xref: /linux/drivers/md/dm-crypt.c (revision d358e5254674b70f34c847715ca509e46eb81e6f)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2003 Jana Saout <jana@saout.de>
4  * Copyright (C) 2004 Clemens Fruhwirth <clemens@endorphin.org>
5  * Copyright (C) 2006-2020 Red Hat, Inc. All rights reserved.
6  * Copyright (C) 2013-2020 Milan Broz <gmazyland@gmail.com>
7  *
8  * This file is released under the GPL.
9  */
10 
11 #include <linux/completion.h>
12 #include <linux/err.h>
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/kernel.h>
16 #include <linux/key.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/blk-integrity.h>
20 #include <linux/crc32.h>
21 #include <linux/mempool.h>
22 #include <linux/slab.h>
23 #include <linux/crypto.h>
24 #include <linux/fips.h>
25 #include <linux/workqueue.h>
26 #include <linux/kthread.h>
27 #include <linux/backing-dev.h>
28 #include <linux/atomic.h>
29 #include <linux/scatterlist.h>
30 #include <linux/rbtree.h>
31 #include <linux/ctype.h>
32 #include <asm/page.h>
33 #include <linux/unaligned.h>
34 #include <crypto/hash.h>
35 #include <crypto/md5.h>
36 #include <crypto/skcipher.h>
37 #include <crypto/aead.h>
38 #include <crypto/authenc.h>
39 #include <crypto/utils.h>
40 #include <linux/rtnetlink.h> /* for struct rtattr and RTA macros only */
41 #include <linux/key-type.h>
42 #include <keys/user-type.h>
43 #include <keys/encrypted-type.h>
44 #include <keys/trusted-type.h>
45 
46 #include <linux/device-mapper.h>
47 
48 #include "dm-audit.h"
49 
50 #define DM_MSG_PREFIX "crypt"
51 
52 static DEFINE_IDA(workqueue_ida);
53 
54 /*
55  * context holding the current state of a multi-part conversion
56  */
57 struct convert_context {
58 	struct completion restart;
59 	struct bio *bio_in;
60 	struct bvec_iter iter_in;
61 	struct bio *bio_out;
62 	struct bvec_iter iter_out;
63 	atomic_t cc_pending;
64 	unsigned int tag_offset;
65 	u64 cc_sector;
66 	union {
67 		struct skcipher_request *req;
68 		struct aead_request *req_aead;
69 	} r;
70 	bool aead_recheck;
71 	bool aead_failed;
72 
73 };
74 
75 /*
76  * per bio private data
77  */
78 struct dm_crypt_io {
79 	struct crypt_config *cc;
80 	struct bio *base_bio;
81 	u8 *integrity_metadata;
82 	bool integrity_metadata_from_pool:1;
83 
84 	struct work_struct work;
85 
86 	struct convert_context ctx;
87 
88 	atomic_t io_pending;
89 	blk_status_t error;
90 	sector_t sector;
91 
92 	struct bvec_iter saved_bi_iter;
93 
94 	struct rb_node rb_node;
95 } CRYPTO_MINALIGN_ATTR;
96 
97 struct dm_crypt_request {
98 	struct convert_context *ctx;
99 	struct scatterlist sg_in[4];
100 	struct scatterlist sg_out[4];
101 	u64 iv_sector;
102 };
103 
104 struct crypt_config;
105 
106 struct crypt_iv_operations {
107 	int (*ctr)(struct crypt_config *cc, struct dm_target *ti,
108 		   const char *opts);
109 	void (*dtr)(struct crypt_config *cc);
110 	int (*init)(struct crypt_config *cc);
111 	int (*wipe)(struct crypt_config *cc);
112 	int (*generator)(struct crypt_config *cc, u8 *iv,
113 			 struct dm_crypt_request *dmreq);
114 	int (*post)(struct crypt_config *cc, u8 *iv,
115 		    struct dm_crypt_request *dmreq);
116 };
117 
118 struct iv_benbi_private {
119 	int shift;
120 };
121 
122 #define LMK_SEED_SIZE 64 /* hash + 0 */
123 struct iv_lmk_private {
124 	u8 *seed;
125 };
126 
127 #define TCW_WHITENING_SIZE 16
128 struct iv_tcw_private {
129 	u8 *iv_seed;
130 	u8 *whitening;
131 };
132 
133 #define ELEPHANT_MAX_KEY_SIZE 32
134 struct iv_elephant_private {
135 	struct crypto_skcipher *tfm;
136 };
137 
138 /*
139  * Crypt: maps a linear range of a block device
140  * and encrypts / decrypts at the same time.
141  */
142 enum flags { DM_CRYPT_SUSPENDED, DM_CRYPT_KEY_VALID,
143 	     DM_CRYPT_SAME_CPU, DM_CRYPT_HIGH_PRIORITY,
144 	     DM_CRYPT_NO_OFFLOAD, DM_CRYPT_NO_READ_WORKQUEUE,
145 	     DM_CRYPT_NO_WRITE_WORKQUEUE, DM_CRYPT_WRITE_INLINE };
146 
147 enum cipher_flags {
148 	CRYPT_MODE_INTEGRITY_AEAD,	/* Use authenticated mode for cipher */
149 	CRYPT_IV_LARGE_SECTORS,		/* Calculate IV from sector_size, not 512B sectors */
150 	CRYPT_ENCRYPT_PREPROCESS,	/* Must preprocess data for encryption (elephant) */
151 	CRYPT_KEY_MAC_SIZE_SET,		/* The integrity_key_size option was used */
152 };
153 
154 /*
155  * The fields in here must be read only after initialization.
156  */
157 struct crypt_config {
158 	struct dm_dev *dev;
159 	sector_t start;
160 
161 	struct percpu_counter n_allocated_pages;
162 
163 	struct workqueue_struct *io_queue;
164 	struct workqueue_struct *crypt_queue;
165 
166 	spinlock_t write_thread_lock;
167 	struct task_struct *write_thread;
168 	struct rb_root write_tree;
169 
170 	char *cipher_string;
171 	char *cipher_auth;
172 	char *key_string;
173 
174 	const struct crypt_iv_operations *iv_gen_ops;
175 	union {
176 		struct iv_benbi_private benbi;
177 		struct iv_lmk_private lmk;
178 		struct iv_tcw_private tcw;
179 		struct iv_elephant_private elephant;
180 	} iv_gen_private;
181 	u64 iv_offset;
182 	unsigned int iv_size;
183 	unsigned short sector_size;
184 	unsigned char sector_shift;
185 
186 	union {
187 		struct crypto_skcipher **tfms;
188 		struct crypto_aead **tfms_aead;
189 	} cipher_tfm;
190 	unsigned int tfms_count;
191 	int workqueue_id;
192 	unsigned long cipher_flags;
193 
194 	/*
195 	 * Layout of each crypto request:
196 	 *
197 	 *   struct skcipher_request
198 	 *      context
199 	 *      padding
200 	 *   struct dm_crypt_request
201 	 *      padding
202 	 *   IV
203 	 *
204 	 * The padding is added so that dm_crypt_request and the IV are
205 	 * correctly aligned.
206 	 */
207 	unsigned int dmreq_start;
208 
209 	unsigned int per_bio_data_size;
210 
211 	unsigned long flags;
212 	unsigned int key_size;
213 	unsigned int key_parts;      /* independent parts in key buffer */
214 	unsigned int key_extra_size; /* additional keys length */
215 	unsigned int key_mac_size;   /* MAC key size for authenc(...) */
216 
217 	unsigned int integrity_tag_size;
218 	unsigned int integrity_iv_size;
219 	unsigned int used_tag_size;
220 	unsigned int tuple_size;
221 
222 	/*
223 	 * pool for per bio private data, crypto requests,
224 	 * encryption requeusts/buffer pages and integrity tags
225 	 */
226 	unsigned int tag_pool_max_sectors;
227 	mempool_t tag_pool;
228 	mempool_t req_pool;
229 	mempool_t page_pool;
230 
231 	struct bio_set bs;
232 	struct mutex bio_alloc_lock;
233 
234 	u8 *authenc_key; /* space for keys in authenc() format (if used) */
235 	u8 key[] __counted_by(key_size);
236 };
237 
238 #define MIN_IOS		64
239 #define MAX_TAG_SIZE	480
240 #define POOL_ENTRY_SIZE	512
241 
242 static DEFINE_SPINLOCK(dm_crypt_clients_lock);
243 static unsigned int dm_crypt_clients_n;
244 static volatile unsigned long dm_crypt_pages_per_client;
245 #define DM_CRYPT_MEMORY_PERCENT			2
246 #define DM_CRYPT_MIN_PAGES_PER_CLIENT		(BIO_MAX_VECS * 16)
247 #define DM_CRYPT_DEFAULT_MAX_READ_SIZE		131072
248 #define DM_CRYPT_DEFAULT_MAX_WRITE_SIZE		131072
249 
250 static unsigned int max_read_size = 0;
251 module_param(max_read_size, uint, 0644);
252 MODULE_PARM_DESC(max_read_size, "Maximum size of a read request");
253 static unsigned int max_write_size = 0;
254 module_param(max_write_size, uint, 0644);
255 MODULE_PARM_DESC(max_write_size, "Maximum size of a write request");
256 
get_max_request_sectors(struct dm_target * ti,struct bio * bio,bool no_split)257 static unsigned get_max_request_sectors(struct dm_target *ti, struct bio *bio, bool no_split)
258 {
259 	struct crypt_config *cc = ti->private;
260 	unsigned val, sector_align;
261 	bool wrt = op_is_write(bio_op(bio));
262 
263 	if (no_split) {
264 		val = -1;
265 	} else if (wrt) {
266 		val = min_not_zero(READ_ONCE(max_write_size),
267 				   DM_CRYPT_DEFAULT_MAX_WRITE_SIZE);
268 	} else {
269 		val = min_not_zero(READ_ONCE(max_read_size),
270 				   DM_CRYPT_DEFAULT_MAX_READ_SIZE);
271 	}
272 
273 	if (wrt || cc->used_tag_size)
274 		val = min(val, BIO_MAX_VECS << PAGE_SHIFT);
275 
276 	sector_align = max(bdev_logical_block_size(cc->dev->bdev),
277 			   (unsigned)cc->sector_size);
278 	val = round_down(val, sector_align);
279 	if (unlikely(!val))
280 		val = sector_align;
281 	return val >> SECTOR_SHIFT;
282 }
283 
284 static void crypt_endio(struct bio *clone);
285 static void kcryptd_queue_crypt(struct dm_crypt_io *io);
286 static struct scatterlist *crypt_get_sg_data(struct crypt_config *cc,
287 					     struct scatterlist *sg);
288 
289 static bool crypt_integrity_aead(struct crypt_config *cc);
290 
291 /*
292  * Use this to access cipher attributes that are independent of the key.
293  */
any_tfm(struct crypt_config * cc)294 static struct crypto_skcipher *any_tfm(struct crypt_config *cc)
295 {
296 	return cc->cipher_tfm.tfms[0];
297 }
298 
any_tfm_aead(struct crypt_config * cc)299 static struct crypto_aead *any_tfm_aead(struct crypt_config *cc)
300 {
301 	return cc->cipher_tfm.tfms_aead[0];
302 }
303 
304 /*
305  * Different IV generation algorithms:
306  *
307  * plain: the initial vector is the 32-bit little-endian version of the sector
308  *        number, padded with zeros if necessary.
309  *
310  * plain64: the initial vector is the 64-bit little-endian version of the sector
311  *        number, padded with zeros if necessary.
312  *
313  * plain64be: the initial vector is the 64-bit big-endian version of the sector
314  *        number, padded with zeros if necessary.
315  *
316  * essiv: "encrypted sector|salt initial vector", the sector number is
317  *        encrypted with the bulk cipher using a salt as key. The salt
318  *        should be derived from the bulk cipher's key via hashing.
319  *
320  * benbi: the 64-bit "big-endian 'narrow block'-count", starting at 1
321  *        (needed for LRW-32-AES and possible other narrow block modes)
322  *
323  * null: the initial vector is always zero.  Provides compatibility with
324  *       obsolete loop_fish2 devices.  Do not use for new devices.
325  *
326  * lmk:  Compatible implementation of the block chaining mode used
327  *       by the Loop-AES block device encryption system
328  *       designed by Jari Ruusu. See http://loop-aes.sourceforge.net/
329  *       It operates on full 512 byte sectors and uses CBC
330  *       with an IV derived from the sector number, the data and
331  *       optionally extra IV seed.
332  *       This means that after decryption the first block
333  *       of sector must be tweaked according to decrypted data.
334  *       Loop-AES can use three encryption schemes:
335  *         version 1: is plain aes-cbc mode
336  *         version 2: uses 64 multikey scheme with lmk IV generator
337  *         version 3: the same as version 2 with additional IV seed
338  *                   (it uses 65 keys, last key is used as IV seed)
339  *
340  * tcw:  Compatible implementation of the block chaining mode used
341  *       by the TrueCrypt device encryption system (prior to version 4.1).
342  *       For more info see: https://gitlab.com/cryptsetup/cryptsetup/wikis/TrueCryptOnDiskFormat
343  *       It operates on full 512 byte sectors and uses CBC
344  *       with an IV derived from initial key and the sector number.
345  *       In addition, whitening value is applied on every sector, whitening
346  *       is calculated from initial key, sector number and mixed using CRC32.
347  *       Note that this encryption scheme is vulnerable to watermarking attacks
348  *       and should be used for old compatible containers access only.
349  *
350  * eboiv: Encrypted byte-offset IV (used in Bitlocker in CBC mode)
351  *        The IV is encrypted little-endian byte-offset (with the same key
352  *        and cipher as the volume).
353  *
354  * elephant: The extended version of eboiv with additional Elephant diffuser
355  *           used with Bitlocker CBC mode.
356  *           This mode was used in older Windows systems
357  *           https://download.microsoft.com/download/0/2/3/0238acaf-d3bf-4a6d-b3d6-0a0be4bbb36e/bitlockercipher200608.pdf
358  */
359 
crypt_iv_plain_gen(struct crypt_config * cc,u8 * iv,struct dm_crypt_request * dmreq)360 static int crypt_iv_plain_gen(struct crypt_config *cc, u8 *iv,
361 			      struct dm_crypt_request *dmreq)
362 {
363 	memset(iv, 0, cc->iv_size);
364 	*(__le32 *)iv = cpu_to_le32(dmreq->iv_sector & 0xffffffff);
365 
366 	return 0;
367 }
368 
crypt_iv_plain64_gen(struct crypt_config * cc,u8 * iv,struct dm_crypt_request * dmreq)369 static int crypt_iv_plain64_gen(struct crypt_config *cc, u8 *iv,
370 				struct dm_crypt_request *dmreq)
371 {
372 	memset(iv, 0, cc->iv_size);
373 	*(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
374 
375 	return 0;
376 }
377 
crypt_iv_plain64be_gen(struct crypt_config * cc,u8 * iv,struct dm_crypt_request * dmreq)378 static int crypt_iv_plain64be_gen(struct crypt_config *cc, u8 *iv,
379 				  struct dm_crypt_request *dmreq)
380 {
381 	memset(iv, 0, cc->iv_size);
382 	/* iv_size is at least of size u64; usually it is 16 bytes */
383 	*(__be64 *)&iv[cc->iv_size - sizeof(u64)] = cpu_to_be64(dmreq->iv_sector);
384 
385 	return 0;
386 }
387 
crypt_iv_essiv_gen(struct crypt_config * cc,u8 * iv,struct dm_crypt_request * dmreq)388 static int crypt_iv_essiv_gen(struct crypt_config *cc, u8 *iv,
389 			      struct dm_crypt_request *dmreq)
390 {
391 	/*
392 	 * ESSIV encryption of the IV is now handled by the crypto API,
393 	 * so just pass the plain sector number here.
394 	 */
395 	memset(iv, 0, cc->iv_size);
396 	*(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
397 
398 	return 0;
399 }
400 
crypt_iv_benbi_ctr(struct crypt_config * cc,struct dm_target * ti,const char * opts)401 static int crypt_iv_benbi_ctr(struct crypt_config *cc, struct dm_target *ti,
402 			      const char *opts)
403 {
404 	unsigned int bs;
405 	int log;
406 
407 	if (crypt_integrity_aead(cc))
408 		bs = crypto_aead_blocksize(any_tfm_aead(cc));
409 	else
410 		bs = crypto_skcipher_blocksize(any_tfm(cc));
411 	log = ilog2(bs);
412 
413 	/*
414 	 * We need to calculate how far we must shift the sector count
415 	 * to get the cipher block count, we use this shift in _gen.
416 	 */
417 	if (1 << log != bs) {
418 		ti->error = "cypher blocksize is not a power of 2";
419 		return -EINVAL;
420 	}
421 
422 	if (log > 9) {
423 		ti->error = "cypher blocksize is > 512";
424 		return -EINVAL;
425 	}
426 
427 	cc->iv_gen_private.benbi.shift = 9 - log;
428 
429 	return 0;
430 }
431 
crypt_iv_benbi_dtr(struct crypt_config * cc)432 static void crypt_iv_benbi_dtr(struct crypt_config *cc)
433 {
434 }
435 
crypt_iv_benbi_gen(struct crypt_config * cc,u8 * iv,struct dm_crypt_request * dmreq)436 static int crypt_iv_benbi_gen(struct crypt_config *cc, u8 *iv,
437 			      struct dm_crypt_request *dmreq)
438 {
439 	__be64 val;
440 
441 	memset(iv, 0, cc->iv_size - sizeof(u64)); /* rest is cleared below */
442 
443 	val = cpu_to_be64(((u64)dmreq->iv_sector << cc->iv_gen_private.benbi.shift) + 1);
444 	put_unaligned(val, (__be64 *)(iv + cc->iv_size - sizeof(u64)));
445 
446 	return 0;
447 }
448 
crypt_iv_null_gen(struct crypt_config * cc,u8 * iv,struct dm_crypt_request * dmreq)449 static int crypt_iv_null_gen(struct crypt_config *cc, u8 *iv,
450 			     struct dm_crypt_request *dmreq)
451 {
452 	memset(iv, 0, cc->iv_size);
453 
454 	return 0;
455 }
456 
crypt_iv_lmk_dtr(struct crypt_config * cc)457 static void crypt_iv_lmk_dtr(struct crypt_config *cc)
458 {
459 	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
460 
461 	kfree_sensitive(lmk->seed);
462 	lmk->seed = NULL;
463 }
464 
crypt_iv_lmk_ctr(struct crypt_config * cc,struct dm_target * ti,const char * opts)465 static int crypt_iv_lmk_ctr(struct crypt_config *cc, struct dm_target *ti,
466 			    const char *opts)
467 {
468 	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
469 
470 	if (cc->sector_size != (1 << SECTOR_SHIFT)) {
471 		ti->error = "Unsupported sector size for LMK";
472 		return -EINVAL;
473 	}
474 
475 	if (fips_enabled) {
476 		ti->error = "LMK support is disabled due to FIPS";
477 		/* ... because it uses MD5. */
478 		return -EINVAL;
479 	}
480 
481 	/* No seed in LMK version 2 */
482 	if (cc->key_parts == cc->tfms_count) {
483 		lmk->seed = NULL;
484 		return 0;
485 	}
486 
487 	lmk->seed = kzalloc(LMK_SEED_SIZE, GFP_KERNEL);
488 	if (!lmk->seed) {
489 		ti->error = "Error kmallocing seed storage in LMK";
490 		return -ENOMEM;
491 	}
492 
493 	return 0;
494 }
495 
crypt_iv_lmk_init(struct crypt_config * cc)496 static int crypt_iv_lmk_init(struct crypt_config *cc)
497 {
498 	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
499 	int subkey_size = cc->key_size / cc->key_parts;
500 
501 	/* LMK seed is on the position of LMK_KEYS + 1 key */
502 	if (lmk->seed)
503 		memcpy(lmk->seed, cc->key + (cc->tfms_count * subkey_size),
504 		       MD5_DIGEST_SIZE);
505 
506 	return 0;
507 }
508 
crypt_iv_lmk_wipe(struct crypt_config * cc)509 static int crypt_iv_lmk_wipe(struct crypt_config *cc)
510 {
511 	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
512 
513 	if (lmk->seed)
514 		memset(lmk->seed, 0, LMK_SEED_SIZE);
515 
516 	return 0;
517 }
518 
crypt_iv_lmk_one(struct crypt_config * cc,u8 * iv,struct dm_crypt_request * dmreq,u8 * data)519 static void crypt_iv_lmk_one(struct crypt_config *cc, u8 *iv,
520 			     struct dm_crypt_request *dmreq, u8 *data)
521 {
522 	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
523 	struct md5_ctx ctx;
524 	__le32 buf[4];
525 
526 	md5_init(&ctx);
527 
528 	if (lmk->seed)
529 		md5_update(&ctx, lmk->seed, LMK_SEED_SIZE);
530 
531 	/* Sector is always 512B, block size 16, add data of blocks 1-31 */
532 	md5_update(&ctx, data + 16, 16 * 31);
533 
534 	/* Sector is cropped to 56 bits here */
535 	buf[0] = cpu_to_le32(dmreq->iv_sector & 0xFFFFFFFF);
536 	buf[1] = cpu_to_le32((((u64)dmreq->iv_sector >> 32) & 0x00FFFFFF) | 0x80000000);
537 	buf[2] = cpu_to_le32(4024);
538 	buf[3] = 0;
539 	md5_update(&ctx, (u8 *)buf, sizeof(buf));
540 
541 	/* No MD5 padding here */
542 	cpu_to_le32_array(ctx.state.h, ARRAY_SIZE(ctx.state.h));
543 	memcpy(iv, ctx.state.h, cc->iv_size);
544 }
545 
crypt_iv_lmk_gen(struct crypt_config * cc,u8 * iv,struct dm_crypt_request * dmreq)546 static int crypt_iv_lmk_gen(struct crypt_config *cc, u8 *iv,
547 			    struct dm_crypt_request *dmreq)
548 {
549 	struct scatterlist *sg;
550 	u8 *src;
551 
552 	if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
553 		sg = crypt_get_sg_data(cc, dmreq->sg_in);
554 		src = kmap_local_page(sg_page(sg));
555 		crypt_iv_lmk_one(cc, iv, dmreq, src + sg->offset);
556 		kunmap_local(src);
557 	} else
558 		memset(iv, 0, cc->iv_size);
559 	return 0;
560 }
561 
crypt_iv_lmk_post(struct crypt_config * cc,u8 * iv,struct dm_crypt_request * dmreq)562 static int crypt_iv_lmk_post(struct crypt_config *cc, u8 *iv,
563 			     struct dm_crypt_request *dmreq)
564 {
565 	struct scatterlist *sg;
566 	u8 *dst;
567 
568 	if (bio_data_dir(dmreq->ctx->bio_in) == WRITE)
569 		return 0;
570 
571 	sg = crypt_get_sg_data(cc, dmreq->sg_out);
572 	dst = kmap_local_page(sg_page(sg));
573 	crypt_iv_lmk_one(cc, iv, dmreq, dst + sg->offset);
574 
575 	/* Tweak the first block of plaintext sector */
576 	crypto_xor(dst + sg->offset, iv, cc->iv_size);
577 
578 	kunmap_local(dst);
579 	return 0;
580 }
581 
crypt_iv_tcw_dtr(struct crypt_config * cc)582 static void crypt_iv_tcw_dtr(struct crypt_config *cc)
583 {
584 	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
585 
586 	kfree_sensitive(tcw->iv_seed);
587 	tcw->iv_seed = NULL;
588 	kfree_sensitive(tcw->whitening);
589 	tcw->whitening = NULL;
590 }
591 
crypt_iv_tcw_ctr(struct crypt_config * cc,struct dm_target * ti,const char * opts)592 static int crypt_iv_tcw_ctr(struct crypt_config *cc, struct dm_target *ti,
593 			    const char *opts)
594 {
595 	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
596 
597 	if (cc->sector_size != (1 << SECTOR_SHIFT)) {
598 		ti->error = "Unsupported sector size for TCW";
599 		return -EINVAL;
600 	}
601 
602 	if (cc->key_size <= (cc->iv_size + TCW_WHITENING_SIZE)) {
603 		ti->error = "Wrong key size for TCW";
604 		return -EINVAL;
605 	}
606 
607 	tcw->iv_seed = kzalloc(cc->iv_size, GFP_KERNEL);
608 	tcw->whitening = kzalloc(TCW_WHITENING_SIZE, GFP_KERNEL);
609 	if (!tcw->iv_seed || !tcw->whitening) {
610 		crypt_iv_tcw_dtr(cc);
611 		ti->error = "Error allocating seed storage in TCW";
612 		return -ENOMEM;
613 	}
614 
615 	return 0;
616 }
617 
crypt_iv_tcw_init(struct crypt_config * cc)618 static int crypt_iv_tcw_init(struct crypt_config *cc)
619 {
620 	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
621 	int key_offset = cc->key_size - cc->iv_size - TCW_WHITENING_SIZE;
622 
623 	memcpy(tcw->iv_seed, &cc->key[key_offset], cc->iv_size);
624 	memcpy(tcw->whitening, &cc->key[key_offset + cc->iv_size],
625 	       TCW_WHITENING_SIZE);
626 
627 	return 0;
628 }
629 
crypt_iv_tcw_wipe(struct crypt_config * cc)630 static int crypt_iv_tcw_wipe(struct crypt_config *cc)
631 {
632 	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
633 
634 	memset(tcw->iv_seed, 0, cc->iv_size);
635 	memset(tcw->whitening, 0, TCW_WHITENING_SIZE);
636 
637 	return 0;
638 }
639 
crypt_iv_tcw_whitening(struct crypt_config * cc,struct dm_crypt_request * dmreq,u8 * data)640 static void crypt_iv_tcw_whitening(struct crypt_config *cc,
641 				   struct dm_crypt_request *dmreq, u8 *data)
642 {
643 	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
644 	__le64 sector = cpu_to_le64(dmreq->iv_sector);
645 	u8 buf[TCW_WHITENING_SIZE];
646 	int i;
647 
648 	/* xor whitening with sector number */
649 	crypto_xor_cpy(buf, tcw->whitening, (u8 *)&sector, 8);
650 	crypto_xor_cpy(&buf[8], tcw->whitening + 8, (u8 *)&sector, 8);
651 
652 	/* calculate crc32 for every 32bit part and xor it */
653 	for (i = 0; i < 4; i++)
654 		put_unaligned_le32(crc32(0, &buf[i * 4], 4), &buf[i * 4]);
655 	crypto_xor(&buf[0], &buf[12], 4);
656 	crypto_xor(&buf[4], &buf[8], 4);
657 
658 	/* apply whitening (8 bytes) to whole sector */
659 	for (i = 0; i < ((1 << SECTOR_SHIFT) / 8); i++)
660 		crypto_xor(data + i * 8, buf, 8);
661 	memzero_explicit(buf, sizeof(buf));
662 }
663 
crypt_iv_tcw_gen(struct crypt_config * cc,u8 * iv,struct dm_crypt_request * dmreq)664 static int crypt_iv_tcw_gen(struct crypt_config *cc, u8 *iv,
665 			    struct dm_crypt_request *dmreq)
666 {
667 	struct scatterlist *sg;
668 	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
669 	__le64 sector = cpu_to_le64(dmreq->iv_sector);
670 	u8 *src;
671 
672 	/* Remove whitening from ciphertext */
673 	if (bio_data_dir(dmreq->ctx->bio_in) != WRITE) {
674 		sg = crypt_get_sg_data(cc, dmreq->sg_in);
675 		src = kmap_local_page(sg_page(sg));
676 		crypt_iv_tcw_whitening(cc, dmreq, src + sg->offset);
677 		kunmap_local(src);
678 	}
679 
680 	/* Calculate IV */
681 	crypto_xor_cpy(iv, tcw->iv_seed, (u8 *)&sector, 8);
682 	if (cc->iv_size > 8)
683 		crypto_xor_cpy(&iv[8], tcw->iv_seed + 8, (u8 *)&sector,
684 			       cc->iv_size - 8);
685 
686 	return 0;
687 }
688 
crypt_iv_tcw_post(struct crypt_config * cc,u8 * iv,struct dm_crypt_request * dmreq)689 static int crypt_iv_tcw_post(struct crypt_config *cc, u8 *iv,
690 			     struct dm_crypt_request *dmreq)
691 {
692 	struct scatterlist *sg;
693 	u8 *dst;
694 
695 	if (bio_data_dir(dmreq->ctx->bio_in) != WRITE)
696 		return 0;
697 
698 	/* Apply whitening on ciphertext */
699 	sg = crypt_get_sg_data(cc, dmreq->sg_out);
700 	dst = kmap_local_page(sg_page(sg));
701 	crypt_iv_tcw_whitening(cc, dmreq, dst + sg->offset);
702 	kunmap_local(dst);
703 
704 	return 0;
705 }
706 
crypt_iv_random_gen(struct crypt_config * cc,u8 * iv,struct dm_crypt_request * dmreq)707 static int crypt_iv_random_gen(struct crypt_config *cc, u8 *iv,
708 				struct dm_crypt_request *dmreq)
709 {
710 	/* Used only for writes, there must be an additional space to store IV */
711 	get_random_bytes(iv, cc->iv_size);
712 	return 0;
713 }
714 
crypt_iv_eboiv_ctr(struct crypt_config * cc,struct dm_target * ti,const char * opts)715 static int crypt_iv_eboiv_ctr(struct crypt_config *cc, struct dm_target *ti,
716 			    const char *opts)
717 {
718 	if (crypt_integrity_aead(cc)) {
719 		ti->error = "AEAD transforms not supported for EBOIV";
720 		return -EINVAL;
721 	}
722 
723 	if (crypto_skcipher_blocksize(any_tfm(cc)) != cc->iv_size) {
724 		ti->error = "Block size of EBOIV cipher does not match IV size of block cipher";
725 		return -EINVAL;
726 	}
727 
728 	return 0;
729 }
730 
crypt_iv_eboiv_gen(struct crypt_config * cc,u8 * iv,struct dm_crypt_request * dmreq)731 static int crypt_iv_eboiv_gen(struct crypt_config *cc, u8 *iv,
732 			    struct dm_crypt_request *dmreq)
733 {
734 	struct crypto_skcipher *tfm = any_tfm(cc);
735 	struct skcipher_request *req;
736 	struct scatterlist src, dst;
737 	DECLARE_CRYPTO_WAIT(wait);
738 	unsigned int reqsize;
739 	int err;
740 	u8 *buf;
741 
742 	reqsize = sizeof(*req) + crypto_skcipher_reqsize(tfm);
743 	reqsize = ALIGN(reqsize, __alignof__(__le64));
744 
745 	req = kmalloc(reqsize + cc->iv_size, GFP_NOIO);
746 	if (!req)
747 		return -ENOMEM;
748 
749 	skcipher_request_set_tfm(req, tfm);
750 
751 	buf = (u8 *)req + reqsize;
752 	memset(buf, 0, cc->iv_size);
753 	*(__le64 *)buf = cpu_to_le64(dmreq->iv_sector * cc->sector_size);
754 
755 	sg_init_one(&src, page_address(ZERO_PAGE(0)), cc->iv_size);
756 	sg_init_one(&dst, iv, cc->iv_size);
757 	skcipher_request_set_crypt(req, &src, &dst, cc->iv_size, buf);
758 	skcipher_request_set_callback(req, 0, crypto_req_done, &wait);
759 	err = crypto_wait_req(crypto_skcipher_encrypt(req), &wait);
760 	kfree_sensitive(req);
761 
762 	return err;
763 }
764 
crypt_iv_elephant_dtr(struct crypt_config * cc)765 static void crypt_iv_elephant_dtr(struct crypt_config *cc)
766 {
767 	struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant;
768 
769 	crypto_free_skcipher(elephant->tfm);
770 	elephant->tfm = NULL;
771 }
772 
crypt_iv_elephant_ctr(struct crypt_config * cc,struct dm_target * ti,const char * opts)773 static int crypt_iv_elephant_ctr(struct crypt_config *cc, struct dm_target *ti,
774 			    const char *opts)
775 {
776 	struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant;
777 	int r;
778 
779 	elephant->tfm = crypto_alloc_skcipher("ecb(aes)", 0,
780 					      CRYPTO_ALG_ALLOCATES_MEMORY);
781 	if (IS_ERR(elephant->tfm)) {
782 		r = PTR_ERR(elephant->tfm);
783 		elephant->tfm = NULL;
784 		return r;
785 	}
786 
787 	r = crypt_iv_eboiv_ctr(cc, ti, NULL);
788 	if (r)
789 		crypt_iv_elephant_dtr(cc);
790 	return r;
791 }
792 
diffuser_disk_to_cpu(u32 * d,size_t n)793 static void diffuser_disk_to_cpu(u32 *d, size_t n)
794 {
795 #ifndef __LITTLE_ENDIAN
796 	int i;
797 
798 	for (i = 0; i < n; i++)
799 		d[i] = le32_to_cpu((__le32)d[i]);
800 #endif
801 }
802 
diffuser_cpu_to_disk(__le32 * d,size_t n)803 static void diffuser_cpu_to_disk(__le32 *d, size_t n)
804 {
805 #ifndef __LITTLE_ENDIAN
806 	int i;
807 
808 	for (i = 0; i < n; i++)
809 		d[i] = cpu_to_le32((u32)d[i]);
810 #endif
811 }
812 
diffuser_a_decrypt(u32 * d,size_t n)813 static void diffuser_a_decrypt(u32 *d, size_t n)
814 {
815 	int i, i1, i2, i3;
816 
817 	for (i = 0; i < 5; i++) {
818 		i1 = 0;
819 		i2 = n - 2;
820 		i3 = n - 5;
821 
822 		while (i1 < (n - 1)) {
823 			d[i1] += d[i2] ^ (d[i3] << 9 | d[i3] >> 23);
824 			i1++; i2++; i3++;
825 
826 			if (i3 >= n)
827 				i3 -= n;
828 
829 			d[i1] += d[i2] ^ d[i3];
830 			i1++; i2++; i3++;
831 
832 			if (i2 >= n)
833 				i2 -= n;
834 
835 			d[i1] += d[i2] ^ (d[i3] << 13 | d[i3] >> 19);
836 			i1++; i2++; i3++;
837 
838 			d[i1] += d[i2] ^ d[i3];
839 			i1++; i2++; i3++;
840 		}
841 	}
842 }
843 
diffuser_a_encrypt(u32 * d,size_t n)844 static void diffuser_a_encrypt(u32 *d, size_t n)
845 {
846 	int i, i1, i2, i3;
847 
848 	for (i = 0; i < 5; i++) {
849 		i1 = n - 1;
850 		i2 = n - 2 - 1;
851 		i3 = n - 5 - 1;
852 
853 		while (i1 > 0) {
854 			d[i1] -= d[i2] ^ d[i3];
855 			i1--; i2--; i3--;
856 
857 			d[i1] -= d[i2] ^ (d[i3] << 13 | d[i3] >> 19);
858 			i1--; i2--; i3--;
859 
860 			if (i2 < 0)
861 				i2 += n;
862 
863 			d[i1] -= d[i2] ^ d[i3];
864 			i1--; i2--; i3--;
865 
866 			if (i3 < 0)
867 				i3 += n;
868 
869 			d[i1] -= d[i2] ^ (d[i3] << 9 | d[i3] >> 23);
870 			i1--; i2--; i3--;
871 		}
872 	}
873 }
874 
diffuser_b_decrypt(u32 * d,size_t n)875 static void diffuser_b_decrypt(u32 *d, size_t n)
876 {
877 	int i, i1, i2, i3;
878 
879 	for (i = 0; i < 3; i++) {
880 		i1 = 0;
881 		i2 = 2;
882 		i3 = 5;
883 
884 		while (i1 < (n - 1)) {
885 			d[i1] += d[i2] ^ d[i3];
886 			i1++; i2++; i3++;
887 
888 			d[i1] += d[i2] ^ (d[i3] << 10 | d[i3] >> 22);
889 			i1++; i2++; i3++;
890 
891 			if (i2 >= n)
892 				i2 -= n;
893 
894 			d[i1] += d[i2] ^ d[i3];
895 			i1++; i2++; i3++;
896 
897 			if (i3 >= n)
898 				i3 -= n;
899 
900 			d[i1] += d[i2] ^ (d[i3] << 25 | d[i3] >> 7);
901 			i1++; i2++; i3++;
902 		}
903 	}
904 }
905 
diffuser_b_encrypt(u32 * d,size_t n)906 static void diffuser_b_encrypt(u32 *d, size_t n)
907 {
908 	int i, i1, i2, i3;
909 
910 	for (i = 0; i < 3; i++) {
911 		i1 = n - 1;
912 		i2 = 2 - 1;
913 		i3 = 5 - 1;
914 
915 		while (i1 > 0) {
916 			d[i1] -= d[i2] ^ (d[i3] << 25 | d[i3] >> 7);
917 			i1--; i2--; i3--;
918 
919 			if (i3 < 0)
920 				i3 += n;
921 
922 			d[i1] -= d[i2] ^ d[i3];
923 			i1--; i2--; i3--;
924 
925 			if (i2 < 0)
926 				i2 += n;
927 
928 			d[i1] -= d[i2] ^ (d[i3] << 10 | d[i3] >> 22);
929 			i1--; i2--; i3--;
930 
931 			d[i1] -= d[i2] ^ d[i3];
932 			i1--; i2--; i3--;
933 		}
934 	}
935 }
936 
crypt_iv_elephant(struct crypt_config * cc,struct dm_crypt_request * dmreq)937 static int crypt_iv_elephant(struct crypt_config *cc, struct dm_crypt_request *dmreq)
938 {
939 	struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant;
940 	u8 *es, *ks, *data, *data2, *data_offset;
941 	struct skcipher_request *req;
942 	struct scatterlist *sg, *sg2, src, dst;
943 	DECLARE_CRYPTO_WAIT(wait);
944 	int i, r;
945 
946 	req = skcipher_request_alloc(elephant->tfm, GFP_NOIO);
947 	es = kzalloc(16, GFP_NOIO); /* Key for AES */
948 	ks = kzalloc(32, GFP_NOIO); /* Elephant sector key */
949 
950 	if (!req || !es || !ks) {
951 		r = -ENOMEM;
952 		goto out;
953 	}
954 
955 	*(__le64 *)es = cpu_to_le64(dmreq->iv_sector * cc->sector_size);
956 
957 	/* E(Ks, e(s)) */
958 	sg_init_one(&src, es, 16);
959 	sg_init_one(&dst, ks, 16);
960 	skcipher_request_set_crypt(req, &src, &dst, 16, NULL);
961 	skcipher_request_set_callback(req, 0, crypto_req_done, &wait);
962 	r = crypto_wait_req(crypto_skcipher_encrypt(req), &wait);
963 	if (r)
964 		goto out;
965 
966 	/* E(Ks, e'(s)) */
967 	es[15] = 0x80;
968 	sg_init_one(&dst, &ks[16], 16);
969 	r = crypto_wait_req(crypto_skcipher_encrypt(req), &wait);
970 	if (r)
971 		goto out;
972 
973 	sg = crypt_get_sg_data(cc, dmreq->sg_out);
974 	data = kmap_local_page(sg_page(sg));
975 	data_offset = data + sg->offset;
976 
977 	/* Cannot modify original bio, copy to sg_out and apply Elephant to it */
978 	if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
979 		sg2 = crypt_get_sg_data(cc, dmreq->sg_in);
980 		data2 = kmap_local_page(sg_page(sg2));
981 		memcpy(data_offset, data2 + sg2->offset, cc->sector_size);
982 		kunmap_local(data2);
983 	}
984 
985 	if (bio_data_dir(dmreq->ctx->bio_in) != WRITE) {
986 		diffuser_disk_to_cpu((u32 *)data_offset, cc->sector_size / sizeof(u32));
987 		diffuser_b_decrypt((u32 *)data_offset, cc->sector_size / sizeof(u32));
988 		diffuser_a_decrypt((u32 *)data_offset, cc->sector_size / sizeof(u32));
989 		diffuser_cpu_to_disk((__le32 *)data_offset, cc->sector_size / sizeof(u32));
990 	}
991 
992 	for (i = 0; i < (cc->sector_size / 32); i++)
993 		crypto_xor(data_offset + i * 32, ks, 32);
994 
995 	if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
996 		diffuser_disk_to_cpu((u32 *)data_offset, cc->sector_size / sizeof(u32));
997 		diffuser_a_encrypt((u32 *)data_offset, cc->sector_size / sizeof(u32));
998 		diffuser_b_encrypt((u32 *)data_offset, cc->sector_size / sizeof(u32));
999 		diffuser_cpu_to_disk((__le32 *)data_offset, cc->sector_size / sizeof(u32));
1000 	}
1001 
1002 	kunmap_local(data);
1003 out:
1004 	kfree_sensitive(ks);
1005 	kfree_sensitive(es);
1006 	skcipher_request_free(req);
1007 	return r;
1008 }
1009 
crypt_iv_elephant_gen(struct crypt_config * cc,u8 * iv,struct dm_crypt_request * dmreq)1010 static int crypt_iv_elephant_gen(struct crypt_config *cc, u8 *iv,
1011 			    struct dm_crypt_request *dmreq)
1012 {
1013 	int r;
1014 
1015 	if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
1016 		r = crypt_iv_elephant(cc, dmreq);
1017 		if (r)
1018 			return r;
1019 	}
1020 
1021 	return crypt_iv_eboiv_gen(cc, iv, dmreq);
1022 }
1023 
crypt_iv_elephant_post(struct crypt_config * cc,u8 * iv,struct dm_crypt_request * dmreq)1024 static int crypt_iv_elephant_post(struct crypt_config *cc, u8 *iv,
1025 				  struct dm_crypt_request *dmreq)
1026 {
1027 	if (bio_data_dir(dmreq->ctx->bio_in) != WRITE)
1028 		return crypt_iv_elephant(cc, dmreq);
1029 
1030 	return 0;
1031 }
1032 
crypt_iv_elephant_init(struct crypt_config * cc)1033 static int crypt_iv_elephant_init(struct crypt_config *cc)
1034 {
1035 	struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant;
1036 	int key_offset = cc->key_size - cc->key_extra_size;
1037 
1038 	return crypto_skcipher_setkey(elephant->tfm, &cc->key[key_offset], cc->key_extra_size);
1039 }
1040 
crypt_iv_elephant_wipe(struct crypt_config * cc)1041 static int crypt_iv_elephant_wipe(struct crypt_config *cc)
1042 {
1043 	struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant;
1044 	u8 key[ELEPHANT_MAX_KEY_SIZE];
1045 
1046 	memset(key, 0, cc->key_extra_size);
1047 	return crypto_skcipher_setkey(elephant->tfm, key, cc->key_extra_size);
1048 }
1049 
1050 static const struct crypt_iv_operations crypt_iv_plain_ops = {
1051 	.generator = crypt_iv_plain_gen
1052 };
1053 
1054 static const struct crypt_iv_operations crypt_iv_plain64_ops = {
1055 	.generator = crypt_iv_plain64_gen
1056 };
1057 
1058 static const struct crypt_iv_operations crypt_iv_plain64be_ops = {
1059 	.generator = crypt_iv_plain64be_gen
1060 };
1061 
1062 static const struct crypt_iv_operations crypt_iv_essiv_ops = {
1063 	.generator = crypt_iv_essiv_gen
1064 };
1065 
1066 static const struct crypt_iv_operations crypt_iv_benbi_ops = {
1067 	.ctr	   = crypt_iv_benbi_ctr,
1068 	.dtr	   = crypt_iv_benbi_dtr,
1069 	.generator = crypt_iv_benbi_gen
1070 };
1071 
1072 static const struct crypt_iv_operations crypt_iv_null_ops = {
1073 	.generator = crypt_iv_null_gen
1074 };
1075 
1076 static const struct crypt_iv_operations crypt_iv_lmk_ops = {
1077 	.ctr	   = crypt_iv_lmk_ctr,
1078 	.dtr	   = crypt_iv_lmk_dtr,
1079 	.init	   = crypt_iv_lmk_init,
1080 	.wipe	   = crypt_iv_lmk_wipe,
1081 	.generator = crypt_iv_lmk_gen,
1082 	.post	   = crypt_iv_lmk_post
1083 };
1084 
1085 static const struct crypt_iv_operations crypt_iv_tcw_ops = {
1086 	.ctr	   = crypt_iv_tcw_ctr,
1087 	.dtr	   = crypt_iv_tcw_dtr,
1088 	.init	   = crypt_iv_tcw_init,
1089 	.wipe	   = crypt_iv_tcw_wipe,
1090 	.generator = crypt_iv_tcw_gen,
1091 	.post	   = crypt_iv_tcw_post
1092 };
1093 
1094 static const struct crypt_iv_operations crypt_iv_random_ops = {
1095 	.generator = crypt_iv_random_gen
1096 };
1097 
1098 static const struct crypt_iv_operations crypt_iv_eboiv_ops = {
1099 	.ctr	   = crypt_iv_eboiv_ctr,
1100 	.generator = crypt_iv_eboiv_gen
1101 };
1102 
1103 static const struct crypt_iv_operations crypt_iv_elephant_ops = {
1104 	.ctr	   = crypt_iv_elephant_ctr,
1105 	.dtr	   = crypt_iv_elephant_dtr,
1106 	.init	   = crypt_iv_elephant_init,
1107 	.wipe	   = crypt_iv_elephant_wipe,
1108 	.generator = crypt_iv_elephant_gen,
1109 	.post	   = crypt_iv_elephant_post
1110 };
1111 
1112 /*
1113  * Integrity extensions
1114  */
crypt_integrity_aead(struct crypt_config * cc)1115 static bool crypt_integrity_aead(struct crypt_config *cc)
1116 {
1117 	return test_bit(CRYPT_MODE_INTEGRITY_AEAD, &cc->cipher_flags);
1118 }
1119 
crypt_integrity_hmac(struct crypt_config * cc)1120 static bool crypt_integrity_hmac(struct crypt_config *cc)
1121 {
1122 	return crypt_integrity_aead(cc) && cc->key_mac_size;
1123 }
1124 
1125 /* Get sg containing data */
crypt_get_sg_data(struct crypt_config * cc,struct scatterlist * sg)1126 static struct scatterlist *crypt_get_sg_data(struct crypt_config *cc,
1127 					     struct scatterlist *sg)
1128 {
1129 	if (unlikely(crypt_integrity_aead(cc)))
1130 		return &sg[2];
1131 
1132 	return sg;
1133 }
1134 
dm_crypt_integrity_io_alloc(struct dm_crypt_io * io,struct bio * bio)1135 static int dm_crypt_integrity_io_alloc(struct dm_crypt_io *io, struct bio *bio)
1136 {
1137 	struct bio_integrity_payload *bip;
1138 	unsigned int tag_len;
1139 	int ret;
1140 
1141 	if (!bio_sectors(bio) || !io->cc->tuple_size)
1142 		return 0;
1143 
1144 	bip = bio_integrity_alloc(bio, GFP_NOIO, 1);
1145 	if (IS_ERR(bip))
1146 		return PTR_ERR(bip);
1147 
1148 	tag_len = io->cc->tuple_size * (bio_sectors(bio) >> io->cc->sector_shift);
1149 
1150 	bip->bip_iter.bi_sector = bio->bi_iter.bi_sector;
1151 
1152 	ret = bio_integrity_add_page(bio, virt_to_page(io->integrity_metadata),
1153 				     tag_len, offset_in_page(io->integrity_metadata));
1154 	if (unlikely(ret != tag_len))
1155 		return -ENOMEM;
1156 
1157 	return 0;
1158 }
1159 
crypt_integrity_ctr(struct crypt_config * cc,struct dm_target * ti)1160 static int crypt_integrity_ctr(struct crypt_config *cc, struct dm_target *ti)
1161 {
1162 #ifdef CONFIG_BLK_DEV_INTEGRITY
1163 	struct blk_integrity *bi = blk_get_integrity(cc->dev->bdev->bd_disk);
1164 	struct mapped_device *md = dm_table_get_md(ti->table);
1165 
1166 	/* We require an underlying device with non-PI metadata */
1167 	if (!bi || bi->csum_type != BLK_INTEGRITY_CSUM_NONE) {
1168 		ti->error = "Integrity profile not supported.";
1169 		return -EINVAL;
1170 	}
1171 
1172 	if (bi->metadata_size < cc->used_tag_size) {
1173 		ti->error = "Integrity profile tag size mismatch.";
1174 		return -EINVAL;
1175 	}
1176 	cc->tuple_size = bi->metadata_size;
1177 	if (1 << bi->interval_exp != cc->sector_size) {
1178 		ti->error = "Integrity profile sector size mismatch.";
1179 		return -EINVAL;
1180 	}
1181 
1182 	if (crypt_integrity_aead(cc)) {
1183 		cc->integrity_tag_size = cc->used_tag_size - cc->integrity_iv_size;
1184 		DMDEBUG("%s: Integrity AEAD, tag size %u, IV size %u.", dm_device_name(md),
1185 		       cc->integrity_tag_size, cc->integrity_iv_size);
1186 
1187 		if (crypto_aead_setauthsize(any_tfm_aead(cc), cc->integrity_tag_size)) {
1188 			ti->error = "Integrity AEAD auth tag size is not supported.";
1189 			return -EINVAL;
1190 		}
1191 	} else if (cc->integrity_iv_size)
1192 		DMDEBUG("%s: Additional per-sector space %u bytes for IV.", dm_device_name(md),
1193 		       cc->integrity_iv_size);
1194 
1195 	if ((cc->integrity_tag_size + cc->integrity_iv_size) > cc->tuple_size) {
1196 		ti->error = "Not enough space for integrity tag in the profile.";
1197 		return -EINVAL;
1198 	}
1199 
1200 	return 0;
1201 #else
1202 	ti->error = "Integrity profile not supported.";
1203 	return -EINVAL;
1204 #endif
1205 }
1206 
crypt_convert_init(struct crypt_config * cc,struct convert_context * ctx,struct bio * bio_out,struct bio * bio_in,sector_t sector)1207 static void crypt_convert_init(struct crypt_config *cc,
1208 			       struct convert_context *ctx,
1209 			       struct bio *bio_out, struct bio *bio_in,
1210 			       sector_t sector)
1211 {
1212 	ctx->bio_in = bio_in;
1213 	ctx->bio_out = bio_out;
1214 	if (bio_in)
1215 		ctx->iter_in = bio_in->bi_iter;
1216 	if (bio_out)
1217 		ctx->iter_out = bio_out->bi_iter;
1218 	ctx->cc_sector = sector + cc->iv_offset;
1219 	ctx->tag_offset = 0;
1220 	init_completion(&ctx->restart);
1221 }
1222 
dmreq_of_req(struct crypt_config * cc,void * req)1223 static struct dm_crypt_request *dmreq_of_req(struct crypt_config *cc,
1224 					     void *req)
1225 {
1226 	return (struct dm_crypt_request *)((char *)req + cc->dmreq_start);
1227 }
1228 
req_of_dmreq(struct crypt_config * cc,struct dm_crypt_request * dmreq)1229 static void *req_of_dmreq(struct crypt_config *cc, struct dm_crypt_request *dmreq)
1230 {
1231 	return (void *)((char *)dmreq - cc->dmreq_start);
1232 }
1233 
iv_of_dmreq(struct crypt_config * cc,struct dm_crypt_request * dmreq)1234 static u8 *iv_of_dmreq(struct crypt_config *cc,
1235 		       struct dm_crypt_request *dmreq)
1236 {
1237 	if (crypt_integrity_aead(cc))
1238 		return (u8 *)ALIGN((unsigned long)(dmreq + 1),
1239 			crypto_aead_alignmask(any_tfm_aead(cc)) + 1);
1240 	else
1241 		return (u8 *)ALIGN((unsigned long)(dmreq + 1),
1242 			crypto_skcipher_alignmask(any_tfm(cc)) + 1);
1243 }
1244 
org_iv_of_dmreq(struct crypt_config * cc,struct dm_crypt_request * dmreq)1245 static u8 *org_iv_of_dmreq(struct crypt_config *cc,
1246 		       struct dm_crypt_request *dmreq)
1247 {
1248 	return iv_of_dmreq(cc, dmreq) + cc->iv_size;
1249 }
1250 
org_sector_of_dmreq(struct crypt_config * cc,struct dm_crypt_request * dmreq)1251 static __le64 *org_sector_of_dmreq(struct crypt_config *cc,
1252 		       struct dm_crypt_request *dmreq)
1253 {
1254 	u8 *ptr = iv_of_dmreq(cc, dmreq) + cc->iv_size + cc->iv_size;
1255 
1256 	return (__le64 *) ptr;
1257 }
1258 
org_tag_of_dmreq(struct crypt_config * cc,struct dm_crypt_request * dmreq)1259 static unsigned int *org_tag_of_dmreq(struct crypt_config *cc,
1260 		       struct dm_crypt_request *dmreq)
1261 {
1262 	u8 *ptr = iv_of_dmreq(cc, dmreq) + cc->iv_size +
1263 		  cc->iv_size + sizeof(uint64_t);
1264 
1265 	return (unsigned int *)ptr;
1266 }
1267 
tag_from_dmreq(struct crypt_config * cc,struct dm_crypt_request * dmreq)1268 static void *tag_from_dmreq(struct crypt_config *cc,
1269 				struct dm_crypt_request *dmreq)
1270 {
1271 	struct convert_context *ctx = dmreq->ctx;
1272 	struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx);
1273 
1274 	return &io->integrity_metadata[*org_tag_of_dmreq(cc, dmreq) *
1275 		cc->tuple_size];
1276 }
1277 
iv_tag_from_dmreq(struct crypt_config * cc,struct dm_crypt_request * dmreq)1278 static void *iv_tag_from_dmreq(struct crypt_config *cc,
1279 			       struct dm_crypt_request *dmreq)
1280 {
1281 	return tag_from_dmreq(cc, dmreq) + cc->integrity_tag_size;
1282 }
1283 
crypt_convert_block_aead(struct crypt_config * cc,struct convert_context * ctx,struct aead_request * req,unsigned int tag_offset)1284 static int crypt_convert_block_aead(struct crypt_config *cc,
1285 				     struct convert_context *ctx,
1286 				     struct aead_request *req,
1287 				     unsigned int tag_offset)
1288 {
1289 	struct bio_vec bv_in = bio_iter_iovec(ctx->bio_in, ctx->iter_in);
1290 	struct bio_vec bv_out = bio_iter_iovec(ctx->bio_out, ctx->iter_out);
1291 	struct dm_crypt_request *dmreq;
1292 	u8 *iv, *org_iv, *tag_iv, *tag;
1293 	__le64 *sector;
1294 	int r = 0;
1295 
1296 	BUG_ON(cc->integrity_iv_size && cc->integrity_iv_size != cc->iv_size);
1297 
1298 	/* Reject unexpected unaligned bio. */
1299 	if (unlikely(bv_in.bv_len & (cc->sector_size - 1)))
1300 		return -EIO;
1301 
1302 	dmreq = dmreq_of_req(cc, req);
1303 	dmreq->iv_sector = ctx->cc_sector;
1304 	if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags))
1305 		dmreq->iv_sector >>= cc->sector_shift;
1306 	dmreq->ctx = ctx;
1307 
1308 	*org_tag_of_dmreq(cc, dmreq) = tag_offset;
1309 
1310 	sector = org_sector_of_dmreq(cc, dmreq);
1311 	*sector = cpu_to_le64(ctx->cc_sector - cc->iv_offset);
1312 
1313 	iv = iv_of_dmreq(cc, dmreq);
1314 	org_iv = org_iv_of_dmreq(cc, dmreq);
1315 	tag = tag_from_dmreq(cc, dmreq);
1316 	tag_iv = iv_tag_from_dmreq(cc, dmreq);
1317 
1318 	/* AEAD request:
1319 	 *  |----- AAD -------|------ DATA -------|-- AUTH TAG --|
1320 	 *  | (authenticated) | (auth+encryption) |              |
1321 	 *  | sector_LE |  IV |  sector in/out    |  tag in/out  |
1322 	 */
1323 	sg_init_table(dmreq->sg_in, 4);
1324 	sg_set_buf(&dmreq->sg_in[0], sector, sizeof(uint64_t));
1325 	sg_set_buf(&dmreq->sg_in[1], org_iv, cc->iv_size);
1326 	sg_set_page(&dmreq->sg_in[2], bv_in.bv_page, cc->sector_size, bv_in.bv_offset);
1327 	sg_set_buf(&dmreq->sg_in[3], tag, cc->integrity_tag_size);
1328 
1329 	sg_init_table(dmreq->sg_out, 4);
1330 	sg_set_buf(&dmreq->sg_out[0], sector, sizeof(uint64_t));
1331 	sg_set_buf(&dmreq->sg_out[1], org_iv, cc->iv_size);
1332 	sg_set_page(&dmreq->sg_out[2], bv_out.bv_page, cc->sector_size, bv_out.bv_offset);
1333 	sg_set_buf(&dmreq->sg_out[3], tag, cc->integrity_tag_size);
1334 
1335 	if (cc->iv_gen_ops) {
1336 		/* For READs use IV stored in integrity metadata */
1337 		if (cc->integrity_iv_size && bio_data_dir(ctx->bio_in) != WRITE) {
1338 			memcpy(org_iv, tag_iv, cc->iv_size);
1339 		} else {
1340 			r = cc->iv_gen_ops->generator(cc, org_iv, dmreq);
1341 			if (r < 0)
1342 				return r;
1343 			/* Store generated IV in integrity metadata */
1344 			if (cc->integrity_iv_size)
1345 				memcpy(tag_iv, org_iv, cc->iv_size);
1346 		}
1347 		/* Working copy of IV, to be modified in crypto API */
1348 		memcpy(iv, org_iv, cc->iv_size);
1349 	}
1350 
1351 	aead_request_set_ad(req, sizeof(uint64_t) + cc->iv_size);
1352 	if (bio_data_dir(ctx->bio_in) == WRITE) {
1353 		aead_request_set_crypt(req, dmreq->sg_in, dmreq->sg_out,
1354 				       cc->sector_size, iv);
1355 		r = crypto_aead_encrypt(req);
1356 		if (cc->integrity_tag_size + cc->integrity_iv_size != cc->tuple_size)
1357 			memset(tag + cc->integrity_tag_size + cc->integrity_iv_size, 0,
1358 			       cc->tuple_size - (cc->integrity_tag_size + cc->integrity_iv_size));
1359 	} else {
1360 		aead_request_set_crypt(req, dmreq->sg_in, dmreq->sg_out,
1361 				       cc->sector_size + cc->integrity_tag_size, iv);
1362 		r = crypto_aead_decrypt(req);
1363 	}
1364 
1365 	if (r == -EBADMSG) {
1366 		sector_t s = le64_to_cpu(*sector);
1367 
1368 		ctx->aead_failed = true;
1369 		if (ctx->aead_recheck) {
1370 			DMERR_LIMIT("%pg: INTEGRITY AEAD ERROR, sector %llu",
1371 				    ctx->bio_in->bi_bdev, s);
1372 			dm_audit_log_bio(DM_MSG_PREFIX, "integrity-aead",
1373 					 ctx->bio_in, s, 0);
1374 		}
1375 	}
1376 
1377 	if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post)
1378 		r = cc->iv_gen_ops->post(cc, org_iv, dmreq);
1379 
1380 	bio_advance_iter(ctx->bio_in, &ctx->iter_in, cc->sector_size);
1381 	bio_advance_iter(ctx->bio_out, &ctx->iter_out, cc->sector_size);
1382 
1383 	return r;
1384 }
1385 
crypt_convert_block_skcipher(struct crypt_config * cc,struct convert_context * ctx,struct skcipher_request * req,unsigned int tag_offset)1386 static int crypt_convert_block_skcipher(struct crypt_config *cc,
1387 					struct convert_context *ctx,
1388 					struct skcipher_request *req,
1389 					unsigned int tag_offset)
1390 {
1391 	struct bio_vec bv_in = bio_iter_iovec(ctx->bio_in, ctx->iter_in);
1392 	struct bio_vec bv_out = bio_iter_iovec(ctx->bio_out, ctx->iter_out);
1393 	struct scatterlist *sg_in, *sg_out;
1394 	struct dm_crypt_request *dmreq;
1395 	u8 *iv, *org_iv, *tag_iv;
1396 	__le64 *sector;
1397 	int r = 0;
1398 
1399 	/* Reject unexpected unaligned bio. */
1400 	if (unlikely(bv_in.bv_len & (cc->sector_size - 1)))
1401 		return -EIO;
1402 
1403 	dmreq = dmreq_of_req(cc, req);
1404 	dmreq->iv_sector = ctx->cc_sector;
1405 	if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags))
1406 		dmreq->iv_sector >>= cc->sector_shift;
1407 	dmreq->ctx = ctx;
1408 
1409 	*org_tag_of_dmreq(cc, dmreq) = tag_offset;
1410 
1411 	iv = iv_of_dmreq(cc, dmreq);
1412 	org_iv = org_iv_of_dmreq(cc, dmreq);
1413 	tag_iv = iv_tag_from_dmreq(cc, dmreq);
1414 
1415 	sector = org_sector_of_dmreq(cc, dmreq);
1416 	*sector = cpu_to_le64(ctx->cc_sector - cc->iv_offset);
1417 
1418 	/* For skcipher we use only the first sg item */
1419 	sg_in  = &dmreq->sg_in[0];
1420 	sg_out = &dmreq->sg_out[0];
1421 
1422 	sg_init_table(sg_in, 1);
1423 	sg_set_page(sg_in, bv_in.bv_page, cc->sector_size, bv_in.bv_offset);
1424 
1425 	sg_init_table(sg_out, 1);
1426 	sg_set_page(sg_out, bv_out.bv_page, cc->sector_size, bv_out.bv_offset);
1427 
1428 	if (cc->iv_gen_ops) {
1429 		/* For READs use IV stored in integrity metadata */
1430 		if (cc->integrity_iv_size && bio_data_dir(ctx->bio_in) != WRITE) {
1431 			memcpy(org_iv, tag_iv, cc->integrity_iv_size);
1432 		} else {
1433 			r = cc->iv_gen_ops->generator(cc, org_iv, dmreq);
1434 			if (r < 0)
1435 				return r;
1436 			/* Data can be already preprocessed in generator */
1437 			if (test_bit(CRYPT_ENCRYPT_PREPROCESS, &cc->cipher_flags))
1438 				sg_in = sg_out;
1439 			/* Store generated IV in integrity metadata */
1440 			if (cc->integrity_iv_size)
1441 				memcpy(tag_iv, org_iv, cc->integrity_iv_size);
1442 		}
1443 		/* Working copy of IV, to be modified in crypto API */
1444 		memcpy(iv, org_iv, cc->iv_size);
1445 	}
1446 
1447 	skcipher_request_set_crypt(req, sg_in, sg_out, cc->sector_size, iv);
1448 
1449 	if (bio_data_dir(ctx->bio_in) == WRITE)
1450 		r = crypto_skcipher_encrypt(req);
1451 	else
1452 		r = crypto_skcipher_decrypt(req);
1453 
1454 	if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post)
1455 		r = cc->iv_gen_ops->post(cc, org_iv, dmreq);
1456 
1457 	bio_advance_iter(ctx->bio_in, &ctx->iter_in, cc->sector_size);
1458 	bio_advance_iter(ctx->bio_out, &ctx->iter_out, cc->sector_size);
1459 
1460 	return r;
1461 }
1462 
1463 static void kcryptd_async_done(void *async_req, int error);
1464 
crypt_alloc_req_skcipher(struct crypt_config * cc,struct convert_context * ctx)1465 static int crypt_alloc_req_skcipher(struct crypt_config *cc,
1466 				     struct convert_context *ctx)
1467 {
1468 	unsigned int key_index = ctx->cc_sector & (cc->tfms_count - 1);
1469 
1470 	if (!ctx->r.req) {
1471 		ctx->r.req = mempool_alloc(&cc->req_pool, in_interrupt() ? GFP_ATOMIC : GFP_NOIO);
1472 		if (!ctx->r.req)
1473 			return -ENOMEM;
1474 	}
1475 
1476 	skcipher_request_set_tfm(ctx->r.req, cc->cipher_tfm.tfms[key_index]);
1477 
1478 	/*
1479 	 * Use REQ_MAY_BACKLOG so a cipher driver internally backlogs
1480 	 * requests if driver request queue is full.
1481 	 */
1482 	skcipher_request_set_callback(ctx->r.req,
1483 	    CRYPTO_TFM_REQ_MAY_BACKLOG,
1484 	    kcryptd_async_done, dmreq_of_req(cc, ctx->r.req));
1485 
1486 	return 0;
1487 }
1488 
crypt_alloc_req_aead(struct crypt_config * cc,struct convert_context * ctx)1489 static int crypt_alloc_req_aead(struct crypt_config *cc,
1490 				 struct convert_context *ctx)
1491 {
1492 	if (!ctx->r.req_aead) {
1493 		ctx->r.req_aead = mempool_alloc(&cc->req_pool, in_interrupt() ? GFP_ATOMIC : GFP_NOIO);
1494 		if (!ctx->r.req_aead)
1495 			return -ENOMEM;
1496 	}
1497 
1498 	aead_request_set_tfm(ctx->r.req_aead, cc->cipher_tfm.tfms_aead[0]);
1499 
1500 	/*
1501 	 * Use REQ_MAY_BACKLOG so a cipher driver internally backlogs
1502 	 * requests if driver request queue is full.
1503 	 */
1504 	aead_request_set_callback(ctx->r.req_aead,
1505 	    CRYPTO_TFM_REQ_MAY_BACKLOG,
1506 	    kcryptd_async_done, dmreq_of_req(cc, ctx->r.req_aead));
1507 
1508 	return 0;
1509 }
1510 
crypt_alloc_req(struct crypt_config * cc,struct convert_context * ctx)1511 static int crypt_alloc_req(struct crypt_config *cc,
1512 			    struct convert_context *ctx)
1513 {
1514 	if (crypt_integrity_aead(cc))
1515 		return crypt_alloc_req_aead(cc, ctx);
1516 	else
1517 		return crypt_alloc_req_skcipher(cc, ctx);
1518 }
1519 
crypt_free_req_skcipher(struct crypt_config * cc,struct skcipher_request * req,struct bio * base_bio)1520 static void crypt_free_req_skcipher(struct crypt_config *cc,
1521 				    struct skcipher_request *req, struct bio *base_bio)
1522 {
1523 	struct dm_crypt_io *io = dm_per_bio_data(base_bio, cc->per_bio_data_size);
1524 
1525 	if ((struct skcipher_request *)(io + 1) != req)
1526 		mempool_free(req, &cc->req_pool);
1527 }
1528 
crypt_free_req_aead(struct crypt_config * cc,struct aead_request * req,struct bio * base_bio)1529 static void crypt_free_req_aead(struct crypt_config *cc,
1530 				struct aead_request *req, struct bio *base_bio)
1531 {
1532 	struct dm_crypt_io *io = dm_per_bio_data(base_bio, cc->per_bio_data_size);
1533 
1534 	if ((struct aead_request *)(io + 1) != req)
1535 		mempool_free(req, &cc->req_pool);
1536 }
1537 
crypt_free_req(struct crypt_config * cc,void * req,struct bio * base_bio)1538 static void crypt_free_req(struct crypt_config *cc, void *req, struct bio *base_bio)
1539 {
1540 	if (crypt_integrity_aead(cc))
1541 		crypt_free_req_aead(cc, req, base_bio);
1542 	else
1543 		crypt_free_req_skcipher(cc, req, base_bio);
1544 }
1545 
1546 /*
1547  * Encrypt / decrypt data from one bio to another one (can be the same one)
1548  */
crypt_convert(struct crypt_config * cc,struct convert_context * ctx,bool atomic,bool reset_pending)1549 static blk_status_t crypt_convert(struct crypt_config *cc,
1550 			 struct convert_context *ctx, bool atomic, bool reset_pending)
1551 {
1552 	unsigned int sector_step = cc->sector_size >> SECTOR_SHIFT;
1553 	int r;
1554 
1555 	/*
1556 	 * if reset_pending is set we are dealing with the bio for the first time,
1557 	 * else we're continuing to work on the previous bio, so don't mess with
1558 	 * the cc_pending counter
1559 	 */
1560 	if (reset_pending)
1561 		atomic_set(&ctx->cc_pending, 1);
1562 
1563 	while (ctx->iter_in.bi_size && ctx->iter_out.bi_size) {
1564 
1565 		r = crypt_alloc_req(cc, ctx);
1566 		if (r) {
1567 			complete(&ctx->restart);
1568 			return BLK_STS_DEV_RESOURCE;
1569 		}
1570 
1571 		atomic_inc(&ctx->cc_pending);
1572 
1573 		if (crypt_integrity_aead(cc))
1574 			r = crypt_convert_block_aead(cc, ctx, ctx->r.req_aead, ctx->tag_offset);
1575 		else
1576 			r = crypt_convert_block_skcipher(cc, ctx, ctx->r.req, ctx->tag_offset);
1577 
1578 		switch (r) {
1579 		/*
1580 		 * The request was queued by a crypto driver
1581 		 * but the driver request queue is full, let's wait.
1582 		 */
1583 		case -EBUSY:
1584 			if (in_interrupt()) {
1585 				if (try_wait_for_completion(&ctx->restart)) {
1586 					/*
1587 					 * we don't have to block to wait for completion,
1588 					 * so proceed
1589 					 */
1590 				} else {
1591 					/*
1592 					 * we can't wait for completion without blocking
1593 					 * exit and continue processing in a workqueue
1594 					 */
1595 					ctx->r.req = NULL;
1596 					ctx->tag_offset++;
1597 					ctx->cc_sector += sector_step;
1598 					return BLK_STS_DEV_RESOURCE;
1599 				}
1600 			} else {
1601 				wait_for_completion(&ctx->restart);
1602 			}
1603 			reinit_completion(&ctx->restart);
1604 			fallthrough;
1605 		/*
1606 		 * The request is queued and processed asynchronously,
1607 		 * completion function kcryptd_async_done() will be called.
1608 		 */
1609 		case -EINPROGRESS:
1610 			ctx->r.req = NULL;
1611 			ctx->tag_offset++;
1612 			ctx->cc_sector += sector_step;
1613 			continue;
1614 		/*
1615 		 * The request was already processed (synchronously).
1616 		 */
1617 		case 0:
1618 			atomic_dec(&ctx->cc_pending);
1619 			ctx->cc_sector += sector_step;
1620 			ctx->tag_offset++;
1621 			if (!atomic)
1622 				cond_resched();
1623 			continue;
1624 		/*
1625 		 * There was a data integrity error.
1626 		 */
1627 		case -EBADMSG:
1628 			atomic_dec(&ctx->cc_pending);
1629 			return BLK_STS_PROTECTION;
1630 		/*
1631 		 * There was an error while processing the request.
1632 		 */
1633 		default:
1634 			atomic_dec(&ctx->cc_pending);
1635 			return BLK_STS_IOERR;
1636 		}
1637 	}
1638 
1639 	return 0;
1640 }
1641 
1642 static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone);
1643 
1644 /*
1645  * Generate a new unfragmented bio with the given size
1646  * This should never violate the device limitations (but if it did then block
1647  * core should split the bio as needed).
1648  *
1649  * This function may be called concurrently. If we allocate from the mempool
1650  * concurrently, there is a possibility of deadlock. For example, if we have
1651  * mempool of 256 pages, two processes, each wanting 256, pages allocate from
1652  * the mempool concurrently, it may deadlock in a situation where both processes
1653  * have allocated 128 pages and the mempool is exhausted.
1654  *
1655  * In order to avoid this scenario we allocate the pages under a mutex.
1656  *
1657  * In order to not degrade performance with excessive locking, we try
1658  * non-blocking allocations without a mutex first but on failure we fallback
1659  * to blocking allocations with a mutex.
1660  *
1661  * In order to reduce allocation overhead, we try to allocate compound pages in
1662  * the first pass. If they are not available, we fall back to the mempool.
1663  */
crypt_alloc_buffer(struct dm_crypt_io * io,unsigned int size)1664 static struct bio *crypt_alloc_buffer(struct dm_crypt_io *io, unsigned int size)
1665 {
1666 	struct crypt_config *cc = io->cc;
1667 	struct bio *clone;
1668 	unsigned int nr_iovecs = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1669 	gfp_t gfp_mask = GFP_NOWAIT | __GFP_HIGHMEM;
1670 	unsigned int remaining_size;
1671 	unsigned int order = MAX_PAGE_ORDER;
1672 
1673 retry:
1674 	if (unlikely(gfp_mask & __GFP_DIRECT_RECLAIM))
1675 		mutex_lock(&cc->bio_alloc_lock);
1676 
1677 	clone = bio_alloc_bioset(cc->dev->bdev, nr_iovecs, io->base_bio->bi_opf,
1678 				 GFP_NOIO, &cc->bs);
1679 	clone->bi_private = io;
1680 	clone->bi_end_io = crypt_endio;
1681 	clone->bi_ioprio = io->base_bio->bi_ioprio;
1682 	clone->bi_iter.bi_sector = cc->start + io->sector;
1683 
1684 	remaining_size = size;
1685 
1686 	while (remaining_size) {
1687 		struct page *pages;
1688 		unsigned size_to_add;
1689 		unsigned remaining_order = __fls((remaining_size + PAGE_SIZE - 1) >> PAGE_SHIFT);
1690 		order = min(order, remaining_order);
1691 
1692 		while (order > 0) {
1693 			if (unlikely(percpu_counter_read_positive(&cc->n_allocated_pages) +
1694 					(1 << order) > dm_crypt_pages_per_client))
1695 				goto decrease_order;
1696 			pages = alloc_pages(gfp_mask
1697 				| __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN | __GFP_COMP,
1698 				order);
1699 			if (likely(pages != NULL)) {
1700 				percpu_counter_add(&cc->n_allocated_pages, 1 << order);
1701 				goto have_pages;
1702 			}
1703 decrease_order:
1704 			order--;
1705 		}
1706 
1707 		pages = mempool_alloc(&cc->page_pool, gfp_mask);
1708 		if (!pages) {
1709 			crypt_free_buffer_pages(cc, clone);
1710 			bio_put(clone);
1711 			gfp_mask |= __GFP_DIRECT_RECLAIM;
1712 			order = 0;
1713 			goto retry;
1714 		}
1715 
1716 have_pages:
1717 		size_to_add = min((unsigned)PAGE_SIZE << order, remaining_size);
1718 		__bio_add_page(clone, pages, size_to_add, 0);
1719 		remaining_size -= size_to_add;
1720 	}
1721 
1722 	/* Allocate space for integrity tags */
1723 	if (dm_crypt_integrity_io_alloc(io, clone)) {
1724 		crypt_free_buffer_pages(cc, clone);
1725 		bio_put(clone);
1726 		clone = NULL;
1727 	}
1728 
1729 	if (unlikely(gfp_mask & __GFP_DIRECT_RECLAIM))
1730 		mutex_unlock(&cc->bio_alloc_lock);
1731 
1732 	return clone;
1733 }
1734 
crypt_free_buffer_pages(struct crypt_config * cc,struct bio * clone)1735 static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone)
1736 {
1737 	struct folio_iter fi;
1738 
1739 	if (clone->bi_vcnt > 0) { /* bio_for_each_folio_all crashes with an empty bio */
1740 		bio_for_each_folio_all(fi, clone) {
1741 			if (folio_test_large(fi.folio)) {
1742 				percpu_counter_sub(&cc->n_allocated_pages,
1743 						folio_nr_pages(fi.folio));
1744 				folio_put(fi.folio);
1745 			} else {
1746 				mempool_free(&fi.folio->page, &cc->page_pool);
1747 			}
1748 		}
1749 	}
1750 }
1751 
crypt_io_init(struct dm_crypt_io * io,struct crypt_config * cc,struct bio * bio,sector_t sector)1752 static void crypt_io_init(struct dm_crypt_io *io, struct crypt_config *cc,
1753 			  struct bio *bio, sector_t sector)
1754 {
1755 	io->cc = cc;
1756 	io->base_bio = bio;
1757 	io->sector = sector;
1758 	io->error = 0;
1759 	io->ctx.aead_recheck = false;
1760 	io->ctx.aead_failed = false;
1761 	io->ctx.r.req = NULL;
1762 	io->integrity_metadata = NULL;
1763 	io->integrity_metadata_from_pool = false;
1764 	atomic_set(&io->io_pending, 0);
1765 }
1766 
crypt_inc_pending(struct dm_crypt_io * io)1767 static void crypt_inc_pending(struct dm_crypt_io *io)
1768 {
1769 	atomic_inc(&io->io_pending);
1770 }
1771 
1772 static void kcryptd_queue_read(struct dm_crypt_io *io);
1773 
1774 /*
1775  * One of the bios was finished. Check for completion of
1776  * the whole request and correctly clean up the buffer.
1777  */
crypt_dec_pending(struct dm_crypt_io * io)1778 static void crypt_dec_pending(struct dm_crypt_io *io)
1779 {
1780 	struct crypt_config *cc = io->cc;
1781 	struct bio *base_bio = io->base_bio;
1782 	blk_status_t error = io->error;
1783 
1784 	if (!atomic_dec_and_test(&io->io_pending))
1785 		return;
1786 
1787 	if (likely(!io->ctx.aead_recheck) && unlikely(io->ctx.aead_failed) &&
1788 	    cc->used_tag_size && bio_data_dir(base_bio) == READ) {
1789 		io->ctx.aead_recheck = true;
1790 		io->ctx.aead_failed = false;
1791 		io->error = 0;
1792 		kcryptd_queue_read(io);
1793 		return;
1794 	}
1795 
1796 	if (io->ctx.r.req)
1797 		crypt_free_req(cc, io->ctx.r.req, base_bio);
1798 
1799 	if (unlikely(io->integrity_metadata_from_pool))
1800 		mempool_free(io->integrity_metadata, &io->cc->tag_pool);
1801 	else
1802 		kfree(io->integrity_metadata);
1803 
1804 	base_bio->bi_status = error;
1805 
1806 	bio_endio(base_bio);
1807 }
1808 
1809 /*
1810  * kcryptd/kcryptd_io:
1811  *
1812  * Needed because it would be very unwise to do decryption in an
1813  * interrupt context.
1814  *
1815  * kcryptd performs the actual encryption or decryption.
1816  *
1817  * kcryptd_io performs the IO submission.
1818  *
1819  * They must be separated as otherwise the final stages could be
1820  * starved by new requests which can block in the first stages due
1821  * to memory allocation.
1822  *
1823  * The work is done per CPU global for all dm-crypt instances.
1824  * They should not depend on each other and do not block.
1825  */
crypt_endio(struct bio * clone)1826 static void crypt_endio(struct bio *clone)
1827 {
1828 	struct dm_crypt_io *io = clone->bi_private;
1829 	struct crypt_config *cc = io->cc;
1830 	unsigned int rw = bio_data_dir(clone);
1831 	blk_status_t error = clone->bi_status;
1832 
1833 	if (io->ctx.aead_recheck && !error) {
1834 		kcryptd_queue_crypt(io);
1835 		return;
1836 	}
1837 
1838 	/*
1839 	 * free the processed pages
1840 	 */
1841 	if (rw == WRITE || io->ctx.aead_recheck)
1842 		crypt_free_buffer_pages(cc, clone);
1843 
1844 	bio_put(clone);
1845 
1846 	if (rw == READ && !error) {
1847 		kcryptd_queue_crypt(io);
1848 		return;
1849 	}
1850 
1851 	if (unlikely(error))
1852 		io->error = error;
1853 
1854 	crypt_dec_pending(io);
1855 }
1856 
1857 #define CRYPT_MAP_READ_GFP GFP_NOWAIT
1858 
kcryptd_io_read(struct dm_crypt_io * io,gfp_t gfp)1859 static int kcryptd_io_read(struct dm_crypt_io *io, gfp_t gfp)
1860 {
1861 	struct crypt_config *cc = io->cc;
1862 	struct bio *clone;
1863 
1864 	if (io->ctx.aead_recheck) {
1865 		if (!(gfp & __GFP_DIRECT_RECLAIM))
1866 			return 1;
1867 		crypt_inc_pending(io);
1868 		clone = crypt_alloc_buffer(io, io->base_bio->bi_iter.bi_size);
1869 		if (unlikely(!clone)) {
1870 			crypt_dec_pending(io);
1871 			return 1;
1872 		}
1873 		crypt_convert_init(cc, &io->ctx, clone, clone, io->sector);
1874 		io->saved_bi_iter = clone->bi_iter;
1875 		dm_submit_bio_remap(io->base_bio, clone);
1876 		return 0;
1877 	}
1878 
1879 	/*
1880 	 * We need the original biovec array in order to decrypt the whole bio
1881 	 * data *afterwards* -- thanks to immutable biovecs we don't need to
1882 	 * worry about the block layer modifying the biovec array; so leverage
1883 	 * bio_alloc_clone().
1884 	 */
1885 	clone = bio_alloc_clone(cc->dev->bdev, io->base_bio, gfp, &cc->bs);
1886 	if (!clone)
1887 		return 1;
1888 
1889 	clone->bi_iter.bi_sector = cc->start + io->sector;
1890 	clone->bi_private = io;
1891 	clone->bi_end_io = crypt_endio;
1892 
1893 	crypt_inc_pending(io);
1894 
1895 	if (dm_crypt_integrity_io_alloc(io, clone)) {
1896 		crypt_dec_pending(io);
1897 		bio_put(clone);
1898 		return 1;
1899 	}
1900 
1901 	dm_submit_bio_remap(io->base_bio, clone);
1902 	return 0;
1903 }
1904 
kcryptd_io_read_work(struct work_struct * work)1905 static void kcryptd_io_read_work(struct work_struct *work)
1906 {
1907 	struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
1908 
1909 	crypt_inc_pending(io);
1910 	if (kcryptd_io_read(io, GFP_NOIO))
1911 		io->error = BLK_STS_RESOURCE;
1912 	crypt_dec_pending(io);
1913 }
1914 
kcryptd_queue_read(struct dm_crypt_io * io)1915 static void kcryptd_queue_read(struct dm_crypt_io *io)
1916 {
1917 	struct crypt_config *cc = io->cc;
1918 
1919 	INIT_WORK(&io->work, kcryptd_io_read_work);
1920 	queue_work(cc->io_queue, &io->work);
1921 }
1922 
kcryptd_io_write(struct dm_crypt_io * io)1923 static void kcryptd_io_write(struct dm_crypt_io *io)
1924 {
1925 	struct bio *clone = io->ctx.bio_out;
1926 
1927 	dm_submit_bio_remap(io->base_bio, clone);
1928 }
1929 
1930 #define crypt_io_from_node(node) rb_entry((node), struct dm_crypt_io, rb_node)
1931 
dmcrypt_write(void * data)1932 static int dmcrypt_write(void *data)
1933 {
1934 	struct crypt_config *cc = data;
1935 	struct dm_crypt_io *io;
1936 
1937 	while (1) {
1938 		struct rb_root write_tree;
1939 		struct blk_plug plug;
1940 
1941 		spin_lock_irq(&cc->write_thread_lock);
1942 continue_locked:
1943 
1944 		if (!RB_EMPTY_ROOT(&cc->write_tree))
1945 			goto pop_from_list;
1946 
1947 		set_current_state(TASK_INTERRUPTIBLE);
1948 
1949 		spin_unlock_irq(&cc->write_thread_lock);
1950 
1951 		if (unlikely(kthread_should_stop())) {
1952 			set_current_state(TASK_RUNNING);
1953 			break;
1954 		}
1955 
1956 		schedule();
1957 
1958 		spin_lock_irq(&cc->write_thread_lock);
1959 		goto continue_locked;
1960 
1961 pop_from_list:
1962 		write_tree = cc->write_tree;
1963 		cc->write_tree = RB_ROOT;
1964 		spin_unlock_irq(&cc->write_thread_lock);
1965 
1966 		BUG_ON(rb_parent(write_tree.rb_node));
1967 
1968 		/*
1969 		 * Note: we cannot walk the tree here with rb_next because
1970 		 * the structures may be freed when kcryptd_io_write is called.
1971 		 */
1972 		blk_start_plug(&plug);
1973 		do {
1974 			io = crypt_io_from_node(rb_first(&write_tree));
1975 			rb_erase(&io->rb_node, &write_tree);
1976 			kcryptd_io_write(io);
1977 			cond_resched();
1978 		} while (!RB_EMPTY_ROOT(&write_tree));
1979 		blk_finish_plug(&plug);
1980 	}
1981 	return 0;
1982 }
1983 
kcryptd_crypt_write_io_submit(struct dm_crypt_io * io,int async)1984 static void kcryptd_crypt_write_io_submit(struct dm_crypt_io *io, int async)
1985 {
1986 	struct bio *clone = io->ctx.bio_out;
1987 	struct crypt_config *cc = io->cc;
1988 	unsigned long flags;
1989 	sector_t sector;
1990 	struct rb_node **rbp, *parent;
1991 
1992 	if (unlikely(io->error)) {
1993 		crypt_free_buffer_pages(cc, clone);
1994 		bio_put(clone);
1995 		crypt_dec_pending(io);
1996 		return;
1997 	}
1998 
1999 	/* crypt_convert should have filled the clone bio */
2000 	BUG_ON(io->ctx.iter_out.bi_size);
2001 
2002 	if ((likely(!async) && test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags)) ||
2003 	    test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags)) {
2004 		dm_submit_bio_remap(io->base_bio, clone);
2005 		return;
2006 	}
2007 
2008 	spin_lock_irqsave(&cc->write_thread_lock, flags);
2009 	if (RB_EMPTY_ROOT(&cc->write_tree))
2010 		wake_up_process(cc->write_thread);
2011 	rbp = &cc->write_tree.rb_node;
2012 	parent = NULL;
2013 	sector = io->sector;
2014 	while (*rbp) {
2015 		parent = *rbp;
2016 		if (sector < crypt_io_from_node(parent)->sector)
2017 			rbp = &(*rbp)->rb_left;
2018 		else
2019 			rbp = &(*rbp)->rb_right;
2020 	}
2021 	rb_link_node(&io->rb_node, parent, rbp);
2022 	rb_insert_color(&io->rb_node, &cc->write_tree);
2023 	spin_unlock_irqrestore(&cc->write_thread_lock, flags);
2024 }
2025 
kcryptd_crypt_write_inline(struct crypt_config * cc,struct convert_context * ctx)2026 static bool kcryptd_crypt_write_inline(struct crypt_config *cc,
2027 				       struct convert_context *ctx)
2028 
2029 {
2030 	if (!test_bit(DM_CRYPT_WRITE_INLINE, &cc->flags))
2031 		return false;
2032 
2033 	/*
2034 	 * Note: zone append writes (REQ_OP_ZONE_APPEND) do not have ordering
2035 	 * constraints so they do not need to be issued inline by
2036 	 * kcryptd_crypt_write_convert().
2037 	 */
2038 	switch (bio_op(ctx->bio_in)) {
2039 	case REQ_OP_WRITE:
2040 	case REQ_OP_WRITE_ZEROES:
2041 		return true;
2042 	default:
2043 		return false;
2044 	}
2045 }
2046 
kcryptd_crypt_write_continue(struct work_struct * work)2047 static void kcryptd_crypt_write_continue(struct work_struct *work)
2048 {
2049 	struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
2050 	struct crypt_config *cc = io->cc;
2051 	struct convert_context *ctx = &io->ctx;
2052 	int crypt_finished;
2053 	blk_status_t r;
2054 
2055 	wait_for_completion(&ctx->restart);
2056 	reinit_completion(&ctx->restart);
2057 
2058 	r = crypt_convert(cc, &io->ctx, false, false);
2059 	if (r)
2060 		io->error = r;
2061 	crypt_finished = atomic_dec_and_test(&ctx->cc_pending);
2062 	if (!crypt_finished && kcryptd_crypt_write_inline(cc, ctx)) {
2063 		/* Wait for completion signaled by kcryptd_async_done() */
2064 		wait_for_completion(&ctx->restart);
2065 		crypt_finished = 1;
2066 	}
2067 
2068 	/* Encryption was already finished, submit io now */
2069 	if (crypt_finished)
2070 		kcryptd_crypt_write_io_submit(io, 0);
2071 
2072 	crypt_dec_pending(io);
2073 }
2074 
kcryptd_crypt_write_convert(struct dm_crypt_io * io)2075 static void kcryptd_crypt_write_convert(struct dm_crypt_io *io)
2076 {
2077 	struct crypt_config *cc = io->cc;
2078 	struct convert_context *ctx = &io->ctx;
2079 	struct bio *clone;
2080 	int crypt_finished;
2081 	blk_status_t r;
2082 
2083 	/*
2084 	 * Prevent io from disappearing until this function completes.
2085 	 */
2086 	crypt_inc_pending(io);
2087 	crypt_convert_init(cc, ctx, NULL, io->base_bio, io->sector);
2088 
2089 	clone = crypt_alloc_buffer(io, io->base_bio->bi_iter.bi_size);
2090 	if (unlikely(!clone)) {
2091 		io->error = BLK_STS_IOERR;
2092 		goto dec;
2093 	}
2094 
2095 	io->ctx.bio_out = clone;
2096 	io->ctx.iter_out = clone->bi_iter;
2097 
2098 	if (crypt_integrity_aead(cc)) {
2099 		bio_copy_data(clone, io->base_bio);
2100 		io->ctx.bio_in = clone;
2101 		io->ctx.iter_in = clone->bi_iter;
2102 	}
2103 
2104 	crypt_inc_pending(io);
2105 	r = crypt_convert(cc, ctx,
2106 			  test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags), true);
2107 	/*
2108 	 * Crypto API backlogged the request, because its queue was full
2109 	 * and we're in softirq context, so continue from a workqueue
2110 	 * (TODO: is it actually possible to be in softirq in the write path?)
2111 	 */
2112 	if (r == BLK_STS_DEV_RESOURCE) {
2113 		INIT_WORK(&io->work, kcryptd_crypt_write_continue);
2114 		queue_work(cc->crypt_queue, &io->work);
2115 		return;
2116 	}
2117 	if (r)
2118 		io->error = r;
2119 	crypt_finished = atomic_dec_and_test(&ctx->cc_pending);
2120 	if (!crypt_finished && kcryptd_crypt_write_inline(cc, ctx)) {
2121 		/* Wait for completion signaled by kcryptd_async_done() */
2122 		wait_for_completion(&ctx->restart);
2123 		crypt_finished = 1;
2124 	}
2125 
2126 	/* Encryption was already finished, submit io now */
2127 	if (crypt_finished)
2128 		kcryptd_crypt_write_io_submit(io, 0);
2129 
2130 dec:
2131 	crypt_dec_pending(io);
2132 }
2133 
kcryptd_crypt_read_done(struct dm_crypt_io * io)2134 static void kcryptd_crypt_read_done(struct dm_crypt_io *io)
2135 {
2136 	if (io->ctx.aead_recheck) {
2137 		if (!io->error) {
2138 			io->ctx.bio_in->bi_iter = io->saved_bi_iter;
2139 			bio_copy_data(io->base_bio, io->ctx.bio_in);
2140 		}
2141 		crypt_free_buffer_pages(io->cc, io->ctx.bio_in);
2142 		bio_put(io->ctx.bio_in);
2143 	}
2144 	crypt_dec_pending(io);
2145 }
2146 
kcryptd_crypt_read_continue(struct work_struct * work)2147 static void kcryptd_crypt_read_continue(struct work_struct *work)
2148 {
2149 	struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
2150 	struct crypt_config *cc = io->cc;
2151 	blk_status_t r;
2152 
2153 	wait_for_completion(&io->ctx.restart);
2154 	reinit_completion(&io->ctx.restart);
2155 
2156 	r = crypt_convert(cc, &io->ctx, false, false);
2157 	if (r)
2158 		io->error = r;
2159 
2160 	if (atomic_dec_and_test(&io->ctx.cc_pending))
2161 		kcryptd_crypt_read_done(io);
2162 
2163 	crypt_dec_pending(io);
2164 }
2165 
kcryptd_crypt_read_convert(struct dm_crypt_io * io)2166 static void kcryptd_crypt_read_convert(struct dm_crypt_io *io)
2167 {
2168 	struct crypt_config *cc = io->cc;
2169 	blk_status_t r;
2170 
2171 	crypt_inc_pending(io);
2172 
2173 	if (io->ctx.aead_recheck) {
2174 		r = crypt_convert(cc, &io->ctx,
2175 				  test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags), true);
2176 	} else {
2177 		crypt_convert_init(cc, &io->ctx, io->base_bio, io->base_bio,
2178 				   io->sector);
2179 
2180 		r = crypt_convert(cc, &io->ctx,
2181 				  test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags), true);
2182 	}
2183 	/*
2184 	 * Crypto API backlogged the request, because its queue was full
2185 	 * and we're in softirq context, so continue from a workqueue
2186 	 */
2187 	if (r == BLK_STS_DEV_RESOURCE) {
2188 		INIT_WORK(&io->work, kcryptd_crypt_read_continue);
2189 		queue_work(cc->crypt_queue, &io->work);
2190 		return;
2191 	}
2192 	if (r)
2193 		io->error = r;
2194 
2195 	if (atomic_dec_and_test(&io->ctx.cc_pending))
2196 		kcryptd_crypt_read_done(io);
2197 
2198 	crypt_dec_pending(io);
2199 }
2200 
kcryptd_async_done(void * data,int error)2201 static void kcryptd_async_done(void *data, int error)
2202 {
2203 	struct dm_crypt_request *dmreq = data;
2204 	struct convert_context *ctx = dmreq->ctx;
2205 	struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx);
2206 	struct crypt_config *cc = io->cc;
2207 
2208 	/*
2209 	 * A request from crypto driver backlog is going to be processed now,
2210 	 * finish the completion and continue in crypt_convert().
2211 	 * (Callback will be called for the second time for this request.)
2212 	 */
2213 	if (error == -EINPROGRESS) {
2214 		complete(&ctx->restart);
2215 		return;
2216 	}
2217 
2218 	if (!error && cc->iv_gen_ops && cc->iv_gen_ops->post)
2219 		error = cc->iv_gen_ops->post(cc, org_iv_of_dmreq(cc, dmreq), dmreq);
2220 
2221 	if (error == -EBADMSG) {
2222 		sector_t s = le64_to_cpu(*org_sector_of_dmreq(cc, dmreq));
2223 
2224 		ctx->aead_failed = true;
2225 		if (ctx->aead_recheck) {
2226 			DMERR_LIMIT("%pg: INTEGRITY AEAD ERROR, sector %llu",
2227 				    ctx->bio_in->bi_bdev, s);
2228 			dm_audit_log_bio(DM_MSG_PREFIX, "integrity-aead",
2229 					 ctx->bio_in, s, 0);
2230 		}
2231 		io->error = BLK_STS_PROTECTION;
2232 	} else if (error < 0)
2233 		io->error = BLK_STS_IOERR;
2234 
2235 	crypt_free_req(cc, req_of_dmreq(cc, dmreq), io->base_bio);
2236 
2237 	if (!atomic_dec_and_test(&ctx->cc_pending))
2238 		return;
2239 
2240 	/*
2241 	 * The request is fully completed: for inline writes, let
2242 	 * kcryptd_crypt_write_convert() do the IO submission.
2243 	 */
2244 	if (bio_data_dir(io->base_bio) == READ) {
2245 		kcryptd_crypt_read_done(io);
2246 		return;
2247 	}
2248 
2249 	if (kcryptd_crypt_write_inline(cc, ctx)) {
2250 		complete(&ctx->restart);
2251 		return;
2252 	}
2253 
2254 	kcryptd_crypt_write_io_submit(io, 1);
2255 }
2256 
kcryptd_crypt(struct work_struct * work)2257 static void kcryptd_crypt(struct work_struct *work)
2258 {
2259 	struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
2260 
2261 	if (bio_data_dir(io->base_bio) == READ)
2262 		kcryptd_crypt_read_convert(io);
2263 	else
2264 		kcryptd_crypt_write_convert(io);
2265 }
2266 
kcryptd_queue_crypt(struct dm_crypt_io * io)2267 static void kcryptd_queue_crypt(struct dm_crypt_io *io)
2268 {
2269 	struct crypt_config *cc = io->cc;
2270 
2271 	if ((bio_data_dir(io->base_bio) == READ && test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags)) ||
2272 	    (bio_data_dir(io->base_bio) == WRITE && test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags))) {
2273 		/*
2274 		 * in_hardirq(): Crypto API's skcipher_walk_first() refuses to work in hard IRQ context.
2275 		 * irqs_disabled(): the kernel may run some IO completion from the idle thread, but
2276 		 * it is being executed with irqs disabled.
2277 		 */
2278 		if (in_hardirq() || irqs_disabled()) {
2279 			INIT_WORK(&io->work, kcryptd_crypt);
2280 			queue_work(system_bh_wq, &io->work);
2281 			return;
2282 		} else {
2283 			kcryptd_crypt(&io->work);
2284 			return;
2285 		}
2286 	}
2287 
2288 	INIT_WORK(&io->work, kcryptd_crypt);
2289 	queue_work(cc->crypt_queue, &io->work);
2290 }
2291 
crypt_free_tfms_aead(struct crypt_config * cc)2292 static void crypt_free_tfms_aead(struct crypt_config *cc)
2293 {
2294 	if (!cc->cipher_tfm.tfms_aead)
2295 		return;
2296 
2297 	if (cc->cipher_tfm.tfms_aead[0] && !IS_ERR(cc->cipher_tfm.tfms_aead[0])) {
2298 		crypto_free_aead(cc->cipher_tfm.tfms_aead[0]);
2299 		cc->cipher_tfm.tfms_aead[0] = NULL;
2300 	}
2301 
2302 	kfree(cc->cipher_tfm.tfms_aead);
2303 	cc->cipher_tfm.tfms_aead = NULL;
2304 }
2305 
crypt_free_tfms_skcipher(struct crypt_config * cc)2306 static void crypt_free_tfms_skcipher(struct crypt_config *cc)
2307 {
2308 	unsigned int i;
2309 
2310 	if (!cc->cipher_tfm.tfms)
2311 		return;
2312 
2313 	for (i = 0; i < cc->tfms_count; i++)
2314 		if (cc->cipher_tfm.tfms[i] && !IS_ERR(cc->cipher_tfm.tfms[i])) {
2315 			crypto_free_skcipher(cc->cipher_tfm.tfms[i]);
2316 			cc->cipher_tfm.tfms[i] = NULL;
2317 		}
2318 
2319 	kfree(cc->cipher_tfm.tfms);
2320 	cc->cipher_tfm.tfms = NULL;
2321 }
2322 
crypt_free_tfms(struct crypt_config * cc)2323 static void crypt_free_tfms(struct crypt_config *cc)
2324 {
2325 	if (crypt_integrity_aead(cc))
2326 		crypt_free_tfms_aead(cc);
2327 	else
2328 		crypt_free_tfms_skcipher(cc);
2329 }
2330 
crypt_alloc_tfms_skcipher(struct crypt_config * cc,char * ciphermode)2331 static int crypt_alloc_tfms_skcipher(struct crypt_config *cc, char *ciphermode)
2332 {
2333 	unsigned int i;
2334 	int err;
2335 
2336 	cc->cipher_tfm.tfms = kcalloc(cc->tfms_count,
2337 				      sizeof(struct crypto_skcipher *),
2338 				      GFP_KERNEL);
2339 	if (!cc->cipher_tfm.tfms)
2340 		return -ENOMEM;
2341 
2342 	for (i = 0; i < cc->tfms_count; i++) {
2343 		cc->cipher_tfm.tfms[i] = crypto_alloc_skcipher(ciphermode, 0,
2344 						CRYPTO_ALG_ALLOCATES_MEMORY);
2345 		if (IS_ERR(cc->cipher_tfm.tfms[i])) {
2346 			err = PTR_ERR(cc->cipher_tfm.tfms[i]);
2347 			crypt_free_tfms(cc);
2348 			return err;
2349 		}
2350 	}
2351 
2352 	/*
2353 	 * dm-crypt performance can vary greatly depending on which crypto
2354 	 * algorithm implementation is used.  Help people debug performance
2355 	 * problems by logging the ->cra_driver_name.
2356 	 */
2357 	DMDEBUG_LIMIT("%s using implementation \"%s\"", ciphermode,
2358 	       crypto_skcipher_alg(any_tfm(cc))->base.cra_driver_name);
2359 	return 0;
2360 }
2361 
crypt_alloc_tfms_aead(struct crypt_config * cc,char * ciphermode)2362 static int crypt_alloc_tfms_aead(struct crypt_config *cc, char *ciphermode)
2363 {
2364 	int err;
2365 
2366 	cc->cipher_tfm.tfms = kmalloc(sizeof(struct crypto_aead *), GFP_KERNEL);
2367 	if (!cc->cipher_tfm.tfms)
2368 		return -ENOMEM;
2369 
2370 	cc->cipher_tfm.tfms_aead[0] = crypto_alloc_aead(ciphermode, 0,
2371 						CRYPTO_ALG_ALLOCATES_MEMORY);
2372 	if (IS_ERR(cc->cipher_tfm.tfms_aead[0])) {
2373 		err = PTR_ERR(cc->cipher_tfm.tfms_aead[0]);
2374 		crypt_free_tfms(cc);
2375 		return err;
2376 	}
2377 
2378 	DMDEBUG_LIMIT("%s using implementation \"%s\"", ciphermode,
2379 	       crypto_aead_alg(any_tfm_aead(cc))->base.cra_driver_name);
2380 	return 0;
2381 }
2382 
crypt_alloc_tfms(struct crypt_config * cc,char * ciphermode)2383 static int crypt_alloc_tfms(struct crypt_config *cc, char *ciphermode)
2384 {
2385 	if (crypt_integrity_aead(cc))
2386 		return crypt_alloc_tfms_aead(cc, ciphermode);
2387 	else
2388 		return crypt_alloc_tfms_skcipher(cc, ciphermode);
2389 }
2390 
crypt_subkey_size(struct crypt_config * cc)2391 static unsigned int crypt_subkey_size(struct crypt_config *cc)
2392 {
2393 	return (cc->key_size - cc->key_extra_size) >> ilog2(cc->tfms_count);
2394 }
2395 
crypt_authenckey_size(struct crypt_config * cc)2396 static unsigned int crypt_authenckey_size(struct crypt_config *cc)
2397 {
2398 	return crypt_subkey_size(cc) + RTA_SPACE(sizeof(struct crypto_authenc_key_param));
2399 }
2400 
2401 /*
2402  * If AEAD is composed like authenc(hmac(sha256),xts(aes)),
2403  * the key must be for some reason in special format.
2404  * This funcion converts cc->key to this special format.
2405  */
crypt_copy_authenckey(char * p,const void * key,unsigned int enckeylen,unsigned int authkeylen)2406 static void crypt_copy_authenckey(char *p, const void *key,
2407 				  unsigned int enckeylen, unsigned int authkeylen)
2408 {
2409 	struct crypto_authenc_key_param *param;
2410 	struct rtattr *rta;
2411 
2412 	rta = (struct rtattr *)p;
2413 	param = RTA_DATA(rta);
2414 	param->enckeylen = cpu_to_be32(enckeylen);
2415 	rta->rta_len = RTA_LENGTH(sizeof(*param));
2416 	rta->rta_type = CRYPTO_AUTHENC_KEYA_PARAM;
2417 	p += RTA_SPACE(sizeof(*param));
2418 	memcpy(p, key + enckeylen, authkeylen);
2419 	p += authkeylen;
2420 	memcpy(p, key, enckeylen);
2421 }
2422 
crypt_setkey(struct crypt_config * cc)2423 static int crypt_setkey(struct crypt_config *cc)
2424 {
2425 	unsigned int subkey_size;
2426 	int err = 0, i, r;
2427 
2428 	/* Ignore extra keys (which are used for IV etc) */
2429 	subkey_size = crypt_subkey_size(cc);
2430 
2431 	if (crypt_integrity_hmac(cc)) {
2432 		if (subkey_size < cc->key_mac_size)
2433 			return -EINVAL;
2434 
2435 		crypt_copy_authenckey(cc->authenc_key, cc->key,
2436 				      subkey_size - cc->key_mac_size,
2437 				      cc->key_mac_size);
2438 	}
2439 
2440 	for (i = 0; i < cc->tfms_count; i++) {
2441 		if (crypt_integrity_hmac(cc))
2442 			r = crypto_aead_setkey(cc->cipher_tfm.tfms_aead[i],
2443 				cc->authenc_key, crypt_authenckey_size(cc));
2444 		else if (crypt_integrity_aead(cc))
2445 			r = crypto_aead_setkey(cc->cipher_tfm.tfms_aead[i],
2446 					       cc->key + (i * subkey_size),
2447 					       subkey_size);
2448 		else
2449 			r = crypto_skcipher_setkey(cc->cipher_tfm.tfms[i],
2450 						   cc->key + (i * subkey_size),
2451 						   subkey_size);
2452 		if (r)
2453 			err = r;
2454 	}
2455 
2456 	if (crypt_integrity_hmac(cc))
2457 		memzero_explicit(cc->authenc_key, crypt_authenckey_size(cc));
2458 
2459 	return err;
2460 }
2461 
2462 #ifdef CONFIG_KEYS
2463 
contains_whitespace(const char * str)2464 static bool contains_whitespace(const char *str)
2465 {
2466 	while (*str)
2467 		if (isspace(*str++))
2468 			return true;
2469 	return false;
2470 }
2471 
set_key_user(struct crypt_config * cc,struct key * key)2472 static int set_key_user(struct crypt_config *cc, struct key *key)
2473 {
2474 	const struct user_key_payload *ukp;
2475 
2476 	ukp = user_key_payload_locked(key);
2477 	if (!ukp)
2478 		return -EKEYREVOKED;
2479 
2480 	if (cc->key_size != ukp->datalen)
2481 		return -EINVAL;
2482 
2483 	memcpy(cc->key, ukp->data, cc->key_size);
2484 
2485 	return 0;
2486 }
2487 
set_key_encrypted(struct crypt_config * cc,struct key * key)2488 static int set_key_encrypted(struct crypt_config *cc, struct key *key)
2489 {
2490 	const struct encrypted_key_payload *ekp;
2491 
2492 	ekp = key->payload.data[0];
2493 	if (!ekp)
2494 		return -EKEYREVOKED;
2495 
2496 	if (cc->key_size != ekp->decrypted_datalen)
2497 		return -EINVAL;
2498 
2499 	memcpy(cc->key, ekp->decrypted_data, cc->key_size);
2500 
2501 	return 0;
2502 }
2503 
set_key_trusted(struct crypt_config * cc,struct key * key)2504 static int set_key_trusted(struct crypt_config *cc, struct key *key)
2505 {
2506 	const struct trusted_key_payload *tkp;
2507 
2508 	tkp = key->payload.data[0];
2509 	if (!tkp)
2510 		return -EKEYREVOKED;
2511 
2512 	if (cc->key_size != tkp->key_len)
2513 		return -EINVAL;
2514 
2515 	memcpy(cc->key, tkp->key, cc->key_size);
2516 
2517 	return 0;
2518 }
2519 
crypt_set_keyring_key(struct crypt_config * cc,const char * key_string)2520 static int crypt_set_keyring_key(struct crypt_config *cc, const char *key_string)
2521 {
2522 	char *new_key_string, *key_desc;
2523 	int ret;
2524 	struct key_type *type;
2525 	struct key *key;
2526 	int (*set_key)(struct crypt_config *cc, struct key *key);
2527 
2528 	/*
2529 	 * Reject key_string with whitespace. dm core currently lacks code for
2530 	 * proper whitespace escaping in arguments on DM_TABLE_STATUS path.
2531 	 */
2532 	if (contains_whitespace(key_string)) {
2533 		DMERR("whitespace chars not allowed in key string");
2534 		return -EINVAL;
2535 	}
2536 
2537 	/* look for next ':' separating key_type from key_description */
2538 	key_desc = strchr(key_string, ':');
2539 	if (!key_desc || key_desc == key_string || !strlen(key_desc + 1))
2540 		return -EINVAL;
2541 
2542 	if (!strncmp(key_string, "logon:", key_desc - key_string + 1)) {
2543 		type = &key_type_logon;
2544 		set_key = set_key_user;
2545 	} else if (!strncmp(key_string, "user:", key_desc - key_string + 1)) {
2546 		type = &key_type_user;
2547 		set_key = set_key_user;
2548 	} else if (IS_ENABLED(CONFIG_ENCRYPTED_KEYS) &&
2549 		   !strncmp(key_string, "encrypted:", key_desc - key_string + 1)) {
2550 		type = &key_type_encrypted;
2551 		set_key = set_key_encrypted;
2552 	} else if (IS_ENABLED(CONFIG_TRUSTED_KEYS) &&
2553 		   !strncmp(key_string, "trusted:", key_desc - key_string + 1)) {
2554 		type = &key_type_trusted;
2555 		set_key = set_key_trusted;
2556 	} else {
2557 		return -EINVAL;
2558 	}
2559 
2560 	new_key_string = kstrdup(key_string, GFP_KERNEL);
2561 	if (!new_key_string)
2562 		return -ENOMEM;
2563 
2564 	key = request_key(type, key_desc + 1, NULL);
2565 	if (IS_ERR(key)) {
2566 		ret = PTR_ERR(key);
2567 		goto free_new_key_string;
2568 	}
2569 
2570 	down_read(&key->sem);
2571 	ret = set_key(cc, key);
2572 	up_read(&key->sem);
2573 	key_put(key);
2574 	if (ret < 0)
2575 		goto free_new_key_string;
2576 
2577 	/* clear the flag since following operations may invalidate previously valid key */
2578 	clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2579 
2580 	ret = crypt_setkey(cc);
2581 	if (ret)
2582 		goto free_new_key_string;
2583 
2584 	set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2585 	kfree_sensitive(cc->key_string);
2586 	cc->key_string = new_key_string;
2587 	return 0;
2588 
2589 free_new_key_string:
2590 	kfree_sensitive(new_key_string);
2591 	return ret;
2592 }
2593 
get_key_size(char ** key_string)2594 static int get_key_size(char **key_string)
2595 {
2596 	char *colon, dummy;
2597 	int ret;
2598 
2599 	if (*key_string[0] != ':')
2600 		return strlen(*key_string) >> 1;
2601 
2602 	/* look for next ':' in key string */
2603 	colon = strpbrk(*key_string + 1, ":");
2604 	if (!colon)
2605 		return -EINVAL;
2606 
2607 	if (sscanf(*key_string + 1, "%u%c", &ret, &dummy) != 2 || dummy != ':')
2608 		return -EINVAL;
2609 
2610 	*key_string = colon;
2611 
2612 	/* remaining key string should be :<logon|user>:<key_desc> */
2613 
2614 	return ret;
2615 }
2616 
2617 #else
2618 
crypt_set_keyring_key(struct crypt_config * cc,const char * key_string)2619 static int crypt_set_keyring_key(struct crypt_config *cc, const char *key_string)
2620 {
2621 	return -EINVAL;
2622 }
2623 
get_key_size(char ** key_string)2624 static int get_key_size(char **key_string)
2625 {
2626 	return (*key_string[0] == ':') ? -EINVAL : (int)(strlen(*key_string) >> 1);
2627 }
2628 
2629 #endif /* CONFIG_KEYS */
2630 
crypt_set_key(struct crypt_config * cc,char * key)2631 static int crypt_set_key(struct crypt_config *cc, char *key)
2632 {
2633 	int r = -EINVAL;
2634 	int key_string_len = strlen(key);
2635 
2636 	/* Hyphen (which gives a key_size of zero) means there is no key. */
2637 	if (!cc->key_size && strcmp(key, "-"))
2638 		goto out;
2639 
2640 	/* ':' means the key is in kernel keyring, short-circuit normal key processing */
2641 	if (key[0] == ':') {
2642 		r = crypt_set_keyring_key(cc, key + 1);
2643 		goto out;
2644 	}
2645 
2646 	/* clear the flag since following operations may invalidate previously valid key */
2647 	clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2648 
2649 	/* wipe references to any kernel keyring key */
2650 	kfree_sensitive(cc->key_string);
2651 	cc->key_string = NULL;
2652 
2653 	/* Decode key from its hex representation. */
2654 	if (cc->key_size && hex2bin(cc->key, key, cc->key_size) < 0)
2655 		goto out;
2656 
2657 	r = crypt_setkey(cc);
2658 	if (!r)
2659 		set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2660 
2661 out:
2662 	/* Hex key string not needed after here, so wipe it. */
2663 	memset(key, '0', key_string_len);
2664 
2665 	return r;
2666 }
2667 
crypt_wipe_key(struct crypt_config * cc)2668 static int crypt_wipe_key(struct crypt_config *cc)
2669 {
2670 	int r;
2671 
2672 	clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2673 	get_random_bytes(&cc->key, cc->key_size);
2674 
2675 	/* Wipe IV private keys */
2676 	if (cc->iv_gen_ops && cc->iv_gen_ops->wipe) {
2677 		r = cc->iv_gen_ops->wipe(cc);
2678 		if (r)
2679 			return r;
2680 	}
2681 
2682 	kfree_sensitive(cc->key_string);
2683 	cc->key_string = NULL;
2684 	r = crypt_setkey(cc);
2685 	memset(&cc->key, 0, cc->key_size * sizeof(u8));
2686 
2687 	return r;
2688 }
2689 
crypt_calculate_pages_per_client(void)2690 static void crypt_calculate_pages_per_client(void)
2691 {
2692 	unsigned long pages = (totalram_pages() - totalhigh_pages()) * DM_CRYPT_MEMORY_PERCENT / 100;
2693 
2694 	if (!dm_crypt_clients_n)
2695 		return;
2696 
2697 	pages /= dm_crypt_clients_n;
2698 	if (pages < DM_CRYPT_MIN_PAGES_PER_CLIENT)
2699 		pages = DM_CRYPT_MIN_PAGES_PER_CLIENT;
2700 	dm_crypt_pages_per_client = pages;
2701 }
2702 
crypt_page_alloc(gfp_t gfp_mask,void * pool_data)2703 static void *crypt_page_alloc(gfp_t gfp_mask, void *pool_data)
2704 {
2705 	struct crypt_config *cc = pool_data;
2706 	struct page *page;
2707 
2708 	/*
2709 	 * Note, percpu_counter_read_positive() may over (and under) estimate
2710 	 * the current usage by at most (batch - 1) * num_online_cpus() pages,
2711 	 * but avoids potential spinlock contention of an exact result.
2712 	 */
2713 	if (unlikely(percpu_counter_read_positive(&cc->n_allocated_pages) >= dm_crypt_pages_per_client) &&
2714 	    likely(gfp_mask & __GFP_NORETRY))
2715 		return NULL;
2716 
2717 	page = alloc_page(gfp_mask);
2718 	if (likely(page != NULL))
2719 		percpu_counter_add(&cc->n_allocated_pages, 1);
2720 
2721 	return page;
2722 }
2723 
crypt_page_free(void * page,void * pool_data)2724 static void crypt_page_free(void *page, void *pool_data)
2725 {
2726 	struct crypt_config *cc = pool_data;
2727 
2728 	__free_page(page);
2729 	percpu_counter_sub(&cc->n_allocated_pages, 1);
2730 }
2731 
crypt_dtr(struct dm_target * ti)2732 static void crypt_dtr(struct dm_target *ti)
2733 {
2734 	struct crypt_config *cc = ti->private;
2735 
2736 	ti->private = NULL;
2737 
2738 	if (!cc)
2739 		return;
2740 
2741 	if (cc->write_thread)
2742 		kthread_stop(cc->write_thread);
2743 
2744 	if (cc->io_queue)
2745 		destroy_workqueue(cc->io_queue);
2746 	if (cc->crypt_queue)
2747 		destroy_workqueue(cc->crypt_queue);
2748 
2749 	if (cc->workqueue_id)
2750 		ida_free(&workqueue_ida, cc->workqueue_id);
2751 
2752 	crypt_free_tfms(cc);
2753 
2754 	bioset_exit(&cc->bs);
2755 
2756 	mempool_exit(&cc->page_pool);
2757 	mempool_exit(&cc->req_pool);
2758 	mempool_exit(&cc->tag_pool);
2759 
2760 	WARN_ON(percpu_counter_sum(&cc->n_allocated_pages) != 0);
2761 	percpu_counter_destroy(&cc->n_allocated_pages);
2762 
2763 	if (cc->iv_gen_ops && cc->iv_gen_ops->dtr)
2764 		cc->iv_gen_ops->dtr(cc);
2765 
2766 	if (cc->dev)
2767 		dm_put_device(ti, cc->dev);
2768 
2769 	kfree_sensitive(cc->cipher_string);
2770 	kfree_sensitive(cc->key_string);
2771 	kfree_sensitive(cc->cipher_auth);
2772 	kfree_sensitive(cc->authenc_key);
2773 
2774 	mutex_destroy(&cc->bio_alloc_lock);
2775 
2776 	/* Must zero key material before freeing */
2777 	kfree_sensitive(cc);
2778 
2779 	spin_lock(&dm_crypt_clients_lock);
2780 	WARN_ON(!dm_crypt_clients_n);
2781 	dm_crypt_clients_n--;
2782 	crypt_calculate_pages_per_client();
2783 	spin_unlock(&dm_crypt_clients_lock);
2784 
2785 	dm_audit_log_dtr(DM_MSG_PREFIX, ti, 1);
2786 }
2787 
crypt_ctr_ivmode(struct dm_target * ti,const char * ivmode)2788 static int crypt_ctr_ivmode(struct dm_target *ti, const char *ivmode)
2789 {
2790 	struct crypt_config *cc = ti->private;
2791 
2792 	if (crypt_integrity_aead(cc))
2793 		cc->iv_size = crypto_aead_ivsize(any_tfm_aead(cc));
2794 	else
2795 		cc->iv_size = crypto_skcipher_ivsize(any_tfm(cc));
2796 
2797 	if (cc->iv_size)
2798 		/* at least a 64 bit sector number should fit in our buffer */
2799 		cc->iv_size = max(cc->iv_size,
2800 				  (unsigned int)(sizeof(u64) / sizeof(u8)));
2801 	else if (ivmode) {
2802 		DMWARN("Selected cipher does not support IVs");
2803 		ivmode = NULL;
2804 	}
2805 
2806 	/* Choose ivmode, see comments at iv code. */
2807 	if (ivmode == NULL)
2808 		cc->iv_gen_ops = NULL;
2809 	else if (strcmp(ivmode, "plain") == 0)
2810 		cc->iv_gen_ops = &crypt_iv_plain_ops;
2811 	else if (strcmp(ivmode, "plain64") == 0)
2812 		cc->iv_gen_ops = &crypt_iv_plain64_ops;
2813 	else if (strcmp(ivmode, "plain64be") == 0)
2814 		cc->iv_gen_ops = &crypt_iv_plain64be_ops;
2815 	else if (strcmp(ivmode, "essiv") == 0)
2816 		cc->iv_gen_ops = &crypt_iv_essiv_ops;
2817 	else if (strcmp(ivmode, "benbi") == 0)
2818 		cc->iv_gen_ops = &crypt_iv_benbi_ops;
2819 	else if (strcmp(ivmode, "null") == 0)
2820 		cc->iv_gen_ops = &crypt_iv_null_ops;
2821 	else if (strcmp(ivmode, "eboiv") == 0)
2822 		cc->iv_gen_ops = &crypt_iv_eboiv_ops;
2823 	else if (strcmp(ivmode, "elephant") == 0) {
2824 		cc->iv_gen_ops = &crypt_iv_elephant_ops;
2825 		cc->key_parts = 2;
2826 		cc->key_extra_size = cc->key_size / 2;
2827 		if (cc->key_extra_size > ELEPHANT_MAX_KEY_SIZE)
2828 			return -EINVAL;
2829 		set_bit(CRYPT_ENCRYPT_PREPROCESS, &cc->cipher_flags);
2830 	} else if (strcmp(ivmode, "lmk") == 0) {
2831 		cc->iv_gen_ops = &crypt_iv_lmk_ops;
2832 		/*
2833 		 * Version 2 and 3 is recognised according
2834 		 * to length of provided multi-key string.
2835 		 * If present (version 3), last key is used as IV seed.
2836 		 * All keys (including IV seed) are always the same size.
2837 		 */
2838 		if (cc->key_size % cc->key_parts) {
2839 			cc->key_parts++;
2840 			cc->key_extra_size = cc->key_size / cc->key_parts;
2841 		}
2842 	} else if (strcmp(ivmode, "tcw") == 0) {
2843 		cc->iv_gen_ops = &crypt_iv_tcw_ops;
2844 		cc->key_parts += 2; /* IV + whitening */
2845 		cc->key_extra_size = cc->iv_size + TCW_WHITENING_SIZE;
2846 	} else if (strcmp(ivmode, "random") == 0) {
2847 		cc->iv_gen_ops = &crypt_iv_random_ops;
2848 		/* Need storage space in integrity fields. */
2849 		cc->integrity_iv_size = cc->iv_size;
2850 	} else {
2851 		ti->error = "Invalid IV mode";
2852 		return -EINVAL;
2853 	}
2854 
2855 	return 0;
2856 }
2857 
2858 /*
2859  * Workaround to parse HMAC algorithm from AEAD crypto API spec.
2860  * The HMAC is needed to calculate tag size (HMAC digest size).
2861  * This should be probably done by crypto-api calls (once available...)
2862  */
crypt_ctr_auth_cipher(struct crypt_config * cc,char * cipher_api)2863 static int crypt_ctr_auth_cipher(struct crypt_config *cc, char *cipher_api)
2864 {
2865 	char *start, *end, *mac_alg = NULL;
2866 	struct crypto_ahash *mac;
2867 
2868 	if (!strstarts(cipher_api, "authenc("))
2869 		return 0;
2870 
2871 	start = strchr(cipher_api, '(');
2872 	end = strchr(cipher_api, ',');
2873 	if (!start || !end || ++start > end)
2874 		return -EINVAL;
2875 
2876 	mac_alg = kmemdup_nul(start, end - start, GFP_KERNEL);
2877 	if (!mac_alg)
2878 		return -ENOMEM;
2879 
2880 	mac = crypto_alloc_ahash(mac_alg, 0, CRYPTO_ALG_ALLOCATES_MEMORY);
2881 	kfree(mac_alg);
2882 
2883 	if (IS_ERR(mac))
2884 		return PTR_ERR(mac);
2885 
2886 	if (!test_bit(CRYPT_KEY_MAC_SIZE_SET, &cc->cipher_flags))
2887 		cc->key_mac_size = crypto_ahash_digestsize(mac);
2888 	crypto_free_ahash(mac);
2889 
2890 	cc->authenc_key = kmalloc(crypt_authenckey_size(cc), GFP_KERNEL);
2891 	if (!cc->authenc_key)
2892 		return -ENOMEM;
2893 
2894 	return 0;
2895 }
2896 
crypt_ctr_cipher_new(struct dm_target * ti,char * cipher_in,char * key,char ** ivmode,char ** ivopts)2897 static int crypt_ctr_cipher_new(struct dm_target *ti, char *cipher_in, char *key,
2898 				char **ivmode, char **ivopts)
2899 {
2900 	struct crypt_config *cc = ti->private;
2901 	char *tmp, *cipher_api, buf[CRYPTO_MAX_ALG_NAME];
2902 	int ret = -EINVAL;
2903 
2904 	cc->tfms_count = 1;
2905 
2906 	/*
2907 	 * New format (capi: prefix)
2908 	 * capi:cipher_api_spec-iv:ivopts
2909 	 */
2910 	tmp = &cipher_in[strlen("capi:")];
2911 
2912 	/* Separate IV options if present, it can contain another '-' in hash name */
2913 	*ivopts = strrchr(tmp, ':');
2914 	if (*ivopts) {
2915 		**ivopts = '\0';
2916 		(*ivopts)++;
2917 	}
2918 	/* Parse IV mode */
2919 	*ivmode = strrchr(tmp, '-');
2920 	if (*ivmode) {
2921 		**ivmode = '\0';
2922 		(*ivmode)++;
2923 	}
2924 	/* The rest is crypto API spec */
2925 	cipher_api = tmp;
2926 
2927 	/* Alloc AEAD, can be used only in new format. */
2928 	if (crypt_integrity_aead(cc)) {
2929 		ret = crypt_ctr_auth_cipher(cc, cipher_api);
2930 		if (ret < 0) {
2931 			ti->error = "Invalid AEAD cipher spec";
2932 			return ret;
2933 		}
2934 	}
2935 
2936 	if (*ivmode && !strcmp(*ivmode, "lmk"))
2937 		cc->tfms_count = 64;
2938 
2939 	if (*ivmode && !strcmp(*ivmode, "essiv")) {
2940 		if (!*ivopts) {
2941 			ti->error = "Digest algorithm missing for ESSIV mode";
2942 			return -EINVAL;
2943 		}
2944 		ret = snprintf(buf, CRYPTO_MAX_ALG_NAME, "essiv(%s,%s)",
2945 			       cipher_api, *ivopts);
2946 		if (ret < 0 || ret >= CRYPTO_MAX_ALG_NAME) {
2947 			ti->error = "Cannot allocate cipher string";
2948 			return -ENOMEM;
2949 		}
2950 		cipher_api = buf;
2951 	}
2952 
2953 	cc->key_parts = cc->tfms_count;
2954 
2955 	/* Allocate cipher */
2956 	ret = crypt_alloc_tfms(cc, cipher_api);
2957 	if (ret < 0) {
2958 		ti->error = "Error allocating crypto tfm";
2959 		return ret;
2960 	}
2961 
2962 	if (crypt_integrity_aead(cc))
2963 		cc->iv_size = crypto_aead_ivsize(any_tfm_aead(cc));
2964 	else
2965 		cc->iv_size = crypto_skcipher_ivsize(any_tfm(cc));
2966 
2967 	return 0;
2968 }
2969 
crypt_ctr_cipher_old(struct dm_target * ti,char * cipher_in,char * key,char ** ivmode,char ** ivopts)2970 static int crypt_ctr_cipher_old(struct dm_target *ti, char *cipher_in, char *key,
2971 				char **ivmode, char **ivopts)
2972 {
2973 	struct crypt_config *cc = ti->private;
2974 	char *tmp, *cipher, *chainmode, *keycount;
2975 	char *cipher_api = NULL;
2976 	int ret = -EINVAL;
2977 	char dummy;
2978 
2979 	if (strchr(cipher_in, '(') || crypt_integrity_aead(cc)) {
2980 		ti->error = "Bad cipher specification";
2981 		return -EINVAL;
2982 	}
2983 
2984 	/*
2985 	 * Legacy dm-crypt cipher specification
2986 	 * cipher[:keycount]-mode-iv:ivopts
2987 	 */
2988 	tmp = cipher_in;
2989 	keycount = strsep(&tmp, "-");
2990 	cipher = strsep(&keycount, ":");
2991 
2992 	if (!keycount)
2993 		cc->tfms_count = 1;
2994 	else if (sscanf(keycount, "%u%c", &cc->tfms_count, &dummy) != 1 ||
2995 		 !is_power_of_2(cc->tfms_count)) {
2996 		ti->error = "Bad cipher key count specification";
2997 		return -EINVAL;
2998 	}
2999 	cc->key_parts = cc->tfms_count;
3000 
3001 	chainmode = strsep(&tmp, "-");
3002 	*ivmode = strsep(&tmp, ":");
3003 	*ivopts = tmp;
3004 
3005 	/*
3006 	 * For compatibility with the original dm-crypt mapping format, if
3007 	 * only the cipher name is supplied, use cbc-plain.
3008 	 */
3009 	if (!chainmode || (!strcmp(chainmode, "plain") && !*ivmode)) {
3010 		chainmode = "cbc";
3011 		*ivmode = "plain";
3012 	}
3013 
3014 	if (strcmp(chainmode, "ecb") && !*ivmode) {
3015 		ti->error = "IV mechanism required";
3016 		return -EINVAL;
3017 	}
3018 
3019 	cipher_api = kmalloc(CRYPTO_MAX_ALG_NAME, GFP_KERNEL);
3020 	if (!cipher_api)
3021 		goto bad_mem;
3022 
3023 	if (*ivmode && !strcmp(*ivmode, "essiv")) {
3024 		if (!*ivopts) {
3025 			ti->error = "Digest algorithm missing for ESSIV mode";
3026 			kfree(cipher_api);
3027 			return -EINVAL;
3028 		}
3029 		ret = snprintf(cipher_api, CRYPTO_MAX_ALG_NAME,
3030 			       "essiv(%s(%s),%s)", chainmode, cipher, *ivopts);
3031 	} else {
3032 		ret = snprintf(cipher_api, CRYPTO_MAX_ALG_NAME,
3033 			       "%s(%s)", chainmode, cipher);
3034 	}
3035 	if (ret < 0 || ret >= CRYPTO_MAX_ALG_NAME) {
3036 		kfree(cipher_api);
3037 		goto bad_mem;
3038 	}
3039 
3040 	/* Allocate cipher */
3041 	ret = crypt_alloc_tfms(cc, cipher_api);
3042 	if (ret < 0) {
3043 		ti->error = "Error allocating crypto tfm";
3044 		kfree(cipher_api);
3045 		return ret;
3046 	}
3047 	kfree(cipher_api);
3048 
3049 	return 0;
3050 bad_mem:
3051 	ti->error = "Cannot allocate cipher strings";
3052 	return -ENOMEM;
3053 }
3054 
crypt_ctr_cipher(struct dm_target * ti,char * cipher_in,char * key)3055 static int crypt_ctr_cipher(struct dm_target *ti, char *cipher_in, char *key)
3056 {
3057 	struct crypt_config *cc = ti->private;
3058 	char *ivmode = NULL, *ivopts = NULL;
3059 	int ret;
3060 
3061 	cc->cipher_string = kstrdup(cipher_in, GFP_KERNEL);
3062 	if (!cc->cipher_string) {
3063 		ti->error = "Cannot allocate cipher strings";
3064 		return -ENOMEM;
3065 	}
3066 
3067 	if (strstarts(cipher_in, "capi:"))
3068 		ret = crypt_ctr_cipher_new(ti, cipher_in, key, &ivmode, &ivopts);
3069 	else
3070 		ret = crypt_ctr_cipher_old(ti, cipher_in, key, &ivmode, &ivopts);
3071 	if (ret)
3072 		return ret;
3073 
3074 	/* Initialize IV */
3075 	ret = crypt_ctr_ivmode(ti, ivmode);
3076 	if (ret < 0)
3077 		return ret;
3078 
3079 	/* Initialize and set key */
3080 	ret = crypt_set_key(cc, key);
3081 	if (ret < 0) {
3082 		ti->error = "Error decoding and setting key";
3083 		return ret;
3084 	}
3085 
3086 	/* Allocate IV */
3087 	if (cc->iv_gen_ops && cc->iv_gen_ops->ctr) {
3088 		ret = cc->iv_gen_ops->ctr(cc, ti, ivopts);
3089 		if (ret < 0) {
3090 			ti->error = "Error creating IV";
3091 			return ret;
3092 		}
3093 	}
3094 
3095 	/* Initialize IV (set keys for ESSIV etc) */
3096 	if (cc->iv_gen_ops && cc->iv_gen_ops->init) {
3097 		ret = cc->iv_gen_ops->init(cc);
3098 		if (ret < 0) {
3099 			ti->error = "Error initialising IV";
3100 			return ret;
3101 		}
3102 	}
3103 
3104 	/* wipe the kernel key payload copy */
3105 	if (cc->key_string)
3106 		memset(cc->key, 0, cc->key_size * sizeof(u8));
3107 
3108 	return ret;
3109 }
3110 
crypt_ctr_optional(struct dm_target * ti,unsigned int argc,char ** argv)3111 static int crypt_ctr_optional(struct dm_target *ti, unsigned int argc, char **argv)
3112 {
3113 	struct crypt_config *cc = ti->private;
3114 	struct dm_arg_set as;
3115 	static const struct dm_arg _args[] = {
3116 		{0, 9, "Invalid number of feature args"},
3117 	};
3118 	unsigned int opt_params, val;
3119 	const char *opt_string, *sval;
3120 	char dummy;
3121 	int ret;
3122 
3123 	/* Optional parameters */
3124 	as.argc = argc;
3125 	as.argv = argv;
3126 
3127 	ret = dm_read_arg_group(_args, &as, &opt_params, &ti->error);
3128 	if (ret)
3129 		return ret;
3130 
3131 	while (opt_params--) {
3132 		opt_string = dm_shift_arg(&as);
3133 		if (!opt_string) {
3134 			ti->error = "Not enough feature arguments";
3135 			return -EINVAL;
3136 		}
3137 
3138 		if (!strcasecmp(opt_string, "allow_discards"))
3139 			ti->num_discard_bios = 1;
3140 
3141 		else if (!strcasecmp(opt_string, "same_cpu_crypt"))
3142 			set_bit(DM_CRYPT_SAME_CPU, &cc->flags);
3143 		else if (!strcasecmp(opt_string, "high_priority"))
3144 			set_bit(DM_CRYPT_HIGH_PRIORITY, &cc->flags);
3145 
3146 		else if (!strcasecmp(opt_string, "submit_from_crypt_cpus"))
3147 			set_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags);
3148 		else if (!strcasecmp(opt_string, "no_read_workqueue"))
3149 			set_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags);
3150 		else if (!strcasecmp(opt_string, "no_write_workqueue"))
3151 			set_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags);
3152 		else if (sscanf(opt_string, "integrity:%u:", &val) == 1) {
3153 			if (val == 0 || val > MAX_TAG_SIZE) {
3154 				ti->error = "Invalid integrity arguments";
3155 				return -EINVAL;
3156 			}
3157 			cc->used_tag_size = val;
3158 			sval = strchr(opt_string + strlen("integrity:"), ':') + 1;
3159 			if (!strcasecmp(sval, "aead")) {
3160 				set_bit(CRYPT_MODE_INTEGRITY_AEAD, &cc->cipher_flags);
3161 			} else if (strcasecmp(sval, "none")) {
3162 				ti->error = "Unknown integrity profile";
3163 				return -EINVAL;
3164 			}
3165 
3166 			cc->cipher_auth = kstrdup(sval, GFP_KERNEL);
3167 			if (!cc->cipher_auth)
3168 				return -ENOMEM;
3169 		} else if (sscanf(opt_string, "integrity_key_size:%u%c", &val, &dummy) == 1) {
3170 			if (!val) {
3171 				ti->error = "Invalid integrity_key_size argument";
3172 				return -EINVAL;
3173 			}
3174 			cc->key_mac_size = val;
3175 			set_bit(CRYPT_KEY_MAC_SIZE_SET, &cc->cipher_flags);
3176 		} else if (sscanf(opt_string, "sector_size:%hu%c", &cc->sector_size, &dummy) == 1) {
3177 			if (cc->sector_size < (1 << SECTOR_SHIFT) ||
3178 			    cc->sector_size > 4096 ||
3179 			    (cc->sector_size & (cc->sector_size - 1))) {
3180 				ti->error = "Invalid feature value for sector_size";
3181 				return -EINVAL;
3182 			}
3183 			if (ti->len & ((cc->sector_size >> SECTOR_SHIFT) - 1)) {
3184 				ti->error = "Device size is not multiple of sector_size feature";
3185 				return -EINVAL;
3186 			}
3187 			cc->sector_shift = __ffs(cc->sector_size) - SECTOR_SHIFT;
3188 		} else if (!strcasecmp(opt_string, "iv_large_sectors"))
3189 			set_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags);
3190 		else {
3191 			ti->error = "Invalid feature arguments";
3192 			return -EINVAL;
3193 		}
3194 	}
3195 
3196 	return 0;
3197 }
3198 
3199 #ifdef CONFIG_BLK_DEV_ZONED
crypt_report_zones(struct dm_target * ti,struct dm_report_zones_args * args,unsigned int nr_zones)3200 static int crypt_report_zones(struct dm_target *ti,
3201 		struct dm_report_zones_args *args, unsigned int nr_zones)
3202 {
3203 	struct crypt_config *cc = ti->private;
3204 
3205 	return dm_report_zones(cc->dev->bdev, cc->start,
3206 			cc->start + dm_target_offset(ti, args->next_sector),
3207 			args, nr_zones);
3208 }
3209 #else
3210 #define crypt_report_zones NULL
3211 #endif
3212 
3213 /*
3214  * Construct an encryption mapping:
3215  * <cipher> [<key>|:<key_size>:<user|logon>:<key_description>] <iv_offset> <dev_path> <start>
3216  */
crypt_ctr(struct dm_target * ti,unsigned int argc,char ** argv)3217 static int crypt_ctr(struct dm_target *ti, unsigned int argc, char **argv)
3218 {
3219 	struct crypt_config *cc;
3220 	const char *devname = dm_table_device_name(ti->table);
3221 	int key_size, wq_id;
3222 	unsigned int align_mask;
3223 	unsigned int common_wq_flags;
3224 	unsigned long long tmpll;
3225 	int ret;
3226 	size_t iv_size_padding, additional_req_size;
3227 	char dummy;
3228 
3229 	if (argc < 5) {
3230 		ti->error = "Not enough arguments";
3231 		return -EINVAL;
3232 	}
3233 
3234 	key_size = get_key_size(&argv[1]);
3235 	if (key_size < 0) {
3236 		ti->error = "Cannot parse key size";
3237 		return -EINVAL;
3238 	}
3239 
3240 	cc = kzalloc(struct_size(cc, key, key_size), GFP_KERNEL);
3241 	if (!cc) {
3242 		ti->error = "Cannot allocate encryption context";
3243 		return -ENOMEM;
3244 	}
3245 	cc->key_size = key_size;
3246 	cc->sector_size = (1 << SECTOR_SHIFT);
3247 	cc->sector_shift = 0;
3248 
3249 	ti->private = cc;
3250 
3251 	spin_lock(&dm_crypt_clients_lock);
3252 	dm_crypt_clients_n++;
3253 	crypt_calculate_pages_per_client();
3254 	spin_unlock(&dm_crypt_clients_lock);
3255 
3256 	ret = percpu_counter_init(&cc->n_allocated_pages, 0, GFP_KERNEL);
3257 	if (ret < 0)
3258 		goto bad;
3259 
3260 	/* Optional parameters need to be read before cipher constructor */
3261 	if (argc > 5) {
3262 		ret = crypt_ctr_optional(ti, argc - 5, &argv[5]);
3263 		if (ret)
3264 			goto bad;
3265 	}
3266 
3267 	ret = crypt_ctr_cipher(ti, argv[0], argv[1]);
3268 	if (ret < 0)
3269 		goto bad;
3270 
3271 	if (crypt_integrity_aead(cc)) {
3272 		cc->dmreq_start = sizeof(struct aead_request);
3273 		cc->dmreq_start += crypto_aead_reqsize(any_tfm_aead(cc));
3274 		align_mask = crypto_aead_alignmask(any_tfm_aead(cc));
3275 	} else {
3276 		cc->dmreq_start = sizeof(struct skcipher_request);
3277 		cc->dmreq_start += crypto_skcipher_reqsize(any_tfm(cc));
3278 		align_mask = crypto_skcipher_alignmask(any_tfm(cc));
3279 	}
3280 	cc->dmreq_start = ALIGN(cc->dmreq_start, __alignof__(struct dm_crypt_request));
3281 
3282 	if (align_mask < CRYPTO_MINALIGN) {
3283 		/* Allocate the padding exactly */
3284 		iv_size_padding = -(cc->dmreq_start + sizeof(struct dm_crypt_request))
3285 				& align_mask;
3286 	} else {
3287 		/*
3288 		 * If the cipher requires greater alignment than kmalloc
3289 		 * alignment, we don't know the exact position of the
3290 		 * initialization vector. We must assume worst case.
3291 		 */
3292 		iv_size_padding = align_mask;
3293 	}
3294 
3295 	/*  ...| IV + padding | original IV | original sec. number | bio tag offset | */
3296 	additional_req_size = sizeof(struct dm_crypt_request) +
3297 		iv_size_padding + cc->iv_size +
3298 		cc->iv_size +
3299 		sizeof(uint64_t) +
3300 		sizeof(unsigned int);
3301 
3302 	ret = mempool_init_kmalloc_pool(&cc->req_pool, MIN_IOS, cc->dmreq_start + additional_req_size);
3303 	if (ret) {
3304 		ti->error = "Cannot allocate crypt request mempool";
3305 		goto bad;
3306 	}
3307 
3308 	cc->per_bio_data_size = ti->per_io_data_size =
3309 		ALIGN(sizeof(struct dm_crypt_io) + cc->dmreq_start + additional_req_size,
3310 		      ARCH_DMA_MINALIGN);
3311 
3312 	ret = mempool_init(&cc->page_pool, BIO_MAX_VECS, crypt_page_alloc, crypt_page_free, cc);
3313 	if (ret) {
3314 		ti->error = "Cannot allocate page mempool";
3315 		goto bad;
3316 	}
3317 
3318 	ret = bioset_init(&cc->bs, MIN_IOS, 0, BIOSET_NEED_BVECS);
3319 	if (ret) {
3320 		ti->error = "Cannot allocate crypt bioset";
3321 		goto bad;
3322 	}
3323 
3324 	mutex_init(&cc->bio_alloc_lock);
3325 
3326 	ret = -EINVAL;
3327 	if ((sscanf(argv[2], "%llu%c", &tmpll, &dummy) != 1) ||
3328 	    (tmpll & ((cc->sector_size >> SECTOR_SHIFT) - 1))) {
3329 		ti->error = "Invalid iv_offset sector";
3330 		goto bad;
3331 	}
3332 	cc->iv_offset = tmpll;
3333 
3334 	ret = dm_get_device(ti, argv[3], dm_table_get_mode(ti->table), &cc->dev);
3335 	if (ret) {
3336 		ti->error = "Device lookup failed";
3337 		goto bad;
3338 	}
3339 
3340 	ret = -EINVAL;
3341 	if (sscanf(argv[4], "%llu%c", &tmpll, &dummy) != 1 || tmpll != (sector_t)tmpll) {
3342 		ti->error = "Invalid device sector";
3343 		goto bad;
3344 	}
3345 	cc->start = tmpll;
3346 
3347 	if (bdev_is_zoned(cc->dev->bdev)) {
3348 		/*
3349 		 * For zoned block devices, we need to preserve the issuer write
3350 		 * ordering. To do so, disable write workqueues and force inline
3351 		 * encryption completion.
3352 		 */
3353 		set_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags);
3354 		set_bit(DM_CRYPT_WRITE_INLINE, &cc->flags);
3355 
3356 		/*
3357 		 * All zone append writes to a zone of a zoned block device will
3358 		 * have the same BIO sector, the start of the zone. When the
3359 		 * cypher IV mode uses sector values, all data targeting a
3360 		 * zone will be encrypted using the first sector numbers of the
3361 		 * zone. This will not result in write errors but will
3362 		 * cause most reads to fail as reads will use the sector values
3363 		 * for the actual data locations, resulting in IV mismatch.
3364 		 * To avoid this problem, ask DM core to emulate zone append
3365 		 * operations with regular writes.
3366 		 */
3367 		DMDEBUG("Zone append operations will be emulated");
3368 		ti->emulate_zone_append = true;
3369 	}
3370 
3371 	if (crypt_integrity_aead(cc) || cc->integrity_iv_size) {
3372 		ret = crypt_integrity_ctr(cc, ti);
3373 		if (ret)
3374 			goto bad;
3375 
3376 		cc->tag_pool_max_sectors = POOL_ENTRY_SIZE / cc->tuple_size;
3377 		if (!cc->tag_pool_max_sectors)
3378 			cc->tag_pool_max_sectors = 1;
3379 
3380 		ret = mempool_init_kmalloc_pool(&cc->tag_pool, MIN_IOS,
3381 			cc->tag_pool_max_sectors * cc->tuple_size);
3382 		if (ret) {
3383 			ti->error = "Cannot allocate integrity tags mempool";
3384 			goto bad;
3385 		}
3386 
3387 		cc->tag_pool_max_sectors <<= cc->sector_shift;
3388 	}
3389 
3390 	wq_id = ida_alloc_min(&workqueue_ida, 1, GFP_KERNEL);
3391 	if (wq_id < 0) {
3392 		ti->error = "Couldn't get workqueue id";
3393 		ret = wq_id;
3394 		goto bad;
3395 	}
3396 	cc->workqueue_id = wq_id;
3397 
3398 	ret = -ENOMEM;
3399 	common_wq_flags = WQ_MEM_RECLAIM | WQ_SYSFS;
3400 	if (test_bit(DM_CRYPT_HIGH_PRIORITY, &cc->flags))
3401 		common_wq_flags |= WQ_HIGHPRI;
3402 
3403 	cc->io_queue = alloc_workqueue("kcryptd_io-%s-%d", common_wq_flags, 1, devname, wq_id);
3404 	if (!cc->io_queue) {
3405 		ti->error = "Couldn't create kcryptd io queue";
3406 		goto bad;
3407 	}
3408 
3409 	if (test_bit(DM_CRYPT_SAME_CPU, &cc->flags)) {
3410 		cc->crypt_queue = alloc_workqueue("kcryptd-%s-%d",
3411 						  common_wq_flags | WQ_CPU_INTENSIVE,
3412 						  1, devname, wq_id);
3413 	} else {
3414 		/*
3415 		 * While crypt_queue is certainly CPU intensive, the use of
3416 		 * WQ_CPU_INTENSIVE is meaningless with WQ_UNBOUND.
3417 		 */
3418 		cc->crypt_queue = alloc_workqueue("kcryptd-%s-%d",
3419 						  common_wq_flags | WQ_UNBOUND,
3420 						  num_online_cpus(), devname, wq_id);
3421 	}
3422 	if (!cc->crypt_queue) {
3423 		ti->error = "Couldn't create kcryptd queue";
3424 		goto bad;
3425 	}
3426 
3427 	spin_lock_init(&cc->write_thread_lock);
3428 	cc->write_tree = RB_ROOT;
3429 
3430 	cc->write_thread = kthread_run(dmcrypt_write, cc, "dmcrypt_write/%s", devname);
3431 	if (IS_ERR(cc->write_thread)) {
3432 		ret = PTR_ERR(cc->write_thread);
3433 		cc->write_thread = NULL;
3434 		ti->error = "Couldn't spawn write thread";
3435 		goto bad;
3436 	}
3437 	if (test_bit(DM_CRYPT_HIGH_PRIORITY, &cc->flags))
3438 		set_user_nice(cc->write_thread, MIN_NICE);
3439 
3440 	ti->num_flush_bios = 1;
3441 	ti->limit_swap_bios = true;
3442 	ti->accounts_remapped_io = true;
3443 
3444 	dm_audit_log_ctr(DM_MSG_PREFIX, ti, 1);
3445 	return 0;
3446 
3447 bad:
3448 	dm_audit_log_ctr(DM_MSG_PREFIX, ti, 0);
3449 	crypt_dtr(ti);
3450 	return ret;
3451 }
3452 
crypt_map(struct dm_target * ti,struct bio * bio)3453 static int crypt_map(struct dm_target *ti, struct bio *bio)
3454 {
3455 	struct dm_crypt_io *io;
3456 	struct crypt_config *cc = ti->private;
3457 	unsigned max_sectors;
3458 	bool no_split;
3459 
3460 	/*
3461 	 * If bio is REQ_PREFLUSH or REQ_OP_DISCARD, just bypass crypt queues.
3462 	 * - for REQ_PREFLUSH device-mapper core ensures that no IO is in-flight
3463 	 * - for REQ_OP_DISCARD caller must use flush if IO ordering matters
3464 	 */
3465 	if (unlikely(bio->bi_opf & REQ_PREFLUSH ||
3466 	    bio_op(bio) == REQ_OP_DISCARD)) {
3467 		bio_set_dev(bio, cc->dev->bdev);
3468 		if (bio_sectors(bio))
3469 			bio->bi_iter.bi_sector = cc->start +
3470 				dm_target_offset(ti, bio->bi_iter.bi_sector);
3471 		return DM_MAPIO_REMAPPED;
3472 	}
3473 
3474 	/*
3475 	 * Check if bio is too large, split as needed.
3476 	 *
3477 	 * For zoned devices, splitting write operations creates the
3478 	 * risk of deadlocking queue freeze operations with zone write
3479 	 * plugging BIO work when the reminder of a split BIO is
3480 	 * issued. So always allow the entire BIO to proceed.
3481 	 */
3482 	no_split = (ti->emulate_zone_append && op_is_write(bio_op(bio))) ||
3483 		   (bio->bi_opf & REQ_ATOMIC);
3484 	max_sectors = get_max_request_sectors(ti, bio, no_split);
3485 	if (unlikely(bio_sectors(bio) > max_sectors)) {
3486 		if (unlikely(no_split))
3487 			return DM_MAPIO_KILL;
3488 		dm_accept_partial_bio(bio, max_sectors);
3489 	}
3490 
3491 	/*
3492 	 * Ensure that bio is a multiple of internal sector encryption size
3493 	 * and is aligned to this size as defined in IO hints.
3494 	 */
3495 	if (unlikely((bio->bi_iter.bi_sector & ((cc->sector_size >> SECTOR_SHIFT) - 1)) != 0))
3496 		return DM_MAPIO_KILL;
3497 
3498 	if (unlikely(bio->bi_iter.bi_size & (cc->sector_size - 1)))
3499 		return DM_MAPIO_KILL;
3500 
3501 	io = dm_per_bio_data(bio, cc->per_bio_data_size);
3502 	crypt_io_init(io, cc, bio, dm_target_offset(ti, bio->bi_iter.bi_sector));
3503 
3504 	if (cc->tuple_size) {
3505 		unsigned int tag_len = cc->tuple_size * (bio_sectors(bio) >> cc->sector_shift);
3506 
3507 		if (unlikely(tag_len > KMALLOC_MAX_SIZE))
3508 			io->integrity_metadata = NULL;
3509 		else
3510 			io->integrity_metadata = kmalloc(tag_len, GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
3511 
3512 		if (unlikely(!io->integrity_metadata)) {
3513 			if (bio_sectors(bio) > cc->tag_pool_max_sectors)
3514 				dm_accept_partial_bio(bio, cc->tag_pool_max_sectors);
3515 			io->integrity_metadata = mempool_alloc(&cc->tag_pool, GFP_NOIO);
3516 			io->integrity_metadata_from_pool = true;
3517 		}
3518 	}
3519 
3520 	if (crypt_integrity_aead(cc))
3521 		io->ctx.r.req_aead = (struct aead_request *)(io + 1);
3522 	else
3523 		io->ctx.r.req = (struct skcipher_request *)(io + 1);
3524 
3525 	if (bio_data_dir(io->base_bio) == READ) {
3526 		if (kcryptd_io_read(io, CRYPT_MAP_READ_GFP))
3527 			kcryptd_queue_read(io);
3528 	} else
3529 		kcryptd_queue_crypt(io);
3530 
3531 	return DM_MAPIO_SUBMITTED;
3532 }
3533 
hex2asc(unsigned char c)3534 static char hex2asc(unsigned char c)
3535 {
3536 	return c + '0' + ((unsigned int)(9 - c) >> 4 & 0x27);
3537 }
3538 
crypt_status(struct dm_target * ti,status_type_t type,unsigned int status_flags,char * result,unsigned int maxlen)3539 static void crypt_status(struct dm_target *ti, status_type_t type,
3540 			 unsigned int status_flags, char *result, unsigned int maxlen)
3541 {
3542 	struct crypt_config *cc = ti->private;
3543 	unsigned int i, sz = 0;
3544 	int num_feature_args = 0;
3545 
3546 	switch (type) {
3547 	case STATUSTYPE_INFO:
3548 		result[0] = '\0';
3549 		break;
3550 
3551 	case STATUSTYPE_TABLE:
3552 		DMEMIT("%s ", cc->cipher_string);
3553 
3554 		if (cc->key_size > 0) {
3555 			if (cc->key_string)
3556 				DMEMIT(":%u:%s", cc->key_size, cc->key_string);
3557 			else {
3558 				for (i = 0; i < cc->key_size; i++) {
3559 					DMEMIT("%c%c", hex2asc(cc->key[i] >> 4),
3560 					       hex2asc(cc->key[i] & 0xf));
3561 				}
3562 			}
3563 		} else
3564 			DMEMIT("-");
3565 
3566 		DMEMIT(" %llu %s %llu", (unsigned long long)cc->iv_offset,
3567 				cc->dev->name, (unsigned long long)cc->start);
3568 
3569 		num_feature_args += !!ti->num_discard_bios;
3570 		num_feature_args += test_bit(DM_CRYPT_SAME_CPU, &cc->flags);
3571 		num_feature_args += test_bit(DM_CRYPT_HIGH_PRIORITY, &cc->flags);
3572 		num_feature_args += test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags);
3573 		num_feature_args += test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags);
3574 		num_feature_args += test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags);
3575 		num_feature_args += !!cc->used_tag_size;
3576 		num_feature_args += cc->sector_size != (1 << SECTOR_SHIFT);
3577 		num_feature_args += test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags);
3578 		num_feature_args += test_bit(CRYPT_KEY_MAC_SIZE_SET, &cc->cipher_flags);
3579 		if (num_feature_args) {
3580 			DMEMIT(" %d", num_feature_args);
3581 			if (ti->num_discard_bios)
3582 				DMEMIT(" allow_discards");
3583 			if (test_bit(DM_CRYPT_SAME_CPU, &cc->flags))
3584 				DMEMIT(" same_cpu_crypt");
3585 			if (test_bit(DM_CRYPT_HIGH_PRIORITY, &cc->flags))
3586 				DMEMIT(" high_priority");
3587 			if (test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags))
3588 				DMEMIT(" submit_from_crypt_cpus");
3589 			if (test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags))
3590 				DMEMIT(" no_read_workqueue");
3591 			if (test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags))
3592 				DMEMIT(" no_write_workqueue");
3593 			if (cc->used_tag_size)
3594 				DMEMIT(" integrity:%u:%s", cc->used_tag_size, cc->cipher_auth);
3595 			if (cc->sector_size != (1 << SECTOR_SHIFT))
3596 				DMEMIT(" sector_size:%d", cc->sector_size);
3597 			if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags))
3598 				DMEMIT(" iv_large_sectors");
3599 			if (test_bit(CRYPT_KEY_MAC_SIZE_SET, &cc->cipher_flags))
3600 				DMEMIT(" integrity_key_size:%u", cc->key_mac_size);
3601 		}
3602 		break;
3603 
3604 	case STATUSTYPE_IMA:
3605 		DMEMIT_TARGET_NAME_VERSION(ti->type);
3606 		DMEMIT(",allow_discards=%c", ti->num_discard_bios ? 'y' : 'n');
3607 		DMEMIT(",same_cpu_crypt=%c", test_bit(DM_CRYPT_SAME_CPU, &cc->flags) ? 'y' : 'n');
3608 		DMEMIT(",high_priority=%c", test_bit(DM_CRYPT_HIGH_PRIORITY, &cc->flags) ? 'y' : 'n');
3609 		DMEMIT(",submit_from_crypt_cpus=%c", test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags) ?
3610 		       'y' : 'n');
3611 		DMEMIT(",no_read_workqueue=%c", test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags) ?
3612 		       'y' : 'n');
3613 		DMEMIT(",no_write_workqueue=%c", test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags) ?
3614 		       'y' : 'n');
3615 		DMEMIT(",iv_large_sectors=%c", test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags) ?
3616 		       'y' : 'n');
3617 
3618 		if (cc->used_tag_size)
3619 			DMEMIT(",integrity_tag_size=%u,cipher_auth=%s",
3620 			       cc->used_tag_size, cc->cipher_auth);
3621 		if (cc->sector_size != (1 << SECTOR_SHIFT))
3622 			DMEMIT(",sector_size=%d", cc->sector_size);
3623 		if (cc->cipher_string)
3624 			DMEMIT(",cipher_string=%s", cc->cipher_string);
3625 
3626 		DMEMIT(",key_size=%u", cc->key_size);
3627 		DMEMIT(",key_parts=%u", cc->key_parts);
3628 		DMEMIT(",key_extra_size=%u", cc->key_extra_size);
3629 		DMEMIT(",key_mac_size=%u", cc->key_mac_size);
3630 		DMEMIT(";");
3631 		break;
3632 	}
3633 }
3634 
crypt_postsuspend(struct dm_target * ti)3635 static void crypt_postsuspend(struct dm_target *ti)
3636 {
3637 	struct crypt_config *cc = ti->private;
3638 
3639 	set_bit(DM_CRYPT_SUSPENDED, &cc->flags);
3640 }
3641 
crypt_preresume(struct dm_target * ti)3642 static int crypt_preresume(struct dm_target *ti)
3643 {
3644 	struct crypt_config *cc = ti->private;
3645 
3646 	if (!test_bit(DM_CRYPT_KEY_VALID, &cc->flags)) {
3647 		DMERR("aborting resume - crypt key is not set.");
3648 		return -EAGAIN;
3649 	}
3650 
3651 	return 0;
3652 }
3653 
crypt_resume(struct dm_target * ti)3654 static void crypt_resume(struct dm_target *ti)
3655 {
3656 	struct crypt_config *cc = ti->private;
3657 
3658 	clear_bit(DM_CRYPT_SUSPENDED, &cc->flags);
3659 }
3660 
3661 /* Message interface
3662  *	key set <key>
3663  *	key wipe
3664  */
crypt_message(struct dm_target * ti,unsigned int argc,char ** argv,char * result,unsigned int maxlen)3665 static int crypt_message(struct dm_target *ti, unsigned int argc, char **argv,
3666 			 char *result, unsigned int maxlen)
3667 {
3668 	struct crypt_config *cc = ti->private;
3669 	int key_size, ret = -EINVAL;
3670 
3671 	if (argc < 2)
3672 		goto error;
3673 
3674 	if (!strcasecmp(argv[0], "key")) {
3675 		if (!test_bit(DM_CRYPT_SUSPENDED, &cc->flags)) {
3676 			DMWARN("not suspended during key manipulation.");
3677 			return -EINVAL;
3678 		}
3679 		if (argc == 3 && !strcasecmp(argv[1], "set")) {
3680 			/* The key size may not be changed. */
3681 			key_size = get_key_size(&argv[2]);
3682 			if (key_size < 0 || cc->key_size != key_size) {
3683 				memset(argv[2], '0', strlen(argv[2]));
3684 				return -EINVAL;
3685 			}
3686 
3687 			ret = crypt_set_key(cc, argv[2]);
3688 			if (ret)
3689 				return ret;
3690 			if (cc->iv_gen_ops && cc->iv_gen_ops->init)
3691 				ret = cc->iv_gen_ops->init(cc);
3692 			/* wipe the kernel key payload copy */
3693 			if (cc->key_string)
3694 				memset(cc->key, 0, cc->key_size * sizeof(u8));
3695 			return ret;
3696 		}
3697 		if (argc == 2 && !strcasecmp(argv[1], "wipe"))
3698 			return crypt_wipe_key(cc);
3699 	}
3700 
3701 error:
3702 	DMWARN("unrecognised message received.");
3703 	return -EINVAL;
3704 }
3705 
crypt_iterate_devices(struct dm_target * ti,iterate_devices_callout_fn fn,void * data)3706 static int crypt_iterate_devices(struct dm_target *ti,
3707 				 iterate_devices_callout_fn fn, void *data)
3708 {
3709 	struct crypt_config *cc = ti->private;
3710 
3711 	return fn(ti, cc->dev, cc->start, ti->len, data);
3712 }
3713 
crypt_io_hints(struct dm_target * ti,struct queue_limits * limits)3714 static void crypt_io_hints(struct dm_target *ti, struct queue_limits *limits)
3715 {
3716 	struct crypt_config *cc = ti->private;
3717 
3718 	limits->logical_block_size =
3719 		max_t(unsigned int, limits->logical_block_size, cc->sector_size);
3720 	limits->physical_block_size =
3721 		max_t(unsigned int, limits->physical_block_size, cc->sector_size);
3722 	limits->io_min = max_t(unsigned int, limits->io_min, cc->sector_size);
3723 	limits->dma_alignment = limits->logical_block_size - 1;
3724 
3725 	/*
3726 	 * For zoned dm-crypt targets, there will be no internal splitting of
3727 	 * write BIOs to avoid exceeding BIO_MAX_VECS vectors per BIO. But
3728 	 * without respecting this limit, crypt_alloc_buffer() will trigger a
3729 	 * BUG(). Avoid this by forcing DM core to split write BIOs to this
3730 	 * limit.
3731 	 */
3732 	if (ti->emulate_zone_append)
3733 		limits->max_hw_sectors = min(limits->max_hw_sectors,
3734 					     BIO_MAX_VECS << PAGE_SECTORS_SHIFT);
3735 
3736 	limits->atomic_write_hw_unit_max = min(limits->atomic_write_hw_unit_max,
3737 					       BIO_MAX_VECS << PAGE_SHIFT);
3738 	limits->atomic_write_hw_max = min(limits->atomic_write_hw_max,
3739 					  BIO_MAX_VECS << PAGE_SHIFT);
3740 }
3741 
3742 static struct target_type crypt_target = {
3743 	.name   = "crypt",
3744 	.version = {1, 29, 0},
3745 	.module = THIS_MODULE,
3746 	.ctr    = crypt_ctr,
3747 	.dtr    = crypt_dtr,
3748 	.features = DM_TARGET_ZONED_HM | DM_TARGET_ATOMIC_WRITES,
3749 	.report_zones = crypt_report_zones,
3750 	.map    = crypt_map,
3751 	.status = crypt_status,
3752 	.postsuspend = crypt_postsuspend,
3753 	.preresume = crypt_preresume,
3754 	.resume = crypt_resume,
3755 	.message = crypt_message,
3756 	.iterate_devices = crypt_iterate_devices,
3757 	.io_hints = crypt_io_hints,
3758 };
3759 module_dm(crypt);
3760 
3761 MODULE_AUTHOR("Jana Saout <jana@saout.de>");
3762 MODULE_DESCRIPTION(DM_NAME " target for transparent encryption / decryption");
3763 MODULE_LICENSE("GPL");
3764