xref: /linux/drivers/md/dm.c (revision d358e5254674b70f34c847715ca509e46eb81e6f)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
4  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
5  *
6  * This file is released under the GPL.
7  */
8 
9 #include "dm-core.h"
10 #include "dm-rq.h"
11 #include "dm-uevent.h"
12 #include "dm-ima.h"
13 
14 #include <linux/bio-integrity.h>
15 #include <linux/init.h>
16 #include <linux/module.h>
17 #include <linux/mutex.h>
18 #include <linux/sched/mm.h>
19 #include <linux/sched/signal.h>
20 #include <linux/blkpg.h>
21 #include <linux/bio.h>
22 #include <linux/mempool.h>
23 #include <linux/dax.h>
24 #include <linux/slab.h>
25 #include <linux/idr.h>
26 #include <linux/uio.h>
27 #include <linux/hdreg.h>
28 #include <linux/delay.h>
29 #include <linux/wait.h>
30 #include <linux/pr.h>
31 #include <linux/refcount.h>
32 #include <linux/part_stat.h>
33 #include <linux/blk-crypto.h>
34 #include <linux/blk-crypto-profile.h>
35 
36 #define DM_MSG_PREFIX "core"
37 
38 /*
39  * Cookies are numeric values sent with CHANGE and REMOVE
40  * uevents while resuming, removing or renaming the device.
41  */
42 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
43 #define DM_COOKIE_LENGTH 24
44 
45 /*
46  * For REQ_POLLED fs bio, this flag is set if we link mapped underlying
47  * dm_io into one list, and reuse bio->bi_private as the list head. Before
48  * ending this fs bio, we will recover its ->bi_private.
49  */
50 #define REQ_DM_POLL_LIST	REQ_DRV
51 
52 static const char *_name = DM_NAME;
53 
54 static unsigned int major;
55 static unsigned int _major;
56 
57 static DEFINE_IDR(_minor_idr);
58 
59 static DEFINE_SPINLOCK(_minor_lock);
60 
61 static void do_deferred_remove(struct work_struct *w);
62 
63 static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
64 
65 static struct workqueue_struct *deferred_remove_workqueue;
66 
67 atomic_t dm_global_event_nr = ATOMIC_INIT(0);
68 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq);
69 
dm_issue_global_event(void)70 void dm_issue_global_event(void)
71 {
72 	atomic_inc(&dm_global_event_nr);
73 	wake_up(&dm_global_eventq);
74 }
75 
76 DEFINE_STATIC_KEY_FALSE(stats_enabled);
77 DEFINE_STATIC_KEY_FALSE(swap_bios_enabled);
78 DEFINE_STATIC_KEY_FALSE(zoned_enabled);
79 
80 /*
81  * One of these is allocated (on-stack) per original bio.
82  */
83 struct clone_info {
84 	struct dm_table *map;
85 	struct bio *bio;
86 	struct dm_io *io;
87 	sector_t sector;
88 	unsigned int sector_count;
89 	bool is_abnormal_io:1;
90 	bool submit_as_polled:1;
91 };
92 
clone_to_tio(struct bio * clone)93 static inline struct dm_target_io *clone_to_tio(struct bio *clone)
94 {
95 	return container_of(clone, struct dm_target_io, clone);
96 }
97 
dm_per_bio_data(struct bio * bio,size_t data_size)98 void *dm_per_bio_data(struct bio *bio, size_t data_size)
99 {
100 	if (!dm_tio_flagged(clone_to_tio(bio), DM_TIO_INSIDE_DM_IO))
101 		return (char *)bio - DM_TARGET_IO_BIO_OFFSET - data_size;
102 	return (char *)bio - DM_IO_BIO_OFFSET - data_size;
103 }
104 EXPORT_SYMBOL_GPL(dm_per_bio_data);
105 
dm_bio_from_per_bio_data(void * data,size_t data_size)106 struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size)
107 {
108 	struct dm_io *io = (struct dm_io *)((char *)data + data_size);
109 
110 	if (io->magic == DM_IO_MAGIC)
111 		return (struct bio *)((char *)io + DM_IO_BIO_OFFSET);
112 	BUG_ON(io->magic != DM_TIO_MAGIC);
113 	return (struct bio *)((char *)io + DM_TARGET_IO_BIO_OFFSET);
114 }
115 EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data);
116 
dm_bio_get_target_bio_nr(const struct bio * bio)117 unsigned int dm_bio_get_target_bio_nr(const struct bio *bio)
118 {
119 	return container_of(bio, struct dm_target_io, clone)->target_bio_nr;
120 }
121 EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr);
122 
123 #define MINOR_ALLOCED ((void *)-1)
124 
125 #define DM_NUMA_NODE NUMA_NO_NODE
126 static int dm_numa_node = DM_NUMA_NODE;
127 
128 #define DEFAULT_SWAP_BIOS	(8 * 1048576 / PAGE_SIZE)
129 static int swap_bios = DEFAULT_SWAP_BIOS;
get_swap_bios(void)130 static int get_swap_bios(void)
131 {
132 	int latch = READ_ONCE(swap_bios);
133 
134 	if (unlikely(latch <= 0))
135 		latch = DEFAULT_SWAP_BIOS;
136 	return latch;
137 }
138 
139 struct table_device {
140 	struct list_head list;
141 	refcount_t count;
142 	struct dm_dev dm_dev;
143 };
144 
145 /*
146  * Bio-based DM's mempools' reserved IOs set by the user.
147  */
148 #define RESERVED_BIO_BASED_IOS		16
149 static unsigned int reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
150 
__dm_get_module_param_int(int * module_param,int min,int max)151 static int __dm_get_module_param_int(int *module_param, int min, int max)
152 {
153 	int param = READ_ONCE(*module_param);
154 	int modified_param = 0;
155 	bool modified = true;
156 
157 	if (param < min)
158 		modified_param = min;
159 	else if (param > max)
160 		modified_param = max;
161 	else
162 		modified = false;
163 
164 	if (modified) {
165 		(void)cmpxchg(module_param, param, modified_param);
166 		param = modified_param;
167 	}
168 
169 	return param;
170 }
171 
__dm_get_module_param(unsigned int * module_param,unsigned int def,unsigned int max)172 unsigned int __dm_get_module_param(unsigned int *module_param, unsigned int def, unsigned int max)
173 {
174 	unsigned int param = READ_ONCE(*module_param);
175 	unsigned int modified_param = 0;
176 
177 	if (!param)
178 		modified_param = def;
179 	else if (param > max)
180 		modified_param = max;
181 
182 	if (modified_param) {
183 		(void)cmpxchg(module_param, param, modified_param);
184 		param = modified_param;
185 	}
186 
187 	return param;
188 }
189 
dm_get_reserved_bio_based_ios(void)190 unsigned int dm_get_reserved_bio_based_ios(void)
191 {
192 	return __dm_get_module_param(&reserved_bio_based_ios,
193 				     RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS);
194 }
195 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
196 
dm_get_numa_node(void)197 static unsigned int dm_get_numa_node(void)
198 {
199 	return __dm_get_module_param_int(&dm_numa_node,
200 					 DM_NUMA_NODE, num_online_nodes() - 1);
201 }
202 
local_init(void)203 static int __init local_init(void)
204 {
205 	int r;
206 
207 	r = dm_uevent_init();
208 	if (r)
209 		return r;
210 
211 	deferred_remove_workqueue = alloc_ordered_workqueue("kdmremove", 0);
212 	if (!deferred_remove_workqueue) {
213 		r = -ENOMEM;
214 		goto out_uevent_exit;
215 	}
216 
217 	_major = major;
218 	r = register_blkdev(_major, _name);
219 	if (r < 0)
220 		goto out_free_workqueue;
221 
222 	if (!_major)
223 		_major = r;
224 
225 	return 0;
226 
227 out_free_workqueue:
228 	destroy_workqueue(deferred_remove_workqueue);
229 out_uevent_exit:
230 	dm_uevent_exit();
231 
232 	return r;
233 }
234 
local_exit(void)235 static void local_exit(void)
236 {
237 	destroy_workqueue(deferred_remove_workqueue);
238 
239 	unregister_blkdev(_major, _name);
240 	dm_uevent_exit();
241 
242 	_major = 0;
243 
244 	DMINFO("cleaned up");
245 }
246 
247 static int (*_inits[])(void) __initdata = {
248 	local_init,
249 	dm_target_init,
250 	dm_linear_init,
251 	dm_stripe_init,
252 	dm_io_init,
253 	dm_kcopyd_init,
254 	dm_interface_init,
255 	dm_statistics_init,
256 };
257 
258 static void (*_exits[])(void) = {
259 	local_exit,
260 	dm_target_exit,
261 	dm_linear_exit,
262 	dm_stripe_exit,
263 	dm_io_exit,
264 	dm_kcopyd_exit,
265 	dm_interface_exit,
266 	dm_statistics_exit,
267 };
268 
dm_init(void)269 static int __init dm_init(void)
270 {
271 	const int count = ARRAY_SIZE(_inits);
272 	int r, i;
273 
274 #if (IS_ENABLED(CONFIG_IMA) && !IS_ENABLED(CONFIG_IMA_DISABLE_HTABLE))
275 	DMINFO("CONFIG_IMA_DISABLE_HTABLE is disabled."
276 	       " Duplicate IMA measurements will not be recorded in the IMA log.");
277 #endif
278 
279 	for (i = 0; i < count; i++) {
280 		r = _inits[i]();
281 		if (r)
282 			goto bad;
283 	}
284 
285 	return 0;
286 bad:
287 	while (i--)
288 		_exits[i]();
289 
290 	return r;
291 }
292 
dm_exit(void)293 static void __exit dm_exit(void)
294 {
295 	int i = ARRAY_SIZE(_exits);
296 
297 	while (i--)
298 		_exits[i]();
299 
300 	/*
301 	 * Should be empty by this point.
302 	 */
303 	idr_destroy(&_minor_idr);
304 }
305 
306 /*
307  * Block device functions
308  */
dm_deleting_md(struct mapped_device * md)309 int dm_deleting_md(struct mapped_device *md)
310 {
311 	return test_bit(DMF_DELETING, &md->flags);
312 }
313 
dm_blk_open(struct gendisk * disk,blk_mode_t mode)314 static int dm_blk_open(struct gendisk *disk, blk_mode_t mode)
315 {
316 	struct mapped_device *md;
317 
318 	spin_lock(&_minor_lock);
319 
320 	md = disk->private_data;
321 	if (!md)
322 		goto out;
323 
324 	if (test_bit(DMF_FREEING, &md->flags) ||
325 	    dm_deleting_md(md)) {
326 		md = NULL;
327 		goto out;
328 	}
329 
330 	dm_get(md);
331 	atomic_inc(&md->open_count);
332 out:
333 	spin_unlock(&_minor_lock);
334 
335 	return md ? 0 : -ENXIO;
336 }
337 
dm_blk_close(struct gendisk * disk)338 static void dm_blk_close(struct gendisk *disk)
339 {
340 	struct mapped_device *md;
341 
342 	spin_lock(&_minor_lock);
343 
344 	md = disk->private_data;
345 	if (WARN_ON(!md))
346 		goto out;
347 
348 	if (atomic_dec_and_test(&md->open_count) &&
349 	    (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
350 		queue_work(deferred_remove_workqueue, &deferred_remove_work);
351 
352 	dm_put(md);
353 out:
354 	spin_unlock(&_minor_lock);
355 }
356 
dm_open_count(struct mapped_device * md)357 int dm_open_count(struct mapped_device *md)
358 {
359 	return atomic_read(&md->open_count);
360 }
361 
362 /*
363  * Guarantees nothing is using the device before it's deleted.
364  */
dm_lock_for_deletion(struct mapped_device * md,bool mark_deferred,bool only_deferred)365 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
366 {
367 	int r = 0;
368 
369 	spin_lock(&_minor_lock);
370 
371 	if (dm_open_count(md)) {
372 		r = -EBUSY;
373 		if (mark_deferred)
374 			set_bit(DMF_DEFERRED_REMOVE, &md->flags);
375 	} else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
376 		r = -EEXIST;
377 	else
378 		set_bit(DMF_DELETING, &md->flags);
379 
380 	spin_unlock(&_minor_lock);
381 
382 	return r;
383 }
384 
dm_cancel_deferred_remove(struct mapped_device * md)385 int dm_cancel_deferred_remove(struct mapped_device *md)
386 {
387 	int r = 0;
388 
389 	spin_lock(&_minor_lock);
390 
391 	if (test_bit(DMF_DELETING, &md->flags))
392 		r = -EBUSY;
393 	else
394 		clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
395 
396 	spin_unlock(&_minor_lock);
397 
398 	return r;
399 }
400 
do_deferred_remove(struct work_struct * w)401 static void do_deferred_remove(struct work_struct *w)
402 {
403 	dm_deferred_remove();
404 }
405 
dm_blk_getgeo(struct gendisk * disk,struct hd_geometry * geo)406 static int dm_blk_getgeo(struct gendisk *disk, struct hd_geometry *geo)
407 {
408 	struct mapped_device *md = disk->private_data;
409 
410 	return dm_get_geometry(md, geo);
411 }
412 
dm_prepare_ioctl(struct mapped_device * md,int * srcu_idx,struct block_device ** bdev,unsigned int cmd,unsigned long arg,bool * forward)413 static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx,
414 			    struct block_device **bdev, unsigned int cmd,
415 			    unsigned long arg, bool *forward)
416 {
417 	struct dm_target *ti;
418 	struct dm_table *map;
419 	int r;
420 
421 retry:
422 	r = -ENOTTY;
423 	map = dm_get_live_table(md, srcu_idx);
424 	if (!map || !dm_table_get_size(map))
425 		return r;
426 
427 	/* We only support devices that have a single target */
428 	if (map->num_targets != 1)
429 		return r;
430 
431 	ti = dm_table_get_target(map, 0);
432 	if (!ti->type->prepare_ioctl)
433 		return r;
434 
435 	if (dm_suspended_md(md))
436 		return -EAGAIN;
437 
438 	r = ti->type->prepare_ioctl(ti, bdev, cmd, arg, forward);
439 	if (r == -ENOTCONN && *forward && !fatal_signal_pending(current)) {
440 		dm_put_live_table(md, *srcu_idx);
441 		fsleep(10000);
442 		goto retry;
443 	}
444 
445 	return r;
446 }
447 
dm_unprepare_ioctl(struct mapped_device * md,int srcu_idx)448 static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx)
449 {
450 	dm_put_live_table(md, srcu_idx);
451 }
452 
dm_blk_ioctl(struct block_device * bdev,blk_mode_t mode,unsigned int cmd,unsigned long arg)453 static int dm_blk_ioctl(struct block_device *bdev, blk_mode_t mode,
454 			unsigned int cmd, unsigned long arg)
455 {
456 	struct mapped_device *md = bdev->bd_disk->private_data;
457 	int r, srcu_idx;
458 	bool forward = true;
459 
460 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev, cmd, arg, &forward);
461 	if (!forward || r < 0)
462 		goto out;
463 
464 	if (r > 0) {
465 		/*
466 		 * Target determined this ioctl is being issued against a
467 		 * subset of the parent bdev; require extra privileges.
468 		 */
469 		if (!capable(CAP_SYS_RAWIO)) {
470 			DMDEBUG_LIMIT(
471 	"%s: sending ioctl %x to DM device without required privilege.",
472 				current->comm, cmd);
473 			r = -ENOIOCTLCMD;
474 			goto out;
475 		}
476 	}
477 
478 	if (!bdev->bd_disk->fops->ioctl)
479 		r = -ENOTTY;
480 	else
481 		r = bdev->bd_disk->fops->ioctl(bdev, mode, cmd, arg);
482 out:
483 	dm_unprepare_ioctl(md, srcu_idx);
484 	return r;
485 }
486 
dm_start_time_ns_from_clone(struct bio * bio)487 u64 dm_start_time_ns_from_clone(struct bio *bio)
488 {
489 	return jiffies_to_nsecs(clone_to_tio(bio)->io->start_time);
490 }
491 EXPORT_SYMBOL_GPL(dm_start_time_ns_from_clone);
492 
dm_io_sectors(struct dm_io * io,struct bio * bio)493 static inline unsigned int dm_io_sectors(struct dm_io *io, struct bio *bio)
494 {
495 	/*
496 	 * If REQ_PREFLUSH set, don't account payload, it will be
497 	 * submitted (and accounted) after this flush completes.
498 	 */
499 	if (io->requeue_flush_with_data)
500 		return 0;
501 	if (unlikely(dm_io_flagged(io, DM_IO_WAS_SPLIT)))
502 		return io->sectors;
503 	return bio_sectors(bio);
504 }
505 
dm_io_acct(struct dm_io * io,bool end)506 static void dm_io_acct(struct dm_io *io, bool end)
507 {
508 	struct bio *bio = io->orig_bio;
509 
510 	if (dm_io_flagged(io, DM_IO_BLK_STAT)) {
511 		if (!end)
512 			bdev_start_io_acct(bio->bi_bdev, bio_op(bio),
513 					   io->start_time);
514 		else
515 			bdev_end_io_acct(bio->bi_bdev, bio_op(bio),
516 					 dm_io_sectors(io, bio),
517 					 io->start_time);
518 	}
519 
520 	if (static_branch_unlikely(&stats_enabled) &&
521 	    unlikely(dm_stats_used(&io->md->stats))) {
522 		sector_t sector;
523 
524 		if (unlikely(dm_io_flagged(io, DM_IO_WAS_SPLIT)))
525 			sector = bio_end_sector(bio) - io->sector_offset;
526 		else
527 			sector = bio->bi_iter.bi_sector;
528 
529 		dm_stats_account_io(&io->md->stats, bio_data_dir(bio),
530 				    sector, dm_io_sectors(io, bio),
531 				    end, io->start_time, &io->stats_aux);
532 	}
533 }
534 
__dm_start_io_acct(struct dm_io * io)535 static void __dm_start_io_acct(struct dm_io *io)
536 {
537 	dm_io_acct(io, false);
538 }
539 
dm_start_io_acct(struct dm_io * io,struct bio * clone)540 static void dm_start_io_acct(struct dm_io *io, struct bio *clone)
541 {
542 	/*
543 	 * Ensure IO accounting is only ever started once.
544 	 */
545 	if (dm_io_flagged(io, DM_IO_ACCOUNTED))
546 		return;
547 
548 	/* Expect no possibility for race unless DM_TIO_IS_DUPLICATE_BIO. */
549 	if (!clone || likely(dm_tio_is_normal(clone_to_tio(clone)))) {
550 		dm_io_set_flag(io, DM_IO_ACCOUNTED);
551 	} else {
552 		unsigned long flags;
553 		/* Can afford locking given DM_TIO_IS_DUPLICATE_BIO */
554 		spin_lock_irqsave(&io->lock, flags);
555 		if (dm_io_flagged(io, DM_IO_ACCOUNTED)) {
556 			spin_unlock_irqrestore(&io->lock, flags);
557 			return;
558 		}
559 		dm_io_set_flag(io, DM_IO_ACCOUNTED);
560 		spin_unlock_irqrestore(&io->lock, flags);
561 	}
562 
563 	__dm_start_io_acct(io);
564 }
565 
dm_end_io_acct(struct dm_io * io)566 static void dm_end_io_acct(struct dm_io *io)
567 {
568 	dm_io_acct(io, true);
569 }
570 
alloc_io(struct mapped_device * md,struct bio * bio,gfp_t gfp_mask)571 static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio, gfp_t gfp_mask)
572 {
573 	struct dm_io *io;
574 	struct dm_target_io *tio;
575 	struct bio *clone;
576 
577 	clone = bio_alloc_clone(NULL, bio, gfp_mask, &md->mempools->io_bs);
578 	if (unlikely(!clone))
579 		return NULL;
580 	tio = clone_to_tio(clone);
581 	tio->flags = 0;
582 	dm_tio_set_flag(tio, DM_TIO_INSIDE_DM_IO);
583 	tio->io = NULL;
584 
585 	io = container_of(tio, struct dm_io, tio);
586 	io->magic = DM_IO_MAGIC;
587 	io->status = BLK_STS_OK;
588 	io->requeue_flush_with_data = false;
589 
590 	/* one ref is for submission, the other is for completion */
591 	atomic_set(&io->io_count, 2);
592 	this_cpu_inc(*md->pending_io);
593 	io->orig_bio = bio;
594 	io->md = md;
595 	spin_lock_init(&io->lock);
596 	io->start_time = jiffies;
597 	io->flags = 0;
598 	if (blk_queue_io_stat(md->queue))
599 		dm_io_set_flag(io, DM_IO_BLK_STAT);
600 
601 	if (static_branch_unlikely(&stats_enabled) &&
602 	    unlikely(dm_stats_used(&md->stats)))
603 		dm_stats_record_start(&md->stats, &io->stats_aux);
604 
605 	return io;
606 }
607 
free_io(struct dm_io * io)608 static void free_io(struct dm_io *io)
609 {
610 	bio_put(&io->tio.clone);
611 }
612 
alloc_tio(struct clone_info * ci,struct dm_target * ti,unsigned int target_bio_nr,unsigned int * len,gfp_t gfp_mask)613 static struct bio *alloc_tio(struct clone_info *ci, struct dm_target *ti,
614 			     unsigned int target_bio_nr, unsigned int *len, gfp_t gfp_mask)
615 {
616 	struct mapped_device *md = ci->io->md;
617 	struct dm_target_io *tio;
618 	struct bio *clone;
619 
620 	if (!ci->io->tio.io) {
621 		/* the dm_target_io embedded in ci->io is available */
622 		tio = &ci->io->tio;
623 		/* alloc_io() already initialized embedded clone */
624 		clone = &tio->clone;
625 	} else {
626 		clone = bio_alloc_clone(NULL, ci->bio, gfp_mask,
627 					&md->mempools->bs);
628 		if (!clone)
629 			return NULL;
630 
631 		/* REQ_DM_POLL_LIST shouldn't be inherited */
632 		clone->bi_opf &= ~REQ_DM_POLL_LIST;
633 
634 		tio = clone_to_tio(clone);
635 		tio->flags = 0; /* also clears DM_TIO_INSIDE_DM_IO */
636 	}
637 
638 	tio->magic = DM_TIO_MAGIC;
639 	tio->io = ci->io;
640 	tio->ti = ti;
641 	tio->target_bio_nr = target_bio_nr;
642 	tio->len_ptr = len;
643 	tio->old_sector = 0;
644 
645 	/* Set default bdev, but target must bio_set_dev() before issuing IO */
646 	clone->bi_bdev = md->disk->part0;
647 	if (likely(ti != NULL) && unlikely(ti->needs_bio_set_dev))
648 		bio_set_dev(clone, md->disk->part0);
649 
650 	if (len) {
651 		clone->bi_iter.bi_size = to_bytes(*len);
652 		if (bio_integrity(clone))
653 			bio_integrity_trim(clone);
654 	}
655 
656 	return clone;
657 }
658 
free_tio(struct bio * clone)659 static void free_tio(struct bio *clone)
660 {
661 	if (dm_tio_flagged(clone_to_tio(clone), DM_TIO_INSIDE_DM_IO))
662 		return;
663 	bio_put(clone);
664 }
665 
666 /*
667  * Add the bio to the list of deferred io.
668  */
queue_io(struct mapped_device * md,struct bio * bio)669 static void queue_io(struct mapped_device *md, struct bio *bio)
670 {
671 	unsigned long flags;
672 
673 	spin_lock_irqsave(&md->deferred_lock, flags);
674 	bio_list_add(&md->deferred, bio);
675 	spin_unlock_irqrestore(&md->deferred_lock, flags);
676 	queue_work(md->wq, &md->work);
677 }
678 
679 /*
680  * Everyone (including functions in this file), should use this
681  * function to access the md->map field, and make sure they call
682  * dm_put_live_table() when finished.
683  */
dm_get_live_table(struct mapped_device * md,int * srcu_idx)684 struct dm_table *dm_get_live_table(struct mapped_device *md,
685 				   int *srcu_idx) __acquires(md->io_barrier)
686 {
687 	*srcu_idx = srcu_read_lock(&md->io_barrier);
688 
689 	return srcu_dereference(md->map, &md->io_barrier);
690 }
691 
dm_put_live_table(struct mapped_device * md,int srcu_idx)692 void dm_put_live_table(struct mapped_device *md,
693 		       int srcu_idx) __releases(md->io_barrier)
694 {
695 	srcu_read_unlock(&md->io_barrier, srcu_idx);
696 }
697 
dm_sync_table(struct mapped_device * md)698 void dm_sync_table(struct mapped_device *md)
699 {
700 	synchronize_srcu(&md->io_barrier);
701 	synchronize_rcu_expedited();
702 }
703 
704 /*
705  * A fast alternative to dm_get_live_table/dm_put_live_table.
706  * The caller must not block between these two functions.
707  */
dm_get_live_table_fast(struct mapped_device * md)708 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
709 {
710 	rcu_read_lock();
711 	return rcu_dereference(md->map);
712 }
713 
dm_put_live_table_fast(struct mapped_device * md)714 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
715 {
716 	rcu_read_unlock();
717 }
718 
719 static char *_dm_claim_ptr = "I belong to device-mapper";
720 
721 /*
722  * Open a table device so we can use it as a map destination.
723  */
open_table_device(struct mapped_device * md,dev_t dev,blk_mode_t mode)724 static struct table_device *open_table_device(struct mapped_device *md,
725 		dev_t dev, blk_mode_t mode)
726 {
727 	struct table_device *td;
728 	struct file *bdev_file;
729 	struct block_device *bdev;
730 	u64 part_off;
731 	int r;
732 
733 	td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
734 	if (!td)
735 		return ERR_PTR(-ENOMEM);
736 	refcount_set(&td->count, 1);
737 
738 	bdev_file = bdev_file_open_by_dev(dev, mode, _dm_claim_ptr, NULL);
739 	if (IS_ERR(bdev_file)) {
740 		r = PTR_ERR(bdev_file);
741 		goto out_free_td;
742 	}
743 
744 	bdev = file_bdev(bdev_file);
745 
746 	/*
747 	 * We can be called before the dm disk is added.  In that case we can't
748 	 * register the holder relation here.  It will be done once add_disk was
749 	 * called.
750 	 */
751 	if (md->disk->slave_dir) {
752 		r = bd_link_disk_holder(bdev, md->disk);
753 		if (r)
754 			goto out_blkdev_put;
755 	}
756 
757 	td->dm_dev.mode = mode;
758 	td->dm_dev.bdev = bdev;
759 	td->dm_dev.bdev_file = bdev_file;
760 	td->dm_dev.dax_dev = fs_dax_get_by_bdev(bdev, &part_off,
761 						NULL, NULL);
762 	format_dev_t(td->dm_dev.name, dev);
763 	list_add(&td->list, &md->table_devices);
764 	return td;
765 
766 out_blkdev_put:
767 	__fput_sync(bdev_file);
768 out_free_td:
769 	kfree(td);
770 	return ERR_PTR(r);
771 }
772 
773 /*
774  * Close a table device that we've been using.
775  */
close_table_device(struct table_device * td,struct mapped_device * md)776 static void close_table_device(struct table_device *td, struct mapped_device *md)
777 {
778 	if (md->disk->slave_dir)
779 		bd_unlink_disk_holder(td->dm_dev.bdev, md->disk);
780 
781 	/* Leverage async fput() if DMF_DEFERRED_REMOVE set */
782 	if (unlikely(test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
783 		fput(td->dm_dev.bdev_file);
784 	else
785 		__fput_sync(td->dm_dev.bdev_file);
786 
787 	put_dax(td->dm_dev.dax_dev);
788 	list_del(&td->list);
789 	kfree(td);
790 }
791 
find_table_device(struct list_head * l,dev_t dev,blk_mode_t mode)792 static struct table_device *find_table_device(struct list_head *l, dev_t dev,
793 					      blk_mode_t mode)
794 {
795 	struct table_device *td;
796 
797 	list_for_each_entry(td, l, list)
798 		if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
799 			return td;
800 
801 	return NULL;
802 }
803 
dm_get_table_device(struct mapped_device * md,dev_t dev,blk_mode_t mode,struct dm_dev ** result)804 int dm_get_table_device(struct mapped_device *md, dev_t dev, blk_mode_t mode,
805 			struct dm_dev **result)
806 {
807 	struct table_device *td;
808 
809 	mutex_lock(&md->table_devices_lock);
810 	td = find_table_device(&md->table_devices, dev, mode);
811 	if (!td) {
812 		td = open_table_device(md, dev, mode);
813 		if (IS_ERR(td)) {
814 			mutex_unlock(&md->table_devices_lock);
815 			return PTR_ERR(td);
816 		}
817 	} else {
818 		refcount_inc(&td->count);
819 	}
820 	mutex_unlock(&md->table_devices_lock);
821 
822 	*result = &td->dm_dev;
823 	return 0;
824 }
825 
dm_put_table_device(struct mapped_device * md,struct dm_dev * d)826 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
827 {
828 	struct table_device *td = container_of(d, struct table_device, dm_dev);
829 
830 	mutex_lock(&md->table_devices_lock);
831 	if (refcount_dec_and_test(&td->count))
832 		close_table_device(td, md);
833 	mutex_unlock(&md->table_devices_lock);
834 }
835 
836 /*
837  * Get the geometry associated with a dm device
838  */
dm_get_geometry(struct mapped_device * md,struct hd_geometry * geo)839 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
840 {
841 	*geo = md->geometry;
842 
843 	return 0;
844 }
845 
846 /*
847  * Set the geometry of a device.
848  */
dm_set_geometry(struct mapped_device * md,struct hd_geometry * geo)849 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
850 {
851 	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
852 
853 	if (geo->start > sz) {
854 		DMERR("Start sector is beyond the geometry limits.");
855 		return -EINVAL;
856 	}
857 
858 	md->geometry = *geo;
859 
860 	return 0;
861 }
862 
__noflush_suspending(struct mapped_device * md)863 static int __noflush_suspending(struct mapped_device *md)
864 {
865 	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
866 }
867 
dm_requeue_add_io(struct dm_io * io,bool first_stage)868 static void dm_requeue_add_io(struct dm_io *io, bool first_stage)
869 {
870 	struct mapped_device *md = io->md;
871 
872 	if (first_stage) {
873 		struct dm_io *next = md->requeue_list;
874 
875 		md->requeue_list = io;
876 		io->next = next;
877 	} else {
878 		bio_list_add_head(&md->deferred, io->orig_bio);
879 	}
880 }
881 
dm_kick_requeue(struct mapped_device * md,bool first_stage)882 static void dm_kick_requeue(struct mapped_device *md, bool first_stage)
883 {
884 	if (first_stage)
885 		queue_work(md->wq, &md->requeue_work);
886 	else
887 		queue_work(md->wq, &md->work);
888 }
889 
890 /*
891  * Return true if the dm_io's original bio is requeued.
892  * io->status is updated with error if requeue disallowed.
893  */
dm_handle_requeue(struct dm_io * io,bool first_stage)894 static bool dm_handle_requeue(struct dm_io *io, bool first_stage)
895 {
896 	struct bio *bio = io->orig_bio;
897 	bool handle_requeue = (io->status == BLK_STS_DM_REQUEUE);
898 	bool handle_polled_eagain = ((io->status == BLK_STS_AGAIN) &&
899 				     (bio->bi_opf & REQ_POLLED));
900 	struct mapped_device *md = io->md;
901 	bool requeued = false;
902 
903 	if (handle_requeue || handle_polled_eagain) {
904 		unsigned long flags;
905 
906 		if (bio->bi_opf & REQ_POLLED) {
907 			/*
908 			 * Upper layer won't help us poll split bio
909 			 * (io->orig_bio may only reflect a subset of the
910 			 * pre-split original) so clear REQ_POLLED.
911 			 */
912 			bio_clear_polled(bio);
913 		}
914 
915 		/*
916 		 * Target requested pushing back the I/O or
917 		 * polled IO hit BLK_STS_AGAIN.
918 		 */
919 		spin_lock_irqsave(&md->deferred_lock, flags);
920 		if ((__noflush_suspending(md) &&
921 		     !WARN_ON_ONCE(dm_is_zone_write(md, bio))) ||
922 		    handle_polled_eagain || first_stage) {
923 			dm_requeue_add_io(io, first_stage);
924 			requeued = true;
925 		} else {
926 			/*
927 			 * noflush suspend was interrupted or this is
928 			 * a write to a zoned target.
929 			 */
930 			io->status = BLK_STS_IOERR;
931 		}
932 		spin_unlock_irqrestore(&md->deferred_lock, flags);
933 	}
934 
935 	if (requeued)
936 		dm_kick_requeue(md, first_stage);
937 
938 	return requeued;
939 }
940 
__dm_io_complete(struct dm_io * io,bool first_stage)941 static void __dm_io_complete(struct dm_io *io, bool first_stage)
942 {
943 	struct bio *bio = io->orig_bio;
944 	struct mapped_device *md = io->md;
945 	blk_status_t io_error;
946 	bool requeued;
947 	bool requeue_flush_with_data;
948 
949 	requeued = dm_handle_requeue(io, first_stage);
950 	if (requeued && first_stage)
951 		return;
952 
953 	io_error = io->status;
954 	if (dm_io_flagged(io, DM_IO_ACCOUNTED))
955 		dm_end_io_acct(io);
956 	else if (!io_error) {
957 		/*
958 		 * Must handle target that DM_MAPIO_SUBMITTED only to
959 		 * then bio_endio() rather than dm_submit_bio_remap()
960 		 */
961 		__dm_start_io_acct(io);
962 		dm_end_io_acct(io);
963 	}
964 	requeue_flush_with_data = io->requeue_flush_with_data;
965 	free_io(io);
966 	smp_wmb();
967 	this_cpu_dec(*md->pending_io);
968 
969 	/* nudge anyone waiting on suspend queue */
970 	if (unlikely(wq_has_sleeper(&md->wait)))
971 		wake_up(&md->wait);
972 
973 	/* Return early if the original bio was requeued */
974 	if (requeued)
975 		return;
976 
977 	if (unlikely(requeue_flush_with_data)) {
978 		/*
979 		 * Preflush done for flush with data, reissue
980 		 * without REQ_PREFLUSH.
981 		 */
982 		bio->bi_opf &= ~REQ_PREFLUSH;
983 		queue_io(md, bio);
984 	} else {
985 		/* done with normal IO or empty flush */
986 		if (io_error)
987 			bio->bi_status = io_error;
988 		bio_endio(bio);
989 	}
990 }
991 
dm_wq_requeue_work(struct work_struct * work)992 static void dm_wq_requeue_work(struct work_struct *work)
993 {
994 	struct mapped_device *md = container_of(work, struct mapped_device,
995 						requeue_work);
996 	unsigned long flags;
997 	struct dm_io *io;
998 
999 	/* reuse deferred lock to simplify dm_handle_requeue */
1000 	spin_lock_irqsave(&md->deferred_lock, flags);
1001 	io = md->requeue_list;
1002 	md->requeue_list = NULL;
1003 	spin_unlock_irqrestore(&md->deferred_lock, flags);
1004 
1005 	while (io) {
1006 		struct dm_io *next = io->next;
1007 
1008 		dm_io_rewind(io, &md->disk->bio_split);
1009 
1010 		io->next = NULL;
1011 		__dm_io_complete(io, false);
1012 		io = next;
1013 		cond_resched();
1014 	}
1015 }
1016 
1017 /*
1018  * Two staged requeue:
1019  *
1020  * 1) io->orig_bio points to the real original bio, and the part mapped to
1021  *    this io must be requeued, instead of other parts of the original bio.
1022  *
1023  * 2) io->orig_bio points to new cloned bio which matches the requeued dm_io.
1024  */
dm_io_complete(struct dm_io * io)1025 static inline void dm_io_complete(struct dm_io *io)
1026 {
1027 	/*
1028 	 * Only dm_io that has been split needs two stage requeue, otherwise
1029 	 * we may run into long bio clone chain during suspend and OOM could
1030 	 * be triggered.
1031 	 *
1032 	 * Also flush data dm_io won't be marked as DM_IO_WAS_SPLIT, so they
1033 	 * also aren't handled via the first stage requeue.
1034 	 */
1035 	__dm_io_complete(io, dm_io_flagged(io, DM_IO_WAS_SPLIT));
1036 }
1037 
1038 /*
1039  * Decrements the number of outstanding ios that a bio has been
1040  * cloned into, completing the original io if necc.
1041  */
__dm_io_dec_pending(struct dm_io * io)1042 static inline void __dm_io_dec_pending(struct dm_io *io)
1043 {
1044 	if (atomic_dec_and_test(&io->io_count))
1045 		dm_io_complete(io);
1046 }
1047 
dm_io_set_error(struct dm_io * io,blk_status_t error)1048 static void dm_io_set_error(struct dm_io *io, blk_status_t error)
1049 {
1050 	unsigned long flags;
1051 
1052 	/* Push-back supersedes any I/O errors */
1053 	spin_lock_irqsave(&io->lock, flags);
1054 	if (!(io->status == BLK_STS_DM_REQUEUE &&
1055 	      __noflush_suspending(io->md))) {
1056 		io->status = error;
1057 	}
1058 	spin_unlock_irqrestore(&io->lock, flags);
1059 }
1060 
dm_io_dec_pending(struct dm_io * io,blk_status_t error)1061 static void dm_io_dec_pending(struct dm_io *io, blk_status_t error)
1062 {
1063 	if (unlikely(error))
1064 		dm_io_set_error(io, error);
1065 
1066 	__dm_io_dec_pending(io);
1067 }
1068 
1069 /*
1070  * The queue_limits are only valid as long as you have a reference
1071  * count on 'md'. But _not_ imposing verification to avoid atomic_read(),
1072  */
dm_get_queue_limits(struct mapped_device * md)1073 static inline struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
1074 {
1075 	return &md->queue->limits;
1076 }
1077 
swap_bios_limit(struct dm_target * ti,struct bio * bio)1078 static bool swap_bios_limit(struct dm_target *ti, struct bio *bio)
1079 {
1080 	return unlikely((bio->bi_opf & REQ_SWAP) != 0) && unlikely(ti->limit_swap_bios);
1081 }
1082 
clone_endio(struct bio * bio)1083 static void clone_endio(struct bio *bio)
1084 {
1085 	blk_status_t error = bio->bi_status;
1086 	struct dm_target_io *tio = clone_to_tio(bio);
1087 	struct dm_target *ti = tio->ti;
1088 	dm_endio_fn endio = likely(ti != NULL) ? ti->type->end_io : NULL;
1089 	struct dm_io *io = tio->io;
1090 	struct mapped_device *md = io->md;
1091 
1092 	if (unlikely(error == BLK_STS_TARGET)) {
1093 		if (bio_op(bio) == REQ_OP_DISCARD &&
1094 		    !bdev_max_discard_sectors(bio->bi_bdev))
1095 			blk_queue_disable_discard(md->queue);
1096 		else if (bio_op(bio) == REQ_OP_WRITE_ZEROES &&
1097 			 !bdev_write_zeroes_sectors(bio->bi_bdev))
1098 			blk_queue_disable_write_zeroes(md->queue);
1099 	}
1100 
1101 	if (static_branch_unlikely(&zoned_enabled) &&
1102 	    unlikely(bdev_is_zoned(bio->bi_bdev)))
1103 		dm_zone_endio(io, bio);
1104 
1105 	if (endio) {
1106 		int r = endio(ti, bio, &error);
1107 
1108 		switch (r) {
1109 		case DM_ENDIO_REQUEUE:
1110 			if (static_branch_unlikely(&zoned_enabled)) {
1111 				/*
1112 				 * Requeuing writes to a sequential zone of a zoned
1113 				 * target will break the sequential write pattern:
1114 				 * fail such IO.
1115 				 */
1116 				if (WARN_ON_ONCE(dm_is_zone_write(md, bio)))
1117 					error = BLK_STS_IOERR;
1118 				else
1119 					error = BLK_STS_DM_REQUEUE;
1120 			} else
1121 				error = BLK_STS_DM_REQUEUE;
1122 			fallthrough;
1123 		case DM_ENDIO_DONE:
1124 			break;
1125 		case DM_ENDIO_INCOMPLETE:
1126 			/* The target will handle the io */
1127 			return;
1128 		default:
1129 			DMCRIT("unimplemented target endio return value: %d", r);
1130 			BUG();
1131 		}
1132 	}
1133 
1134 	if (static_branch_unlikely(&swap_bios_enabled) &&
1135 	    likely(ti != NULL) && unlikely(swap_bios_limit(ti, bio)))
1136 		up(&md->swap_bios_semaphore);
1137 
1138 	free_tio(bio);
1139 	dm_io_dec_pending(io, error);
1140 }
1141 
1142 /*
1143  * Return maximum size of I/O possible at the supplied sector up to the current
1144  * target boundary.
1145  */
max_io_len_target_boundary(struct dm_target * ti,sector_t target_offset)1146 static inline sector_t max_io_len_target_boundary(struct dm_target *ti,
1147 						  sector_t target_offset)
1148 {
1149 	return ti->len - target_offset;
1150 }
1151 
__max_io_len(struct dm_target * ti,sector_t sector,unsigned int max_granularity,unsigned int max_sectors)1152 static sector_t __max_io_len(struct dm_target *ti, sector_t sector,
1153 			     unsigned int max_granularity,
1154 			     unsigned int max_sectors)
1155 {
1156 	sector_t target_offset = dm_target_offset(ti, sector);
1157 	sector_t len = max_io_len_target_boundary(ti, target_offset);
1158 
1159 	/*
1160 	 * Does the target need to split IO even further?
1161 	 * - varied (per target) IO splitting is a tenet of DM; this
1162 	 *   explains why stacked chunk_sectors based splitting via
1163 	 *   bio_split_to_limits() isn't possible here.
1164 	 */
1165 	if (!max_granularity)
1166 		return len;
1167 	return min_t(sector_t, len,
1168 		min(max_sectors ? : queue_max_sectors(ti->table->md->queue),
1169 		    blk_boundary_sectors_left(target_offset, max_granularity)));
1170 }
1171 
max_io_len(struct dm_target * ti,sector_t sector)1172 static inline sector_t max_io_len(struct dm_target *ti, sector_t sector)
1173 {
1174 	return __max_io_len(ti, sector, ti->max_io_len, 0);
1175 }
1176 
dm_set_target_max_io_len(struct dm_target * ti,sector_t len)1177 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1178 {
1179 	if (len > UINT_MAX) {
1180 		DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1181 		      (unsigned long long)len, UINT_MAX);
1182 		ti->error = "Maximum size of target IO is too large";
1183 		return -EINVAL;
1184 	}
1185 
1186 	ti->max_io_len = (uint32_t) len;
1187 
1188 	return 0;
1189 }
1190 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1191 
dm_dax_get_live_target(struct mapped_device * md,sector_t sector,int * srcu_idx)1192 static struct dm_target *dm_dax_get_live_target(struct mapped_device *md,
1193 						sector_t sector, int *srcu_idx)
1194 	__acquires(md->io_barrier)
1195 {
1196 	struct dm_table *map;
1197 	struct dm_target *ti;
1198 
1199 	map = dm_get_live_table(md, srcu_idx);
1200 	if (!map)
1201 		return NULL;
1202 
1203 	ti = dm_table_find_target(map, sector);
1204 	if (!ti)
1205 		return NULL;
1206 
1207 	return ti;
1208 }
1209 
dm_dax_direct_access(struct dax_device * dax_dev,pgoff_t pgoff,long nr_pages,enum dax_access_mode mode,void ** kaddr,unsigned long * pfn)1210 static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff,
1211 		long nr_pages, enum dax_access_mode mode, void **kaddr,
1212 		unsigned long *pfn)
1213 {
1214 	struct mapped_device *md = dax_get_private(dax_dev);
1215 	sector_t sector = pgoff * PAGE_SECTORS;
1216 	struct dm_target *ti;
1217 	long len, ret = -EIO;
1218 	int srcu_idx;
1219 
1220 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1221 
1222 	if (!ti)
1223 		goto out;
1224 	if (!ti->type->direct_access)
1225 		goto out;
1226 	len = max_io_len(ti, sector) / PAGE_SECTORS;
1227 	if (len < 1)
1228 		goto out;
1229 	nr_pages = min(len, nr_pages);
1230 	ret = ti->type->direct_access(ti, pgoff, nr_pages, mode, kaddr, pfn);
1231 
1232  out:
1233 	dm_put_live_table(md, srcu_idx);
1234 
1235 	return ret;
1236 }
1237 
dm_dax_zero_page_range(struct dax_device * dax_dev,pgoff_t pgoff,size_t nr_pages)1238 static int dm_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff,
1239 				  size_t nr_pages)
1240 {
1241 	struct mapped_device *md = dax_get_private(dax_dev);
1242 	sector_t sector = pgoff * PAGE_SECTORS;
1243 	struct dm_target *ti;
1244 	int ret = -EIO;
1245 	int srcu_idx;
1246 
1247 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1248 
1249 	if (!ti)
1250 		goto out;
1251 	if (WARN_ON(!ti->type->dax_zero_page_range)) {
1252 		/*
1253 		 * ->zero_page_range() is mandatory dax operation. If we are
1254 		 *  here, something is wrong.
1255 		 */
1256 		goto out;
1257 	}
1258 	ret = ti->type->dax_zero_page_range(ti, pgoff, nr_pages);
1259  out:
1260 	dm_put_live_table(md, srcu_idx);
1261 
1262 	return ret;
1263 }
1264 
dm_dax_recovery_write(struct dax_device * dax_dev,pgoff_t pgoff,void * addr,size_t bytes,struct iov_iter * i)1265 static size_t dm_dax_recovery_write(struct dax_device *dax_dev, pgoff_t pgoff,
1266 		void *addr, size_t bytes, struct iov_iter *i)
1267 {
1268 	struct mapped_device *md = dax_get_private(dax_dev);
1269 	sector_t sector = pgoff * PAGE_SECTORS;
1270 	struct dm_target *ti;
1271 	int srcu_idx;
1272 	long ret = 0;
1273 
1274 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1275 	if (!ti || !ti->type->dax_recovery_write)
1276 		goto out;
1277 
1278 	ret = ti->type->dax_recovery_write(ti, pgoff, addr, bytes, i);
1279 out:
1280 	dm_put_live_table(md, srcu_idx);
1281 	return ret;
1282 }
1283 
1284 /*
1285  * A target may call dm_accept_partial_bio only from the map routine.  It is
1286  * allowed for all bio types except REQ_PREFLUSH, REQ_OP_ZONE_* zone management
1287  * operations, zone append writes (native with REQ_OP_ZONE_APPEND or emulated
1288  * with write BIOs flagged with BIO_EMULATES_ZONE_APPEND) and any bio serviced
1289  * by __send_duplicate_bios().
1290  *
1291  * dm_accept_partial_bio informs the dm that the target only wants to process
1292  * additional n_sectors sectors of the bio and the rest of the data should be
1293  * sent in a next bio.
1294  *
1295  * A diagram that explains the arithmetics:
1296  * +--------------------+---------------+-------+
1297  * |         1          |       2       |   3   |
1298  * +--------------------+---------------+-------+
1299  *
1300  * <-------------- *tio->len_ptr --------------->
1301  *                      <----- bio_sectors ----->
1302  *                      <-- n_sectors -->
1303  *
1304  * Region 1 was already iterated over with bio_advance or similar function.
1305  *	(it may be empty if the target doesn't use bio_advance)
1306  * Region 2 is the remaining bio size that the target wants to process.
1307  *	(it may be empty if region 1 is non-empty, although there is no reason
1308  *	 to make it empty)
1309  * The target requires that region 3 is to be sent in the next bio.
1310  *
1311  * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1312  * the partially processed part (the sum of regions 1+2) must be the same for all
1313  * copies of the bio.
1314  */
dm_accept_partial_bio(struct bio * bio,unsigned int n_sectors)1315 void dm_accept_partial_bio(struct bio *bio, unsigned int n_sectors)
1316 {
1317 	struct dm_target_io *tio = clone_to_tio(bio);
1318 	struct dm_io *io = tio->io;
1319 	unsigned int bio_sectors = bio_sectors(bio);
1320 
1321 	BUG_ON(dm_tio_flagged(tio, DM_TIO_IS_DUPLICATE_BIO));
1322 	BUG_ON(bio_sectors > *tio->len_ptr);
1323 	BUG_ON(n_sectors > bio_sectors);
1324 	BUG_ON(bio->bi_opf & REQ_ATOMIC);
1325 
1326 	if (static_branch_unlikely(&zoned_enabled) &&
1327 	    unlikely(bdev_is_zoned(bio->bi_bdev))) {
1328 		enum req_op op = bio_op(bio);
1329 
1330 		BUG_ON(op_is_zone_mgmt(op));
1331 		BUG_ON(op == REQ_OP_WRITE);
1332 		BUG_ON(op == REQ_OP_WRITE_ZEROES);
1333 		BUG_ON(op == REQ_OP_ZONE_APPEND);
1334 	}
1335 
1336 	*tio->len_ptr -= bio_sectors - n_sectors;
1337 	bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1338 
1339 	/*
1340 	 * __split_and_process_bio() may have already saved mapped part
1341 	 * for accounting but it is being reduced so update accordingly.
1342 	 */
1343 	dm_io_set_flag(io, DM_IO_WAS_SPLIT);
1344 	io->sectors = n_sectors;
1345 	io->sector_offset = bio_sectors(io->orig_bio);
1346 }
1347 EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1348 
1349 /*
1350  * @clone: clone bio that DM core passed to target's .map function
1351  * @tgt_clone: clone of @clone bio that target needs submitted
1352  *
1353  * Targets should use this interface to submit bios they take
1354  * ownership of when returning DM_MAPIO_SUBMITTED.
1355  *
1356  * Target should also enable ti->accounts_remapped_io
1357  */
dm_submit_bio_remap(struct bio * clone,struct bio * tgt_clone)1358 void dm_submit_bio_remap(struct bio *clone, struct bio *tgt_clone)
1359 {
1360 	struct dm_target_io *tio = clone_to_tio(clone);
1361 	struct dm_io *io = tio->io;
1362 
1363 	/* establish bio that will get submitted */
1364 	if (!tgt_clone)
1365 		tgt_clone = clone;
1366 
1367 	/*
1368 	 * Account io->origin_bio to DM dev on behalf of target
1369 	 * that took ownership of IO with DM_MAPIO_SUBMITTED.
1370 	 */
1371 	dm_start_io_acct(io, clone);
1372 
1373 	trace_block_bio_remap(tgt_clone, disk_devt(io->md->disk),
1374 			      tio->old_sector);
1375 	submit_bio_noacct(tgt_clone);
1376 }
1377 EXPORT_SYMBOL_GPL(dm_submit_bio_remap);
1378 
__set_swap_bios_limit(struct mapped_device * md,int latch)1379 static noinline void __set_swap_bios_limit(struct mapped_device *md, int latch)
1380 {
1381 	mutex_lock(&md->swap_bios_lock);
1382 	while (latch < md->swap_bios) {
1383 		cond_resched();
1384 		down(&md->swap_bios_semaphore);
1385 		md->swap_bios--;
1386 	}
1387 	while (latch > md->swap_bios) {
1388 		cond_resched();
1389 		up(&md->swap_bios_semaphore);
1390 		md->swap_bios++;
1391 	}
1392 	mutex_unlock(&md->swap_bios_lock);
1393 }
1394 
__map_bio(struct bio * clone)1395 static void __map_bio(struct bio *clone)
1396 {
1397 	struct dm_target_io *tio = clone_to_tio(clone);
1398 	struct dm_target *ti = tio->ti;
1399 	struct dm_io *io = tio->io;
1400 	struct mapped_device *md = io->md;
1401 	int r;
1402 
1403 	clone->bi_end_io = clone_endio;
1404 
1405 	/*
1406 	 * Map the clone.
1407 	 */
1408 	tio->old_sector = clone->bi_iter.bi_sector;
1409 
1410 	if (static_branch_unlikely(&swap_bios_enabled) &&
1411 	    unlikely(swap_bios_limit(ti, clone))) {
1412 		int latch = get_swap_bios();
1413 
1414 		if (unlikely(latch != md->swap_bios))
1415 			__set_swap_bios_limit(md, latch);
1416 		down(&md->swap_bios_semaphore);
1417 	}
1418 
1419 	if (likely(ti->type->map == linear_map))
1420 		r = linear_map(ti, clone);
1421 	else if (ti->type->map == stripe_map)
1422 		r = stripe_map(ti, clone);
1423 	else
1424 		r = ti->type->map(ti, clone);
1425 
1426 	switch (r) {
1427 	case DM_MAPIO_SUBMITTED:
1428 		/* target has assumed ownership of this io */
1429 		if (!ti->accounts_remapped_io)
1430 			dm_start_io_acct(io, clone);
1431 		break;
1432 	case DM_MAPIO_REMAPPED:
1433 		dm_submit_bio_remap(clone, NULL);
1434 		break;
1435 	case DM_MAPIO_KILL:
1436 	case DM_MAPIO_REQUEUE:
1437 		if (static_branch_unlikely(&swap_bios_enabled) &&
1438 		    unlikely(swap_bios_limit(ti, clone)))
1439 			up(&md->swap_bios_semaphore);
1440 		free_tio(clone);
1441 		if (r == DM_MAPIO_KILL)
1442 			dm_io_dec_pending(io, BLK_STS_IOERR);
1443 		else
1444 			dm_io_dec_pending(io, BLK_STS_DM_REQUEUE);
1445 		break;
1446 	default:
1447 		DMCRIT("unimplemented target map return value: %d", r);
1448 		BUG();
1449 	}
1450 }
1451 
setup_split_accounting(struct clone_info * ci,unsigned int len)1452 static void setup_split_accounting(struct clone_info *ci, unsigned int len)
1453 {
1454 	struct dm_io *io = ci->io;
1455 
1456 	if (ci->sector_count > len) {
1457 		/*
1458 		 * Split needed, save the mapped part for accounting.
1459 		 * NOTE: dm_accept_partial_bio() will update accordingly.
1460 		 */
1461 		dm_io_set_flag(io, DM_IO_WAS_SPLIT);
1462 		io->sectors = len;
1463 		io->sector_offset = bio_sectors(ci->bio);
1464 	}
1465 }
1466 
alloc_multiple_bios(struct bio_list * blist,struct clone_info * ci,struct dm_target * ti,unsigned int num_bios,unsigned * len)1467 static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci,
1468 				struct dm_target *ti, unsigned int num_bios,
1469 				unsigned *len)
1470 {
1471 	struct bio *bio;
1472 	int try;
1473 
1474 	for (try = 0; try < 2; try++) {
1475 		int bio_nr;
1476 
1477 		if (try && num_bios > 1)
1478 			mutex_lock(&ci->io->md->table_devices_lock);
1479 		for (bio_nr = 0; bio_nr < num_bios; bio_nr++) {
1480 			bio = alloc_tio(ci, ti, bio_nr, len,
1481 					try ? GFP_NOIO : GFP_NOWAIT);
1482 			if (!bio)
1483 				break;
1484 
1485 			bio_list_add(blist, bio);
1486 		}
1487 		if (try && num_bios > 1)
1488 			mutex_unlock(&ci->io->md->table_devices_lock);
1489 		if (bio_nr == num_bios)
1490 			return;
1491 
1492 		while ((bio = bio_list_pop(blist)))
1493 			free_tio(bio);
1494 	}
1495 }
1496 
__send_duplicate_bios(struct clone_info * ci,struct dm_target * ti,unsigned int num_bios,unsigned int * len)1497 static unsigned int __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1498 					  unsigned int num_bios, unsigned int *len)
1499 {
1500 	struct bio_list blist = BIO_EMPTY_LIST;
1501 	struct bio *clone;
1502 	unsigned int ret = 0;
1503 
1504 	if (WARN_ON_ONCE(num_bios == 0)) /* num_bios = 0 is a bug in caller */
1505 		return 0;
1506 
1507 	/* dm_accept_partial_bio() is not supported with shared tio->len_ptr */
1508 	if (len)
1509 		setup_split_accounting(ci, *len);
1510 
1511 	/*
1512 	 * Using alloc_multiple_bios(), even if num_bios is 1, to consistently
1513 	 * support allocating using GFP_NOWAIT with GFP_NOIO fallback.
1514 	 */
1515 	alloc_multiple_bios(&blist, ci, ti, num_bios, len);
1516 	while ((clone = bio_list_pop(&blist))) {
1517 		if (num_bios > 1)
1518 			dm_tio_set_flag(clone_to_tio(clone), DM_TIO_IS_DUPLICATE_BIO);
1519 		__map_bio(clone);
1520 		ret += 1;
1521 	}
1522 
1523 	return ret;
1524 }
1525 
__send_empty_flush(struct clone_info * ci)1526 static void __send_empty_flush(struct clone_info *ci)
1527 {
1528 	struct dm_table *t = ci->map;
1529 	struct bio flush_bio;
1530 	blk_opf_t opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC;
1531 
1532 	if ((ci->io->orig_bio->bi_opf & (REQ_IDLE | REQ_SYNC)) ==
1533 	    (REQ_IDLE | REQ_SYNC))
1534 		opf |= REQ_IDLE;
1535 
1536 	/*
1537 	 * Use an on-stack bio for this, it's safe since we don't
1538 	 * need to reference it after submit. It's just used as
1539 	 * the basis for the clone(s).
1540 	 */
1541 	bio_init(&flush_bio, ci->io->md->disk->part0, NULL, 0, opf);
1542 
1543 	ci->bio = &flush_bio;
1544 	ci->sector_count = 0;
1545 	ci->io->tio.clone.bi_iter.bi_size = 0;
1546 
1547 	if (!t->flush_bypasses_map) {
1548 		for (unsigned int i = 0; i < t->num_targets; i++) {
1549 			unsigned int bios;
1550 			struct dm_target *ti = dm_table_get_target(t, i);
1551 
1552 			if (unlikely(ti->num_flush_bios == 0))
1553 				continue;
1554 
1555 			atomic_add(ti->num_flush_bios, &ci->io->io_count);
1556 			bios = __send_duplicate_bios(ci, ti, ti->num_flush_bios,
1557 						     NULL);
1558 			atomic_sub(ti->num_flush_bios - bios, &ci->io->io_count);
1559 		}
1560 	} else {
1561 		/*
1562 		 * Note that there's no need to grab t->devices_lock here
1563 		 * because the targets that support flush optimization don't
1564 		 * modify the list of devices.
1565 		 */
1566 		struct list_head *devices = dm_table_get_devices(t);
1567 		unsigned int len = 0;
1568 		struct dm_dev_internal *dd;
1569 		list_for_each_entry(dd, devices, list) {
1570 			struct bio *clone;
1571 			/*
1572 			 * Note that the structure dm_target_io is not
1573 			 * associated with any target (because the device may be
1574 			 * used by multiple targets), so we set tio->ti = NULL.
1575 			 * We must check for NULL in the I/O processing path, to
1576 			 * avoid NULL pointer dereference.
1577 			 */
1578 			clone = alloc_tio(ci, NULL, 0, &len, GFP_NOIO);
1579 			atomic_add(1, &ci->io->io_count);
1580 			bio_set_dev(clone, dd->dm_dev->bdev);
1581 			clone->bi_end_io = clone_endio;
1582 			dm_submit_bio_remap(clone, NULL);
1583 		}
1584 	}
1585 
1586 	/*
1587 	 * alloc_io() takes one extra reference for submission, so the
1588 	 * reference won't reach 0 without the following subtraction
1589 	 */
1590 	atomic_sub(1, &ci->io->io_count);
1591 
1592 	bio_uninit(ci->bio);
1593 }
1594 
__send_abnormal_io(struct clone_info * ci,struct dm_target * ti,unsigned int num_bios,unsigned int max_granularity,unsigned int max_sectors)1595 static void __send_abnormal_io(struct clone_info *ci, struct dm_target *ti,
1596 			       unsigned int num_bios, unsigned int max_granularity,
1597 			       unsigned int max_sectors)
1598 {
1599 	unsigned int len, bios;
1600 
1601 	len = min_t(sector_t, ci->sector_count,
1602 		    __max_io_len(ti, ci->sector, max_granularity, max_sectors));
1603 
1604 	atomic_add(num_bios, &ci->io->io_count);
1605 	bios = __send_duplicate_bios(ci, ti, num_bios, &len);
1606 	/*
1607 	 * alloc_io() takes one extra reference for submission, so the
1608 	 * reference won't reach 0 without the following (+1) subtraction
1609 	 */
1610 	atomic_sub(num_bios - bios + 1, &ci->io->io_count);
1611 
1612 	ci->sector += len;
1613 	ci->sector_count -= len;
1614 }
1615 
is_abnormal_io(struct bio * bio)1616 static bool is_abnormal_io(struct bio *bio)
1617 {
1618 	switch (bio_op(bio)) {
1619 	case REQ_OP_READ:
1620 	case REQ_OP_WRITE:
1621 	case REQ_OP_FLUSH:
1622 		return false;
1623 	case REQ_OP_DISCARD:
1624 	case REQ_OP_SECURE_ERASE:
1625 	case REQ_OP_WRITE_ZEROES:
1626 	case REQ_OP_ZONE_RESET_ALL:
1627 		return true;
1628 	default:
1629 		return false;
1630 	}
1631 }
1632 
__process_abnormal_io(struct clone_info * ci,struct dm_target * ti)1633 static blk_status_t __process_abnormal_io(struct clone_info *ci,
1634 					  struct dm_target *ti)
1635 {
1636 	unsigned int num_bios = 0;
1637 	unsigned int max_granularity = 0;
1638 	unsigned int max_sectors = 0;
1639 	struct queue_limits *limits = dm_get_queue_limits(ti->table->md);
1640 
1641 	switch (bio_op(ci->bio)) {
1642 	case REQ_OP_DISCARD:
1643 		num_bios = ti->num_discard_bios;
1644 		max_sectors = limits->max_discard_sectors;
1645 		if (ti->max_discard_granularity)
1646 			max_granularity = max_sectors;
1647 		break;
1648 	case REQ_OP_SECURE_ERASE:
1649 		num_bios = ti->num_secure_erase_bios;
1650 		max_sectors = limits->max_secure_erase_sectors;
1651 		break;
1652 	case REQ_OP_WRITE_ZEROES:
1653 		num_bios = ti->num_write_zeroes_bios;
1654 		max_sectors = limits->max_write_zeroes_sectors;
1655 		break;
1656 	default:
1657 		break;
1658 	}
1659 
1660 	/*
1661 	 * Even though the device advertised support for this type of
1662 	 * request, that does not mean every target supports it, and
1663 	 * reconfiguration might also have changed that since the
1664 	 * check was performed.
1665 	 */
1666 	if (unlikely(!num_bios))
1667 		return BLK_STS_NOTSUPP;
1668 
1669 	__send_abnormal_io(ci, ti, num_bios, max_granularity, max_sectors);
1670 
1671 	return BLK_STS_OK;
1672 }
1673 
1674 /*
1675  * Reuse ->bi_private as dm_io list head for storing all dm_io instances
1676  * associated with this bio, and this bio's bi_private needs to be
1677  * stored in dm_io->data before the reuse.
1678  *
1679  * bio->bi_private is owned by fs or upper layer, so block layer won't
1680  * touch it after splitting. Meantime it won't be changed by anyone after
1681  * bio is submitted. So this reuse is safe.
1682  */
dm_poll_list_head(struct bio * bio)1683 static inline struct dm_io **dm_poll_list_head(struct bio *bio)
1684 {
1685 	return (struct dm_io **)&bio->bi_private;
1686 }
1687 
dm_queue_poll_io(struct bio * bio,struct dm_io * io)1688 static void dm_queue_poll_io(struct bio *bio, struct dm_io *io)
1689 {
1690 	struct dm_io **head = dm_poll_list_head(bio);
1691 
1692 	if (!(bio->bi_opf & REQ_DM_POLL_LIST)) {
1693 		bio->bi_opf |= REQ_DM_POLL_LIST;
1694 		/*
1695 		 * Save .bi_private into dm_io, so that we can reuse
1696 		 * .bi_private as dm_io list head for storing dm_io list
1697 		 */
1698 		io->data = bio->bi_private;
1699 
1700 		/* tell block layer to poll for completion */
1701 		bio->bi_cookie = ~BLK_QC_T_NONE;
1702 
1703 		io->next = NULL;
1704 	} else {
1705 		/*
1706 		 * bio recursed due to split, reuse original poll list,
1707 		 * and save bio->bi_private too.
1708 		 */
1709 		io->data = (*head)->data;
1710 		io->next = *head;
1711 	}
1712 
1713 	*head = io;
1714 }
1715 
1716 /*
1717  * Select the correct strategy for processing a non-flush bio.
1718  */
__split_and_process_bio(struct clone_info * ci)1719 static blk_status_t __split_and_process_bio(struct clone_info *ci)
1720 {
1721 	struct bio *clone;
1722 	struct dm_target *ti;
1723 	unsigned int len;
1724 
1725 	ti = dm_table_find_target(ci->map, ci->sector);
1726 	if (unlikely(!ti))
1727 		return BLK_STS_IOERR;
1728 
1729 	if (unlikely(ci->is_abnormal_io))
1730 		return __process_abnormal_io(ci, ti);
1731 
1732 	/*
1733 	 * Only support bio polling for normal IO, and the target io is
1734 	 * exactly inside the dm_io instance (verified in dm_poll_dm_io)
1735 	 */
1736 	ci->submit_as_polled = !!(ci->bio->bi_opf & REQ_POLLED);
1737 
1738 	len = min_t(sector_t, max_io_len(ti, ci->sector), ci->sector_count);
1739 	if (ci->bio->bi_opf & REQ_ATOMIC) {
1740 		if (unlikely(!dm_target_supports_atomic_writes(ti->type)))
1741 			return BLK_STS_IOERR;
1742 		if (unlikely(len != ci->sector_count))
1743 			return BLK_STS_IOERR;
1744 	}
1745 
1746 	setup_split_accounting(ci, len);
1747 
1748 	if (unlikely(ci->bio->bi_opf & REQ_NOWAIT)) {
1749 		if (unlikely(!dm_target_supports_nowait(ti->type)))
1750 			return BLK_STS_NOTSUPP;
1751 
1752 		clone = alloc_tio(ci, ti, 0, &len, GFP_NOWAIT);
1753 		if (unlikely(!clone))
1754 			return BLK_STS_AGAIN;
1755 	} else {
1756 		clone = alloc_tio(ci, ti, 0, &len, GFP_NOIO);
1757 	}
1758 	__map_bio(clone);
1759 
1760 	ci->sector += len;
1761 	ci->sector_count -= len;
1762 
1763 	return BLK_STS_OK;
1764 }
1765 
init_clone_info(struct clone_info * ci,struct dm_io * io,struct dm_table * map,struct bio * bio,bool is_abnormal)1766 static void init_clone_info(struct clone_info *ci, struct dm_io *io,
1767 			    struct dm_table *map, struct bio *bio, bool is_abnormal)
1768 {
1769 	ci->map = map;
1770 	ci->io = io;
1771 	ci->bio = bio;
1772 	ci->is_abnormal_io = is_abnormal;
1773 	ci->submit_as_polled = false;
1774 	ci->sector = bio->bi_iter.bi_sector;
1775 	ci->sector_count = bio_sectors(bio);
1776 
1777 	/* Shouldn't happen but sector_count was being set to 0 so... */
1778 	if (static_branch_unlikely(&zoned_enabled) &&
1779 	    WARN_ON_ONCE(op_is_zone_mgmt(bio_op(bio)) && ci->sector_count))
1780 		ci->sector_count = 0;
1781 }
1782 
1783 #ifdef CONFIG_BLK_DEV_ZONED
dm_zone_bio_needs_split(struct bio * bio)1784 static inline bool dm_zone_bio_needs_split(struct bio *bio)
1785 {
1786 	/*
1787 	 * Special case the zone operations that cannot or should not be split.
1788 	 */
1789 	switch (bio_op(bio)) {
1790 	case REQ_OP_ZONE_APPEND:
1791 	case REQ_OP_ZONE_FINISH:
1792 	case REQ_OP_ZONE_RESET:
1793 	case REQ_OP_ZONE_RESET_ALL:
1794 		return false;
1795 	default:
1796 		break;
1797 	}
1798 
1799 	/*
1800 	 * When mapped devices use the block layer zone write plugging, we must
1801 	 * split any large BIO to the mapped device limits to not submit BIOs
1802 	 * that span zone boundaries and to avoid potential deadlocks with
1803 	 * queue freeze operations.
1804 	 */
1805 	return bio_needs_zone_write_plugging(bio) || bio_straddles_zones(bio);
1806 }
1807 
dm_zone_plug_bio(struct mapped_device * md,struct bio * bio)1808 static inline bool dm_zone_plug_bio(struct mapped_device *md, struct bio *bio)
1809 {
1810 	if (!bio_needs_zone_write_plugging(bio))
1811 		return false;
1812 	return blk_zone_plug_bio(bio, 0);
1813 }
1814 
__send_zone_reset_all_emulated(struct clone_info * ci,struct dm_target * ti)1815 static blk_status_t __send_zone_reset_all_emulated(struct clone_info *ci,
1816 						   struct dm_target *ti)
1817 {
1818 	struct bio_list blist = BIO_EMPTY_LIST;
1819 	struct mapped_device *md = ci->io->md;
1820 	unsigned int zone_sectors = md->disk->queue->limits.chunk_sectors;
1821 	unsigned long *need_reset;
1822 	unsigned int i, nr_zones, nr_reset;
1823 	unsigned int num_bios = 0;
1824 	blk_status_t sts = BLK_STS_OK;
1825 	sector_t sector = ti->begin;
1826 	struct bio *clone;
1827 	int ret;
1828 
1829 	nr_zones = ti->len >> ilog2(zone_sectors);
1830 	need_reset = bitmap_zalloc(nr_zones, GFP_NOIO);
1831 	if (!need_reset)
1832 		return BLK_STS_RESOURCE;
1833 
1834 	ret = dm_zone_get_reset_bitmap(md, ci->map, ti->begin,
1835 				       nr_zones, need_reset);
1836 	if (ret) {
1837 		sts = BLK_STS_IOERR;
1838 		goto free_bitmap;
1839 	}
1840 
1841 	/* If we have no zone to reset, we are done. */
1842 	nr_reset = bitmap_weight(need_reset, nr_zones);
1843 	if (!nr_reset)
1844 		goto free_bitmap;
1845 
1846 	atomic_add(nr_zones, &ci->io->io_count);
1847 
1848 	for (i = 0; i < nr_zones; i++) {
1849 
1850 		if (!test_bit(i, need_reset)) {
1851 			sector += zone_sectors;
1852 			continue;
1853 		}
1854 
1855 		if (bio_list_empty(&blist)) {
1856 			/* This may take a while, so be nice to others */
1857 			if (num_bios)
1858 				cond_resched();
1859 
1860 			/*
1861 			 * We may need to reset thousands of zones, so let's
1862 			 * not go crazy with the clone allocation.
1863 			 */
1864 			alloc_multiple_bios(&blist, ci, ti, min(nr_reset, 32),
1865 					    NULL);
1866 		}
1867 
1868 		/* Get a clone and change it to a regular reset operation. */
1869 		clone = bio_list_pop(&blist);
1870 		clone->bi_opf &= ~REQ_OP_MASK;
1871 		clone->bi_opf |= REQ_OP_ZONE_RESET | REQ_SYNC;
1872 		clone->bi_iter.bi_sector = sector;
1873 		clone->bi_iter.bi_size = 0;
1874 		__map_bio(clone);
1875 
1876 		sector += zone_sectors;
1877 		num_bios++;
1878 		nr_reset--;
1879 	}
1880 
1881 	WARN_ON_ONCE(!bio_list_empty(&blist));
1882 	atomic_sub(nr_zones - num_bios, &ci->io->io_count);
1883 	ci->sector_count = 0;
1884 
1885 free_bitmap:
1886 	bitmap_free(need_reset);
1887 
1888 	return sts;
1889 }
1890 
__send_zone_reset_all_native(struct clone_info * ci,struct dm_target * ti)1891 static void __send_zone_reset_all_native(struct clone_info *ci,
1892 					 struct dm_target *ti)
1893 {
1894 	unsigned int bios;
1895 
1896 	atomic_add(1, &ci->io->io_count);
1897 	bios = __send_duplicate_bios(ci, ti, 1, NULL);
1898 	atomic_sub(1 - bios, &ci->io->io_count);
1899 
1900 	ci->sector_count = 0;
1901 }
1902 
__send_zone_reset_all(struct clone_info * ci)1903 static blk_status_t __send_zone_reset_all(struct clone_info *ci)
1904 {
1905 	struct dm_table *t = ci->map;
1906 	blk_status_t sts = BLK_STS_OK;
1907 
1908 	for (unsigned int i = 0; i < t->num_targets; i++) {
1909 		struct dm_target *ti = dm_table_get_target(t, i);
1910 
1911 		if (ti->zone_reset_all_supported) {
1912 			__send_zone_reset_all_native(ci, ti);
1913 			continue;
1914 		}
1915 
1916 		sts = __send_zone_reset_all_emulated(ci, ti);
1917 		if (sts != BLK_STS_OK)
1918 			break;
1919 	}
1920 
1921 	/* Release the reference that alloc_io() took for submission. */
1922 	atomic_sub(1, &ci->io->io_count);
1923 
1924 	return sts;
1925 }
1926 
1927 #else
dm_zone_bio_needs_split(struct bio * bio)1928 static inline bool dm_zone_bio_needs_split(struct bio *bio)
1929 {
1930 	return false;
1931 }
dm_zone_plug_bio(struct mapped_device * md,struct bio * bio)1932 static inline bool dm_zone_plug_bio(struct mapped_device *md, struct bio *bio)
1933 {
1934 	return false;
1935 }
__send_zone_reset_all(struct clone_info * ci)1936 static blk_status_t __send_zone_reset_all(struct clone_info *ci)
1937 {
1938 	return BLK_STS_NOTSUPP;
1939 }
1940 #endif
1941 
1942 /*
1943  * Entry point to split a bio into clones and submit them to the targets.
1944  */
dm_split_and_process_bio(struct mapped_device * md,struct dm_table * map,struct bio * bio)1945 static void dm_split_and_process_bio(struct mapped_device *md,
1946 				     struct dm_table *map, struct bio *bio)
1947 {
1948 	struct clone_info ci;
1949 	struct dm_io *io;
1950 	blk_status_t error = BLK_STS_OK;
1951 	bool is_abnormal, need_split;
1952 
1953 	is_abnormal = is_abnormal_io(bio);
1954 	if (static_branch_unlikely(&zoned_enabled)) {
1955 		need_split = is_abnormal || dm_zone_bio_needs_split(bio);
1956 	} else {
1957 		need_split = is_abnormal;
1958 	}
1959 
1960 	if (unlikely(need_split)) {
1961 		/*
1962 		 * Use bio_split_to_limits() for abnormal IO (e.g. discard, etc)
1963 		 * otherwise associated queue_limits won't be imposed.
1964 		 * Also split the BIO for mapped devices needing zone append
1965 		 * emulation to ensure that the BIO does not cross zone
1966 		 * boundaries.
1967 		 */
1968 		bio = bio_split_to_limits(bio);
1969 		if (!bio)
1970 			return;
1971 	}
1972 
1973 	/*
1974 	 * Use the block layer zone write plugging for mapped devices that
1975 	 * need zone append emulation (e.g. dm-crypt).
1976 	 */
1977 	if (static_branch_unlikely(&zoned_enabled) && dm_zone_plug_bio(md, bio))
1978 		return;
1979 
1980 	/* Only support nowait for normal IO */
1981 	if (unlikely(bio->bi_opf & REQ_NOWAIT) && !is_abnormal) {
1982 		/*
1983 		 * Don't support NOWAIT for FLUSH because it may allocate
1984 		 * multiple bios and there's no easy way how to undo the
1985 		 * allocations.
1986 		 */
1987 		if (bio->bi_opf & REQ_PREFLUSH) {
1988 			bio_wouldblock_error(bio);
1989 			return;
1990 		}
1991 		io = alloc_io(md, bio, GFP_NOWAIT);
1992 		if (unlikely(!io)) {
1993 			/* Unable to do anything without dm_io. */
1994 			bio_wouldblock_error(bio);
1995 			return;
1996 		}
1997 	} else {
1998 		io = alloc_io(md, bio, GFP_NOIO);
1999 	}
2000 	init_clone_info(&ci, io, map, bio, is_abnormal);
2001 
2002 	if (unlikely((bio->bi_opf & REQ_PREFLUSH) != 0)) {
2003 		/*
2004 		 * The "flush_bypasses_map" is set on targets where it is safe
2005 		 * to skip the map function and submit bios directly to the
2006 		 * underlying block devices - currently, it is set for dm-linear
2007 		 * and dm-stripe.
2008 		 *
2009 		 * If we have just one underlying device (i.e. there is one
2010 		 * linear target or multiple linear targets pointing to the same
2011 		 * device), we can send the flush with data directly to it.
2012 		 */
2013 		if (bio->bi_iter.bi_size && map->flush_bypasses_map) {
2014 			struct list_head *devices = dm_table_get_devices(map);
2015 			if (devices->next == devices->prev)
2016 				goto send_preflush_with_data;
2017 		}
2018 		if (bio->bi_iter.bi_size)
2019 			io->requeue_flush_with_data = true;
2020 		__send_empty_flush(&ci);
2021 		/* dm_io_complete submits any data associated with flush */
2022 		goto out;
2023 	}
2024 
2025 send_preflush_with_data:
2026 	if (static_branch_unlikely(&zoned_enabled) &&
2027 	    (bio_op(bio) == REQ_OP_ZONE_RESET_ALL)) {
2028 		error = __send_zone_reset_all(&ci);
2029 		goto out;
2030 	}
2031 
2032 	error = __split_and_process_bio(&ci);
2033 	if (error || !ci.sector_count)
2034 		goto out;
2035 	/*
2036 	 * Remainder must be passed to submit_bio_noacct() so it gets handled
2037 	 * *after* bios already submitted have been completely processed.
2038 	 */
2039 	bio_trim(bio, io->sectors, ci.sector_count);
2040 	trace_block_split(bio, bio->bi_iter.bi_sector);
2041 	bio_inc_remaining(bio);
2042 	submit_bio_noacct(bio);
2043 out:
2044 	/*
2045 	 * Drop the extra reference count for non-POLLED bio, and hold one
2046 	 * reference for POLLED bio, which will be released in dm_poll_bio
2047 	 *
2048 	 * Add every dm_io instance into the dm_io list head which is stored
2049 	 * in bio->bi_private, so that dm_poll_bio can poll them all.
2050 	 */
2051 	if (error || !ci.submit_as_polled) {
2052 		/*
2053 		 * In case of submission failure, the extra reference for
2054 		 * submitting io isn't consumed yet
2055 		 */
2056 		if (error)
2057 			atomic_dec(&io->io_count);
2058 		dm_io_dec_pending(io, error);
2059 	} else
2060 		dm_queue_poll_io(bio, io);
2061 }
2062 
dm_submit_bio(struct bio * bio)2063 static void dm_submit_bio(struct bio *bio)
2064 {
2065 	struct mapped_device *md = bio->bi_bdev->bd_disk->private_data;
2066 	int srcu_idx;
2067 	struct dm_table *map;
2068 
2069 	map = dm_get_live_table(md, &srcu_idx);
2070 	if (unlikely(!map)) {
2071 		DMERR_LIMIT("%s: mapping table unavailable, erroring io",
2072 			    dm_device_name(md));
2073 		bio_io_error(bio);
2074 		goto out;
2075 	}
2076 
2077 	/* If suspended, queue this IO for later */
2078 	if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
2079 		if (bio->bi_opf & REQ_NOWAIT)
2080 			bio_wouldblock_error(bio);
2081 		else if (bio->bi_opf & REQ_RAHEAD)
2082 			bio_io_error(bio);
2083 		else
2084 			queue_io(md, bio);
2085 		goto out;
2086 	}
2087 
2088 	dm_split_and_process_bio(md, map, bio);
2089 out:
2090 	dm_put_live_table(md, srcu_idx);
2091 }
2092 
dm_poll_dm_io(struct dm_io * io,struct io_comp_batch * iob,unsigned int flags)2093 static bool dm_poll_dm_io(struct dm_io *io, struct io_comp_batch *iob,
2094 			  unsigned int flags)
2095 {
2096 	WARN_ON_ONCE(!dm_tio_is_normal(&io->tio));
2097 
2098 	/* don't poll if the mapped io is done */
2099 	if (atomic_read(&io->io_count) > 1)
2100 		bio_poll(&io->tio.clone, iob, flags);
2101 
2102 	/* bio_poll holds the last reference */
2103 	return atomic_read(&io->io_count) == 1;
2104 }
2105 
dm_poll_bio(struct bio * bio,struct io_comp_batch * iob,unsigned int flags)2106 static int dm_poll_bio(struct bio *bio, struct io_comp_batch *iob,
2107 		       unsigned int flags)
2108 {
2109 	struct dm_io **head = dm_poll_list_head(bio);
2110 	struct dm_io *list = *head;
2111 	struct dm_io *tmp = NULL;
2112 	struct dm_io *curr, *next;
2113 
2114 	/* Only poll normal bio which was marked as REQ_DM_POLL_LIST */
2115 	if (!(bio->bi_opf & REQ_DM_POLL_LIST))
2116 		return 0;
2117 
2118 	WARN_ON_ONCE(!list);
2119 
2120 	/*
2121 	 * Restore .bi_private before possibly completing dm_io.
2122 	 *
2123 	 * bio_poll() is only possible once @bio has been completely
2124 	 * submitted via submit_bio_noacct()'s depth-first submission.
2125 	 * So there is no dm_queue_poll_io() race associated with
2126 	 * clearing REQ_DM_POLL_LIST here.
2127 	 */
2128 	bio->bi_opf &= ~REQ_DM_POLL_LIST;
2129 	bio->bi_private = list->data;
2130 
2131 	for (curr = list, next = curr->next; curr; curr = next, next =
2132 			curr ? curr->next : NULL) {
2133 		if (dm_poll_dm_io(curr, iob, flags)) {
2134 			/*
2135 			 * clone_endio() has already occurred, so no
2136 			 * error handling is needed here.
2137 			 */
2138 			__dm_io_dec_pending(curr);
2139 		} else {
2140 			curr->next = tmp;
2141 			tmp = curr;
2142 		}
2143 	}
2144 
2145 	/* Not done? */
2146 	if (tmp) {
2147 		bio->bi_opf |= REQ_DM_POLL_LIST;
2148 		/* Reset bio->bi_private to dm_io list head */
2149 		*head = tmp;
2150 		return 0;
2151 	}
2152 	return 1;
2153 }
2154 
2155 /*
2156  *---------------------------------------------------------------
2157  * An IDR is used to keep track of allocated minor numbers.
2158  *---------------------------------------------------------------
2159  */
free_minor(int minor)2160 static void free_minor(int minor)
2161 {
2162 	spin_lock(&_minor_lock);
2163 	idr_remove(&_minor_idr, minor);
2164 	spin_unlock(&_minor_lock);
2165 }
2166 
2167 /*
2168  * See if the device with a specific minor # is free.
2169  */
specific_minor(int minor)2170 static int specific_minor(int minor)
2171 {
2172 	int r;
2173 
2174 	if (minor >= (1 << MINORBITS))
2175 		return -EINVAL;
2176 
2177 	idr_preload(GFP_KERNEL);
2178 	spin_lock(&_minor_lock);
2179 
2180 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
2181 
2182 	spin_unlock(&_minor_lock);
2183 	idr_preload_end();
2184 	if (r < 0)
2185 		return r == -ENOSPC ? -EBUSY : r;
2186 	return 0;
2187 }
2188 
next_free_minor(int * minor)2189 static int next_free_minor(int *minor)
2190 {
2191 	int r;
2192 
2193 	idr_preload(GFP_KERNEL);
2194 	spin_lock(&_minor_lock);
2195 
2196 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
2197 
2198 	spin_unlock(&_minor_lock);
2199 	idr_preload_end();
2200 	if (r < 0)
2201 		return r;
2202 	*minor = r;
2203 	return 0;
2204 }
2205 
2206 static const struct block_device_operations dm_blk_dops;
2207 static const struct block_device_operations dm_rq_blk_dops;
2208 static const struct dax_operations dm_dax_ops;
2209 
2210 static void dm_wq_work(struct work_struct *work);
2211 
2212 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
dm_queue_destroy_crypto_profile(struct request_queue * q)2213 static void dm_queue_destroy_crypto_profile(struct request_queue *q)
2214 {
2215 	dm_destroy_crypto_profile(q->crypto_profile);
2216 }
2217 
2218 #else /* CONFIG_BLK_INLINE_ENCRYPTION */
2219 
dm_queue_destroy_crypto_profile(struct request_queue * q)2220 static inline void dm_queue_destroy_crypto_profile(struct request_queue *q)
2221 {
2222 }
2223 #endif /* !CONFIG_BLK_INLINE_ENCRYPTION */
2224 
cleanup_mapped_device(struct mapped_device * md)2225 static void cleanup_mapped_device(struct mapped_device *md)
2226 {
2227 	if (md->wq)
2228 		destroy_workqueue(md->wq);
2229 	dm_free_md_mempools(md->mempools);
2230 
2231 	if (md->dax_dev) {
2232 		dax_remove_host(md->disk);
2233 		kill_dax(md->dax_dev);
2234 		put_dax(md->dax_dev);
2235 		md->dax_dev = NULL;
2236 	}
2237 
2238 	if (md->disk) {
2239 		spin_lock(&_minor_lock);
2240 		md->disk->private_data = NULL;
2241 		spin_unlock(&_minor_lock);
2242 		if (dm_get_md_type(md) != DM_TYPE_NONE) {
2243 			struct table_device *td;
2244 
2245 			dm_sysfs_exit(md);
2246 			list_for_each_entry(td, &md->table_devices, list) {
2247 				bd_unlink_disk_holder(td->dm_dev.bdev,
2248 						      md->disk);
2249 			}
2250 
2251 			/*
2252 			 * Hold lock to make sure del_gendisk() won't concurrent
2253 			 * with open/close_table_device().
2254 			 */
2255 			mutex_lock(&md->table_devices_lock);
2256 			del_gendisk(md->disk);
2257 			mutex_unlock(&md->table_devices_lock);
2258 		}
2259 		dm_queue_destroy_crypto_profile(md->queue);
2260 		put_disk(md->disk);
2261 	}
2262 
2263 	if (md->pending_io) {
2264 		free_percpu(md->pending_io);
2265 		md->pending_io = NULL;
2266 	}
2267 
2268 	cleanup_srcu_struct(&md->io_barrier);
2269 
2270 	mutex_destroy(&md->suspend_lock);
2271 	mutex_destroy(&md->type_lock);
2272 	mutex_destroy(&md->table_devices_lock);
2273 	mutex_destroy(&md->swap_bios_lock);
2274 
2275 	dm_mq_cleanup_mapped_device(md);
2276 }
2277 
2278 /*
2279  * Allocate and initialise a blank device with a given minor.
2280  */
alloc_dev(int minor)2281 static struct mapped_device *alloc_dev(int minor)
2282 {
2283 	int r, numa_node_id = dm_get_numa_node();
2284 	struct dax_device *dax_dev;
2285 	struct mapped_device *md;
2286 	void *old_md;
2287 
2288 	md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
2289 	if (!md) {
2290 		DMERR("unable to allocate device, out of memory.");
2291 		return NULL;
2292 	}
2293 
2294 	if (!try_module_get(THIS_MODULE))
2295 		goto bad_module_get;
2296 
2297 	/* get a minor number for the dev */
2298 	if (minor == DM_ANY_MINOR)
2299 		r = next_free_minor(&minor);
2300 	else
2301 		r = specific_minor(minor);
2302 	if (r < 0)
2303 		goto bad_minor;
2304 
2305 	r = init_srcu_struct(&md->io_barrier);
2306 	if (r < 0)
2307 		goto bad_io_barrier;
2308 
2309 	md->numa_node_id = numa_node_id;
2310 	md->init_tio_pdu = false;
2311 	md->type = DM_TYPE_NONE;
2312 	mutex_init(&md->suspend_lock);
2313 	mutex_init(&md->type_lock);
2314 	mutex_init(&md->table_devices_lock);
2315 	spin_lock_init(&md->deferred_lock);
2316 	atomic_set(&md->holders, 1);
2317 	atomic_set(&md->open_count, 0);
2318 	atomic_set(&md->event_nr, 0);
2319 	atomic_set(&md->uevent_seq, 0);
2320 	INIT_LIST_HEAD(&md->uevent_list);
2321 	INIT_LIST_HEAD(&md->table_devices);
2322 	spin_lock_init(&md->uevent_lock);
2323 
2324 	/*
2325 	 * default to bio-based until DM table is loaded and md->type
2326 	 * established. If request-based table is loaded: blk-mq will
2327 	 * override accordingly.
2328 	 */
2329 	md->disk = blk_alloc_disk(NULL, md->numa_node_id);
2330 	if (IS_ERR(md->disk)) {
2331 		md->disk = NULL;
2332 		goto bad;
2333 	}
2334 	md->queue = md->disk->queue;
2335 
2336 	init_waitqueue_head(&md->wait);
2337 	INIT_WORK(&md->work, dm_wq_work);
2338 	INIT_WORK(&md->requeue_work, dm_wq_requeue_work);
2339 	init_waitqueue_head(&md->eventq);
2340 	init_completion(&md->kobj_holder.completion);
2341 
2342 	md->requeue_list = NULL;
2343 	md->swap_bios = get_swap_bios();
2344 	sema_init(&md->swap_bios_semaphore, md->swap_bios);
2345 	mutex_init(&md->swap_bios_lock);
2346 
2347 	md->disk->major = _major;
2348 	md->disk->first_minor = minor;
2349 	md->disk->minors = 1;
2350 	md->disk->flags |= GENHD_FL_NO_PART;
2351 	md->disk->fops = &dm_blk_dops;
2352 	md->disk->private_data = md;
2353 	sprintf(md->disk->disk_name, "dm-%d", minor);
2354 
2355 	dax_dev = alloc_dax(md, &dm_dax_ops);
2356 	if (IS_ERR(dax_dev)) {
2357 		if (PTR_ERR(dax_dev) != -EOPNOTSUPP)
2358 			goto bad;
2359 	} else {
2360 		set_dax_nocache(dax_dev);
2361 		set_dax_nomc(dax_dev);
2362 		md->dax_dev = dax_dev;
2363 		if (dax_add_host(dax_dev, md->disk))
2364 			goto bad;
2365 	}
2366 
2367 	format_dev_t(md->name, MKDEV(_major, minor));
2368 
2369 	md->wq = alloc_workqueue("kdmflush/%s", WQ_MEM_RECLAIM, 0, md->name);
2370 	if (!md->wq)
2371 		goto bad;
2372 
2373 	md->pending_io = alloc_percpu(unsigned long);
2374 	if (!md->pending_io)
2375 		goto bad;
2376 
2377 	r = dm_stats_init(&md->stats);
2378 	if (r < 0)
2379 		goto bad;
2380 
2381 	/* Populate the mapping, nobody knows we exist yet */
2382 	spin_lock(&_minor_lock);
2383 	old_md = idr_replace(&_minor_idr, md, minor);
2384 	spin_unlock(&_minor_lock);
2385 
2386 	BUG_ON(old_md != MINOR_ALLOCED);
2387 
2388 	return md;
2389 
2390 bad:
2391 	cleanup_mapped_device(md);
2392 bad_io_barrier:
2393 	free_minor(minor);
2394 bad_minor:
2395 	module_put(THIS_MODULE);
2396 bad_module_get:
2397 	kvfree(md);
2398 	return NULL;
2399 }
2400 
2401 static void unlock_fs(struct mapped_device *md);
2402 
free_dev(struct mapped_device * md)2403 static void free_dev(struct mapped_device *md)
2404 {
2405 	int minor = MINOR(disk_devt(md->disk));
2406 
2407 	unlock_fs(md);
2408 
2409 	cleanup_mapped_device(md);
2410 
2411 	WARN_ON_ONCE(!list_empty(&md->table_devices));
2412 	dm_stats_cleanup(&md->stats);
2413 	free_minor(minor);
2414 
2415 	module_put(THIS_MODULE);
2416 	kvfree(md);
2417 }
2418 
2419 /*
2420  * Bind a table to the device.
2421  */
event_callback(void * context)2422 static void event_callback(void *context)
2423 {
2424 	unsigned long flags;
2425 	LIST_HEAD(uevents);
2426 	struct mapped_device *md = context;
2427 
2428 	spin_lock_irqsave(&md->uevent_lock, flags);
2429 	list_splice_init(&md->uevent_list, &uevents);
2430 	spin_unlock_irqrestore(&md->uevent_lock, flags);
2431 
2432 	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2433 
2434 	atomic_inc(&md->event_nr);
2435 	wake_up(&md->eventq);
2436 	dm_issue_global_event();
2437 }
2438 
2439 /*
2440  * Returns old map, which caller must destroy.
2441  */
__bind(struct mapped_device * md,struct dm_table * t,struct queue_limits * limits)2442 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2443 			       struct queue_limits *limits)
2444 {
2445 	struct dm_table *old_map;
2446 	sector_t size, old_size;
2447 
2448 	lockdep_assert_held(&md->suspend_lock);
2449 
2450 	size = dm_table_get_size(t);
2451 
2452 	old_size = dm_get_size(md);
2453 
2454 	if (!dm_table_supports_size_change(t, old_size, size)) {
2455 		old_map = ERR_PTR(-EINVAL);
2456 		goto out;
2457 	}
2458 
2459 	set_capacity(md->disk, size);
2460 
2461 	if (limits) {
2462 		int ret = dm_table_set_restrictions(t, md->queue, limits);
2463 		if (ret) {
2464 			set_capacity(md->disk, old_size);
2465 			old_map = ERR_PTR(ret);
2466 			goto out;
2467 		}
2468 	}
2469 
2470 	/*
2471 	 * Wipe any geometry if the size of the table changed.
2472 	 */
2473 	if (size != old_size)
2474 		memset(&md->geometry, 0, sizeof(md->geometry));
2475 
2476 	dm_table_event_callback(t, event_callback, md);
2477 
2478 	if (dm_table_request_based(t)) {
2479 		/*
2480 		 * Leverage the fact that request-based DM targets are
2481 		 * immutable singletons - used to optimize dm_mq_queue_rq.
2482 		 */
2483 		md->immutable_target = dm_table_get_immutable_target(t);
2484 
2485 		/*
2486 		 * There is no need to reload with request-based dm because the
2487 		 * size of front_pad doesn't change.
2488 		 *
2489 		 * Note for future: If you are to reload bioset, prep-ed
2490 		 * requests in the queue may refer to bio from the old bioset,
2491 		 * so you must walk through the queue to unprep.
2492 		 */
2493 		if (!md->mempools)
2494 			md->mempools = t->mempools;
2495 		else
2496 			dm_free_md_mempools(t->mempools);
2497 	} else {
2498 		/*
2499 		 * The md may already have mempools that need changing.
2500 		 * If so, reload bioset because front_pad may have changed
2501 		 * because a different table was loaded.
2502 		 */
2503 		dm_free_md_mempools(md->mempools);
2504 		md->mempools = t->mempools;
2505 	}
2506 	t->mempools = NULL;
2507 
2508 	old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2509 	rcu_assign_pointer(md->map, (void *)t);
2510 	md->immutable_target_type = dm_table_get_immutable_target_type(t);
2511 
2512 	if (old_map)
2513 		dm_sync_table(md);
2514 out:
2515 	return old_map;
2516 }
2517 
2518 /*
2519  * Returns unbound table for the caller to free.
2520  */
__unbind(struct mapped_device * md)2521 static struct dm_table *__unbind(struct mapped_device *md)
2522 {
2523 	struct dm_table *map = rcu_dereference_protected(md->map, 1);
2524 
2525 	if (!map)
2526 		return NULL;
2527 
2528 	dm_table_event_callback(map, NULL, NULL);
2529 	RCU_INIT_POINTER(md->map, NULL);
2530 	dm_sync_table(md);
2531 
2532 	return map;
2533 }
2534 
2535 /*
2536  * Constructor for a new device.
2537  */
dm_create(int minor,struct mapped_device ** result)2538 int dm_create(int minor, struct mapped_device **result)
2539 {
2540 	struct mapped_device *md;
2541 
2542 	md = alloc_dev(minor);
2543 	if (!md)
2544 		return -ENXIO;
2545 
2546 	dm_ima_reset_data(md);
2547 
2548 	*result = md;
2549 	return 0;
2550 }
2551 
2552 /*
2553  * Functions to manage md->type.
2554  * All are required to hold md->type_lock.
2555  */
dm_lock_md_type(struct mapped_device * md)2556 void dm_lock_md_type(struct mapped_device *md)
2557 {
2558 	mutex_lock(&md->type_lock);
2559 }
2560 
dm_unlock_md_type(struct mapped_device * md)2561 void dm_unlock_md_type(struct mapped_device *md)
2562 {
2563 	mutex_unlock(&md->type_lock);
2564 }
2565 
dm_get_md_type(struct mapped_device * md)2566 enum dm_queue_mode dm_get_md_type(struct mapped_device *md)
2567 {
2568 	return md->type;
2569 }
2570 
dm_get_immutable_target_type(struct mapped_device * md)2571 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2572 {
2573 	return md->immutable_target_type;
2574 }
2575 
2576 /*
2577  * Setup the DM device's queue based on md's type
2578  */
dm_setup_md_queue(struct mapped_device * md,struct dm_table * t)2579 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
2580 {
2581 	enum dm_queue_mode type = dm_table_get_type(t);
2582 	struct queue_limits limits;
2583 	struct table_device *td;
2584 	int r;
2585 
2586 	WARN_ON_ONCE(type == DM_TYPE_NONE);
2587 
2588 	if (type == DM_TYPE_REQUEST_BASED) {
2589 		md->disk->fops = &dm_rq_blk_dops;
2590 		r = dm_mq_init_request_queue(md, t);
2591 		if (r) {
2592 			DMERR("Cannot initialize queue for request-based dm mapped device");
2593 			return r;
2594 		}
2595 	}
2596 
2597 	r = dm_calculate_queue_limits(t, &limits);
2598 	if (r) {
2599 		DMERR("Cannot calculate initial queue limits");
2600 		return r;
2601 	}
2602 	r = dm_table_set_restrictions(t, md->queue, &limits);
2603 	if (r)
2604 		return r;
2605 
2606 	/*
2607 	 * Hold lock to make sure add_disk() and del_gendisk() won't concurrent
2608 	 * with open_table_device() and close_table_device().
2609 	 */
2610 	mutex_lock(&md->table_devices_lock);
2611 	r = add_disk(md->disk);
2612 	mutex_unlock(&md->table_devices_lock);
2613 	if (r)
2614 		return r;
2615 
2616 	/*
2617 	 * Register the holder relationship for devices added before the disk
2618 	 * was live.
2619 	 */
2620 	list_for_each_entry(td, &md->table_devices, list) {
2621 		r = bd_link_disk_holder(td->dm_dev.bdev, md->disk);
2622 		if (r)
2623 			goto out_undo_holders;
2624 	}
2625 
2626 	r = dm_sysfs_init(md);
2627 	if (r)
2628 		goto out_undo_holders;
2629 
2630 	md->type = type;
2631 	return 0;
2632 
2633 out_undo_holders:
2634 	list_for_each_entry_continue_reverse(td, &md->table_devices, list)
2635 		bd_unlink_disk_holder(td->dm_dev.bdev, md->disk);
2636 	mutex_lock(&md->table_devices_lock);
2637 	del_gendisk(md->disk);
2638 	mutex_unlock(&md->table_devices_lock);
2639 	return r;
2640 }
2641 
dm_get_md(dev_t dev)2642 struct mapped_device *dm_get_md(dev_t dev)
2643 {
2644 	struct mapped_device *md;
2645 	unsigned int minor = MINOR(dev);
2646 
2647 	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2648 		return NULL;
2649 
2650 	spin_lock(&_minor_lock);
2651 
2652 	md = idr_find(&_minor_idr, minor);
2653 	if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) ||
2654 	    test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2655 		md = NULL;
2656 		goto out;
2657 	}
2658 	dm_get(md);
2659 out:
2660 	spin_unlock(&_minor_lock);
2661 
2662 	return md;
2663 }
2664 EXPORT_SYMBOL_GPL(dm_get_md);
2665 
dm_get_mdptr(struct mapped_device * md)2666 void *dm_get_mdptr(struct mapped_device *md)
2667 {
2668 	return md->interface_ptr;
2669 }
2670 
dm_set_mdptr(struct mapped_device * md,void * ptr)2671 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2672 {
2673 	md->interface_ptr = ptr;
2674 }
2675 
dm_get(struct mapped_device * md)2676 void dm_get(struct mapped_device *md)
2677 {
2678 	atomic_inc(&md->holders);
2679 	BUG_ON(test_bit(DMF_FREEING, &md->flags));
2680 }
2681 
dm_hold(struct mapped_device * md)2682 int dm_hold(struct mapped_device *md)
2683 {
2684 	spin_lock(&_minor_lock);
2685 	if (test_bit(DMF_FREEING, &md->flags)) {
2686 		spin_unlock(&_minor_lock);
2687 		return -EBUSY;
2688 	}
2689 	dm_get(md);
2690 	spin_unlock(&_minor_lock);
2691 	return 0;
2692 }
2693 EXPORT_SYMBOL_GPL(dm_hold);
2694 
dm_device_name(struct mapped_device * md)2695 const char *dm_device_name(struct mapped_device *md)
2696 {
2697 	return md->name;
2698 }
2699 EXPORT_SYMBOL_GPL(dm_device_name);
2700 
__dm_destroy(struct mapped_device * md,bool wait)2701 static void __dm_destroy(struct mapped_device *md, bool wait)
2702 {
2703 	struct dm_table *map;
2704 	int srcu_idx;
2705 
2706 	might_sleep();
2707 
2708 	spin_lock(&_minor_lock);
2709 	idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2710 	set_bit(DMF_FREEING, &md->flags);
2711 	spin_unlock(&_minor_lock);
2712 
2713 	blk_mark_disk_dead(md->disk);
2714 
2715 	/*
2716 	 * Take suspend_lock so that presuspend and postsuspend methods
2717 	 * do not race with internal suspend.
2718 	 */
2719 	mutex_lock(&md->suspend_lock);
2720 	map = dm_get_live_table(md, &srcu_idx);
2721 	if (!dm_suspended_md(md)) {
2722 		dm_table_presuspend_targets(map);
2723 		set_bit(DMF_SUSPENDED, &md->flags);
2724 		set_bit(DMF_POST_SUSPENDING, &md->flags);
2725 		dm_table_postsuspend_targets(map);
2726 	}
2727 	/* dm_put_live_table must be before fsleep, otherwise deadlock is possible */
2728 	dm_put_live_table(md, srcu_idx);
2729 	mutex_unlock(&md->suspend_lock);
2730 
2731 	/*
2732 	 * Rare, but there may be I/O requests still going to complete,
2733 	 * for example.  Wait for all references to disappear.
2734 	 * No one should increment the reference count of the mapped_device,
2735 	 * after the mapped_device state becomes DMF_FREEING.
2736 	 */
2737 	if (wait)
2738 		while (atomic_read(&md->holders))
2739 			fsleep(1000);
2740 	else if (atomic_read(&md->holders))
2741 		DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2742 		       dm_device_name(md), atomic_read(&md->holders));
2743 
2744 	dm_table_destroy(__unbind(md));
2745 	free_dev(md);
2746 }
2747 
dm_destroy(struct mapped_device * md)2748 void dm_destroy(struct mapped_device *md)
2749 {
2750 	__dm_destroy(md, true);
2751 }
2752 
dm_destroy_immediate(struct mapped_device * md)2753 void dm_destroy_immediate(struct mapped_device *md)
2754 {
2755 	__dm_destroy(md, false);
2756 }
2757 
dm_put(struct mapped_device * md)2758 void dm_put(struct mapped_device *md)
2759 {
2760 	atomic_dec(&md->holders);
2761 }
2762 EXPORT_SYMBOL_GPL(dm_put);
2763 
dm_in_flight_bios(struct mapped_device * md)2764 static bool dm_in_flight_bios(struct mapped_device *md)
2765 {
2766 	int cpu;
2767 	unsigned long sum = 0;
2768 
2769 	for_each_possible_cpu(cpu)
2770 		sum += *per_cpu_ptr(md->pending_io, cpu);
2771 
2772 	return sum != 0;
2773 }
2774 
dm_wait_for_bios_completion(struct mapped_device * md,unsigned int task_state)2775 static int dm_wait_for_bios_completion(struct mapped_device *md, unsigned int task_state)
2776 {
2777 	int r = 0;
2778 	DEFINE_WAIT(wait);
2779 
2780 	while (true) {
2781 		prepare_to_wait(&md->wait, &wait, task_state);
2782 
2783 		if (!dm_in_flight_bios(md))
2784 			break;
2785 
2786 		if (signal_pending_state(task_state, current)) {
2787 			r = -ERESTARTSYS;
2788 			break;
2789 		}
2790 
2791 		io_schedule();
2792 	}
2793 	finish_wait(&md->wait, &wait);
2794 
2795 	smp_rmb();
2796 
2797 	return r;
2798 }
2799 
dm_wait_for_completion(struct mapped_device * md,unsigned int task_state)2800 static int dm_wait_for_completion(struct mapped_device *md, unsigned int task_state)
2801 {
2802 	int r = 0;
2803 
2804 	if (!queue_is_mq(md->queue))
2805 		return dm_wait_for_bios_completion(md, task_state);
2806 
2807 	while (true) {
2808 		if (!blk_mq_queue_inflight(md->queue))
2809 			break;
2810 
2811 		if (signal_pending_state(task_state, current)) {
2812 			r = -ERESTARTSYS;
2813 			break;
2814 		}
2815 
2816 		fsleep(5000);
2817 	}
2818 
2819 	return r;
2820 }
2821 
2822 /*
2823  * Process the deferred bios
2824  */
dm_wq_work(struct work_struct * work)2825 static void dm_wq_work(struct work_struct *work)
2826 {
2827 	struct mapped_device *md = container_of(work, struct mapped_device, work);
2828 	struct bio *bio;
2829 
2830 	while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2831 		spin_lock_irq(&md->deferred_lock);
2832 		bio = bio_list_pop(&md->deferred);
2833 		spin_unlock_irq(&md->deferred_lock);
2834 
2835 		if (!bio)
2836 			break;
2837 
2838 		submit_bio_noacct(bio);
2839 		cond_resched();
2840 	}
2841 }
2842 
dm_queue_flush(struct mapped_device * md)2843 static void dm_queue_flush(struct mapped_device *md)
2844 {
2845 	clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2846 	clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2847 	smp_mb__after_atomic();
2848 	queue_work(md->wq, &md->work);
2849 }
2850 
2851 /*
2852  * Swap in a new table, returning the old one for the caller to destroy.
2853  */
dm_swap_table(struct mapped_device * md,struct dm_table * table)2854 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2855 {
2856 	struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2857 	struct queue_limits limits;
2858 	bool update_limits = true;
2859 	int r;
2860 
2861 	mutex_lock(&md->suspend_lock);
2862 
2863 	/* device must be suspended */
2864 	if (!dm_suspended_md(md))
2865 		goto out;
2866 
2867 	/*
2868 	 * To avoid a potential deadlock locking the queue limits, disallow
2869 	 * updating the queue limits during a table swap, when updating an
2870 	 * immutable request-based dm device (dm-multipath) during a noflush
2871 	 * suspend. It is userspace's responsibility to make sure that the new
2872 	 * table uses the same limits as the existing table, if it asks for a
2873 	 * noflush suspend.
2874 	 */
2875 	if (dm_request_based(md) && md->immutable_target &&
2876 	    __noflush_suspending(md))
2877 		update_limits = false;
2878 	/*
2879 	 * If the new table has no data devices, retain the existing limits.
2880 	 * This helps multipath with queue_if_no_path if all paths disappear,
2881 	 * then new I/O is queued based on these limits, and then some paths
2882 	 * reappear.
2883 	 */
2884 	else if (dm_table_has_no_data_devices(table)) {
2885 		live_map = dm_get_live_table_fast(md);
2886 		if (live_map)
2887 			limits = md->queue->limits;
2888 		dm_put_live_table_fast(md);
2889 	}
2890 
2891 	if (update_limits && !live_map) {
2892 		r = dm_calculate_queue_limits(table, &limits);
2893 		if (r) {
2894 			map = ERR_PTR(r);
2895 			goto out;
2896 		}
2897 	}
2898 
2899 	map = __bind(md, table, update_limits ? &limits : NULL);
2900 	dm_issue_global_event();
2901 
2902 out:
2903 	mutex_unlock(&md->suspend_lock);
2904 	return map;
2905 }
2906 
2907 /*
2908  * Functions to lock and unlock any filesystem running on the
2909  * device.
2910  */
lock_fs(struct mapped_device * md)2911 static int lock_fs(struct mapped_device *md)
2912 {
2913 	int r;
2914 
2915 	WARN_ON(test_bit(DMF_FROZEN, &md->flags));
2916 
2917 	r = bdev_freeze(md->disk->part0);
2918 	if (!r)
2919 		set_bit(DMF_FROZEN, &md->flags);
2920 	return r;
2921 }
2922 
unlock_fs(struct mapped_device * md)2923 static void unlock_fs(struct mapped_device *md)
2924 {
2925 	if (!test_bit(DMF_FROZEN, &md->flags))
2926 		return;
2927 	bdev_thaw(md->disk->part0);
2928 	clear_bit(DMF_FROZEN, &md->flags);
2929 }
2930 
2931 /*
2932  * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2933  * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2934  * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
2935  *
2936  * If __dm_suspend returns 0, the device is completely quiescent
2937  * now. There is no request-processing activity. All new requests
2938  * are being added to md->deferred list.
2939  */
__dm_suspend(struct mapped_device * md,struct dm_table * map,unsigned int suspend_flags,unsigned int task_state,int dmf_suspended_flag)2940 static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2941 			unsigned int suspend_flags, unsigned int task_state,
2942 			int dmf_suspended_flag)
2943 {
2944 	bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2945 	bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2946 	int r = 0;
2947 
2948 	lockdep_assert_held(&md->suspend_lock);
2949 
2950 	/*
2951 	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2952 	 */
2953 	if (noflush)
2954 		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2955 	else
2956 		DMDEBUG("%s: suspending with flush", dm_device_name(md));
2957 
2958 	/*
2959 	 * This gets reverted if there's an error later and the targets
2960 	 * provide the .presuspend_undo hook.
2961 	 */
2962 	dm_table_presuspend_targets(map);
2963 
2964 	/*
2965 	 * Flush I/O to the device.
2966 	 * Any I/O submitted after lock_fs() may not be flushed.
2967 	 * noflush takes precedence over do_lockfs.
2968 	 * (lock_fs() flushes I/Os and waits for them to complete.)
2969 	 */
2970 	if (!noflush && do_lockfs) {
2971 		r = lock_fs(md);
2972 		if (r) {
2973 			dm_table_presuspend_undo_targets(map);
2974 			return r;
2975 		}
2976 	}
2977 
2978 	/*
2979 	 * Here we must make sure that no processes are submitting requests
2980 	 * to target drivers i.e. no one may be executing
2981 	 * dm_split_and_process_bio from dm_submit_bio.
2982 	 *
2983 	 * To get all processes out of dm_split_and_process_bio in dm_submit_bio,
2984 	 * we take the write lock. To prevent any process from reentering
2985 	 * dm_split_and_process_bio from dm_submit_bio and quiesce the thread
2986 	 * (dm_wq_work), we set DMF_BLOCK_IO_FOR_SUSPEND and call
2987 	 * flush_workqueue(md->wq).
2988 	 */
2989 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2990 	if (map)
2991 		synchronize_srcu(&md->io_barrier);
2992 
2993 	/*
2994 	 * Stop md->queue before flushing md->wq in case request-based
2995 	 * dm defers requests to md->wq from md->queue.
2996 	 */
2997 	if (map && dm_request_based(md)) {
2998 		dm_stop_queue(md->queue);
2999 		set_bit(DMF_QUEUE_STOPPED, &md->flags);
3000 	}
3001 
3002 	flush_workqueue(md->wq);
3003 
3004 	/*
3005 	 * At this point no more requests are entering target request routines.
3006 	 * We call dm_wait_for_completion to wait for all existing requests
3007 	 * to finish.
3008 	 */
3009 	if (map)
3010 		r = dm_wait_for_completion(md, task_state);
3011 	if (!r)
3012 		set_bit(dmf_suspended_flag, &md->flags);
3013 
3014 	if (map)
3015 		synchronize_srcu(&md->io_barrier);
3016 
3017 	/* were we interrupted ? */
3018 	if (r < 0) {
3019 		dm_queue_flush(md);
3020 
3021 		if (test_and_clear_bit(DMF_QUEUE_STOPPED, &md->flags))
3022 			dm_start_queue(md->queue);
3023 
3024 		unlock_fs(md);
3025 		dm_table_presuspend_undo_targets(map);
3026 		/* pushback list is already flushed, so skip flush */
3027 	}
3028 
3029 	return r;
3030 }
3031 
3032 /*
3033  * We need to be able to change a mapping table under a mounted
3034  * filesystem.  For example we might want to move some data in
3035  * the background.  Before the table can be swapped with
3036  * dm_bind_table, dm_suspend must be called to flush any in
3037  * flight bios and ensure that any further io gets deferred.
3038  */
3039 /*
3040  * Suspend mechanism in request-based dm.
3041  *
3042  * 1. Flush all I/Os by lock_fs() if needed.
3043  * 2. Stop dispatching any I/O by stopping the request_queue.
3044  * 3. Wait for all in-flight I/Os to be completed or requeued.
3045  *
3046  * To abort suspend, start the request_queue.
3047  */
dm_suspend(struct mapped_device * md,unsigned int suspend_flags)3048 int dm_suspend(struct mapped_device *md, unsigned int suspend_flags)
3049 {
3050 	struct dm_table *map = NULL;
3051 	int r = 0;
3052 
3053 retry:
3054 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
3055 
3056 	if (dm_suspended_md(md)) {
3057 		r = -EINVAL;
3058 		goto out_unlock;
3059 	}
3060 
3061 	if (dm_suspended_internally_md(md)) {
3062 		/* already internally suspended, wait for internal resume */
3063 		mutex_unlock(&md->suspend_lock);
3064 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
3065 		if (r)
3066 			return r;
3067 		goto retry;
3068 	}
3069 
3070 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3071 	if (!map) {
3072 		/* avoid deadlock with fs/namespace.c:do_mount() */
3073 		suspend_flags &= ~DM_SUSPEND_LOCKFS_FLAG;
3074 	}
3075 
3076 	r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED);
3077 	if (r)
3078 		goto out_unlock;
3079 
3080 	set_bit(DMF_POST_SUSPENDING, &md->flags);
3081 	dm_table_postsuspend_targets(map);
3082 	clear_bit(DMF_POST_SUSPENDING, &md->flags);
3083 
3084 out_unlock:
3085 	mutex_unlock(&md->suspend_lock);
3086 	return r;
3087 }
3088 
__dm_resume(struct mapped_device * md,struct dm_table * map)3089 static int __dm_resume(struct mapped_device *md, struct dm_table *map)
3090 {
3091 	if (map) {
3092 		int r = dm_table_resume_targets(map);
3093 
3094 		if (r)
3095 			return r;
3096 	}
3097 
3098 	dm_queue_flush(md);
3099 
3100 	/*
3101 	 * Flushing deferred I/Os must be done after targets are resumed
3102 	 * so that mapping of targets can work correctly.
3103 	 * Request-based dm is queueing the deferred I/Os in its request_queue.
3104 	 */
3105 	if (test_and_clear_bit(DMF_QUEUE_STOPPED, &md->flags))
3106 		dm_start_queue(md->queue);
3107 
3108 	unlock_fs(md);
3109 
3110 	return 0;
3111 }
3112 
dm_resume(struct mapped_device * md)3113 int dm_resume(struct mapped_device *md)
3114 {
3115 	int r;
3116 	struct dm_table *map = NULL;
3117 
3118 retry:
3119 	r = -EINVAL;
3120 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
3121 
3122 	if (!dm_suspended_md(md))
3123 		goto out;
3124 
3125 	if (dm_suspended_internally_md(md)) {
3126 		/* already internally suspended, wait for internal resume */
3127 		mutex_unlock(&md->suspend_lock);
3128 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
3129 		if (r)
3130 			return r;
3131 		goto retry;
3132 	}
3133 
3134 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3135 	if (!map || !dm_table_get_size(map))
3136 		goto out;
3137 
3138 	r = __dm_resume(md, map);
3139 	if (r)
3140 		goto out;
3141 
3142 	clear_bit(DMF_SUSPENDED, &md->flags);
3143 out:
3144 	mutex_unlock(&md->suspend_lock);
3145 
3146 	return r;
3147 }
3148 
3149 /*
3150  * Internal suspend/resume works like userspace-driven suspend. It waits
3151  * until all bios finish and prevents issuing new bios to the target drivers.
3152  * It may be used only from the kernel.
3153  */
3154 
__dm_internal_suspend(struct mapped_device * md,unsigned int suspend_flags)3155 static void __dm_internal_suspend(struct mapped_device *md, unsigned int suspend_flags)
3156 {
3157 	struct dm_table *map = NULL;
3158 
3159 	lockdep_assert_held(&md->suspend_lock);
3160 
3161 	if (md->internal_suspend_count++)
3162 		return; /* nested internal suspend */
3163 
3164 	if (dm_suspended_md(md)) {
3165 		set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3166 		return; /* nest suspend */
3167 	}
3168 
3169 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3170 
3171 	/*
3172 	 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
3173 	 * supported.  Properly supporting a TASK_INTERRUPTIBLE internal suspend
3174 	 * would require changing .presuspend to return an error -- avoid this
3175 	 * until there is a need for more elaborate variants of internal suspend.
3176 	 */
3177 	(void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE,
3178 			    DMF_SUSPENDED_INTERNALLY);
3179 
3180 	set_bit(DMF_POST_SUSPENDING, &md->flags);
3181 	dm_table_postsuspend_targets(map);
3182 	clear_bit(DMF_POST_SUSPENDING, &md->flags);
3183 }
3184 
__dm_internal_resume(struct mapped_device * md)3185 static void __dm_internal_resume(struct mapped_device *md)
3186 {
3187 	int r;
3188 	struct dm_table *map;
3189 
3190 	BUG_ON(!md->internal_suspend_count);
3191 
3192 	if (--md->internal_suspend_count)
3193 		return; /* resume from nested internal suspend */
3194 
3195 	if (dm_suspended_md(md))
3196 		goto done; /* resume from nested suspend */
3197 
3198 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3199 	r = __dm_resume(md, map);
3200 	if (r) {
3201 		/*
3202 		 * If a preresume method of some target failed, we are in a
3203 		 * tricky situation. We can't return an error to the caller. We
3204 		 * can't fake success because then the "resume" and
3205 		 * "postsuspend" methods would not be paired correctly, and it
3206 		 * would break various targets, for example it would cause list
3207 		 * corruption in the "origin" target.
3208 		 *
3209 		 * So, we fake normal suspend here, to make sure that the
3210 		 * "resume" and "postsuspend" methods will be paired correctly.
3211 		 */
3212 		DMERR("Preresume method failed: %d", r);
3213 		set_bit(DMF_SUSPENDED, &md->flags);
3214 	}
3215 done:
3216 	clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3217 	smp_mb__after_atomic();
3218 	wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
3219 }
3220 
dm_internal_suspend_noflush(struct mapped_device * md)3221 void dm_internal_suspend_noflush(struct mapped_device *md)
3222 {
3223 	mutex_lock(&md->suspend_lock);
3224 	__dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
3225 	mutex_unlock(&md->suspend_lock);
3226 }
3227 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
3228 
dm_internal_resume(struct mapped_device * md)3229 void dm_internal_resume(struct mapped_device *md)
3230 {
3231 	mutex_lock(&md->suspend_lock);
3232 	__dm_internal_resume(md);
3233 	mutex_unlock(&md->suspend_lock);
3234 }
3235 EXPORT_SYMBOL_GPL(dm_internal_resume);
3236 
3237 /*
3238  * Fast variants of internal suspend/resume hold md->suspend_lock,
3239  * which prevents interaction with userspace-driven suspend.
3240  */
3241 
dm_internal_suspend_fast(struct mapped_device * md)3242 void dm_internal_suspend_fast(struct mapped_device *md)
3243 {
3244 	mutex_lock(&md->suspend_lock);
3245 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
3246 		return;
3247 
3248 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
3249 	synchronize_srcu(&md->io_barrier);
3250 	flush_workqueue(md->wq);
3251 	dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
3252 }
3253 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
3254 
dm_internal_resume_fast(struct mapped_device * md)3255 void dm_internal_resume_fast(struct mapped_device *md)
3256 {
3257 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
3258 		goto done;
3259 
3260 	dm_queue_flush(md);
3261 
3262 done:
3263 	mutex_unlock(&md->suspend_lock);
3264 }
3265 EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
3266 
3267 /*
3268  *---------------------------------------------------------------
3269  * Event notification.
3270  *---------------------------------------------------------------
3271  */
dm_kobject_uevent(struct mapped_device * md,enum kobject_action action,unsigned int cookie,bool need_resize_uevent)3272 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
3273 		      unsigned int cookie, bool need_resize_uevent)
3274 {
3275 	int r;
3276 	unsigned int noio_flag;
3277 	char udev_cookie[DM_COOKIE_LENGTH];
3278 	char *envp[3] = { NULL, NULL, NULL };
3279 	char **envpp = envp;
3280 	if (cookie) {
3281 		snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
3282 			 DM_COOKIE_ENV_VAR_NAME, cookie);
3283 		*envpp++ = udev_cookie;
3284 	}
3285 	if (need_resize_uevent) {
3286 		*envpp++ = "RESIZE=1";
3287 	}
3288 
3289 	noio_flag = memalloc_noio_save();
3290 
3291 	r = kobject_uevent_env(&disk_to_dev(md->disk)->kobj, action, envp);
3292 
3293 	memalloc_noio_restore(noio_flag);
3294 
3295 	return r;
3296 }
3297 
dm_next_uevent_seq(struct mapped_device * md)3298 uint32_t dm_next_uevent_seq(struct mapped_device *md)
3299 {
3300 	return atomic_add_return(1, &md->uevent_seq);
3301 }
3302 
dm_get_event_nr(struct mapped_device * md)3303 uint32_t dm_get_event_nr(struct mapped_device *md)
3304 {
3305 	return atomic_read(&md->event_nr);
3306 }
3307 
dm_wait_event(struct mapped_device * md,int event_nr)3308 int dm_wait_event(struct mapped_device *md, int event_nr)
3309 {
3310 	return wait_event_interruptible(md->eventq,
3311 			(event_nr != atomic_read(&md->event_nr)));
3312 }
3313 
dm_uevent_add(struct mapped_device * md,struct list_head * elist)3314 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
3315 {
3316 	unsigned long flags;
3317 
3318 	spin_lock_irqsave(&md->uevent_lock, flags);
3319 	list_add(elist, &md->uevent_list);
3320 	spin_unlock_irqrestore(&md->uevent_lock, flags);
3321 }
3322 
3323 /*
3324  * The gendisk is only valid as long as you have a reference
3325  * count on 'md'.
3326  */
dm_disk(struct mapped_device * md)3327 struct gendisk *dm_disk(struct mapped_device *md)
3328 {
3329 	return md->disk;
3330 }
3331 EXPORT_SYMBOL_GPL(dm_disk);
3332 
dm_kobject(struct mapped_device * md)3333 struct kobject *dm_kobject(struct mapped_device *md)
3334 {
3335 	return &md->kobj_holder.kobj;
3336 }
3337 
dm_get_from_kobject(struct kobject * kobj)3338 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
3339 {
3340 	struct mapped_device *md;
3341 
3342 	md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
3343 
3344 	spin_lock(&_minor_lock);
3345 	if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
3346 		md = NULL;
3347 		goto out;
3348 	}
3349 	dm_get(md);
3350 out:
3351 	spin_unlock(&_minor_lock);
3352 
3353 	return md;
3354 }
3355 
dm_suspended_md(struct mapped_device * md)3356 int dm_suspended_md(struct mapped_device *md)
3357 {
3358 	return test_bit(DMF_SUSPENDED, &md->flags);
3359 }
3360 
dm_post_suspending_md(struct mapped_device * md)3361 static int dm_post_suspending_md(struct mapped_device *md)
3362 {
3363 	return test_bit(DMF_POST_SUSPENDING, &md->flags);
3364 }
3365 
dm_suspended_internally_md(struct mapped_device * md)3366 int dm_suspended_internally_md(struct mapped_device *md)
3367 {
3368 	return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3369 }
3370 
dm_test_deferred_remove_flag(struct mapped_device * md)3371 int dm_test_deferred_remove_flag(struct mapped_device *md)
3372 {
3373 	return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
3374 }
3375 
dm_suspended(struct dm_target * ti)3376 int dm_suspended(struct dm_target *ti)
3377 {
3378 	return dm_suspended_md(ti->table->md);
3379 }
3380 EXPORT_SYMBOL_GPL(dm_suspended);
3381 
dm_post_suspending(struct dm_target * ti)3382 int dm_post_suspending(struct dm_target *ti)
3383 {
3384 	return dm_post_suspending_md(ti->table->md);
3385 }
3386 EXPORT_SYMBOL_GPL(dm_post_suspending);
3387 
dm_noflush_suspending(struct dm_target * ti)3388 int dm_noflush_suspending(struct dm_target *ti)
3389 {
3390 	return __noflush_suspending(ti->table->md);
3391 }
3392 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
3393 
dm_free_md_mempools(struct dm_md_mempools * pools)3394 void dm_free_md_mempools(struct dm_md_mempools *pools)
3395 {
3396 	if (!pools)
3397 		return;
3398 
3399 	bioset_exit(&pools->bs);
3400 	bioset_exit(&pools->io_bs);
3401 
3402 	kfree(pools);
3403 }
3404 
3405 struct dm_blkdev_id {
3406 	u8 *id;
3407 	enum blk_unique_id type;
3408 };
3409 
__dm_get_unique_id(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)3410 static int __dm_get_unique_id(struct dm_target *ti, struct dm_dev *dev,
3411 				sector_t start, sector_t len, void *data)
3412 {
3413 	struct dm_blkdev_id *dm_id = data;
3414 	const struct block_device_operations *fops = dev->bdev->bd_disk->fops;
3415 
3416 	if (!fops->get_unique_id)
3417 		return 0;
3418 
3419 	return fops->get_unique_id(dev->bdev->bd_disk, dm_id->id, dm_id->type);
3420 }
3421 
3422 /*
3423  * Allow access to get_unique_id() for the first device returning a
3424  * non-zero result.  Reasonable use expects all devices to have the
3425  * same unique id.
3426  */
dm_blk_get_unique_id(struct gendisk * disk,u8 * id,enum blk_unique_id type)3427 static int dm_blk_get_unique_id(struct gendisk *disk, u8 *id,
3428 		enum blk_unique_id type)
3429 {
3430 	struct mapped_device *md = disk->private_data;
3431 	struct dm_table *table;
3432 	struct dm_target *ti;
3433 	int ret = 0, srcu_idx;
3434 
3435 	struct dm_blkdev_id dm_id = {
3436 		.id = id,
3437 		.type = type,
3438 	};
3439 
3440 	table = dm_get_live_table(md, &srcu_idx);
3441 	if (!table || !dm_table_get_size(table))
3442 		goto out;
3443 
3444 	/* We only support devices that have a single target */
3445 	if (table->num_targets != 1)
3446 		goto out;
3447 	ti = dm_table_get_target(table, 0);
3448 
3449 	if (!ti->type->iterate_devices)
3450 		goto out;
3451 
3452 	ret = ti->type->iterate_devices(ti, __dm_get_unique_id, &dm_id);
3453 out:
3454 	dm_put_live_table(md, srcu_idx);
3455 	return ret;
3456 }
3457 
3458 struct dm_pr {
3459 	u64	old_key;
3460 	u64	new_key;
3461 	u32	flags;
3462 	bool	abort;
3463 	bool	fail_early;
3464 	int	ret;
3465 	enum pr_type type;
3466 	struct pr_keys *read_keys;
3467 	struct pr_held_reservation *rsv;
3468 };
3469 
dm_call_pr(struct block_device * bdev,iterate_devices_callout_fn fn,struct dm_pr * pr)3470 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn,
3471 		      struct dm_pr *pr)
3472 {
3473 	struct mapped_device *md = bdev->bd_disk->private_data;
3474 	struct dm_table *table;
3475 	struct dm_target *ti;
3476 	int ret = -ENOTTY, srcu_idx;
3477 
3478 	table = dm_get_live_table(md, &srcu_idx);
3479 	if (!table || !dm_table_get_size(table))
3480 		goto out;
3481 
3482 	/* We only support devices that have a single target */
3483 	if (table->num_targets != 1)
3484 		goto out;
3485 	ti = dm_table_get_target(table, 0);
3486 
3487 	if (dm_suspended_md(md)) {
3488 		ret = -EAGAIN;
3489 		goto out;
3490 	}
3491 
3492 	ret = -EINVAL;
3493 	if (!ti->type->iterate_devices)
3494 		goto out;
3495 
3496 	ti->type->iterate_devices(ti, fn, pr);
3497 	ret = 0;
3498 out:
3499 	dm_put_live_table(md, srcu_idx);
3500 	return ret;
3501 }
3502 
3503 /*
3504  * For register / unregister we need to manually call out to every path.
3505  */
__dm_pr_register(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)3506 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev,
3507 			    sector_t start, sector_t len, void *data)
3508 {
3509 	struct dm_pr *pr = data;
3510 	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3511 	int ret;
3512 
3513 	if (!ops || !ops->pr_register) {
3514 		pr->ret = -EOPNOTSUPP;
3515 		return -1;
3516 	}
3517 
3518 	ret = ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags);
3519 	if (!ret)
3520 		return 0;
3521 
3522 	if (!pr->ret)
3523 		pr->ret = ret;
3524 
3525 	if (pr->fail_early)
3526 		return -1;
3527 
3528 	return 0;
3529 }
3530 
dm_pr_register(struct block_device * bdev,u64 old_key,u64 new_key,u32 flags)3531 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
3532 			  u32 flags)
3533 {
3534 	struct dm_pr pr = {
3535 		.old_key	= old_key,
3536 		.new_key	= new_key,
3537 		.flags		= flags,
3538 		.fail_early	= true,
3539 		.ret		= 0,
3540 	};
3541 	int ret;
3542 
3543 	ret = dm_call_pr(bdev, __dm_pr_register, &pr);
3544 	if (ret) {
3545 		/* Didn't even get to register a path */
3546 		return ret;
3547 	}
3548 
3549 	if (!pr.ret)
3550 		return 0;
3551 	ret = pr.ret;
3552 
3553 	if (!new_key)
3554 		return ret;
3555 
3556 	/* unregister all paths if we failed to register any path */
3557 	pr.old_key = new_key;
3558 	pr.new_key = 0;
3559 	pr.flags = 0;
3560 	pr.fail_early = false;
3561 	(void) dm_call_pr(bdev, __dm_pr_register, &pr);
3562 	return ret;
3563 }
3564 
3565 
__dm_pr_reserve(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)3566 static int __dm_pr_reserve(struct dm_target *ti, struct dm_dev *dev,
3567 			   sector_t start, sector_t len, void *data)
3568 {
3569 	struct dm_pr *pr = data;
3570 	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3571 
3572 	if (!ops || !ops->pr_reserve) {
3573 		pr->ret = -EOPNOTSUPP;
3574 		return -1;
3575 	}
3576 
3577 	pr->ret = ops->pr_reserve(dev->bdev, pr->old_key, pr->type, pr->flags);
3578 	if (!pr->ret)
3579 		return -1;
3580 
3581 	return 0;
3582 }
3583 
dm_pr_reserve(struct block_device * bdev,u64 key,enum pr_type type,u32 flags)3584 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
3585 			 u32 flags)
3586 {
3587 	struct dm_pr pr = {
3588 		.old_key	= key,
3589 		.flags		= flags,
3590 		.type		= type,
3591 		.fail_early	= false,
3592 		.ret		= 0,
3593 	};
3594 	int ret;
3595 
3596 	ret = dm_call_pr(bdev, __dm_pr_reserve, &pr);
3597 	if (ret)
3598 		return ret;
3599 
3600 	return pr.ret;
3601 }
3602 
3603 /*
3604  * If there is a non-All Registrants type of reservation, the release must be
3605  * sent down the holding path. For the cases where there is no reservation or
3606  * the path is not the holder the device will also return success, so we must
3607  * try each path to make sure we got the correct path.
3608  */
__dm_pr_release(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)3609 static int __dm_pr_release(struct dm_target *ti, struct dm_dev *dev,
3610 			   sector_t start, sector_t len, void *data)
3611 {
3612 	struct dm_pr *pr = data;
3613 	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3614 
3615 	if (!ops || !ops->pr_release) {
3616 		pr->ret = -EOPNOTSUPP;
3617 		return -1;
3618 	}
3619 
3620 	pr->ret = ops->pr_release(dev->bdev, pr->old_key, pr->type);
3621 	if (pr->ret)
3622 		return -1;
3623 
3624 	return 0;
3625 }
3626 
dm_pr_release(struct block_device * bdev,u64 key,enum pr_type type)3627 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
3628 {
3629 	struct dm_pr pr = {
3630 		.old_key	= key,
3631 		.type		= type,
3632 		.fail_early	= false,
3633 	};
3634 	int ret;
3635 
3636 	ret = dm_call_pr(bdev, __dm_pr_release, &pr);
3637 	if (ret)
3638 		return ret;
3639 
3640 	return pr.ret;
3641 }
3642 
__dm_pr_preempt(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)3643 static int __dm_pr_preempt(struct dm_target *ti, struct dm_dev *dev,
3644 			   sector_t start, sector_t len, void *data)
3645 {
3646 	struct dm_pr *pr = data;
3647 	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3648 
3649 	if (!ops || !ops->pr_preempt) {
3650 		pr->ret = -EOPNOTSUPP;
3651 		return -1;
3652 	}
3653 
3654 	pr->ret = ops->pr_preempt(dev->bdev, pr->old_key, pr->new_key, pr->type,
3655 				  pr->abort);
3656 	if (!pr->ret)
3657 		return -1;
3658 
3659 	return 0;
3660 }
3661 
dm_pr_preempt(struct block_device * bdev,u64 old_key,u64 new_key,enum pr_type type,bool abort)3662 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
3663 			 enum pr_type type, bool abort)
3664 {
3665 	struct dm_pr pr = {
3666 		.new_key	= new_key,
3667 		.old_key	= old_key,
3668 		.type		= type,
3669 		.fail_early	= false,
3670 	};
3671 	int ret;
3672 
3673 	ret = dm_call_pr(bdev, __dm_pr_preempt, &pr);
3674 	if (ret)
3675 		return ret;
3676 
3677 	return pr.ret;
3678 }
3679 
dm_pr_clear(struct block_device * bdev,u64 key)3680 static int dm_pr_clear(struct block_device *bdev, u64 key)
3681 {
3682 	struct mapped_device *md = bdev->bd_disk->private_data;
3683 	const struct pr_ops *ops;
3684 	int r, srcu_idx;
3685 	bool forward = true;
3686 
3687 	/* Not a real ioctl, but targets must not interpret non-DM ioctls */
3688 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev, 0, 0, &forward);
3689 	if (r < 0)
3690 		goto out;
3691 	WARN_ON_ONCE(!forward);
3692 
3693 	ops = bdev->bd_disk->fops->pr_ops;
3694 	if (ops && ops->pr_clear)
3695 		r = ops->pr_clear(bdev, key);
3696 	else
3697 		r = -EOPNOTSUPP;
3698 out:
3699 	dm_unprepare_ioctl(md, srcu_idx);
3700 	return r;
3701 }
3702 
__dm_pr_read_keys(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)3703 static int __dm_pr_read_keys(struct dm_target *ti, struct dm_dev *dev,
3704 			     sector_t start, sector_t len, void *data)
3705 {
3706 	struct dm_pr *pr = data;
3707 	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3708 
3709 	if (!ops || !ops->pr_read_keys) {
3710 		pr->ret = -EOPNOTSUPP;
3711 		return -1;
3712 	}
3713 
3714 	pr->ret = ops->pr_read_keys(dev->bdev, pr->read_keys);
3715 	if (!pr->ret)
3716 		return -1;
3717 
3718 	return 0;
3719 }
3720 
dm_pr_read_keys(struct block_device * bdev,struct pr_keys * keys)3721 static int dm_pr_read_keys(struct block_device *bdev, struct pr_keys *keys)
3722 {
3723 	struct dm_pr pr = {
3724 		.read_keys = keys,
3725 	};
3726 	int ret;
3727 
3728 	ret = dm_call_pr(bdev, __dm_pr_read_keys, &pr);
3729 	if (ret)
3730 		return ret;
3731 
3732 	return pr.ret;
3733 }
3734 
__dm_pr_read_reservation(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)3735 static int __dm_pr_read_reservation(struct dm_target *ti, struct dm_dev *dev,
3736 				    sector_t start, sector_t len, void *data)
3737 {
3738 	struct dm_pr *pr = data;
3739 	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3740 
3741 	if (!ops || !ops->pr_read_reservation) {
3742 		pr->ret = -EOPNOTSUPP;
3743 		return -1;
3744 	}
3745 
3746 	pr->ret = ops->pr_read_reservation(dev->bdev, pr->rsv);
3747 	if (!pr->ret)
3748 		return -1;
3749 
3750 	return 0;
3751 }
3752 
dm_pr_read_reservation(struct block_device * bdev,struct pr_held_reservation * rsv)3753 static int dm_pr_read_reservation(struct block_device *bdev,
3754 				  struct pr_held_reservation *rsv)
3755 {
3756 	struct dm_pr pr = {
3757 		.rsv = rsv,
3758 	};
3759 	int ret;
3760 
3761 	ret = dm_call_pr(bdev, __dm_pr_read_reservation, &pr);
3762 	if (ret)
3763 		return ret;
3764 
3765 	return pr.ret;
3766 }
3767 
3768 static const struct pr_ops dm_pr_ops = {
3769 	.pr_register	= dm_pr_register,
3770 	.pr_reserve	= dm_pr_reserve,
3771 	.pr_release	= dm_pr_release,
3772 	.pr_preempt	= dm_pr_preempt,
3773 	.pr_clear	= dm_pr_clear,
3774 	.pr_read_keys	= dm_pr_read_keys,
3775 	.pr_read_reservation = dm_pr_read_reservation,
3776 };
3777 
3778 static const struct block_device_operations dm_blk_dops = {
3779 	.submit_bio = dm_submit_bio,
3780 	.poll_bio = dm_poll_bio,
3781 	.open = dm_blk_open,
3782 	.release = dm_blk_close,
3783 	.ioctl = dm_blk_ioctl,
3784 	.getgeo = dm_blk_getgeo,
3785 	.report_zones = dm_blk_report_zones,
3786 	.get_unique_id = dm_blk_get_unique_id,
3787 	.pr_ops = &dm_pr_ops,
3788 	.owner = THIS_MODULE
3789 };
3790 
3791 static const struct block_device_operations dm_rq_blk_dops = {
3792 	.open = dm_blk_open,
3793 	.release = dm_blk_close,
3794 	.ioctl = dm_blk_ioctl,
3795 	.getgeo = dm_blk_getgeo,
3796 	.get_unique_id = dm_blk_get_unique_id,
3797 	.pr_ops = &dm_pr_ops,
3798 	.owner = THIS_MODULE
3799 };
3800 
3801 static const struct dax_operations dm_dax_ops = {
3802 	.direct_access = dm_dax_direct_access,
3803 	.zero_page_range = dm_dax_zero_page_range,
3804 	.recovery_write = dm_dax_recovery_write,
3805 };
3806 
3807 /*
3808  * module hooks
3809  */
3810 module_init(dm_init);
3811 module_exit(dm_exit);
3812 
3813 module_param(major, uint, 0);
3814 MODULE_PARM_DESC(major, "The major number of the device mapper");
3815 
3816 module_param(reserved_bio_based_ios, uint, 0644);
3817 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3818 
3819 module_param(dm_numa_node, int, 0644);
3820 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
3821 
3822 module_param(swap_bios, int, 0644);
3823 MODULE_PARM_DESC(swap_bios, "Maximum allowed inflight swap IOs");
3824 
3825 MODULE_DESCRIPTION(DM_NAME " driver");
3826 MODULE_AUTHOR("Joe Thornber <dm-devel@lists.linux.dev>");
3827 MODULE_LICENSE("GPL");
3828