xref: /linux/drivers/md/dm-verity-target.c (revision d358e5254674b70f34c847715ca509e46eb81e6f)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012 Red Hat, Inc.
4  *
5  * Author: Mikulas Patocka <mpatocka@redhat.com>
6  *
7  * Based on Chromium dm-verity driver (C) 2011 The Chromium OS Authors
8  *
9  * In the file "/sys/module/dm_verity/parameters/prefetch_cluster" you can set
10  * default prefetch value. Data are read in "prefetch_cluster" chunks from the
11  * hash device. Setting this greatly improves performance when data and hash
12  * are on the same disk on different partitions on devices with poor random
13  * access behavior.
14  */
15 
16 #include "dm-verity.h"
17 #include "dm-verity-fec.h"
18 #include "dm-verity-verify-sig.h"
19 #include "dm-audit.h"
20 #include <linux/module.h>
21 #include <linux/reboot.h>
22 #include <linux/string.h>
23 #include <linux/jump_label.h>
24 #include <linux/security.h>
25 
26 #define DM_MSG_PREFIX			"verity"
27 
28 #define DM_VERITY_ENV_LENGTH		42
29 #define DM_VERITY_ENV_VAR_NAME		"DM_VERITY_ERR_BLOCK_NR"
30 
31 #define DM_VERITY_DEFAULT_PREFETCH_SIZE	262144
32 #define DM_VERITY_USE_BH_DEFAULT_BYTES	8192
33 
34 #define DM_VERITY_MAX_CORRUPTED_ERRS	100
35 
36 #define DM_VERITY_OPT_LOGGING		"ignore_corruption"
37 #define DM_VERITY_OPT_RESTART		"restart_on_corruption"
38 #define DM_VERITY_OPT_PANIC		"panic_on_corruption"
39 #define DM_VERITY_OPT_ERROR_RESTART	"restart_on_error"
40 #define DM_VERITY_OPT_ERROR_PANIC	"panic_on_error"
41 #define DM_VERITY_OPT_IGN_ZEROES	"ignore_zero_blocks"
42 #define DM_VERITY_OPT_AT_MOST_ONCE	"check_at_most_once"
43 #define DM_VERITY_OPT_TASKLET_VERIFY	"try_verify_in_tasklet"
44 
45 #define DM_VERITY_OPTS_MAX		(5 + DM_VERITY_OPTS_FEC + \
46 					 DM_VERITY_ROOT_HASH_VERIFICATION_OPTS)
47 
48 static unsigned int dm_verity_prefetch_cluster = DM_VERITY_DEFAULT_PREFETCH_SIZE;
49 
50 module_param_named(prefetch_cluster, dm_verity_prefetch_cluster, uint, 0644);
51 
52 static unsigned int dm_verity_use_bh_bytes[4] = {
53 	DM_VERITY_USE_BH_DEFAULT_BYTES,	// IOPRIO_CLASS_NONE
54 	DM_VERITY_USE_BH_DEFAULT_BYTES,	// IOPRIO_CLASS_RT
55 	DM_VERITY_USE_BH_DEFAULT_BYTES,	// IOPRIO_CLASS_BE
56 	0				// IOPRIO_CLASS_IDLE
57 };
58 
59 module_param_array_named(use_bh_bytes, dm_verity_use_bh_bytes, uint, NULL, 0644);
60 
61 static DEFINE_STATIC_KEY_FALSE(use_bh_wq_enabled);
62 
63 struct dm_verity_prefetch_work {
64 	struct work_struct work;
65 	struct dm_verity *v;
66 	unsigned short ioprio;
67 	sector_t block;
68 	unsigned int n_blocks;
69 };
70 
71 /*
72  * Auxiliary structure appended to each dm-bufio buffer. If the value
73  * hash_verified is nonzero, hash of the block has been verified.
74  *
75  * The variable hash_verified is set to 0 when allocating the buffer, then
76  * it can be changed to 1 and it is never reset to 0 again.
77  *
78  * There is no lock around this value, a race condition can at worst cause
79  * that multiple processes verify the hash of the same buffer simultaneously
80  * and write 1 to hash_verified simultaneously.
81  * This condition is harmless, so we don't need locking.
82  */
83 struct buffer_aux {
84 	int hash_verified;
85 };
86 
87 /*
88  * Initialize struct buffer_aux for a freshly created buffer.
89  */
dm_bufio_alloc_callback(struct dm_buffer * buf)90 static void dm_bufio_alloc_callback(struct dm_buffer *buf)
91 {
92 	struct buffer_aux *aux = dm_bufio_get_aux_data(buf);
93 
94 	aux->hash_verified = 0;
95 }
96 
97 /*
98  * Translate input sector number to the sector number on the target device.
99  */
verity_map_sector(struct dm_verity * v,sector_t bi_sector)100 static sector_t verity_map_sector(struct dm_verity *v, sector_t bi_sector)
101 {
102 	return dm_target_offset(v->ti, bi_sector);
103 }
104 
105 /*
106  * Return hash position of a specified block at a specified tree level
107  * (0 is the lowest level).
108  * The lowest "hash_per_block_bits"-bits of the result denote hash position
109  * inside a hash block. The remaining bits denote location of the hash block.
110  */
verity_position_at_level(struct dm_verity * v,sector_t block,int level)111 static sector_t verity_position_at_level(struct dm_verity *v, sector_t block,
112 					 int level)
113 {
114 	return block >> (level * v->hash_per_block_bits);
115 }
116 
verity_hash(struct dm_verity * v,struct dm_verity_io * io,const u8 * data,size_t len,u8 * digest)117 int verity_hash(struct dm_verity *v, struct dm_verity_io *io,
118 		const u8 *data, size_t len, u8 *digest)
119 {
120 	struct shash_desc *desc;
121 	int r;
122 
123 	if (likely(v->use_sha256_lib)) {
124 		struct sha256_ctx *ctx = &io->hash_ctx.sha256;
125 
126 		/*
127 		 * Fast path using SHA-256 library.  This is enabled only for
128 		 * verity version 1, where the salt is at the beginning.
129 		 */
130 		*ctx = *v->initial_hashstate.sha256;
131 		sha256_update(ctx, data, len);
132 		sha256_final(ctx, digest);
133 		return 0;
134 	}
135 
136 	desc = &io->hash_ctx.shash;
137 	desc->tfm = v->shash_tfm;
138 	if (unlikely(v->initial_hashstate.shash == NULL)) {
139 		/* Version 0: salt at end */
140 		r = crypto_shash_init(desc) ?:
141 		    crypto_shash_update(desc, data, len) ?:
142 		    crypto_shash_update(desc, v->salt, v->salt_size) ?:
143 		    crypto_shash_final(desc, digest);
144 	} else {
145 		/* Version 1: salt at beginning */
146 		r = crypto_shash_import(desc, v->initial_hashstate.shash) ?:
147 		    crypto_shash_finup(desc, data, len, digest);
148 	}
149 	if (unlikely(r))
150 		DMERR("Error hashing block: %d", r);
151 	return r;
152 }
153 
verity_hash_at_level(struct dm_verity * v,sector_t block,int level,sector_t * hash_block,unsigned int * offset)154 static void verity_hash_at_level(struct dm_verity *v, sector_t block, int level,
155 				 sector_t *hash_block, unsigned int *offset)
156 {
157 	sector_t position = verity_position_at_level(v, block, level);
158 	unsigned int idx;
159 
160 	*hash_block = v->hash_level_block[level] + (position >> v->hash_per_block_bits);
161 
162 	if (!offset)
163 		return;
164 
165 	idx = position & ((1 << v->hash_per_block_bits) - 1);
166 	if (!v->version)
167 		*offset = idx * v->digest_size;
168 	else
169 		*offset = idx << (v->hash_dev_block_bits - v->hash_per_block_bits);
170 }
171 
172 /*
173  * Handle verification errors.
174  */
verity_handle_err(struct dm_verity * v,enum verity_block_type type,unsigned long long block)175 static int verity_handle_err(struct dm_verity *v, enum verity_block_type type,
176 			     unsigned long long block)
177 {
178 	char verity_env[DM_VERITY_ENV_LENGTH];
179 	char *envp[] = { verity_env, NULL };
180 	const char *type_str = "";
181 	struct mapped_device *md = dm_table_get_md(v->ti->table);
182 
183 	/* Corruption should be visible in device status in all modes */
184 	v->hash_failed = true;
185 
186 	if (v->corrupted_errs >= DM_VERITY_MAX_CORRUPTED_ERRS)
187 		goto out;
188 
189 	v->corrupted_errs++;
190 
191 	switch (type) {
192 	case DM_VERITY_BLOCK_TYPE_DATA:
193 		type_str = "data";
194 		break;
195 	case DM_VERITY_BLOCK_TYPE_METADATA:
196 		type_str = "metadata";
197 		break;
198 	default:
199 		BUG();
200 	}
201 
202 	DMERR_LIMIT("%s: %s block %llu is corrupted", v->data_dev->name,
203 		    type_str, block);
204 
205 	if (v->corrupted_errs == DM_VERITY_MAX_CORRUPTED_ERRS) {
206 		DMERR("%s: reached maximum errors", v->data_dev->name);
207 		dm_audit_log_target(DM_MSG_PREFIX, "max-corrupted-errors", v->ti, 0);
208 	}
209 
210 	snprintf(verity_env, DM_VERITY_ENV_LENGTH, "%s=%d,%llu",
211 		DM_VERITY_ENV_VAR_NAME, type, block);
212 
213 	kobject_uevent_env(&disk_to_dev(dm_disk(md))->kobj, KOBJ_CHANGE, envp);
214 
215 out:
216 	if (v->mode == DM_VERITY_MODE_LOGGING)
217 		return 0;
218 
219 	if (v->mode == DM_VERITY_MODE_RESTART)
220 		kernel_restart("dm-verity device corrupted");
221 
222 	if (v->mode == DM_VERITY_MODE_PANIC)
223 		panic("dm-verity device corrupted");
224 
225 	return 1;
226 }
227 
228 /*
229  * Verify hash of a metadata block pertaining to the specified data block
230  * ("block" argument) at a specified level ("level" argument).
231  *
232  * On successful return, want_digest contains the hash value for a lower tree
233  * level or for the data block (if we're at the lowest level).
234  *
235  * If "skip_unverified" is true, unverified buffer is skipped and 1 is returned.
236  * If "skip_unverified" is false, unverified buffer is hashed and verified
237  * against current value of want_digest.
238  */
verity_verify_level(struct dm_verity * v,struct dm_verity_io * io,sector_t block,int level,bool skip_unverified,u8 * want_digest)239 static int verity_verify_level(struct dm_verity *v, struct dm_verity_io *io,
240 			       sector_t block, int level, bool skip_unverified,
241 			       u8 *want_digest)
242 {
243 	struct dm_buffer *buf;
244 	struct buffer_aux *aux;
245 	u8 *data;
246 	int r;
247 	sector_t hash_block;
248 	unsigned int offset;
249 	struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
250 
251 	verity_hash_at_level(v, block, level, &hash_block, &offset);
252 
253 	if (static_branch_unlikely(&use_bh_wq_enabled) && io->in_bh) {
254 		data = dm_bufio_get(v->bufio, hash_block, &buf);
255 		if (IS_ERR_OR_NULL(data)) {
256 			/*
257 			 * In tasklet and the hash was not in the bufio cache.
258 			 * Return early and resume execution from a work-queue
259 			 * to read the hash from disk.
260 			 */
261 			return -EAGAIN;
262 		}
263 	} else {
264 		data = dm_bufio_read_with_ioprio(v->bufio, hash_block,
265 						&buf, bio->bi_ioprio);
266 	}
267 
268 	if (IS_ERR(data)) {
269 		if (skip_unverified)
270 			return 1;
271 		r = PTR_ERR(data);
272 		data = dm_bufio_new(v->bufio, hash_block, &buf);
273 		if (IS_ERR(data))
274 			return r;
275 		if (verity_fec_decode(v, io, DM_VERITY_BLOCK_TYPE_METADATA,
276 				      want_digest, hash_block, data) == 0) {
277 			aux = dm_bufio_get_aux_data(buf);
278 			aux->hash_verified = 1;
279 			goto release_ok;
280 		} else {
281 			dm_bufio_release(buf);
282 			dm_bufio_forget(v->bufio, hash_block);
283 			return r;
284 		}
285 	}
286 
287 	aux = dm_bufio_get_aux_data(buf);
288 
289 	if (!aux->hash_verified) {
290 		if (skip_unverified) {
291 			r = 1;
292 			goto release_ret_r;
293 		}
294 
295 		r = verity_hash(v, io, data, 1 << v->hash_dev_block_bits,
296 				io->tmp_digest);
297 		if (unlikely(r < 0))
298 			goto release_ret_r;
299 
300 		if (likely(memcmp(io->tmp_digest, want_digest,
301 				  v->digest_size) == 0))
302 			aux->hash_verified = 1;
303 		else if (static_branch_unlikely(&use_bh_wq_enabled) && io->in_bh) {
304 			/*
305 			 * Error handling code (FEC included) cannot be run in a
306 			 * tasklet since it may sleep, so fallback to work-queue.
307 			 */
308 			r = -EAGAIN;
309 			goto release_ret_r;
310 		} else if (verity_fec_decode(v, io, DM_VERITY_BLOCK_TYPE_METADATA,
311 					     want_digest, hash_block, data) == 0)
312 			aux->hash_verified = 1;
313 		else if (verity_handle_err(v,
314 					   DM_VERITY_BLOCK_TYPE_METADATA,
315 					   hash_block)) {
316 			struct bio *bio;
317 			io->had_mismatch = true;
318 			bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
319 			dm_audit_log_bio(DM_MSG_PREFIX, "verify-metadata", bio,
320 					 block, 0);
321 			r = -EIO;
322 			goto release_ret_r;
323 		}
324 	}
325 
326 release_ok:
327 	data += offset;
328 	memcpy(want_digest, data, v->digest_size);
329 	r = 0;
330 
331 release_ret_r:
332 	dm_bufio_release(buf);
333 	return r;
334 }
335 
336 /*
337  * Find a hash for a given block, write it to digest and verify the integrity
338  * of the hash tree if necessary.
339  */
verity_hash_for_block(struct dm_verity * v,struct dm_verity_io * io,sector_t block,u8 * digest,bool * is_zero)340 int verity_hash_for_block(struct dm_verity *v, struct dm_verity_io *io,
341 			  sector_t block, u8 *digest, bool *is_zero)
342 {
343 	int r = 0, i;
344 
345 	if (likely(v->levels)) {
346 		/*
347 		 * First, we try to get the requested hash for
348 		 * the current block. If the hash block itself is
349 		 * verified, zero is returned. If it isn't, this
350 		 * function returns 1 and we fall back to whole
351 		 * chain verification.
352 		 */
353 		r = verity_verify_level(v, io, block, 0, true, digest);
354 		if (likely(r <= 0))
355 			goto out;
356 	}
357 
358 	memcpy(digest, v->root_digest, v->digest_size);
359 
360 	for (i = v->levels - 1; i >= 0; i--) {
361 		r = verity_verify_level(v, io, block, i, false, digest);
362 		if (unlikely(r))
363 			goto out;
364 	}
365 out:
366 	if (!r && v->zero_digest)
367 		*is_zero = !memcmp(v->zero_digest, digest, v->digest_size);
368 	else
369 		*is_zero = false;
370 
371 	return r;
372 }
373 
verity_recheck(struct dm_verity * v,struct dm_verity_io * io,const u8 * want_digest,sector_t cur_block,u8 * dest)374 static noinline int verity_recheck(struct dm_verity *v, struct dm_verity_io *io,
375 				   const u8 *want_digest, sector_t cur_block,
376 				   u8 *dest)
377 {
378 	struct page *page;
379 	void *buffer;
380 	int r;
381 	struct dm_io_request io_req;
382 	struct dm_io_region io_loc;
383 
384 	page = mempool_alloc(&v->recheck_pool, GFP_NOIO);
385 	buffer = page_to_virt(page);
386 
387 	io_req.bi_opf = REQ_OP_READ;
388 	io_req.mem.type = DM_IO_KMEM;
389 	io_req.mem.ptr.addr = buffer;
390 	io_req.notify.fn = NULL;
391 	io_req.client = v->io;
392 	io_loc.bdev = v->data_dev->bdev;
393 	io_loc.sector = cur_block << (v->data_dev_block_bits - SECTOR_SHIFT);
394 	io_loc.count = 1 << (v->data_dev_block_bits - SECTOR_SHIFT);
395 	r = dm_io(&io_req, 1, &io_loc, NULL, IOPRIO_DEFAULT);
396 	if (unlikely(r))
397 		goto free_ret;
398 
399 	r = verity_hash(v, io, buffer, 1 << v->data_dev_block_bits,
400 			io->tmp_digest);
401 	if (unlikely(r))
402 		goto free_ret;
403 
404 	if (memcmp(io->tmp_digest, want_digest, v->digest_size)) {
405 		r = -EIO;
406 		goto free_ret;
407 	}
408 
409 	memcpy(dest, buffer, 1 << v->data_dev_block_bits);
410 	r = 0;
411 free_ret:
412 	mempool_free(page, &v->recheck_pool);
413 
414 	return r;
415 }
416 
verity_handle_data_hash_mismatch(struct dm_verity * v,struct dm_verity_io * io,struct bio * bio,struct pending_block * block)417 static int verity_handle_data_hash_mismatch(struct dm_verity *v,
418 					    struct dm_verity_io *io,
419 					    struct bio *bio,
420 					    struct pending_block *block)
421 {
422 	const u8 *want_digest = block->want_digest;
423 	sector_t blkno = block->blkno;
424 	u8 *data = block->data;
425 
426 	if (static_branch_unlikely(&use_bh_wq_enabled) && io->in_bh) {
427 		/*
428 		 * Error handling code (FEC included) cannot be run in the
429 		 * BH workqueue, so fallback to a standard workqueue.
430 		 */
431 		return -EAGAIN;
432 	}
433 	if (verity_recheck(v, io, want_digest, blkno, data) == 0) {
434 		if (v->validated_blocks)
435 			set_bit(blkno, v->validated_blocks);
436 		return 0;
437 	}
438 #if defined(CONFIG_DM_VERITY_FEC)
439 	if (verity_fec_decode(v, io, DM_VERITY_BLOCK_TYPE_DATA, want_digest,
440 			      blkno, data) == 0)
441 		return 0;
442 #endif
443 	if (bio->bi_status)
444 		return -EIO; /* Error correction failed; Just return error */
445 
446 	if (verity_handle_err(v, DM_VERITY_BLOCK_TYPE_DATA, blkno)) {
447 		io->had_mismatch = true;
448 		dm_audit_log_bio(DM_MSG_PREFIX, "verify-data", bio, blkno, 0);
449 		return -EIO;
450 	}
451 	return 0;
452 }
453 
verity_clear_pending_blocks(struct dm_verity_io * io)454 static void verity_clear_pending_blocks(struct dm_verity_io *io)
455 {
456 	int i;
457 
458 	for (i = io->num_pending - 1; i >= 0; i--) {
459 		kunmap_local(io->pending_blocks[i].data);
460 		io->pending_blocks[i].data = NULL;
461 	}
462 	io->num_pending = 0;
463 }
464 
verity_verify_pending_blocks(struct dm_verity * v,struct dm_verity_io * io,struct bio * bio)465 static int verity_verify_pending_blocks(struct dm_verity *v,
466 					struct dm_verity_io *io,
467 					struct bio *bio)
468 {
469 	const unsigned int block_size = 1 << v->data_dev_block_bits;
470 	int i, r;
471 
472 	if (io->num_pending == 2) {
473 		/* num_pending == 2 implies that the algorithm is SHA-256 */
474 		sha256_finup_2x(v->initial_hashstate.sha256,
475 				io->pending_blocks[0].data,
476 				io->pending_blocks[1].data, block_size,
477 				io->pending_blocks[0].real_digest,
478 				io->pending_blocks[1].real_digest);
479 	} else {
480 		for (i = 0; i < io->num_pending; i++) {
481 			r = verity_hash(v, io, io->pending_blocks[i].data,
482 					block_size,
483 					io->pending_blocks[i].real_digest);
484 			if (unlikely(r))
485 				return r;
486 		}
487 	}
488 
489 	for (i = 0; i < io->num_pending; i++) {
490 		struct pending_block *block = &io->pending_blocks[i];
491 
492 		if (likely(memcmp(block->real_digest, block->want_digest,
493 				  v->digest_size) == 0)) {
494 			if (v->validated_blocks)
495 				set_bit(block->blkno, v->validated_blocks);
496 		} else {
497 			r = verity_handle_data_hash_mismatch(v, io, bio, block);
498 			if (unlikely(r))
499 				return r;
500 		}
501 	}
502 	verity_clear_pending_blocks(io);
503 	return 0;
504 }
505 
506 /*
507  * Verify one "dm_verity_io" structure.
508  */
verity_verify_io(struct dm_verity_io * io)509 static int verity_verify_io(struct dm_verity_io *io)
510 {
511 	struct dm_verity *v = io->v;
512 	const unsigned int block_size = 1 << v->data_dev_block_bits;
513 	const int max_pending = v->use_sha256_finup_2x ? 2 : 1;
514 	struct bvec_iter iter_copy;
515 	struct bvec_iter *iter;
516 	struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
517 	unsigned int b;
518 	int r;
519 
520 	io->num_pending = 0;
521 
522 	if (static_branch_unlikely(&use_bh_wq_enabled) && io->in_bh) {
523 		/*
524 		 * Copy the iterator in case we need to restart
525 		 * verification in a work-queue.
526 		 */
527 		iter_copy = io->iter;
528 		iter = &iter_copy;
529 	} else
530 		iter = &io->iter;
531 
532 	for (b = 0; b < io->n_blocks;
533 	     b++, bio_advance_iter(bio, iter, block_size)) {
534 		sector_t blkno = io->block + b;
535 		struct pending_block *block;
536 		bool is_zero;
537 		struct bio_vec bv;
538 		void *data;
539 
540 		if (v->validated_blocks && bio->bi_status == BLK_STS_OK &&
541 		    likely(test_bit(blkno, v->validated_blocks)))
542 			continue;
543 
544 		block = &io->pending_blocks[io->num_pending];
545 
546 		r = verity_hash_for_block(v, io, blkno, block->want_digest,
547 					  &is_zero);
548 		if (unlikely(r < 0))
549 			goto error;
550 
551 		bv = bio_iter_iovec(bio, *iter);
552 		if (unlikely(bv.bv_len < block_size)) {
553 			/*
554 			 * Data block spans pages.  This should not happen,
555 			 * since dm-verity sets dma_alignment to the data block
556 			 * size minus 1, and dm-verity also doesn't allow the
557 			 * data block size to be greater than PAGE_SIZE.
558 			 */
559 			DMERR_LIMIT("unaligned io (data block spans pages)");
560 			r = -EIO;
561 			goto error;
562 		}
563 
564 		data = bvec_kmap_local(&bv);
565 
566 		if (is_zero) {
567 			/*
568 			 * If we expect a zero block, don't validate, just
569 			 * return zeros.
570 			 */
571 			memset(data, 0, block_size);
572 			kunmap_local(data);
573 			continue;
574 		}
575 		block->data = data;
576 		block->blkno = blkno;
577 		if (++io->num_pending == max_pending) {
578 			r = verity_verify_pending_blocks(v, io, bio);
579 			if (unlikely(r))
580 				goto error;
581 		}
582 	}
583 
584 	if (io->num_pending) {
585 		r = verity_verify_pending_blocks(v, io, bio);
586 		if (unlikely(r))
587 			goto error;
588 	}
589 
590 	return 0;
591 
592 error:
593 	verity_clear_pending_blocks(io);
594 	return r;
595 }
596 
597 /*
598  * Skip verity work in response to I/O error when system is shutting down.
599  */
verity_is_system_shutting_down(void)600 static inline bool verity_is_system_shutting_down(void)
601 {
602 	return system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF
603 		|| system_state == SYSTEM_RESTART;
604 }
605 
restart_io_error(struct work_struct * w)606 static void restart_io_error(struct work_struct *w)
607 {
608 	kernel_restart("dm-verity device has I/O error");
609 }
610 
611 /*
612  * End one "io" structure with a given error.
613  */
verity_finish_io(struct dm_verity_io * io,blk_status_t status)614 static void verity_finish_io(struct dm_verity_io *io, blk_status_t status)
615 {
616 	struct dm_verity *v = io->v;
617 	struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
618 
619 	bio->bi_end_io = io->orig_bi_end_io;
620 	bio->bi_status = status;
621 
622 	if (!static_branch_unlikely(&use_bh_wq_enabled) || !io->in_bh)
623 		verity_fec_finish_io(io);
624 
625 	if (unlikely(status != BLK_STS_OK) &&
626 	    unlikely(!(bio->bi_opf & REQ_RAHEAD)) &&
627 	    !io->had_mismatch &&
628 	    !verity_is_system_shutting_down()) {
629 		if (v->error_mode == DM_VERITY_MODE_PANIC) {
630 			panic("dm-verity device has I/O error");
631 		}
632 		if (v->error_mode == DM_VERITY_MODE_RESTART) {
633 			static DECLARE_WORK(restart_work, restart_io_error);
634 			queue_work(v->verify_wq, &restart_work);
635 			/*
636 			 * We deliberately don't call bio_endio here, because
637 			 * the machine will be restarted anyway.
638 			 */
639 			return;
640 		}
641 	}
642 
643 	bio_endio(bio);
644 }
645 
verity_work(struct work_struct * w)646 static void verity_work(struct work_struct *w)
647 {
648 	struct dm_verity_io *io = container_of(w, struct dm_verity_io, work);
649 
650 	io->in_bh = false;
651 
652 	verity_finish_io(io, errno_to_blk_status(verity_verify_io(io)));
653 }
654 
verity_bh_work(struct work_struct * w)655 static void verity_bh_work(struct work_struct *w)
656 {
657 	struct dm_verity_io *io = container_of(w, struct dm_verity_io, bh_work);
658 	int err;
659 
660 	io->in_bh = true;
661 	err = verity_verify_io(io);
662 	if (err == -EAGAIN || err == -ENOMEM) {
663 		/* fallback to retrying with work-queue */
664 		INIT_WORK(&io->work, verity_work);
665 		queue_work(io->v->verify_wq, &io->work);
666 		return;
667 	}
668 
669 	verity_finish_io(io, errno_to_blk_status(err));
670 }
671 
verity_use_bh(unsigned int bytes,unsigned short ioprio)672 static inline bool verity_use_bh(unsigned int bytes, unsigned short ioprio)
673 {
674 	return ioprio <= IOPRIO_CLASS_IDLE &&
675 		bytes <= READ_ONCE(dm_verity_use_bh_bytes[ioprio]) &&
676 		!need_resched();
677 }
678 
verity_end_io(struct bio * bio)679 static void verity_end_io(struct bio *bio)
680 {
681 	struct dm_verity_io *io = bio->bi_private;
682 	unsigned short ioprio = IOPRIO_PRIO_CLASS(bio->bi_ioprio);
683 	unsigned int bytes = io->n_blocks << io->v->data_dev_block_bits;
684 
685 	if (bio->bi_status &&
686 	    (!verity_fec_is_enabled(io->v) ||
687 	     verity_is_system_shutting_down() ||
688 	     (bio->bi_opf & REQ_RAHEAD))) {
689 		verity_finish_io(io, bio->bi_status);
690 		return;
691 	}
692 
693 	if (static_branch_unlikely(&use_bh_wq_enabled) && io->v->use_bh_wq &&
694 		verity_use_bh(bytes, ioprio)) {
695 		if (in_hardirq() || irqs_disabled()) {
696 			INIT_WORK(&io->bh_work, verity_bh_work);
697 			queue_work(system_bh_wq, &io->bh_work);
698 		} else {
699 			verity_bh_work(&io->bh_work);
700 		}
701 	} else {
702 		INIT_WORK(&io->work, verity_work);
703 		queue_work(io->v->verify_wq, &io->work);
704 	}
705 }
706 
707 /*
708  * Prefetch buffers for the specified io.
709  * The root buffer is not prefetched, it is assumed that it will be cached
710  * all the time.
711  */
verity_prefetch_io(struct work_struct * work)712 static void verity_prefetch_io(struct work_struct *work)
713 {
714 	struct dm_verity_prefetch_work *pw =
715 		container_of(work, struct dm_verity_prefetch_work, work);
716 	struct dm_verity *v = pw->v;
717 	int i;
718 
719 	for (i = v->levels - 2; i >= 0; i--) {
720 		sector_t hash_block_start;
721 		sector_t hash_block_end;
722 
723 		verity_hash_at_level(v, pw->block, i, &hash_block_start, NULL);
724 		verity_hash_at_level(v, pw->block + pw->n_blocks - 1, i, &hash_block_end, NULL);
725 
726 		if (!i) {
727 			unsigned int cluster = READ_ONCE(dm_verity_prefetch_cluster);
728 
729 			cluster >>= v->data_dev_block_bits;
730 			if (unlikely(!cluster))
731 				goto no_prefetch_cluster;
732 
733 			if (unlikely(cluster & (cluster - 1)))
734 				cluster = 1 << __fls(cluster);
735 
736 			hash_block_start &= ~(sector_t)(cluster - 1);
737 			hash_block_end |= cluster - 1;
738 			if (unlikely(hash_block_end >= v->hash_blocks))
739 				hash_block_end = v->hash_blocks - 1;
740 		}
741 no_prefetch_cluster:
742 		dm_bufio_prefetch_with_ioprio(v->bufio, hash_block_start,
743 					hash_block_end - hash_block_start + 1,
744 					pw->ioprio);
745 	}
746 
747 	kfree(pw);
748 }
749 
verity_submit_prefetch(struct dm_verity * v,struct dm_verity_io * io,unsigned short ioprio)750 static void verity_submit_prefetch(struct dm_verity *v, struct dm_verity_io *io,
751 				   unsigned short ioprio)
752 {
753 	sector_t block = io->block;
754 	unsigned int n_blocks = io->n_blocks;
755 	struct dm_verity_prefetch_work *pw;
756 
757 	if (v->validated_blocks) {
758 		while (n_blocks && test_bit(block, v->validated_blocks)) {
759 			block++;
760 			n_blocks--;
761 		}
762 		while (n_blocks && test_bit(block + n_blocks - 1,
763 					    v->validated_blocks))
764 			n_blocks--;
765 		if (!n_blocks)
766 			return;
767 	}
768 
769 	pw = kmalloc(sizeof(struct dm_verity_prefetch_work),
770 		GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
771 
772 	if (!pw)
773 		return;
774 
775 	INIT_WORK(&pw->work, verity_prefetch_io);
776 	pw->v = v;
777 	pw->block = block;
778 	pw->n_blocks = n_blocks;
779 	pw->ioprio = ioprio;
780 	queue_work(v->verify_wq, &pw->work);
781 }
782 
783 /*
784  * Bio map function. It allocates dm_verity_io structure and bio vector and
785  * fills them. Then it issues prefetches and the I/O.
786  */
verity_map(struct dm_target * ti,struct bio * bio)787 static int verity_map(struct dm_target *ti, struct bio *bio)
788 {
789 	struct dm_verity *v = ti->private;
790 	struct dm_verity_io *io;
791 
792 	bio_set_dev(bio, v->data_dev->bdev);
793 	bio->bi_iter.bi_sector = verity_map_sector(v, bio->bi_iter.bi_sector);
794 
795 	if (((unsigned int)bio->bi_iter.bi_sector | bio_sectors(bio)) &
796 	    ((1 << (v->data_dev_block_bits - SECTOR_SHIFT)) - 1)) {
797 		DMERR_LIMIT("unaligned io");
798 		return DM_MAPIO_KILL;
799 	}
800 
801 	if (bio_end_sector(bio) >>
802 	    (v->data_dev_block_bits - SECTOR_SHIFT) > v->data_blocks) {
803 		DMERR_LIMIT("io out of range");
804 		return DM_MAPIO_KILL;
805 	}
806 
807 	if (bio_data_dir(bio) == WRITE)
808 		return DM_MAPIO_KILL;
809 
810 	io = dm_per_bio_data(bio, ti->per_io_data_size);
811 	io->v = v;
812 	io->orig_bi_end_io = bio->bi_end_io;
813 	io->block = bio->bi_iter.bi_sector >> (v->data_dev_block_bits - SECTOR_SHIFT);
814 	io->n_blocks = bio->bi_iter.bi_size >> v->data_dev_block_bits;
815 	io->had_mismatch = false;
816 
817 	bio->bi_end_io = verity_end_io;
818 	bio->bi_private = io;
819 	io->iter = bio->bi_iter;
820 
821 	verity_fec_init_io(io);
822 
823 	verity_submit_prefetch(v, io, bio->bi_ioprio);
824 
825 	submit_bio_noacct(bio);
826 
827 	return DM_MAPIO_SUBMITTED;
828 }
829 
verity_postsuspend(struct dm_target * ti)830 static void verity_postsuspend(struct dm_target *ti)
831 {
832 	struct dm_verity *v = ti->private;
833 	flush_workqueue(v->verify_wq);
834 	dm_bufio_client_reset(v->bufio);
835 }
836 
837 /*
838  * Status: V (valid) or C (corruption found)
839  */
verity_status(struct dm_target * ti,status_type_t type,unsigned int status_flags,char * result,unsigned int maxlen)840 static void verity_status(struct dm_target *ti, status_type_t type,
841 			  unsigned int status_flags, char *result, unsigned int maxlen)
842 {
843 	struct dm_verity *v = ti->private;
844 	unsigned int args = 0;
845 	unsigned int sz = 0;
846 	unsigned int x;
847 
848 	switch (type) {
849 	case STATUSTYPE_INFO:
850 		DMEMIT("%c", v->hash_failed ? 'C' : 'V');
851 		if (verity_fec_is_enabled(v))
852 			DMEMIT(" %lld", atomic64_read(&v->fec->corrected));
853 		else
854 			DMEMIT(" -");
855 		break;
856 	case STATUSTYPE_TABLE:
857 		DMEMIT("%u %s %s %u %u %llu %llu %s ",
858 			v->version,
859 			v->data_dev->name,
860 			v->hash_dev->name,
861 			1 << v->data_dev_block_bits,
862 			1 << v->hash_dev_block_bits,
863 			(unsigned long long)v->data_blocks,
864 			(unsigned long long)v->hash_start,
865 			v->alg_name
866 			);
867 		for (x = 0; x < v->digest_size; x++)
868 			DMEMIT("%02x", v->root_digest[x]);
869 		DMEMIT(" ");
870 		if (!v->salt_size)
871 			DMEMIT("-");
872 		else
873 			for (x = 0; x < v->salt_size; x++)
874 				DMEMIT("%02x", v->salt[x]);
875 		if (v->mode != DM_VERITY_MODE_EIO)
876 			args++;
877 		if (v->error_mode != DM_VERITY_MODE_EIO)
878 			args++;
879 		if (verity_fec_is_enabled(v))
880 			args += DM_VERITY_OPTS_FEC;
881 		if (v->zero_digest)
882 			args++;
883 		if (v->validated_blocks)
884 			args++;
885 		if (v->use_bh_wq)
886 			args++;
887 		if (v->signature_key_desc)
888 			args += DM_VERITY_ROOT_HASH_VERIFICATION_OPTS;
889 		if (!args)
890 			return;
891 		DMEMIT(" %u", args);
892 		if (v->mode != DM_VERITY_MODE_EIO) {
893 			DMEMIT(" ");
894 			switch (v->mode) {
895 			case DM_VERITY_MODE_LOGGING:
896 				DMEMIT(DM_VERITY_OPT_LOGGING);
897 				break;
898 			case DM_VERITY_MODE_RESTART:
899 				DMEMIT(DM_VERITY_OPT_RESTART);
900 				break;
901 			case DM_VERITY_MODE_PANIC:
902 				DMEMIT(DM_VERITY_OPT_PANIC);
903 				break;
904 			default:
905 				BUG();
906 			}
907 		}
908 		if (v->error_mode != DM_VERITY_MODE_EIO) {
909 			DMEMIT(" ");
910 			switch (v->error_mode) {
911 			case DM_VERITY_MODE_RESTART:
912 				DMEMIT(DM_VERITY_OPT_ERROR_RESTART);
913 				break;
914 			case DM_VERITY_MODE_PANIC:
915 				DMEMIT(DM_VERITY_OPT_ERROR_PANIC);
916 				break;
917 			default:
918 				BUG();
919 			}
920 		}
921 		if (v->zero_digest)
922 			DMEMIT(" " DM_VERITY_OPT_IGN_ZEROES);
923 		if (v->validated_blocks)
924 			DMEMIT(" " DM_VERITY_OPT_AT_MOST_ONCE);
925 		if (v->use_bh_wq)
926 			DMEMIT(" " DM_VERITY_OPT_TASKLET_VERIFY);
927 		sz = verity_fec_status_table(v, sz, result, maxlen);
928 		if (v->signature_key_desc)
929 			DMEMIT(" " DM_VERITY_ROOT_HASH_VERIFICATION_OPT_SIG_KEY
930 				" %s", v->signature_key_desc);
931 		break;
932 
933 	case STATUSTYPE_IMA:
934 		DMEMIT_TARGET_NAME_VERSION(ti->type);
935 		DMEMIT(",hash_failed=%c", v->hash_failed ? 'C' : 'V');
936 		DMEMIT(",verity_version=%u", v->version);
937 		DMEMIT(",data_device_name=%s", v->data_dev->name);
938 		DMEMIT(",hash_device_name=%s", v->hash_dev->name);
939 		DMEMIT(",verity_algorithm=%s", v->alg_name);
940 
941 		DMEMIT(",root_digest=");
942 		for (x = 0; x < v->digest_size; x++)
943 			DMEMIT("%02x", v->root_digest[x]);
944 
945 		DMEMIT(",salt=");
946 		if (!v->salt_size)
947 			DMEMIT("-");
948 		else
949 			for (x = 0; x < v->salt_size; x++)
950 				DMEMIT("%02x", v->salt[x]);
951 
952 		DMEMIT(",ignore_zero_blocks=%c", v->zero_digest ? 'y' : 'n');
953 		DMEMIT(",check_at_most_once=%c", v->validated_blocks ? 'y' : 'n');
954 		if (v->signature_key_desc)
955 			DMEMIT(",root_hash_sig_key_desc=%s", v->signature_key_desc);
956 
957 		if (v->mode != DM_VERITY_MODE_EIO) {
958 			DMEMIT(",verity_mode=");
959 			switch (v->mode) {
960 			case DM_VERITY_MODE_LOGGING:
961 				DMEMIT(DM_VERITY_OPT_LOGGING);
962 				break;
963 			case DM_VERITY_MODE_RESTART:
964 				DMEMIT(DM_VERITY_OPT_RESTART);
965 				break;
966 			case DM_VERITY_MODE_PANIC:
967 				DMEMIT(DM_VERITY_OPT_PANIC);
968 				break;
969 			default:
970 				DMEMIT("invalid");
971 			}
972 		}
973 		if (v->error_mode != DM_VERITY_MODE_EIO) {
974 			DMEMIT(",verity_error_mode=");
975 			switch (v->error_mode) {
976 			case DM_VERITY_MODE_RESTART:
977 				DMEMIT(DM_VERITY_OPT_ERROR_RESTART);
978 				break;
979 			case DM_VERITY_MODE_PANIC:
980 				DMEMIT(DM_VERITY_OPT_ERROR_PANIC);
981 				break;
982 			default:
983 				DMEMIT("invalid");
984 			}
985 		}
986 		DMEMIT(";");
987 		break;
988 	}
989 }
990 
verity_prepare_ioctl(struct dm_target * ti,struct block_device ** bdev,unsigned int cmd,unsigned long arg,bool * forward)991 static int verity_prepare_ioctl(struct dm_target *ti, struct block_device **bdev,
992 				unsigned int cmd, unsigned long arg,
993 				bool *forward)
994 {
995 	struct dm_verity *v = ti->private;
996 
997 	*bdev = v->data_dev->bdev;
998 
999 	if (ti->len != bdev_nr_sectors(v->data_dev->bdev))
1000 		return 1;
1001 	return 0;
1002 }
1003 
verity_iterate_devices(struct dm_target * ti,iterate_devices_callout_fn fn,void * data)1004 static int verity_iterate_devices(struct dm_target *ti,
1005 				  iterate_devices_callout_fn fn, void *data)
1006 {
1007 	struct dm_verity *v = ti->private;
1008 
1009 	return fn(ti, v->data_dev, 0, ti->len, data);
1010 }
1011 
verity_io_hints(struct dm_target * ti,struct queue_limits * limits)1012 static void verity_io_hints(struct dm_target *ti, struct queue_limits *limits)
1013 {
1014 	struct dm_verity *v = ti->private;
1015 
1016 	if (limits->logical_block_size < 1 << v->data_dev_block_bits)
1017 		limits->logical_block_size = 1 << v->data_dev_block_bits;
1018 
1019 	if (limits->physical_block_size < 1 << v->data_dev_block_bits)
1020 		limits->physical_block_size = 1 << v->data_dev_block_bits;
1021 
1022 	limits->io_min = limits->logical_block_size;
1023 
1024 	/*
1025 	 * Similar to what dm-crypt does, opt dm-verity out of support for
1026 	 * direct I/O that is aligned to less than the traditional direct I/O
1027 	 * alignment requirement of logical_block_size.  This prevents dm-verity
1028 	 * data blocks from crossing pages, eliminating various edge cases.
1029 	 */
1030 	limits->dma_alignment = limits->logical_block_size - 1;
1031 }
1032 
1033 #ifdef CONFIG_SECURITY
1034 
verity_init_sig(struct dm_verity * v,const void * sig,size_t sig_size)1035 static int verity_init_sig(struct dm_verity *v, const void *sig,
1036 			   size_t sig_size)
1037 {
1038 	v->sig_size = sig_size;
1039 
1040 	if (sig) {
1041 		v->root_digest_sig = kmemdup(sig, v->sig_size, GFP_KERNEL);
1042 		if (!v->root_digest_sig)
1043 			return -ENOMEM;
1044 	}
1045 
1046 	return 0;
1047 }
1048 
verity_free_sig(struct dm_verity * v)1049 static void verity_free_sig(struct dm_verity *v)
1050 {
1051 	kfree(v->root_digest_sig);
1052 }
1053 
1054 #else
1055 
verity_init_sig(struct dm_verity * v,const void * sig,size_t sig_size)1056 static inline int verity_init_sig(struct dm_verity *v, const void *sig,
1057 				  size_t sig_size)
1058 {
1059 	return 0;
1060 }
1061 
verity_free_sig(struct dm_verity * v)1062 static inline void verity_free_sig(struct dm_verity *v)
1063 {
1064 }
1065 
1066 #endif /* CONFIG_SECURITY */
1067 
verity_dtr(struct dm_target * ti)1068 static void verity_dtr(struct dm_target *ti)
1069 {
1070 	struct dm_verity *v = ti->private;
1071 
1072 	if (v->verify_wq)
1073 		destroy_workqueue(v->verify_wq);
1074 
1075 	mempool_exit(&v->recheck_pool);
1076 	if (v->io)
1077 		dm_io_client_destroy(v->io);
1078 
1079 	if (v->bufio)
1080 		dm_bufio_client_destroy(v->bufio);
1081 
1082 	kvfree(v->validated_blocks);
1083 	kfree(v->salt);
1084 	kfree(v->initial_hashstate.shash);
1085 	kfree(v->root_digest);
1086 	kfree(v->zero_digest);
1087 	verity_free_sig(v);
1088 
1089 	crypto_free_shash(v->shash_tfm);
1090 
1091 	kfree(v->alg_name);
1092 
1093 	if (v->hash_dev)
1094 		dm_put_device(ti, v->hash_dev);
1095 
1096 	if (v->data_dev)
1097 		dm_put_device(ti, v->data_dev);
1098 
1099 	verity_fec_dtr(v);
1100 
1101 	kfree(v->signature_key_desc);
1102 
1103 	if (v->use_bh_wq)
1104 		static_branch_dec(&use_bh_wq_enabled);
1105 
1106 	kfree(v);
1107 
1108 	dm_audit_log_dtr(DM_MSG_PREFIX, ti, 1);
1109 }
1110 
verity_alloc_most_once(struct dm_verity * v)1111 static int verity_alloc_most_once(struct dm_verity *v)
1112 {
1113 	struct dm_target *ti = v->ti;
1114 
1115 	if (v->validated_blocks)
1116 		return 0;
1117 
1118 	/* the bitset can only handle INT_MAX blocks */
1119 	if (v->data_blocks > INT_MAX) {
1120 		ti->error = "device too large to use check_at_most_once";
1121 		return -E2BIG;
1122 	}
1123 
1124 	v->validated_blocks = kvcalloc(BITS_TO_LONGS(v->data_blocks),
1125 				       sizeof(unsigned long),
1126 				       GFP_KERNEL);
1127 	if (!v->validated_blocks) {
1128 		ti->error = "failed to allocate bitset for check_at_most_once";
1129 		return -ENOMEM;
1130 	}
1131 
1132 	return 0;
1133 }
1134 
verity_alloc_zero_digest(struct dm_verity * v)1135 static int verity_alloc_zero_digest(struct dm_verity *v)
1136 {
1137 	int r = -ENOMEM;
1138 	struct dm_verity_io *io;
1139 	u8 *zero_data;
1140 
1141 	if (v->zero_digest)
1142 		return 0;
1143 
1144 	v->zero_digest = kmalloc(v->digest_size, GFP_KERNEL);
1145 
1146 	if (!v->zero_digest)
1147 		return r;
1148 
1149 	io = kmalloc(v->ti->per_io_data_size, GFP_KERNEL);
1150 
1151 	if (!io)
1152 		return r; /* verity_dtr will free zero_digest */
1153 
1154 	zero_data = kzalloc(1 << v->data_dev_block_bits, GFP_KERNEL);
1155 
1156 	if (!zero_data)
1157 		goto out;
1158 
1159 	r = verity_hash(v, io, zero_data, 1 << v->data_dev_block_bits,
1160 			v->zero_digest);
1161 
1162 out:
1163 	kfree(io);
1164 	kfree(zero_data);
1165 
1166 	return r;
1167 }
1168 
verity_is_verity_mode(const char * arg_name)1169 static inline bool verity_is_verity_mode(const char *arg_name)
1170 {
1171 	return (!strcasecmp(arg_name, DM_VERITY_OPT_LOGGING) ||
1172 		!strcasecmp(arg_name, DM_VERITY_OPT_RESTART) ||
1173 		!strcasecmp(arg_name, DM_VERITY_OPT_PANIC));
1174 }
1175 
verity_parse_verity_mode(struct dm_verity * v,const char * arg_name)1176 static int verity_parse_verity_mode(struct dm_verity *v, const char *arg_name)
1177 {
1178 	if (v->mode)
1179 		return -EINVAL;
1180 
1181 	if (!strcasecmp(arg_name, DM_VERITY_OPT_LOGGING))
1182 		v->mode = DM_VERITY_MODE_LOGGING;
1183 	else if (!strcasecmp(arg_name, DM_VERITY_OPT_RESTART))
1184 		v->mode = DM_VERITY_MODE_RESTART;
1185 	else if (!strcasecmp(arg_name, DM_VERITY_OPT_PANIC))
1186 		v->mode = DM_VERITY_MODE_PANIC;
1187 
1188 	return 0;
1189 }
1190 
verity_is_verity_error_mode(const char * arg_name)1191 static inline bool verity_is_verity_error_mode(const char *arg_name)
1192 {
1193 	return (!strcasecmp(arg_name, DM_VERITY_OPT_ERROR_RESTART) ||
1194 		!strcasecmp(arg_name, DM_VERITY_OPT_ERROR_PANIC));
1195 }
1196 
verity_parse_verity_error_mode(struct dm_verity * v,const char * arg_name)1197 static int verity_parse_verity_error_mode(struct dm_verity *v, const char *arg_name)
1198 {
1199 	if (v->error_mode)
1200 		return -EINVAL;
1201 
1202 	if (!strcasecmp(arg_name, DM_VERITY_OPT_ERROR_RESTART))
1203 		v->error_mode = DM_VERITY_MODE_RESTART;
1204 	else if (!strcasecmp(arg_name, DM_VERITY_OPT_ERROR_PANIC))
1205 		v->error_mode = DM_VERITY_MODE_PANIC;
1206 
1207 	return 0;
1208 }
1209 
verity_parse_opt_args(struct dm_arg_set * as,struct dm_verity * v,struct dm_verity_sig_opts * verify_args,bool only_modifier_opts)1210 static int verity_parse_opt_args(struct dm_arg_set *as, struct dm_verity *v,
1211 				 struct dm_verity_sig_opts *verify_args,
1212 				 bool only_modifier_opts)
1213 {
1214 	int r = 0;
1215 	unsigned int argc;
1216 	struct dm_target *ti = v->ti;
1217 	const char *arg_name;
1218 
1219 	static const struct dm_arg _args[] = {
1220 		{0, DM_VERITY_OPTS_MAX, "Invalid number of feature args"},
1221 	};
1222 
1223 	r = dm_read_arg_group(_args, as, &argc, &ti->error);
1224 	if (r)
1225 		return -EINVAL;
1226 
1227 	if (!argc)
1228 		return 0;
1229 
1230 	do {
1231 		arg_name = dm_shift_arg(as);
1232 		argc--;
1233 
1234 		if (verity_is_verity_mode(arg_name)) {
1235 			if (only_modifier_opts)
1236 				continue;
1237 			r = verity_parse_verity_mode(v, arg_name);
1238 			if (r) {
1239 				ti->error = "Conflicting error handling parameters";
1240 				return r;
1241 			}
1242 			continue;
1243 
1244 		} else if (verity_is_verity_error_mode(arg_name)) {
1245 			if (only_modifier_opts)
1246 				continue;
1247 			r = verity_parse_verity_error_mode(v, arg_name);
1248 			if (r) {
1249 				ti->error = "Conflicting error handling parameters";
1250 				return r;
1251 			}
1252 			continue;
1253 
1254 		} else if (!strcasecmp(arg_name, DM_VERITY_OPT_IGN_ZEROES)) {
1255 			if (only_modifier_opts)
1256 				continue;
1257 			r = verity_alloc_zero_digest(v);
1258 			if (r) {
1259 				ti->error = "Cannot allocate zero digest";
1260 				return r;
1261 			}
1262 			continue;
1263 
1264 		} else if (!strcasecmp(arg_name, DM_VERITY_OPT_AT_MOST_ONCE)) {
1265 			if (only_modifier_opts)
1266 				continue;
1267 			r = verity_alloc_most_once(v);
1268 			if (r)
1269 				return r;
1270 			continue;
1271 
1272 		} else if (!strcasecmp(arg_name, DM_VERITY_OPT_TASKLET_VERIFY)) {
1273 			v->use_bh_wq = true;
1274 			static_branch_inc(&use_bh_wq_enabled);
1275 			continue;
1276 
1277 		} else if (verity_is_fec_opt_arg(arg_name)) {
1278 			if (only_modifier_opts)
1279 				continue;
1280 			r = verity_fec_parse_opt_args(as, v, &argc, arg_name);
1281 			if (r)
1282 				return r;
1283 			continue;
1284 
1285 		} else if (verity_verify_is_sig_opt_arg(arg_name)) {
1286 			if (only_modifier_opts)
1287 				continue;
1288 			r = verity_verify_sig_parse_opt_args(as, v,
1289 							     verify_args,
1290 							     &argc, arg_name);
1291 			if (r)
1292 				return r;
1293 			continue;
1294 
1295 		} else if (only_modifier_opts) {
1296 			/*
1297 			 * Ignore unrecognized opt, could easily be an extra
1298 			 * argument to an option whose parsing was skipped.
1299 			 * Normal parsing (@only_modifier_opts=false) will
1300 			 * properly parse all options (and their extra args).
1301 			 */
1302 			continue;
1303 		}
1304 
1305 		DMERR("Unrecognized verity feature request: %s", arg_name);
1306 		ti->error = "Unrecognized verity feature request";
1307 		return -EINVAL;
1308 	} while (argc && !r);
1309 
1310 	return r;
1311 }
1312 
verity_setup_hash_alg(struct dm_verity * v,const char * alg_name)1313 static int verity_setup_hash_alg(struct dm_verity *v, const char *alg_name)
1314 {
1315 	struct dm_target *ti = v->ti;
1316 	struct crypto_shash *shash;
1317 
1318 	v->alg_name = kstrdup(alg_name, GFP_KERNEL);
1319 	if (!v->alg_name) {
1320 		ti->error = "Cannot allocate algorithm name";
1321 		return -ENOMEM;
1322 	}
1323 
1324 	shash = crypto_alloc_shash(alg_name, 0, 0);
1325 	if (IS_ERR(shash)) {
1326 		ti->error = "Cannot initialize hash function";
1327 		return PTR_ERR(shash);
1328 	}
1329 	v->shash_tfm = shash;
1330 	v->digest_size = crypto_shash_digestsize(shash);
1331 	if ((1 << v->hash_dev_block_bits) < v->digest_size * 2) {
1332 		ti->error = "Digest size too big";
1333 		return -EINVAL;
1334 	}
1335 	if (likely(v->version && strcmp(alg_name, "sha256") == 0)) {
1336 		/*
1337 		 * Fast path: use the library API for reduced overhead and
1338 		 * interleaved hashing support.
1339 		 */
1340 		v->use_sha256_lib = true;
1341 		if (sha256_finup_2x_is_optimized())
1342 			v->use_sha256_finup_2x = true;
1343 		ti->per_io_data_size =
1344 			offsetofend(struct dm_verity_io, hash_ctx.sha256);
1345 	} else {
1346 		/* Fallback case: use the generic crypto API. */
1347 		ti->per_io_data_size =
1348 			offsetofend(struct dm_verity_io, hash_ctx.shash) +
1349 			crypto_shash_descsize(shash);
1350 	}
1351 	return 0;
1352 }
1353 
verity_setup_salt_and_hashstate(struct dm_verity * v,const char * arg)1354 static int verity_setup_salt_and_hashstate(struct dm_verity *v, const char *arg)
1355 {
1356 	struct dm_target *ti = v->ti;
1357 
1358 	if (strcmp(arg, "-") != 0) {
1359 		v->salt_size = strlen(arg) / 2;
1360 		v->salt = kmalloc(v->salt_size, GFP_KERNEL);
1361 		if (!v->salt) {
1362 			ti->error = "Cannot allocate salt";
1363 			return -ENOMEM;
1364 		}
1365 		if (strlen(arg) != v->salt_size * 2 ||
1366 		    hex2bin(v->salt, arg, v->salt_size)) {
1367 			ti->error = "Invalid salt";
1368 			return -EINVAL;
1369 		}
1370 	}
1371 	if (likely(v->use_sha256_lib)) {
1372 		/* Implies version 1: salt at beginning */
1373 		v->initial_hashstate.sha256 =
1374 			kmalloc(sizeof(struct sha256_ctx), GFP_KERNEL);
1375 		if (!v->initial_hashstate.sha256) {
1376 			ti->error = "Cannot allocate initial hash state";
1377 			return -ENOMEM;
1378 		}
1379 		sha256_init(v->initial_hashstate.sha256);
1380 		sha256_update(v->initial_hashstate.sha256,
1381 			      v->salt, v->salt_size);
1382 	} else if (v->version) { /* Version 1: salt at beginning */
1383 		SHASH_DESC_ON_STACK(desc, v->shash_tfm);
1384 		int r;
1385 
1386 		/*
1387 		 * Compute the pre-salted hash state that can be passed to
1388 		 * crypto_shash_import() for each block later.
1389 		 */
1390 		v->initial_hashstate.shash = kmalloc(
1391 			crypto_shash_statesize(v->shash_tfm), GFP_KERNEL);
1392 		if (!v->initial_hashstate.shash) {
1393 			ti->error = "Cannot allocate initial hash state";
1394 			return -ENOMEM;
1395 		}
1396 		desc->tfm = v->shash_tfm;
1397 		r = crypto_shash_init(desc) ?:
1398 		    crypto_shash_update(desc, v->salt, v->salt_size) ?:
1399 		    crypto_shash_export(desc, v->initial_hashstate.shash);
1400 		if (r) {
1401 			ti->error = "Cannot set up initial hash state";
1402 			return r;
1403 		}
1404 	}
1405 	return 0;
1406 }
1407 
1408 /*
1409  * Target parameters:
1410  *	<version>	The current format is version 1.
1411  *			Vsn 0 is compatible with original Chromium OS releases.
1412  *	<data device>
1413  *	<hash device>
1414  *	<data block size>
1415  *	<hash block size>
1416  *	<the number of data blocks>
1417  *	<hash start block>
1418  *	<algorithm>
1419  *	<digest>
1420  *	<salt>		Hex string or "-" if no salt.
1421  */
verity_ctr(struct dm_target * ti,unsigned int argc,char ** argv)1422 static int verity_ctr(struct dm_target *ti, unsigned int argc, char **argv)
1423 {
1424 	struct dm_verity *v;
1425 	struct dm_verity_sig_opts verify_args = {0};
1426 	struct dm_arg_set as;
1427 	unsigned int num;
1428 	unsigned long long num_ll;
1429 	int r;
1430 	int i;
1431 	sector_t hash_position;
1432 	char dummy;
1433 	char *root_hash_digest_to_validate;
1434 
1435 	v = kzalloc(sizeof(struct dm_verity), GFP_KERNEL);
1436 	if (!v) {
1437 		ti->error = "Cannot allocate verity structure";
1438 		return -ENOMEM;
1439 	}
1440 	ti->private = v;
1441 	v->ti = ti;
1442 
1443 	r = verity_fec_ctr_alloc(v);
1444 	if (r)
1445 		goto bad;
1446 
1447 	if ((dm_table_get_mode(ti->table) & ~BLK_OPEN_READ)) {
1448 		ti->error = "Device must be readonly";
1449 		r = -EINVAL;
1450 		goto bad;
1451 	}
1452 
1453 	if (argc < 10) {
1454 		ti->error = "Not enough arguments";
1455 		r = -EINVAL;
1456 		goto bad;
1457 	}
1458 
1459 	/* Parse optional parameters that modify primary args */
1460 	if (argc > 10) {
1461 		as.argc = argc - 10;
1462 		as.argv = argv + 10;
1463 		r = verity_parse_opt_args(&as, v, &verify_args, true);
1464 		if (r < 0)
1465 			goto bad;
1466 	}
1467 
1468 	if (sscanf(argv[0], "%u%c", &num, &dummy) != 1 ||
1469 	    num > 1) {
1470 		ti->error = "Invalid version";
1471 		r = -EINVAL;
1472 		goto bad;
1473 	}
1474 	v->version = num;
1475 
1476 	r = dm_get_device(ti, argv[1], BLK_OPEN_READ, &v->data_dev);
1477 	if (r) {
1478 		ti->error = "Data device lookup failed";
1479 		goto bad;
1480 	}
1481 
1482 	r = dm_get_device(ti, argv[2], BLK_OPEN_READ, &v->hash_dev);
1483 	if (r) {
1484 		ti->error = "Hash device lookup failed";
1485 		goto bad;
1486 	}
1487 
1488 	if (sscanf(argv[3], "%u%c", &num, &dummy) != 1 ||
1489 	    !num || (num & (num - 1)) ||
1490 	    num < bdev_logical_block_size(v->data_dev->bdev) ||
1491 	    num > PAGE_SIZE) {
1492 		ti->error = "Invalid data device block size";
1493 		r = -EINVAL;
1494 		goto bad;
1495 	}
1496 	v->data_dev_block_bits = __ffs(num);
1497 
1498 	if (sscanf(argv[4], "%u%c", &num, &dummy) != 1 ||
1499 	    !num || (num & (num - 1)) ||
1500 	    num < bdev_logical_block_size(v->hash_dev->bdev) ||
1501 	    num > INT_MAX) {
1502 		ti->error = "Invalid hash device block size";
1503 		r = -EINVAL;
1504 		goto bad;
1505 	}
1506 	v->hash_dev_block_bits = __ffs(num);
1507 
1508 	if (sscanf(argv[5], "%llu%c", &num_ll, &dummy) != 1 ||
1509 	    (sector_t)(num_ll << (v->data_dev_block_bits - SECTOR_SHIFT))
1510 	    >> (v->data_dev_block_bits - SECTOR_SHIFT) != num_ll) {
1511 		ti->error = "Invalid data blocks";
1512 		r = -EINVAL;
1513 		goto bad;
1514 	}
1515 	v->data_blocks = num_ll;
1516 
1517 	if (ti->len > (v->data_blocks << (v->data_dev_block_bits - SECTOR_SHIFT))) {
1518 		ti->error = "Data device is too small";
1519 		r = -EINVAL;
1520 		goto bad;
1521 	}
1522 
1523 	if (sscanf(argv[6], "%llu%c", &num_ll, &dummy) != 1 ||
1524 	    (sector_t)(num_ll << (v->hash_dev_block_bits - SECTOR_SHIFT))
1525 	    >> (v->hash_dev_block_bits - SECTOR_SHIFT) != num_ll) {
1526 		ti->error = "Invalid hash start";
1527 		r = -EINVAL;
1528 		goto bad;
1529 	}
1530 	v->hash_start = num_ll;
1531 
1532 	r = verity_setup_hash_alg(v, argv[7]);
1533 	if (r)
1534 		goto bad;
1535 
1536 	v->root_digest = kmalloc(v->digest_size, GFP_KERNEL);
1537 	if (!v->root_digest) {
1538 		ti->error = "Cannot allocate root digest";
1539 		r = -ENOMEM;
1540 		goto bad;
1541 	}
1542 	if (strlen(argv[8]) != v->digest_size * 2 ||
1543 	    hex2bin(v->root_digest, argv[8], v->digest_size)) {
1544 		ti->error = "Invalid root digest";
1545 		r = -EINVAL;
1546 		goto bad;
1547 	}
1548 	root_hash_digest_to_validate = argv[8];
1549 
1550 	r = verity_setup_salt_and_hashstate(v, argv[9]);
1551 	if (r)
1552 		goto bad;
1553 
1554 	argv += 10;
1555 	argc -= 10;
1556 
1557 	/* Optional parameters */
1558 	if (argc) {
1559 		as.argc = argc;
1560 		as.argv = argv;
1561 		r = verity_parse_opt_args(&as, v, &verify_args, false);
1562 		if (r < 0)
1563 			goto bad;
1564 	}
1565 
1566 	/* Root hash signature is an optional parameter */
1567 	r = verity_verify_root_hash(root_hash_digest_to_validate,
1568 				    strlen(root_hash_digest_to_validate),
1569 				    verify_args.sig,
1570 				    verify_args.sig_size);
1571 	if (r < 0) {
1572 		ti->error = "Root hash verification failed";
1573 		goto bad;
1574 	}
1575 
1576 	r = verity_init_sig(v, verify_args.sig, verify_args.sig_size);
1577 	if (r < 0) {
1578 		ti->error = "Cannot allocate root digest signature";
1579 		goto bad;
1580 	}
1581 
1582 	v->hash_per_block_bits =
1583 		__fls((1 << v->hash_dev_block_bits) / v->digest_size);
1584 
1585 	v->levels = 0;
1586 	if (v->data_blocks)
1587 		while (v->hash_per_block_bits * v->levels < 64 &&
1588 		       (unsigned long long)(v->data_blocks - 1) >>
1589 		       (v->hash_per_block_bits * v->levels))
1590 			v->levels++;
1591 
1592 	if (v->levels > DM_VERITY_MAX_LEVELS) {
1593 		ti->error = "Too many tree levels";
1594 		r = -E2BIG;
1595 		goto bad;
1596 	}
1597 
1598 	hash_position = v->hash_start;
1599 	for (i = v->levels - 1; i >= 0; i--) {
1600 		sector_t s;
1601 
1602 		v->hash_level_block[i] = hash_position;
1603 		s = (v->data_blocks + ((sector_t)1 << ((i + 1) * v->hash_per_block_bits)) - 1)
1604 					>> ((i + 1) * v->hash_per_block_bits);
1605 		if (hash_position + s < hash_position) {
1606 			ti->error = "Hash device offset overflow";
1607 			r = -E2BIG;
1608 			goto bad;
1609 		}
1610 		hash_position += s;
1611 	}
1612 	v->hash_blocks = hash_position;
1613 
1614 	r = mempool_init_page_pool(&v->recheck_pool, 1, 0);
1615 	if (unlikely(r)) {
1616 		ti->error = "Cannot allocate mempool";
1617 		goto bad;
1618 	}
1619 
1620 	v->io = dm_io_client_create();
1621 	if (IS_ERR(v->io)) {
1622 		r = PTR_ERR(v->io);
1623 		v->io = NULL;
1624 		ti->error = "Cannot allocate dm io";
1625 		goto bad;
1626 	}
1627 
1628 	v->bufio = dm_bufio_client_create(v->hash_dev->bdev,
1629 		1 << v->hash_dev_block_bits, 1, sizeof(struct buffer_aux),
1630 		dm_bufio_alloc_callback, NULL,
1631 		v->use_bh_wq ? DM_BUFIO_CLIENT_NO_SLEEP : 0);
1632 	if (IS_ERR(v->bufio)) {
1633 		ti->error = "Cannot initialize dm-bufio";
1634 		r = PTR_ERR(v->bufio);
1635 		v->bufio = NULL;
1636 		goto bad;
1637 	}
1638 
1639 	if (dm_bufio_get_device_size(v->bufio) < v->hash_blocks) {
1640 		ti->error = "Hash device is too small";
1641 		r = -E2BIG;
1642 		goto bad;
1643 	}
1644 
1645 	/*
1646 	 * Using WQ_HIGHPRI improves throughput and completion latency by
1647 	 * reducing wait times when reading from a dm-verity device.
1648 	 *
1649 	 * Also as required for the "try_verify_in_tasklet" feature: WQ_HIGHPRI
1650 	 * allows verify_wq to preempt softirq since verification in BH workqueue
1651 	 * will fall-back to using it for error handling (or if the bufio cache
1652 	 * doesn't have required hashes).
1653 	 */
1654 	v->verify_wq = alloc_workqueue("kverityd", WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1655 	if (!v->verify_wq) {
1656 		ti->error = "Cannot allocate workqueue";
1657 		r = -ENOMEM;
1658 		goto bad;
1659 	}
1660 
1661 	r = verity_fec_ctr(v);
1662 	if (r)
1663 		goto bad;
1664 
1665 	ti->per_io_data_size = roundup(ti->per_io_data_size,
1666 				       __alignof__(struct dm_verity_io));
1667 
1668 	verity_verify_sig_opts_cleanup(&verify_args);
1669 
1670 	dm_audit_log_ctr(DM_MSG_PREFIX, ti, 1);
1671 
1672 	return 0;
1673 
1674 bad:
1675 
1676 	verity_verify_sig_opts_cleanup(&verify_args);
1677 	dm_audit_log_ctr(DM_MSG_PREFIX, ti, 0);
1678 	verity_dtr(ti);
1679 
1680 	return r;
1681 }
1682 
1683 /*
1684  * Get the verity mode (error behavior) of a verity target.
1685  *
1686  * Returns the verity mode of the target, or -EINVAL if 'ti' is not a verity
1687  * target.
1688  */
dm_verity_get_mode(struct dm_target * ti)1689 int dm_verity_get_mode(struct dm_target *ti)
1690 {
1691 	struct dm_verity *v = ti->private;
1692 
1693 	if (!dm_is_verity_target(ti))
1694 		return -EINVAL;
1695 
1696 	return v->mode;
1697 }
1698 
1699 /*
1700  * Get the root digest of a verity target.
1701  *
1702  * Returns a copy of the root digest, the caller is responsible for
1703  * freeing the memory of the digest.
1704  */
dm_verity_get_root_digest(struct dm_target * ti,u8 ** root_digest,unsigned int * digest_size)1705 int dm_verity_get_root_digest(struct dm_target *ti, u8 **root_digest, unsigned int *digest_size)
1706 {
1707 	struct dm_verity *v = ti->private;
1708 
1709 	if (!dm_is_verity_target(ti))
1710 		return -EINVAL;
1711 
1712 	*root_digest = kmemdup(v->root_digest, v->digest_size, GFP_KERNEL);
1713 	if (*root_digest == NULL)
1714 		return -ENOMEM;
1715 
1716 	*digest_size = v->digest_size;
1717 
1718 	return 0;
1719 }
1720 
1721 #ifdef CONFIG_SECURITY
1722 
1723 #ifdef CONFIG_DM_VERITY_VERIFY_ROOTHASH_SIG
1724 
verity_security_set_signature(struct block_device * bdev,struct dm_verity * v)1725 static int verity_security_set_signature(struct block_device *bdev,
1726 					 struct dm_verity *v)
1727 {
1728 	/*
1729 	 * if the dm-verity target is unsigned, v->root_digest_sig will
1730 	 * be NULL, and the hook call is still required to let LSMs mark
1731 	 * the device as unsigned. This information is crucial for LSMs to
1732 	 * block operations such as execution on unsigned files
1733 	 */
1734 	return security_bdev_setintegrity(bdev,
1735 					  LSM_INT_DMVERITY_SIG_VALID,
1736 					  v->root_digest_sig,
1737 					  v->sig_size);
1738 }
1739 
1740 #else
1741 
verity_security_set_signature(struct block_device * bdev,struct dm_verity * v)1742 static inline int verity_security_set_signature(struct block_device *bdev,
1743 						struct dm_verity *v)
1744 {
1745 	return 0;
1746 }
1747 
1748 #endif /* CONFIG_DM_VERITY_VERIFY_ROOTHASH_SIG */
1749 
1750 /*
1751  * Expose verity target's root hash and signature data to LSMs before resume.
1752  *
1753  * Returns 0 on success, or -ENOMEM if the system is out of memory.
1754  */
verity_preresume(struct dm_target * ti)1755 static int verity_preresume(struct dm_target *ti)
1756 {
1757 	struct block_device *bdev;
1758 	struct dm_verity_digest root_digest;
1759 	struct dm_verity *v;
1760 	int r;
1761 
1762 	v = ti->private;
1763 	bdev = dm_disk(dm_table_get_md(ti->table))->part0;
1764 	root_digest.digest = v->root_digest;
1765 	root_digest.digest_len = v->digest_size;
1766 	root_digest.alg = crypto_shash_alg_name(v->shash_tfm);
1767 
1768 	r = security_bdev_setintegrity(bdev, LSM_INT_DMVERITY_ROOTHASH, &root_digest,
1769 				       sizeof(root_digest));
1770 	if (r)
1771 		return r;
1772 
1773 	r =  verity_security_set_signature(bdev, v);
1774 	if (r)
1775 		goto bad;
1776 
1777 	return 0;
1778 
1779 bad:
1780 
1781 	security_bdev_setintegrity(bdev, LSM_INT_DMVERITY_ROOTHASH, NULL, 0);
1782 
1783 	return r;
1784 }
1785 
1786 #endif /* CONFIG_SECURITY */
1787 
1788 static struct target_type verity_target = {
1789 	.name		= "verity",
1790 /* Note: the LSMs depend on the singleton and immutable features */
1791 	.features	= DM_TARGET_SINGLETON | DM_TARGET_IMMUTABLE,
1792 	.version	= {1, 13, 0},
1793 	.module		= THIS_MODULE,
1794 	.ctr		= verity_ctr,
1795 	.dtr		= verity_dtr,
1796 	.map		= verity_map,
1797 	.postsuspend	= verity_postsuspend,
1798 	.status		= verity_status,
1799 	.prepare_ioctl	= verity_prepare_ioctl,
1800 	.iterate_devices = verity_iterate_devices,
1801 	.io_hints	= verity_io_hints,
1802 #ifdef CONFIG_SECURITY
1803 	.preresume	= verity_preresume,
1804 #endif /* CONFIG_SECURITY */
1805 };
1806 module_dm(verity);
1807 
1808 /*
1809  * Check whether a DM target is a verity target.
1810  */
dm_is_verity_target(struct dm_target * ti)1811 bool dm_is_verity_target(struct dm_target *ti)
1812 {
1813 	return ti->type == &verity_target;
1814 }
1815 
1816 MODULE_AUTHOR("Mikulas Patocka <mpatocka@redhat.com>");
1817 MODULE_AUTHOR("Mandeep Baines <msb@chromium.org>");
1818 MODULE_AUTHOR("Will Drewry <wad@chromium.org>");
1819 MODULE_DESCRIPTION(DM_NAME " target for transparent disk integrity checking");
1820 MODULE_LICENSE("GPL");
1821