1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * POSIX message queues filesystem for Linux. 4 * 5 * Copyright (C) 2003,2004 Krzysztof Benedyczak (golbi@mat.uni.torun.pl) 6 * Michal Wronski (michal.wronski@gmail.com) 7 * 8 * Spinlocks: Mohamed Abbas (abbas.mohamed@intel.com) 9 * Lockless receive & send, fd based notify: 10 * Manfred Spraul (manfred@colorfullife.com) 11 * 12 * Audit: George Wilson (ltcgcw@us.ibm.com) 13 */ 14 15 #include <linux/capability.h> 16 #include <linux/init.h> 17 #include <linux/pagemap.h> 18 #include <linux/file.h> 19 #include <linux/mount.h> 20 #include <linux/fs_context.h> 21 #include <linux/namei.h> 22 #include <linux/sysctl.h> 23 #include <linux/poll.h> 24 #include <linux/mqueue.h> 25 #include <linux/msg.h> 26 #include <linux/skbuff.h> 27 #include <linux/vmalloc.h> 28 #include <linux/netlink.h> 29 #include <linux/syscalls.h> 30 #include <linux/audit.h> 31 #include <linux/signal.h> 32 #include <linux/mutex.h> 33 #include <linux/nsproxy.h> 34 #include <linux/pid.h> 35 #include <linux/ipc_namespace.h> 36 #include <linux/user_namespace.h> 37 #include <linux/slab.h> 38 #include <linux/sched/wake_q.h> 39 #include <linux/sched/signal.h> 40 #include <linux/sched/user.h> 41 42 #include <net/sock.h> 43 #include "util.h" 44 45 struct mqueue_fs_context { 46 struct ipc_namespace *ipc_ns; 47 bool newns; /* Set if newly created ipc namespace */ 48 }; 49 50 #define MQUEUE_MAGIC 0x19800202 51 #define DIRENT_SIZE 20 52 #define FILENT_SIZE 80 53 54 #define SEND 0 55 #define RECV 1 56 57 #define STATE_NONE 0 58 #define STATE_READY 1 59 60 struct posix_msg_tree_node { 61 struct rb_node rb_node; 62 struct list_head msg_list; 63 int priority; 64 }; 65 66 /* 67 * Locking: 68 * 69 * Accesses to a message queue are synchronized by acquiring info->lock. 70 * 71 * There are two notable exceptions: 72 * - The actual wakeup of a sleeping task is performed using the wake_q 73 * framework. info->lock is already released when wake_up_q is called. 74 * - The exit codepaths after sleeping check ext_wait_queue->state without 75 * any locks. If it is STATE_READY, then the syscall is completed without 76 * acquiring info->lock. 77 * 78 * MQ_BARRIER: 79 * To achieve proper release/acquire memory barrier pairing, the state is set to 80 * STATE_READY with smp_store_release(), and it is read with READ_ONCE followed 81 * by smp_acquire__after_ctrl_dep(). In addition, wake_q_add_safe() is used. 82 * 83 * This prevents the following races: 84 * 85 * 1) With the simple wake_q_add(), the task could be gone already before 86 * the increase of the reference happens 87 * Thread A 88 * Thread B 89 * WRITE_ONCE(wait.state, STATE_NONE); 90 * schedule_hrtimeout() 91 * wake_q_add(A) 92 * if (cmpxchg()) // success 93 * ->state = STATE_READY (reordered) 94 * <timeout returns> 95 * if (wait.state == STATE_READY) return; 96 * sysret to user space 97 * sys_exit() 98 * get_task_struct() // UaF 99 * 100 * Solution: Use wake_q_add_safe() and perform the get_task_struct() before 101 * the smp_store_release() that does ->state = STATE_READY. 102 * 103 * 2) Without proper _release/_acquire barriers, the woken up task 104 * could read stale data 105 * 106 * Thread A 107 * Thread B 108 * do_mq_timedreceive 109 * WRITE_ONCE(wait.state, STATE_NONE); 110 * schedule_hrtimeout() 111 * state = STATE_READY; 112 * <timeout returns> 113 * if (wait.state == STATE_READY) return; 114 * msg_ptr = wait.msg; // Access to stale data! 115 * receiver->msg = message; (reordered) 116 * 117 * Solution: use _release and _acquire barriers. 118 * 119 * 3) There is intentionally no barrier when setting current->state 120 * to TASK_INTERRUPTIBLE: spin_unlock(&info->lock) provides the 121 * release memory barrier, and the wakeup is triggered when holding 122 * info->lock, i.e. spin_lock(&info->lock) provided a pairing 123 * acquire memory barrier. 124 */ 125 126 struct ext_wait_queue { /* queue of sleeping tasks */ 127 struct task_struct *task; 128 struct list_head list; 129 struct msg_msg *msg; /* ptr of loaded message */ 130 int state; /* one of STATE_* values */ 131 }; 132 133 struct mqueue_inode_info { 134 spinlock_t lock; 135 struct inode vfs_inode; 136 wait_queue_head_t wait_q; 137 138 struct rb_root msg_tree; 139 struct rb_node *msg_tree_rightmost; 140 struct posix_msg_tree_node *node_cache; 141 struct mq_attr attr; 142 143 struct sigevent notify; 144 struct pid *notify_owner; 145 u32 notify_self_exec_id; 146 struct user_namespace *notify_user_ns; 147 struct ucounts *ucounts; /* user who created, for accounting */ 148 struct sock *notify_sock; 149 struct sk_buff *notify_cookie; 150 151 /* for tasks waiting for free space and messages, respectively */ 152 struct ext_wait_queue e_wait_q[2]; 153 154 unsigned long qsize; /* size of queue in memory (sum of all msgs) */ 155 }; 156 157 static struct file_system_type mqueue_fs_type; 158 static const struct inode_operations mqueue_dir_inode_operations; 159 static const struct file_operations mqueue_file_operations; 160 static const struct super_operations mqueue_super_ops; 161 static const struct fs_context_operations mqueue_fs_context_ops; 162 static void remove_notification(struct mqueue_inode_info *info); 163 164 static struct kmem_cache *mqueue_inode_cachep; 165 166 static inline struct mqueue_inode_info *MQUEUE_I(struct inode *inode) 167 { 168 return container_of(inode, struct mqueue_inode_info, vfs_inode); 169 } 170 171 /* 172 * This routine should be called with the mq_lock held. 173 */ 174 static inline struct ipc_namespace *__get_ns_from_inode(struct inode *inode) 175 { 176 return get_ipc_ns(inode->i_sb->s_fs_info); 177 } 178 179 static struct ipc_namespace *get_ns_from_inode(struct inode *inode) 180 { 181 struct ipc_namespace *ns; 182 183 spin_lock(&mq_lock); 184 ns = __get_ns_from_inode(inode); 185 spin_unlock(&mq_lock); 186 return ns; 187 } 188 189 /* Auxiliary functions to manipulate messages' list */ 190 static int msg_insert(struct msg_msg *msg, struct mqueue_inode_info *info) 191 { 192 struct rb_node **p, *parent = NULL; 193 struct posix_msg_tree_node *leaf; 194 bool rightmost = true; 195 196 p = &info->msg_tree.rb_node; 197 while (*p) { 198 parent = *p; 199 leaf = rb_entry(parent, struct posix_msg_tree_node, rb_node); 200 201 if (likely(leaf->priority == msg->m_type)) 202 goto insert_msg; 203 else if (msg->m_type < leaf->priority) { 204 p = &(*p)->rb_left; 205 rightmost = false; 206 } else 207 p = &(*p)->rb_right; 208 } 209 if (info->node_cache) { 210 leaf = info->node_cache; 211 info->node_cache = NULL; 212 } else { 213 leaf = kmalloc(sizeof(*leaf), GFP_ATOMIC); 214 if (!leaf) 215 return -ENOMEM; 216 INIT_LIST_HEAD(&leaf->msg_list); 217 } 218 leaf->priority = msg->m_type; 219 220 if (rightmost) 221 info->msg_tree_rightmost = &leaf->rb_node; 222 223 rb_link_node(&leaf->rb_node, parent, p); 224 rb_insert_color(&leaf->rb_node, &info->msg_tree); 225 insert_msg: 226 info->attr.mq_curmsgs++; 227 info->qsize += msg->m_ts; 228 list_add_tail(&msg->m_list, &leaf->msg_list); 229 return 0; 230 } 231 232 static inline void msg_tree_erase(struct posix_msg_tree_node *leaf, 233 struct mqueue_inode_info *info) 234 { 235 struct rb_node *node = &leaf->rb_node; 236 237 if (info->msg_tree_rightmost == node) 238 info->msg_tree_rightmost = rb_prev(node); 239 240 rb_erase(node, &info->msg_tree); 241 if (info->node_cache) 242 kfree(leaf); 243 else 244 info->node_cache = leaf; 245 } 246 247 static inline struct msg_msg *msg_get(struct mqueue_inode_info *info) 248 { 249 struct rb_node *parent = NULL; 250 struct posix_msg_tree_node *leaf; 251 struct msg_msg *msg; 252 253 try_again: 254 /* 255 * During insert, low priorities go to the left and high to the 256 * right. On receive, we want the highest priorities first, so 257 * walk all the way to the right. 258 */ 259 parent = info->msg_tree_rightmost; 260 if (!parent) { 261 if (info->attr.mq_curmsgs) { 262 pr_warn_once("Inconsistency in POSIX message queue, " 263 "no tree element, but supposedly messages " 264 "should exist!\n"); 265 info->attr.mq_curmsgs = 0; 266 } 267 return NULL; 268 } 269 leaf = rb_entry(parent, struct posix_msg_tree_node, rb_node); 270 if (unlikely(list_empty(&leaf->msg_list))) { 271 pr_warn_once("Inconsistency in POSIX message queue, " 272 "empty leaf node but we haven't implemented " 273 "lazy leaf delete!\n"); 274 msg_tree_erase(leaf, info); 275 goto try_again; 276 } else { 277 msg = list_first_entry(&leaf->msg_list, 278 struct msg_msg, m_list); 279 list_del(&msg->m_list); 280 if (list_empty(&leaf->msg_list)) { 281 msg_tree_erase(leaf, info); 282 } 283 } 284 info->attr.mq_curmsgs--; 285 info->qsize -= msg->m_ts; 286 return msg; 287 } 288 289 static struct inode *mqueue_get_inode(struct super_block *sb, 290 struct ipc_namespace *ipc_ns, umode_t mode, 291 struct mq_attr *attr) 292 { 293 struct inode *inode; 294 int ret = -ENOMEM; 295 296 inode = new_inode(sb); 297 if (!inode) 298 goto err; 299 300 inode->i_ino = get_next_ino(); 301 inode->i_mode = mode; 302 inode->i_uid = current_fsuid(); 303 inode->i_gid = current_fsgid(); 304 simple_inode_init_ts(inode); 305 306 if (S_ISREG(mode)) { 307 struct mqueue_inode_info *info; 308 unsigned long mq_bytes, mq_treesize; 309 310 inode->i_fop = &mqueue_file_operations; 311 inode->i_size = FILENT_SIZE; 312 /* mqueue specific info */ 313 info = MQUEUE_I(inode); 314 spin_lock_init(&info->lock); 315 init_waitqueue_head(&info->wait_q); 316 INIT_LIST_HEAD(&info->e_wait_q[0].list); 317 INIT_LIST_HEAD(&info->e_wait_q[1].list); 318 info->notify_owner = NULL; 319 info->notify_user_ns = NULL; 320 info->qsize = 0; 321 info->ucounts = NULL; /* set when all is ok */ 322 info->msg_tree = RB_ROOT; 323 info->msg_tree_rightmost = NULL; 324 info->node_cache = NULL; 325 memset(&info->attr, 0, sizeof(info->attr)); 326 info->attr.mq_maxmsg = min(ipc_ns->mq_msg_max, 327 ipc_ns->mq_msg_default); 328 info->attr.mq_msgsize = min(ipc_ns->mq_msgsize_max, 329 ipc_ns->mq_msgsize_default); 330 if (attr) { 331 info->attr.mq_maxmsg = attr->mq_maxmsg; 332 info->attr.mq_msgsize = attr->mq_msgsize; 333 } 334 /* 335 * We used to allocate a static array of pointers and account 336 * the size of that array as well as one msg_msg struct per 337 * possible message into the queue size. That's no longer 338 * accurate as the queue is now an rbtree and will grow and 339 * shrink depending on usage patterns. We can, however, still 340 * account one msg_msg struct per message, but the nodes are 341 * allocated depending on priority usage, and most programs 342 * only use one, or a handful, of priorities. However, since 343 * this is pinned memory, we need to assume worst case, so 344 * that means the min(mq_maxmsg, max_priorities) * struct 345 * posix_msg_tree_node. 346 */ 347 348 ret = -EINVAL; 349 if (info->attr.mq_maxmsg <= 0 || info->attr.mq_msgsize <= 0) 350 goto out_inode; 351 if (capable(CAP_SYS_RESOURCE)) { 352 if (info->attr.mq_maxmsg > HARD_MSGMAX || 353 info->attr.mq_msgsize > HARD_MSGSIZEMAX) 354 goto out_inode; 355 } else { 356 if (info->attr.mq_maxmsg > ipc_ns->mq_msg_max || 357 info->attr.mq_msgsize > ipc_ns->mq_msgsize_max) 358 goto out_inode; 359 } 360 ret = -EOVERFLOW; 361 /* check for overflow */ 362 if (info->attr.mq_msgsize > ULONG_MAX/info->attr.mq_maxmsg) 363 goto out_inode; 364 mq_treesize = info->attr.mq_maxmsg * sizeof(struct msg_msg) + 365 min_t(unsigned int, info->attr.mq_maxmsg, MQ_PRIO_MAX) * 366 sizeof(struct posix_msg_tree_node); 367 mq_bytes = info->attr.mq_maxmsg * info->attr.mq_msgsize; 368 if (mq_bytes + mq_treesize < mq_bytes) 369 goto out_inode; 370 mq_bytes += mq_treesize; 371 info->ucounts = get_ucounts(current_ucounts()); 372 if (info->ucounts) { 373 long msgqueue; 374 375 spin_lock(&mq_lock); 376 msgqueue = inc_rlimit_ucounts(info->ucounts, UCOUNT_RLIMIT_MSGQUEUE, mq_bytes); 377 if (msgqueue == LONG_MAX || msgqueue > rlimit(RLIMIT_MSGQUEUE)) { 378 dec_rlimit_ucounts(info->ucounts, UCOUNT_RLIMIT_MSGQUEUE, mq_bytes); 379 spin_unlock(&mq_lock); 380 put_ucounts(info->ucounts); 381 info->ucounts = NULL; 382 /* mqueue_evict_inode() releases info->messages */ 383 ret = -EMFILE; 384 goto out_inode; 385 } 386 spin_unlock(&mq_lock); 387 } 388 } else if (S_ISDIR(mode)) { 389 inc_nlink(inode); 390 /* Some things misbehave if size == 0 on a directory */ 391 inode->i_size = 2 * DIRENT_SIZE; 392 inode->i_op = &mqueue_dir_inode_operations; 393 inode->i_fop = &simple_dir_operations; 394 } 395 396 return inode; 397 out_inode: 398 iput(inode); 399 err: 400 return ERR_PTR(ret); 401 } 402 403 static int mqueue_fill_super(struct super_block *sb, struct fs_context *fc) 404 { 405 struct inode *inode; 406 struct ipc_namespace *ns = sb->s_fs_info; 407 408 sb->s_iflags |= SB_I_NOEXEC | SB_I_NODEV; 409 sb->s_blocksize = PAGE_SIZE; 410 sb->s_blocksize_bits = PAGE_SHIFT; 411 sb->s_magic = MQUEUE_MAGIC; 412 sb->s_op = &mqueue_super_ops; 413 sb->s_d_flags = DCACHE_DONTCACHE; 414 415 inode = mqueue_get_inode(sb, ns, S_IFDIR | S_ISVTX | S_IRWXUGO, NULL); 416 if (IS_ERR(inode)) 417 return PTR_ERR(inode); 418 419 sb->s_root = d_make_root(inode); 420 if (!sb->s_root) 421 return -ENOMEM; 422 return 0; 423 } 424 425 static int mqueue_get_tree(struct fs_context *fc) 426 { 427 struct mqueue_fs_context *ctx = fc->fs_private; 428 429 /* 430 * With a newly created ipc namespace, we don't need to do a search 431 * for an ipc namespace match, but we still need to set s_fs_info. 432 */ 433 if (ctx->newns) { 434 fc->s_fs_info = ctx->ipc_ns; 435 return get_tree_nodev(fc, mqueue_fill_super); 436 } 437 return get_tree_keyed(fc, mqueue_fill_super, ctx->ipc_ns); 438 } 439 440 static void mqueue_fs_context_free(struct fs_context *fc) 441 { 442 struct mqueue_fs_context *ctx = fc->fs_private; 443 444 put_ipc_ns(ctx->ipc_ns); 445 kfree(ctx); 446 } 447 448 static int mqueue_init_fs_context(struct fs_context *fc) 449 { 450 struct mqueue_fs_context *ctx; 451 452 ctx = kzalloc(sizeof(struct mqueue_fs_context), GFP_KERNEL); 453 if (!ctx) 454 return -ENOMEM; 455 456 ctx->ipc_ns = get_ipc_ns(current->nsproxy->ipc_ns); 457 put_user_ns(fc->user_ns); 458 fc->user_ns = get_user_ns(ctx->ipc_ns->user_ns); 459 fc->fs_private = ctx; 460 fc->ops = &mqueue_fs_context_ops; 461 return 0; 462 } 463 464 /* 465 * mq_init_ns() is currently the only caller of mq_create_mount(). 466 * So the ns parameter is always a newly created ipc namespace. 467 */ 468 static struct vfsmount *mq_create_mount(struct ipc_namespace *ns) 469 { 470 struct mqueue_fs_context *ctx; 471 struct fs_context *fc; 472 struct vfsmount *mnt; 473 474 fc = fs_context_for_mount(&mqueue_fs_type, SB_KERNMOUNT); 475 if (IS_ERR(fc)) 476 return ERR_CAST(fc); 477 478 ctx = fc->fs_private; 479 ctx->newns = true; 480 put_ipc_ns(ctx->ipc_ns); 481 ctx->ipc_ns = get_ipc_ns(ns); 482 put_user_ns(fc->user_ns); 483 fc->user_ns = get_user_ns(ctx->ipc_ns->user_ns); 484 485 mnt = fc_mount_longterm(fc); 486 put_fs_context(fc); 487 return mnt; 488 } 489 490 static void init_once(void *foo) 491 { 492 struct mqueue_inode_info *p = foo; 493 494 inode_init_once(&p->vfs_inode); 495 } 496 497 static struct inode *mqueue_alloc_inode(struct super_block *sb) 498 { 499 struct mqueue_inode_info *ei; 500 501 ei = alloc_inode_sb(sb, mqueue_inode_cachep, GFP_KERNEL); 502 if (!ei) 503 return NULL; 504 return &ei->vfs_inode; 505 } 506 507 static void mqueue_free_inode(struct inode *inode) 508 { 509 kmem_cache_free(mqueue_inode_cachep, MQUEUE_I(inode)); 510 } 511 512 static void mqueue_evict_inode(struct inode *inode) 513 { 514 struct mqueue_inode_info *info; 515 struct ipc_namespace *ipc_ns; 516 struct msg_msg *msg, *nmsg; 517 LIST_HEAD(tmp_msg); 518 519 clear_inode(inode); 520 521 if (S_ISDIR(inode->i_mode)) 522 return; 523 524 ipc_ns = get_ns_from_inode(inode); 525 info = MQUEUE_I(inode); 526 spin_lock(&info->lock); 527 while ((msg = msg_get(info)) != NULL) 528 list_add_tail(&msg->m_list, &tmp_msg); 529 kfree(info->node_cache); 530 spin_unlock(&info->lock); 531 532 list_for_each_entry_safe(msg, nmsg, &tmp_msg, m_list) { 533 list_del(&msg->m_list); 534 free_msg(msg); 535 } 536 537 if (info->ucounts) { 538 unsigned long mq_bytes, mq_treesize; 539 540 /* Total amount of bytes accounted for the mqueue */ 541 mq_treesize = info->attr.mq_maxmsg * sizeof(struct msg_msg) + 542 min_t(unsigned int, info->attr.mq_maxmsg, MQ_PRIO_MAX) * 543 sizeof(struct posix_msg_tree_node); 544 545 mq_bytes = mq_treesize + (info->attr.mq_maxmsg * 546 info->attr.mq_msgsize); 547 548 spin_lock(&mq_lock); 549 dec_rlimit_ucounts(info->ucounts, UCOUNT_RLIMIT_MSGQUEUE, mq_bytes); 550 /* 551 * get_ns_from_inode() ensures that the 552 * (ipc_ns = sb->s_fs_info) is either a valid ipc_ns 553 * to which we now hold a reference, or it is NULL. 554 * We can't put it here under mq_lock, though. 555 */ 556 if (ipc_ns) 557 ipc_ns->mq_queues_count--; 558 spin_unlock(&mq_lock); 559 put_ucounts(info->ucounts); 560 info->ucounts = NULL; 561 } 562 if (ipc_ns) 563 put_ipc_ns(ipc_ns); 564 } 565 566 static int mqueue_create_attr(struct dentry *dentry, umode_t mode, void *arg) 567 { 568 struct inode *dir = dentry->d_parent->d_inode; 569 struct inode *inode; 570 struct mq_attr *attr = arg; 571 int error; 572 struct ipc_namespace *ipc_ns; 573 574 spin_lock(&mq_lock); 575 ipc_ns = __get_ns_from_inode(dir); 576 if (!ipc_ns) { 577 error = -EACCES; 578 goto out_unlock; 579 } 580 581 if (ipc_ns->mq_queues_count >= ipc_ns->mq_queues_max && 582 !capable(CAP_SYS_RESOURCE)) { 583 error = -ENOSPC; 584 goto out_unlock; 585 } 586 ipc_ns->mq_queues_count++; 587 spin_unlock(&mq_lock); 588 589 inode = mqueue_get_inode(dir->i_sb, ipc_ns, mode, attr); 590 if (IS_ERR(inode)) { 591 error = PTR_ERR(inode); 592 spin_lock(&mq_lock); 593 ipc_ns->mq_queues_count--; 594 goto out_unlock; 595 } 596 597 put_ipc_ns(ipc_ns); 598 dir->i_size += DIRENT_SIZE; 599 simple_inode_init_ts(dir); 600 601 d_make_persistent(dentry, inode); 602 return 0; 603 out_unlock: 604 spin_unlock(&mq_lock); 605 if (ipc_ns) 606 put_ipc_ns(ipc_ns); 607 return error; 608 } 609 610 static int mqueue_create(struct mnt_idmap *idmap, struct inode *dir, 611 struct dentry *dentry, umode_t mode, bool excl) 612 { 613 return mqueue_create_attr(dentry, mode, NULL); 614 } 615 616 static int mqueue_unlink(struct inode *dir, struct dentry *dentry) 617 { 618 dir->i_size -= DIRENT_SIZE; 619 return simple_unlink(dir, dentry); 620 } 621 622 /* 623 * This is routine for system read from queue file. 624 * To avoid mess with doing here some sort of mq_receive we allow 625 * to read only queue size & notification info (the only values 626 * that are interesting from user point of view and aren't accessible 627 * through std routines) 628 */ 629 static ssize_t mqueue_read_file(struct file *filp, char __user *u_data, 630 size_t count, loff_t *off) 631 { 632 struct inode *inode = file_inode(filp); 633 struct mqueue_inode_info *info = MQUEUE_I(inode); 634 char buffer[FILENT_SIZE]; 635 ssize_t ret; 636 637 spin_lock(&info->lock); 638 snprintf(buffer, sizeof(buffer), 639 "QSIZE:%-10lu NOTIFY:%-5d SIGNO:%-5d NOTIFY_PID:%-6d\n", 640 info->qsize, 641 info->notify_owner ? info->notify.sigev_notify : 0, 642 (info->notify_owner && 643 info->notify.sigev_notify == SIGEV_SIGNAL) ? 644 info->notify.sigev_signo : 0, 645 pid_vnr(info->notify_owner)); 646 spin_unlock(&info->lock); 647 buffer[sizeof(buffer)-1] = '\0'; 648 649 ret = simple_read_from_buffer(u_data, count, off, buffer, 650 strlen(buffer)); 651 if (ret <= 0) 652 return ret; 653 654 inode_set_atime_to_ts(inode, inode_set_ctime_current(inode)); 655 return ret; 656 } 657 658 static int mqueue_flush_file(struct file *filp, fl_owner_t id) 659 { 660 struct mqueue_inode_info *info = MQUEUE_I(file_inode(filp)); 661 662 spin_lock(&info->lock); 663 if (task_tgid(current) == info->notify_owner) 664 remove_notification(info); 665 666 spin_unlock(&info->lock); 667 return 0; 668 } 669 670 static __poll_t mqueue_poll_file(struct file *filp, struct poll_table_struct *poll_tab) 671 { 672 struct mqueue_inode_info *info = MQUEUE_I(file_inode(filp)); 673 __poll_t retval = 0; 674 675 poll_wait(filp, &info->wait_q, poll_tab); 676 677 spin_lock(&info->lock); 678 if (info->attr.mq_curmsgs) 679 retval = EPOLLIN | EPOLLRDNORM; 680 681 if (info->attr.mq_curmsgs < info->attr.mq_maxmsg) 682 retval |= EPOLLOUT | EPOLLWRNORM; 683 spin_unlock(&info->lock); 684 685 return retval; 686 } 687 688 /* Adds current to info->e_wait_q[sr] before element with smaller prio */ 689 static void wq_add(struct mqueue_inode_info *info, int sr, 690 struct ext_wait_queue *ewp) 691 { 692 struct ext_wait_queue *walk; 693 694 list_for_each_entry(walk, &info->e_wait_q[sr].list, list) { 695 if (walk->task->prio <= current->prio) { 696 list_add_tail(&ewp->list, &walk->list); 697 return; 698 } 699 } 700 list_add_tail(&ewp->list, &info->e_wait_q[sr].list); 701 } 702 703 /* 704 * Puts current task to sleep. Caller must hold queue lock. After return 705 * lock isn't held. 706 * sr: SEND or RECV 707 */ 708 static int wq_sleep(struct mqueue_inode_info *info, int sr, 709 ktime_t *timeout, struct ext_wait_queue *ewp) 710 __releases(&info->lock) 711 { 712 int retval; 713 signed long time; 714 715 wq_add(info, sr, ewp); 716 717 for (;;) { 718 /* memory barrier not required, we hold info->lock */ 719 __set_current_state(TASK_INTERRUPTIBLE); 720 721 spin_unlock(&info->lock); 722 time = schedule_hrtimeout_range_clock(timeout, 0, 723 HRTIMER_MODE_ABS, CLOCK_REALTIME); 724 725 if (READ_ONCE(ewp->state) == STATE_READY) { 726 /* see MQ_BARRIER for purpose/pairing */ 727 smp_acquire__after_ctrl_dep(); 728 retval = 0; 729 goto out; 730 } 731 spin_lock(&info->lock); 732 733 /* we hold info->lock, so no memory barrier required */ 734 if (READ_ONCE(ewp->state) == STATE_READY) { 735 retval = 0; 736 goto out_unlock; 737 } 738 if (signal_pending(current)) { 739 retval = -ERESTARTSYS; 740 break; 741 } 742 if (time == 0) { 743 retval = -ETIMEDOUT; 744 break; 745 } 746 } 747 list_del(&ewp->list); 748 out_unlock: 749 spin_unlock(&info->lock); 750 out: 751 return retval; 752 } 753 754 /* 755 * Returns waiting task that should be serviced first or NULL if none exists 756 */ 757 static struct ext_wait_queue *wq_get_first_waiter( 758 struct mqueue_inode_info *info, int sr) 759 { 760 struct list_head *ptr; 761 762 ptr = info->e_wait_q[sr].list.prev; 763 if (ptr == &info->e_wait_q[sr].list) 764 return NULL; 765 return list_entry(ptr, struct ext_wait_queue, list); 766 } 767 768 769 static inline void set_cookie(struct sk_buff *skb, char code) 770 { 771 ((char *)skb->data)[NOTIFY_COOKIE_LEN-1] = code; 772 } 773 774 /* 775 * The next function is only to split too long sys_mq_timedsend 776 */ 777 static void __do_notify(struct mqueue_inode_info *info) 778 { 779 /* notification 780 * invoked when there is registered process and there isn't process 781 * waiting synchronously for message AND state of queue changed from 782 * empty to not empty. Here we are sure that no one is waiting 783 * synchronously. */ 784 if (info->notify_owner && 785 info->attr.mq_curmsgs == 1) { 786 switch (info->notify.sigev_notify) { 787 case SIGEV_NONE: 788 break; 789 case SIGEV_SIGNAL: { 790 struct kernel_siginfo sig_i; 791 struct task_struct *task; 792 793 /* do_mq_notify() accepts sigev_signo == 0, why?? */ 794 if (!info->notify.sigev_signo) 795 break; 796 797 clear_siginfo(&sig_i); 798 sig_i.si_signo = info->notify.sigev_signo; 799 sig_i.si_errno = 0; 800 sig_i.si_code = SI_MESGQ; 801 sig_i.si_value = info->notify.sigev_value; 802 rcu_read_lock(); 803 /* map current pid/uid into info->owner's namespaces */ 804 sig_i.si_pid = task_tgid_nr_ns(current, 805 ns_of_pid(info->notify_owner)); 806 sig_i.si_uid = from_kuid_munged(info->notify_user_ns, 807 current_uid()); 808 /* 809 * We can't use kill_pid_info(), this signal should 810 * bypass check_kill_permission(). It is from kernel 811 * but si_fromuser() can't know this. 812 * We do check the self_exec_id, to avoid sending 813 * signals to programs that don't expect them. 814 */ 815 task = pid_task(info->notify_owner, PIDTYPE_TGID); 816 if (task && task->self_exec_id == 817 info->notify_self_exec_id) { 818 do_send_sig_info(info->notify.sigev_signo, 819 &sig_i, task, PIDTYPE_TGID); 820 } 821 rcu_read_unlock(); 822 break; 823 } 824 case SIGEV_THREAD: 825 set_cookie(info->notify_cookie, NOTIFY_WOKENUP); 826 netlink_sendskb(info->notify_sock, info->notify_cookie); 827 break; 828 } 829 /* after notification unregisters process */ 830 put_pid(info->notify_owner); 831 put_user_ns(info->notify_user_ns); 832 info->notify_owner = NULL; 833 info->notify_user_ns = NULL; 834 } 835 wake_up(&info->wait_q); 836 } 837 838 static int prepare_timeout(const struct __kernel_timespec __user *u_abs_timeout, 839 struct timespec64 *ts) 840 { 841 if (get_timespec64(ts, u_abs_timeout)) 842 return -EFAULT; 843 if (!timespec64_valid(ts)) 844 return -EINVAL; 845 return 0; 846 } 847 848 static void remove_notification(struct mqueue_inode_info *info) 849 { 850 if (info->notify_owner != NULL && 851 info->notify.sigev_notify == SIGEV_THREAD) { 852 set_cookie(info->notify_cookie, NOTIFY_REMOVED); 853 netlink_sendskb(info->notify_sock, info->notify_cookie); 854 } 855 put_pid(info->notify_owner); 856 put_user_ns(info->notify_user_ns); 857 info->notify_owner = NULL; 858 info->notify_user_ns = NULL; 859 } 860 861 static int prepare_open(struct dentry *dentry, int oflag, int ro, 862 umode_t mode, struct filename *name, 863 struct mq_attr *attr) 864 { 865 static const int oflag2acc[O_ACCMODE] = { MAY_READ, MAY_WRITE, 866 MAY_READ | MAY_WRITE }; 867 int acc; 868 869 if (d_really_is_negative(dentry)) { 870 if (!(oflag & O_CREAT)) 871 return -ENOENT; 872 if (ro) 873 return ro; 874 audit_inode_parent_hidden(name, dentry->d_parent); 875 return vfs_mkobj(dentry, mode & ~current_umask(), 876 mqueue_create_attr, attr); 877 } 878 /* it already existed */ 879 audit_inode(name, dentry, 0); 880 if ((oflag & (O_CREAT|O_EXCL)) == (O_CREAT|O_EXCL)) 881 return -EEXIST; 882 if ((oflag & O_ACCMODE) == (O_RDWR | O_WRONLY)) 883 return -EINVAL; 884 acc = oflag2acc[oflag & O_ACCMODE]; 885 return inode_permission(&nop_mnt_idmap, d_inode(dentry), acc); 886 } 887 888 static struct file *mqueue_file_open(struct filename *name, 889 struct vfsmount *mnt, int oflag, int ro, 890 umode_t mode, struct mq_attr *attr) 891 { 892 struct dentry *dentry; 893 struct file *file; 894 int ret; 895 896 dentry = start_creating_noperm(mnt->mnt_root, &QSTR(name->name)); 897 if (IS_ERR(dentry)) 898 return ERR_CAST(dentry); 899 900 ret = prepare_open(dentry, oflag, ro, mode, name, attr); 901 file = ERR_PTR(ret); 902 if (!ret) { 903 const struct path path = { .mnt = mnt, .dentry = dentry }; 904 file = dentry_open(&path, oflag, current_cred()); 905 } 906 907 end_creating(dentry); 908 return file; 909 } 910 911 static int do_mq_open(const char __user *u_name, int oflag, umode_t mode, 912 struct mq_attr *attr) 913 { 914 struct vfsmount *mnt = current->nsproxy->ipc_ns->mq_mnt; 915 int fd, ro; 916 917 audit_mq_open(oflag, mode, attr); 918 919 CLASS(filename, name)(u_name); 920 if (IS_ERR(name)) 921 return PTR_ERR(name); 922 923 ro = mnt_want_write(mnt); /* we'll drop it in any case */ 924 fd = FD_ADD(O_CLOEXEC, mqueue_file_open(name, mnt, oflag, ro, mode, attr)); 925 if (!ro) 926 mnt_drop_write(mnt); 927 return fd; 928 } 929 930 SYSCALL_DEFINE4(mq_open, const char __user *, u_name, int, oflag, umode_t, mode, 931 struct mq_attr __user *, u_attr) 932 { 933 struct mq_attr attr; 934 if (u_attr && copy_from_user(&attr, u_attr, sizeof(struct mq_attr))) 935 return -EFAULT; 936 937 return do_mq_open(u_name, oflag, mode, u_attr ? &attr : NULL); 938 } 939 940 SYSCALL_DEFINE1(mq_unlink, const char __user *, u_name) 941 { 942 int err; 943 struct dentry *dentry; 944 struct inode *inode; 945 struct ipc_namespace *ipc_ns = current->nsproxy->ipc_ns; 946 struct vfsmount *mnt = ipc_ns->mq_mnt; 947 CLASS(filename, name)(u_name); 948 949 if (IS_ERR(name)) 950 return PTR_ERR(name); 951 952 audit_inode_parent_hidden(name, mnt->mnt_root); 953 err = mnt_want_write(mnt); 954 if (err) 955 return err; 956 dentry = start_removing_noperm(mnt->mnt_root, &QSTR(name->name)); 957 if (IS_ERR(dentry)) { 958 err = PTR_ERR(dentry); 959 goto out_drop_write; 960 } 961 962 inode = d_inode(dentry); 963 ihold(inode); 964 err = vfs_unlink(&nop_mnt_idmap, d_inode(mnt->mnt_root), 965 dentry, NULL); 966 end_removing(dentry); 967 iput(inode); 968 969 out_drop_write: 970 mnt_drop_write(mnt); 971 return err; 972 } 973 974 /* Pipelined send and receive functions. 975 * 976 * If a receiver finds no waiting message, then it registers itself in the 977 * list of waiting receivers. A sender checks that list before adding the new 978 * message into the message array. If there is a waiting receiver, then it 979 * bypasses the message array and directly hands the message over to the 980 * receiver. The receiver accepts the message and returns without grabbing the 981 * queue spinlock: 982 * 983 * - Set pointer to message. 984 * - Queue the receiver task for later wakeup (without the info->lock). 985 * - Update its state to STATE_READY. Now the receiver can continue. 986 * - Wake up the process after the lock is dropped. Should the process wake up 987 * before this wakeup (due to a timeout or a signal) it will either see 988 * STATE_READY and continue or acquire the lock to check the state again. 989 * 990 * The same algorithm is used for senders. 991 */ 992 993 static inline void __pipelined_op(struct wake_q_head *wake_q, 994 struct mqueue_inode_info *info, 995 struct ext_wait_queue *this) 996 { 997 struct task_struct *task; 998 999 list_del(&this->list); 1000 task = get_task_struct(this->task); 1001 1002 /* see MQ_BARRIER for purpose/pairing */ 1003 smp_store_release(&this->state, STATE_READY); 1004 wake_q_add_safe(wake_q, task); 1005 } 1006 1007 /* pipelined_send() - send a message directly to the task waiting in 1008 * sys_mq_timedreceive() (without inserting message into a queue). 1009 */ 1010 static inline void pipelined_send(struct wake_q_head *wake_q, 1011 struct mqueue_inode_info *info, 1012 struct msg_msg *message, 1013 struct ext_wait_queue *receiver) 1014 { 1015 receiver->msg = message; 1016 __pipelined_op(wake_q, info, receiver); 1017 } 1018 1019 /* pipelined_receive() - if there is task waiting in sys_mq_timedsend() 1020 * gets its message and put to the queue (we have one free place for sure). */ 1021 static inline void pipelined_receive(struct wake_q_head *wake_q, 1022 struct mqueue_inode_info *info) 1023 { 1024 struct ext_wait_queue *sender = wq_get_first_waiter(info, SEND); 1025 1026 if (!sender) { 1027 /* for poll */ 1028 wake_up_interruptible(&info->wait_q); 1029 return; 1030 } 1031 if (msg_insert(sender->msg, info)) 1032 return; 1033 1034 __pipelined_op(wake_q, info, sender); 1035 } 1036 1037 static int do_mq_timedsend(mqd_t mqdes, const char __user *u_msg_ptr, 1038 size_t msg_len, unsigned int msg_prio, 1039 struct timespec64 *ts) 1040 { 1041 struct inode *inode; 1042 struct ext_wait_queue wait; 1043 struct ext_wait_queue *receiver; 1044 struct msg_msg *msg_ptr; 1045 struct mqueue_inode_info *info; 1046 ktime_t expires, *timeout = NULL; 1047 struct posix_msg_tree_node *new_leaf = NULL; 1048 int ret = 0; 1049 DEFINE_WAKE_Q(wake_q); 1050 1051 if (unlikely(msg_prio >= (unsigned long) MQ_PRIO_MAX)) 1052 return -EINVAL; 1053 1054 if (ts) { 1055 expires = timespec64_to_ktime(*ts); 1056 timeout = &expires; 1057 } 1058 1059 audit_mq_sendrecv(mqdes, msg_len, msg_prio, ts); 1060 1061 CLASS(fd, f)(mqdes); 1062 if (fd_empty(f)) 1063 return -EBADF; 1064 1065 inode = file_inode(fd_file(f)); 1066 if (unlikely(fd_file(f)->f_op != &mqueue_file_operations)) 1067 return -EBADF; 1068 info = MQUEUE_I(inode); 1069 audit_file(fd_file(f)); 1070 1071 if (unlikely(!(fd_file(f)->f_mode & FMODE_WRITE))) 1072 return -EBADF; 1073 1074 if (unlikely(msg_len > info->attr.mq_msgsize)) 1075 return -EMSGSIZE; 1076 1077 /* First try to allocate memory, before doing anything with 1078 * existing queues. */ 1079 msg_ptr = load_msg(u_msg_ptr, msg_len); 1080 if (IS_ERR(msg_ptr)) 1081 return PTR_ERR(msg_ptr); 1082 msg_ptr->m_ts = msg_len; 1083 msg_ptr->m_type = msg_prio; 1084 1085 /* 1086 * msg_insert really wants us to have a valid, spare node struct so 1087 * it doesn't have to kmalloc a GFP_ATOMIC allocation, but it will 1088 * fall back to that if necessary. 1089 */ 1090 if (!info->node_cache) 1091 new_leaf = kmalloc(sizeof(*new_leaf), GFP_KERNEL); 1092 1093 spin_lock(&info->lock); 1094 1095 if (!info->node_cache && new_leaf) { 1096 /* Save our speculative allocation into the cache */ 1097 INIT_LIST_HEAD(&new_leaf->msg_list); 1098 info->node_cache = new_leaf; 1099 new_leaf = NULL; 1100 } else { 1101 kfree(new_leaf); 1102 } 1103 1104 if (info->attr.mq_curmsgs == info->attr.mq_maxmsg) { 1105 if (fd_file(f)->f_flags & O_NONBLOCK) { 1106 ret = -EAGAIN; 1107 } else { 1108 wait.task = current; 1109 wait.msg = (void *) msg_ptr; 1110 1111 /* memory barrier not required, we hold info->lock */ 1112 WRITE_ONCE(wait.state, STATE_NONE); 1113 ret = wq_sleep(info, SEND, timeout, &wait); 1114 /* 1115 * wq_sleep must be called with info->lock held, and 1116 * returns with the lock released 1117 */ 1118 goto out_free; 1119 } 1120 } else { 1121 receiver = wq_get_first_waiter(info, RECV); 1122 if (receiver) { 1123 pipelined_send(&wake_q, info, msg_ptr, receiver); 1124 } else { 1125 /* adds message to the queue */ 1126 ret = msg_insert(msg_ptr, info); 1127 if (ret) 1128 goto out_unlock; 1129 __do_notify(info); 1130 } 1131 simple_inode_init_ts(inode); 1132 } 1133 out_unlock: 1134 spin_unlock(&info->lock); 1135 wake_up_q(&wake_q); 1136 out_free: 1137 if (ret) 1138 free_msg(msg_ptr); 1139 return ret; 1140 } 1141 1142 static int do_mq_timedreceive(mqd_t mqdes, char __user *u_msg_ptr, 1143 size_t msg_len, unsigned int __user *u_msg_prio, 1144 struct timespec64 *ts) 1145 { 1146 ssize_t ret; 1147 struct msg_msg *msg_ptr; 1148 struct inode *inode; 1149 struct mqueue_inode_info *info; 1150 struct ext_wait_queue wait; 1151 ktime_t expires, *timeout = NULL; 1152 struct posix_msg_tree_node *new_leaf = NULL; 1153 1154 if (ts) { 1155 expires = timespec64_to_ktime(*ts); 1156 timeout = &expires; 1157 } 1158 1159 audit_mq_sendrecv(mqdes, msg_len, 0, ts); 1160 1161 CLASS(fd, f)(mqdes); 1162 if (fd_empty(f)) 1163 return -EBADF; 1164 1165 inode = file_inode(fd_file(f)); 1166 if (unlikely(fd_file(f)->f_op != &mqueue_file_operations)) 1167 return -EBADF; 1168 info = MQUEUE_I(inode); 1169 audit_file(fd_file(f)); 1170 1171 if (unlikely(!(fd_file(f)->f_mode & FMODE_READ))) 1172 return -EBADF; 1173 1174 /* checks if buffer is big enough */ 1175 if (unlikely(msg_len < info->attr.mq_msgsize)) 1176 return -EMSGSIZE; 1177 1178 /* 1179 * msg_insert really wants us to have a valid, spare node struct so 1180 * it doesn't have to kmalloc a GFP_ATOMIC allocation, but it will 1181 * fall back to that if necessary. 1182 */ 1183 if (!info->node_cache) 1184 new_leaf = kmalloc(sizeof(*new_leaf), GFP_KERNEL); 1185 1186 spin_lock(&info->lock); 1187 1188 if (!info->node_cache && new_leaf) { 1189 /* Save our speculative allocation into the cache */ 1190 INIT_LIST_HEAD(&new_leaf->msg_list); 1191 info->node_cache = new_leaf; 1192 } else { 1193 kfree(new_leaf); 1194 } 1195 1196 if (info->attr.mq_curmsgs == 0) { 1197 if (fd_file(f)->f_flags & O_NONBLOCK) { 1198 spin_unlock(&info->lock); 1199 ret = -EAGAIN; 1200 } else { 1201 wait.task = current; 1202 1203 /* memory barrier not required, we hold info->lock */ 1204 WRITE_ONCE(wait.state, STATE_NONE); 1205 ret = wq_sleep(info, RECV, timeout, &wait); 1206 msg_ptr = wait.msg; 1207 } 1208 } else { 1209 DEFINE_WAKE_Q(wake_q); 1210 1211 msg_ptr = msg_get(info); 1212 1213 simple_inode_init_ts(inode); 1214 1215 /* There is now free space in queue. */ 1216 pipelined_receive(&wake_q, info); 1217 spin_unlock(&info->lock); 1218 wake_up_q(&wake_q); 1219 ret = 0; 1220 } 1221 if (ret == 0) { 1222 ret = msg_ptr->m_ts; 1223 1224 if ((u_msg_prio && put_user(msg_ptr->m_type, u_msg_prio)) || 1225 store_msg(u_msg_ptr, msg_ptr, msg_ptr->m_ts)) { 1226 ret = -EFAULT; 1227 } 1228 free_msg(msg_ptr); 1229 } 1230 return ret; 1231 } 1232 1233 SYSCALL_DEFINE5(mq_timedsend, mqd_t, mqdes, const char __user *, u_msg_ptr, 1234 size_t, msg_len, unsigned int, msg_prio, 1235 const struct __kernel_timespec __user *, u_abs_timeout) 1236 { 1237 struct timespec64 ts, *p = NULL; 1238 if (u_abs_timeout) { 1239 int res = prepare_timeout(u_abs_timeout, &ts); 1240 if (res) 1241 return res; 1242 p = &ts; 1243 } 1244 return do_mq_timedsend(mqdes, u_msg_ptr, msg_len, msg_prio, p); 1245 } 1246 1247 SYSCALL_DEFINE5(mq_timedreceive, mqd_t, mqdes, char __user *, u_msg_ptr, 1248 size_t, msg_len, unsigned int __user *, u_msg_prio, 1249 const struct __kernel_timespec __user *, u_abs_timeout) 1250 { 1251 struct timespec64 ts, *p = NULL; 1252 if (u_abs_timeout) { 1253 int res = prepare_timeout(u_abs_timeout, &ts); 1254 if (res) 1255 return res; 1256 p = &ts; 1257 } 1258 return do_mq_timedreceive(mqdes, u_msg_ptr, msg_len, u_msg_prio, p); 1259 } 1260 1261 /* 1262 * Notes: the case when user wants us to deregister (with NULL as pointer) 1263 * and he isn't currently owner of notification, will be silently discarded. 1264 * It isn't explicitly defined in the POSIX. 1265 */ 1266 static int do_mq_notify(mqd_t mqdes, const struct sigevent *notification) 1267 { 1268 int ret; 1269 struct sock *sock; 1270 struct inode *inode; 1271 struct mqueue_inode_info *info; 1272 struct sk_buff *nc; 1273 1274 audit_mq_notify(mqdes, notification); 1275 1276 nc = NULL; 1277 sock = NULL; 1278 if (notification != NULL) { 1279 if (unlikely(notification->sigev_notify != SIGEV_NONE && 1280 notification->sigev_notify != SIGEV_SIGNAL && 1281 notification->sigev_notify != SIGEV_THREAD)) 1282 return -EINVAL; 1283 if (notification->sigev_notify == SIGEV_SIGNAL && 1284 !valid_signal(notification->sigev_signo)) { 1285 return -EINVAL; 1286 } 1287 if (notification->sigev_notify == SIGEV_THREAD) { 1288 long timeo; 1289 1290 /* create the notify skb */ 1291 nc = alloc_skb(NOTIFY_COOKIE_LEN, GFP_KERNEL); 1292 if (!nc) 1293 return -ENOMEM; 1294 1295 if (copy_from_user(nc->data, 1296 notification->sigev_value.sival_ptr, 1297 NOTIFY_COOKIE_LEN)) { 1298 kfree_skb(nc); 1299 return -EFAULT; 1300 } 1301 1302 /* TODO: add a header? */ 1303 skb_put(nc, NOTIFY_COOKIE_LEN); 1304 /* and attach it to the socket */ 1305 retry: 1306 sock = netlink_getsockbyfd(notification->sigev_signo); 1307 if (IS_ERR(sock)) { 1308 kfree_skb(nc); 1309 return PTR_ERR(sock); 1310 } 1311 1312 timeo = MAX_SCHEDULE_TIMEOUT; 1313 ret = netlink_attachskb(sock, nc, &timeo, NULL); 1314 if (ret == 1) 1315 goto retry; 1316 if (ret) 1317 return ret; 1318 } 1319 } 1320 1321 CLASS(fd, f)(mqdes); 1322 if (fd_empty(f)) { 1323 ret = -EBADF; 1324 goto out; 1325 } 1326 1327 inode = file_inode(fd_file(f)); 1328 if (unlikely(fd_file(f)->f_op != &mqueue_file_operations)) { 1329 ret = -EBADF; 1330 goto out; 1331 } 1332 info = MQUEUE_I(inode); 1333 1334 ret = 0; 1335 spin_lock(&info->lock); 1336 if (notification == NULL) { 1337 if (info->notify_owner == task_tgid(current)) { 1338 remove_notification(info); 1339 inode_set_atime_to_ts(inode, 1340 inode_set_ctime_current(inode)); 1341 } 1342 } else if (info->notify_owner != NULL) { 1343 ret = -EBUSY; 1344 } else { 1345 switch (notification->sigev_notify) { 1346 case SIGEV_NONE: 1347 info->notify.sigev_notify = SIGEV_NONE; 1348 break; 1349 case SIGEV_THREAD: 1350 info->notify_sock = sock; 1351 info->notify_cookie = nc; 1352 sock = NULL; 1353 nc = NULL; 1354 info->notify.sigev_notify = SIGEV_THREAD; 1355 break; 1356 case SIGEV_SIGNAL: 1357 info->notify.sigev_signo = notification->sigev_signo; 1358 info->notify.sigev_value = notification->sigev_value; 1359 info->notify.sigev_notify = SIGEV_SIGNAL; 1360 info->notify_self_exec_id = current->self_exec_id; 1361 break; 1362 } 1363 1364 info->notify_owner = get_pid(task_tgid(current)); 1365 info->notify_user_ns = get_user_ns(current_user_ns()); 1366 inode_set_atime_to_ts(inode, inode_set_ctime_current(inode)); 1367 } 1368 spin_unlock(&info->lock); 1369 out: 1370 if (sock) 1371 netlink_detachskb(sock, nc); 1372 return ret; 1373 } 1374 1375 SYSCALL_DEFINE2(mq_notify, mqd_t, mqdes, 1376 const struct sigevent __user *, u_notification) 1377 { 1378 struct sigevent n, *p = NULL; 1379 if (u_notification) { 1380 if (copy_from_user(&n, u_notification, sizeof(struct sigevent))) 1381 return -EFAULT; 1382 p = &n; 1383 } 1384 return do_mq_notify(mqdes, p); 1385 } 1386 1387 static int do_mq_getsetattr(int mqdes, struct mq_attr *new, struct mq_attr *old) 1388 { 1389 struct inode *inode; 1390 struct mqueue_inode_info *info; 1391 1392 if (new && (new->mq_flags & (~O_NONBLOCK))) 1393 return -EINVAL; 1394 1395 CLASS(fd, f)(mqdes); 1396 if (fd_empty(f)) 1397 return -EBADF; 1398 1399 if (unlikely(fd_file(f)->f_op != &mqueue_file_operations)) 1400 return -EBADF; 1401 1402 inode = file_inode(fd_file(f)); 1403 info = MQUEUE_I(inode); 1404 1405 spin_lock(&info->lock); 1406 1407 if (old) { 1408 *old = info->attr; 1409 old->mq_flags = fd_file(f)->f_flags & O_NONBLOCK; 1410 } 1411 if (new) { 1412 audit_mq_getsetattr(mqdes, new); 1413 spin_lock(&fd_file(f)->f_lock); 1414 if (new->mq_flags & O_NONBLOCK) 1415 fd_file(f)->f_flags |= O_NONBLOCK; 1416 else 1417 fd_file(f)->f_flags &= ~O_NONBLOCK; 1418 spin_unlock(&fd_file(f)->f_lock); 1419 1420 inode_set_atime_to_ts(inode, inode_set_ctime_current(inode)); 1421 } 1422 1423 spin_unlock(&info->lock); 1424 return 0; 1425 } 1426 1427 SYSCALL_DEFINE3(mq_getsetattr, mqd_t, mqdes, 1428 const struct mq_attr __user *, u_mqstat, 1429 struct mq_attr __user *, u_omqstat) 1430 { 1431 int ret; 1432 struct mq_attr mqstat, omqstat; 1433 struct mq_attr *new = NULL, *old = NULL; 1434 1435 if (u_mqstat) { 1436 new = &mqstat; 1437 if (copy_from_user(new, u_mqstat, sizeof(struct mq_attr))) 1438 return -EFAULT; 1439 } 1440 if (u_omqstat) 1441 old = &omqstat; 1442 1443 ret = do_mq_getsetattr(mqdes, new, old); 1444 if (ret || !old) 1445 return ret; 1446 1447 if (copy_to_user(u_omqstat, old, sizeof(struct mq_attr))) 1448 return -EFAULT; 1449 return 0; 1450 } 1451 1452 #ifdef CONFIG_COMPAT 1453 1454 struct compat_mq_attr { 1455 compat_long_t mq_flags; /* message queue flags */ 1456 compat_long_t mq_maxmsg; /* maximum number of messages */ 1457 compat_long_t mq_msgsize; /* maximum message size */ 1458 compat_long_t mq_curmsgs; /* number of messages currently queued */ 1459 compat_long_t __reserved[4]; /* ignored for input, zeroed for output */ 1460 }; 1461 1462 static inline int get_compat_mq_attr(struct mq_attr *attr, 1463 const struct compat_mq_attr __user *uattr) 1464 { 1465 struct compat_mq_attr v; 1466 1467 if (copy_from_user(&v, uattr, sizeof(*uattr))) 1468 return -EFAULT; 1469 1470 memset(attr, 0, sizeof(*attr)); 1471 attr->mq_flags = v.mq_flags; 1472 attr->mq_maxmsg = v.mq_maxmsg; 1473 attr->mq_msgsize = v.mq_msgsize; 1474 attr->mq_curmsgs = v.mq_curmsgs; 1475 return 0; 1476 } 1477 1478 static inline int put_compat_mq_attr(const struct mq_attr *attr, 1479 struct compat_mq_attr __user *uattr) 1480 { 1481 struct compat_mq_attr v; 1482 1483 memset(&v, 0, sizeof(v)); 1484 v.mq_flags = attr->mq_flags; 1485 v.mq_maxmsg = attr->mq_maxmsg; 1486 v.mq_msgsize = attr->mq_msgsize; 1487 v.mq_curmsgs = attr->mq_curmsgs; 1488 if (copy_to_user(uattr, &v, sizeof(*uattr))) 1489 return -EFAULT; 1490 return 0; 1491 } 1492 1493 COMPAT_SYSCALL_DEFINE4(mq_open, const char __user *, u_name, 1494 int, oflag, compat_mode_t, mode, 1495 struct compat_mq_attr __user *, u_attr) 1496 { 1497 struct mq_attr attr, *p = NULL; 1498 if (u_attr && oflag & O_CREAT) { 1499 p = &attr; 1500 if (get_compat_mq_attr(&attr, u_attr)) 1501 return -EFAULT; 1502 } 1503 return do_mq_open(u_name, oflag, mode, p); 1504 } 1505 1506 COMPAT_SYSCALL_DEFINE2(mq_notify, mqd_t, mqdes, 1507 const struct compat_sigevent __user *, u_notification) 1508 { 1509 struct sigevent n, *p = NULL; 1510 if (u_notification) { 1511 if (get_compat_sigevent(&n, u_notification)) 1512 return -EFAULT; 1513 if (n.sigev_notify == SIGEV_THREAD) 1514 n.sigev_value.sival_ptr = compat_ptr(n.sigev_value.sival_int); 1515 p = &n; 1516 } 1517 return do_mq_notify(mqdes, p); 1518 } 1519 1520 COMPAT_SYSCALL_DEFINE3(mq_getsetattr, mqd_t, mqdes, 1521 const struct compat_mq_attr __user *, u_mqstat, 1522 struct compat_mq_attr __user *, u_omqstat) 1523 { 1524 int ret; 1525 struct mq_attr mqstat, omqstat; 1526 struct mq_attr *new = NULL, *old = NULL; 1527 1528 if (u_mqstat) { 1529 new = &mqstat; 1530 if (get_compat_mq_attr(new, u_mqstat)) 1531 return -EFAULT; 1532 } 1533 if (u_omqstat) 1534 old = &omqstat; 1535 1536 ret = do_mq_getsetattr(mqdes, new, old); 1537 if (ret || !old) 1538 return ret; 1539 1540 if (put_compat_mq_attr(old, u_omqstat)) 1541 return -EFAULT; 1542 return 0; 1543 } 1544 #endif 1545 1546 #ifdef CONFIG_COMPAT_32BIT_TIME 1547 static int compat_prepare_timeout(const struct old_timespec32 __user *p, 1548 struct timespec64 *ts) 1549 { 1550 if (get_old_timespec32(ts, p)) 1551 return -EFAULT; 1552 if (!timespec64_valid(ts)) 1553 return -EINVAL; 1554 return 0; 1555 } 1556 1557 SYSCALL_DEFINE5(mq_timedsend_time32, mqd_t, mqdes, 1558 const char __user *, u_msg_ptr, 1559 unsigned int, msg_len, unsigned int, msg_prio, 1560 const struct old_timespec32 __user *, u_abs_timeout) 1561 { 1562 struct timespec64 ts, *p = NULL; 1563 if (u_abs_timeout) { 1564 int res = compat_prepare_timeout(u_abs_timeout, &ts); 1565 if (res) 1566 return res; 1567 p = &ts; 1568 } 1569 return do_mq_timedsend(mqdes, u_msg_ptr, msg_len, msg_prio, p); 1570 } 1571 1572 SYSCALL_DEFINE5(mq_timedreceive_time32, mqd_t, mqdes, 1573 char __user *, u_msg_ptr, 1574 unsigned int, msg_len, unsigned int __user *, u_msg_prio, 1575 const struct old_timespec32 __user *, u_abs_timeout) 1576 { 1577 struct timespec64 ts, *p = NULL; 1578 if (u_abs_timeout) { 1579 int res = compat_prepare_timeout(u_abs_timeout, &ts); 1580 if (res) 1581 return res; 1582 p = &ts; 1583 } 1584 return do_mq_timedreceive(mqdes, u_msg_ptr, msg_len, u_msg_prio, p); 1585 } 1586 #endif 1587 1588 static const struct inode_operations mqueue_dir_inode_operations = { 1589 .lookup = simple_lookup, 1590 .create = mqueue_create, 1591 .unlink = mqueue_unlink, 1592 }; 1593 1594 static const struct file_operations mqueue_file_operations = { 1595 .flush = mqueue_flush_file, 1596 .poll = mqueue_poll_file, 1597 .read = mqueue_read_file, 1598 .llseek = default_llseek, 1599 }; 1600 1601 static const struct super_operations mqueue_super_ops = { 1602 .alloc_inode = mqueue_alloc_inode, 1603 .free_inode = mqueue_free_inode, 1604 .evict_inode = mqueue_evict_inode, 1605 .statfs = simple_statfs, 1606 }; 1607 1608 static const struct fs_context_operations mqueue_fs_context_ops = { 1609 .free = mqueue_fs_context_free, 1610 .get_tree = mqueue_get_tree, 1611 }; 1612 1613 static struct file_system_type mqueue_fs_type = { 1614 .name = "mqueue", 1615 .init_fs_context = mqueue_init_fs_context, 1616 .kill_sb = kill_anon_super, 1617 .fs_flags = FS_USERNS_MOUNT, 1618 }; 1619 1620 int mq_init_ns(struct ipc_namespace *ns) 1621 { 1622 struct vfsmount *m; 1623 1624 ns->mq_queues_count = 0; 1625 ns->mq_queues_max = DFLT_QUEUESMAX; 1626 ns->mq_msg_max = DFLT_MSGMAX; 1627 ns->mq_msgsize_max = DFLT_MSGSIZEMAX; 1628 ns->mq_msg_default = DFLT_MSG; 1629 ns->mq_msgsize_default = DFLT_MSGSIZE; 1630 1631 m = mq_create_mount(ns); 1632 if (IS_ERR(m)) 1633 return PTR_ERR(m); 1634 ns->mq_mnt = m; 1635 return 0; 1636 } 1637 1638 void mq_clear_sbinfo(struct ipc_namespace *ns) 1639 { 1640 ns->mq_mnt->mnt_sb->s_fs_info = NULL; 1641 } 1642 1643 static int __init init_mqueue_fs(void) 1644 { 1645 int error; 1646 1647 mqueue_inode_cachep = kmem_cache_create("mqueue_inode_cache", 1648 sizeof(struct mqueue_inode_info), 0, 1649 SLAB_HWCACHE_ALIGN|SLAB_ACCOUNT, init_once); 1650 if (mqueue_inode_cachep == NULL) 1651 return -ENOMEM; 1652 1653 if (!setup_mq_sysctls(&init_ipc_ns)) { 1654 pr_warn("sysctl registration failed\n"); 1655 error = -ENOMEM; 1656 goto out_kmem; 1657 } 1658 1659 error = register_filesystem(&mqueue_fs_type); 1660 if (error) 1661 goto out_sysctl; 1662 1663 spin_lock_init(&mq_lock); 1664 1665 error = mq_init_ns(&init_ipc_ns); 1666 if (error) 1667 goto out_filesystem; 1668 1669 return 0; 1670 1671 out_filesystem: 1672 unregister_filesystem(&mqueue_fs_type); 1673 out_sysctl: 1674 retire_mq_sysctls(&init_ipc_ns); 1675 out_kmem: 1676 kmem_cache_destroy(mqueue_inode_cachep); 1677 return error; 1678 } 1679 1680 device_initcall(init_mqueue_fs); 1681