1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * trace_hwlat.c - A simple Hardware Latency detector. 4 * 5 * Use this tracer to detect large system latencies induced by the behavior of 6 * certain underlying system hardware or firmware, independent of Linux itself. 7 * The code was developed originally to detect the presence of SMIs on Intel 8 * and AMD systems, although there is no dependency upon x86 herein. 9 * 10 * The classical example usage of this tracer is in detecting the presence of 11 * SMIs or System Management Interrupts on Intel and AMD systems. An SMI is a 12 * somewhat special form of hardware interrupt spawned from earlier CPU debug 13 * modes in which the (BIOS/EFI/etc.) firmware arranges for the South Bridge 14 * LPC (or other device) to generate a special interrupt under certain 15 * circumstances, for example, upon expiration of a special SMI timer device, 16 * due to certain external thermal readings, on certain I/O address accesses, 17 * and other situations. An SMI hits a special CPU pin, triggers a special 18 * SMI mode (complete with special memory map), and the OS is unaware. 19 * 20 * Although certain hardware-inducing latencies are necessary (for example, 21 * a modern system often requires an SMI handler for correct thermal control 22 * and remote management) they can wreak havoc upon any OS-level performance 23 * guarantees toward low-latency, especially when the OS is not even made 24 * aware of the presence of these interrupts. For this reason, we need a 25 * somewhat brute force mechanism to detect these interrupts. In this case, 26 * we do it by hogging all of the CPU(s) for configurable timer intervals, 27 * sampling the built-in CPU timer, looking for discontiguous readings. 28 * 29 * WARNING: This implementation necessarily introduces latencies. Therefore, 30 * you should NEVER use this tracer while running in a production 31 * environment requiring any kind of low-latency performance 32 * guarantee(s). 33 * 34 * Copyright (C) 2008-2009 Jon Masters, Red Hat, Inc. <jcm@redhat.com> 35 * Copyright (C) 2013-2016 Steven Rostedt, Red Hat, Inc. <srostedt@redhat.com> 36 * 37 * Includes useful feedback from Clark Williams <williams@redhat.com> 38 * 39 */ 40 #include <linux/kthread.h> 41 #include <linux/tracefs.h> 42 #include <linux/uaccess.h> 43 #include <linux/cpumask.h> 44 #include <linux/delay.h> 45 #include <linux/sched/clock.h> 46 #include "trace.h" 47 48 static struct trace_array *hwlat_trace; 49 50 #define U64STR_SIZE 22 /* 20 digits max */ 51 52 #define BANNER "hwlat_detector: " 53 #define DEFAULT_SAMPLE_WINDOW 1000000 /* 1s */ 54 #define DEFAULT_SAMPLE_WIDTH 500000 /* 0.5s */ 55 #define DEFAULT_LAT_THRESHOLD 10 /* 10us */ 56 57 static struct dentry *hwlat_sample_width; /* sample width us */ 58 static struct dentry *hwlat_sample_window; /* sample window us */ 59 static struct dentry *hwlat_thread_mode; /* hwlat thread mode */ 60 61 enum { 62 MODE_NONE = 0, 63 MODE_ROUND_ROBIN, 64 MODE_PER_CPU, 65 MODE_MAX 66 }; 67 static char *thread_mode_str[] = { "none", "round-robin", "per-cpu" }; 68 69 /* Save the previous tracing_thresh value */ 70 static unsigned long save_tracing_thresh; 71 72 /* runtime kthread data */ 73 struct hwlat_kthread_data { 74 struct task_struct *kthread; 75 /* NMI timestamp counters */ 76 u64 nmi_ts_start; 77 u64 nmi_total_ts; 78 int nmi_count; 79 int nmi_cpu; 80 }; 81 82 static struct hwlat_kthread_data hwlat_single_cpu_data; 83 static DEFINE_PER_CPU(struct hwlat_kthread_data, hwlat_per_cpu_data); 84 85 /* Tells NMIs to call back to the hwlat tracer to record timestamps */ 86 bool trace_hwlat_callback_enabled; 87 88 /* If the user changed threshold, remember it */ 89 static u64 last_tracing_thresh = DEFAULT_LAT_THRESHOLD * NSEC_PER_USEC; 90 91 /* Individual latency samples are stored here when detected. */ 92 struct hwlat_sample { 93 u64 seqnum; /* unique sequence */ 94 u64 duration; /* delta */ 95 u64 outer_duration; /* delta (outer loop) */ 96 u64 nmi_total_ts; /* Total time spent in NMIs */ 97 struct timespec64 timestamp; /* wall time */ 98 int nmi_count; /* # NMIs during this sample */ 99 int count; /* # of iterations over thresh */ 100 }; 101 102 /* keep the global state somewhere. */ 103 static struct hwlat_data { 104 105 struct mutex lock; /* protect changes */ 106 107 atomic64_t count; /* total since reset */ 108 109 u64 sample_window; /* total sampling window (on+off) */ 110 u64 sample_width; /* active sampling portion of window */ 111 112 int thread_mode; /* thread mode */ 113 114 } hwlat_data = { 115 .sample_window = DEFAULT_SAMPLE_WINDOW, 116 .sample_width = DEFAULT_SAMPLE_WIDTH, 117 .thread_mode = MODE_ROUND_ROBIN 118 }; 119 120 static struct hwlat_kthread_data *get_cpu_data(void) 121 { 122 if (hwlat_data.thread_mode == MODE_PER_CPU) 123 return this_cpu_ptr(&hwlat_per_cpu_data); 124 else 125 return &hwlat_single_cpu_data; 126 } 127 128 static bool hwlat_busy; 129 130 static void trace_hwlat_sample(struct hwlat_sample *sample) 131 { 132 struct trace_array *tr = hwlat_trace; 133 struct trace_buffer *buffer = tr->array_buffer.buffer; 134 struct ring_buffer_event *event; 135 struct hwlat_entry *entry; 136 137 event = trace_buffer_lock_reserve(buffer, TRACE_HWLAT, sizeof(*entry), 138 tracing_gen_ctx()); 139 if (!event) 140 return; 141 entry = ring_buffer_event_data(event); 142 entry->seqnum = sample->seqnum; 143 entry->duration = sample->duration; 144 entry->outer_duration = sample->outer_duration; 145 entry->timestamp = sample->timestamp; 146 entry->nmi_total_ts = sample->nmi_total_ts; 147 entry->nmi_count = sample->nmi_count; 148 entry->count = sample->count; 149 150 trace_buffer_unlock_commit_nostack(buffer, event); 151 } 152 153 /* Macros to encapsulate the time capturing infrastructure */ 154 #define time_type u64 155 #define time_get() trace_clock_local() 156 #define time_to_us(x) div_u64(x, 1000) 157 #define time_sub(a, b) ((a) - (b)) 158 #define init_time(a, b) (a = b) 159 #define time_u64(a) a 160 161 void trace_hwlat_callback(bool enter) 162 { 163 struct hwlat_kthread_data *kdata = get_cpu_data(); 164 165 if (!kdata->kthread) 166 return; 167 168 /* 169 * Currently trace_clock_local() calls sched_clock() and the 170 * generic version is not NMI safe. 171 */ 172 if (!IS_ENABLED(CONFIG_GENERIC_SCHED_CLOCK)) { 173 if (enter) 174 kdata->nmi_ts_start = time_get(); 175 else 176 kdata->nmi_total_ts += time_get() - kdata->nmi_ts_start; 177 } 178 179 if (enter) 180 kdata->nmi_count++; 181 } 182 183 /* 184 * hwlat_err - report a hwlat error. 185 */ 186 #define hwlat_err(msg) ({ \ 187 struct trace_array *tr = hwlat_trace; \ 188 \ 189 trace_array_printk_buf(tr->array_buffer.buffer, _THIS_IP_, msg); \ 190 }) 191 192 /** 193 * get_sample - sample the CPU TSC and look for likely hardware latencies 194 * 195 * Used to repeatedly capture the CPU TSC (or similar), looking for potential 196 * hardware-induced latency. Called with interrupts disabled. 197 */ 198 static int get_sample(void) 199 { 200 struct hwlat_kthread_data *kdata = get_cpu_data(); 201 struct trace_array *tr = hwlat_trace; 202 struct hwlat_sample s; 203 time_type start, t1, t2, last_t2; 204 s64 diff, outer_diff, total, last_total = 0; 205 u64 sample = 0; 206 u64 sample_width = READ_ONCE(hwlat_data.sample_width); 207 u64 thresh = tracing_thresh; 208 u64 outer_sample = 0; 209 int ret = -1; 210 unsigned int count = 0; 211 212 do_div(thresh, NSEC_PER_USEC); /* modifies interval value */ 213 214 kdata->nmi_total_ts = 0; 215 kdata->nmi_count = 0; 216 /* Make sure NMIs see this first */ 217 barrier(); 218 219 trace_hwlat_callback_enabled = true; 220 221 init_time(last_t2, 0); 222 start = time_get(); /* start timestamp */ 223 outer_diff = 0; 224 225 do { 226 227 t1 = time_get(); /* we'll look for a discontinuity */ 228 t2 = time_get(); 229 230 if (time_u64(last_t2)) { 231 /* Check the delta from outer loop (t2 to next t1) */ 232 outer_diff = time_to_us(time_sub(t1, last_t2)); 233 /* This shouldn't happen */ 234 if (outer_diff < 0) { 235 hwlat_err(BANNER "time running backwards\n"); 236 goto out; 237 } 238 if (outer_diff > outer_sample) 239 outer_sample = outer_diff; 240 } 241 last_t2 = t2; 242 243 total = time_to_us(time_sub(t2, start)); /* sample width */ 244 245 /* Check for possible overflows */ 246 if (total < last_total) { 247 hwlat_err("Time total overflowed\n"); 248 break; 249 } 250 last_total = total; 251 252 /* This checks the inner loop (t1 to t2) */ 253 diff = time_to_us(time_sub(t2, t1)); /* current diff */ 254 255 if (diff > thresh || outer_diff > thresh) { 256 if (!count) 257 ktime_get_real_ts64(&s.timestamp); 258 count++; 259 } 260 261 /* This shouldn't happen */ 262 if (diff < 0) { 263 hwlat_err(BANNER "time running backwards\n"); 264 goto out; 265 } 266 267 if (diff > sample) 268 sample = diff; /* only want highest value */ 269 270 } while (total <= sample_width); 271 272 barrier(); /* finish the above in the view for NMIs */ 273 trace_hwlat_callback_enabled = false; 274 barrier(); /* Make sure nmi_total_ts is no longer updated */ 275 276 ret = 0; 277 278 /* If we exceed the threshold value, we have found a hardware latency */ 279 if (sample > thresh || outer_sample > thresh) { 280 u64 latency; 281 282 ret = 1; 283 284 /* We read in microseconds */ 285 if (kdata->nmi_total_ts) 286 do_div(kdata->nmi_total_ts, NSEC_PER_USEC); 287 288 s.seqnum = atomic64_inc_return(&hwlat_data.count); 289 s.duration = sample; 290 s.outer_duration = outer_sample; 291 s.nmi_total_ts = kdata->nmi_total_ts; 292 s.nmi_count = kdata->nmi_count; 293 s.count = count; 294 trace_hwlat_sample(&s); 295 296 latency = max(sample, outer_sample); 297 298 /* Keep a running maximum ever recorded hardware latency */ 299 if (latency > tr->max_latency) { 300 tr->max_latency = latency; 301 latency_fsnotify(tr); 302 } 303 } 304 305 out: 306 return ret; 307 } 308 309 static struct cpumask save_cpumask; 310 311 static void move_to_next_cpu(void) 312 { 313 struct cpumask *current_mask = &save_cpumask; 314 struct trace_array *tr = hwlat_trace; 315 int next_cpu; 316 317 /* 318 * If for some reason the user modifies the CPU affinity 319 * of this thread, then stop migrating for the duration 320 * of the current test. 321 */ 322 if (!cpumask_equal(current_mask, current->cpus_ptr)) 323 goto change_mode; 324 325 cpus_read_lock(); 326 cpumask_and(current_mask, cpu_online_mask, tr->tracing_cpumask); 327 next_cpu = cpumask_next_wrap(raw_smp_processor_id(), current_mask); 328 cpus_read_unlock(); 329 330 if (next_cpu >= nr_cpu_ids) /* Shouldn't happen! */ 331 goto change_mode; 332 333 cpumask_clear(current_mask); 334 cpumask_set_cpu(next_cpu, current_mask); 335 336 set_cpus_allowed_ptr(current, current_mask); 337 return; 338 339 change_mode: 340 hwlat_data.thread_mode = MODE_NONE; 341 pr_info(BANNER "cpumask changed while in round-robin mode, switching to mode none\n"); 342 } 343 344 /* 345 * kthread_fn - The CPU time sampling/hardware latency detection kernel thread 346 * 347 * Used to periodically sample the CPU TSC via a call to get_sample. We 348 * disable interrupts, which does (intentionally) introduce latency since we 349 * need to ensure nothing else might be running (and thus preempting). 350 * Obviously this should never be used in production environments. 351 * 352 * Executes one loop interaction on each CPU in tracing_cpumask sysfs file. 353 */ 354 static int kthread_fn(void *data) 355 { 356 u64 interval; 357 358 while (!kthread_should_stop()) { 359 360 if (hwlat_data.thread_mode == MODE_ROUND_ROBIN) 361 move_to_next_cpu(); 362 363 local_irq_disable(); 364 get_sample(); 365 local_irq_enable(); 366 367 mutex_lock(&hwlat_data.lock); 368 interval = hwlat_data.sample_window - hwlat_data.sample_width; 369 mutex_unlock(&hwlat_data.lock); 370 371 do_div(interval, USEC_PER_MSEC); /* modifies interval value */ 372 373 /* Always sleep for at least 1ms */ 374 if (interval < 1) 375 interval = 1; 376 377 if (msleep_interruptible(interval)) 378 break; 379 } 380 381 return 0; 382 } 383 384 /* 385 * stop_stop_kthread - Inform the hardware latency sampling/detector kthread to stop 386 * 387 * This kicks the running hardware latency sampling/detector kernel thread and 388 * tells it to stop sampling now. Use this on unload and at system shutdown. 389 */ 390 static void stop_single_kthread(void) 391 { 392 struct hwlat_kthread_data *kdata = get_cpu_data(); 393 struct task_struct *kthread; 394 395 cpus_read_lock(); 396 kthread = kdata->kthread; 397 398 if (!kthread) 399 goto out_put_cpus; 400 401 kthread_stop(kthread); 402 kdata->kthread = NULL; 403 404 out_put_cpus: 405 cpus_read_unlock(); 406 } 407 408 409 /* 410 * start_single_kthread - Kick off the hardware latency sampling/detector kthread 411 * 412 * This starts the kernel thread that will sit and sample the CPU timestamp 413 * counter (TSC or similar) and look for potential hardware latencies. 414 */ 415 static int start_single_kthread(struct trace_array *tr) 416 { 417 struct hwlat_kthread_data *kdata = get_cpu_data(); 418 struct cpumask *current_mask = &save_cpumask; 419 struct task_struct *kthread; 420 int next_cpu; 421 422 cpus_read_lock(); 423 if (kdata->kthread) 424 goto out_put_cpus; 425 426 kthread = kthread_create(kthread_fn, NULL, "hwlatd"); 427 if (IS_ERR(kthread)) { 428 pr_err(BANNER "could not start sampling thread\n"); 429 cpus_read_unlock(); 430 return -ENOMEM; 431 } 432 433 /* Just pick the first CPU on first iteration */ 434 cpumask_and(current_mask, cpu_online_mask, tr->tracing_cpumask); 435 436 if (hwlat_data.thread_mode == MODE_ROUND_ROBIN) { 437 next_cpu = cpumask_first(current_mask); 438 cpumask_clear(current_mask); 439 cpumask_set_cpu(next_cpu, current_mask); 440 441 } 442 443 set_cpus_allowed_ptr(kthread, current_mask); 444 445 kdata->kthread = kthread; 446 wake_up_process(kthread); 447 448 out_put_cpus: 449 cpus_read_unlock(); 450 return 0; 451 } 452 453 /* 454 * stop_cpu_kthread - Stop a hwlat cpu kthread 455 */ 456 static void stop_cpu_kthread(unsigned int cpu) 457 { 458 struct task_struct *kthread; 459 460 kthread = per_cpu(hwlat_per_cpu_data, cpu).kthread; 461 if (kthread) 462 kthread_stop(kthread); 463 per_cpu(hwlat_per_cpu_data, cpu).kthread = NULL; 464 } 465 466 /* 467 * stop_per_cpu_kthreads - Inform the hardware latency sampling/detector kthread to stop 468 * 469 * This kicks the running hardware latency sampling/detector kernel threads and 470 * tells it to stop sampling now. Use this on unload and at system shutdown. 471 */ 472 static void stop_per_cpu_kthreads(void) 473 { 474 unsigned int cpu; 475 476 cpus_read_lock(); 477 for_each_online_cpu(cpu) 478 stop_cpu_kthread(cpu); 479 cpus_read_unlock(); 480 } 481 482 /* 483 * start_cpu_kthread - Start a hwlat cpu kthread 484 */ 485 static int start_cpu_kthread(unsigned int cpu) 486 { 487 struct task_struct *kthread; 488 489 /* Do not start a new hwlatd thread if it is already running */ 490 if (per_cpu(hwlat_per_cpu_data, cpu).kthread) 491 return 0; 492 493 kthread = kthread_run_on_cpu(kthread_fn, NULL, cpu, "hwlatd/%u"); 494 if (IS_ERR(kthread)) { 495 pr_err(BANNER "could not start sampling thread\n"); 496 return -ENOMEM; 497 } 498 499 per_cpu(hwlat_per_cpu_data, cpu).kthread = kthread; 500 501 return 0; 502 } 503 504 #ifdef CONFIG_HOTPLUG_CPU 505 static void hwlat_hotplug_workfn(struct work_struct *dummy) 506 { 507 struct trace_array *tr = hwlat_trace; 508 unsigned int cpu = smp_processor_id(); 509 510 mutex_lock(&trace_types_lock); 511 mutex_lock(&hwlat_data.lock); 512 cpus_read_lock(); 513 514 if (!hwlat_busy || hwlat_data.thread_mode != MODE_PER_CPU) 515 goto out_unlock; 516 517 if (!cpu_online(cpu)) 518 goto out_unlock; 519 if (!cpumask_test_cpu(cpu, tr->tracing_cpumask)) 520 goto out_unlock; 521 522 start_cpu_kthread(cpu); 523 524 out_unlock: 525 cpus_read_unlock(); 526 mutex_unlock(&hwlat_data.lock); 527 mutex_unlock(&trace_types_lock); 528 } 529 530 static DECLARE_WORK(hwlat_hotplug_work, hwlat_hotplug_workfn); 531 532 /* 533 * hwlat_cpu_init - CPU hotplug online callback function 534 */ 535 static int hwlat_cpu_init(unsigned int cpu) 536 { 537 schedule_work_on(cpu, &hwlat_hotplug_work); 538 return 0; 539 } 540 541 /* 542 * hwlat_cpu_die - CPU hotplug offline callback function 543 */ 544 static int hwlat_cpu_die(unsigned int cpu) 545 { 546 stop_cpu_kthread(cpu); 547 return 0; 548 } 549 550 static void hwlat_init_hotplug_support(void) 551 { 552 int ret; 553 554 ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "trace/hwlat:online", 555 hwlat_cpu_init, hwlat_cpu_die); 556 if (ret < 0) 557 pr_warn(BANNER "Error to init cpu hotplug support\n"); 558 559 return; 560 } 561 #else /* CONFIG_HOTPLUG_CPU */ 562 static void hwlat_init_hotplug_support(void) 563 { 564 return; 565 } 566 #endif /* CONFIG_HOTPLUG_CPU */ 567 568 /* 569 * start_per_cpu_kthreads - Kick off the hardware latency sampling/detector kthreads 570 * 571 * This starts the kernel threads that will sit on potentially all cpus and 572 * sample the CPU timestamp counter (TSC or similar) and look for potential 573 * hardware latencies. 574 */ 575 static int start_per_cpu_kthreads(struct trace_array *tr) 576 { 577 struct cpumask *current_mask = &save_cpumask; 578 unsigned int cpu; 579 int retval; 580 581 cpus_read_lock(); 582 /* 583 * Run only on CPUs in which hwlat is allowed to run. 584 */ 585 cpumask_and(current_mask, cpu_online_mask, tr->tracing_cpumask); 586 587 for_each_cpu(cpu, current_mask) { 588 retval = start_cpu_kthread(cpu); 589 if (retval) 590 goto out_error; 591 } 592 cpus_read_unlock(); 593 594 return 0; 595 596 out_error: 597 cpus_read_unlock(); 598 stop_per_cpu_kthreads(); 599 return retval; 600 } 601 602 static void *s_mode_start(struct seq_file *s, loff_t *pos) 603 { 604 int mode = *pos; 605 606 mutex_lock(&hwlat_data.lock); 607 608 if (mode >= MODE_MAX) 609 return NULL; 610 611 return pos; 612 } 613 614 static void *s_mode_next(struct seq_file *s, void *v, loff_t *pos) 615 { 616 int mode = ++(*pos); 617 618 if (mode >= MODE_MAX) 619 return NULL; 620 621 return pos; 622 } 623 624 static int s_mode_show(struct seq_file *s, void *v) 625 { 626 loff_t *pos = v; 627 int mode = *pos; 628 629 if (mode == hwlat_data.thread_mode) 630 seq_printf(s, "[%s]", thread_mode_str[mode]); 631 else 632 seq_printf(s, "%s", thread_mode_str[mode]); 633 634 if (mode < MODE_MAX - 1) /* if mode is any but last */ 635 seq_puts(s, " "); 636 637 return 0; 638 } 639 640 static void s_mode_stop(struct seq_file *s, void *v) 641 { 642 seq_puts(s, "\n"); 643 mutex_unlock(&hwlat_data.lock); 644 } 645 646 static const struct seq_operations thread_mode_seq_ops = { 647 .start = s_mode_start, 648 .next = s_mode_next, 649 .show = s_mode_show, 650 .stop = s_mode_stop 651 }; 652 653 static int hwlat_mode_open(struct inode *inode, struct file *file) 654 { 655 return seq_open(file, &thread_mode_seq_ops); 656 }; 657 658 static void hwlat_tracer_start(struct trace_array *tr); 659 static void hwlat_tracer_stop(struct trace_array *tr); 660 661 /** 662 * hwlat_mode_write - Write function for "mode" entry 663 * @filp: The active open file structure 664 * @ubuf: The user buffer that contains the value to write 665 * @cnt: The maximum number of bytes to write to "file" 666 * @ppos: The current position in @file 667 * 668 * This function provides a write implementation for the "mode" interface 669 * to the hardware latency detector. hwlatd has different operation modes. 670 * The "none" sets the allowed cpumask for a single hwlatd thread at the 671 * startup and lets the scheduler handle the migration. The default mode is 672 * the "round-robin" one, in which a single hwlatd thread runs, migrating 673 * among the allowed CPUs in a round-robin fashion. The "per-cpu" mode 674 * creates one hwlatd thread per allowed CPU. 675 */ 676 static ssize_t hwlat_mode_write(struct file *filp, const char __user *ubuf, 677 size_t cnt, loff_t *ppos) 678 { 679 struct trace_array *tr = hwlat_trace; 680 const char *mode; 681 char buf[64]; 682 int ret, i; 683 684 if (cnt >= sizeof(buf)) 685 return -EINVAL; 686 687 if (copy_from_user(buf, ubuf, cnt)) 688 return -EFAULT; 689 690 buf[cnt] = 0; 691 692 mode = strstrip(buf); 693 694 ret = -EINVAL; 695 696 /* 697 * trace_types_lock is taken to avoid concurrency on start/stop 698 * and hwlat_busy. 699 */ 700 mutex_lock(&trace_types_lock); 701 if (hwlat_busy) 702 hwlat_tracer_stop(tr); 703 704 mutex_lock(&hwlat_data.lock); 705 706 for (i = 0; i < MODE_MAX; i++) { 707 if (strcmp(mode, thread_mode_str[i]) == 0) { 708 hwlat_data.thread_mode = i; 709 ret = cnt; 710 } 711 } 712 713 mutex_unlock(&hwlat_data.lock); 714 715 if (hwlat_busy) 716 hwlat_tracer_start(tr); 717 mutex_unlock(&trace_types_lock); 718 719 *ppos += cnt; 720 721 722 723 return ret; 724 } 725 726 /* 727 * The width parameter is read/write using the generic trace_min_max_param 728 * method. The *val is protected by the hwlat_data lock and is upper 729 * bounded by the window parameter. 730 */ 731 static struct trace_min_max_param hwlat_width = { 732 .lock = &hwlat_data.lock, 733 .val = &hwlat_data.sample_width, 734 .max = &hwlat_data.sample_window, 735 .min = NULL, 736 }; 737 738 /* 739 * The window parameter is read/write using the generic trace_min_max_param 740 * method. The *val is protected by the hwlat_data lock and is lower 741 * bounded by the width parameter. 742 */ 743 static struct trace_min_max_param hwlat_window = { 744 .lock = &hwlat_data.lock, 745 .val = &hwlat_data.sample_window, 746 .max = NULL, 747 .min = &hwlat_data.sample_width, 748 }; 749 750 static const struct file_operations thread_mode_fops = { 751 .open = hwlat_mode_open, 752 .read = seq_read, 753 .llseek = seq_lseek, 754 .release = seq_release, 755 .write = hwlat_mode_write 756 }; 757 /** 758 * init_tracefs - A function to initialize the tracefs interface files 759 * 760 * This function creates entries in tracefs for "hwlat_detector". 761 * It creates the hwlat_detector directory in the tracing directory, 762 * and within that directory is the count, width and window files to 763 * change and view those values. 764 */ 765 static int init_tracefs(void) 766 { 767 int ret; 768 struct dentry *top_dir; 769 770 ret = tracing_init_dentry(); 771 if (ret) 772 return -ENOMEM; 773 774 top_dir = tracefs_create_dir("hwlat_detector", NULL); 775 if (!top_dir) 776 return -ENOMEM; 777 778 hwlat_sample_window = tracefs_create_file("window", TRACE_MODE_WRITE, 779 top_dir, 780 &hwlat_window, 781 &trace_min_max_fops); 782 if (!hwlat_sample_window) 783 goto err; 784 785 hwlat_sample_width = tracefs_create_file("width", TRACE_MODE_WRITE, 786 top_dir, 787 &hwlat_width, 788 &trace_min_max_fops); 789 if (!hwlat_sample_width) 790 goto err; 791 792 hwlat_thread_mode = trace_create_file("mode", TRACE_MODE_WRITE, 793 top_dir, 794 NULL, 795 &thread_mode_fops); 796 if (!hwlat_thread_mode) 797 goto err; 798 799 return 0; 800 801 err: 802 tracefs_remove(top_dir); 803 return -ENOMEM; 804 } 805 806 static void hwlat_tracer_start(struct trace_array *tr) 807 { 808 int err; 809 810 if (hwlat_data.thread_mode == MODE_PER_CPU) 811 err = start_per_cpu_kthreads(tr); 812 else 813 err = start_single_kthread(tr); 814 if (err) 815 pr_err(BANNER "Cannot start hwlat kthread\n"); 816 } 817 818 static void hwlat_tracer_stop(struct trace_array *tr) 819 { 820 if (hwlat_data.thread_mode == MODE_PER_CPU) 821 stop_per_cpu_kthreads(); 822 else 823 stop_single_kthread(); 824 } 825 826 static int hwlat_tracer_init(struct trace_array *tr) 827 { 828 /* Only allow one instance to enable this */ 829 if (hwlat_busy) 830 return -EBUSY; 831 832 hwlat_trace = tr; 833 834 atomic64_set(&hwlat_data.count, 0); 835 tr->max_latency = 0; 836 save_tracing_thresh = tracing_thresh; 837 838 /* tracing_thresh is in nsecs, we speak in usecs */ 839 if (!tracing_thresh) 840 tracing_thresh = last_tracing_thresh; 841 842 if (tracer_tracing_is_on(tr)) 843 hwlat_tracer_start(tr); 844 845 hwlat_busy = true; 846 847 return 0; 848 } 849 850 static void hwlat_tracer_reset(struct trace_array *tr) 851 { 852 hwlat_tracer_stop(tr); 853 854 /* the tracing threshold is static between runs */ 855 last_tracing_thresh = tracing_thresh; 856 857 tracing_thresh = save_tracing_thresh; 858 hwlat_busy = false; 859 } 860 861 static struct tracer hwlat_tracer __read_mostly = 862 { 863 .name = "hwlat", 864 .init = hwlat_tracer_init, 865 .reset = hwlat_tracer_reset, 866 .start = hwlat_tracer_start, 867 .stop = hwlat_tracer_stop, 868 .allow_instances = true, 869 }; 870 871 __init static int init_hwlat_tracer(void) 872 { 873 int ret; 874 875 mutex_init(&hwlat_data.lock); 876 877 ret = register_tracer(&hwlat_tracer); 878 if (ret) 879 return ret; 880 881 hwlat_init_hotplug_support(); 882 883 init_tracefs(); 884 885 return 0; 886 } 887 late_initcall(init_hwlat_tracer); 888