1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2009-2011 Red Hat, Inc.
4 *
5 * Author: Mikulas Patocka <mpatocka@redhat.com>
6 *
7 * This file is released under the GPL.
8 */
9
10 #include <linux/dm-bufio.h>
11
12 #include <linux/device-mapper.h>
13 #include <linux/dm-io.h>
14 #include <linux/slab.h>
15 #include <linux/sched/mm.h>
16 #include <linux/jiffies.h>
17 #include <linux/vmalloc.h>
18 #include <linux/shrinker.h>
19 #include <linux/module.h>
20 #include <linux/rbtree.h>
21 #include <linux/stacktrace.h>
22 #include <linux/jump_label.h>
23
24 #include "dm.h"
25
26 #define DM_MSG_PREFIX "bufio"
27
28 /*
29 * Memory management policy:
30 * Limit the number of buffers to DM_BUFIO_MEMORY_PERCENT of main memory
31 * or DM_BUFIO_VMALLOC_PERCENT of vmalloc memory (whichever is lower).
32 * Always allocate at least DM_BUFIO_MIN_BUFFERS buffers.
33 * Start background writeback when there are DM_BUFIO_WRITEBACK_PERCENT
34 * dirty buffers.
35 */
36 #define DM_BUFIO_MIN_BUFFERS 8
37
38 #define DM_BUFIO_MEMORY_PERCENT 2
39 #define DM_BUFIO_VMALLOC_PERCENT 25
40 #define DM_BUFIO_WRITEBACK_RATIO 3
41 #define DM_BUFIO_LOW_WATERMARK_RATIO 16
42
43 /*
44 * The nr of bytes of cached data to keep around.
45 */
46 #define DM_BUFIO_DEFAULT_RETAIN_BYTES (256 * 1024)
47
48 /*
49 * Align buffer writes to this boundary.
50 * Tests show that SSDs have the highest IOPS when using 4k writes.
51 */
52 #define DM_BUFIO_WRITE_ALIGN 4096
53
54 /*
55 * dm_buffer->list_mode
56 */
57 #define LIST_CLEAN 0
58 #define LIST_DIRTY 1
59 #define LIST_SIZE 2
60
61 #define SCAN_RESCHED_CYCLE 16
62
63 /*--------------------------------------------------------------*/
64
65 /*
66 * Rather than use an LRU list, we use a clock algorithm where entries
67 * are held in a circular list. When an entry is 'hit' a reference bit
68 * is set. The least recently used entry is approximated by running a
69 * cursor around the list selecting unreferenced entries. Referenced
70 * entries have their reference bit cleared as the cursor passes them.
71 */
72 struct lru_entry {
73 struct list_head list;
74 atomic_t referenced;
75 };
76
77 struct lru_iter {
78 struct lru *lru;
79 struct list_head list;
80 struct lru_entry *stop;
81 struct lru_entry *e;
82 };
83
84 struct lru {
85 struct list_head *cursor;
86 unsigned long count;
87
88 struct list_head iterators;
89 };
90
91 /*--------------*/
92
lru_init(struct lru * lru)93 static void lru_init(struct lru *lru)
94 {
95 lru->cursor = NULL;
96 lru->count = 0;
97 INIT_LIST_HEAD(&lru->iterators);
98 }
99
lru_destroy(struct lru * lru)100 static void lru_destroy(struct lru *lru)
101 {
102 WARN_ON_ONCE(lru->cursor);
103 WARN_ON_ONCE(!list_empty(&lru->iterators));
104 }
105
106 /*
107 * Insert a new entry into the lru.
108 */
lru_insert(struct lru * lru,struct lru_entry * le)109 static void lru_insert(struct lru *lru, struct lru_entry *le)
110 {
111 /*
112 * Don't be tempted to set to 1, makes the lru aspect
113 * perform poorly.
114 */
115 atomic_set(&le->referenced, 0);
116
117 if (lru->cursor) {
118 list_add_tail(&le->list, lru->cursor);
119 } else {
120 INIT_LIST_HEAD(&le->list);
121 lru->cursor = &le->list;
122 }
123 lru->count++;
124 }
125
126 /*--------------*/
127
128 /*
129 * Convert a list_head pointer to an lru_entry pointer.
130 */
to_le(struct list_head * l)131 static inline struct lru_entry *to_le(struct list_head *l)
132 {
133 return container_of(l, struct lru_entry, list);
134 }
135
136 /*
137 * Initialize an lru_iter and add it to the list of cursors in the lru.
138 */
lru_iter_begin(struct lru * lru,struct lru_iter * it)139 static void lru_iter_begin(struct lru *lru, struct lru_iter *it)
140 {
141 it->lru = lru;
142 it->stop = lru->cursor ? to_le(lru->cursor->prev) : NULL;
143 it->e = lru->cursor ? to_le(lru->cursor) : NULL;
144 list_add(&it->list, &lru->iterators);
145 }
146
147 /*
148 * Remove an lru_iter from the list of cursors in the lru.
149 */
lru_iter_end(struct lru_iter * it)150 static inline void lru_iter_end(struct lru_iter *it)
151 {
152 list_del(&it->list);
153 }
154
155 /* Predicate function type to be used with lru_iter_next */
156 typedef bool (*iter_predicate)(struct lru_entry *le, void *context);
157
158 /*
159 * Advance the cursor to the next entry that passes the
160 * predicate, and return that entry. Returns NULL if the
161 * iteration is complete.
162 */
lru_iter_next(struct lru_iter * it,iter_predicate pred,void * context)163 static struct lru_entry *lru_iter_next(struct lru_iter *it,
164 iter_predicate pred, void *context)
165 {
166 struct lru_entry *e;
167
168 while (it->e) {
169 e = it->e;
170
171 /* advance the cursor */
172 if (it->e == it->stop)
173 it->e = NULL;
174 else
175 it->e = to_le(it->e->list.next);
176
177 if (pred(e, context))
178 return e;
179 }
180
181 return NULL;
182 }
183
184 /*
185 * Invalidate a specific lru_entry and update all cursors in
186 * the lru accordingly.
187 */
lru_iter_invalidate(struct lru * lru,struct lru_entry * e)188 static void lru_iter_invalidate(struct lru *lru, struct lru_entry *e)
189 {
190 struct lru_iter *it;
191
192 list_for_each_entry(it, &lru->iterators, list) {
193 /* Move c->e forwards if necc. */
194 if (it->e == e) {
195 it->e = to_le(it->e->list.next);
196 if (it->e == e)
197 it->e = NULL;
198 }
199
200 /* Move it->stop backwards if necc. */
201 if (it->stop == e) {
202 it->stop = to_le(it->stop->list.prev);
203 if (it->stop == e)
204 it->stop = NULL;
205 }
206 }
207 }
208
209 /*--------------*/
210
211 /*
212 * Remove a specific entry from the lru.
213 */
lru_remove(struct lru * lru,struct lru_entry * le)214 static void lru_remove(struct lru *lru, struct lru_entry *le)
215 {
216 lru_iter_invalidate(lru, le);
217 if (lru->count == 1) {
218 lru->cursor = NULL;
219 } else {
220 if (lru->cursor == &le->list)
221 lru->cursor = lru->cursor->next;
222 list_del(&le->list);
223 }
224 lru->count--;
225 }
226
227 /*
228 * Mark as referenced.
229 */
lru_reference(struct lru_entry * le)230 static inline void lru_reference(struct lru_entry *le)
231 {
232 atomic_set(&le->referenced, 1);
233 }
234
235 /*--------------*/
236
237 /*
238 * Remove the least recently used entry (approx), that passes the predicate.
239 * Returns NULL on failure.
240 */
241 enum evict_result {
242 ER_EVICT,
243 ER_DONT_EVICT,
244 ER_STOP, /* stop looking for something to evict */
245 };
246
247 typedef enum evict_result (*le_predicate)(struct lru_entry *le, void *context);
248
lru_evict(struct lru * lru,le_predicate pred,void * context,bool no_sleep)249 static struct lru_entry *lru_evict(struct lru *lru, le_predicate pred, void *context, bool no_sleep)
250 {
251 unsigned long tested = 0;
252 struct list_head *h = lru->cursor;
253 struct lru_entry *le;
254
255 if (!h)
256 return NULL;
257 /*
258 * In the worst case we have to loop around twice. Once to clear
259 * the reference flags, and then again to discover the predicate
260 * fails for all entries.
261 */
262 while (tested < lru->count) {
263 le = container_of(h, struct lru_entry, list);
264
265 if (atomic_read(&le->referenced)) {
266 atomic_set(&le->referenced, 0);
267 } else {
268 tested++;
269 switch (pred(le, context)) {
270 case ER_EVICT:
271 /*
272 * Adjust the cursor, so we start the next
273 * search from here.
274 */
275 lru->cursor = le->list.next;
276 lru_remove(lru, le);
277 return le;
278
279 case ER_DONT_EVICT:
280 break;
281
282 case ER_STOP:
283 lru->cursor = le->list.next;
284 return NULL;
285 }
286 }
287
288 h = h->next;
289
290 if (!no_sleep)
291 cond_resched();
292 }
293
294 return NULL;
295 }
296
297 /*--------------------------------------------------------------*/
298
299 /*
300 * Buffer state bits.
301 */
302 #define B_READING 0
303 #define B_WRITING 1
304 #define B_DIRTY 2
305
306 /*
307 * Describes how the block was allocated:
308 * kmem_cache_alloc(), __get_free_pages() or vmalloc().
309 * See the comment at alloc_buffer_data.
310 */
311 enum data_mode {
312 DATA_MODE_SLAB = 0,
313 DATA_MODE_KMALLOC = 1,
314 DATA_MODE_GET_FREE_PAGES = 2,
315 DATA_MODE_VMALLOC = 3,
316 DATA_MODE_LIMIT = 4
317 };
318
319 struct dm_buffer {
320 /* protected by the locks in dm_buffer_cache */
321 struct rb_node node;
322
323 /* immutable, so don't need protecting */
324 sector_t block;
325 void *data;
326 unsigned char data_mode; /* DATA_MODE_* */
327
328 /*
329 * These two fields are used in isolation, so do not need
330 * a surrounding lock.
331 */
332 atomic_t hold_count;
333 unsigned long last_accessed;
334
335 /*
336 * Everything else is protected by the mutex in
337 * dm_bufio_client
338 */
339 unsigned long state;
340 struct lru_entry lru;
341 unsigned char list_mode; /* LIST_* */
342 blk_status_t read_error;
343 blk_status_t write_error;
344 unsigned int dirty_start;
345 unsigned int dirty_end;
346 unsigned int write_start;
347 unsigned int write_end;
348 struct list_head write_list;
349 struct dm_bufio_client *c;
350 void (*end_io)(struct dm_buffer *b, blk_status_t bs);
351 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
352 #define MAX_STACK 10
353 unsigned int stack_len;
354 unsigned long stack_entries[MAX_STACK];
355 #endif
356 };
357
358 /*--------------------------------------------------------------*/
359
360 /*
361 * The buffer cache manages buffers, particularly:
362 * - inc/dec of holder count
363 * - setting the last_accessed field
364 * - maintains clean/dirty state along with lru
365 * - selecting buffers that match predicates
366 *
367 * It does *not* handle:
368 * - allocation/freeing of buffers.
369 * - IO
370 * - Eviction or cache sizing.
371 *
372 * cache_get() and cache_put() are threadsafe, you do not need to
373 * protect these calls with a surrounding mutex. All the other
374 * methods are not threadsafe; they do use locking primitives, but
375 * only enough to ensure get/put are threadsafe.
376 */
377
378 struct buffer_tree {
379 union {
380 struct rw_semaphore lock;
381 rwlock_t spinlock;
382 } u;
383 struct rb_root root;
384 } ____cacheline_aligned_in_smp;
385
386 struct dm_buffer_cache {
387 struct lru lru[LIST_SIZE];
388 /*
389 * We spread entries across multiple trees to reduce contention
390 * on the locks.
391 */
392 unsigned int num_locks;
393 bool no_sleep;
394 struct buffer_tree trees[];
395 };
396
397 static DEFINE_STATIC_KEY_FALSE(no_sleep_enabled);
398
cache_index(sector_t block,unsigned int num_locks)399 static inline unsigned int cache_index(sector_t block, unsigned int num_locks)
400 {
401 return dm_hash_locks_index(block, num_locks);
402 }
403
cache_read_lock(struct dm_buffer_cache * bc,sector_t block)404 static inline void cache_read_lock(struct dm_buffer_cache *bc, sector_t block)
405 {
406 if (static_branch_unlikely(&no_sleep_enabled) && bc->no_sleep)
407 read_lock_bh(&bc->trees[cache_index(block, bc->num_locks)].u.spinlock);
408 else
409 down_read(&bc->trees[cache_index(block, bc->num_locks)].u.lock);
410 }
411
cache_read_unlock(struct dm_buffer_cache * bc,sector_t block)412 static inline void cache_read_unlock(struct dm_buffer_cache *bc, sector_t block)
413 {
414 if (static_branch_unlikely(&no_sleep_enabled) && bc->no_sleep)
415 read_unlock_bh(&bc->trees[cache_index(block, bc->num_locks)].u.spinlock);
416 else
417 up_read(&bc->trees[cache_index(block, bc->num_locks)].u.lock);
418 }
419
cache_write_lock(struct dm_buffer_cache * bc,sector_t block)420 static inline void cache_write_lock(struct dm_buffer_cache *bc, sector_t block)
421 {
422 if (static_branch_unlikely(&no_sleep_enabled) && bc->no_sleep)
423 write_lock_bh(&bc->trees[cache_index(block, bc->num_locks)].u.spinlock);
424 else
425 down_write(&bc->trees[cache_index(block, bc->num_locks)].u.lock);
426 }
427
cache_write_unlock(struct dm_buffer_cache * bc,sector_t block)428 static inline void cache_write_unlock(struct dm_buffer_cache *bc, sector_t block)
429 {
430 if (static_branch_unlikely(&no_sleep_enabled) && bc->no_sleep)
431 write_unlock_bh(&bc->trees[cache_index(block, bc->num_locks)].u.spinlock);
432 else
433 up_write(&bc->trees[cache_index(block, bc->num_locks)].u.lock);
434 }
435
436 /*
437 * Sometimes we want to repeatedly get and drop locks as part of an iteration.
438 * This struct helps avoid redundant drop and gets of the same lock.
439 */
440 struct lock_history {
441 struct dm_buffer_cache *cache;
442 bool write;
443 unsigned int previous;
444 unsigned int no_previous;
445 };
446
lh_init(struct lock_history * lh,struct dm_buffer_cache * cache,bool write)447 static void lh_init(struct lock_history *lh, struct dm_buffer_cache *cache, bool write)
448 {
449 lh->cache = cache;
450 lh->write = write;
451 lh->no_previous = cache->num_locks;
452 lh->previous = lh->no_previous;
453 }
454
__lh_lock(struct lock_history * lh,unsigned int index)455 static void __lh_lock(struct lock_history *lh, unsigned int index)
456 {
457 if (lh->write) {
458 if (static_branch_unlikely(&no_sleep_enabled) && lh->cache->no_sleep)
459 write_lock_bh(&lh->cache->trees[index].u.spinlock);
460 else
461 down_write(&lh->cache->trees[index].u.lock);
462 } else {
463 if (static_branch_unlikely(&no_sleep_enabled) && lh->cache->no_sleep)
464 read_lock_bh(&lh->cache->trees[index].u.spinlock);
465 else
466 down_read(&lh->cache->trees[index].u.lock);
467 }
468 }
469
__lh_unlock(struct lock_history * lh,unsigned int index)470 static void __lh_unlock(struct lock_history *lh, unsigned int index)
471 {
472 if (lh->write) {
473 if (static_branch_unlikely(&no_sleep_enabled) && lh->cache->no_sleep)
474 write_unlock_bh(&lh->cache->trees[index].u.spinlock);
475 else
476 up_write(&lh->cache->trees[index].u.lock);
477 } else {
478 if (static_branch_unlikely(&no_sleep_enabled) && lh->cache->no_sleep)
479 read_unlock_bh(&lh->cache->trees[index].u.spinlock);
480 else
481 up_read(&lh->cache->trees[index].u.lock);
482 }
483 }
484
485 /*
486 * Make sure you call this since it will unlock the final lock.
487 */
lh_exit(struct lock_history * lh)488 static void lh_exit(struct lock_history *lh)
489 {
490 if (lh->previous != lh->no_previous) {
491 __lh_unlock(lh, lh->previous);
492 lh->previous = lh->no_previous;
493 }
494 }
495
496 /*
497 * Named 'next' because there is no corresponding
498 * 'up/unlock' call since it's done automatically.
499 */
lh_next(struct lock_history * lh,sector_t b)500 static void lh_next(struct lock_history *lh, sector_t b)
501 {
502 unsigned int index = cache_index(b, lh->no_previous); /* no_previous is num_locks */
503
504 if (lh->previous != lh->no_previous) {
505 if (lh->previous != index) {
506 __lh_unlock(lh, lh->previous);
507 __lh_lock(lh, index);
508 lh->previous = index;
509 }
510 } else {
511 __lh_lock(lh, index);
512 lh->previous = index;
513 }
514 }
515
le_to_buffer(struct lru_entry * le)516 static inline struct dm_buffer *le_to_buffer(struct lru_entry *le)
517 {
518 return container_of(le, struct dm_buffer, lru);
519 }
520
list_to_buffer(struct list_head * l)521 static struct dm_buffer *list_to_buffer(struct list_head *l)
522 {
523 struct lru_entry *le = list_entry(l, struct lru_entry, list);
524
525 return le_to_buffer(le);
526 }
527
cache_init(struct dm_buffer_cache * bc,unsigned int num_locks,bool no_sleep)528 static void cache_init(struct dm_buffer_cache *bc, unsigned int num_locks, bool no_sleep)
529 {
530 unsigned int i;
531
532 bc->num_locks = num_locks;
533 bc->no_sleep = no_sleep;
534
535 for (i = 0; i < bc->num_locks; i++) {
536 if (no_sleep)
537 rwlock_init(&bc->trees[i].u.spinlock);
538 else
539 init_rwsem(&bc->trees[i].u.lock);
540 bc->trees[i].root = RB_ROOT;
541 }
542
543 lru_init(&bc->lru[LIST_CLEAN]);
544 lru_init(&bc->lru[LIST_DIRTY]);
545 }
546
cache_destroy(struct dm_buffer_cache * bc)547 static void cache_destroy(struct dm_buffer_cache *bc)
548 {
549 unsigned int i;
550
551 for (i = 0; i < bc->num_locks; i++)
552 WARN_ON_ONCE(!RB_EMPTY_ROOT(&bc->trees[i].root));
553
554 lru_destroy(&bc->lru[LIST_CLEAN]);
555 lru_destroy(&bc->lru[LIST_DIRTY]);
556 }
557
558 /*--------------*/
559
560 /*
561 * not threadsafe, or racey depending how you look at it
562 */
cache_count(struct dm_buffer_cache * bc,int list_mode)563 static inline unsigned long cache_count(struct dm_buffer_cache *bc, int list_mode)
564 {
565 return bc->lru[list_mode].count;
566 }
567
cache_total(struct dm_buffer_cache * bc)568 static inline unsigned long cache_total(struct dm_buffer_cache *bc)
569 {
570 return cache_count(bc, LIST_CLEAN) + cache_count(bc, LIST_DIRTY);
571 }
572
573 /*--------------*/
574
575 /*
576 * Gets a specific buffer, indexed by block.
577 * If the buffer is found then its holder count will be incremented and
578 * lru_reference will be called.
579 *
580 * threadsafe
581 */
__cache_get(const struct rb_root * root,sector_t block)582 static struct dm_buffer *__cache_get(const struct rb_root *root, sector_t block)
583 {
584 struct rb_node *n = root->rb_node;
585 struct dm_buffer *b;
586
587 while (n) {
588 b = container_of(n, struct dm_buffer, node);
589
590 if (b->block == block)
591 return b;
592
593 n = block < b->block ? n->rb_left : n->rb_right;
594 }
595
596 return NULL;
597 }
598
__cache_inc_buffer(struct dm_buffer * b)599 static void __cache_inc_buffer(struct dm_buffer *b)
600 {
601 atomic_inc(&b->hold_count);
602 WRITE_ONCE(b->last_accessed, jiffies);
603 }
604
cache_get(struct dm_buffer_cache * bc,sector_t block)605 static struct dm_buffer *cache_get(struct dm_buffer_cache *bc, sector_t block)
606 {
607 struct dm_buffer *b;
608
609 cache_read_lock(bc, block);
610 b = __cache_get(&bc->trees[cache_index(block, bc->num_locks)].root, block);
611 if (b) {
612 lru_reference(&b->lru);
613 __cache_inc_buffer(b);
614 }
615 cache_read_unlock(bc, block);
616
617 return b;
618 }
619
620 /*--------------*/
621
622 /*
623 * Returns true if the hold count hits zero.
624 * threadsafe
625 */
cache_put(struct dm_buffer_cache * bc,struct dm_buffer * b)626 static bool cache_put(struct dm_buffer_cache *bc, struct dm_buffer *b)
627 {
628 bool r;
629
630 cache_read_lock(bc, b->block);
631 BUG_ON(!atomic_read(&b->hold_count));
632 r = atomic_dec_and_test(&b->hold_count);
633 cache_read_unlock(bc, b->block);
634
635 return r;
636 }
637
638 /*--------------*/
639
640 typedef enum evict_result (*b_predicate)(struct dm_buffer *, void *);
641
642 /*
643 * Evicts a buffer based on a predicate. The oldest buffer that
644 * matches the predicate will be selected. In addition to the
645 * predicate the hold_count of the selected buffer will be zero.
646 */
647 struct evict_wrapper {
648 struct lock_history *lh;
649 b_predicate pred;
650 void *context;
651 };
652
653 /*
654 * Wraps the buffer predicate turning it into an lru predicate. Adds
655 * extra test for hold_count.
656 */
__evict_pred(struct lru_entry * le,void * context)657 static enum evict_result __evict_pred(struct lru_entry *le, void *context)
658 {
659 struct evict_wrapper *w = context;
660 struct dm_buffer *b = le_to_buffer(le);
661
662 lh_next(w->lh, b->block);
663
664 if (atomic_read(&b->hold_count))
665 return ER_DONT_EVICT;
666
667 return w->pred(b, w->context);
668 }
669
__cache_evict(struct dm_buffer_cache * bc,int list_mode,b_predicate pred,void * context,struct lock_history * lh)670 static struct dm_buffer *__cache_evict(struct dm_buffer_cache *bc, int list_mode,
671 b_predicate pred, void *context,
672 struct lock_history *lh)
673 {
674 struct evict_wrapper w = {.lh = lh, .pred = pred, .context = context};
675 struct lru_entry *le;
676 struct dm_buffer *b;
677
678 le = lru_evict(&bc->lru[list_mode], __evict_pred, &w, bc->no_sleep);
679 if (!le)
680 return NULL;
681
682 b = le_to_buffer(le);
683 /* __evict_pred will have locked the appropriate tree. */
684 rb_erase(&b->node, &bc->trees[cache_index(b->block, bc->num_locks)].root);
685
686 return b;
687 }
688
cache_evict(struct dm_buffer_cache * bc,int list_mode,b_predicate pred,void * context)689 static struct dm_buffer *cache_evict(struct dm_buffer_cache *bc, int list_mode,
690 b_predicate pred, void *context)
691 {
692 struct dm_buffer *b;
693 struct lock_history lh;
694
695 lh_init(&lh, bc, true);
696 b = __cache_evict(bc, list_mode, pred, context, &lh);
697 lh_exit(&lh);
698
699 return b;
700 }
701
702 /*--------------*/
703
704 /*
705 * Mark a buffer as clean or dirty. Not threadsafe.
706 */
cache_mark(struct dm_buffer_cache * bc,struct dm_buffer * b,int list_mode)707 static void cache_mark(struct dm_buffer_cache *bc, struct dm_buffer *b, int list_mode)
708 {
709 cache_write_lock(bc, b->block);
710 if (list_mode != b->list_mode) {
711 lru_remove(&bc->lru[b->list_mode], &b->lru);
712 b->list_mode = list_mode;
713 lru_insert(&bc->lru[b->list_mode], &b->lru);
714 }
715 cache_write_unlock(bc, b->block);
716 }
717
718 /*--------------*/
719
720 /*
721 * Runs through the lru associated with 'old_mode', if the predicate matches then
722 * it moves them to 'new_mode'. Not threadsafe.
723 */
__cache_mark_many(struct dm_buffer_cache * bc,int old_mode,int new_mode,b_predicate pred,void * context,struct lock_history * lh)724 static void __cache_mark_many(struct dm_buffer_cache *bc, int old_mode, int new_mode,
725 b_predicate pred, void *context, struct lock_history *lh)
726 {
727 struct lru_entry *le;
728 struct dm_buffer *b;
729 struct evict_wrapper w = {.lh = lh, .pred = pred, .context = context};
730
731 while (true) {
732 le = lru_evict(&bc->lru[old_mode], __evict_pred, &w, bc->no_sleep);
733 if (!le)
734 break;
735
736 b = le_to_buffer(le);
737 b->list_mode = new_mode;
738 lru_insert(&bc->lru[b->list_mode], &b->lru);
739 }
740 }
741
cache_mark_many(struct dm_buffer_cache * bc,int old_mode,int new_mode,b_predicate pred,void * context)742 static void cache_mark_many(struct dm_buffer_cache *bc, int old_mode, int new_mode,
743 b_predicate pred, void *context)
744 {
745 struct lock_history lh;
746
747 lh_init(&lh, bc, true);
748 __cache_mark_many(bc, old_mode, new_mode, pred, context, &lh);
749 lh_exit(&lh);
750 }
751
752 /*--------------*/
753
754 /*
755 * Iterates through all clean or dirty entries calling a function for each
756 * entry. The callback may terminate the iteration early. Not threadsafe.
757 */
758
759 /*
760 * Iterator functions should return one of these actions to indicate
761 * how the iteration should proceed.
762 */
763 enum it_action {
764 IT_NEXT,
765 IT_COMPLETE,
766 };
767
768 typedef enum it_action (*iter_fn)(struct dm_buffer *b, void *context);
769
__cache_iterate(struct dm_buffer_cache * bc,int list_mode,iter_fn fn,void * context,struct lock_history * lh)770 static void __cache_iterate(struct dm_buffer_cache *bc, int list_mode,
771 iter_fn fn, void *context, struct lock_history *lh)
772 {
773 struct lru *lru = &bc->lru[list_mode];
774 struct lru_entry *le, *first;
775
776 if (!lru->cursor)
777 return;
778
779 first = le = to_le(lru->cursor);
780 do {
781 struct dm_buffer *b = le_to_buffer(le);
782
783 lh_next(lh, b->block);
784
785 switch (fn(b, context)) {
786 case IT_NEXT:
787 break;
788
789 case IT_COMPLETE:
790 return;
791 }
792 cond_resched();
793
794 le = to_le(le->list.next);
795 } while (le != first);
796 }
797
cache_iterate(struct dm_buffer_cache * bc,int list_mode,iter_fn fn,void * context)798 static void cache_iterate(struct dm_buffer_cache *bc, int list_mode,
799 iter_fn fn, void *context)
800 {
801 struct lock_history lh;
802
803 lh_init(&lh, bc, false);
804 __cache_iterate(bc, list_mode, fn, context, &lh);
805 lh_exit(&lh);
806 }
807
808 /*--------------*/
809
810 /*
811 * Passes ownership of the buffer to the cache. Returns false if the
812 * buffer was already present (in which case ownership does not pass).
813 * eg, a race with another thread.
814 *
815 * Holder count should be 1 on insertion.
816 *
817 * Not threadsafe.
818 */
__cache_insert(struct rb_root * root,struct dm_buffer * b)819 static bool __cache_insert(struct rb_root *root, struct dm_buffer *b)
820 {
821 struct rb_node **new = &root->rb_node, *parent = NULL;
822 struct dm_buffer *found;
823
824 while (*new) {
825 found = container_of(*new, struct dm_buffer, node);
826
827 if (found->block == b->block)
828 return false;
829
830 parent = *new;
831 new = b->block < found->block ?
832 &found->node.rb_left : &found->node.rb_right;
833 }
834
835 rb_link_node(&b->node, parent, new);
836 rb_insert_color(&b->node, root);
837
838 return true;
839 }
840
cache_insert(struct dm_buffer_cache * bc,struct dm_buffer * b)841 static bool cache_insert(struct dm_buffer_cache *bc, struct dm_buffer *b)
842 {
843 bool r;
844
845 if (WARN_ON_ONCE(b->list_mode >= LIST_SIZE))
846 return false;
847
848 cache_write_lock(bc, b->block);
849 BUG_ON(atomic_read(&b->hold_count) != 1);
850 r = __cache_insert(&bc->trees[cache_index(b->block, bc->num_locks)].root, b);
851 if (r)
852 lru_insert(&bc->lru[b->list_mode], &b->lru);
853 cache_write_unlock(bc, b->block);
854
855 return r;
856 }
857
858 /*--------------*/
859
860 /*
861 * Removes buffer from cache, ownership of the buffer passes back to the caller.
862 * Fails if the hold_count is not one (ie. the caller holds the only reference).
863 *
864 * Not threadsafe.
865 */
cache_remove(struct dm_buffer_cache * bc,struct dm_buffer * b)866 static bool cache_remove(struct dm_buffer_cache *bc, struct dm_buffer *b)
867 {
868 bool r;
869
870 cache_write_lock(bc, b->block);
871
872 if (atomic_read(&b->hold_count) != 1) {
873 r = false;
874 } else {
875 r = true;
876 rb_erase(&b->node, &bc->trees[cache_index(b->block, bc->num_locks)].root);
877 lru_remove(&bc->lru[b->list_mode], &b->lru);
878 }
879
880 cache_write_unlock(bc, b->block);
881
882 return r;
883 }
884
885 /*--------------*/
886
887 typedef void (*b_release)(struct dm_buffer *);
888
__find_next(struct rb_root * root,sector_t block)889 static struct dm_buffer *__find_next(struct rb_root *root, sector_t block)
890 {
891 struct rb_node *n = root->rb_node;
892 struct dm_buffer *b;
893 struct dm_buffer *best = NULL;
894
895 while (n) {
896 b = container_of(n, struct dm_buffer, node);
897
898 if (b->block == block)
899 return b;
900
901 if (block <= b->block) {
902 n = n->rb_left;
903 best = b;
904 } else {
905 n = n->rb_right;
906 }
907 }
908
909 return best;
910 }
911
__remove_range(struct dm_buffer_cache * bc,struct rb_root * root,sector_t begin,sector_t end,b_predicate pred,b_release release)912 static void __remove_range(struct dm_buffer_cache *bc,
913 struct rb_root *root,
914 sector_t begin, sector_t end,
915 b_predicate pred, b_release release)
916 {
917 struct dm_buffer *b;
918
919 while (true) {
920 cond_resched();
921
922 b = __find_next(root, begin);
923 if (!b || (b->block >= end))
924 break;
925
926 begin = b->block + 1;
927
928 if (atomic_read(&b->hold_count))
929 continue;
930
931 if (pred(b, NULL) == ER_EVICT) {
932 rb_erase(&b->node, root);
933 lru_remove(&bc->lru[b->list_mode], &b->lru);
934 release(b);
935 }
936 }
937 }
938
cache_remove_range(struct dm_buffer_cache * bc,sector_t begin,sector_t end,b_predicate pred,b_release release)939 static void cache_remove_range(struct dm_buffer_cache *bc,
940 sector_t begin, sector_t end,
941 b_predicate pred, b_release release)
942 {
943 unsigned int i;
944
945 BUG_ON(bc->no_sleep);
946 for (i = 0; i < bc->num_locks; i++) {
947 down_write(&bc->trees[i].u.lock);
948 __remove_range(bc, &bc->trees[i].root, begin, end, pred, release);
949 up_write(&bc->trees[i].u.lock);
950 }
951 }
952
953 /*----------------------------------------------------------------*/
954
955 /*
956 * Linking of buffers:
957 * All buffers are linked to buffer_cache with their node field.
958 *
959 * Clean buffers that are not being written (B_WRITING not set)
960 * are linked to lru[LIST_CLEAN] with their lru_list field.
961 *
962 * Dirty and clean buffers that are being written are linked to
963 * lru[LIST_DIRTY] with their lru_list field. When the write
964 * finishes, the buffer cannot be relinked immediately (because we
965 * are in an interrupt context and relinking requires process
966 * context), so some clean-not-writing buffers can be held on
967 * dirty_lru too. They are later added to lru in the process
968 * context.
969 */
970 struct dm_bufio_client {
971 struct block_device *bdev;
972 unsigned int block_size;
973 s8 sectors_per_block_bits;
974
975 bool no_sleep;
976 struct mutex lock;
977 spinlock_t spinlock;
978
979 int async_write_error;
980
981 void (*alloc_callback)(struct dm_buffer *buf);
982 void (*write_callback)(struct dm_buffer *buf);
983 struct kmem_cache *slab_buffer;
984 struct kmem_cache *slab_cache;
985 struct dm_io_client *dm_io;
986
987 struct list_head reserved_buffers;
988 unsigned int need_reserved_buffers;
989
990 unsigned int minimum_buffers;
991
992 sector_t start;
993
994 struct shrinker *shrinker;
995 struct work_struct shrink_work;
996 atomic_long_t need_shrink;
997
998 wait_queue_head_t free_buffer_wait;
999
1000 struct list_head client_list;
1001
1002 /*
1003 * Used by global_cleanup to sort the clients list.
1004 */
1005 unsigned long oldest_buffer;
1006
1007 struct dm_buffer_cache cache; /* must be last member */
1008 };
1009
1010 /*----------------------------------------------------------------*/
1011
1012 #define dm_bufio_in_request() (!!current->bio_list)
1013
dm_bufio_lock(struct dm_bufio_client * c)1014 static void dm_bufio_lock(struct dm_bufio_client *c)
1015 {
1016 if (static_branch_unlikely(&no_sleep_enabled) && c->no_sleep)
1017 spin_lock_bh(&c->spinlock);
1018 else
1019 mutex_lock_nested(&c->lock, dm_bufio_in_request());
1020 }
1021
dm_bufio_unlock(struct dm_bufio_client * c)1022 static void dm_bufio_unlock(struct dm_bufio_client *c)
1023 {
1024 if (static_branch_unlikely(&no_sleep_enabled) && c->no_sleep)
1025 spin_unlock_bh(&c->spinlock);
1026 else
1027 mutex_unlock(&c->lock);
1028 }
1029
1030 /*----------------------------------------------------------------*/
1031
1032 /*
1033 * Default cache size: available memory divided by the ratio.
1034 */
1035 static unsigned long dm_bufio_default_cache_size;
1036
1037 /*
1038 * Total cache size set by the user.
1039 */
1040 static unsigned long dm_bufio_cache_size;
1041
1042 /*
1043 * A copy of dm_bufio_cache_size because dm_bufio_cache_size can change
1044 * at any time. If it disagrees, the user has changed cache size.
1045 */
1046 static unsigned long dm_bufio_cache_size_latch;
1047
1048 static DEFINE_SPINLOCK(global_spinlock);
1049
1050 static unsigned int dm_bufio_max_age; /* No longer does anything */
1051
1052 static unsigned long dm_bufio_retain_bytes = DM_BUFIO_DEFAULT_RETAIN_BYTES;
1053
1054 static unsigned long dm_bufio_peak_allocated;
1055 static unsigned long dm_bufio_allocated_kmem_cache;
1056 static unsigned long dm_bufio_allocated_kmalloc;
1057 static unsigned long dm_bufio_allocated_get_free_pages;
1058 static unsigned long dm_bufio_allocated_vmalloc;
1059 static unsigned long dm_bufio_current_allocated;
1060
1061 /*----------------------------------------------------------------*/
1062
1063 /*
1064 * The current number of clients.
1065 */
1066 static int dm_bufio_client_count;
1067
1068 /*
1069 * The list of all clients.
1070 */
1071 static LIST_HEAD(dm_bufio_all_clients);
1072
1073 /*
1074 * This mutex protects dm_bufio_cache_size_latch and dm_bufio_client_count
1075 */
1076 static DEFINE_MUTEX(dm_bufio_clients_lock);
1077
1078 static struct workqueue_struct *dm_bufio_wq;
1079 static struct work_struct dm_bufio_replacement_work;
1080
1081
1082 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
buffer_record_stack(struct dm_buffer * b)1083 static void buffer_record_stack(struct dm_buffer *b)
1084 {
1085 b->stack_len = stack_trace_save(b->stack_entries, MAX_STACK, 2);
1086 }
1087 #endif
1088
1089 /*----------------------------------------------------------------*/
1090
adjust_total_allocated(struct dm_buffer * b,bool unlink)1091 static void adjust_total_allocated(struct dm_buffer *b, bool unlink)
1092 {
1093 unsigned char data_mode;
1094 long diff;
1095
1096 static unsigned long * const class_ptr[DATA_MODE_LIMIT] = {
1097 &dm_bufio_allocated_kmem_cache,
1098 &dm_bufio_allocated_kmalloc,
1099 &dm_bufio_allocated_get_free_pages,
1100 &dm_bufio_allocated_vmalloc,
1101 };
1102
1103 data_mode = b->data_mode;
1104 diff = (long)b->c->block_size;
1105 if (unlink)
1106 diff = -diff;
1107
1108 spin_lock(&global_spinlock);
1109
1110 *class_ptr[data_mode] += diff;
1111
1112 dm_bufio_current_allocated += diff;
1113
1114 if (dm_bufio_current_allocated > dm_bufio_peak_allocated)
1115 dm_bufio_peak_allocated = dm_bufio_current_allocated;
1116
1117 if (!unlink) {
1118 if (dm_bufio_current_allocated > dm_bufio_cache_size)
1119 queue_work(dm_bufio_wq, &dm_bufio_replacement_work);
1120 }
1121
1122 spin_unlock(&global_spinlock);
1123 }
1124
1125 /*
1126 * Change the number of clients and recalculate per-client limit.
1127 */
__cache_size_refresh(void)1128 static void __cache_size_refresh(void)
1129 {
1130 if (WARN_ON(!mutex_is_locked(&dm_bufio_clients_lock)))
1131 return;
1132 if (WARN_ON(dm_bufio_client_count < 0))
1133 return;
1134
1135 dm_bufio_cache_size_latch = READ_ONCE(dm_bufio_cache_size);
1136
1137 /*
1138 * Use default if set to 0 and report the actual cache size used.
1139 */
1140 if (!dm_bufio_cache_size_latch) {
1141 (void)cmpxchg(&dm_bufio_cache_size, 0,
1142 dm_bufio_default_cache_size);
1143 dm_bufio_cache_size_latch = dm_bufio_default_cache_size;
1144 }
1145 }
1146
1147 /*
1148 * Allocating buffer data.
1149 *
1150 * Small buffers are allocated with kmem_cache, to use space optimally.
1151 *
1152 * For large buffers, we choose between get_free_pages and vmalloc.
1153 * Each has advantages and disadvantages.
1154 *
1155 * __get_free_pages can randomly fail if the memory is fragmented.
1156 * __vmalloc won't randomly fail, but vmalloc space is limited (it may be
1157 * as low as 128M) so using it for caching is not appropriate.
1158 *
1159 * If the allocation may fail we use __get_free_pages. Memory fragmentation
1160 * won't have a fatal effect here, but it just causes flushes of some other
1161 * buffers and more I/O will be performed. Don't use __get_free_pages if it
1162 * always fails (i.e. order > MAX_PAGE_ORDER).
1163 *
1164 * If the allocation shouldn't fail we use __vmalloc. This is only for the
1165 * initial reserve allocation, so there's no risk of wasting all vmalloc
1166 * space.
1167 */
alloc_buffer_data(struct dm_bufio_client * c,gfp_t gfp_mask,unsigned char * data_mode)1168 static void *alloc_buffer_data(struct dm_bufio_client *c, gfp_t gfp_mask,
1169 unsigned char *data_mode)
1170 {
1171 if (unlikely(c->slab_cache != NULL)) {
1172 *data_mode = DATA_MODE_SLAB;
1173 return kmem_cache_alloc(c->slab_cache, gfp_mask);
1174 }
1175
1176 if (unlikely(c->block_size < PAGE_SIZE)) {
1177 *data_mode = DATA_MODE_KMALLOC;
1178 return kmalloc(c->block_size, gfp_mask | __GFP_RECLAIMABLE);
1179 }
1180
1181 if (c->block_size <= KMALLOC_MAX_SIZE &&
1182 gfp_mask & __GFP_NORETRY) {
1183 *data_mode = DATA_MODE_GET_FREE_PAGES;
1184 return (void *)__get_free_pages(gfp_mask,
1185 c->sectors_per_block_bits - (PAGE_SHIFT - SECTOR_SHIFT));
1186 }
1187
1188 *data_mode = DATA_MODE_VMALLOC;
1189
1190 return __vmalloc(c->block_size, gfp_mask);
1191 }
1192
1193 /*
1194 * Free buffer's data.
1195 */
free_buffer_data(struct dm_bufio_client * c,void * data,unsigned char data_mode)1196 static void free_buffer_data(struct dm_bufio_client *c,
1197 void *data, unsigned char data_mode)
1198 {
1199 switch (data_mode) {
1200 case DATA_MODE_SLAB:
1201 kmem_cache_free(c->slab_cache, data);
1202 break;
1203
1204 case DATA_MODE_KMALLOC:
1205 kfree(data);
1206 break;
1207
1208 case DATA_MODE_GET_FREE_PAGES:
1209 free_pages((unsigned long)data,
1210 c->sectors_per_block_bits - (PAGE_SHIFT - SECTOR_SHIFT));
1211 break;
1212
1213 case DATA_MODE_VMALLOC:
1214 vfree(data);
1215 break;
1216
1217 default:
1218 DMCRIT("dm_bufio_free_buffer_data: bad data mode: %d",
1219 data_mode);
1220 BUG();
1221 }
1222 }
1223
1224 /*
1225 * Allocate buffer and its data.
1226 */
alloc_buffer(struct dm_bufio_client * c,gfp_t gfp_mask)1227 static struct dm_buffer *alloc_buffer(struct dm_bufio_client *c, gfp_t gfp_mask)
1228 {
1229 struct dm_buffer *b = kmem_cache_alloc(c->slab_buffer, gfp_mask);
1230
1231 if (!b)
1232 return NULL;
1233
1234 b->c = c;
1235
1236 b->data = alloc_buffer_data(c, gfp_mask, &b->data_mode);
1237 if (!b->data) {
1238 kmem_cache_free(c->slab_buffer, b);
1239 return NULL;
1240 }
1241 adjust_total_allocated(b, false);
1242
1243 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
1244 b->stack_len = 0;
1245 #endif
1246 return b;
1247 }
1248
1249 /*
1250 * Free buffer and its data.
1251 */
free_buffer(struct dm_buffer * b)1252 static void free_buffer(struct dm_buffer *b)
1253 {
1254 struct dm_bufio_client *c = b->c;
1255
1256 adjust_total_allocated(b, true);
1257 free_buffer_data(c, b->data, b->data_mode);
1258 kmem_cache_free(c->slab_buffer, b);
1259 }
1260
1261 /*
1262 *--------------------------------------------------------------------------
1263 * Submit I/O on the buffer.
1264 *
1265 * Bio interface is faster but it has some problems:
1266 * the vector list is limited (increasing this limit increases
1267 * memory-consumption per buffer, so it is not viable);
1268 *
1269 * the memory must be direct-mapped, not vmalloced;
1270 *
1271 * If the buffer is small enough (up to DM_BUFIO_INLINE_VECS pages) and
1272 * it is not vmalloced, try using the bio interface.
1273 *
1274 * If the buffer is big, if it is vmalloced or if the underlying device
1275 * rejects the bio because it is too large, use dm-io layer to do the I/O.
1276 * The dm-io layer splits the I/O into multiple requests, avoiding the above
1277 * shortcomings.
1278 *--------------------------------------------------------------------------
1279 */
1280
1281 /*
1282 * dm-io completion routine. It just calls b->bio.bi_end_io, pretending
1283 * that the request was handled directly with bio interface.
1284 */
dmio_complete(unsigned long error,void * context)1285 static void dmio_complete(unsigned long error, void *context)
1286 {
1287 struct dm_buffer *b = context;
1288
1289 b->end_io(b, unlikely(error != 0) ? BLK_STS_IOERR : 0);
1290 }
1291
use_dmio(struct dm_buffer * b,enum req_op op,sector_t sector,unsigned int n_sectors,unsigned int offset,unsigned short ioprio)1292 static void use_dmio(struct dm_buffer *b, enum req_op op, sector_t sector,
1293 unsigned int n_sectors, unsigned int offset,
1294 unsigned short ioprio)
1295 {
1296 int r;
1297 struct dm_io_request io_req = {
1298 .bi_opf = op,
1299 .notify.fn = dmio_complete,
1300 .notify.context = b,
1301 .client = b->c->dm_io,
1302 };
1303 struct dm_io_region region = {
1304 .bdev = b->c->bdev,
1305 .sector = sector,
1306 .count = n_sectors,
1307 };
1308
1309 if (b->data_mode != DATA_MODE_VMALLOC) {
1310 io_req.mem.type = DM_IO_KMEM;
1311 io_req.mem.ptr.addr = (char *)b->data + offset;
1312 } else {
1313 io_req.mem.type = DM_IO_VMA;
1314 io_req.mem.ptr.vma = (char *)b->data + offset;
1315 }
1316
1317 r = dm_io(&io_req, 1, ®ion, NULL, ioprio);
1318 if (unlikely(r))
1319 b->end_io(b, errno_to_blk_status(r));
1320 }
1321
bio_complete(struct bio * bio)1322 static void bio_complete(struct bio *bio)
1323 {
1324 struct dm_buffer *b = bio->bi_private;
1325 blk_status_t status = bio->bi_status;
1326
1327 bio_uninit(bio);
1328 kfree(bio);
1329 b->end_io(b, status);
1330 }
1331
use_bio(struct dm_buffer * b,enum req_op op,sector_t sector,unsigned int n_sectors,unsigned int offset,unsigned short ioprio)1332 static void use_bio(struct dm_buffer *b, enum req_op op, sector_t sector,
1333 unsigned int n_sectors, unsigned int offset,
1334 unsigned short ioprio)
1335 {
1336 struct bio *bio;
1337 char *ptr;
1338 unsigned int len;
1339
1340 bio = bio_kmalloc(1, GFP_NOWAIT);
1341 if (!bio) {
1342 use_dmio(b, op, sector, n_sectors, offset, ioprio);
1343 return;
1344 }
1345 bio_init_inline(bio, b->c->bdev, 1, op);
1346 bio->bi_iter.bi_sector = sector;
1347 bio->bi_end_io = bio_complete;
1348 bio->bi_private = b;
1349 bio->bi_ioprio = ioprio;
1350
1351 ptr = (char *)b->data + offset;
1352 len = n_sectors << SECTOR_SHIFT;
1353
1354 bio_add_virt_nofail(bio, ptr, len);
1355
1356 submit_bio(bio);
1357 }
1358
block_to_sector(struct dm_bufio_client * c,sector_t block)1359 static inline sector_t block_to_sector(struct dm_bufio_client *c, sector_t block)
1360 {
1361 sector_t sector;
1362
1363 if (likely(c->sectors_per_block_bits >= 0))
1364 sector = block << c->sectors_per_block_bits;
1365 else
1366 sector = block * (c->block_size >> SECTOR_SHIFT);
1367 sector += c->start;
1368
1369 return sector;
1370 }
1371
submit_io(struct dm_buffer * b,enum req_op op,unsigned short ioprio,void (* end_io)(struct dm_buffer *,blk_status_t))1372 static void submit_io(struct dm_buffer *b, enum req_op op, unsigned short ioprio,
1373 void (*end_io)(struct dm_buffer *, blk_status_t))
1374 {
1375 unsigned int n_sectors;
1376 sector_t sector;
1377 unsigned int offset, end, align;
1378
1379 b->end_io = end_io;
1380
1381 sector = block_to_sector(b->c, b->block);
1382
1383 if (op != REQ_OP_WRITE) {
1384 n_sectors = b->c->block_size >> SECTOR_SHIFT;
1385 offset = 0;
1386 } else {
1387 if (b->c->write_callback)
1388 b->c->write_callback(b);
1389 offset = b->write_start;
1390 end = b->write_end;
1391 align = max(DM_BUFIO_WRITE_ALIGN,
1392 bdev_physical_block_size(b->c->bdev));
1393 offset &= -align;
1394 end += align - 1;
1395 end &= -align;
1396 if (unlikely(end > b->c->block_size))
1397 end = b->c->block_size;
1398
1399 sector += offset >> SECTOR_SHIFT;
1400 n_sectors = (end - offset) >> SECTOR_SHIFT;
1401 }
1402
1403 if (b->data_mode != DATA_MODE_VMALLOC)
1404 use_bio(b, op, sector, n_sectors, offset, ioprio);
1405 else
1406 use_dmio(b, op, sector, n_sectors, offset, ioprio);
1407 }
1408
1409 /*
1410 *--------------------------------------------------------------
1411 * Writing dirty buffers
1412 *--------------------------------------------------------------
1413 */
1414
1415 /*
1416 * The endio routine for write.
1417 *
1418 * Set the error, clear B_WRITING bit and wake anyone who was waiting on
1419 * it.
1420 */
write_endio(struct dm_buffer * b,blk_status_t status)1421 static void write_endio(struct dm_buffer *b, blk_status_t status)
1422 {
1423 b->write_error = status;
1424 if (unlikely(status)) {
1425 struct dm_bufio_client *c = b->c;
1426
1427 (void)cmpxchg(&c->async_write_error, 0,
1428 blk_status_to_errno(status));
1429 }
1430
1431 BUG_ON(!test_bit(B_WRITING, &b->state));
1432
1433 smp_mb__before_atomic();
1434 clear_bit(B_WRITING, &b->state);
1435 smp_mb__after_atomic();
1436
1437 wake_up_bit(&b->state, B_WRITING);
1438 }
1439
1440 /*
1441 * Initiate a write on a dirty buffer, but don't wait for it.
1442 *
1443 * - If the buffer is not dirty, exit.
1444 * - If there some previous write going on, wait for it to finish (we can't
1445 * have two writes on the same buffer simultaneously).
1446 * - Submit our write and don't wait on it. We set B_WRITING indicating
1447 * that there is a write in progress.
1448 */
__write_dirty_buffer(struct dm_buffer * b,struct list_head * write_list)1449 static void __write_dirty_buffer(struct dm_buffer *b,
1450 struct list_head *write_list)
1451 {
1452 if (!test_bit(B_DIRTY, &b->state))
1453 return;
1454
1455 clear_bit(B_DIRTY, &b->state);
1456 wait_on_bit_lock_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE);
1457
1458 b->write_start = b->dirty_start;
1459 b->write_end = b->dirty_end;
1460
1461 if (!write_list)
1462 submit_io(b, REQ_OP_WRITE, IOPRIO_DEFAULT, write_endio);
1463 else
1464 list_add_tail(&b->write_list, write_list);
1465 }
1466
__flush_write_list(struct list_head * write_list)1467 static void __flush_write_list(struct list_head *write_list)
1468 {
1469 struct blk_plug plug;
1470
1471 blk_start_plug(&plug);
1472 while (!list_empty(write_list)) {
1473 struct dm_buffer *b =
1474 list_entry(write_list->next, struct dm_buffer, write_list);
1475 list_del(&b->write_list);
1476 submit_io(b, REQ_OP_WRITE, IOPRIO_DEFAULT, write_endio);
1477 cond_resched();
1478 }
1479 blk_finish_plug(&plug);
1480 }
1481
1482 /*
1483 * Wait until any activity on the buffer finishes. Possibly write the
1484 * buffer if it is dirty. When this function finishes, there is no I/O
1485 * running on the buffer and the buffer is not dirty.
1486 */
__make_buffer_clean(struct dm_buffer * b)1487 static void __make_buffer_clean(struct dm_buffer *b)
1488 {
1489 BUG_ON(atomic_read(&b->hold_count));
1490
1491 /* smp_load_acquire() pairs with read_endio()'s smp_mb__before_atomic() */
1492 if (!smp_load_acquire(&b->state)) /* fast case */
1493 return;
1494
1495 wait_on_bit_io(&b->state, B_READING, TASK_UNINTERRUPTIBLE);
1496 __write_dirty_buffer(b, NULL);
1497 wait_on_bit_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE);
1498 }
1499
is_clean(struct dm_buffer * b,void * context)1500 static enum evict_result is_clean(struct dm_buffer *b, void *context)
1501 {
1502 struct dm_bufio_client *c = context;
1503
1504 /* These should never happen */
1505 if (WARN_ON_ONCE(test_bit(B_WRITING, &b->state)))
1506 return ER_DONT_EVICT;
1507 if (WARN_ON_ONCE(test_bit(B_DIRTY, &b->state)))
1508 return ER_DONT_EVICT;
1509 if (WARN_ON_ONCE(b->list_mode != LIST_CLEAN))
1510 return ER_DONT_EVICT;
1511
1512 if (static_branch_unlikely(&no_sleep_enabled) && c->no_sleep &&
1513 unlikely(test_bit(B_READING, &b->state)))
1514 return ER_DONT_EVICT;
1515
1516 return ER_EVICT;
1517 }
1518
is_dirty(struct dm_buffer * b,void * context)1519 static enum evict_result is_dirty(struct dm_buffer *b, void *context)
1520 {
1521 /* These should never happen */
1522 if (WARN_ON_ONCE(test_bit(B_READING, &b->state)))
1523 return ER_DONT_EVICT;
1524 if (WARN_ON_ONCE(b->list_mode != LIST_DIRTY))
1525 return ER_DONT_EVICT;
1526
1527 return ER_EVICT;
1528 }
1529
1530 /*
1531 * Find some buffer that is not held by anybody, clean it, unlink it and
1532 * return it.
1533 */
__get_unclaimed_buffer(struct dm_bufio_client * c)1534 static struct dm_buffer *__get_unclaimed_buffer(struct dm_bufio_client *c)
1535 {
1536 struct dm_buffer *b;
1537
1538 b = cache_evict(&c->cache, LIST_CLEAN, is_clean, c);
1539 if (b) {
1540 /* this also waits for pending reads */
1541 __make_buffer_clean(b);
1542 return b;
1543 }
1544
1545 if (static_branch_unlikely(&no_sleep_enabled) && c->no_sleep)
1546 return NULL;
1547
1548 b = cache_evict(&c->cache, LIST_DIRTY, is_dirty, NULL);
1549 if (b) {
1550 __make_buffer_clean(b);
1551 return b;
1552 }
1553
1554 return NULL;
1555 }
1556
1557 /*
1558 * Wait until some other threads free some buffer or release hold count on
1559 * some buffer.
1560 *
1561 * This function is entered with c->lock held, drops it and regains it
1562 * before exiting.
1563 */
__wait_for_free_buffer(struct dm_bufio_client * c)1564 static void __wait_for_free_buffer(struct dm_bufio_client *c)
1565 {
1566 DECLARE_WAITQUEUE(wait, current);
1567
1568 add_wait_queue(&c->free_buffer_wait, &wait);
1569 set_current_state(TASK_UNINTERRUPTIBLE);
1570 dm_bufio_unlock(c);
1571
1572 /*
1573 * It's possible to miss a wake up event since we don't always
1574 * hold c->lock when wake_up is called. So we have a timeout here,
1575 * just in case.
1576 */
1577 io_schedule_timeout(5 * HZ);
1578
1579 remove_wait_queue(&c->free_buffer_wait, &wait);
1580
1581 dm_bufio_lock(c);
1582 }
1583
1584 enum new_flag {
1585 NF_FRESH = 0,
1586 NF_READ = 1,
1587 NF_GET = 2,
1588 NF_PREFETCH = 3
1589 };
1590
1591 /*
1592 * Allocate a new buffer. If the allocation is not possible, wait until
1593 * some other thread frees a buffer.
1594 *
1595 * May drop the lock and regain it.
1596 */
__alloc_buffer_wait_no_callback(struct dm_bufio_client * c,enum new_flag nf)1597 static struct dm_buffer *__alloc_buffer_wait_no_callback(struct dm_bufio_client *c, enum new_flag nf)
1598 {
1599 struct dm_buffer *b;
1600 bool tried_noio_alloc = false;
1601
1602 /*
1603 * dm-bufio is resistant to allocation failures (it just keeps
1604 * one buffer reserved in cases all the allocations fail).
1605 * So set flags to not try too hard:
1606 * GFP_NOWAIT: don't wait and don't print a warning in case of
1607 * failure; if we need to sleep we'll release our mutex
1608 * and wait ourselves.
1609 * __GFP_NORETRY: don't retry and rather return failure
1610 * __GFP_NOMEMALLOC: don't use emergency reserves
1611 *
1612 * For debugging, if we set the cache size to 1, no new buffers will
1613 * be allocated.
1614 */
1615 while (1) {
1616 if (dm_bufio_cache_size_latch != 1) {
1617 b = alloc_buffer(c, GFP_NOWAIT | __GFP_NORETRY | __GFP_NOMEMALLOC);
1618 if (b)
1619 return b;
1620 }
1621
1622 if (nf == NF_PREFETCH)
1623 return NULL;
1624
1625 if (dm_bufio_cache_size_latch != 1 && !tried_noio_alloc) {
1626 dm_bufio_unlock(c);
1627 b = alloc_buffer(c, GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
1628 dm_bufio_lock(c);
1629 if (b)
1630 return b;
1631 tried_noio_alloc = true;
1632 }
1633
1634 if (!list_empty(&c->reserved_buffers)) {
1635 b = list_to_buffer(c->reserved_buffers.next);
1636 list_del(&b->lru.list);
1637 c->need_reserved_buffers++;
1638
1639 return b;
1640 }
1641
1642 b = __get_unclaimed_buffer(c);
1643 if (b)
1644 return b;
1645
1646 __wait_for_free_buffer(c);
1647 }
1648 }
1649
__alloc_buffer_wait(struct dm_bufio_client * c,enum new_flag nf)1650 static struct dm_buffer *__alloc_buffer_wait(struct dm_bufio_client *c, enum new_flag nf)
1651 {
1652 struct dm_buffer *b = __alloc_buffer_wait_no_callback(c, nf);
1653
1654 if (!b)
1655 return NULL;
1656
1657 if (c->alloc_callback)
1658 c->alloc_callback(b);
1659
1660 return b;
1661 }
1662
1663 /*
1664 * Free a buffer and wake other threads waiting for free buffers.
1665 */
__free_buffer_wake(struct dm_buffer * b)1666 static void __free_buffer_wake(struct dm_buffer *b)
1667 {
1668 struct dm_bufio_client *c = b->c;
1669
1670 b->block = -1;
1671 if (!c->need_reserved_buffers)
1672 free_buffer(b);
1673 else {
1674 list_add(&b->lru.list, &c->reserved_buffers);
1675 c->need_reserved_buffers--;
1676 }
1677
1678 /*
1679 * We hold the bufio lock here, so no one can add entries to the
1680 * wait queue anyway.
1681 */
1682 if (unlikely(waitqueue_active(&c->free_buffer_wait)))
1683 wake_up(&c->free_buffer_wait);
1684 }
1685
cleaned(struct dm_buffer * b,void * context)1686 static enum evict_result cleaned(struct dm_buffer *b, void *context)
1687 {
1688 if (WARN_ON_ONCE(test_bit(B_READING, &b->state)))
1689 return ER_DONT_EVICT; /* should never happen */
1690
1691 if (test_bit(B_DIRTY, &b->state) || test_bit(B_WRITING, &b->state))
1692 return ER_DONT_EVICT;
1693 else
1694 return ER_EVICT;
1695 }
1696
__move_clean_buffers(struct dm_bufio_client * c)1697 static void __move_clean_buffers(struct dm_bufio_client *c)
1698 {
1699 cache_mark_many(&c->cache, LIST_DIRTY, LIST_CLEAN, cleaned, NULL);
1700 }
1701
1702 struct write_context {
1703 int no_wait;
1704 struct list_head *write_list;
1705 };
1706
write_one(struct dm_buffer * b,void * context)1707 static enum it_action write_one(struct dm_buffer *b, void *context)
1708 {
1709 struct write_context *wc = context;
1710
1711 if (wc->no_wait && test_bit(B_WRITING, &b->state))
1712 return IT_COMPLETE;
1713
1714 __write_dirty_buffer(b, wc->write_list);
1715 return IT_NEXT;
1716 }
1717
__write_dirty_buffers_async(struct dm_bufio_client * c,int no_wait,struct list_head * write_list)1718 static void __write_dirty_buffers_async(struct dm_bufio_client *c, int no_wait,
1719 struct list_head *write_list)
1720 {
1721 struct write_context wc = {.no_wait = no_wait, .write_list = write_list};
1722
1723 __move_clean_buffers(c);
1724 cache_iterate(&c->cache, LIST_DIRTY, write_one, &wc);
1725 }
1726
1727 /*
1728 * Check if we're over watermark.
1729 * If we are over threshold_buffers, start freeing buffers.
1730 * If we're over "limit_buffers", block until we get under the limit.
1731 */
__check_watermark(struct dm_bufio_client * c,struct list_head * write_list)1732 static void __check_watermark(struct dm_bufio_client *c,
1733 struct list_head *write_list)
1734 {
1735 if (cache_count(&c->cache, LIST_DIRTY) >
1736 cache_count(&c->cache, LIST_CLEAN) * DM_BUFIO_WRITEBACK_RATIO)
1737 __write_dirty_buffers_async(c, 1, write_list);
1738 }
1739
1740 /*
1741 *--------------------------------------------------------------
1742 * Getting a buffer
1743 *--------------------------------------------------------------
1744 */
1745
cache_put_and_wake(struct dm_bufio_client * c,struct dm_buffer * b)1746 static void cache_put_and_wake(struct dm_bufio_client *c, struct dm_buffer *b)
1747 {
1748 /*
1749 * Relying on waitqueue_active() is racey, but we sleep
1750 * with schedule_timeout anyway.
1751 */
1752 if (cache_put(&c->cache, b) &&
1753 unlikely(waitqueue_active(&c->free_buffer_wait)))
1754 wake_up(&c->free_buffer_wait);
1755 }
1756
1757 /*
1758 * This assumes you have already checked the cache to see if the buffer
1759 * is already present (it will recheck after dropping the lock for allocation).
1760 */
__bufio_new(struct dm_bufio_client * c,sector_t block,enum new_flag nf,int * need_submit,struct list_head * write_list)1761 static struct dm_buffer *__bufio_new(struct dm_bufio_client *c, sector_t block,
1762 enum new_flag nf, int *need_submit,
1763 struct list_head *write_list)
1764 {
1765 struct dm_buffer *b, *new_b = NULL;
1766
1767 *need_submit = 0;
1768
1769 /* This can't be called with NF_GET */
1770 if (WARN_ON_ONCE(nf == NF_GET))
1771 return NULL;
1772
1773 new_b = __alloc_buffer_wait(c, nf);
1774 if (!new_b)
1775 return NULL;
1776
1777 /*
1778 * We've had a period where the mutex was unlocked, so need to
1779 * recheck the buffer tree.
1780 */
1781 b = cache_get(&c->cache, block);
1782 if (b) {
1783 __free_buffer_wake(new_b);
1784 goto found_buffer;
1785 }
1786
1787 __check_watermark(c, write_list);
1788
1789 b = new_b;
1790 atomic_set(&b->hold_count, 1);
1791 WRITE_ONCE(b->last_accessed, jiffies);
1792 b->block = block;
1793 b->read_error = 0;
1794 b->write_error = 0;
1795 b->list_mode = LIST_CLEAN;
1796
1797 if (nf == NF_FRESH)
1798 b->state = 0;
1799 else {
1800 b->state = 1 << B_READING;
1801 *need_submit = 1;
1802 }
1803
1804 /*
1805 * We mustn't insert into the cache until the B_READING state
1806 * is set. Otherwise another thread could get it and use
1807 * it before it had been read.
1808 */
1809 cache_insert(&c->cache, b);
1810
1811 return b;
1812
1813 found_buffer:
1814 if (nf == NF_PREFETCH) {
1815 cache_put_and_wake(c, b);
1816 return NULL;
1817 }
1818
1819 /*
1820 * Note: it is essential that we don't wait for the buffer to be
1821 * read if dm_bufio_get function is used. Both dm_bufio_get and
1822 * dm_bufio_prefetch can be used in the driver request routine.
1823 * If the user called both dm_bufio_prefetch and dm_bufio_get on
1824 * the same buffer, it would deadlock if we waited.
1825 */
1826 if (nf == NF_GET && unlikely(test_bit_acquire(B_READING, &b->state))) {
1827 cache_put_and_wake(c, b);
1828 return NULL;
1829 }
1830
1831 return b;
1832 }
1833
1834 /*
1835 * The endio routine for reading: set the error, clear the bit and wake up
1836 * anyone waiting on the buffer.
1837 */
read_endio(struct dm_buffer * b,blk_status_t status)1838 static void read_endio(struct dm_buffer *b, blk_status_t status)
1839 {
1840 b->read_error = status;
1841
1842 BUG_ON(!test_bit(B_READING, &b->state));
1843
1844 smp_mb__before_atomic();
1845 clear_bit(B_READING, &b->state);
1846 smp_mb__after_atomic();
1847
1848 wake_up_bit(&b->state, B_READING);
1849 }
1850
1851 /*
1852 * A common routine for dm_bufio_new and dm_bufio_read. Operation of these
1853 * functions is similar except that dm_bufio_new doesn't read the
1854 * buffer from the disk (assuming that the caller overwrites all the data
1855 * and uses dm_bufio_mark_buffer_dirty to write new data back).
1856 */
new_read(struct dm_bufio_client * c,sector_t block,enum new_flag nf,struct dm_buffer ** bp,unsigned short ioprio)1857 static void *new_read(struct dm_bufio_client *c, sector_t block,
1858 enum new_flag nf, struct dm_buffer **bp,
1859 unsigned short ioprio)
1860 {
1861 int need_submit = 0;
1862 struct dm_buffer *b;
1863
1864 LIST_HEAD(write_list);
1865
1866 *bp = NULL;
1867
1868 /*
1869 * Fast path, hopefully the block is already in the cache. No need
1870 * to get the client lock for this.
1871 */
1872 b = cache_get(&c->cache, block);
1873 if (b) {
1874 if (nf == NF_PREFETCH) {
1875 cache_put_and_wake(c, b);
1876 return NULL;
1877 }
1878
1879 /*
1880 * Note: it is essential that we don't wait for the buffer to be
1881 * read if dm_bufio_get function is used. Both dm_bufio_get and
1882 * dm_bufio_prefetch can be used in the driver request routine.
1883 * If the user called both dm_bufio_prefetch and dm_bufio_get on
1884 * the same buffer, it would deadlock if we waited.
1885 */
1886 if (nf == NF_GET && unlikely(test_bit_acquire(B_READING, &b->state))) {
1887 cache_put_and_wake(c, b);
1888 return NULL;
1889 }
1890 }
1891
1892 if (!b) {
1893 if (nf == NF_GET)
1894 return NULL;
1895
1896 dm_bufio_lock(c);
1897 b = __bufio_new(c, block, nf, &need_submit, &write_list);
1898 dm_bufio_unlock(c);
1899 }
1900
1901 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
1902 if (b && (atomic_read(&b->hold_count) == 1))
1903 buffer_record_stack(b);
1904 #endif
1905
1906 __flush_write_list(&write_list);
1907
1908 if (!b)
1909 return NULL;
1910
1911 if (need_submit)
1912 submit_io(b, REQ_OP_READ, ioprio, read_endio);
1913
1914 if (nf != NF_GET) /* we already tested this condition above */
1915 wait_on_bit_io(&b->state, B_READING, TASK_UNINTERRUPTIBLE);
1916
1917 if (b->read_error) {
1918 int error = blk_status_to_errno(b->read_error);
1919
1920 dm_bufio_release(b);
1921
1922 return ERR_PTR(error);
1923 }
1924
1925 *bp = b;
1926
1927 return b->data;
1928 }
1929
dm_bufio_get(struct dm_bufio_client * c,sector_t block,struct dm_buffer ** bp)1930 void *dm_bufio_get(struct dm_bufio_client *c, sector_t block,
1931 struct dm_buffer **bp)
1932 {
1933 return new_read(c, block, NF_GET, bp, IOPRIO_DEFAULT);
1934 }
1935 EXPORT_SYMBOL_GPL(dm_bufio_get);
1936
__dm_bufio_read(struct dm_bufio_client * c,sector_t block,struct dm_buffer ** bp,unsigned short ioprio)1937 static void *__dm_bufio_read(struct dm_bufio_client *c, sector_t block,
1938 struct dm_buffer **bp, unsigned short ioprio)
1939 {
1940 if (WARN_ON_ONCE(dm_bufio_in_request()))
1941 return ERR_PTR(-EINVAL);
1942
1943 return new_read(c, block, NF_READ, bp, ioprio);
1944 }
1945
dm_bufio_read(struct dm_bufio_client * c,sector_t block,struct dm_buffer ** bp)1946 void *dm_bufio_read(struct dm_bufio_client *c, sector_t block,
1947 struct dm_buffer **bp)
1948 {
1949 return __dm_bufio_read(c, block, bp, IOPRIO_DEFAULT);
1950 }
1951 EXPORT_SYMBOL_GPL(dm_bufio_read);
1952
dm_bufio_read_with_ioprio(struct dm_bufio_client * c,sector_t block,struct dm_buffer ** bp,unsigned short ioprio)1953 void *dm_bufio_read_with_ioprio(struct dm_bufio_client *c, sector_t block,
1954 struct dm_buffer **bp, unsigned short ioprio)
1955 {
1956 return __dm_bufio_read(c, block, bp, ioprio);
1957 }
1958 EXPORT_SYMBOL_GPL(dm_bufio_read_with_ioprio);
1959
dm_bufio_new(struct dm_bufio_client * c,sector_t block,struct dm_buffer ** bp)1960 void *dm_bufio_new(struct dm_bufio_client *c, sector_t block,
1961 struct dm_buffer **bp)
1962 {
1963 if (WARN_ON_ONCE(dm_bufio_in_request()))
1964 return ERR_PTR(-EINVAL);
1965
1966 return new_read(c, block, NF_FRESH, bp, IOPRIO_DEFAULT);
1967 }
1968 EXPORT_SYMBOL_GPL(dm_bufio_new);
1969
__dm_bufio_prefetch(struct dm_bufio_client * c,sector_t block,unsigned int n_blocks,unsigned short ioprio)1970 static void __dm_bufio_prefetch(struct dm_bufio_client *c,
1971 sector_t block, unsigned int n_blocks,
1972 unsigned short ioprio)
1973 {
1974 struct blk_plug plug;
1975
1976 LIST_HEAD(write_list);
1977
1978 if (WARN_ON_ONCE(dm_bufio_in_request()))
1979 return; /* should never happen */
1980
1981 blk_start_plug(&plug);
1982
1983 for (; n_blocks--; block++) {
1984 int need_submit;
1985 struct dm_buffer *b;
1986
1987 b = cache_get(&c->cache, block);
1988 if (b) {
1989 /* already in cache */
1990 cache_put_and_wake(c, b);
1991 continue;
1992 }
1993
1994 dm_bufio_lock(c);
1995 b = __bufio_new(c, block, NF_PREFETCH, &need_submit,
1996 &write_list);
1997 if (unlikely(!list_empty(&write_list))) {
1998 dm_bufio_unlock(c);
1999 blk_finish_plug(&plug);
2000 __flush_write_list(&write_list);
2001 blk_start_plug(&plug);
2002 dm_bufio_lock(c);
2003 }
2004 if (unlikely(b != NULL)) {
2005 dm_bufio_unlock(c);
2006
2007 if (need_submit)
2008 submit_io(b, REQ_OP_READ, ioprio, read_endio);
2009 dm_bufio_release(b);
2010
2011 cond_resched();
2012
2013 if (!n_blocks)
2014 goto flush_plug;
2015 dm_bufio_lock(c);
2016 }
2017 dm_bufio_unlock(c);
2018 }
2019
2020 flush_plug:
2021 blk_finish_plug(&plug);
2022 }
2023
dm_bufio_prefetch(struct dm_bufio_client * c,sector_t block,unsigned int n_blocks)2024 void dm_bufio_prefetch(struct dm_bufio_client *c, sector_t block, unsigned int n_blocks)
2025 {
2026 return __dm_bufio_prefetch(c, block, n_blocks, IOPRIO_DEFAULT);
2027 }
2028 EXPORT_SYMBOL_GPL(dm_bufio_prefetch);
2029
dm_bufio_prefetch_with_ioprio(struct dm_bufio_client * c,sector_t block,unsigned int n_blocks,unsigned short ioprio)2030 void dm_bufio_prefetch_with_ioprio(struct dm_bufio_client *c, sector_t block,
2031 unsigned int n_blocks, unsigned short ioprio)
2032 {
2033 return __dm_bufio_prefetch(c, block, n_blocks, ioprio);
2034 }
2035 EXPORT_SYMBOL_GPL(dm_bufio_prefetch_with_ioprio);
2036
dm_bufio_release(struct dm_buffer * b)2037 void dm_bufio_release(struct dm_buffer *b)
2038 {
2039 struct dm_bufio_client *c = b->c;
2040
2041 /*
2042 * If there were errors on the buffer, and the buffer is not
2043 * to be written, free the buffer. There is no point in caching
2044 * invalid buffer.
2045 */
2046 if ((b->read_error || b->write_error) &&
2047 !test_bit_acquire(B_READING, &b->state) &&
2048 !test_bit(B_WRITING, &b->state) &&
2049 !test_bit(B_DIRTY, &b->state)) {
2050 dm_bufio_lock(c);
2051
2052 /* cache remove can fail if there are other holders */
2053 if (cache_remove(&c->cache, b)) {
2054 __free_buffer_wake(b);
2055 dm_bufio_unlock(c);
2056 return;
2057 }
2058
2059 dm_bufio_unlock(c);
2060 }
2061
2062 cache_put_and_wake(c, b);
2063 }
2064 EXPORT_SYMBOL_GPL(dm_bufio_release);
2065
dm_bufio_mark_partial_buffer_dirty(struct dm_buffer * b,unsigned int start,unsigned int end)2066 void dm_bufio_mark_partial_buffer_dirty(struct dm_buffer *b,
2067 unsigned int start, unsigned int end)
2068 {
2069 struct dm_bufio_client *c = b->c;
2070
2071 BUG_ON(start >= end);
2072 BUG_ON(end > b->c->block_size);
2073
2074 dm_bufio_lock(c);
2075
2076 BUG_ON(test_bit(B_READING, &b->state));
2077
2078 if (!test_and_set_bit(B_DIRTY, &b->state)) {
2079 b->dirty_start = start;
2080 b->dirty_end = end;
2081 cache_mark(&c->cache, b, LIST_DIRTY);
2082 } else {
2083 if (start < b->dirty_start)
2084 b->dirty_start = start;
2085 if (end > b->dirty_end)
2086 b->dirty_end = end;
2087 }
2088
2089 dm_bufio_unlock(c);
2090 }
2091 EXPORT_SYMBOL_GPL(dm_bufio_mark_partial_buffer_dirty);
2092
dm_bufio_mark_buffer_dirty(struct dm_buffer * b)2093 void dm_bufio_mark_buffer_dirty(struct dm_buffer *b)
2094 {
2095 dm_bufio_mark_partial_buffer_dirty(b, 0, b->c->block_size);
2096 }
2097 EXPORT_SYMBOL_GPL(dm_bufio_mark_buffer_dirty);
2098
dm_bufio_write_dirty_buffers_async(struct dm_bufio_client * c)2099 void dm_bufio_write_dirty_buffers_async(struct dm_bufio_client *c)
2100 {
2101 LIST_HEAD(write_list);
2102
2103 if (WARN_ON_ONCE(dm_bufio_in_request()))
2104 return; /* should never happen */
2105
2106 dm_bufio_lock(c);
2107 __write_dirty_buffers_async(c, 0, &write_list);
2108 dm_bufio_unlock(c);
2109 __flush_write_list(&write_list);
2110 }
2111 EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers_async);
2112
2113 /*
2114 * For performance, it is essential that the buffers are written asynchronously
2115 * and simultaneously (so that the block layer can merge the writes) and then
2116 * waited upon.
2117 *
2118 * Finally, we flush hardware disk cache.
2119 */
is_writing(struct lru_entry * e,void * context)2120 static bool is_writing(struct lru_entry *e, void *context)
2121 {
2122 struct dm_buffer *b = le_to_buffer(e);
2123
2124 return test_bit(B_WRITING, &b->state);
2125 }
2126
dm_bufio_write_dirty_buffers(struct dm_bufio_client * c)2127 int dm_bufio_write_dirty_buffers(struct dm_bufio_client *c)
2128 {
2129 int a, f;
2130 unsigned long nr_buffers;
2131 struct lru_entry *e;
2132 struct lru_iter it;
2133
2134 LIST_HEAD(write_list);
2135
2136 dm_bufio_lock(c);
2137 __write_dirty_buffers_async(c, 0, &write_list);
2138 dm_bufio_unlock(c);
2139 __flush_write_list(&write_list);
2140 dm_bufio_lock(c);
2141
2142 nr_buffers = cache_count(&c->cache, LIST_DIRTY);
2143 lru_iter_begin(&c->cache.lru[LIST_DIRTY], &it);
2144 while ((e = lru_iter_next(&it, is_writing, c))) {
2145 struct dm_buffer *b = le_to_buffer(e);
2146 __cache_inc_buffer(b);
2147
2148 BUG_ON(test_bit(B_READING, &b->state));
2149
2150 if (nr_buffers) {
2151 nr_buffers--;
2152 dm_bufio_unlock(c);
2153 wait_on_bit_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE);
2154 dm_bufio_lock(c);
2155 } else {
2156 wait_on_bit_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE);
2157 }
2158
2159 if (!test_bit(B_DIRTY, &b->state) && !test_bit(B_WRITING, &b->state))
2160 cache_mark(&c->cache, b, LIST_CLEAN);
2161
2162 cache_put_and_wake(c, b);
2163
2164 cond_resched();
2165 }
2166 lru_iter_end(&it);
2167
2168 wake_up(&c->free_buffer_wait);
2169 dm_bufio_unlock(c);
2170
2171 a = xchg(&c->async_write_error, 0);
2172 f = dm_bufio_issue_flush(c);
2173 if (a)
2174 return a;
2175
2176 return f;
2177 }
2178 EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers);
2179
2180 /*
2181 * Use dm-io to send an empty barrier to flush the device.
2182 */
dm_bufio_issue_flush(struct dm_bufio_client * c)2183 int dm_bufio_issue_flush(struct dm_bufio_client *c)
2184 {
2185 struct dm_io_request io_req = {
2186 .bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC,
2187 .mem.type = DM_IO_KMEM,
2188 .mem.ptr.addr = NULL,
2189 .client = c->dm_io,
2190 };
2191 struct dm_io_region io_reg = {
2192 .bdev = c->bdev,
2193 .sector = 0,
2194 .count = 0,
2195 };
2196
2197 if (WARN_ON_ONCE(dm_bufio_in_request()))
2198 return -EINVAL;
2199
2200 return dm_io(&io_req, 1, &io_reg, NULL, IOPRIO_DEFAULT);
2201 }
2202 EXPORT_SYMBOL_GPL(dm_bufio_issue_flush);
2203
2204 /*
2205 * Use dm-io to send a discard request to flush the device.
2206 */
dm_bufio_issue_discard(struct dm_bufio_client * c,sector_t block,sector_t count)2207 int dm_bufio_issue_discard(struct dm_bufio_client *c, sector_t block, sector_t count)
2208 {
2209 struct dm_io_request io_req = {
2210 .bi_opf = REQ_OP_DISCARD | REQ_SYNC,
2211 .mem.type = DM_IO_KMEM,
2212 .mem.ptr.addr = NULL,
2213 .client = c->dm_io,
2214 };
2215 struct dm_io_region io_reg = {
2216 .bdev = c->bdev,
2217 .sector = block_to_sector(c, block),
2218 .count = block_to_sector(c, count),
2219 };
2220
2221 if (WARN_ON_ONCE(dm_bufio_in_request()))
2222 return -EINVAL; /* discards are optional */
2223
2224 return dm_io(&io_req, 1, &io_reg, NULL, IOPRIO_DEFAULT);
2225 }
2226 EXPORT_SYMBOL_GPL(dm_bufio_issue_discard);
2227
forget_buffer(struct dm_bufio_client * c,sector_t block)2228 static void forget_buffer(struct dm_bufio_client *c, sector_t block)
2229 {
2230 struct dm_buffer *b;
2231
2232 b = cache_get(&c->cache, block);
2233 if (b) {
2234 if (likely(!smp_load_acquire(&b->state))) {
2235 if (cache_remove(&c->cache, b))
2236 __free_buffer_wake(b);
2237 else
2238 cache_put_and_wake(c, b);
2239 } else {
2240 cache_put_and_wake(c, b);
2241 }
2242 }
2243 }
2244
2245 /*
2246 * Free the given buffer.
2247 *
2248 * This is just a hint, if the buffer is in use or dirty, this function
2249 * does nothing.
2250 */
dm_bufio_forget(struct dm_bufio_client * c,sector_t block)2251 void dm_bufio_forget(struct dm_bufio_client *c, sector_t block)
2252 {
2253 dm_bufio_lock(c);
2254 forget_buffer(c, block);
2255 dm_bufio_unlock(c);
2256 }
2257 EXPORT_SYMBOL_GPL(dm_bufio_forget);
2258
idle(struct dm_buffer * b,void * context)2259 static enum evict_result idle(struct dm_buffer *b, void *context)
2260 {
2261 return b->state ? ER_DONT_EVICT : ER_EVICT;
2262 }
2263
dm_bufio_forget_buffers(struct dm_bufio_client * c,sector_t block,sector_t n_blocks)2264 void dm_bufio_forget_buffers(struct dm_bufio_client *c, sector_t block, sector_t n_blocks)
2265 {
2266 dm_bufio_lock(c);
2267 cache_remove_range(&c->cache, block, block + n_blocks, idle, __free_buffer_wake);
2268 dm_bufio_unlock(c);
2269 }
2270 EXPORT_SYMBOL_GPL(dm_bufio_forget_buffers);
2271
dm_bufio_set_minimum_buffers(struct dm_bufio_client * c,unsigned int n)2272 void dm_bufio_set_minimum_buffers(struct dm_bufio_client *c, unsigned int n)
2273 {
2274 c->minimum_buffers = n;
2275 }
2276 EXPORT_SYMBOL_GPL(dm_bufio_set_minimum_buffers);
2277
dm_bufio_get_block_size(struct dm_bufio_client * c)2278 unsigned int dm_bufio_get_block_size(struct dm_bufio_client *c)
2279 {
2280 return c->block_size;
2281 }
2282 EXPORT_SYMBOL_GPL(dm_bufio_get_block_size);
2283
dm_bufio_get_device_size(struct dm_bufio_client * c)2284 sector_t dm_bufio_get_device_size(struct dm_bufio_client *c)
2285 {
2286 sector_t s = bdev_nr_sectors(c->bdev);
2287
2288 if (s >= c->start)
2289 s -= c->start;
2290 else
2291 s = 0;
2292 if (likely(c->sectors_per_block_bits >= 0))
2293 s >>= c->sectors_per_block_bits;
2294 else
2295 sector_div(s, c->block_size >> SECTOR_SHIFT);
2296 return s;
2297 }
2298 EXPORT_SYMBOL_GPL(dm_bufio_get_device_size);
2299
dm_bufio_get_dm_io_client(struct dm_bufio_client * c)2300 struct dm_io_client *dm_bufio_get_dm_io_client(struct dm_bufio_client *c)
2301 {
2302 return c->dm_io;
2303 }
2304 EXPORT_SYMBOL_GPL(dm_bufio_get_dm_io_client);
2305
dm_bufio_get_block_number(struct dm_buffer * b)2306 sector_t dm_bufio_get_block_number(struct dm_buffer *b)
2307 {
2308 return b->block;
2309 }
2310 EXPORT_SYMBOL_GPL(dm_bufio_get_block_number);
2311
dm_bufio_get_block_data(struct dm_buffer * b)2312 void *dm_bufio_get_block_data(struct dm_buffer *b)
2313 {
2314 return b->data;
2315 }
2316 EXPORT_SYMBOL_GPL(dm_bufio_get_block_data);
2317
dm_bufio_get_aux_data(struct dm_buffer * b)2318 void *dm_bufio_get_aux_data(struct dm_buffer *b)
2319 {
2320 return b + 1;
2321 }
2322 EXPORT_SYMBOL_GPL(dm_bufio_get_aux_data);
2323
dm_bufio_get_client(struct dm_buffer * b)2324 struct dm_bufio_client *dm_bufio_get_client(struct dm_buffer *b)
2325 {
2326 return b->c;
2327 }
2328 EXPORT_SYMBOL_GPL(dm_bufio_get_client);
2329
warn_leak(struct dm_buffer * b,void * context)2330 static enum it_action warn_leak(struct dm_buffer *b, void *context)
2331 {
2332 bool *warned = context;
2333
2334 WARN_ON(!(*warned));
2335 *warned = true;
2336 DMERR("leaked buffer %llx, hold count %u, list %d",
2337 (unsigned long long)b->block, atomic_read(&b->hold_count), b->list_mode);
2338 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
2339 stack_trace_print(b->stack_entries, b->stack_len, 1);
2340 /* mark unclaimed to avoid WARN_ON at end of drop_buffers() */
2341 atomic_set(&b->hold_count, 0);
2342 #endif
2343 return IT_NEXT;
2344 }
2345
drop_buffers(struct dm_bufio_client * c)2346 static void drop_buffers(struct dm_bufio_client *c)
2347 {
2348 int i;
2349 struct dm_buffer *b;
2350
2351 if (WARN_ON(dm_bufio_in_request()))
2352 return; /* should never happen */
2353
2354 /*
2355 * An optimization so that the buffers are not written one-by-one.
2356 */
2357 dm_bufio_write_dirty_buffers_async(c);
2358
2359 dm_bufio_lock(c);
2360
2361 while ((b = __get_unclaimed_buffer(c)))
2362 __free_buffer_wake(b);
2363
2364 for (i = 0; i < LIST_SIZE; i++) {
2365 bool warned = false;
2366
2367 cache_iterate(&c->cache, i, warn_leak, &warned);
2368 }
2369
2370 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
2371 while ((b = __get_unclaimed_buffer(c)))
2372 __free_buffer_wake(b);
2373 #endif
2374
2375 for (i = 0; i < LIST_SIZE; i++)
2376 WARN_ON(cache_count(&c->cache, i));
2377
2378 dm_bufio_unlock(c);
2379 }
2380
get_retain_buffers(struct dm_bufio_client * c)2381 static unsigned long get_retain_buffers(struct dm_bufio_client *c)
2382 {
2383 unsigned long retain_bytes = READ_ONCE(dm_bufio_retain_bytes);
2384
2385 if (likely(c->sectors_per_block_bits >= 0))
2386 retain_bytes >>= c->sectors_per_block_bits + SECTOR_SHIFT;
2387 else
2388 retain_bytes /= c->block_size;
2389
2390 return retain_bytes;
2391 }
2392
__scan(struct dm_bufio_client * c)2393 static void __scan(struct dm_bufio_client *c)
2394 {
2395 int l;
2396 struct dm_buffer *b;
2397 unsigned long freed = 0;
2398 unsigned long retain_target = get_retain_buffers(c);
2399 unsigned long count = cache_total(&c->cache);
2400
2401 for (l = 0; l < LIST_SIZE; l++) {
2402 while (true) {
2403 if (count - freed <= retain_target)
2404 atomic_long_set(&c->need_shrink, 0);
2405 if (!atomic_long_read(&c->need_shrink))
2406 break;
2407
2408 b = cache_evict(&c->cache, l,
2409 l == LIST_CLEAN ? is_clean : is_dirty, c);
2410 if (!b)
2411 break;
2412
2413 __make_buffer_clean(b);
2414 __free_buffer_wake(b);
2415
2416 atomic_long_dec(&c->need_shrink);
2417 freed++;
2418
2419 if (unlikely(freed % SCAN_RESCHED_CYCLE == 0)) {
2420 dm_bufio_unlock(c);
2421 cond_resched();
2422 dm_bufio_lock(c);
2423 }
2424 }
2425 }
2426 }
2427
shrink_work(struct work_struct * w)2428 static void shrink_work(struct work_struct *w)
2429 {
2430 struct dm_bufio_client *c = container_of(w, struct dm_bufio_client, shrink_work);
2431
2432 dm_bufio_lock(c);
2433 __scan(c);
2434 dm_bufio_unlock(c);
2435 }
2436
dm_bufio_shrink_scan(struct shrinker * shrink,struct shrink_control * sc)2437 static unsigned long dm_bufio_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
2438 {
2439 struct dm_bufio_client *c;
2440
2441 c = shrink->private_data;
2442 atomic_long_add(sc->nr_to_scan, &c->need_shrink);
2443 queue_work(dm_bufio_wq, &c->shrink_work);
2444
2445 return sc->nr_to_scan;
2446 }
2447
dm_bufio_shrink_count(struct shrinker * shrink,struct shrink_control * sc)2448 static unsigned long dm_bufio_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
2449 {
2450 struct dm_bufio_client *c = shrink->private_data;
2451 unsigned long count = cache_total(&c->cache);
2452 unsigned long retain_target = get_retain_buffers(c);
2453 unsigned long queued_for_cleanup = atomic_long_read(&c->need_shrink);
2454
2455 if (unlikely(count < retain_target))
2456 count = 0;
2457 else
2458 count -= retain_target;
2459
2460 if (unlikely(count < queued_for_cleanup))
2461 count = 0;
2462 else
2463 count -= queued_for_cleanup;
2464
2465 return count;
2466 }
2467
2468 /*
2469 * Create the buffering interface
2470 */
dm_bufio_client_create(struct block_device * bdev,unsigned int block_size,unsigned int reserved_buffers,unsigned int aux_size,void (* alloc_callback)(struct dm_buffer *),void (* write_callback)(struct dm_buffer *),unsigned int flags)2471 struct dm_bufio_client *dm_bufio_client_create(struct block_device *bdev, unsigned int block_size,
2472 unsigned int reserved_buffers, unsigned int aux_size,
2473 void (*alloc_callback)(struct dm_buffer *),
2474 void (*write_callback)(struct dm_buffer *),
2475 unsigned int flags)
2476 {
2477 int r;
2478 unsigned int num_locks;
2479 struct dm_bufio_client *c;
2480 char slab_name[64];
2481 static atomic_t seqno = ATOMIC_INIT(0);
2482
2483 if (!block_size || block_size & ((1 << SECTOR_SHIFT) - 1)) {
2484 DMERR("%s: block size not specified or is not multiple of 512b", __func__);
2485 r = -EINVAL;
2486 goto bad_client;
2487 }
2488
2489 num_locks = dm_num_hash_locks();
2490 c = kzalloc(sizeof(*c) + (num_locks * sizeof(struct buffer_tree)), GFP_KERNEL);
2491 if (!c) {
2492 r = -ENOMEM;
2493 goto bad_client;
2494 }
2495 cache_init(&c->cache, num_locks, (flags & DM_BUFIO_CLIENT_NO_SLEEP) != 0);
2496
2497 c->bdev = bdev;
2498 c->block_size = block_size;
2499 if (is_power_of_2(block_size))
2500 c->sectors_per_block_bits = __ffs(block_size) - SECTOR_SHIFT;
2501 else
2502 c->sectors_per_block_bits = -1;
2503
2504 c->alloc_callback = alloc_callback;
2505 c->write_callback = write_callback;
2506
2507 if (flags & DM_BUFIO_CLIENT_NO_SLEEP) {
2508 c->no_sleep = true;
2509 static_branch_inc(&no_sleep_enabled);
2510 }
2511
2512 mutex_init(&c->lock);
2513 spin_lock_init(&c->spinlock);
2514 INIT_LIST_HEAD(&c->reserved_buffers);
2515 c->need_reserved_buffers = reserved_buffers;
2516
2517 dm_bufio_set_minimum_buffers(c, DM_BUFIO_MIN_BUFFERS);
2518
2519 init_waitqueue_head(&c->free_buffer_wait);
2520 c->async_write_error = 0;
2521
2522 c->dm_io = dm_io_client_create();
2523 if (IS_ERR(c->dm_io)) {
2524 r = PTR_ERR(c->dm_io);
2525 goto bad_dm_io;
2526 }
2527
2528 if (block_size <= KMALLOC_MAX_SIZE && !is_power_of_2(block_size)) {
2529 unsigned int align = min(1U << __ffs(block_size), (unsigned int)PAGE_SIZE);
2530
2531 snprintf(slab_name, sizeof(slab_name), "dm_bufio_cache-%u-%u",
2532 block_size, atomic_inc_return(&seqno));
2533 c->slab_cache = kmem_cache_create(slab_name, block_size, align,
2534 SLAB_RECLAIM_ACCOUNT, NULL);
2535 if (!c->slab_cache) {
2536 r = -ENOMEM;
2537 goto bad;
2538 }
2539 }
2540 if (aux_size)
2541 snprintf(slab_name, sizeof(slab_name), "dm_bufio_buffer-%u-%u",
2542 aux_size, atomic_inc_return(&seqno));
2543 else
2544 snprintf(slab_name, sizeof(slab_name), "dm_bufio_buffer-%u",
2545 atomic_inc_return(&seqno));
2546 c->slab_buffer = kmem_cache_create(slab_name, sizeof(struct dm_buffer) + aux_size,
2547 0, SLAB_RECLAIM_ACCOUNT, NULL);
2548 if (!c->slab_buffer) {
2549 r = -ENOMEM;
2550 goto bad;
2551 }
2552
2553 while (c->need_reserved_buffers) {
2554 struct dm_buffer *b = alloc_buffer(c, GFP_KERNEL);
2555
2556 if (!b) {
2557 r = -ENOMEM;
2558 goto bad;
2559 }
2560 __free_buffer_wake(b);
2561 }
2562
2563 INIT_WORK(&c->shrink_work, shrink_work);
2564 atomic_long_set(&c->need_shrink, 0);
2565
2566 c->shrinker = shrinker_alloc(0, "dm-bufio:(%u:%u)",
2567 MAJOR(bdev->bd_dev), MINOR(bdev->bd_dev));
2568 if (!c->shrinker) {
2569 r = -ENOMEM;
2570 goto bad;
2571 }
2572
2573 c->shrinker->count_objects = dm_bufio_shrink_count;
2574 c->shrinker->scan_objects = dm_bufio_shrink_scan;
2575 c->shrinker->seeks = 1;
2576 c->shrinker->batch = 0;
2577 c->shrinker->private_data = c;
2578
2579 shrinker_register(c->shrinker);
2580
2581 mutex_lock(&dm_bufio_clients_lock);
2582 dm_bufio_client_count++;
2583 list_add(&c->client_list, &dm_bufio_all_clients);
2584 __cache_size_refresh();
2585 mutex_unlock(&dm_bufio_clients_lock);
2586
2587 return c;
2588
2589 bad:
2590 while (!list_empty(&c->reserved_buffers)) {
2591 struct dm_buffer *b = list_to_buffer(c->reserved_buffers.next);
2592
2593 list_del(&b->lru.list);
2594 free_buffer(b);
2595 }
2596 kmem_cache_destroy(c->slab_cache);
2597 kmem_cache_destroy(c->slab_buffer);
2598 dm_io_client_destroy(c->dm_io);
2599 bad_dm_io:
2600 mutex_destroy(&c->lock);
2601 if (c->no_sleep)
2602 static_branch_dec(&no_sleep_enabled);
2603 kfree(c);
2604 bad_client:
2605 return ERR_PTR(r);
2606 }
2607 EXPORT_SYMBOL_GPL(dm_bufio_client_create);
2608
2609 /*
2610 * Free the buffering interface.
2611 * It is required that there are no references on any buffers.
2612 */
dm_bufio_client_destroy(struct dm_bufio_client * c)2613 void dm_bufio_client_destroy(struct dm_bufio_client *c)
2614 {
2615 unsigned int i;
2616
2617 drop_buffers(c);
2618
2619 shrinker_free(c->shrinker);
2620 flush_work(&c->shrink_work);
2621
2622 mutex_lock(&dm_bufio_clients_lock);
2623
2624 list_del(&c->client_list);
2625 dm_bufio_client_count--;
2626 __cache_size_refresh();
2627
2628 mutex_unlock(&dm_bufio_clients_lock);
2629
2630 WARN_ON(c->need_reserved_buffers);
2631
2632 while (!list_empty(&c->reserved_buffers)) {
2633 struct dm_buffer *b = list_to_buffer(c->reserved_buffers.next);
2634
2635 list_del(&b->lru.list);
2636 free_buffer(b);
2637 }
2638
2639 for (i = 0; i < LIST_SIZE; i++)
2640 if (cache_count(&c->cache, i))
2641 DMERR("leaked buffer count %d: %lu", i, cache_count(&c->cache, i));
2642
2643 for (i = 0; i < LIST_SIZE; i++)
2644 WARN_ON(cache_count(&c->cache, i));
2645
2646 cache_destroy(&c->cache);
2647 kmem_cache_destroy(c->slab_cache);
2648 kmem_cache_destroy(c->slab_buffer);
2649 dm_io_client_destroy(c->dm_io);
2650 mutex_destroy(&c->lock);
2651 if (c->no_sleep)
2652 static_branch_dec(&no_sleep_enabled);
2653 kfree(c);
2654 }
2655 EXPORT_SYMBOL_GPL(dm_bufio_client_destroy);
2656
dm_bufio_client_reset(struct dm_bufio_client * c)2657 void dm_bufio_client_reset(struct dm_bufio_client *c)
2658 {
2659 drop_buffers(c);
2660 flush_work(&c->shrink_work);
2661 }
2662 EXPORT_SYMBOL_GPL(dm_bufio_client_reset);
2663
dm_bufio_set_sector_offset(struct dm_bufio_client * c,sector_t start)2664 void dm_bufio_set_sector_offset(struct dm_bufio_client *c, sector_t start)
2665 {
2666 c->start = start;
2667 }
2668 EXPORT_SYMBOL_GPL(dm_bufio_set_sector_offset);
2669
2670 /*--------------------------------------------------------------*/
2671
2672 /*
2673 * Global cleanup tries to evict the oldest buffers from across _all_
2674 * the clients. It does this by repeatedly evicting a few buffers from
2675 * the client that holds the oldest buffer. It's approximate, but hopefully
2676 * good enough.
2677 */
__pop_client(void)2678 static struct dm_bufio_client *__pop_client(void)
2679 {
2680 struct list_head *h;
2681
2682 if (list_empty(&dm_bufio_all_clients))
2683 return NULL;
2684
2685 h = dm_bufio_all_clients.next;
2686 list_del(h);
2687 return container_of(h, struct dm_bufio_client, client_list);
2688 }
2689
2690 /*
2691 * Inserts the client in the global client list based on its
2692 * 'oldest_buffer' field.
2693 */
__insert_client(struct dm_bufio_client * new_client)2694 static void __insert_client(struct dm_bufio_client *new_client)
2695 {
2696 struct dm_bufio_client *c;
2697 struct list_head *h = dm_bufio_all_clients.next;
2698
2699 while (h != &dm_bufio_all_clients) {
2700 c = container_of(h, struct dm_bufio_client, client_list);
2701 if (time_after_eq(c->oldest_buffer, new_client->oldest_buffer))
2702 break;
2703 h = h->next;
2704 }
2705
2706 list_add_tail(&new_client->client_list, h);
2707 }
2708
select_for_evict(struct dm_buffer * b,void * context)2709 static enum evict_result select_for_evict(struct dm_buffer *b, void *context)
2710 {
2711 /* In no-sleep mode, we cannot wait on IO. */
2712 if (static_branch_unlikely(&no_sleep_enabled) && b->c->no_sleep) {
2713 if (test_bit_acquire(B_READING, &b->state) ||
2714 test_bit(B_WRITING, &b->state) ||
2715 test_bit(B_DIRTY, &b->state))
2716 return ER_DONT_EVICT;
2717 }
2718 return ER_EVICT;
2719 }
2720
__evict_a_few(unsigned long nr_buffers)2721 static unsigned long __evict_a_few(unsigned long nr_buffers)
2722 {
2723 struct dm_bufio_client *c;
2724 unsigned long oldest_buffer = jiffies;
2725 unsigned long last_accessed;
2726 unsigned long count;
2727 struct dm_buffer *b;
2728
2729 c = __pop_client();
2730 if (!c)
2731 return 0;
2732
2733 dm_bufio_lock(c);
2734
2735 for (count = 0; count < nr_buffers; count++) {
2736 b = cache_evict(&c->cache, LIST_CLEAN, select_for_evict, NULL);
2737 if (!b)
2738 break;
2739
2740 last_accessed = READ_ONCE(b->last_accessed);
2741 if (time_after_eq(oldest_buffer, last_accessed))
2742 oldest_buffer = last_accessed;
2743
2744 __make_buffer_clean(b);
2745 __free_buffer_wake(b);
2746
2747 if (need_resched()) {
2748 dm_bufio_unlock(c);
2749 cond_resched();
2750 dm_bufio_lock(c);
2751 }
2752 }
2753
2754 dm_bufio_unlock(c);
2755
2756 if (count)
2757 c->oldest_buffer = oldest_buffer;
2758 __insert_client(c);
2759
2760 return count;
2761 }
2762
check_watermarks(void)2763 static void check_watermarks(void)
2764 {
2765 LIST_HEAD(write_list);
2766 struct dm_bufio_client *c;
2767
2768 mutex_lock(&dm_bufio_clients_lock);
2769 list_for_each_entry(c, &dm_bufio_all_clients, client_list) {
2770 dm_bufio_lock(c);
2771 __check_watermark(c, &write_list);
2772 dm_bufio_unlock(c);
2773 }
2774 mutex_unlock(&dm_bufio_clients_lock);
2775
2776 __flush_write_list(&write_list);
2777 }
2778
evict_old(void)2779 static void evict_old(void)
2780 {
2781 unsigned long threshold = dm_bufio_cache_size -
2782 dm_bufio_cache_size / DM_BUFIO_LOW_WATERMARK_RATIO;
2783
2784 mutex_lock(&dm_bufio_clients_lock);
2785 while (dm_bufio_current_allocated > threshold) {
2786 if (!__evict_a_few(64))
2787 break;
2788 cond_resched();
2789 }
2790 mutex_unlock(&dm_bufio_clients_lock);
2791 }
2792
do_global_cleanup(struct work_struct * w)2793 static void do_global_cleanup(struct work_struct *w)
2794 {
2795 check_watermarks();
2796 evict_old();
2797 }
2798
2799 /*
2800 *--------------------------------------------------------------
2801 * Module setup
2802 *--------------------------------------------------------------
2803 */
2804
2805 /*
2806 * This is called only once for the whole dm_bufio module.
2807 * It initializes memory limit.
2808 */
dm_bufio_init(void)2809 static int __init dm_bufio_init(void)
2810 {
2811 __u64 mem;
2812
2813 dm_bufio_allocated_kmem_cache = 0;
2814 dm_bufio_allocated_kmalloc = 0;
2815 dm_bufio_allocated_get_free_pages = 0;
2816 dm_bufio_allocated_vmalloc = 0;
2817 dm_bufio_current_allocated = 0;
2818
2819 mem = (__u64)mult_frac(totalram_pages() - totalhigh_pages(),
2820 DM_BUFIO_MEMORY_PERCENT, 100) << PAGE_SHIFT;
2821
2822 if (mem > ULONG_MAX)
2823 mem = ULONG_MAX;
2824
2825 #ifdef CONFIG_MMU
2826 if (mem > mult_frac(VMALLOC_TOTAL, DM_BUFIO_VMALLOC_PERCENT, 100))
2827 mem = mult_frac(VMALLOC_TOTAL, DM_BUFIO_VMALLOC_PERCENT, 100);
2828 #endif
2829
2830 dm_bufio_default_cache_size = mem;
2831
2832 mutex_lock(&dm_bufio_clients_lock);
2833 __cache_size_refresh();
2834 mutex_unlock(&dm_bufio_clients_lock);
2835
2836 dm_bufio_wq = alloc_workqueue("dm_bufio_cache", WQ_MEM_RECLAIM, 0);
2837 if (!dm_bufio_wq)
2838 return -ENOMEM;
2839
2840 INIT_WORK(&dm_bufio_replacement_work, do_global_cleanup);
2841
2842 return 0;
2843 }
2844
2845 /*
2846 * This is called once when unloading the dm_bufio module.
2847 */
dm_bufio_exit(void)2848 static void __exit dm_bufio_exit(void)
2849 {
2850 int bug = 0;
2851
2852 destroy_workqueue(dm_bufio_wq);
2853
2854 if (dm_bufio_client_count) {
2855 DMCRIT("%s: dm_bufio_client_count leaked: %d",
2856 __func__, dm_bufio_client_count);
2857 bug = 1;
2858 }
2859
2860 if (dm_bufio_current_allocated) {
2861 DMCRIT("%s: dm_bufio_current_allocated leaked: %lu",
2862 __func__, dm_bufio_current_allocated);
2863 bug = 1;
2864 }
2865
2866 if (dm_bufio_allocated_get_free_pages) {
2867 DMCRIT("%s: dm_bufio_allocated_get_free_pages leaked: %lu",
2868 __func__, dm_bufio_allocated_get_free_pages);
2869 bug = 1;
2870 }
2871
2872 if (dm_bufio_allocated_vmalloc) {
2873 DMCRIT("%s: dm_bufio_vmalloc leaked: %lu",
2874 __func__, dm_bufio_allocated_vmalloc);
2875 bug = 1;
2876 }
2877
2878 WARN_ON(bug); /* leaks are not worth crashing the system */
2879 }
2880
2881 module_init(dm_bufio_init)
2882 module_exit(dm_bufio_exit)
2883
2884 module_param_named(max_cache_size_bytes, dm_bufio_cache_size, ulong, 0644);
2885 MODULE_PARM_DESC(max_cache_size_bytes, "Size of metadata cache");
2886
2887 module_param_named(max_age_seconds, dm_bufio_max_age, uint, 0644);
2888 MODULE_PARM_DESC(max_age_seconds, "No longer does anything");
2889
2890 module_param_named(retain_bytes, dm_bufio_retain_bytes, ulong, 0644);
2891 MODULE_PARM_DESC(retain_bytes, "Try to keep at least this many bytes cached in memory");
2892
2893 module_param_named(peak_allocated_bytes, dm_bufio_peak_allocated, ulong, 0644);
2894 MODULE_PARM_DESC(peak_allocated_bytes, "Tracks the maximum allocated memory");
2895
2896 module_param_named(allocated_kmem_cache_bytes, dm_bufio_allocated_kmem_cache, ulong, 0444);
2897 MODULE_PARM_DESC(allocated_kmem_cache_bytes, "Memory allocated with kmem_cache_alloc");
2898
2899 module_param_named(allocated_kmalloc_bytes, dm_bufio_allocated_kmalloc, ulong, 0444);
2900 MODULE_PARM_DESC(allocated_kmalloc_bytes, "Memory allocated with kmalloc_alloc");
2901
2902 module_param_named(allocated_get_free_pages_bytes, dm_bufio_allocated_get_free_pages, ulong, 0444);
2903 MODULE_PARM_DESC(allocated_get_free_pages_bytes, "Memory allocated with get_free_pages");
2904
2905 module_param_named(allocated_vmalloc_bytes, dm_bufio_allocated_vmalloc, ulong, 0444);
2906 MODULE_PARM_DESC(allocated_vmalloc_bytes, "Memory allocated with vmalloc");
2907
2908 module_param_named(current_allocated_bytes, dm_bufio_current_allocated, ulong, 0444);
2909 MODULE_PARM_DESC(current_allocated_bytes, "Memory currently used by the cache");
2910
2911 MODULE_AUTHOR("Mikulas Patocka <dm-devel@lists.linux.dev>");
2912 MODULE_DESCRIPTION(DM_NAME " buffered I/O library");
2913 MODULE_LICENSE("GPL");
2914