xref: /linux/fs/f2fs/node.h (revision 81d8e5e2132215d21f2cddffcd2b16d08c0389fa)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * fs/f2fs/node.h
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 /* start node id of a node block dedicated to the given node id */
9 #define	START_NID(nid) (((nid) / NAT_ENTRY_PER_BLOCK) * NAT_ENTRY_PER_BLOCK)
10 
11 /* node block offset on the NAT area dedicated to the given start node id */
12 #define	NAT_BLOCK_OFFSET(start_nid) ((start_nid) / NAT_ENTRY_PER_BLOCK)
13 
14 /* # of pages to perform synchronous readahead before building free nids */
15 #define FREE_NID_PAGES	8
16 #define MAX_FREE_NIDS	(NAT_ENTRY_PER_BLOCK * FREE_NID_PAGES)
17 
18 /* size of free nid batch when shrinking */
19 #define SHRINK_NID_BATCH_SIZE	8
20 
21 #define DEF_RA_NID_PAGES	0	/* # of nid pages to be readaheaded */
22 
23 /* maximum readahead size for node during getting data blocks */
24 #define MAX_RA_NODE		128
25 
26 /* control the memory footprint threshold (10MB per 1GB ram) */
27 #define DEF_RAM_THRESHOLD	1
28 
29 /* control dirty nats ratio threshold (default: 10% over max nid count) */
30 #define DEF_DIRTY_NAT_RATIO_THRESHOLD		10
31 /* control total # of nats */
32 #define DEF_NAT_CACHE_THRESHOLD			100000
33 
34 /* control total # of node writes used for roll-fowrad recovery */
35 #define DEF_RF_NODE_BLOCKS			0
36 
37 /* vector size for gang look-up from nat cache that consists of radix tree */
38 #define NAT_VEC_SIZE	32
39 
40 /* return value for read_node_page */
41 #define LOCKED_PAGE	1
42 
43 /* check pinned file's alignment status of physical blocks */
44 #define FILE_NOT_ALIGNED	1
45 
46 /* For flag in struct node_info */
47 enum {
48 	IS_CHECKPOINTED,	/* is it checkpointed before? */
49 	HAS_FSYNCED_INODE,	/* is the inode fsynced before? */
50 	HAS_LAST_FSYNC,		/* has the latest node fsync mark? */
51 	IS_DIRTY,		/* this nat entry is dirty? */
52 	IS_PREALLOC,		/* nat entry is preallocated */
53 };
54 
55 /* For node type in __get_node_folio() */
56 enum node_type {
57 	NODE_TYPE_REGULAR,
58 	NODE_TYPE_INODE,
59 	NODE_TYPE_XATTR,
60 };
61 
62 /*
63  * For node information
64  */
65 struct node_info {
66 	nid_t nid;		/* node id */
67 	nid_t ino;		/* inode number of the node's owner */
68 	block_t	blk_addr;	/* block address of the node */
69 	unsigned char version;	/* version of the node */
70 	unsigned char flag;	/* for node information bits */
71 };
72 
73 struct nat_entry {
74 	struct list_head list;	/* for clean or dirty nat list */
75 	struct node_info ni;	/* in-memory node information */
76 };
77 
78 #define nat_get_nid(nat)		((nat)->ni.nid)
79 #define nat_set_nid(nat, n)		((nat)->ni.nid = (n))
80 #define nat_get_blkaddr(nat)		((nat)->ni.blk_addr)
81 #define nat_set_blkaddr(nat, b)		((nat)->ni.blk_addr = (b))
82 #define nat_get_ino(nat)		((nat)->ni.ino)
83 #define nat_set_ino(nat, i)		((nat)->ni.ino = (i))
84 #define nat_get_version(nat)		((nat)->ni.version)
85 #define nat_set_version(nat, v)		((nat)->ni.version = (v))
86 
87 #define inc_node_version(version)	(++(version))
88 
copy_node_info(struct node_info * dst,struct node_info * src)89 static inline void copy_node_info(struct node_info *dst,
90 						struct node_info *src)
91 {
92 	dst->nid = src->nid;
93 	dst->ino = src->ino;
94 	dst->blk_addr = src->blk_addr;
95 	dst->version = src->version;
96 	/* should not copy flag here */
97 }
98 
set_nat_flag(struct nat_entry * ne,unsigned int type,bool set)99 static inline void set_nat_flag(struct nat_entry *ne,
100 				unsigned int type, bool set)
101 {
102 	if (set)
103 		ne->ni.flag |= BIT(type);
104 	else
105 		ne->ni.flag &= ~BIT(type);
106 }
107 
get_nat_flag(struct nat_entry * ne,unsigned int type)108 static inline bool get_nat_flag(struct nat_entry *ne, unsigned int type)
109 {
110 	return ne->ni.flag & BIT(type);
111 }
112 
nat_reset_flag(struct nat_entry * ne)113 static inline void nat_reset_flag(struct nat_entry *ne)
114 {
115 	/* these states can be set only after checkpoint was done */
116 	set_nat_flag(ne, IS_CHECKPOINTED, true);
117 	set_nat_flag(ne, HAS_FSYNCED_INODE, false);
118 	set_nat_flag(ne, HAS_LAST_FSYNC, true);
119 }
120 
node_info_from_raw_nat(struct node_info * ni,struct f2fs_nat_entry * raw_ne)121 static inline void node_info_from_raw_nat(struct node_info *ni,
122 						struct f2fs_nat_entry *raw_ne)
123 {
124 	ni->ino = le32_to_cpu(raw_ne->ino);
125 	ni->blk_addr = le32_to_cpu(raw_ne->block_addr);
126 	ni->version = raw_ne->version;
127 }
128 
raw_nat_from_node_info(struct f2fs_nat_entry * raw_ne,struct node_info * ni)129 static inline void raw_nat_from_node_info(struct f2fs_nat_entry *raw_ne,
130 						struct node_info *ni)
131 {
132 	raw_ne->ino = cpu_to_le32(ni->ino);
133 	raw_ne->block_addr = cpu_to_le32(ni->blk_addr);
134 	raw_ne->version = ni->version;
135 }
136 
excess_dirty_nats(struct f2fs_sb_info * sbi)137 static inline bool excess_dirty_nats(struct f2fs_sb_info *sbi)
138 {
139 	return NM_I(sbi)->nat_cnt[DIRTY_NAT] >= NM_I(sbi)->max_nid *
140 					NM_I(sbi)->dirty_nats_ratio / 100;
141 }
142 
excess_cached_nats(struct f2fs_sb_info * sbi)143 static inline bool excess_cached_nats(struct f2fs_sb_info *sbi)
144 {
145 	return NM_I(sbi)->nat_cnt[TOTAL_NAT] >= DEF_NAT_CACHE_THRESHOLD;
146 }
147 
148 enum mem_type {
149 	FREE_NIDS,	/* indicates the free nid list */
150 	NAT_ENTRIES,	/* indicates the cached nat entry */
151 	DIRTY_DENTS,	/* indicates dirty dentry pages */
152 	INO_ENTRIES,	/* indicates inode entries */
153 	READ_EXTENT_CACHE,	/* indicates read extent cache */
154 	AGE_EXTENT_CACHE,	/* indicates age extent cache */
155 	DISCARD_CACHE,	/* indicates memory of cached discard cmds */
156 	COMPRESS_PAGE,	/* indicates memory of cached compressed pages */
157 	BASE_CHECK,	/* check kernel status */
158 };
159 
160 struct nat_entry_set {
161 	struct list_head set_list;	/* link with other nat sets */
162 	struct list_head entry_list;	/* link with dirty nat entries */
163 	nid_t set;			/* set number*/
164 	unsigned int entry_cnt;		/* the # of nat entries in set */
165 };
166 
167 struct free_nid {
168 	struct list_head list;	/* for free node id list */
169 	nid_t nid;		/* node id */
170 	int state;		/* in use or not: FREE_NID or PREALLOC_NID */
171 };
172 
next_free_nid(struct f2fs_sb_info * sbi,nid_t * nid)173 static inline void next_free_nid(struct f2fs_sb_info *sbi, nid_t *nid)
174 {
175 	struct f2fs_nm_info *nm_i = NM_I(sbi);
176 	struct free_nid *fnid;
177 
178 	spin_lock(&nm_i->nid_list_lock);
179 	if (nm_i->nid_cnt[FREE_NID] <= 0) {
180 		spin_unlock(&nm_i->nid_list_lock);
181 		return;
182 	}
183 	fnid = list_first_entry(&nm_i->free_nid_list, struct free_nid, list);
184 	*nid = fnid->nid;
185 	spin_unlock(&nm_i->nid_list_lock);
186 }
187 
188 /*
189  * inline functions
190  */
get_nat_bitmap(struct f2fs_sb_info * sbi,void * addr)191 static inline void get_nat_bitmap(struct f2fs_sb_info *sbi, void *addr)
192 {
193 	struct f2fs_nm_info *nm_i = NM_I(sbi);
194 
195 #ifdef CONFIG_F2FS_CHECK_FS
196 	if (memcmp(nm_i->nat_bitmap, nm_i->nat_bitmap_mir,
197 						nm_i->bitmap_size))
198 		f2fs_bug_on(sbi, 1);
199 #endif
200 	memcpy(addr, nm_i->nat_bitmap, nm_i->bitmap_size);
201 }
202 
current_nat_addr(struct f2fs_sb_info * sbi,nid_t start)203 static inline pgoff_t current_nat_addr(struct f2fs_sb_info *sbi, nid_t start)
204 {
205 	struct f2fs_nm_info *nm_i = NM_I(sbi);
206 	pgoff_t block_off;
207 	pgoff_t block_addr;
208 
209 	/*
210 	 * block_off = segment_off * 512 + off_in_segment
211 	 * OLD = (segment_off * 512) * 2 + off_in_segment
212 	 * NEW = 2 * (segment_off * 512 + off_in_segment) - off_in_segment
213 	 */
214 	block_off = NAT_BLOCK_OFFSET(start);
215 
216 	block_addr = (pgoff_t)(nm_i->nat_blkaddr +
217 		(block_off << 1) -
218 		(block_off & (BLKS_PER_SEG(sbi) - 1)));
219 
220 	if (f2fs_test_bit(block_off, nm_i->nat_bitmap))
221 		block_addr += BLKS_PER_SEG(sbi);
222 
223 	return block_addr;
224 }
225 
next_nat_addr(struct f2fs_sb_info * sbi,pgoff_t block_addr)226 static inline pgoff_t next_nat_addr(struct f2fs_sb_info *sbi,
227 						pgoff_t block_addr)
228 {
229 	struct f2fs_nm_info *nm_i = NM_I(sbi);
230 
231 	block_addr -= nm_i->nat_blkaddr;
232 	block_addr ^= BIT(sbi->log_blocks_per_seg);
233 	return block_addr + nm_i->nat_blkaddr;
234 }
235 
set_to_next_nat(struct f2fs_nm_info * nm_i,nid_t start_nid)236 static inline void set_to_next_nat(struct f2fs_nm_info *nm_i, nid_t start_nid)
237 {
238 	unsigned int block_off = NAT_BLOCK_OFFSET(start_nid);
239 
240 	f2fs_change_bit(block_off, nm_i->nat_bitmap);
241 #ifdef CONFIG_F2FS_CHECK_FS
242 	f2fs_change_bit(block_off, nm_i->nat_bitmap_mir);
243 #endif
244 }
245 
ino_of_node(struct page * node_page)246 static inline nid_t ino_of_node(struct page *node_page)
247 {
248 	struct f2fs_node *rn = F2FS_NODE(node_page);
249 	return le32_to_cpu(rn->footer.ino);
250 }
251 
nid_of_node(struct page * node_page)252 static inline nid_t nid_of_node(struct page *node_page)
253 {
254 	struct f2fs_node *rn = F2FS_NODE(node_page);
255 	return le32_to_cpu(rn->footer.nid);
256 }
257 
ofs_of_node(const struct page * node_page)258 static inline unsigned int ofs_of_node(const struct page *node_page)
259 {
260 	struct f2fs_node *rn = F2FS_NODE(node_page);
261 	unsigned flag = le32_to_cpu(rn->footer.flag);
262 	return flag >> OFFSET_BIT_SHIFT;
263 }
264 
cpver_of_node(struct page * node_page)265 static inline __u64 cpver_of_node(struct page *node_page)
266 {
267 	struct f2fs_node *rn = F2FS_NODE(node_page);
268 	return le64_to_cpu(rn->footer.cp_ver);
269 }
270 
next_blkaddr_of_node(struct page * node_page)271 static inline block_t next_blkaddr_of_node(struct page *node_page)
272 {
273 	struct f2fs_node *rn = F2FS_NODE(node_page);
274 	return le32_to_cpu(rn->footer.next_blkaddr);
275 }
276 
fill_node_footer(struct page * page,nid_t nid,nid_t ino,unsigned int ofs,bool reset)277 static inline void fill_node_footer(struct page *page, nid_t nid,
278 				nid_t ino, unsigned int ofs, bool reset)
279 {
280 	struct f2fs_node *rn = F2FS_NODE(page);
281 	unsigned int old_flag = 0;
282 
283 	if (reset)
284 		memset(rn, 0, sizeof(*rn));
285 	else
286 		old_flag = le32_to_cpu(rn->footer.flag);
287 
288 	rn->footer.nid = cpu_to_le32(nid);
289 	rn->footer.ino = cpu_to_le32(ino);
290 
291 	/* should remain old flag bits such as COLD_BIT_SHIFT */
292 	rn->footer.flag = cpu_to_le32((ofs << OFFSET_BIT_SHIFT) |
293 					(old_flag & OFFSET_BIT_MASK));
294 }
295 
copy_node_footer(struct page * dst,struct page * src)296 static inline void copy_node_footer(struct page *dst, struct page *src)
297 {
298 	struct f2fs_node *src_rn = F2FS_NODE(src);
299 	struct f2fs_node *dst_rn = F2FS_NODE(dst);
300 	memcpy(&dst_rn->footer, &src_rn->footer, sizeof(struct node_footer));
301 }
302 
fill_node_footer_blkaddr(struct page * page,block_t blkaddr)303 static inline void fill_node_footer_blkaddr(struct page *page, block_t blkaddr)
304 {
305 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(F2FS_P_SB(page));
306 	struct f2fs_node *rn = F2FS_NODE(page);
307 	__u64 cp_ver = cur_cp_version(ckpt);
308 
309 	if (__is_set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG))
310 		cp_ver |= (cur_cp_crc(ckpt) << 32);
311 
312 	rn->footer.cp_ver = cpu_to_le64(cp_ver);
313 	rn->footer.next_blkaddr = cpu_to_le32(blkaddr);
314 }
315 
is_recoverable_dnode(struct page * page)316 static inline bool is_recoverable_dnode(struct page *page)
317 {
318 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(F2FS_P_SB(page));
319 	__u64 cp_ver = cur_cp_version(ckpt);
320 
321 	/* Don't care crc part, if fsck.f2fs sets it. */
322 	if (__is_set_ckpt_flags(ckpt, CP_NOCRC_RECOVERY_FLAG))
323 		return (cp_ver << 32) == (cpver_of_node(page) << 32);
324 
325 	if (__is_set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG))
326 		cp_ver |= (cur_cp_crc(ckpt) << 32);
327 
328 	return cp_ver == cpver_of_node(page);
329 }
330 
331 /*
332  * f2fs assigns the following node offsets described as (num).
333  * N = NIDS_PER_BLOCK
334  *
335  *  Inode block (0)
336  *    |- direct node (1)
337  *    |- direct node (2)
338  *    |- indirect node (3)
339  *    |            `- direct node (4 => 4 + N - 1)
340  *    |- indirect node (4 + N)
341  *    |            `- direct node (5 + N => 5 + 2N - 1)
342  *    `- double indirect node (5 + 2N)
343  *                 `- indirect node (6 + 2N)
344  *                       `- direct node
345  *                 ......
346  *                 `- indirect node ((6 + 2N) + x(N + 1))
347  *                       `- direct node
348  *                 ......
349  *                 `- indirect node ((6 + 2N) + (N - 1)(N + 1))
350  *                       `- direct node
351  */
IS_DNODE(const struct page * node_page)352 static inline bool IS_DNODE(const struct page *node_page)
353 {
354 	unsigned int ofs = ofs_of_node(node_page);
355 
356 	if (f2fs_has_xattr_block(ofs))
357 		return true;
358 
359 	if (ofs == 3 || ofs == 4 + NIDS_PER_BLOCK ||
360 			ofs == 5 + 2 * NIDS_PER_BLOCK)
361 		return false;
362 	if (ofs >= 6 + 2 * NIDS_PER_BLOCK) {
363 		ofs -= 6 + 2 * NIDS_PER_BLOCK;
364 		if (!((long int)ofs % (NIDS_PER_BLOCK + 1)))
365 			return false;
366 	}
367 	return true;
368 }
369 
set_nid(struct page * p,int off,nid_t nid,bool i)370 static inline int set_nid(struct page *p, int off, nid_t nid, bool i)
371 {
372 	struct f2fs_node *rn = F2FS_NODE(p);
373 
374 	f2fs_wait_on_page_writeback(p, NODE, true, true);
375 
376 	if (i)
377 		rn->i.i_nid[off - NODE_DIR1_BLOCK] = cpu_to_le32(nid);
378 	else
379 		rn->in.nid[off] = cpu_to_le32(nid);
380 	return set_page_dirty(p);
381 }
382 
get_nid(struct page * p,int off,bool i)383 static inline nid_t get_nid(struct page *p, int off, bool i)
384 {
385 	struct f2fs_node *rn = F2FS_NODE(p);
386 
387 	if (i)
388 		return le32_to_cpu(rn->i.i_nid[off - NODE_DIR1_BLOCK]);
389 	return le32_to_cpu(rn->in.nid[off]);
390 }
391 
392 /*
393  * Coldness identification:
394  *  - Mark cold files in f2fs_inode_info
395  *  - Mark cold node blocks in their node footer
396  *  - Mark cold data pages in page cache
397  */
398 
is_node(const struct page * page,int type)399 static inline int is_node(const struct page *page, int type)
400 {
401 	struct f2fs_node *rn = F2FS_NODE(page);
402 	return le32_to_cpu(rn->footer.flag) & BIT(type);
403 }
404 
405 #define is_cold_node(page)	is_node(page, COLD_BIT_SHIFT)
406 #define is_fsync_dnode(page)	is_node(page, FSYNC_BIT_SHIFT)
407 #define is_dent_dnode(page)	is_node(page, DENT_BIT_SHIFT)
408 
set_cold_node(struct page * page,bool is_dir)409 static inline void set_cold_node(struct page *page, bool is_dir)
410 {
411 	struct f2fs_node *rn = F2FS_NODE(page);
412 	unsigned int flag = le32_to_cpu(rn->footer.flag);
413 
414 	if (is_dir)
415 		flag &= ~BIT(COLD_BIT_SHIFT);
416 	else
417 		flag |= BIT(COLD_BIT_SHIFT);
418 	rn->footer.flag = cpu_to_le32(flag);
419 }
420 
set_mark(struct page * page,int mark,int type)421 static inline void set_mark(struct page *page, int mark, int type)
422 {
423 	struct f2fs_node *rn = F2FS_NODE(page);
424 	unsigned int flag = le32_to_cpu(rn->footer.flag);
425 	if (mark)
426 		flag |= BIT(type);
427 	else
428 		flag &= ~BIT(type);
429 	rn->footer.flag = cpu_to_le32(flag);
430 
431 #ifdef CONFIG_F2FS_CHECK_FS
432 	f2fs_inode_chksum_set(F2FS_P_SB(page), page);
433 #endif
434 }
435 #define set_dentry_mark(page, mark)	set_mark(page, mark, DENT_BIT_SHIFT)
436 #define set_fsync_mark(page, mark)	set_mark(page, mark, FSYNC_BIT_SHIFT)
437