encoder_phys * phys_enc)1742 static void dpu_encoder_helper_hw_reset(struct dpu_encoder_phys *phys_enc)
1743 {
1744 	struct dpu_encoder_virt *dpu_enc;
1745 	struct dpu_hw_ctl *ctl;
1746 	int rc;
1747 	struct drm_encoder *drm_enc;
1748 
1749 	dpu_enc = to_dpu_encoder_virt(phys_enc->parent);
1750 	ctl = phys_enc->hw_ctl;
1751 	drm_enc = phys_enc->parent;
1752 
1753 	if (!ctl->ops.reset)
1754 		return;
1755 
1756 	DRM_DEBUG_KMS("id:%u ctl %d reset\n", DRMID(drm_enc),
1757 		      ctl->idx);
1758 
1759 	rc = ctl->ops.reset(ctl);
1760 	if (rc) {
1761 		DPU_ERROR_ENC(dpu_enc, "ctl %d reset failure\n",  ctl->idx);
1762 		msm_disp_snapshot_state(drm_enc->dev);
1763 	}
1764 
1765 	phys_enc->enable_state = DPU_ENC_ENABLED;
1766 }
1767 
1768 /**
1769  * _dpu_encoder_kickoff_phys - handle physical encoder kickoff
1770  *	Iterate through the physical encoders and perform consolidated flush
1771  *	and/or control start triggering as needed. This is done in the virtual
1772  *	encoder rather than the individual physical ones in order to handle
1773  *	use cases that require visibility into multiple physical encoders at
1774  *	a time.
1775  * @dpu_enc: Pointer to virtual encoder structure
1776  */
_dpu_encoder_kickoff_phys(struct dpu_encoder_virt * dpu_enc)1777 static void _dpu_encoder_kickoff_phys(struct dpu_encoder_virt *dpu_enc)
1778 {
1779 	struct dpu_hw_ctl *ctl;
1780 	uint32_t i, pending_flush;
1781 	unsigned long lock_flags;
1782 
1783 	pending_flush = 0x0;
1784 
1785 	/* update pending counts and trigger kickoff ctl flush atomically */
1786 	spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1787 
1788 	/* don't perform flush/start operations for slave encoders */
1789 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1790 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1791 
1792 		if (phys->enable_state == DPU_ENC_DISABLED)
1793 			continue;
1794 
1795 		ctl = phys->hw_ctl;
1796 
1797 		/*
1798 		 * This is cleared in frame_done worker, which isn't invoked
1799 		 * for async commits. So don't set this for async, since it'll
1800 		 * roll over to the next commit.
1801 		 */
1802 		if (phys->split_role != ENC_ROLE_SLAVE)
1803 			set_bit(i, dpu_enc->frame_busy_mask);
1804 
1805 		if (!phys->ops.needs_single_flush ||
1806 				!phys->ops.needs_single_flush(phys))
1807 			_dpu_encoder_trigger_flush(&dpu_enc->base, phys, 0x0);
1808 		else if (ctl->ops.get_pending_flush)
1809 			pending_flush |= ctl->ops.get_pending_flush(ctl);
1810 	}
1811 
1812 	/* for split flush, combine pending flush masks and send to master */
1813 	if (pending_flush && dpu_enc->cur_master) {
1814 		_dpu_encoder_trigger_flush(
1815 				&dpu_enc->base,
1816 				dpu_enc->cur_master,
1817 				pending_flush);
1818 	}
1819 
1820 	_dpu_encoder_trigger_start(dpu_enc->cur_master);
1821 
1822 	spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1823 }
1824 
1825 /**
1826  * dpu_encoder_trigger_kickoff_pending - Clear the flush bits from previous
1827  *        kickoff and trigger the ctl prepare progress for command mode display.
1828  * @drm_enc:	encoder pointer
1829  */
dpu_encoder_trigger_kickoff_pending(struct drm_encoder * drm_enc)1830 void dpu_encoder_trigger_kickoff_pending(struct drm_encoder *drm_enc)
1831 {
1832 	struct dpu_encoder_virt *dpu_enc;
1833 	struct dpu_encoder_phys *phys;
1834 	unsigned int i;
1835 	struct dpu_hw_ctl *ctl;
1836 	struct msm_display_info *disp_info;
1837 
1838 	if (!drm_enc) {
1839 		DPU_ERROR("invalid encoder\n");
1840 		return;
1841 	}
1842 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1843 	disp_info = &dpu_enc->disp_info;
1844 
1845 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1846 		phys = dpu_enc->phys_encs[i];
1847 
1848 		ctl = phys->hw_ctl;
1849 		ctl->ops.clear_pending_flush(ctl);
1850 
1851 		/* update only for command mode primary ctl */
1852 		if ((phys == dpu_enc->cur_master) &&
1853 		    disp_info->is_cmd_mode
1854 		    && ctl->ops.trigger_pending)
1855 			ctl->ops.trigger_pending(ctl);
1856 	}
1857 }
1858 
_dpu_encoder_calculate_linetime(struct dpu_encoder_virt * dpu_enc,struct drm_display_mode * mode)1859 static u32 _dpu_encoder_calculate_linetime(struct dpu_encoder_virt *dpu_enc,
1860 		struct drm_display_mode *mode)
1861 {
1862 	u64 pclk_rate;
1863 	u32 pclk_period;
1864 	u32 line_time;
1865 
1866 	/*
1867 	 * For linetime calculation, only operate on master encoder.
1868 	 */
1869 	if (!dpu_enc->cur_master)
1870 		return 0;
1871 
1872 	if (!dpu_enc->cur_master->ops.get_line_count) {
1873 		DPU_ERROR("get_line_count function not defined\n");
1874 		return 0;
1875 	}
1876 
1877 	pclk_rate = mode->clock; /* pixel clock in kHz */
1878 	if (pclk_rate == 0) {
1879 		DPU_ERROR("pclk is 0, cannot calculate line time\n");
1880 		return 0;
1881 	}
1882 
1883 	pclk_period = DIV_ROUND_UP_ULL(1000000000ull, pclk_rate);
1884 	if (pclk_period == 0) {
1885 		DPU_ERROR("pclk period is 0\n");
1886 		return 0;
1887 	}
1888 
1889 	/*
1890 	 * Line time calculation based on Pixel clock and HTOTAL.
1891 	 * Final unit is in ns.
1892 	 */
1893 	line_time = (pclk_period * mode->htotal) / 1000;
1894 	if (line_time == 0) {
1895 		DPU_ERROR("line time calculation is 0\n");
1896 		return 0;
1897 	}
1898 
1899 	DPU_DEBUG_ENC(dpu_enc,
1900 			"clk_rate=%lldkHz, clk_period=%d, linetime=%dns\n",
1901 			pclk_rate, pclk_period, line_time);
1902 
1903 	return line_time;
1904 }
1905 
1906 /**
1907  * dpu_encoder_vsync_time - get the time of the next vsync
1908  * @drm_enc:	encoder pointer
1909  * @wakeup_time: pointer to ktime_t to write the vsync time to
1910  */
dpu_encoder_vsync_time(struct drm_encoder * drm_enc,ktime_t * wakeup_time)1911 int dpu_encoder_vsync_time(struct drm_encoder *drm_enc, ktime_t *wakeup_time)
1912 {
1913 	struct drm_display_mode *mode;
1914 	struct dpu_encoder_virt *dpu_enc;
1915 	u32 cur_line;
1916 	u32 line_time;
1917 	u32 vtotal, time_to_vsync;
1918 	ktime_t cur_time;
1919 
1920 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1921 
1922 	if (!drm_enc->crtc || !drm_enc->crtc->state) {
1923 		DPU_ERROR("crtc/crtc state object is NULL\n");
1924 		return -EINVAL;
1925 	}
1926 	mode = &drm_enc->crtc->state->adjusted_mode;
1927 
1928 	line_time = _dpu_encoder_calculate_linetime(dpu_enc, mode);
1929 	if (!line_time)
1930 		return -EINVAL;
1931 
1932 	cur_line = dpu_enc->cur_master->ops.get_line_count(dpu_enc->cur_master);
1933 
1934 	vtotal = mode->vtotal;
1935 	if (cur_line >= vtotal)
1936 		time_to_vsync = line_time * vtotal;
1937 	else
1938 		time_to_vsync = line_time * (vtotal - cur_line);
1939 
1940 	if (time_to_vsync == 0) {
1941 		DPU_ERROR("time to vsync should not be zero, vtotal=%d\n",
1942 				vtotal);
1943 		return -EINVAL;
1944 	}
1945 
1946 	cur_time = ktime_get();
1947 	*wakeup_time = ktime_add_ns(cur_time, time_to_vsync);
1948 
1949 	DPU_DEBUG_ENC(dpu_enc,
1950 			"cur_line=%u vtotal=%u time_to_vsync=%u, cur_time=%lld, wakeup_time=%lld\n",
1951 			cur_line, vtotal, time_to_vsync,
1952 			ktime_to_ms(cur_time),
1953 			ktime_to_ms(*wakeup_time));
1954 	return 0;
1955 }
1956 
1957 static u32
dpu_encoder_dsc_initial_line_calc(struct drm_dsc_config * dsc,u32 enc_ip_width)1958 dpu_encoder_dsc_initial_line_calc(struct drm_dsc_config *dsc,
1959 				  u32 enc_ip_width)
1960 {
1961 	int ssm_delay, total_pixels, soft_slice_per_enc;
1962 
1963 	soft_slice_per_enc = enc_ip_width / dsc->slice_width;
1964 
1965 	/*
1966 	 * minimum number of initial line pixels is a sum of:
1967 	 * 1. sub-stream multiplexer delay (83 groups for 8bpc,
1968 	 *    91 for 10 bpc) * 3
1969 	 * 2. for two soft slice cases, add extra sub-stream multiplexer * 3
1970 	 * 3. the initial xmit delay
1971 	 * 4. total pipeline delay through the "lock step" of encoder (47)
1972 	 * 5. 6 additional pixels as the output of the rate buffer is
1973 	 *    48 bits wide
1974 	 */
1975 	ssm_delay = ((dsc->bits_per_component < 10) ? 84 : 92);
1976 	total_pixels = ssm_delay * 3 + dsc->initial_xmit_delay + 47;
1977 	if (soft_slice_per_enc > 1)
1978 		total_pixels += (ssm_delay * 3);
1979 	return DIV_ROUND_UP(total_pixels, dsc->slice_width);
1980 }
1981 
dpu_encoder_dsc_pipe_cfg(struct dpu_hw_ctl * ctl,struct dpu_hw_dsc * hw_dsc,struct dpu_hw_pingpong * hw_pp,struct drm_dsc_config * dsc,u32 common_mode,u32 initial_lines)1982 static void dpu_encoder_dsc_pipe_cfg(struct dpu_hw_ctl *ctl,
1983 				     struct dpu_hw_dsc *hw_dsc,
1984 				     struct dpu_hw_pingpong *hw_pp,
1985 				     struct drm_dsc_config *dsc,
1986 				     u32 common_mode,
1987 				     u32 initial_lines)
1988 {
1989 	if (hw_dsc->ops.dsc_config)
1990 		hw_dsc->ops.dsc_config(hw_dsc, dsc, common_mode, initial_lines);
1991 
1992 	if (hw_dsc->ops.dsc_config_thresh)
1993 		hw_dsc->ops.dsc_config_thresh(hw_dsc, dsc);
1994 
1995 	if (hw_pp->ops.setup_dsc)
1996 		hw_pp->ops.setup_dsc(hw_pp);
1997 
1998 	if (hw_dsc->ops.dsc_bind_pingpong_blk)
1999 		hw_dsc->ops.dsc_bind_pingpong_blk(hw_dsc, hw_pp->idx);
2000 
2001 	if (hw_pp->ops.enable_dsc)
2002 		hw_pp->ops.enable_dsc(hw_pp);
2003 
2004 	if (ctl->ops.update_pending_flush_dsc)
2005 		ctl->ops.update_pending_flush_dsc(ctl, hw_dsc->idx);
2006 }
2007 
dpu_encoder_prep_dsc(struct dpu_encoder_virt * dpu_enc,struct drm_dsc_config * dsc)2008 static void dpu_encoder_prep_dsc(struct dpu_encoder_virt *dpu_enc,
2009 				 struct drm_dsc_config *dsc)
2010 {
2011 	struct dpu_encoder_phys *enc_master = dpu_enc->cur_master;
2012 	struct dpu_hw_ctl *ctl = enc_master->hw_ctl;
2013 	struct dpu_hw_dsc *hw_dsc[MAX_CHANNELS_PER_ENC];
2014 	struct dpu_hw_pingpong *hw_pp[MAX_CHANNELS_PER_ENC];
2015 	int this_frame_slices;
2016 	int intf_ip_w, enc_ip_w;
2017 	int dsc_common_mode;
2018 	int pic_width;
2019 	u32 initial_lines;
2020 	int num_dsc = 0;
2021 	int i;
2022 
2023 	for (i = 0; i < MAX_CHANNELS_PER_ENC; i++) {
2024 		hw_pp[i] = dpu_enc->hw_pp[i];
2025 		hw_dsc[i] = dpu_enc->hw_dsc[i];
2026 
2027 		if (!hw_pp[i] || !hw_dsc[i])
2028 			break;
2029 
2030 		num_dsc++;
2031 	}
2032 
2033 	pic_width = dsc->pic_width;
2034 
2035 	dsc_common_mode = 0;
2036 	if (num_dsc > 1)
2037 		dsc_common_mode |= DSC_MODE_SPLIT_PANEL;
2038 	if (dpu_encoder_use_dsc_merge(enc_master->parent))
2039 		dsc_common_mode |= DSC_MODE_MULTIPLEX;
2040 	if (enc_master->intf_mode == INTF_MODE_VIDEO)
2041 		dsc_common_mode |= DSC_MODE_VIDEO;
2042 
2043 	this_frame_slices = pic_width / dsc->slice_width;
2044 	intf_ip_w = this_frame_slices * dsc->slice_width;
2045 
2046 	enc_ip_w = intf_ip_w / num_dsc;
2047 	initial_lines = dpu_encoder_dsc_initial_line_calc(dsc, enc_ip_w);
2048 
2049 	for (i = 0; i < num_dsc; i++)
2050 		dpu_encoder_dsc_pipe_cfg(ctl, hw_dsc[i], hw_pp[i],
2051 					 dsc, dsc_common_mode, initial_lines);
2052 }
2053 
2054 /**
2055  * dpu_encoder_prepare_for_kickoff - schedule double buffer flip of the ctl
2056  *	path (i.e. ctl flush and start) at next appropriate time.
2057  *	Immediately: if no previous commit is outstanding.
2058  *	Delayed: Block until next trigger can be issued.
2059  * @drm_enc:	encoder pointer
2060  */
dpu_encoder_prepare_for_kickoff(struct drm_encoder * drm_enc)2061 void dpu_encoder_prepare_for_kickoff(struct drm_encoder *drm_enc)
2062 {
2063 	struct dpu_encoder_virt *dpu_enc;
2064 	struct dpu_encoder_phys *phys;
2065 	bool needs_hw_reset = false;
2066 	unsigned int i;
2067 
2068 	dpu_enc = to_dpu_encoder_virt(drm_enc);
2069 
2070 	trace_dpu_enc_prepare_kickoff(DRMID(drm_enc));
2071 
2072 	/* prepare for next kickoff, may include waiting on previous kickoff */
2073 	DPU_ATRACE_BEGIN("enc_prepare_for_kickoff");
2074 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
2075 		phys = dpu_enc->phys_encs[i];
2076 		if (phys->ops.prepare_for_kickoff)
2077 			phys->ops.prepare_for_kickoff(phys);
2078 		if (phys->enable_state == DPU_ENC_ERR_NEEDS_HW_RESET)
2079 			needs_hw_reset = true;
2080 	}
2081 	DPU_ATRACE_END("enc_prepare_for_kickoff");
2082 
2083 	dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_KICKOFF);
2084 
2085 	/* if any phys needs reset, reset all phys, in-order */
2086 	if (needs_hw_reset) {
2087 		trace_dpu_enc_prepare_kickoff_reset(DRMID(drm_enc));
2088 		for (i = 0; i < dpu_enc->num_phys_encs; i++) {
2089 			dpu_encoder_helper_hw_reset(dpu_enc->phys_encs[i]);
2090 		}
2091 	}
2092 
2093 	if (dpu_enc->dsc)
2094 		dpu_encoder_prep_dsc(dpu_enc, dpu_enc->dsc);
2095 }
2096 
2097 /**
2098  * dpu_encoder_is_valid_for_commit - check if encode has valid parameters for commit.
2099  * @drm_enc:    Pointer to drm encoder structure
2100  */
dpu_encoder_is_valid_for_commit(struct drm_encoder * drm_enc)2101 bool dpu_encoder_is_valid_for_commit(struct drm_encoder *drm_enc)
2102 {
2103 	struct dpu_encoder_virt *dpu_enc;
2104 	unsigned int i;
2105 	struct dpu_encoder_phys *phys;
2106 
2107 	dpu_enc = to_dpu_encoder_virt(drm_enc);
2108 
2109 	if (drm_enc->encoder_type == DRM_MODE_ENCODER_VIRTUAL) {
2110 		for (i = 0; i < dpu_enc->num_phys_encs; i++) {
2111 			phys = dpu_enc->phys_encs[i];
2112 			if (phys->ops.is_valid_for_commit && !phys->ops.is_valid_for_commit(phys)) {
2113 				DPU_DEBUG("invalid FB not kicking off\n");
2114 				return false;
2115 			}
2116 		}
2117 	}
2118 
2119 	return true;
2120 }
2121 
2122 /**
2123  * dpu_encoder_start_frame_done_timer - Start the encoder frame done timer
2124  * @drm_enc: Pointer to drm encoder structure
2125  */
dpu_encoder_start_frame_done_timer(struct drm_encoder * drm_enc)2126 void dpu_encoder_start_frame_done_timer(struct drm_encoder *drm_enc)
2127 {
2128 	struct dpu_encoder_virt *dpu_enc;
2129 	unsigned long timeout_ms;
2130 
2131 	dpu_enc = to_dpu_encoder_virt(drm_enc);
2132 	timeout_ms = DPU_ENCODER_FRAME_DONE_TIMEOUT_FRAMES * 1000 /
2133 			drm_mode_vrefresh(&drm_enc->crtc->state->adjusted_mode);
2134 
2135 	atomic_set(&dpu_enc->frame_done_timeout_ms, timeout_ms);
2136 	mod_timer(&dpu_enc->frame_done_timer,
2137 			jiffies + msecs_to_jiffies(timeout_ms));
2138 
2139 }
2140 
2141 /**
2142  * dpu_encoder_kickoff - trigger a double buffer flip of the ctl path
2143  *	(i.e. ctl flush and start) immediately.
2144  * @drm_enc:	encoder pointer
2145  */
dpu_encoder_kickoff(struct drm_encoder * drm_enc)2146 void dpu_encoder_kickoff(struct drm_encoder *drm_enc)
2147 {
2148 	struct dpu_encoder_virt *dpu_enc;
2149 	struct dpu_encoder_phys *phys;
2150 	unsigned int i;
2151 
2152 	DPU_ATRACE_BEGIN("encoder_kickoff");
2153 	dpu_enc = to_dpu_encoder_virt(drm_enc);
2154 
2155 	trace_dpu_enc_kickoff(DRMID(drm_enc));
2156 
2157 	/* All phys encs are ready to go, trigger the kickoff */
2158 	_dpu_encoder_kickoff_phys(dpu_enc);
2159 
2160 	/* allow phys encs to handle any post-kickoff business */
2161 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
2162 		phys = dpu_enc->phys_encs[i];
2163 		if (phys->ops.handle_post_kickoff)
2164 			phys->ops.handle_post_kickoff(phys);
2165 	}
2166 
2167 	DPU_ATRACE_END("encoder_kickoff");
2168 }
2169 
dpu_encoder_helper_reset_mixers(struct dpu_encoder_phys * phys_enc)2170 static void dpu_encoder_helper_reset_mixers(struct dpu_encoder_phys *phys_enc)
2171 {
2172 	struct dpu_hw_mixer_cfg mixer;
2173 	int i, num_lm;
2174 	struct dpu_global_state *global_state;
2175 	struct dpu_hw_blk *hw_lm[2];
2176 	struct dpu_hw_mixer *hw_mixer[2];
2177 	struct dpu_hw_ctl *ctl = phys_enc->hw_ctl;
2178 
2179 	memset(&mixer, 0, sizeof(mixer));
2180 
2181 	/* reset all mixers for this encoder */
2182 	if (ctl->ops.clear_all_blendstages)
2183 		ctl->ops.clear_all_blendstages(ctl);
2184 
2185 	global_state = dpu_kms_get_existing_global_state(phys_enc->dpu_kms);
2186 
2187 	num_lm = dpu_rm_get_assigned_resources(&phys_enc->dpu_kms->rm, global_state,
2188 		phys_enc->parent->crtc, DPU_HW_BLK_LM, hw_lm, ARRAY_SIZE(hw_lm));
2189 
2190 	for (i = 0; i < num_lm; i++) {
2191 		hw_mixer[i] = to_dpu_hw_mixer(hw_lm[i]);
2192 		if (ctl->ops.update_pending_flush_mixer)
2193 			ctl->ops.update_pending_flush_mixer(ctl, hw_mixer[i]->idx);
2194 
2195 		/* clear all blendstages */
2196 		if (ctl->ops.setup_blendstage)
2197 			ctl->ops.setup_blendstage(ctl, hw_mixer[i]->idx, NULL);
2198 
2199 		if (hw_mixer[i]->ops.clear_all_blendstages)
2200 			hw_mixer[i]->ops.clear_all_blendstages(hw_mixer[i]);
2201 
2202 		if (ctl->ops.set_active_lms)
2203 			ctl->ops.set_active_lms(ctl, NULL);
2204 
2205 		if (ctl->ops.set_active_fetch_pipes)
2206 			ctl->ops.set_active_fetch_pipes(ctl, NULL);
2207 
2208 		if (ctl->ops.set_active_pipes)
2209 			ctl->ops.set_active_pipes(ctl, NULL);
2210 	}
2211 }
2212 
dpu_encoder_dsc_pipe_clr(struct dpu_hw_ctl * ctl,struct dpu_hw_dsc * hw_dsc,struct dpu_hw_pingpong * hw_pp)2213 static void dpu_encoder_dsc_pipe_clr(struct dpu_hw_ctl *ctl,
2214 				     struct dpu_hw_dsc *hw_dsc,
2215 				     struct dpu_hw_pingpong *hw_pp)
2216 {
2217 	if (hw_dsc->ops.dsc_disable)
2218 		hw_dsc->ops.dsc_disable(hw_dsc);
2219 
2220 	if (hw_pp->ops.disable_dsc)
2221 		hw_pp->ops.disable_dsc(hw_pp);
2222 
2223 	if (hw_dsc->ops.dsc_bind_pingpong_blk)
2224 		hw_dsc->ops.dsc_bind_pingpong_blk(hw_dsc, PINGPONG_NONE);
2225 
2226 	if (ctl->ops.update_pending_flush_dsc)
2227 		ctl->ops.update_pending_flush_dsc(ctl, hw_dsc->idx);
2228 }
2229 
dpu_encoder_unprep_dsc(struct dpu_encoder_virt * dpu_enc)2230 static void dpu_encoder_unprep_dsc(struct dpu_encoder_virt *dpu_enc)
2231 {
2232 	/* coding only for 2LM, 2enc, 1 dsc config */
2233 	struct dpu_encoder_phys *enc_master = dpu_enc->cur_master;
2234 	struct dpu_hw_ctl *ctl = enc_master->hw_ctl;
2235 	struct dpu_hw_dsc *hw_dsc[MAX_CHANNELS_PER_ENC];
2236 	struct dpu_hw_pingpong *hw_pp[MAX_CHANNELS_PER_ENC];
2237 	int i;
2238 
2239 	for (i = 0; i < MAX_CHANNELS_PER_ENC; i++) {
2240 		hw_pp[i] = dpu_enc->hw_pp[i];
2241 		hw_dsc[i] = dpu_enc->hw_dsc[i];
2242 
2243 		if (hw_pp[i] && hw_dsc[i])
2244 			dpu_encoder_dsc_pipe_clr(ctl, hw_dsc[i], hw_pp[i]);
2245 	}
2246 }
2247 
2248 /**
2249  * dpu_encoder_helper_phys_cleanup - helper to cleanup dpu pipeline
2250  * @phys_enc: Pointer to physical encoder structure
2251  */
dpu_encoder_helper_phys_cleanup(struct dpu_encoder_phys * phys_enc)2252 void dpu_encoder_helper_phys_cleanup(struct dpu_encoder_phys *phys_enc)
2253 {
2254 	struct dpu_hw_ctl *ctl = phys_enc->hw_ctl;
2255 	struct dpu_hw_intf_cfg intf_cfg = { 0 };
2256 	int i;
2257 	struct dpu_encoder_virt *dpu_enc;
2258 
2259 	dpu_enc = to_dpu_encoder_virt(phys_enc->parent);
2260 
2261 	ctl->ops.reset(ctl);
2262 
2263 	dpu_encoder_helper_reset_mixers(phys_enc);
2264 
2265 	/*
2266 	 * TODO: move the once-only operation like CTL flush/trigger
2267 	 * into dpu_encoder_virt_disable() and all operations which need
2268 	 * to be done per phys encoder into the phys_disable() op.
2269 	 */
2270 	if (phys_enc->hw_wb) {
2271 		/* disable the PP block */
2272 		if (phys_enc->hw_wb->ops.bind_pingpong_blk)
2273 			phys_enc->hw_wb->ops.bind_pingpong_blk(phys_enc->hw_wb, PINGPONG_NONE);
2274 
2275 		/* mark WB flush as pending */
2276 		if (ctl->ops.update_pending_flush_wb)
2277 			ctl->ops.update_pending_flush_wb(ctl, phys_enc->hw_wb->idx);
2278 	} else {
2279 		for (i = 0; i < dpu_enc->num_phys_encs; i++) {
2280 			if (dpu_enc->phys_encs[i] && phys_enc->hw_intf->ops.bind_pingpong_blk)
2281 				phys_enc->hw_intf->ops.bind_pingpong_blk(
2282 						dpu_enc->phys_encs[i]->hw_intf,
2283 						PINGPONG_NONE);
2284 
2285 			/* mark INTF flush as pending */
2286 			if (ctl->ops.update_pending_flush_intf)
2287 				ctl->ops.update_pending_flush_intf(ctl,
2288 						dpu_enc->phys_encs[i]->hw_intf->idx);
2289 		}
2290 	}
2291 
2292 	if (phys_enc->hw_pp && phys_enc->hw_pp->ops.setup_dither)
2293 		phys_enc->hw_pp->ops.setup_dither(phys_enc->hw_pp, NULL);
2294 
2295 	if (dpu_enc->cwb_mask)
2296 		dpu_encoder_helper_phys_setup_cwb(phys_enc, false);
2297 
2298 	/* reset the merge 3D HW block */
2299 	if (phys_enc->hw_pp && phys_enc->hw_pp->merge_3d) {
2300 		phys_enc->hw_pp->merge_3d->ops.setup_3d_mode(phys_enc->hw_pp->merge_3d,
2301 				BLEND_3D_NONE);
2302 		if (ctl->ops.update_pending_flush_merge_3d)
2303 			ctl->ops.update_pending_flush_merge_3d(ctl,
2304 					phys_enc->hw_pp->merge_3d->idx);
2305 	}
2306 
2307 	if (phys_enc->hw_cdm) {
2308 		if (phys_enc->hw_cdm->ops.bind_pingpong_blk && phys_enc->hw_pp)
2309 			phys_enc->hw_cdm->ops.bind_pingpong_blk(phys_enc->hw_cdm,
2310 								PINGPONG_NONE);
2311 		if (ctl->ops.update_pending_flush_cdm)
2312 			ctl->ops.update_pending_flush_cdm(ctl,
2313 							  phys_enc->hw_cdm->idx);
2314 	}
2315 
2316 	if (dpu_enc->dsc) {
2317 		dpu_encoder_unprep_dsc(dpu_enc);
2318 		dpu_enc->dsc = NULL;
2319 	}
2320 
2321 	intf_cfg.stream_sel = 0; /* Don't care value for video mode */
2322 	intf_cfg.mode_3d = dpu_encoder_helper_get_3d_blend_mode(phys_enc);
2323 	intf_cfg.dsc = dpu_encoder_helper_get_dsc(phys_enc);
2324 	intf_cfg.cwb = dpu_enc->cwb_mask;
2325 
2326 	if (phys_enc->hw_intf)
2327 		intf_cfg.intf = phys_enc->hw_intf->idx;
2328 	if (phys_enc->hw_wb)
2329 		intf_cfg.wb = phys_enc->hw_wb->idx;
2330 
2331 	if (phys_enc->hw_pp && phys_enc->hw_pp->merge_3d)
2332 		intf_cfg.merge_3d = phys_enc->hw_pp->merge_3d->idx;
2333 
2334 	if (ctl->ops.reset_intf_cfg)
2335 		ctl->ops.reset_intf_cfg(ctl, &intf_cfg);
2336 
2337 	ctl->ops.trigger_flush(ctl);
2338 	ctl->ops.trigger_start(ctl);
2339 	ctl->ops.clear_pending_flush(ctl);
2340 }
2341 
dpu_encoder_helper_phys_setup_cwb(struct dpu_encoder_phys * phys_enc,bool enable)2342 void dpu_encoder_helper_phys_setup_cwb(struct dpu_encoder_phys *phys_enc,
2343 				       bool enable)
2344 {
2345 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(phys_enc->parent);
2346 	struct dpu_hw_cwb *hw_cwb;
2347 	struct dpu_hw_ctl *hw_ctl;
2348 	struct dpu_hw_cwb_setup_cfg cwb_cfg;
2349 
2350 	struct dpu_kms *dpu_kms;
2351 	struct dpu_global_state *global_state;
2352 	struct dpu_hw_blk *rt_pp_list[MAX_CHANNELS_PER_ENC];
2353 	int num_pp;
2354 
2355 	if (!phys_enc->hw_wb)
2356 		return;
2357 
2358 	hw_ctl = phys_enc->hw_ctl;
2359 
2360 	if (!phys_enc->hw_ctl) {
2361 		DPU_DEBUG("[wb:%d] no ctl assigned\n",
2362 			  phys_enc->hw_wb->idx - WB_0);
2363 		return;
2364 	}
2365 
2366 	dpu_kms = phys_enc->dpu_kms;
2367 	global_state = dpu_kms_get_existing_global_state(dpu_kms);
2368 	num_pp = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
2369 					       phys_enc->parent->crtc,
2370 					       DPU_HW_BLK_PINGPONG, rt_pp_list,
2371 					       ARRAY_SIZE(rt_pp_list));
2372 
2373 	if (num_pp == 0 || num_pp > MAX_CHANNELS_PER_ENC) {
2374 		DPU_DEBUG_ENC(dpu_enc, "invalid num_pp %d\n", num_pp);
2375 		return;
2376 	}
2377 
2378 	/*
2379 	 * The CWB mux supports using LM or DSPP as tap points. For now,
2380 	 * always use LM tap point
2381 	 */
2382 	cwb_cfg.input = INPUT_MODE_LM_OUT;
2383 
2384 	for (int i = 0; i < MAX_CHANNELS_PER_ENC; i++) {
2385 		hw_cwb = dpu_enc->hw_cwb[i];
2386 		if (!hw_cwb)
2387 			continue;
2388 
2389 		if (enable) {
2390 			struct dpu_hw_pingpong *hw_pp =
2391 					to_dpu_hw_pingpong(rt_pp_list[i]);
2392 			cwb_cfg.pp_idx = hw_pp->idx;
2393 		} else {
2394 			cwb_cfg.pp_idx = PINGPONG_NONE;
2395 		}
2396 
2397 		hw_cwb->ops.config_cwb(hw_cwb, &cwb_cfg);
2398 
2399 		if (hw_ctl->ops.update_pending_flush_cwb)
2400 			hw_ctl->ops.update_pending_flush_cwb(hw_ctl, hw_cwb->idx);
2401 	}
2402 }
2403 
2404 /**
2405  * dpu_encoder_helper_phys_setup_cdm - setup chroma down sampling block
2406  * @phys_enc: Pointer to physical encoder
2407  * @dpu_fmt: Pinter to the format description
2408  * @output_type: HDMI/WB
2409  */
dpu_encoder_helper_phys_setup_cdm(struct dpu_encoder_phys * phys_enc,const struct msm_format * dpu_fmt,u32 output_type)2410 void dpu_encoder_helper_phys_setup_cdm(struct dpu_encoder_phys *phys_enc,
2411 				       const struct msm_format *dpu_fmt,
2412 				       u32 output_type)
2413 {
2414 	struct dpu_hw_cdm *hw_cdm;
2415 	struct dpu_hw_cdm_cfg *cdm_cfg;
2416 	struct dpu_hw_pingpong *hw_pp;
2417 	int ret;
2418 
2419 	if (!phys_enc)
2420 		return;
2421 
2422 	cdm_cfg = &phys_enc->cdm_cfg;
2423 	hw_pp = phys_enc->hw_pp;
2424 	hw_cdm = phys_enc->hw_cdm;
2425 
2426 	if (!hw_cdm)
2427 		return;
2428 
2429 	if (!MSM_FORMAT_IS_YUV(dpu_fmt)) {
2430 		DPU_DEBUG("[enc:%d] cdm_disable fmt:%p4cc\n", DRMID(phys_enc->parent),
2431 			  &dpu_fmt->pixel_format);
2432 		if (hw_cdm->ops.bind_pingpong_blk)
2433 			hw_cdm->ops.bind_pingpong_blk(hw_cdm, PINGPONG_NONE);
2434 
2435 		return;
2436 	}
2437 
2438 	memset(cdm_cfg, 0, sizeof(struct dpu_hw_cdm_cfg));
2439 
2440 	cdm_cfg->output_width = phys_enc->cached_mode.hdisplay;
2441 	cdm_cfg->output_height = phys_enc->cached_mode.vdisplay;
2442 	cdm_cfg->output_fmt = dpu_fmt;
2443 	cdm_cfg->output_type = output_type;
2444 	cdm_cfg->output_bit_depth = MSM_FORMAT_IS_DX(dpu_fmt) ?
2445 			CDM_CDWN_OUTPUT_10BIT : CDM_CDWN_OUTPUT_8BIT;
2446 	cdm_cfg->csc_cfg = &dpu_csc10_rgb2yuv_601l;
2447 
2448 	/* enable 10 bit logic */
2449 	switch (cdm_cfg->output_fmt->chroma_sample) {
2450 	case CHROMA_FULL:
2451 		cdm_cfg->h_cdwn_type = CDM_CDWN_DISABLE;
2452 		cdm_cfg->v_cdwn_type = CDM_CDWN_DISABLE;
2453 		break;
2454 	case CHROMA_H2V1:
2455 		cdm_cfg->h_cdwn_type = CDM_CDWN_COSITE;
2456 		cdm_cfg->v_cdwn_type = CDM_CDWN_DISABLE;
2457 		break;
2458 	case CHROMA_420:
2459 		cdm_cfg->h_cdwn_type = CDM_CDWN_COSITE;
2460 		cdm_cfg->v_cdwn_type = CDM_CDWN_OFFSITE;
2461 		break;
2462 	case CHROMA_H1V2:
2463 	default:
2464 		DPU_ERROR("[enc:%d] unsupported chroma sampling type\n",
2465 			  DRMID(phys_enc->parent));
2466 		cdm_cfg->h_cdwn_type = CDM_CDWN_DISABLE;
2467 		cdm_cfg->v_cdwn_type = CDM_CDWN_DISABLE;
2468 		break;
2469 	}
2470 
2471 	DPU_DEBUG("[enc:%d] cdm_enable:%d,%d,%p4cc,%d,%d,%d,%d]\n",
2472 		  DRMID(phys_enc->parent), cdm_cfg->output_width,
2473 		  cdm_cfg->output_height, &cdm_cfg->output_fmt->pixel_format,
2474 		  cdm_cfg->output_type, cdm_cfg->output_bit_depth,
2475 		  cdm_cfg->h_cdwn_type, cdm_cfg->v_cdwn_type);
2476 
2477 	if (hw_cdm->ops.enable) {
2478 		cdm_cfg->pp_id = hw_pp->idx;
2479 		ret = hw_cdm->ops.enable(hw_cdm, cdm_cfg);
2480 		if (ret < 0) {
2481 			DPU_ERROR("[enc:%d] failed to enable CDM; ret:%d\n",
2482 				  DRMID(phys_enc->parent), ret);
2483 			return;
2484 		}
2485 	}
2486 }
2487 
2488 #ifdef CONFIG_DEBUG_FS
_dpu_encoder_status_show(struct seq_file * s,void * data)2489 static int _dpu_encoder_status_show(struct seq_file *s, void *data)
2490 {
2491 	struct drm_encoder *drm_enc = s->private;
2492 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
2493 	int i;
2494 
2495 	mutex_lock(&dpu_enc->enc_lock);
2496 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
2497 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
2498 
2499 		seq_printf(s, "intf:%d  wb:%d  vsync:%8d     underrun:%8d    frame_done_cnt:%d",
2500 				phys->hw_intf ? phys->hw_intf->idx - INTF_0 : -1,
2501 				phys->hw_wb ? phys->hw_wb->idx - WB_0 : -1,
2502 				atomic_read(&phys->vsync_cnt),
2503 				atomic_read(&phys->underrun_cnt),
2504 				atomic_read(&dpu_enc->frame_done_timeout_cnt));
2505 
2506 		seq_printf(s, "mode: %s\n", dpu_encoder_helper_get_intf_type(phys->intf_mode));
2507 	}
2508 	mutex_unlock(&dpu_enc->enc_lock);
2509 
2510 	return 0;
2511 }
2512 
2513 DEFINE_SHOW_ATTRIBUTE(_dpu_encoder_status);
2514 
dpu_encoder_debugfs_init(struct drm_encoder * drm_enc,struct dentry * root)2515 static void dpu_encoder_debugfs_init(struct drm_encoder *drm_enc, struct dentry *root)
2516 {
2517 	/* don't error check these */
2518 	debugfs_create_file("status", 0600,
2519 			    root, drm_enc, &_dpu_encoder_status_fops);
2520 }
2521 #else
2522 #define dpu_encoder_debugfs_init NULL
2523 #endif
2524 
dpu_encoder_virt_add_phys_encs(struct drm_device * dev,struct msm_display_info * disp_info,struct dpu_encoder_virt * dpu_enc,struct dpu_enc_phys_init_params * params)2525 static int dpu_encoder_virt_add_phys_encs(
2526 		struct drm_device *dev,
2527 		struct msm_display_info *disp_info,
2528 		struct dpu_encoder_virt *dpu_enc,
2529 		struct dpu_enc_phys_init_params *params)
2530 {
2531 	struct dpu_encoder_phys *enc = NULL;
2532 
2533 	DPU_DEBUG_ENC(dpu_enc, "\n");
2534 
2535 	/*
2536 	 * We may create up to NUM_PHYS_ENCODER_TYPES physical encoder types
2537 	 * in this function, check up-front.
2538 	 */
2539 	if (dpu_enc->num_phys_encs + NUM_PHYS_ENCODER_TYPES >=
2540 			ARRAY_SIZE(dpu_enc->phys_encs)) {
2541 		DPU_ERROR_ENC(dpu_enc, "too many physical encoders %d\n",
2542 			  dpu_enc->num_phys_encs);
2543 		return -EINVAL;
2544 	}
2545 
2546 
2547 	if (disp_info->intf_type == INTF_WB) {
2548 		enc = dpu_encoder_phys_wb_init(dev, params);
2549 
2550 		if (IS_ERR(enc)) {
2551 			DPU_ERROR_ENC(dpu_enc, "failed to init wb enc: %ld\n",
2552 				PTR_ERR(enc));
2553 			return PTR_ERR(enc);
2554 		}
2555 
2556 		dpu_enc->phys_encs[dpu_enc->num_phys_encs] = enc;
2557 		++dpu_enc->num_phys_encs;
2558 	} else if (disp_info->is_cmd_mode) {
2559 		enc = dpu_encoder_phys_cmd_init(dev, params);
2560 
2561 		if (IS_ERR(enc)) {
2562 			DPU_ERROR_ENC(dpu_enc, "failed to init cmd enc: %ld\n",
2563 				PTR_ERR(enc));
2564 			return PTR_ERR(enc);
2565 		}
2566 
2567 		dpu_enc->phys_encs[dpu_enc->num_phys_encs] = enc;
2568 		++dpu_enc->num_phys_encs;
2569 	} else {
2570 		enc = dpu_encoder_phys_vid_init(dev, params);
2571 
2572 		if (IS_ERR(enc)) {
2573 			DPU_ERROR_ENC(dpu_enc, "failed to init vid enc: %ld\n",
2574 				PTR_ERR(enc));
2575 			return PTR_ERR(enc);
2576 		}
2577 
2578 		dpu_enc->phys_encs[dpu_enc->num_phys_encs] = enc;
2579 		++dpu_enc->num_phys_encs;
2580 	}
2581 
2582 	if (params->split_role == ENC_ROLE_SLAVE)
2583 		dpu_enc->cur_slave = enc;
2584 	else
2585 		dpu_enc->cur_master = enc;
2586 
2587 	return 0;
2588 }
2589 
2590 /**
2591  * dpu_encoder_get_clones - Calculate the possible_clones for DPU encoder
2592  * @drm_enc:        DRM encoder pointer
2593  * Returns:         possible_clones mask
2594  */
dpu_encoder_get_clones(struct drm_encoder * drm_enc)2595 uint32_t dpu_encoder_get_clones(struct drm_encoder *drm_enc)
2596 {
2597 	struct drm_encoder *curr;
2598 	int type = drm_enc->encoder_type;
2599 	uint32_t clone_mask = drm_encoder_mask(drm_enc);
2600 
2601 	/*
2602 	 * Set writeback as possible clones of real-time DSI encoders and vice
2603 	 * versa
2604 	 *
2605 	 * Writeback encoders can't be clones of each other and DSI
2606 	 * encoders can't be clones of each other.
2607 	 *
2608 	 * TODO: Add DP encoders as valid possible clones for writeback encoders
2609 	 * (and vice versa) once concurrent writeback has been validated for DP
2610 	 */
2611 	drm_for_each_encoder(curr, drm_enc->dev) {
2612 		if ((type == DRM_MODE_ENCODER_VIRTUAL &&
2613 		    curr->encoder_type == DRM_MODE_ENCODER_DSI) ||
2614 		    (type == DRM_MODE_ENCODER_DSI &&
2615 		    curr->encoder_type == DRM_MODE_ENCODER_VIRTUAL))
2616 			clone_mask |= drm_encoder_mask(curr);
2617 	}
2618 
2619 	return clone_mask;
2620 }
2621 
dpu_encoder_setup_display(struct dpu_encoder_virt * dpu_enc,struct dpu_kms * dpu_kms,struct msm_display_info * disp_info)2622 static int dpu_encoder_setup_display(struct dpu_encoder_virt *dpu_enc,
2623 				 struct dpu_kms *dpu_kms,
2624 				 struct msm_display_info *disp_info)
2625 {
2626 	int ret = 0;
2627 	int i = 0;
2628 	struct dpu_enc_phys_init_params phys_params;
2629 
2630 	if (!dpu_enc) {
2631 		DPU_ERROR("invalid arg(s), enc %d\n", dpu_enc != NULL);
2632 		return -EINVAL;
2633 	}
2634 
2635 	dpu_enc->cur_master = NULL;
2636 
2637 	memset(&phys_params, 0, sizeof(phys_params));
2638 	phys_params.dpu_kms = dpu_kms;
2639 	phys_params.parent = &dpu_enc->base;
2640 	phys_params.enc_spinlock = &dpu_enc->enc_spinlock;
2641 
2642 	WARN_ON(disp_info->num_of_h_tiles < 1);
2643 
2644 	DPU_DEBUG("dsi_info->num_of_h_tiles %d\n", disp_info->num_of_h_tiles);
2645 
2646 	if (disp_info->intf_type != INTF_WB)
2647 		dpu_enc->idle_pc_supported =
2648 				dpu_kms->catalog->caps->has_idle_pc;
2649 
2650 	mutex_lock(&dpu_enc->enc_lock);
2651 	for (i = 0; i < disp_info->num_of_h_tiles && !ret; i++) {
2652 		/*
2653 		 * Left-most tile is at index 0, content is controller id
2654 		 * h_tile_instance_ids[2] = {0, 1}; DSI0 = left, DSI1 = right
2655 		 * h_tile_instance_ids[2] = {1, 0}; DSI1 = left, DSI0 = right
2656 		 */
2657 		u32 controller_id = disp_info->h_tile_instance[i];
2658 
2659 		if (disp_info->num_of_h_tiles > 1) {
2660 			if (i == 0)
2661 				phys_params.split_role = ENC_ROLE_MASTER;
2662 			else
2663 				phys_params.split_role = ENC_ROLE_SLAVE;
2664 		} else {
2665 			phys_params.split_role = ENC_ROLE_SOLO;
2666 		}
2667 
2668 		DPU_DEBUG("h_tile_instance %d = %d, split_role %d\n",
2669 				i, controller_id, phys_params.split_role);
2670 
2671 		phys_params.hw_intf = dpu_encoder_get_intf(dpu_kms->catalog, &dpu_kms->rm,
2672 							   disp_info->intf_type,
2673 							   controller_id);
2674 
2675 		if (disp_info->intf_type == INTF_WB && controller_id < WB_MAX)
2676 			phys_params.hw_wb = dpu_rm_get_wb(&dpu_kms->rm, controller_id);
2677 
2678 		if (!phys_params.hw_intf && !phys_params.hw_wb) {
2679 			DPU_ERROR_ENC(dpu_enc, "no intf or wb block assigned at idx: %d\n", i);
2680 			ret = -EINVAL;
2681 			break;
2682 		}
2683 
2684 		if (phys_params.hw_intf && phys_params.hw_wb) {
2685 			DPU_ERROR_ENC(dpu_enc,
2686 					"invalid phys both intf and wb block at idx: %d\n", i);
2687 			ret = -EINVAL;
2688 			break;
2689 		}
2690 
2691 		ret = dpu_encoder_virt_add_phys_encs(dpu_kms->dev, disp_info,
2692 				dpu_enc, &phys_params);
2693 		if (ret) {
2694 			DPU_ERROR_ENC(dpu_enc, "failed to add phys encs\n");
2695 			break;
2696 		}
2697 	}
2698 
2699 	mutex_unlock(&dpu_enc->enc_lock);
2700 
2701 	return ret;
2702 }
2703 
dpu_encoder_frame_done_timeout(struct timer_list * t)2704 static void dpu_encoder_frame_done_timeout(struct timer_list *t)
2705 {
2706 	struct dpu_encoder_virt *dpu_enc = timer_container_of(dpu_enc, t,
2707 							      frame_done_timer);
2708 	struct drm_encoder *drm_enc = &dpu_enc->base;
2709 	u32 event;
2710 
2711 	if (!drm_enc->dev) {
2712 		DPU_ERROR("invalid parameters\n");
2713 		return;
2714 	}
2715 
2716 	if (!dpu_enc->frame_busy_mask[0] || !dpu_enc->crtc) {
2717 		DRM_DEBUG_KMS("id:%u invalid timeout frame_busy_mask=%lu\n",
2718 			      DRMID(drm_enc), dpu_enc->frame_busy_mask[0]);
2719 		return;
2720 	} else if (!atomic_xchg(&dpu_enc->frame_done_timeout_ms, 0)) {
2721 		DRM_DEBUG_KMS("id:%u invalid timeout\n", DRMID(drm_enc));
2722 		return;
2723 	}
2724 
2725 	DPU_ERROR_ENC_RATELIMITED(dpu_enc, "frame done timeout\n");
2726 
2727 	if (atomic_inc_return(&dpu_enc->frame_done_timeout_cnt) == 1)
2728 		msm_disp_snapshot_state(drm_enc->dev);
2729 
2730 	event = DPU_ENCODER_FRAME_EVENT_ERROR;
2731 	trace_dpu_enc_frame_done_timeout(DRMID(drm_enc), event);
2732 	dpu_crtc_frame_event_cb(dpu_enc->crtc, event);
2733 }
2734 
2735 static const struct drm_encoder_helper_funcs dpu_encoder_helper_funcs = {
2736 	.atomic_mode_set = dpu_encoder_virt_atomic_mode_set,
2737 	.atomic_disable = dpu_encoder_virt_atomic_disable,
2738 	.atomic_enable = dpu_encoder_virt_atomic_enable,
2739 };
2740 
2741 static const struct drm_encoder_funcs dpu_encoder_funcs = {
2742 	.debugfs_init = dpu_encoder_debugfs_init,
2743 };
2744 
2745 /**
2746  * dpu_encoder_init - initialize virtual encoder object
2747  * @dev:        Pointer to drm device structure
2748  * @drm_enc_mode: corresponding DRM_MODE_ENCODER_* constant
2749  * @disp_info:  Pointer to display information structure
2750  * Returns:     Pointer to newly created drm encoder
2751  */
dpu_encoder_init(struct drm_device * dev,int drm_enc_mode,struct msm_display_info * disp_info)2752 struct drm_encoder *dpu_encoder_init(struct drm_device *dev,
2753 		int drm_enc_mode,
2754 		struct msm_display_info *disp_info)
2755 {
2756 	struct msm_drm_private *priv = dev->dev_private;
2757 	struct dpu_kms *dpu_kms = to_dpu_kms(priv->kms);
2758 	struct dpu_encoder_virt *dpu_enc;
2759 	int ret;
2760 
2761 	dpu_enc = drmm_encoder_alloc(dev, struct dpu_encoder_virt, base,
2762 				     &dpu_encoder_funcs, drm_enc_mode, NULL);
2763 	if (IS_ERR(dpu_enc))
2764 		return ERR_CAST(dpu_enc);
2765 
2766 	drm_encoder_helper_add(&dpu_enc->base, &dpu_encoder_helper_funcs);
2767 
2768 	spin_lock_init(&dpu_enc->enc_spinlock);
2769 	dpu_enc->enabled = false;
2770 	mutex_init(&dpu_enc->enc_lock);
2771 	mutex_init(&dpu_enc->rc_lock);
2772 
2773 	ret = dpu_encoder_setup_display(dpu_enc, dpu_kms, disp_info);
2774 	if (ret) {
2775 		DPU_ERROR("failed to setup encoder\n");
2776 		return ERR_PTR(-ENOMEM);
2777 	}
2778 
2779 	atomic_set(&dpu_enc->frame_done_timeout_ms, 0);
2780 	atomic_set(&dpu_enc->frame_done_timeout_cnt, 0);
2781 	timer_setup(&dpu_enc->frame_done_timer,
2782 			dpu_encoder_frame_done_timeout, 0);
2783 
2784 	INIT_DELAYED_WORK(&dpu_enc->delayed_off_work,
2785 			dpu_encoder_off_work);
2786 	dpu_enc->idle_timeout = IDLE_TIMEOUT;
2787 
2788 	memcpy(&dpu_enc->disp_info, disp_info, sizeof(*disp_info));
2789 
2790 	DPU_DEBUG_ENC(dpu_enc, "created\n");
2791 
2792 	return &dpu_enc->base;
2793 }
2794 
2795 /**
2796  * dpu_encoder_wait_for_commit_done() - Wait for encoder to flush pending state
2797  * @drm_enc:	encoder pointer
2798  *
2799  * Wait for hardware to have flushed the current pending changes to hardware at
2800  * a vblank or CTL_START. Physical encoders will map this differently depending
2801  * on the type: vid mode -> vsync_irq, cmd mode -> CTL_START.
2802  *
2803  * Return: 0 on success, -EWOULDBLOCK if already signaled, error otherwise
2804  */
dpu_encoder_wait_for_commit_done(struct drm_encoder * drm_enc)2805 int dpu_encoder_wait_for_commit_done(struct drm_encoder *drm_enc)
2806 {
2807 	struct dpu_encoder_virt *dpu_enc = NULL;
2808 	int i, ret = 0;
2809 
2810 	if (!drm_enc) {
2811 		DPU_ERROR("invalid encoder\n");
2812 		return -EINVAL;
2813 	}
2814 	dpu_enc = to_dpu_encoder_virt(drm_enc);
2815 	DPU_DEBUG_ENC(dpu_enc, "\n");
2816 
2817 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
2818 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
2819 
2820 		if (phys->ops.wait_for_commit_done) {
2821 			DPU_ATRACE_BEGIN("wait_for_commit_done");
2822 			ret = phys->ops.wait_for_commit_done(phys);
2823 			DPU_ATRACE_END("wait_for_commit_done");
2824 			if (ret == -ETIMEDOUT && !dpu_enc->commit_done_timedout) {
2825 				dpu_enc->commit_done_timedout = true;
2826 				msm_disp_snapshot_state(drm_enc->dev);
2827 			}
2828 			if (ret)
2829 				return ret;
2830 		}
2831 	}
2832 
2833 	return ret;
2834 }
2835 
2836 /**
2837  * dpu_encoder_wait_for_tx_complete() - Wait for encoder to transfer pixels to panel
2838  * @drm_enc:	encoder pointer
2839  *
2840  * Wait for the hardware to transfer all the pixels to the panel. Physical
2841  * encoders will map this differently depending on the type: vid mode -> vsync_irq,
2842  * cmd mode -> pp_done.
2843  *
2844  * Return: 0 on success, -EWOULDBLOCK if already signaled, error otherwise
2845  */
dpu_encoder_wait_for_tx_complete(struct drm_encoder * drm_enc)2846 int dpu_encoder_wait_for_tx_complete(struct drm_encoder *drm_enc)
2847 {
2848 	struct dpu_encoder_virt *dpu_enc = NULL;
2849 	int i, ret = 0;
2850 
2851 	if (!drm_enc) {
2852 		DPU_ERROR("invalid encoder\n");
2853 		return -EINVAL;
2854 	}
2855 	dpu_enc = to_dpu_encoder_virt(drm_enc);
2856 	DPU_DEBUG_ENC(dpu_enc, "\n");
2857 
2858 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
2859 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
2860 
2861 		if (phys->ops.wait_for_tx_complete) {
2862 			DPU_ATRACE_BEGIN("wait_for_tx_complete");
2863 			ret = phys->ops.wait_for_tx_complete(phys);
2864 			DPU_ATRACE_END("wait_for_tx_complete");
2865 			if (ret)
2866 				return ret;
2867 		}
2868 	}
2869 
2870 	return ret;
2871 }
2872 
2873 /**
2874  * dpu_encoder_get_intf_mode - get interface mode of the given encoder
2875  * @encoder: Pointer to drm encoder object
2876  */
dpu_encoder_get_intf_mode(struct drm_encoder * encoder)2877 enum dpu_intf_mode dpu_encoder_get_intf_mode(struct drm_encoder *encoder)
2878 {
2879 	struct dpu_encoder_virt *dpu_enc = NULL;
2880 
2881 	if (!encoder) {
2882 		DPU_ERROR("invalid encoder\n");
2883 		return INTF_MODE_NONE;
2884 	}
2885 	dpu_enc = to_dpu_encoder_virt(encoder);
2886 
2887 	if (dpu_enc->cur_master)
2888 		return dpu_enc->cur_master->intf_mode;
2889 
2890 	if (dpu_enc->num_phys_encs)
2891 		return dpu_enc->phys_encs[0]->intf_mode;
2892 
2893 	return INTF_MODE_NONE;
2894 }
2895 
2896 /**
2897  * dpu_encoder_helper_get_cwb_mask - get CWB blocks mask for the DPU encoder
2898  * @phys_enc: Pointer to physical encoder structure
2899  */
dpu_encoder_helper_get_cwb_mask(struct dpu_encoder_phys * phys_enc)2900 unsigned int dpu_encoder_helper_get_cwb_mask(struct dpu_encoder_phys *phys_enc)
2901 {
2902 	struct drm_encoder *encoder = phys_enc->parent;
2903 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(encoder);
2904 
2905 	return dpu_enc->cwb_mask;
2906 }
2907 
2908 /**
2909  * dpu_encoder_helper_get_dsc - get DSC blocks mask for the DPU encoder
2910  *   This helper function is used by physical encoder to get DSC blocks mask
2911  *   used for this encoder.
2912  * @phys_enc: Pointer to physical encoder structure
2913  */
dpu_encoder_helper_get_dsc(struct dpu_encoder_phys * phys_enc)2914 unsigned int dpu_encoder_helper_get_dsc(struct dpu_encoder_phys *phys_enc)
2915 {
2916 	struct drm_encoder *encoder = phys_enc->parent;
2917 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(encoder);
2918 
2919 	return dpu_enc->dsc_mask;
2920 }
2921 
dpu_encoder_phys_init(struct dpu_encoder_phys * phys_enc,struct dpu_enc_phys_init_params * p)2922 void dpu_encoder_phys_init(struct dpu_encoder_phys *phys_enc,
2923 			  struct dpu_enc_phys_init_params *p)
2924 {
2925 	phys_enc->hw_mdptop = p->dpu_kms->hw_mdp;
2926 	phys_enc->hw_intf = p->hw_intf;
2927 	phys_enc->hw_wb = p->hw_wb;
2928 	phys_enc->parent = p->parent;
2929 	phys_enc->dpu_kms = p->dpu_kms;
2930 	phys_enc->split_role = p->split_role;
2931 	phys_enc->enc_spinlock = p->enc_spinlock;
2932 	phys_enc->enable_state = DPU_ENC_DISABLED;
2933 
2934 	atomic_set(&phys_enc->pending_kickoff_cnt, 0);
2935 	atomic_set(&phys_enc->pending_ctlstart_cnt, 0);
2936 
2937 	atomic_set(&phys_enc->vsync_cnt, 0);
2938 	atomic_set(&phys_enc->underrun_cnt, 0);
2939 
2940 	init_waitqueue_head(&phys_enc->pending_kickoff_wq);
2941 }
2942