xref: /linux/security/security.c (revision 30b9dcae9815ae7e752fe3aa00aa283fadf16c6a)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Security plug functions
4  *
5  * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
6  * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
7  * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
8  * Copyright (C) 2016 Mellanox Technologies
9  * Copyright (C) 2023 Microsoft Corporation <paul@paul-moore.com>
10  */
11 
12 #define pr_fmt(fmt) "LSM: " fmt
13 
14 #include <linux/bpf.h>
15 #include <linux/capability.h>
16 #include <linux/dcache.h>
17 #include <linux/export.h>
18 #include <linux/init.h>
19 #include <linux/kernel.h>
20 #include <linux/kernel_read_file.h>
21 #include <linux/lsm_hooks.h>
22 #include <linux/mman.h>
23 #include <linux/mount.h>
24 #include <linux/personality.h>
25 #include <linux/backing-dev.h>
26 #include <linux/string.h>
27 #include <linux/xattr.h>
28 #include <linux/msg.h>
29 #include <linux/overflow.h>
30 #include <linux/perf_event.h>
31 #include <linux/fs.h>
32 #include <net/flow.h>
33 #include <net/sock.h>
34 
35 #define SECURITY_HOOK_ACTIVE_KEY(HOOK, IDX) security_hook_active_##HOOK##_##IDX
36 
37 /*
38  * Identifier for the LSM static calls.
39  * HOOK is an LSM hook as defined in linux/lsm_hookdefs.h
40  * IDX is the index of the static call. 0 <= NUM < MAX_LSM_COUNT
41  */
42 #define LSM_STATIC_CALL(HOOK, IDX) lsm_static_call_##HOOK##_##IDX
43 
44 /*
45  * Call the macro M for each LSM hook MAX_LSM_COUNT times.
46  */
47 #define LSM_LOOP_UNROLL(M, ...) 		\
48 do {						\
49 	UNROLL(MAX_LSM_COUNT, M, __VA_ARGS__)	\
50 } while (0)
51 
52 #define LSM_DEFINE_UNROLL(M, ...) UNROLL(MAX_LSM_COUNT, M, __VA_ARGS__)
53 
54 /*
55  * These are descriptions of the reasons that can be passed to the
56  * security_locked_down() LSM hook. Placing this array here allows
57  * all security modules to use the same descriptions for auditing
58  * purposes.
59  */
60 const char *const lockdown_reasons[LOCKDOWN_CONFIDENTIALITY_MAX + 1] = {
61 	[LOCKDOWN_NONE] = "none",
62 	[LOCKDOWN_MODULE_SIGNATURE] = "unsigned module loading",
63 	[LOCKDOWN_DEV_MEM] = "/dev/mem,kmem,port",
64 	[LOCKDOWN_EFI_TEST] = "/dev/efi_test access",
65 	[LOCKDOWN_KEXEC] = "kexec of unsigned images",
66 	[LOCKDOWN_HIBERNATION] = "hibernation",
67 	[LOCKDOWN_PCI_ACCESS] = "direct PCI access",
68 	[LOCKDOWN_IOPORT] = "raw io port access",
69 	[LOCKDOWN_MSR] = "raw MSR access",
70 	[LOCKDOWN_ACPI_TABLES] = "modifying ACPI tables",
71 	[LOCKDOWN_DEVICE_TREE] = "modifying device tree contents",
72 	[LOCKDOWN_PCMCIA_CIS] = "direct PCMCIA CIS storage",
73 	[LOCKDOWN_TIOCSSERIAL] = "reconfiguration of serial port IO",
74 	[LOCKDOWN_MODULE_PARAMETERS] = "unsafe module parameters",
75 	[LOCKDOWN_MMIOTRACE] = "unsafe mmio",
76 	[LOCKDOWN_DEBUGFS] = "debugfs access",
77 	[LOCKDOWN_XMON_WR] = "xmon write access",
78 	[LOCKDOWN_BPF_WRITE_USER] = "use of bpf to write user RAM",
79 	[LOCKDOWN_DBG_WRITE_KERNEL] = "use of kgdb/kdb to write kernel RAM",
80 	[LOCKDOWN_RTAS_ERROR_INJECTION] = "RTAS error injection",
81 	[LOCKDOWN_INTEGRITY_MAX] = "integrity",
82 	[LOCKDOWN_KCORE] = "/proc/kcore access",
83 	[LOCKDOWN_KPROBES] = "use of kprobes",
84 	[LOCKDOWN_BPF_READ_KERNEL] = "use of bpf to read kernel RAM",
85 	[LOCKDOWN_DBG_READ_KERNEL] = "use of kgdb/kdb to read kernel RAM",
86 	[LOCKDOWN_PERF] = "unsafe use of perf",
87 	[LOCKDOWN_TRACEFS] = "use of tracefs",
88 	[LOCKDOWN_XMON_RW] = "xmon read and write access",
89 	[LOCKDOWN_XFRM_SECRET] = "xfrm SA secret",
90 	[LOCKDOWN_CONFIDENTIALITY_MAX] = "confidentiality",
91 };
92 
93 static BLOCKING_NOTIFIER_HEAD(blocking_lsm_notifier_chain);
94 
95 static struct kmem_cache *lsm_file_cache;
96 static struct kmem_cache *lsm_inode_cache;
97 
98 char *lsm_names;
99 static struct lsm_blob_sizes blob_sizes __ro_after_init;
100 
101 /* Boot-time LSM user choice */
102 static __initdata const char *chosen_lsm_order;
103 static __initdata const char *chosen_major_lsm;
104 
105 static __initconst const char *const builtin_lsm_order = CONFIG_LSM;
106 
107 /* Ordered list of LSMs to initialize. */
108 static __initdata struct lsm_info *ordered_lsms[MAX_LSM_COUNT + 1];
109 static __initdata struct lsm_info *exclusive;
110 
111 #ifdef CONFIG_HAVE_STATIC_CALL
112 #define LSM_HOOK_TRAMP(NAME, NUM) \
113 	&STATIC_CALL_TRAMP(LSM_STATIC_CALL(NAME, NUM))
114 #else
115 #define LSM_HOOK_TRAMP(NAME, NUM) NULL
116 #endif
117 
118 /*
119  * Define static calls and static keys for each LSM hook.
120  */
121 #define DEFINE_LSM_STATIC_CALL(NUM, NAME, RET, ...)			\
122 	DEFINE_STATIC_CALL_NULL(LSM_STATIC_CALL(NAME, NUM),		\
123 				*((RET(*)(__VA_ARGS__))NULL));		\
124 	DEFINE_STATIC_KEY_FALSE(SECURITY_HOOK_ACTIVE_KEY(NAME, NUM));
125 
126 #define LSM_HOOK(RET, DEFAULT, NAME, ...)				\
127 	LSM_DEFINE_UNROLL(DEFINE_LSM_STATIC_CALL, NAME, RET, __VA_ARGS__)
128 #include <linux/lsm_hook_defs.h>
129 #undef LSM_HOOK
130 #undef DEFINE_LSM_STATIC_CALL
131 
132 /*
133  * Initialise a table of static calls for each LSM hook.
134  * DEFINE_STATIC_CALL_NULL invocation above generates a key (STATIC_CALL_KEY)
135  * and a trampoline (STATIC_CALL_TRAMP) which are used to call
136  * __static_call_update when updating the static call.
137  *
138  * The static calls table is used by early LSMs, some architectures can fault on
139  * unaligned accesses and the fault handling code may not be ready by then.
140  * Thus, the static calls table should be aligned to avoid any unhandled faults
141  * in early init.
142  */
143 struct lsm_static_calls_table
144 	static_calls_table __ro_after_init __aligned(sizeof(u64)) = {
145 #define INIT_LSM_STATIC_CALL(NUM, NAME)					\
146 	(struct lsm_static_call) {					\
147 		.key = &STATIC_CALL_KEY(LSM_STATIC_CALL(NAME, NUM)),	\
148 		.trampoline = LSM_HOOK_TRAMP(NAME, NUM),		\
149 		.active = &SECURITY_HOOK_ACTIVE_KEY(NAME, NUM),		\
150 	},
151 #define LSM_HOOK(RET, DEFAULT, NAME, ...)				\
152 	.NAME = {							\
153 		LSM_DEFINE_UNROLL(INIT_LSM_STATIC_CALL, NAME)		\
154 	},
155 #include <linux/lsm_hook_defs.h>
156 #undef LSM_HOOK
157 #undef INIT_LSM_STATIC_CALL
158 	};
159 
160 static __initdata bool debug;
161 #define init_debug(...)						\
162 	do {							\
163 		if (debug)					\
164 			pr_info(__VA_ARGS__);			\
165 	} while (0)
166 
is_enabled(struct lsm_info * lsm)167 static bool __init is_enabled(struct lsm_info *lsm)
168 {
169 	if (!lsm->enabled)
170 		return false;
171 
172 	return *lsm->enabled;
173 }
174 
175 /* Mark an LSM's enabled flag. */
176 static int lsm_enabled_true __initdata = 1;
177 static int lsm_enabled_false __initdata = 0;
set_enabled(struct lsm_info * lsm,bool enabled)178 static void __init set_enabled(struct lsm_info *lsm, bool enabled)
179 {
180 	/*
181 	 * When an LSM hasn't configured an enable variable, we can use
182 	 * a hard-coded location for storing the default enabled state.
183 	 */
184 	if (!lsm->enabled) {
185 		if (enabled)
186 			lsm->enabled = &lsm_enabled_true;
187 		else
188 			lsm->enabled = &lsm_enabled_false;
189 	} else if (lsm->enabled == &lsm_enabled_true) {
190 		if (!enabled)
191 			lsm->enabled = &lsm_enabled_false;
192 	} else if (lsm->enabled == &lsm_enabled_false) {
193 		if (enabled)
194 			lsm->enabled = &lsm_enabled_true;
195 	} else {
196 		*lsm->enabled = enabled;
197 	}
198 }
199 
200 /* Is an LSM already listed in the ordered LSMs list? */
exists_ordered_lsm(struct lsm_info * lsm)201 static bool __init exists_ordered_lsm(struct lsm_info *lsm)
202 {
203 	struct lsm_info **check;
204 
205 	for (check = ordered_lsms; *check; check++)
206 		if (*check == lsm)
207 			return true;
208 
209 	return false;
210 }
211 
212 /* Append an LSM to the list of ordered LSMs to initialize. */
213 static int last_lsm __initdata;
append_ordered_lsm(struct lsm_info * lsm,const char * from)214 static void __init append_ordered_lsm(struct lsm_info *lsm, const char *from)
215 {
216 	/* Ignore duplicate selections. */
217 	if (exists_ordered_lsm(lsm))
218 		return;
219 
220 	if (WARN(last_lsm == MAX_LSM_COUNT, "%s: out of LSM static calls!?\n", from))
221 		return;
222 
223 	/* Enable this LSM, if it is not already set. */
224 	if (!lsm->enabled)
225 		lsm->enabled = &lsm_enabled_true;
226 	ordered_lsms[last_lsm++] = lsm;
227 
228 	init_debug("%s ordered: %s (%s)\n", from, lsm->name,
229 		   is_enabled(lsm) ? "enabled" : "disabled");
230 }
231 
232 /* Is an LSM allowed to be initialized? */
lsm_allowed(struct lsm_info * lsm)233 static bool __init lsm_allowed(struct lsm_info *lsm)
234 {
235 	/* Skip if the LSM is disabled. */
236 	if (!is_enabled(lsm))
237 		return false;
238 
239 	/* Not allowed if another exclusive LSM already initialized. */
240 	if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && exclusive) {
241 		init_debug("exclusive disabled: %s\n", lsm->name);
242 		return false;
243 	}
244 
245 	return true;
246 }
247 
lsm_set_blob_size(int * need,int * lbs)248 static void __init lsm_set_blob_size(int *need, int *lbs)
249 {
250 	int offset;
251 
252 	if (*need <= 0)
253 		return;
254 
255 	offset = ALIGN(*lbs, sizeof(void *));
256 	*lbs = offset + *need;
257 	*need = offset;
258 }
259 
lsm_set_blob_sizes(struct lsm_blob_sizes * needed)260 static void __init lsm_set_blob_sizes(struct lsm_blob_sizes *needed)
261 {
262 	if (!needed)
263 		return;
264 
265 	lsm_set_blob_size(&needed->lbs_cred, &blob_sizes.lbs_cred);
266 	lsm_set_blob_size(&needed->lbs_file, &blob_sizes.lbs_file);
267 	lsm_set_blob_size(&needed->lbs_ib, &blob_sizes.lbs_ib);
268 	/*
269 	 * The inode blob gets an rcu_head in addition to
270 	 * what the modules might need.
271 	 */
272 	if (needed->lbs_inode && blob_sizes.lbs_inode == 0)
273 		blob_sizes.lbs_inode = sizeof(struct rcu_head);
274 	lsm_set_blob_size(&needed->lbs_inode, &blob_sizes.lbs_inode);
275 	lsm_set_blob_size(&needed->lbs_ipc, &blob_sizes.lbs_ipc);
276 	lsm_set_blob_size(&needed->lbs_key, &blob_sizes.lbs_key);
277 	lsm_set_blob_size(&needed->lbs_msg_msg, &blob_sizes.lbs_msg_msg);
278 	lsm_set_blob_size(&needed->lbs_perf_event, &blob_sizes.lbs_perf_event);
279 	lsm_set_blob_size(&needed->lbs_sock, &blob_sizes.lbs_sock);
280 	lsm_set_blob_size(&needed->lbs_superblock, &blob_sizes.lbs_superblock);
281 	lsm_set_blob_size(&needed->lbs_task, &blob_sizes.lbs_task);
282 	lsm_set_blob_size(&needed->lbs_tun_dev, &blob_sizes.lbs_tun_dev);
283 	lsm_set_blob_size(&needed->lbs_xattr_count,
284 			  &blob_sizes.lbs_xattr_count);
285 	lsm_set_blob_size(&needed->lbs_bdev, &blob_sizes.lbs_bdev);
286 }
287 
288 /* Prepare LSM for initialization. */
prepare_lsm(struct lsm_info * lsm)289 static void __init prepare_lsm(struct lsm_info *lsm)
290 {
291 	int enabled = lsm_allowed(lsm);
292 
293 	/* Record enablement (to handle any following exclusive LSMs). */
294 	set_enabled(lsm, enabled);
295 
296 	/* If enabled, do pre-initialization work. */
297 	if (enabled) {
298 		if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && !exclusive) {
299 			exclusive = lsm;
300 			init_debug("exclusive chosen:   %s\n", lsm->name);
301 		}
302 
303 		lsm_set_blob_sizes(lsm->blobs);
304 	}
305 }
306 
307 /* Initialize a given LSM, if it is enabled. */
initialize_lsm(struct lsm_info * lsm)308 static void __init initialize_lsm(struct lsm_info *lsm)
309 {
310 	if (is_enabled(lsm)) {
311 		int ret;
312 
313 		init_debug("initializing %s\n", lsm->name);
314 		ret = lsm->init();
315 		WARN(ret, "%s failed to initialize: %d\n", lsm->name, ret);
316 	}
317 }
318 
319 /*
320  * Current index to use while initializing the lsm id list.
321  */
322 u32 lsm_active_cnt __ro_after_init;
323 const struct lsm_id *lsm_idlist[MAX_LSM_COUNT];
324 
325 /* Populate ordered LSMs list from comma-separated LSM name list. */
ordered_lsm_parse(const char * order,const char * origin)326 static void __init ordered_lsm_parse(const char *order, const char *origin)
327 {
328 	struct lsm_info *lsm;
329 	char *sep, *name, *next;
330 
331 	/* LSM_ORDER_FIRST is always first. */
332 	for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
333 		if (lsm->order == LSM_ORDER_FIRST)
334 			append_ordered_lsm(lsm, "  first");
335 	}
336 
337 	/* Process "security=", if given. */
338 	if (chosen_major_lsm) {
339 		struct lsm_info *major;
340 
341 		/*
342 		 * To match the original "security=" behavior, this
343 		 * explicitly does NOT fallback to another Legacy Major
344 		 * if the selected one was separately disabled: disable
345 		 * all non-matching Legacy Major LSMs.
346 		 */
347 		for (major = __start_lsm_info; major < __end_lsm_info;
348 		     major++) {
349 			if ((major->flags & LSM_FLAG_LEGACY_MAJOR) &&
350 			    strcmp(major->name, chosen_major_lsm) != 0) {
351 				set_enabled(major, false);
352 				init_debug("security=%s disabled: %s (only one legacy major LSM)\n",
353 					   chosen_major_lsm, major->name);
354 			}
355 		}
356 	}
357 
358 	sep = kstrdup(order, GFP_KERNEL);
359 	next = sep;
360 	/* Walk the list, looking for matching LSMs. */
361 	while ((name = strsep(&next, ",")) != NULL) {
362 		bool found = false;
363 
364 		for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
365 			if (strcmp(lsm->name, name) == 0) {
366 				if (lsm->order == LSM_ORDER_MUTABLE)
367 					append_ordered_lsm(lsm, origin);
368 				found = true;
369 			}
370 		}
371 
372 		if (!found)
373 			init_debug("%s ignored: %s (not built into kernel)\n",
374 				   origin, name);
375 	}
376 
377 	/* Process "security=", if given. */
378 	if (chosen_major_lsm) {
379 		for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
380 			if (exists_ordered_lsm(lsm))
381 				continue;
382 			if (strcmp(lsm->name, chosen_major_lsm) == 0)
383 				append_ordered_lsm(lsm, "security=");
384 		}
385 	}
386 
387 	/* LSM_ORDER_LAST is always last. */
388 	for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
389 		if (lsm->order == LSM_ORDER_LAST)
390 			append_ordered_lsm(lsm, "   last");
391 	}
392 
393 	/* Disable all LSMs not in the ordered list. */
394 	for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
395 		if (exists_ordered_lsm(lsm))
396 			continue;
397 		set_enabled(lsm, false);
398 		init_debug("%s skipped: %s (not in requested order)\n",
399 			   origin, lsm->name);
400 	}
401 
402 	kfree(sep);
403 }
404 
lsm_static_call_init(struct security_hook_list * hl)405 static void __init lsm_static_call_init(struct security_hook_list *hl)
406 {
407 	struct lsm_static_call *scall = hl->scalls;
408 	int i;
409 
410 	for (i = 0; i < MAX_LSM_COUNT; i++) {
411 		/* Update the first static call that is not used yet */
412 		if (!scall->hl) {
413 			__static_call_update(scall->key, scall->trampoline,
414 					     hl->hook.lsm_func_addr);
415 			scall->hl = hl;
416 			static_branch_enable(scall->active);
417 			return;
418 		}
419 		scall++;
420 	}
421 	panic("%s - Ran out of static slots.\n", __func__);
422 }
423 
424 static void __init lsm_early_cred(struct cred *cred);
425 static void __init lsm_early_task(struct task_struct *task);
426 
427 static int lsm_append(const char *new, char **result);
428 
report_lsm_order(void)429 static void __init report_lsm_order(void)
430 {
431 	struct lsm_info **lsm, *early;
432 	int first = 0;
433 
434 	pr_info("initializing lsm=");
435 
436 	/* Report each enabled LSM name, comma separated. */
437 	for (early = __start_early_lsm_info;
438 	     early < __end_early_lsm_info; early++)
439 		if (is_enabled(early))
440 			pr_cont("%s%s", first++ == 0 ? "" : ",", early->name);
441 	for (lsm = ordered_lsms; *lsm; lsm++)
442 		if (is_enabled(*lsm))
443 			pr_cont("%s%s", first++ == 0 ? "" : ",", (*lsm)->name);
444 
445 	pr_cont("\n");
446 }
447 
ordered_lsm_init(void)448 static void __init ordered_lsm_init(void)
449 {
450 	struct lsm_info **lsm;
451 
452 	if (chosen_lsm_order) {
453 		if (chosen_major_lsm) {
454 			pr_warn("security=%s is ignored because it is superseded by lsm=%s\n",
455 				chosen_major_lsm, chosen_lsm_order);
456 			chosen_major_lsm = NULL;
457 		}
458 		ordered_lsm_parse(chosen_lsm_order, "cmdline");
459 	} else
460 		ordered_lsm_parse(builtin_lsm_order, "builtin");
461 
462 	for (lsm = ordered_lsms; *lsm; lsm++)
463 		prepare_lsm(*lsm);
464 
465 	report_lsm_order();
466 
467 	init_debug("cred blob size       = %d\n", blob_sizes.lbs_cred);
468 	init_debug("file blob size       = %d\n", blob_sizes.lbs_file);
469 	init_debug("ib blob size         = %d\n", blob_sizes.lbs_ib);
470 	init_debug("inode blob size      = %d\n", blob_sizes.lbs_inode);
471 	init_debug("ipc blob size        = %d\n", blob_sizes.lbs_ipc);
472 #ifdef CONFIG_KEYS
473 	init_debug("key blob size        = %d\n", blob_sizes.lbs_key);
474 #endif /* CONFIG_KEYS */
475 	init_debug("msg_msg blob size    = %d\n", blob_sizes.lbs_msg_msg);
476 	init_debug("sock blob size       = %d\n", blob_sizes.lbs_sock);
477 	init_debug("superblock blob size = %d\n", blob_sizes.lbs_superblock);
478 	init_debug("perf event blob size = %d\n", blob_sizes.lbs_perf_event);
479 	init_debug("task blob size       = %d\n", blob_sizes.lbs_task);
480 	init_debug("tun device blob size = %d\n", blob_sizes.lbs_tun_dev);
481 	init_debug("xattr slots          = %d\n", blob_sizes.lbs_xattr_count);
482 	init_debug("bdev blob size       = %d\n", blob_sizes.lbs_bdev);
483 
484 	/*
485 	 * Create any kmem_caches needed for blobs
486 	 */
487 	if (blob_sizes.lbs_file)
488 		lsm_file_cache = kmem_cache_create("lsm_file_cache",
489 						   blob_sizes.lbs_file, 0,
490 						   SLAB_PANIC, NULL);
491 	if (blob_sizes.lbs_inode)
492 		lsm_inode_cache = kmem_cache_create("lsm_inode_cache",
493 						    blob_sizes.lbs_inode, 0,
494 						    SLAB_PANIC, NULL);
495 
496 	lsm_early_cred((struct cred *) current->cred);
497 	lsm_early_task(current);
498 	for (lsm = ordered_lsms; *lsm; lsm++)
499 		initialize_lsm(*lsm);
500 }
501 
early_security_init(void)502 int __init early_security_init(void)
503 {
504 	struct lsm_info *lsm;
505 
506 	for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) {
507 		if (!lsm->enabled)
508 			lsm->enabled = &lsm_enabled_true;
509 		prepare_lsm(lsm);
510 		initialize_lsm(lsm);
511 	}
512 
513 	return 0;
514 }
515 
516 /**
517  * security_init - initializes the security framework
518  *
519  * This should be called early in the kernel initialization sequence.
520  */
security_init(void)521 int __init security_init(void)
522 {
523 	struct lsm_info *lsm;
524 
525 	init_debug("legacy security=%s\n", chosen_major_lsm ? : " *unspecified*");
526 	init_debug("  CONFIG_LSM=%s\n", builtin_lsm_order);
527 	init_debug("boot arg lsm=%s\n", chosen_lsm_order ? : " *unspecified*");
528 
529 	/*
530 	 * Append the names of the early LSM modules now that kmalloc() is
531 	 * available
532 	 */
533 	for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) {
534 		init_debug("  early started: %s (%s)\n", lsm->name,
535 			   is_enabled(lsm) ? "enabled" : "disabled");
536 		if (lsm->enabled)
537 			lsm_append(lsm->name, &lsm_names);
538 	}
539 
540 	/* Load LSMs in specified order. */
541 	ordered_lsm_init();
542 
543 	return 0;
544 }
545 
546 /* Save user chosen LSM */
choose_major_lsm(char * str)547 static int __init choose_major_lsm(char *str)
548 {
549 	chosen_major_lsm = str;
550 	return 1;
551 }
552 __setup("security=", choose_major_lsm);
553 
554 /* Explicitly choose LSM initialization order. */
choose_lsm_order(char * str)555 static int __init choose_lsm_order(char *str)
556 {
557 	chosen_lsm_order = str;
558 	return 1;
559 }
560 __setup("lsm=", choose_lsm_order);
561 
562 /* Enable LSM order debugging. */
enable_debug(char * str)563 static int __init enable_debug(char *str)
564 {
565 	debug = true;
566 	return 1;
567 }
568 __setup("lsm.debug", enable_debug);
569 
match_last_lsm(const char * list,const char * lsm)570 static bool match_last_lsm(const char *list, const char *lsm)
571 {
572 	const char *last;
573 
574 	if (WARN_ON(!list || !lsm))
575 		return false;
576 	last = strrchr(list, ',');
577 	if (last)
578 		/* Pass the comma, strcmp() will check for '\0' */
579 		last++;
580 	else
581 		last = list;
582 	return !strcmp(last, lsm);
583 }
584 
lsm_append(const char * new,char ** result)585 static int lsm_append(const char *new, char **result)
586 {
587 	char *cp;
588 
589 	if (*result == NULL) {
590 		*result = kstrdup(new, GFP_KERNEL);
591 		if (*result == NULL)
592 			return -ENOMEM;
593 	} else {
594 		/* Check if it is the last registered name */
595 		if (match_last_lsm(*result, new))
596 			return 0;
597 		cp = kasprintf(GFP_KERNEL, "%s,%s", *result, new);
598 		if (cp == NULL)
599 			return -ENOMEM;
600 		kfree(*result);
601 		*result = cp;
602 	}
603 	return 0;
604 }
605 
606 /**
607  * security_add_hooks - Add a modules hooks to the hook lists.
608  * @hooks: the hooks to add
609  * @count: the number of hooks to add
610  * @lsmid: the identification information for the security module
611  *
612  * Each LSM has to register its hooks with the infrastructure.
613  */
security_add_hooks(struct security_hook_list * hooks,int count,const struct lsm_id * lsmid)614 void __init security_add_hooks(struct security_hook_list *hooks, int count,
615 			       const struct lsm_id *lsmid)
616 {
617 	int i;
618 
619 	/*
620 	 * A security module may call security_add_hooks() more
621 	 * than once during initialization, and LSM initialization
622 	 * is serialized. Landlock is one such case.
623 	 * Look at the previous entry, if there is one, for duplication.
624 	 */
625 	if (lsm_active_cnt == 0 || lsm_idlist[lsm_active_cnt - 1] != lsmid) {
626 		if (lsm_active_cnt >= MAX_LSM_COUNT)
627 			panic("%s Too many LSMs registered.\n", __func__);
628 		lsm_idlist[lsm_active_cnt++] = lsmid;
629 	}
630 
631 	for (i = 0; i < count; i++) {
632 		hooks[i].lsmid = lsmid;
633 		lsm_static_call_init(&hooks[i]);
634 	}
635 
636 	/*
637 	 * Don't try to append during early_security_init(), we'll come back
638 	 * and fix this up afterwards.
639 	 */
640 	if (slab_is_available()) {
641 		if (lsm_append(lsmid->name, &lsm_names) < 0)
642 			panic("%s - Cannot get early memory.\n", __func__);
643 	}
644 }
645 
call_blocking_lsm_notifier(enum lsm_event event,void * data)646 int call_blocking_lsm_notifier(enum lsm_event event, void *data)
647 {
648 	return blocking_notifier_call_chain(&blocking_lsm_notifier_chain,
649 					    event, data);
650 }
651 EXPORT_SYMBOL(call_blocking_lsm_notifier);
652 
register_blocking_lsm_notifier(struct notifier_block * nb)653 int register_blocking_lsm_notifier(struct notifier_block *nb)
654 {
655 	return blocking_notifier_chain_register(&blocking_lsm_notifier_chain,
656 						nb);
657 }
658 EXPORT_SYMBOL(register_blocking_lsm_notifier);
659 
unregister_blocking_lsm_notifier(struct notifier_block * nb)660 int unregister_blocking_lsm_notifier(struct notifier_block *nb)
661 {
662 	return blocking_notifier_chain_unregister(&blocking_lsm_notifier_chain,
663 						  nb);
664 }
665 EXPORT_SYMBOL(unregister_blocking_lsm_notifier);
666 
667 /**
668  * lsm_blob_alloc - allocate a composite blob
669  * @dest: the destination for the blob
670  * @size: the size of the blob
671  * @gfp: allocation type
672  *
673  * Allocate a blob for all the modules
674  *
675  * Returns 0, or -ENOMEM if memory can't be allocated.
676  */
lsm_blob_alloc(void ** dest,size_t size,gfp_t gfp)677 static int lsm_blob_alloc(void **dest, size_t size, gfp_t gfp)
678 {
679 	if (size == 0) {
680 		*dest = NULL;
681 		return 0;
682 	}
683 
684 	*dest = kzalloc(size, gfp);
685 	if (*dest == NULL)
686 		return -ENOMEM;
687 	return 0;
688 }
689 
690 /**
691  * lsm_cred_alloc - allocate a composite cred blob
692  * @cred: the cred that needs a blob
693  * @gfp: allocation type
694  *
695  * Allocate the cred blob for all the modules
696  *
697  * Returns 0, or -ENOMEM if memory can't be allocated.
698  */
lsm_cred_alloc(struct cred * cred,gfp_t gfp)699 static int lsm_cred_alloc(struct cred *cred, gfp_t gfp)
700 {
701 	return lsm_blob_alloc(&cred->security, blob_sizes.lbs_cred, gfp);
702 }
703 
704 /**
705  * lsm_early_cred - during initialization allocate a composite cred blob
706  * @cred: the cred that needs a blob
707  *
708  * Allocate the cred blob for all the modules
709  */
lsm_early_cred(struct cred * cred)710 static void __init lsm_early_cred(struct cred *cred)
711 {
712 	int rc = lsm_cred_alloc(cred, GFP_KERNEL);
713 
714 	if (rc)
715 		panic("%s: Early cred alloc failed.\n", __func__);
716 }
717 
718 /**
719  * lsm_file_alloc - allocate a composite file blob
720  * @file: the file that needs a blob
721  *
722  * Allocate the file blob for all the modules
723  *
724  * Returns 0, or -ENOMEM if memory can't be allocated.
725  */
lsm_file_alloc(struct file * file)726 static int lsm_file_alloc(struct file *file)
727 {
728 	if (!lsm_file_cache) {
729 		file->f_security = NULL;
730 		return 0;
731 	}
732 
733 	file->f_security = kmem_cache_zalloc(lsm_file_cache, GFP_KERNEL);
734 	if (file->f_security == NULL)
735 		return -ENOMEM;
736 	return 0;
737 }
738 
739 /**
740  * lsm_inode_alloc - allocate a composite inode blob
741  * @inode: the inode that needs a blob
742  * @gfp: allocation flags
743  *
744  * Allocate the inode blob for all the modules
745  *
746  * Returns 0, or -ENOMEM if memory can't be allocated.
747  */
lsm_inode_alloc(struct inode * inode,gfp_t gfp)748 static int lsm_inode_alloc(struct inode *inode, gfp_t gfp)
749 {
750 	if (!lsm_inode_cache) {
751 		inode->i_security = NULL;
752 		return 0;
753 	}
754 
755 	inode->i_security = kmem_cache_zalloc(lsm_inode_cache, gfp);
756 	if (inode->i_security == NULL)
757 		return -ENOMEM;
758 	return 0;
759 }
760 
761 /**
762  * lsm_task_alloc - allocate a composite task blob
763  * @task: the task that needs a blob
764  *
765  * Allocate the task blob for all the modules
766  *
767  * Returns 0, or -ENOMEM if memory can't be allocated.
768  */
lsm_task_alloc(struct task_struct * task)769 static int lsm_task_alloc(struct task_struct *task)
770 {
771 	return lsm_blob_alloc(&task->security, blob_sizes.lbs_task, GFP_KERNEL);
772 }
773 
774 /**
775  * lsm_ipc_alloc - allocate a composite ipc blob
776  * @kip: the ipc that needs a blob
777  *
778  * Allocate the ipc blob for all the modules
779  *
780  * Returns 0, or -ENOMEM if memory can't be allocated.
781  */
lsm_ipc_alloc(struct kern_ipc_perm * kip)782 static int lsm_ipc_alloc(struct kern_ipc_perm *kip)
783 {
784 	return lsm_blob_alloc(&kip->security, blob_sizes.lbs_ipc, GFP_KERNEL);
785 }
786 
787 #ifdef CONFIG_KEYS
788 /**
789  * lsm_key_alloc - allocate a composite key blob
790  * @key: the key that needs a blob
791  *
792  * Allocate the key blob for all the modules
793  *
794  * Returns 0, or -ENOMEM if memory can't be allocated.
795  */
lsm_key_alloc(struct key * key)796 static int lsm_key_alloc(struct key *key)
797 {
798 	return lsm_blob_alloc(&key->security, blob_sizes.lbs_key, GFP_KERNEL);
799 }
800 #endif /* CONFIG_KEYS */
801 
802 /**
803  * lsm_msg_msg_alloc - allocate a composite msg_msg blob
804  * @mp: the msg_msg that needs a blob
805  *
806  * Allocate the ipc blob for all the modules
807  *
808  * Returns 0, or -ENOMEM if memory can't be allocated.
809  */
lsm_msg_msg_alloc(struct msg_msg * mp)810 static int lsm_msg_msg_alloc(struct msg_msg *mp)
811 {
812 	return lsm_blob_alloc(&mp->security, blob_sizes.lbs_msg_msg,
813 			      GFP_KERNEL);
814 }
815 
816 /**
817  * lsm_bdev_alloc - allocate a composite block_device blob
818  * @bdev: the block_device that needs a blob
819  *
820  * Allocate the block_device blob for all the modules
821  *
822  * Returns 0, or -ENOMEM if memory can't be allocated.
823  */
lsm_bdev_alloc(struct block_device * bdev)824 static int lsm_bdev_alloc(struct block_device *bdev)
825 {
826 	if (blob_sizes.lbs_bdev == 0) {
827 		bdev->bd_security = NULL;
828 		return 0;
829 	}
830 
831 	bdev->bd_security = kzalloc(blob_sizes.lbs_bdev, GFP_KERNEL);
832 	if (!bdev->bd_security)
833 		return -ENOMEM;
834 
835 	return 0;
836 }
837 
838 /**
839  * lsm_early_task - during initialization allocate a composite task blob
840  * @task: the task that needs a blob
841  *
842  * Allocate the task blob for all the modules
843  */
lsm_early_task(struct task_struct * task)844 static void __init lsm_early_task(struct task_struct *task)
845 {
846 	int rc = lsm_task_alloc(task);
847 
848 	if (rc)
849 		panic("%s: Early task alloc failed.\n", __func__);
850 }
851 
852 /**
853  * lsm_superblock_alloc - allocate a composite superblock blob
854  * @sb: the superblock that needs a blob
855  *
856  * Allocate the superblock blob for all the modules
857  *
858  * Returns 0, or -ENOMEM if memory can't be allocated.
859  */
lsm_superblock_alloc(struct super_block * sb)860 static int lsm_superblock_alloc(struct super_block *sb)
861 {
862 	return lsm_blob_alloc(&sb->s_security, blob_sizes.lbs_superblock,
863 			      GFP_KERNEL);
864 }
865 
866 /**
867  * lsm_fill_user_ctx - Fill a user space lsm_ctx structure
868  * @uctx: a userspace LSM context to be filled
869  * @uctx_len: available uctx size (input), used uctx size (output)
870  * @val: the new LSM context value
871  * @val_len: the size of the new LSM context value
872  * @id: LSM id
873  * @flags: LSM defined flags
874  *
875  * Fill all of the fields in a userspace lsm_ctx structure.  If @uctx is NULL
876  * simply calculate the required size to output via @utc_len and return
877  * success.
878  *
879  * Returns 0 on success, -E2BIG if userspace buffer is not large enough,
880  * -EFAULT on a copyout error, -ENOMEM if memory can't be allocated.
881  */
lsm_fill_user_ctx(struct lsm_ctx __user * uctx,u32 * uctx_len,void * val,size_t val_len,u64 id,u64 flags)882 int lsm_fill_user_ctx(struct lsm_ctx __user *uctx, u32 *uctx_len,
883 		      void *val, size_t val_len,
884 		      u64 id, u64 flags)
885 {
886 	struct lsm_ctx *nctx = NULL;
887 	size_t nctx_len;
888 	int rc = 0;
889 
890 	nctx_len = ALIGN(struct_size(nctx, ctx, val_len), sizeof(void *));
891 	if (nctx_len > *uctx_len) {
892 		rc = -E2BIG;
893 		goto out;
894 	}
895 
896 	/* no buffer - return success/0 and set @uctx_len to the req size */
897 	if (!uctx)
898 		goto out;
899 
900 	nctx = kzalloc(nctx_len, GFP_KERNEL);
901 	if (nctx == NULL) {
902 		rc = -ENOMEM;
903 		goto out;
904 	}
905 	nctx->id = id;
906 	nctx->flags = flags;
907 	nctx->len = nctx_len;
908 	nctx->ctx_len = val_len;
909 	memcpy(nctx->ctx, val, val_len);
910 
911 	if (copy_to_user(uctx, nctx, nctx_len))
912 		rc = -EFAULT;
913 
914 out:
915 	kfree(nctx);
916 	*uctx_len = nctx_len;
917 	return rc;
918 }
919 
920 /*
921  * The default value of the LSM hook is defined in linux/lsm_hook_defs.h and
922  * can be accessed with:
923  *
924  *	LSM_RET_DEFAULT(<hook_name>)
925  *
926  * The macros below define static constants for the default value of each
927  * LSM hook.
928  */
929 #define LSM_RET_DEFAULT(NAME) (NAME##_default)
930 #define DECLARE_LSM_RET_DEFAULT_void(DEFAULT, NAME)
931 #define DECLARE_LSM_RET_DEFAULT_int(DEFAULT, NAME) \
932 	static const int __maybe_unused LSM_RET_DEFAULT(NAME) = (DEFAULT);
933 #define LSM_HOOK(RET, DEFAULT, NAME, ...) \
934 	DECLARE_LSM_RET_DEFAULT_##RET(DEFAULT, NAME)
935 
936 #include <linux/lsm_hook_defs.h>
937 #undef LSM_HOOK
938 
939 /*
940  * Hook list operation macros.
941  *
942  * call_void_hook:
943  *	This is a hook that does not return a value.
944  *
945  * call_int_hook:
946  *	This is a hook that returns a value.
947  */
948 #define __CALL_STATIC_VOID(NUM, HOOK, ...)				     \
949 do {									     \
950 	if (static_branch_unlikely(&SECURITY_HOOK_ACTIVE_KEY(HOOK, NUM))) {    \
951 		static_call(LSM_STATIC_CALL(HOOK, NUM))(__VA_ARGS__);	     \
952 	}								     \
953 } while (0);
954 
955 #define call_void_hook(HOOK, ...)                                 \
956 	do {                                                      \
957 		LSM_LOOP_UNROLL(__CALL_STATIC_VOID, HOOK, __VA_ARGS__); \
958 	} while (0)
959 
960 
961 #define __CALL_STATIC_INT(NUM, R, HOOK, LABEL, ...)			     \
962 do {									     \
963 	if (static_branch_unlikely(&SECURITY_HOOK_ACTIVE_KEY(HOOK, NUM))) {  \
964 		R = static_call(LSM_STATIC_CALL(HOOK, NUM))(__VA_ARGS__);    \
965 		if (R != LSM_RET_DEFAULT(HOOK))				     \
966 			goto LABEL;					     \
967 	}								     \
968 } while (0);
969 
970 #define call_int_hook(HOOK, ...)					\
971 ({									\
972 	__label__ OUT;							\
973 	int RC = LSM_RET_DEFAULT(HOOK);					\
974 									\
975 	LSM_LOOP_UNROLL(__CALL_STATIC_INT, RC, HOOK, OUT, __VA_ARGS__);	\
976 OUT:									\
977 	RC;								\
978 })
979 
980 #define lsm_for_each_hook(scall, NAME)					\
981 	for (scall = static_calls_table.NAME;				\
982 	     scall - static_calls_table.NAME < MAX_LSM_COUNT; scall++)  \
983 		if (static_key_enabled(&scall->active->key))
984 
985 /* Security operations */
986 
987 /**
988  * security_binder_set_context_mgr() - Check if becoming binder ctx mgr is ok
989  * @mgr: task credentials of current binder process
990  *
991  * Check whether @mgr is allowed to be the binder context manager.
992  *
993  * Return: Return 0 if permission is granted.
994  */
security_binder_set_context_mgr(const struct cred * mgr)995 int security_binder_set_context_mgr(const struct cred *mgr)
996 {
997 	return call_int_hook(binder_set_context_mgr, mgr);
998 }
999 
1000 /**
1001  * security_binder_transaction() - Check if a binder transaction is allowed
1002  * @from: sending process
1003  * @to: receiving process
1004  *
1005  * Check whether @from is allowed to invoke a binder transaction call to @to.
1006  *
1007  * Return: Returns 0 if permission is granted.
1008  */
security_binder_transaction(const struct cred * from,const struct cred * to)1009 int security_binder_transaction(const struct cred *from,
1010 				const struct cred *to)
1011 {
1012 	return call_int_hook(binder_transaction, from, to);
1013 }
1014 
1015 /**
1016  * security_binder_transfer_binder() - Check if a binder transfer is allowed
1017  * @from: sending process
1018  * @to: receiving process
1019  *
1020  * Check whether @from is allowed to transfer a binder reference to @to.
1021  *
1022  * Return: Returns 0 if permission is granted.
1023  */
security_binder_transfer_binder(const struct cred * from,const struct cred * to)1024 int security_binder_transfer_binder(const struct cred *from,
1025 				    const struct cred *to)
1026 {
1027 	return call_int_hook(binder_transfer_binder, from, to);
1028 }
1029 
1030 /**
1031  * security_binder_transfer_file() - Check if a binder file xfer is allowed
1032  * @from: sending process
1033  * @to: receiving process
1034  * @file: file being transferred
1035  *
1036  * Check whether @from is allowed to transfer @file to @to.
1037  *
1038  * Return: Returns 0 if permission is granted.
1039  */
security_binder_transfer_file(const struct cred * from,const struct cred * to,const struct file * file)1040 int security_binder_transfer_file(const struct cred *from,
1041 				  const struct cred *to, const struct file *file)
1042 {
1043 	return call_int_hook(binder_transfer_file, from, to, file);
1044 }
1045 
1046 /**
1047  * security_ptrace_access_check() - Check if tracing is allowed
1048  * @child: target process
1049  * @mode: PTRACE_MODE flags
1050  *
1051  * Check permission before allowing the current process to trace the @child
1052  * process.  Security modules may also want to perform a process tracing check
1053  * during an execve in the set_security or apply_creds hooks of tracing check
1054  * during an execve in the bprm_set_creds hook of binprm_security_ops if the
1055  * process is being traced and its security attributes would be changed by the
1056  * execve.
1057  *
1058  * Return: Returns 0 if permission is granted.
1059  */
security_ptrace_access_check(struct task_struct * child,unsigned int mode)1060 int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
1061 {
1062 	return call_int_hook(ptrace_access_check, child, mode);
1063 }
1064 
1065 /**
1066  * security_ptrace_traceme() - Check if tracing is allowed
1067  * @parent: tracing process
1068  *
1069  * Check that the @parent process has sufficient permission to trace the
1070  * current process before allowing the current process to present itself to the
1071  * @parent process for tracing.
1072  *
1073  * Return: Returns 0 if permission is granted.
1074  */
security_ptrace_traceme(struct task_struct * parent)1075 int security_ptrace_traceme(struct task_struct *parent)
1076 {
1077 	return call_int_hook(ptrace_traceme, parent);
1078 }
1079 
1080 /**
1081  * security_capget() - Get the capability sets for a process
1082  * @target: target process
1083  * @effective: effective capability set
1084  * @inheritable: inheritable capability set
1085  * @permitted: permitted capability set
1086  *
1087  * Get the @effective, @inheritable, and @permitted capability sets for the
1088  * @target process.  The hook may also perform permission checking to determine
1089  * if the current process is allowed to see the capability sets of the @target
1090  * process.
1091  *
1092  * Return: Returns 0 if the capability sets were successfully obtained.
1093  */
security_capget(const struct task_struct * target,kernel_cap_t * effective,kernel_cap_t * inheritable,kernel_cap_t * permitted)1094 int security_capget(const struct task_struct *target,
1095 		    kernel_cap_t *effective,
1096 		    kernel_cap_t *inheritable,
1097 		    kernel_cap_t *permitted)
1098 {
1099 	return call_int_hook(capget, target, effective, inheritable, permitted);
1100 }
1101 
1102 /**
1103  * security_capset() - Set the capability sets for a process
1104  * @new: new credentials for the target process
1105  * @old: current credentials of the target process
1106  * @effective: effective capability set
1107  * @inheritable: inheritable capability set
1108  * @permitted: permitted capability set
1109  *
1110  * Set the @effective, @inheritable, and @permitted capability sets for the
1111  * current process.
1112  *
1113  * Return: Returns 0 and update @new if permission is granted.
1114  */
security_capset(struct cred * new,const struct cred * old,const kernel_cap_t * effective,const kernel_cap_t * inheritable,const kernel_cap_t * permitted)1115 int security_capset(struct cred *new, const struct cred *old,
1116 		    const kernel_cap_t *effective,
1117 		    const kernel_cap_t *inheritable,
1118 		    const kernel_cap_t *permitted)
1119 {
1120 	return call_int_hook(capset, new, old, effective, inheritable,
1121 			     permitted);
1122 }
1123 
1124 /**
1125  * security_capable() - Check if a process has the necessary capability
1126  * @cred: credentials to examine
1127  * @ns: user namespace
1128  * @cap: capability requested
1129  * @opts: capability check options
1130  *
1131  * Check whether the @tsk process has the @cap capability in the indicated
1132  * credentials.  @cap contains the capability <include/linux/capability.h>.
1133  * @opts contains options for the capable check <include/linux/security.h>.
1134  *
1135  * Return: Returns 0 if the capability is granted.
1136  */
security_capable(const struct cred * cred,struct user_namespace * ns,int cap,unsigned int opts)1137 int security_capable(const struct cred *cred,
1138 		     struct user_namespace *ns,
1139 		     int cap,
1140 		     unsigned int opts)
1141 {
1142 	return call_int_hook(capable, cred, ns, cap, opts);
1143 }
1144 
1145 /**
1146  * security_quotactl() - Check if a quotactl() syscall is allowed for this fs
1147  * @cmds: commands
1148  * @type: type
1149  * @id: id
1150  * @sb: filesystem
1151  *
1152  * Check whether the quotactl syscall is allowed for this @sb.
1153  *
1154  * Return: Returns 0 if permission is granted.
1155  */
security_quotactl(int cmds,int type,int id,const struct super_block * sb)1156 int security_quotactl(int cmds, int type, int id, const struct super_block *sb)
1157 {
1158 	return call_int_hook(quotactl, cmds, type, id, sb);
1159 }
1160 
1161 /**
1162  * security_quota_on() - Check if QUOTAON is allowed for a dentry
1163  * @dentry: dentry
1164  *
1165  * Check whether QUOTAON is allowed for @dentry.
1166  *
1167  * Return: Returns 0 if permission is granted.
1168  */
security_quota_on(struct dentry * dentry)1169 int security_quota_on(struct dentry *dentry)
1170 {
1171 	return call_int_hook(quota_on, dentry);
1172 }
1173 
1174 /**
1175  * security_syslog() - Check if accessing the kernel message ring is allowed
1176  * @type: SYSLOG_ACTION_* type
1177  *
1178  * Check permission before accessing the kernel message ring or changing
1179  * logging to the console.  See the syslog(2) manual page for an explanation of
1180  * the @type values.
1181  *
1182  * Return: Return 0 if permission is granted.
1183  */
security_syslog(int type)1184 int security_syslog(int type)
1185 {
1186 	return call_int_hook(syslog, type);
1187 }
1188 
1189 /**
1190  * security_settime64() - Check if changing the system time is allowed
1191  * @ts: new time
1192  * @tz: timezone
1193  *
1194  * Check permission to change the system time, struct timespec64 is defined in
1195  * <include/linux/time64.h> and timezone is defined in <include/linux/time.h>.
1196  *
1197  * Return: Returns 0 if permission is granted.
1198  */
security_settime64(const struct timespec64 * ts,const struct timezone * tz)1199 int security_settime64(const struct timespec64 *ts, const struct timezone *tz)
1200 {
1201 	return call_int_hook(settime, ts, tz);
1202 }
1203 
1204 /**
1205  * security_vm_enough_memory_mm() - Check if allocating a new mem map is allowed
1206  * @mm: mm struct
1207  * @pages: number of pages
1208  *
1209  * Check permissions for allocating a new virtual mapping.  If all LSMs return
1210  * a positive value, __vm_enough_memory() will be called with cap_sys_admin
1211  * set. If at least one LSM returns 0 or negative, __vm_enough_memory() will be
1212  * called with cap_sys_admin cleared.
1213  *
1214  * Return: Returns 0 if permission is granted by the LSM infrastructure to the
1215  *         caller.
1216  */
security_vm_enough_memory_mm(struct mm_struct * mm,long pages)1217 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
1218 {
1219 	struct lsm_static_call *scall;
1220 	int cap_sys_admin = 1;
1221 	int rc;
1222 
1223 	/*
1224 	 * The module will respond with 0 if it thinks the __vm_enough_memory()
1225 	 * call should be made with the cap_sys_admin set. If all of the modules
1226 	 * agree that it should be set it will. If any module thinks it should
1227 	 * not be set it won't.
1228 	 */
1229 	lsm_for_each_hook(scall, vm_enough_memory) {
1230 		rc = scall->hl->hook.vm_enough_memory(mm, pages);
1231 		if (rc < 0) {
1232 			cap_sys_admin = 0;
1233 			break;
1234 		}
1235 	}
1236 	return __vm_enough_memory(mm, pages, cap_sys_admin);
1237 }
1238 
1239 /**
1240  * security_bprm_creds_for_exec() - Prepare the credentials for exec()
1241  * @bprm: binary program information
1242  *
1243  * If the setup in prepare_exec_creds did not setup @bprm->cred->security
1244  * properly for executing @bprm->file, update the LSM's portion of
1245  * @bprm->cred->security to be what commit_creds needs to install for the new
1246  * program.  This hook may also optionally check permissions (e.g. for
1247  * transitions between security domains).  The hook must set @bprm->secureexec
1248  * to 1 if AT_SECURE should be set to request libc enable secure mode.  @bprm
1249  * contains the linux_binprm structure.
1250  *
1251  * If execveat(2) is called with the AT_EXECVE_CHECK flag, bprm->is_check is
1252  * set.  The result must be the same as without this flag even if the execution
1253  * will never really happen and @bprm will always be dropped.
1254  *
1255  * This hook must not change current->cred, only @bprm->cred.
1256  *
1257  * Return: Returns 0 if the hook is successful and permission is granted.
1258  */
security_bprm_creds_for_exec(struct linux_binprm * bprm)1259 int security_bprm_creds_for_exec(struct linux_binprm *bprm)
1260 {
1261 	return call_int_hook(bprm_creds_for_exec, bprm);
1262 }
1263 
1264 /**
1265  * security_bprm_creds_from_file() - Update linux_binprm creds based on file
1266  * @bprm: binary program information
1267  * @file: associated file
1268  *
1269  * If @file is setpcap, suid, sgid or otherwise marked to change privilege upon
1270  * exec, update @bprm->cred to reflect that change. This is called after
1271  * finding the binary that will be executed without an interpreter.  This
1272  * ensures that the credentials will not be derived from a script that the
1273  * binary will need to reopen, which when reopend may end up being a completely
1274  * different file.  This hook may also optionally check permissions (e.g. for
1275  * transitions between security domains).  The hook must set @bprm->secureexec
1276  * to 1 if AT_SECURE should be set to request libc enable secure mode.  The
1277  * hook must add to @bprm->per_clear any personality flags that should be
1278  * cleared from current->personality.  @bprm contains the linux_binprm
1279  * structure.
1280  *
1281  * Return: Returns 0 if the hook is successful and permission is granted.
1282  */
security_bprm_creds_from_file(struct linux_binprm * bprm,const struct file * file)1283 int security_bprm_creds_from_file(struct linux_binprm *bprm, const struct file *file)
1284 {
1285 	return call_int_hook(bprm_creds_from_file, bprm, file);
1286 }
1287 
1288 /**
1289  * security_bprm_check() - Mediate binary handler search
1290  * @bprm: binary program information
1291  *
1292  * This hook mediates the point when a search for a binary handler will begin.
1293  * It allows a check against the @bprm->cred->security value which was set in
1294  * the preceding creds_for_exec call.  The argv list and envp list are reliably
1295  * available in @bprm.  This hook may be called multiple times during a single
1296  * execve.  @bprm contains the linux_binprm structure.
1297  *
1298  * Return: Returns 0 if the hook is successful and permission is granted.
1299  */
security_bprm_check(struct linux_binprm * bprm)1300 int security_bprm_check(struct linux_binprm *bprm)
1301 {
1302 	return call_int_hook(bprm_check_security, bprm);
1303 }
1304 
1305 /**
1306  * security_bprm_committing_creds() - Install creds for a process during exec()
1307  * @bprm: binary program information
1308  *
1309  * Prepare to install the new security attributes of a process being
1310  * transformed by an execve operation, based on the old credentials pointed to
1311  * by @current->cred and the information set in @bprm->cred by the
1312  * bprm_creds_for_exec hook.  @bprm points to the linux_binprm structure.  This
1313  * hook is a good place to perform state changes on the process such as closing
1314  * open file descriptors to which access will no longer be granted when the
1315  * attributes are changed.  This is called immediately before commit_creds().
1316  */
security_bprm_committing_creds(const struct linux_binprm * bprm)1317 void security_bprm_committing_creds(const struct linux_binprm *bprm)
1318 {
1319 	call_void_hook(bprm_committing_creds, bprm);
1320 }
1321 
1322 /**
1323  * security_bprm_committed_creds() - Tidy up after cred install during exec()
1324  * @bprm: binary program information
1325  *
1326  * Tidy up after the installation of the new security attributes of a process
1327  * being transformed by an execve operation.  The new credentials have, by this
1328  * point, been set to @current->cred.  @bprm points to the linux_binprm
1329  * structure.  This hook is a good place to perform state changes on the
1330  * process such as clearing out non-inheritable signal state.  This is called
1331  * immediately after commit_creds().
1332  */
security_bprm_committed_creds(const struct linux_binprm * bprm)1333 void security_bprm_committed_creds(const struct linux_binprm *bprm)
1334 {
1335 	call_void_hook(bprm_committed_creds, bprm);
1336 }
1337 
1338 /**
1339  * security_fs_context_submount() - Initialise fc->security
1340  * @fc: new filesystem context
1341  * @reference: dentry reference for submount/remount
1342  *
1343  * Fill out the ->security field for a new fs_context.
1344  *
1345  * Return: Returns 0 on success or negative error code on failure.
1346  */
security_fs_context_submount(struct fs_context * fc,struct super_block * reference)1347 int security_fs_context_submount(struct fs_context *fc, struct super_block *reference)
1348 {
1349 	return call_int_hook(fs_context_submount, fc, reference);
1350 }
1351 
1352 /**
1353  * security_fs_context_dup() - Duplicate a fs_context LSM blob
1354  * @fc: destination filesystem context
1355  * @src_fc: source filesystem context
1356  *
1357  * Allocate and attach a security structure to sc->security.  This pointer is
1358  * initialised to NULL by the caller.  @fc indicates the new filesystem context.
1359  * @src_fc indicates the original filesystem context.
1360  *
1361  * Return: Returns 0 on success or a negative error code on failure.
1362  */
security_fs_context_dup(struct fs_context * fc,struct fs_context * src_fc)1363 int security_fs_context_dup(struct fs_context *fc, struct fs_context *src_fc)
1364 {
1365 	return call_int_hook(fs_context_dup, fc, src_fc);
1366 }
1367 
1368 /**
1369  * security_fs_context_parse_param() - Configure a filesystem context
1370  * @fc: filesystem context
1371  * @param: filesystem parameter
1372  *
1373  * Userspace provided a parameter to configure a superblock.  The LSM can
1374  * consume the parameter or return it to the caller for use elsewhere.
1375  *
1376  * Return: If the parameter is used by the LSM it should return 0, if it is
1377  *         returned to the caller -ENOPARAM is returned, otherwise a negative
1378  *         error code is returned.
1379  */
security_fs_context_parse_param(struct fs_context * fc,struct fs_parameter * param)1380 int security_fs_context_parse_param(struct fs_context *fc,
1381 				    struct fs_parameter *param)
1382 {
1383 	struct lsm_static_call *scall;
1384 	int trc;
1385 	int rc = -ENOPARAM;
1386 
1387 	lsm_for_each_hook(scall, fs_context_parse_param) {
1388 		trc = scall->hl->hook.fs_context_parse_param(fc, param);
1389 		if (trc == 0)
1390 			rc = 0;
1391 		else if (trc != -ENOPARAM)
1392 			return trc;
1393 	}
1394 	return rc;
1395 }
1396 
1397 /**
1398  * security_sb_alloc() - Allocate a super_block LSM blob
1399  * @sb: filesystem superblock
1400  *
1401  * Allocate and attach a security structure to the sb->s_security field.  The
1402  * s_security field is initialized to NULL when the structure is allocated.
1403  * @sb contains the super_block structure to be modified.
1404  *
1405  * Return: Returns 0 if operation was successful.
1406  */
security_sb_alloc(struct super_block * sb)1407 int security_sb_alloc(struct super_block *sb)
1408 {
1409 	int rc = lsm_superblock_alloc(sb);
1410 
1411 	if (unlikely(rc))
1412 		return rc;
1413 	rc = call_int_hook(sb_alloc_security, sb);
1414 	if (unlikely(rc))
1415 		security_sb_free(sb);
1416 	return rc;
1417 }
1418 
1419 /**
1420  * security_sb_delete() - Release super_block LSM associated objects
1421  * @sb: filesystem superblock
1422  *
1423  * Release objects tied to a superblock (e.g. inodes).  @sb contains the
1424  * super_block structure being released.
1425  */
security_sb_delete(struct super_block * sb)1426 void security_sb_delete(struct super_block *sb)
1427 {
1428 	call_void_hook(sb_delete, sb);
1429 }
1430 
1431 /**
1432  * security_sb_free() - Free a super_block LSM blob
1433  * @sb: filesystem superblock
1434  *
1435  * Deallocate and clear the sb->s_security field.  @sb contains the super_block
1436  * structure to be modified.
1437  */
security_sb_free(struct super_block * sb)1438 void security_sb_free(struct super_block *sb)
1439 {
1440 	call_void_hook(sb_free_security, sb);
1441 	kfree(sb->s_security);
1442 	sb->s_security = NULL;
1443 }
1444 
1445 /**
1446  * security_free_mnt_opts() - Free memory associated with mount options
1447  * @mnt_opts: LSM processed mount options
1448  *
1449  * Free memory associated with @mnt_ops.
1450  */
security_free_mnt_opts(void ** mnt_opts)1451 void security_free_mnt_opts(void **mnt_opts)
1452 {
1453 	if (!*mnt_opts)
1454 		return;
1455 	call_void_hook(sb_free_mnt_opts, *mnt_opts);
1456 	*mnt_opts = NULL;
1457 }
1458 EXPORT_SYMBOL(security_free_mnt_opts);
1459 
1460 /**
1461  * security_sb_eat_lsm_opts() - Consume LSM mount options
1462  * @options: mount options
1463  * @mnt_opts: LSM processed mount options
1464  *
1465  * Eat (scan @options) and save them in @mnt_opts.
1466  *
1467  * Return: Returns 0 on success, negative values on failure.
1468  */
security_sb_eat_lsm_opts(char * options,void ** mnt_opts)1469 int security_sb_eat_lsm_opts(char *options, void **mnt_opts)
1470 {
1471 	return call_int_hook(sb_eat_lsm_opts, options, mnt_opts);
1472 }
1473 EXPORT_SYMBOL(security_sb_eat_lsm_opts);
1474 
1475 /**
1476  * security_sb_mnt_opts_compat() - Check if new mount options are allowed
1477  * @sb: filesystem superblock
1478  * @mnt_opts: new mount options
1479  *
1480  * Determine if the new mount options in @mnt_opts are allowed given the
1481  * existing mounted filesystem at @sb.  @sb superblock being compared.
1482  *
1483  * Return: Returns 0 if options are compatible.
1484  */
security_sb_mnt_opts_compat(struct super_block * sb,void * mnt_opts)1485 int security_sb_mnt_opts_compat(struct super_block *sb,
1486 				void *mnt_opts)
1487 {
1488 	return call_int_hook(sb_mnt_opts_compat, sb, mnt_opts);
1489 }
1490 EXPORT_SYMBOL(security_sb_mnt_opts_compat);
1491 
1492 /**
1493  * security_sb_remount() - Verify no incompatible mount changes during remount
1494  * @sb: filesystem superblock
1495  * @mnt_opts: (re)mount options
1496  *
1497  * Extracts security system specific mount options and verifies no changes are
1498  * being made to those options.
1499  *
1500  * Return: Returns 0 if permission is granted.
1501  */
security_sb_remount(struct super_block * sb,void * mnt_opts)1502 int security_sb_remount(struct super_block *sb,
1503 			void *mnt_opts)
1504 {
1505 	return call_int_hook(sb_remount, sb, mnt_opts);
1506 }
1507 EXPORT_SYMBOL(security_sb_remount);
1508 
1509 /**
1510  * security_sb_kern_mount() - Check if a kernel mount is allowed
1511  * @sb: filesystem superblock
1512  *
1513  * Mount this @sb if allowed by permissions.
1514  *
1515  * Return: Returns 0 if permission is granted.
1516  */
security_sb_kern_mount(const struct super_block * sb)1517 int security_sb_kern_mount(const struct super_block *sb)
1518 {
1519 	return call_int_hook(sb_kern_mount, sb);
1520 }
1521 
1522 /**
1523  * security_sb_show_options() - Output the mount options for a superblock
1524  * @m: output file
1525  * @sb: filesystem superblock
1526  *
1527  * Show (print on @m) mount options for this @sb.
1528  *
1529  * Return: Returns 0 on success, negative values on failure.
1530  */
security_sb_show_options(struct seq_file * m,struct super_block * sb)1531 int security_sb_show_options(struct seq_file *m, struct super_block *sb)
1532 {
1533 	return call_int_hook(sb_show_options, m, sb);
1534 }
1535 
1536 /**
1537  * security_sb_statfs() - Check if accessing fs stats is allowed
1538  * @dentry: superblock handle
1539  *
1540  * Check permission before obtaining filesystem statistics for the @mnt
1541  * mountpoint.  @dentry is a handle on the superblock for the filesystem.
1542  *
1543  * Return: Returns 0 if permission is granted.
1544  */
security_sb_statfs(struct dentry * dentry)1545 int security_sb_statfs(struct dentry *dentry)
1546 {
1547 	return call_int_hook(sb_statfs, dentry);
1548 }
1549 
1550 /**
1551  * security_sb_mount() - Check permission for mounting a filesystem
1552  * @dev_name: filesystem backing device
1553  * @path: mount point
1554  * @type: filesystem type
1555  * @flags: mount flags
1556  * @data: filesystem specific data
1557  *
1558  * Check permission before an object specified by @dev_name is mounted on the
1559  * mount point named by @nd.  For an ordinary mount, @dev_name identifies a
1560  * device if the file system type requires a device.  For a remount
1561  * (@flags & MS_REMOUNT), @dev_name is irrelevant.  For a loopback/bind mount
1562  * (@flags & MS_BIND), @dev_name identifies the	pathname of the object being
1563  * mounted.
1564  *
1565  * Return: Returns 0 if permission is granted.
1566  */
security_sb_mount(const char * dev_name,const struct path * path,const char * type,unsigned long flags,void * data)1567 int security_sb_mount(const char *dev_name, const struct path *path,
1568 		      const char *type, unsigned long flags, void *data)
1569 {
1570 	return call_int_hook(sb_mount, dev_name, path, type, flags, data);
1571 }
1572 
1573 /**
1574  * security_sb_umount() - Check permission for unmounting a filesystem
1575  * @mnt: mounted filesystem
1576  * @flags: unmount flags
1577  *
1578  * Check permission before the @mnt file system is unmounted.
1579  *
1580  * Return: Returns 0 if permission is granted.
1581  */
security_sb_umount(struct vfsmount * mnt,int flags)1582 int security_sb_umount(struct vfsmount *mnt, int flags)
1583 {
1584 	return call_int_hook(sb_umount, mnt, flags);
1585 }
1586 
1587 /**
1588  * security_sb_pivotroot() - Check permissions for pivoting the rootfs
1589  * @old_path: new location for current rootfs
1590  * @new_path: location of the new rootfs
1591  *
1592  * Check permission before pivoting the root filesystem.
1593  *
1594  * Return: Returns 0 if permission is granted.
1595  */
security_sb_pivotroot(const struct path * old_path,const struct path * new_path)1596 int security_sb_pivotroot(const struct path *old_path,
1597 			  const struct path *new_path)
1598 {
1599 	return call_int_hook(sb_pivotroot, old_path, new_path);
1600 }
1601 
1602 /**
1603  * security_sb_set_mnt_opts() - Set the mount options for a filesystem
1604  * @sb: filesystem superblock
1605  * @mnt_opts: binary mount options
1606  * @kern_flags: kernel flags (in)
1607  * @set_kern_flags: kernel flags (out)
1608  *
1609  * Set the security relevant mount options used for a superblock.
1610  *
1611  * Return: Returns 0 on success, error on failure.
1612  */
security_sb_set_mnt_opts(struct super_block * sb,void * mnt_opts,unsigned long kern_flags,unsigned long * set_kern_flags)1613 int security_sb_set_mnt_opts(struct super_block *sb,
1614 			     void *mnt_opts,
1615 			     unsigned long kern_flags,
1616 			     unsigned long *set_kern_flags)
1617 {
1618 	struct lsm_static_call *scall;
1619 	int rc = mnt_opts ? -EOPNOTSUPP : LSM_RET_DEFAULT(sb_set_mnt_opts);
1620 
1621 	lsm_for_each_hook(scall, sb_set_mnt_opts) {
1622 		rc = scall->hl->hook.sb_set_mnt_opts(sb, mnt_opts, kern_flags,
1623 					      set_kern_flags);
1624 		if (rc != LSM_RET_DEFAULT(sb_set_mnt_opts))
1625 			break;
1626 	}
1627 	return rc;
1628 }
1629 EXPORT_SYMBOL(security_sb_set_mnt_opts);
1630 
1631 /**
1632  * security_sb_clone_mnt_opts() - Duplicate superblock mount options
1633  * @oldsb: source superblock
1634  * @newsb: destination superblock
1635  * @kern_flags: kernel flags (in)
1636  * @set_kern_flags: kernel flags (out)
1637  *
1638  * Copy all security options from a given superblock to another.
1639  *
1640  * Return: Returns 0 on success, error on failure.
1641  */
security_sb_clone_mnt_opts(const struct super_block * oldsb,struct super_block * newsb,unsigned long kern_flags,unsigned long * set_kern_flags)1642 int security_sb_clone_mnt_opts(const struct super_block *oldsb,
1643 			       struct super_block *newsb,
1644 			       unsigned long kern_flags,
1645 			       unsigned long *set_kern_flags)
1646 {
1647 	return call_int_hook(sb_clone_mnt_opts, oldsb, newsb,
1648 			     kern_flags, set_kern_flags);
1649 }
1650 EXPORT_SYMBOL(security_sb_clone_mnt_opts);
1651 
1652 /**
1653  * security_move_mount() - Check permissions for moving a mount
1654  * @from_path: source mount point
1655  * @to_path: destination mount point
1656  *
1657  * Check permission before a mount is moved.
1658  *
1659  * Return: Returns 0 if permission is granted.
1660  */
security_move_mount(const struct path * from_path,const struct path * to_path)1661 int security_move_mount(const struct path *from_path,
1662 			const struct path *to_path)
1663 {
1664 	return call_int_hook(move_mount, from_path, to_path);
1665 }
1666 
1667 /**
1668  * security_path_notify() - Check if setting a watch is allowed
1669  * @path: file path
1670  * @mask: event mask
1671  * @obj_type: file path type
1672  *
1673  * Check permissions before setting a watch on events as defined by @mask, on
1674  * an object at @path, whose type is defined by @obj_type.
1675  *
1676  * Return: Returns 0 if permission is granted.
1677  */
security_path_notify(const struct path * path,u64 mask,unsigned int obj_type)1678 int security_path_notify(const struct path *path, u64 mask,
1679 			 unsigned int obj_type)
1680 {
1681 	return call_int_hook(path_notify, path, mask, obj_type);
1682 }
1683 
1684 /**
1685  * security_inode_alloc() - Allocate an inode LSM blob
1686  * @inode: the inode
1687  * @gfp: allocation flags
1688  *
1689  * Allocate and attach a security structure to @inode->i_security.  The
1690  * i_security field is initialized to NULL when the inode structure is
1691  * allocated.
1692  *
1693  * Return: Return 0 if operation was successful.
1694  */
security_inode_alloc(struct inode * inode,gfp_t gfp)1695 int security_inode_alloc(struct inode *inode, gfp_t gfp)
1696 {
1697 	int rc = lsm_inode_alloc(inode, gfp);
1698 
1699 	if (unlikely(rc))
1700 		return rc;
1701 	rc = call_int_hook(inode_alloc_security, inode);
1702 	if (unlikely(rc))
1703 		security_inode_free(inode);
1704 	return rc;
1705 }
1706 
inode_free_by_rcu(struct rcu_head * head)1707 static void inode_free_by_rcu(struct rcu_head *head)
1708 {
1709 	/* The rcu head is at the start of the inode blob */
1710 	call_void_hook(inode_free_security_rcu, head);
1711 	kmem_cache_free(lsm_inode_cache, head);
1712 }
1713 
1714 /**
1715  * security_inode_free() - Free an inode's LSM blob
1716  * @inode: the inode
1717  *
1718  * Release any LSM resources associated with @inode, although due to the
1719  * inode's RCU protections it is possible that the resources will not be
1720  * fully released until after the current RCU grace period has elapsed.
1721  *
1722  * It is important for LSMs to note that despite being present in a call to
1723  * security_inode_free(), @inode may still be referenced in a VFS path walk
1724  * and calls to security_inode_permission() may be made during, or after,
1725  * a call to security_inode_free().  For this reason the inode->i_security
1726  * field is released via a call_rcu() callback and any LSMs which need to
1727  * retain inode state for use in security_inode_permission() should only
1728  * release that state in the inode_free_security_rcu() LSM hook callback.
1729  */
security_inode_free(struct inode * inode)1730 void security_inode_free(struct inode *inode)
1731 {
1732 	call_void_hook(inode_free_security, inode);
1733 	if (!inode->i_security)
1734 		return;
1735 	call_rcu((struct rcu_head *)inode->i_security, inode_free_by_rcu);
1736 }
1737 
1738 /**
1739  * security_dentry_init_security() - Perform dentry initialization
1740  * @dentry: the dentry to initialize
1741  * @mode: mode used to determine resource type
1742  * @name: name of the last path component
1743  * @xattr_name: name of the security/LSM xattr
1744  * @lsmctx: pointer to the resulting LSM context
1745  *
1746  * Compute a context for a dentry as the inode is not yet available since NFSv4
1747  * has no label backed by an EA anyway.  It is important to note that
1748  * @xattr_name does not need to be free'd by the caller, it is a static string.
1749  *
1750  * Return: Returns 0 on success, negative values on failure.
1751  */
security_dentry_init_security(struct dentry * dentry,int mode,const struct qstr * name,const char ** xattr_name,struct lsm_context * lsmctx)1752 int security_dentry_init_security(struct dentry *dentry, int mode,
1753 				  const struct qstr *name,
1754 				  const char **xattr_name,
1755 				  struct lsm_context *lsmctx)
1756 {
1757 	return call_int_hook(dentry_init_security, dentry, mode, name,
1758 			     xattr_name, lsmctx);
1759 }
1760 EXPORT_SYMBOL(security_dentry_init_security);
1761 
1762 /**
1763  * security_dentry_create_files_as() - Perform dentry initialization
1764  * @dentry: the dentry to initialize
1765  * @mode: mode used to determine resource type
1766  * @name: name of the last path component
1767  * @old: creds to use for LSM context calculations
1768  * @new: creds to modify
1769  *
1770  * Compute a context for a dentry as the inode is not yet available and set
1771  * that context in passed in creds so that new files are created using that
1772  * context. Context is calculated using the passed in creds and not the creds
1773  * of the caller.
1774  *
1775  * Return: Returns 0 on success, error on failure.
1776  */
security_dentry_create_files_as(struct dentry * dentry,int mode,struct qstr * name,const struct cred * old,struct cred * new)1777 int security_dentry_create_files_as(struct dentry *dentry, int mode,
1778 				    struct qstr *name,
1779 				    const struct cred *old, struct cred *new)
1780 {
1781 	return call_int_hook(dentry_create_files_as, dentry, mode,
1782 			     name, old, new);
1783 }
1784 EXPORT_SYMBOL(security_dentry_create_files_as);
1785 
1786 /**
1787  * security_inode_init_security() - Initialize an inode's LSM context
1788  * @inode: the inode
1789  * @dir: parent directory
1790  * @qstr: last component of the pathname
1791  * @initxattrs: callback function to write xattrs
1792  * @fs_data: filesystem specific data
1793  *
1794  * Obtain the security attribute name suffix and value to set on a newly
1795  * created inode and set up the incore security field for the new inode.  This
1796  * hook is called by the fs code as part of the inode creation transaction and
1797  * provides for atomic labeling of the inode, unlike the post_create/mkdir/...
1798  * hooks called by the VFS.
1799  *
1800  * The hook function is expected to populate the xattrs array, by calling
1801  * lsm_get_xattr_slot() to retrieve the slots reserved by the security module
1802  * with the lbs_xattr_count field of the lsm_blob_sizes structure.  For each
1803  * slot, the hook function should set ->name to the attribute name suffix
1804  * (e.g. selinux), to allocate ->value (will be freed by the caller) and set it
1805  * to the attribute value, to set ->value_len to the length of the value.  If
1806  * the security module does not use security attributes or does not wish to put
1807  * a security attribute on this particular inode, then it should return
1808  * -EOPNOTSUPP to skip this processing.
1809  *
1810  * Return: Returns 0 if the LSM successfully initialized all of the inode
1811  *         security attributes that are required, negative values otherwise.
1812  */
security_inode_init_security(struct inode * inode,struct inode * dir,const struct qstr * qstr,const initxattrs initxattrs,void * fs_data)1813 int security_inode_init_security(struct inode *inode, struct inode *dir,
1814 				 const struct qstr *qstr,
1815 				 const initxattrs initxattrs, void *fs_data)
1816 {
1817 	struct lsm_static_call *scall;
1818 	struct xattr *new_xattrs = NULL;
1819 	int ret = -EOPNOTSUPP, xattr_count = 0;
1820 
1821 	if (unlikely(IS_PRIVATE(inode)))
1822 		return 0;
1823 
1824 	if (!blob_sizes.lbs_xattr_count)
1825 		return 0;
1826 
1827 	if (initxattrs) {
1828 		/* Allocate +1 as terminator. */
1829 		new_xattrs = kcalloc(blob_sizes.lbs_xattr_count + 1,
1830 				     sizeof(*new_xattrs), GFP_NOFS);
1831 		if (!new_xattrs)
1832 			return -ENOMEM;
1833 	}
1834 
1835 	lsm_for_each_hook(scall, inode_init_security) {
1836 		ret = scall->hl->hook.inode_init_security(inode, dir, qstr, new_xattrs,
1837 						  &xattr_count);
1838 		if (ret && ret != -EOPNOTSUPP)
1839 			goto out;
1840 		/*
1841 		 * As documented in lsm_hooks.h, -EOPNOTSUPP in this context
1842 		 * means that the LSM is not willing to provide an xattr, not
1843 		 * that it wants to signal an error. Thus, continue to invoke
1844 		 * the remaining LSMs.
1845 		 */
1846 	}
1847 
1848 	/* If initxattrs() is NULL, xattr_count is zero, skip the call. */
1849 	if (!xattr_count)
1850 		goto out;
1851 
1852 	ret = initxattrs(inode, new_xattrs, fs_data);
1853 out:
1854 	for (; xattr_count > 0; xattr_count--)
1855 		kfree(new_xattrs[xattr_count - 1].value);
1856 	kfree(new_xattrs);
1857 	return (ret == -EOPNOTSUPP) ? 0 : ret;
1858 }
1859 EXPORT_SYMBOL(security_inode_init_security);
1860 
1861 /**
1862  * security_inode_init_security_anon() - Initialize an anonymous inode
1863  * @inode: the inode
1864  * @name: the anonymous inode class
1865  * @context_inode: an optional related inode
1866  *
1867  * Set up the incore security field for the new anonymous inode and return
1868  * whether the inode creation is permitted by the security module or not.
1869  *
1870  * Return: Returns 0 on success, -EACCES if the security module denies the
1871  * creation of this inode, or another -errno upon other errors.
1872  */
security_inode_init_security_anon(struct inode * inode,const struct qstr * name,const struct inode * context_inode)1873 int security_inode_init_security_anon(struct inode *inode,
1874 				      const struct qstr *name,
1875 				      const struct inode *context_inode)
1876 {
1877 	return call_int_hook(inode_init_security_anon, inode, name,
1878 			     context_inode);
1879 }
1880 
1881 #ifdef CONFIG_SECURITY_PATH
1882 /**
1883  * security_path_mknod() - Check if creating a special file is allowed
1884  * @dir: parent directory
1885  * @dentry: new file
1886  * @mode: new file mode
1887  * @dev: device number
1888  *
1889  * Check permissions when creating a file. Note that this hook is called even
1890  * if mknod operation is being done for a regular file.
1891  *
1892  * Return: Returns 0 if permission is granted.
1893  */
security_path_mknod(const struct path * dir,struct dentry * dentry,umode_t mode,unsigned int dev)1894 int security_path_mknod(const struct path *dir, struct dentry *dentry,
1895 			umode_t mode, unsigned int dev)
1896 {
1897 	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1898 		return 0;
1899 	return call_int_hook(path_mknod, dir, dentry, mode, dev);
1900 }
1901 EXPORT_SYMBOL(security_path_mknod);
1902 
1903 /**
1904  * security_path_post_mknod() - Update inode security after reg file creation
1905  * @idmap: idmap of the mount
1906  * @dentry: new file
1907  *
1908  * Update inode security field after a regular file has been created.
1909  */
security_path_post_mknod(struct mnt_idmap * idmap,struct dentry * dentry)1910 void security_path_post_mknod(struct mnt_idmap *idmap, struct dentry *dentry)
1911 {
1912 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1913 		return;
1914 	call_void_hook(path_post_mknod, idmap, dentry);
1915 }
1916 
1917 /**
1918  * security_path_mkdir() - Check if creating a new directory is allowed
1919  * @dir: parent directory
1920  * @dentry: new directory
1921  * @mode: new directory mode
1922  *
1923  * Check permissions to create a new directory in the existing directory.
1924  *
1925  * Return: Returns 0 if permission is granted.
1926  */
security_path_mkdir(const struct path * dir,struct dentry * dentry,umode_t mode)1927 int security_path_mkdir(const struct path *dir, struct dentry *dentry,
1928 			umode_t mode)
1929 {
1930 	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1931 		return 0;
1932 	return call_int_hook(path_mkdir, dir, dentry, mode);
1933 }
1934 EXPORT_SYMBOL(security_path_mkdir);
1935 
1936 /**
1937  * security_path_rmdir() - Check if removing a directory is allowed
1938  * @dir: parent directory
1939  * @dentry: directory to remove
1940  *
1941  * Check the permission to remove a directory.
1942  *
1943  * Return: Returns 0 if permission is granted.
1944  */
security_path_rmdir(const struct path * dir,struct dentry * dentry)1945 int security_path_rmdir(const struct path *dir, struct dentry *dentry)
1946 {
1947 	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1948 		return 0;
1949 	return call_int_hook(path_rmdir, dir, dentry);
1950 }
1951 
1952 /**
1953  * security_path_unlink() - Check if removing a hard link is allowed
1954  * @dir: parent directory
1955  * @dentry: file
1956  *
1957  * Check the permission to remove a hard link to a file.
1958  *
1959  * Return: Returns 0 if permission is granted.
1960  */
security_path_unlink(const struct path * dir,struct dentry * dentry)1961 int security_path_unlink(const struct path *dir, struct dentry *dentry)
1962 {
1963 	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1964 		return 0;
1965 	return call_int_hook(path_unlink, dir, dentry);
1966 }
1967 EXPORT_SYMBOL(security_path_unlink);
1968 
1969 /**
1970  * security_path_symlink() - Check if creating a symbolic link is allowed
1971  * @dir: parent directory
1972  * @dentry: symbolic link
1973  * @old_name: file pathname
1974  *
1975  * Check the permission to create a symbolic link to a file.
1976  *
1977  * Return: Returns 0 if permission is granted.
1978  */
security_path_symlink(const struct path * dir,struct dentry * dentry,const char * old_name)1979 int security_path_symlink(const struct path *dir, struct dentry *dentry,
1980 			  const char *old_name)
1981 {
1982 	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1983 		return 0;
1984 	return call_int_hook(path_symlink, dir, dentry, old_name);
1985 }
1986 
1987 /**
1988  * security_path_link - Check if creating a hard link is allowed
1989  * @old_dentry: existing file
1990  * @new_dir: new parent directory
1991  * @new_dentry: new link
1992  *
1993  * Check permission before creating a new hard link to a file.
1994  *
1995  * Return: Returns 0 if permission is granted.
1996  */
security_path_link(struct dentry * old_dentry,const struct path * new_dir,struct dentry * new_dentry)1997 int security_path_link(struct dentry *old_dentry, const struct path *new_dir,
1998 		       struct dentry *new_dentry)
1999 {
2000 	if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
2001 		return 0;
2002 	return call_int_hook(path_link, old_dentry, new_dir, new_dentry);
2003 }
2004 
2005 /**
2006  * security_path_rename() - Check if renaming a file is allowed
2007  * @old_dir: parent directory of the old file
2008  * @old_dentry: the old file
2009  * @new_dir: parent directory of the new file
2010  * @new_dentry: the new file
2011  * @flags: flags
2012  *
2013  * Check for permission to rename a file or directory.
2014  *
2015  * Return: Returns 0 if permission is granted.
2016  */
security_path_rename(const struct path * old_dir,struct dentry * old_dentry,const struct path * new_dir,struct dentry * new_dentry,unsigned int flags)2017 int security_path_rename(const struct path *old_dir, struct dentry *old_dentry,
2018 			 const struct path *new_dir, struct dentry *new_dentry,
2019 			 unsigned int flags)
2020 {
2021 	if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
2022 		     (d_is_positive(new_dentry) &&
2023 		      IS_PRIVATE(d_backing_inode(new_dentry)))))
2024 		return 0;
2025 
2026 	return call_int_hook(path_rename, old_dir, old_dentry, new_dir,
2027 			     new_dentry, flags);
2028 }
2029 EXPORT_SYMBOL(security_path_rename);
2030 
2031 /**
2032  * security_path_truncate() - Check if truncating a file is allowed
2033  * @path: file
2034  *
2035  * Check permission before truncating the file indicated by path.  Note that
2036  * truncation permissions may also be checked based on already opened files,
2037  * using the security_file_truncate() hook.
2038  *
2039  * Return: Returns 0 if permission is granted.
2040  */
security_path_truncate(const struct path * path)2041 int security_path_truncate(const struct path *path)
2042 {
2043 	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
2044 		return 0;
2045 	return call_int_hook(path_truncate, path);
2046 }
2047 
2048 /**
2049  * security_path_chmod() - Check if changing the file's mode is allowed
2050  * @path: file
2051  * @mode: new mode
2052  *
2053  * Check for permission to change a mode of the file @path. The new mode is
2054  * specified in @mode which is a bitmask of constants from
2055  * <include/uapi/linux/stat.h>.
2056  *
2057  * Return: Returns 0 if permission is granted.
2058  */
security_path_chmod(const struct path * path,umode_t mode)2059 int security_path_chmod(const struct path *path, umode_t mode)
2060 {
2061 	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
2062 		return 0;
2063 	return call_int_hook(path_chmod, path, mode);
2064 }
2065 
2066 /**
2067  * security_path_chown() - Check if changing the file's owner/group is allowed
2068  * @path: file
2069  * @uid: file owner
2070  * @gid: file group
2071  *
2072  * Check for permission to change owner/group of a file or directory.
2073  *
2074  * Return: Returns 0 if permission is granted.
2075  */
security_path_chown(const struct path * path,kuid_t uid,kgid_t gid)2076 int security_path_chown(const struct path *path, kuid_t uid, kgid_t gid)
2077 {
2078 	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
2079 		return 0;
2080 	return call_int_hook(path_chown, path, uid, gid);
2081 }
2082 
2083 /**
2084  * security_path_chroot() - Check if changing the root directory is allowed
2085  * @path: directory
2086  *
2087  * Check for permission to change root directory.
2088  *
2089  * Return: Returns 0 if permission is granted.
2090  */
security_path_chroot(const struct path * path)2091 int security_path_chroot(const struct path *path)
2092 {
2093 	return call_int_hook(path_chroot, path);
2094 }
2095 #endif /* CONFIG_SECURITY_PATH */
2096 
2097 /**
2098  * security_inode_create() - Check if creating a file is allowed
2099  * @dir: the parent directory
2100  * @dentry: the file being created
2101  * @mode: requested file mode
2102  *
2103  * Check permission to create a regular file.
2104  *
2105  * Return: Returns 0 if permission is granted.
2106  */
security_inode_create(struct inode * dir,struct dentry * dentry,umode_t mode)2107 int security_inode_create(struct inode *dir, struct dentry *dentry,
2108 			  umode_t mode)
2109 {
2110 	if (unlikely(IS_PRIVATE(dir)))
2111 		return 0;
2112 	return call_int_hook(inode_create, dir, dentry, mode);
2113 }
2114 EXPORT_SYMBOL_GPL(security_inode_create);
2115 
2116 /**
2117  * security_inode_post_create_tmpfile() - Update inode security of new tmpfile
2118  * @idmap: idmap of the mount
2119  * @inode: inode of the new tmpfile
2120  *
2121  * Update inode security data after a tmpfile has been created.
2122  */
security_inode_post_create_tmpfile(struct mnt_idmap * idmap,struct inode * inode)2123 void security_inode_post_create_tmpfile(struct mnt_idmap *idmap,
2124 					struct inode *inode)
2125 {
2126 	if (unlikely(IS_PRIVATE(inode)))
2127 		return;
2128 	call_void_hook(inode_post_create_tmpfile, idmap, inode);
2129 }
2130 
2131 /**
2132  * security_inode_link() - Check if creating a hard link is allowed
2133  * @old_dentry: existing file
2134  * @dir: new parent directory
2135  * @new_dentry: new link
2136  *
2137  * Check permission before creating a new hard link to a file.
2138  *
2139  * Return: Returns 0 if permission is granted.
2140  */
security_inode_link(struct dentry * old_dentry,struct inode * dir,struct dentry * new_dentry)2141 int security_inode_link(struct dentry *old_dentry, struct inode *dir,
2142 			struct dentry *new_dentry)
2143 {
2144 	if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
2145 		return 0;
2146 	return call_int_hook(inode_link, old_dentry, dir, new_dentry);
2147 }
2148 
2149 /**
2150  * security_inode_unlink() - Check if removing a hard link is allowed
2151  * @dir: parent directory
2152  * @dentry: file
2153  *
2154  * Check the permission to remove a hard link to a file.
2155  *
2156  * Return: Returns 0 if permission is granted.
2157  */
security_inode_unlink(struct inode * dir,struct dentry * dentry)2158 int security_inode_unlink(struct inode *dir, struct dentry *dentry)
2159 {
2160 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2161 		return 0;
2162 	return call_int_hook(inode_unlink, dir, dentry);
2163 }
2164 
2165 /**
2166  * security_inode_symlink() - Check if creating a symbolic link is allowed
2167  * @dir: parent directory
2168  * @dentry: symbolic link
2169  * @old_name: existing filename
2170  *
2171  * Check the permission to create a symbolic link to a file.
2172  *
2173  * Return: Returns 0 if permission is granted.
2174  */
security_inode_symlink(struct inode * dir,struct dentry * dentry,const char * old_name)2175 int security_inode_symlink(struct inode *dir, struct dentry *dentry,
2176 			   const char *old_name)
2177 {
2178 	if (unlikely(IS_PRIVATE(dir)))
2179 		return 0;
2180 	return call_int_hook(inode_symlink, dir, dentry, old_name);
2181 }
2182 
2183 /**
2184  * security_inode_mkdir() - Check if creating a new directory is allowed
2185  * @dir: parent directory
2186  * @dentry: new directory
2187  * @mode: new directory mode
2188  *
2189  * Check permissions to create a new directory in the existing directory
2190  * associated with inode structure @dir.
2191  *
2192  * Return: Returns 0 if permission is granted.
2193  */
security_inode_mkdir(struct inode * dir,struct dentry * dentry,umode_t mode)2194 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2195 {
2196 	if (unlikely(IS_PRIVATE(dir)))
2197 		return 0;
2198 	return call_int_hook(inode_mkdir, dir, dentry, mode);
2199 }
2200 EXPORT_SYMBOL_GPL(security_inode_mkdir);
2201 
2202 /**
2203  * security_inode_rmdir() - Check if removing a directory is allowed
2204  * @dir: parent directory
2205  * @dentry: directory to be removed
2206  *
2207  * Check the permission to remove a directory.
2208  *
2209  * Return: Returns 0 if permission is granted.
2210  */
security_inode_rmdir(struct inode * dir,struct dentry * dentry)2211 int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
2212 {
2213 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2214 		return 0;
2215 	return call_int_hook(inode_rmdir, dir, dentry);
2216 }
2217 
2218 /**
2219  * security_inode_mknod() - Check if creating a special file is allowed
2220  * @dir: parent directory
2221  * @dentry: new file
2222  * @mode: new file mode
2223  * @dev: device number
2224  *
2225  * Check permissions when creating a special file (or a socket or a fifo file
2226  * created via the mknod system call).  Note that if mknod operation is being
2227  * done for a regular file, then the create hook will be called and not this
2228  * hook.
2229  *
2230  * Return: Returns 0 if permission is granted.
2231  */
security_inode_mknod(struct inode * dir,struct dentry * dentry,umode_t mode,dev_t dev)2232 int security_inode_mknod(struct inode *dir, struct dentry *dentry,
2233 			 umode_t mode, dev_t dev)
2234 {
2235 	if (unlikely(IS_PRIVATE(dir)))
2236 		return 0;
2237 	return call_int_hook(inode_mknod, dir, dentry, mode, dev);
2238 }
2239 
2240 /**
2241  * security_inode_rename() - Check if renaming a file is allowed
2242  * @old_dir: parent directory of the old file
2243  * @old_dentry: the old file
2244  * @new_dir: parent directory of the new file
2245  * @new_dentry: the new file
2246  * @flags: flags
2247  *
2248  * Check for permission to rename a file or directory.
2249  *
2250  * Return: Returns 0 if permission is granted.
2251  */
security_inode_rename(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry,unsigned int flags)2252 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
2253 			  struct inode *new_dir, struct dentry *new_dentry,
2254 			  unsigned int flags)
2255 {
2256 	if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
2257 		     (d_is_positive(new_dentry) &&
2258 		      IS_PRIVATE(d_backing_inode(new_dentry)))))
2259 		return 0;
2260 
2261 	if (flags & RENAME_EXCHANGE) {
2262 		int err = call_int_hook(inode_rename, new_dir, new_dentry,
2263 					old_dir, old_dentry);
2264 		if (err)
2265 			return err;
2266 	}
2267 
2268 	return call_int_hook(inode_rename, old_dir, old_dentry,
2269 			     new_dir, new_dentry);
2270 }
2271 
2272 /**
2273  * security_inode_readlink() - Check if reading a symbolic link is allowed
2274  * @dentry: link
2275  *
2276  * Check the permission to read the symbolic link.
2277  *
2278  * Return: Returns 0 if permission is granted.
2279  */
security_inode_readlink(struct dentry * dentry)2280 int security_inode_readlink(struct dentry *dentry)
2281 {
2282 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2283 		return 0;
2284 	return call_int_hook(inode_readlink, dentry);
2285 }
2286 
2287 /**
2288  * security_inode_follow_link() - Check if following a symbolic link is allowed
2289  * @dentry: link dentry
2290  * @inode: link inode
2291  * @rcu: true if in RCU-walk mode
2292  *
2293  * Check permission to follow a symbolic link when looking up a pathname.  If
2294  * @rcu is true, @inode is not stable.
2295  *
2296  * Return: Returns 0 if permission is granted.
2297  */
security_inode_follow_link(struct dentry * dentry,struct inode * inode,bool rcu)2298 int security_inode_follow_link(struct dentry *dentry, struct inode *inode,
2299 			       bool rcu)
2300 {
2301 	if (unlikely(IS_PRIVATE(inode)))
2302 		return 0;
2303 	return call_int_hook(inode_follow_link, dentry, inode, rcu);
2304 }
2305 
2306 /**
2307  * security_inode_permission() - Check if accessing an inode is allowed
2308  * @inode: inode
2309  * @mask: access mask
2310  *
2311  * Check permission before accessing an inode.  This hook is called by the
2312  * existing Linux permission function, so a security module can use it to
2313  * provide additional checking for existing Linux permission checks.  Notice
2314  * that this hook is called when a file is opened (as well as many other
2315  * operations), whereas the file_security_ops permission hook is called when
2316  * the actual read/write operations are performed.
2317  *
2318  * Return: Returns 0 if permission is granted.
2319  */
security_inode_permission(struct inode * inode,int mask)2320 int security_inode_permission(struct inode *inode, int mask)
2321 {
2322 	if (unlikely(IS_PRIVATE(inode)))
2323 		return 0;
2324 	return call_int_hook(inode_permission, inode, mask);
2325 }
2326 
2327 /**
2328  * security_inode_setattr() - Check if setting file attributes is allowed
2329  * @idmap: idmap of the mount
2330  * @dentry: file
2331  * @attr: new attributes
2332  *
2333  * Check permission before setting file attributes.  Note that the kernel call
2334  * to notify_change is performed from several locations, whenever file
2335  * attributes change (such as when a file is truncated, chown/chmod operations,
2336  * transferring disk quotas, etc).
2337  *
2338  * Return: Returns 0 if permission is granted.
2339  */
security_inode_setattr(struct mnt_idmap * idmap,struct dentry * dentry,struct iattr * attr)2340 int security_inode_setattr(struct mnt_idmap *idmap,
2341 			   struct dentry *dentry, struct iattr *attr)
2342 {
2343 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2344 		return 0;
2345 	return call_int_hook(inode_setattr, idmap, dentry, attr);
2346 }
2347 EXPORT_SYMBOL_GPL(security_inode_setattr);
2348 
2349 /**
2350  * security_inode_post_setattr() - Update the inode after a setattr operation
2351  * @idmap: idmap of the mount
2352  * @dentry: file
2353  * @ia_valid: file attributes set
2354  *
2355  * Update inode security field after successful setting file attributes.
2356  */
security_inode_post_setattr(struct mnt_idmap * idmap,struct dentry * dentry,int ia_valid)2357 void security_inode_post_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
2358 				 int ia_valid)
2359 {
2360 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2361 		return;
2362 	call_void_hook(inode_post_setattr, idmap, dentry, ia_valid);
2363 }
2364 
2365 /**
2366  * security_inode_getattr() - Check if getting file attributes is allowed
2367  * @path: file
2368  *
2369  * Check permission before obtaining file attributes.
2370  *
2371  * Return: Returns 0 if permission is granted.
2372  */
security_inode_getattr(const struct path * path)2373 int security_inode_getattr(const struct path *path)
2374 {
2375 	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
2376 		return 0;
2377 	return call_int_hook(inode_getattr, path);
2378 }
2379 
2380 /**
2381  * security_inode_setxattr() - Check if setting file xattrs is allowed
2382  * @idmap: idmap of the mount
2383  * @dentry: file
2384  * @name: xattr name
2385  * @value: xattr value
2386  * @size: size of xattr value
2387  * @flags: flags
2388  *
2389  * This hook performs the desired permission checks before setting the extended
2390  * attributes (xattrs) on @dentry.  It is important to note that we have some
2391  * additional logic before the main LSM implementation calls to detect if we
2392  * need to perform an additional capability check at the LSM layer.
2393  *
2394  * Normally we enforce a capability check prior to executing the various LSM
2395  * hook implementations, but if a LSM wants to avoid this capability check,
2396  * it can register a 'inode_xattr_skipcap' hook and return a value of 1 for
2397  * xattrs that it wants to avoid the capability check, leaving the LSM fully
2398  * responsible for enforcing the access control for the specific xattr.  If all
2399  * of the enabled LSMs refrain from registering a 'inode_xattr_skipcap' hook,
2400  * or return a 0 (the default return value), the capability check is still
2401  * performed.  If no 'inode_xattr_skipcap' hooks are registered the capability
2402  * check is performed.
2403  *
2404  * Return: Returns 0 if permission is granted.
2405  */
security_inode_setxattr(struct mnt_idmap * idmap,struct dentry * dentry,const char * name,const void * value,size_t size,int flags)2406 int security_inode_setxattr(struct mnt_idmap *idmap,
2407 			    struct dentry *dentry, const char *name,
2408 			    const void *value, size_t size, int flags)
2409 {
2410 	int rc;
2411 
2412 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2413 		return 0;
2414 
2415 	/* enforce the capability checks at the lsm layer, if needed */
2416 	if (!call_int_hook(inode_xattr_skipcap, name)) {
2417 		rc = cap_inode_setxattr(dentry, name, value, size, flags);
2418 		if (rc)
2419 			return rc;
2420 	}
2421 
2422 	return call_int_hook(inode_setxattr, idmap, dentry, name, value, size,
2423 			     flags);
2424 }
2425 
2426 /**
2427  * security_inode_set_acl() - Check if setting posix acls is allowed
2428  * @idmap: idmap of the mount
2429  * @dentry: file
2430  * @acl_name: acl name
2431  * @kacl: acl struct
2432  *
2433  * Check permission before setting posix acls, the posix acls in @kacl are
2434  * identified by @acl_name.
2435  *
2436  * Return: Returns 0 if permission is granted.
2437  */
security_inode_set_acl(struct mnt_idmap * idmap,struct dentry * dentry,const char * acl_name,struct posix_acl * kacl)2438 int security_inode_set_acl(struct mnt_idmap *idmap,
2439 			   struct dentry *dentry, const char *acl_name,
2440 			   struct posix_acl *kacl)
2441 {
2442 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2443 		return 0;
2444 	return call_int_hook(inode_set_acl, idmap, dentry, acl_name, kacl);
2445 }
2446 
2447 /**
2448  * security_inode_post_set_acl() - Update inode security from posix acls set
2449  * @dentry: file
2450  * @acl_name: acl name
2451  * @kacl: acl struct
2452  *
2453  * Update inode security data after successfully setting posix acls on @dentry.
2454  * The posix acls in @kacl are identified by @acl_name.
2455  */
security_inode_post_set_acl(struct dentry * dentry,const char * acl_name,struct posix_acl * kacl)2456 void security_inode_post_set_acl(struct dentry *dentry, const char *acl_name,
2457 				 struct posix_acl *kacl)
2458 {
2459 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2460 		return;
2461 	call_void_hook(inode_post_set_acl, dentry, acl_name, kacl);
2462 }
2463 
2464 /**
2465  * security_inode_get_acl() - Check if reading posix acls is allowed
2466  * @idmap: idmap of the mount
2467  * @dentry: file
2468  * @acl_name: acl name
2469  *
2470  * Check permission before getting osix acls, the posix acls are identified by
2471  * @acl_name.
2472  *
2473  * Return: Returns 0 if permission is granted.
2474  */
security_inode_get_acl(struct mnt_idmap * idmap,struct dentry * dentry,const char * acl_name)2475 int security_inode_get_acl(struct mnt_idmap *idmap,
2476 			   struct dentry *dentry, const char *acl_name)
2477 {
2478 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2479 		return 0;
2480 	return call_int_hook(inode_get_acl, idmap, dentry, acl_name);
2481 }
2482 
2483 /**
2484  * security_inode_remove_acl() - Check if removing a posix acl is allowed
2485  * @idmap: idmap of the mount
2486  * @dentry: file
2487  * @acl_name: acl name
2488  *
2489  * Check permission before removing posix acls, the posix acls are identified
2490  * by @acl_name.
2491  *
2492  * Return: Returns 0 if permission is granted.
2493  */
security_inode_remove_acl(struct mnt_idmap * idmap,struct dentry * dentry,const char * acl_name)2494 int security_inode_remove_acl(struct mnt_idmap *idmap,
2495 			      struct dentry *dentry, const char *acl_name)
2496 {
2497 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2498 		return 0;
2499 	return call_int_hook(inode_remove_acl, idmap, dentry, acl_name);
2500 }
2501 
2502 /**
2503  * security_inode_post_remove_acl() - Update inode security after rm posix acls
2504  * @idmap: idmap of the mount
2505  * @dentry: file
2506  * @acl_name: acl name
2507  *
2508  * Update inode security data after successfully removing posix acls on
2509  * @dentry in @idmap. The posix acls are identified by @acl_name.
2510  */
security_inode_post_remove_acl(struct mnt_idmap * idmap,struct dentry * dentry,const char * acl_name)2511 void security_inode_post_remove_acl(struct mnt_idmap *idmap,
2512 				    struct dentry *dentry, const char *acl_name)
2513 {
2514 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2515 		return;
2516 	call_void_hook(inode_post_remove_acl, idmap, dentry, acl_name);
2517 }
2518 
2519 /**
2520  * security_inode_post_setxattr() - Update the inode after a setxattr operation
2521  * @dentry: file
2522  * @name: xattr name
2523  * @value: xattr value
2524  * @size: xattr value size
2525  * @flags: flags
2526  *
2527  * Update inode security field after successful setxattr operation.
2528  */
security_inode_post_setxattr(struct dentry * dentry,const char * name,const void * value,size_t size,int flags)2529 void security_inode_post_setxattr(struct dentry *dentry, const char *name,
2530 				  const void *value, size_t size, int flags)
2531 {
2532 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2533 		return;
2534 	call_void_hook(inode_post_setxattr, dentry, name, value, size, flags);
2535 }
2536 
2537 /**
2538  * security_inode_getxattr() - Check if xattr access is allowed
2539  * @dentry: file
2540  * @name: xattr name
2541  *
2542  * Check permission before obtaining the extended attributes identified by
2543  * @name for @dentry.
2544  *
2545  * Return: Returns 0 if permission is granted.
2546  */
security_inode_getxattr(struct dentry * dentry,const char * name)2547 int security_inode_getxattr(struct dentry *dentry, const char *name)
2548 {
2549 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2550 		return 0;
2551 	return call_int_hook(inode_getxattr, dentry, name);
2552 }
2553 
2554 /**
2555  * security_inode_listxattr() - Check if listing xattrs is allowed
2556  * @dentry: file
2557  *
2558  * Check permission before obtaining the list of extended attribute names for
2559  * @dentry.
2560  *
2561  * Return: Returns 0 if permission is granted.
2562  */
security_inode_listxattr(struct dentry * dentry)2563 int security_inode_listxattr(struct dentry *dentry)
2564 {
2565 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2566 		return 0;
2567 	return call_int_hook(inode_listxattr, dentry);
2568 }
2569 
2570 /**
2571  * security_inode_removexattr() - Check if removing an xattr is allowed
2572  * @idmap: idmap of the mount
2573  * @dentry: file
2574  * @name: xattr name
2575  *
2576  * This hook performs the desired permission checks before setting the extended
2577  * attributes (xattrs) on @dentry.  It is important to note that we have some
2578  * additional logic before the main LSM implementation calls to detect if we
2579  * need to perform an additional capability check at the LSM layer.
2580  *
2581  * Normally we enforce a capability check prior to executing the various LSM
2582  * hook implementations, but if a LSM wants to avoid this capability check,
2583  * it can register a 'inode_xattr_skipcap' hook and return a value of 1 for
2584  * xattrs that it wants to avoid the capability check, leaving the LSM fully
2585  * responsible for enforcing the access control for the specific xattr.  If all
2586  * of the enabled LSMs refrain from registering a 'inode_xattr_skipcap' hook,
2587  * or return a 0 (the default return value), the capability check is still
2588  * performed.  If no 'inode_xattr_skipcap' hooks are registered the capability
2589  * check is performed.
2590  *
2591  * Return: Returns 0 if permission is granted.
2592  */
security_inode_removexattr(struct mnt_idmap * idmap,struct dentry * dentry,const char * name)2593 int security_inode_removexattr(struct mnt_idmap *idmap,
2594 			       struct dentry *dentry, const char *name)
2595 {
2596 	int rc;
2597 
2598 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2599 		return 0;
2600 
2601 	/* enforce the capability checks at the lsm layer, if needed */
2602 	if (!call_int_hook(inode_xattr_skipcap, name)) {
2603 		rc = cap_inode_removexattr(idmap, dentry, name);
2604 		if (rc)
2605 			return rc;
2606 	}
2607 
2608 	return call_int_hook(inode_removexattr, idmap, dentry, name);
2609 }
2610 
2611 /**
2612  * security_inode_post_removexattr() - Update the inode after a removexattr op
2613  * @dentry: file
2614  * @name: xattr name
2615  *
2616  * Update the inode after a successful removexattr operation.
2617  */
security_inode_post_removexattr(struct dentry * dentry,const char * name)2618 void security_inode_post_removexattr(struct dentry *dentry, const char *name)
2619 {
2620 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2621 		return;
2622 	call_void_hook(inode_post_removexattr, dentry, name);
2623 }
2624 
2625 /**
2626  * security_inode_file_setattr() - check if setting fsxattr is allowed
2627  * @dentry: file to set filesystem extended attributes on
2628  * @fa: extended attributes to set on the inode
2629  *
2630  * Called when file_setattr() syscall or FS_IOC_FSSETXATTR ioctl() is called on
2631  * inode
2632  *
2633  * Return: Returns 0 if permission is granted.
2634  */
security_inode_file_setattr(struct dentry * dentry,struct file_kattr * fa)2635 int security_inode_file_setattr(struct dentry *dentry, struct file_kattr *fa)
2636 {
2637 	return call_int_hook(inode_file_setattr, dentry, fa);
2638 }
2639 
2640 /**
2641  * security_inode_file_getattr() - check if retrieving fsxattr is allowed
2642  * @dentry: file to retrieve filesystem extended attributes from
2643  * @fa: extended attributes to get
2644  *
2645  * Called when file_getattr() syscall or FS_IOC_FSGETXATTR ioctl() is called on
2646  * inode
2647  *
2648  * Return: Returns 0 if permission is granted.
2649  */
security_inode_file_getattr(struct dentry * dentry,struct file_kattr * fa)2650 int security_inode_file_getattr(struct dentry *dentry, struct file_kattr *fa)
2651 {
2652 	return call_int_hook(inode_file_getattr, dentry, fa);
2653 }
2654 
2655 /**
2656  * security_inode_need_killpriv() - Check if security_inode_killpriv() required
2657  * @dentry: associated dentry
2658  *
2659  * Called when an inode has been changed to determine if
2660  * security_inode_killpriv() should be called.
2661  *
2662  * Return: Return <0 on error to abort the inode change operation, return 0 if
2663  *         security_inode_killpriv() does not need to be called, return >0 if
2664  *         security_inode_killpriv() does need to be called.
2665  */
security_inode_need_killpriv(struct dentry * dentry)2666 int security_inode_need_killpriv(struct dentry *dentry)
2667 {
2668 	return call_int_hook(inode_need_killpriv, dentry);
2669 }
2670 
2671 /**
2672  * security_inode_killpriv() - The setuid bit is removed, update LSM state
2673  * @idmap: idmap of the mount
2674  * @dentry: associated dentry
2675  *
2676  * The @dentry's setuid bit is being removed.  Remove similar security labels.
2677  * Called with the dentry->d_inode->i_mutex held.
2678  *
2679  * Return: Return 0 on success.  If error is returned, then the operation
2680  *         causing setuid bit removal is failed.
2681  */
security_inode_killpriv(struct mnt_idmap * idmap,struct dentry * dentry)2682 int security_inode_killpriv(struct mnt_idmap *idmap,
2683 			    struct dentry *dentry)
2684 {
2685 	return call_int_hook(inode_killpriv, idmap, dentry);
2686 }
2687 
2688 /**
2689  * security_inode_getsecurity() - Get the xattr security label of an inode
2690  * @idmap: idmap of the mount
2691  * @inode: inode
2692  * @name: xattr name
2693  * @buffer: security label buffer
2694  * @alloc: allocation flag
2695  *
2696  * Retrieve a copy of the extended attribute representation of the security
2697  * label associated with @name for @inode via @buffer.  Note that @name is the
2698  * remainder of the attribute name after the security prefix has been removed.
2699  * @alloc is used to specify if the call should return a value via the buffer
2700  * or just the value length.
2701  *
2702  * Return: Returns size of buffer on success.
2703  */
security_inode_getsecurity(struct mnt_idmap * idmap,struct inode * inode,const char * name,void ** buffer,bool alloc)2704 int security_inode_getsecurity(struct mnt_idmap *idmap,
2705 			       struct inode *inode, const char *name,
2706 			       void **buffer, bool alloc)
2707 {
2708 	if (unlikely(IS_PRIVATE(inode)))
2709 		return LSM_RET_DEFAULT(inode_getsecurity);
2710 
2711 	return call_int_hook(inode_getsecurity, idmap, inode, name, buffer,
2712 			     alloc);
2713 }
2714 
2715 /**
2716  * security_inode_setsecurity() - Set the xattr security label of an inode
2717  * @inode: inode
2718  * @name: xattr name
2719  * @value: security label
2720  * @size: length of security label
2721  * @flags: flags
2722  *
2723  * Set the security label associated with @name for @inode from the extended
2724  * attribute value @value.  @size indicates the size of the @value in bytes.
2725  * @flags may be XATTR_CREATE, XATTR_REPLACE, or 0. Note that @name is the
2726  * remainder of the attribute name after the security. prefix has been removed.
2727  *
2728  * Return: Returns 0 on success.
2729  */
security_inode_setsecurity(struct inode * inode,const char * name,const void * value,size_t size,int flags)2730 int security_inode_setsecurity(struct inode *inode, const char *name,
2731 			       const void *value, size_t size, int flags)
2732 {
2733 	if (unlikely(IS_PRIVATE(inode)))
2734 		return LSM_RET_DEFAULT(inode_setsecurity);
2735 
2736 	return call_int_hook(inode_setsecurity, inode, name, value, size,
2737 			     flags);
2738 }
2739 
2740 /**
2741  * security_inode_listsecurity() - List the xattr security label names
2742  * @inode: inode
2743  * @buffer: buffer
2744  * @buffer_size: size of buffer
2745  *
2746  * Copy the extended attribute names for the security labels associated with
2747  * @inode into @buffer.  The maximum size of @buffer is specified by
2748  * @buffer_size.  @buffer may be NULL to request the size of the buffer
2749  * required.
2750  *
2751  * Return: Returns number of bytes used/required on success.
2752  */
security_inode_listsecurity(struct inode * inode,char * buffer,size_t buffer_size)2753 int security_inode_listsecurity(struct inode *inode,
2754 				char *buffer, size_t buffer_size)
2755 {
2756 	if (unlikely(IS_PRIVATE(inode)))
2757 		return 0;
2758 	return call_int_hook(inode_listsecurity, inode, buffer, buffer_size);
2759 }
2760 EXPORT_SYMBOL(security_inode_listsecurity);
2761 
2762 /**
2763  * security_inode_getlsmprop() - Get an inode's LSM data
2764  * @inode: inode
2765  * @prop: lsm specific information to return
2766  *
2767  * Get the lsm specific information associated with the node.
2768  */
security_inode_getlsmprop(struct inode * inode,struct lsm_prop * prop)2769 void security_inode_getlsmprop(struct inode *inode, struct lsm_prop *prop)
2770 {
2771 	call_void_hook(inode_getlsmprop, inode, prop);
2772 }
2773 
2774 /**
2775  * security_inode_copy_up() - Create new creds for an overlayfs copy-up op
2776  * @src: union dentry of copy-up file
2777  * @new: newly created creds
2778  *
2779  * A file is about to be copied up from lower layer to upper layer of overlay
2780  * filesystem. Security module can prepare a set of new creds and modify as
2781  * need be and return new creds. Caller will switch to new creds temporarily to
2782  * create new file and release newly allocated creds.
2783  *
2784  * Return: Returns 0 on success or a negative error code on error.
2785  */
security_inode_copy_up(struct dentry * src,struct cred ** new)2786 int security_inode_copy_up(struct dentry *src, struct cred **new)
2787 {
2788 	return call_int_hook(inode_copy_up, src, new);
2789 }
2790 EXPORT_SYMBOL(security_inode_copy_up);
2791 
2792 /**
2793  * security_inode_copy_up_xattr() - Filter xattrs in an overlayfs copy-up op
2794  * @src: union dentry of copy-up file
2795  * @name: xattr name
2796  *
2797  * Filter the xattrs being copied up when a unioned file is copied up from a
2798  * lower layer to the union/overlay layer.   The caller is responsible for
2799  * reading and writing the xattrs, this hook is merely a filter.
2800  *
2801  * Return: Returns 0 to accept the xattr, -ECANCELED to discard the xattr,
2802  *         -EOPNOTSUPP if the security module does not know about attribute,
2803  *         or a negative error code to abort the copy up.
2804  */
security_inode_copy_up_xattr(struct dentry * src,const char * name)2805 int security_inode_copy_up_xattr(struct dentry *src, const char *name)
2806 {
2807 	int rc;
2808 
2809 	rc = call_int_hook(inode_copy_up_xattr, src, name);
2810 	if (rc != LSM_RET_DEFAULT(inode_copy_up_xattr))
2811 		return rc;
2812 
2813 	return LSM_RET_DEFAULT(inode_copy_up_xattr);
2814 }
2815 EXPORT_SYMBOL(security_inode_copy_up_xattr);
2816 
2817 /**
2818  * security_inode_setintegrity() - Set the inode's integrity data
2819  * @inode: inode
2820  * @type: type of integrity, e.g. hash digest, signature, etc
2821  * @value: the integrity value
2822  * @size: size of the integrity value
2823  *
2824  * Register a verified integrity measurement of a inode with LSMs.
2825  * LSMs should free the previously saved data if @value is NULL.
2826  *
2827  * Return: Returns 0 on success, negative values on failure.
2828  */
security_inode_setintegrity(const struct inode * inode,enum lsm_integrity_type type,const void * value,size_t size)2829 int security_inode_setintegrity(const struct inode *inode,
2830 				enum lsm_integrity_type type, const void *value,
2831 				size_t size)
2832 {
2833 	return call_int_hook(inode_setintegrity, inode, type, value, size);
2834 }
2835 EXPORT_SYMBOL(security_inode_setintegrity);
2836 
2837 /**
2838  * security_kernfs_init_security() - Init LSM context for a kernfs node
2839  * @kn_dir: parent kernfs node
2840  * @kn: the kernfs node to initialize
2841  *
2842  * Initialize the security context of a newly created kernfs node based on its
2843  * own and its parent's attributes.
2844  *
2845  * Return: Returns 0 if permission is granted.
2846  */
security_kernfs_init_security(struct kernfs_node * kn_dir,struct kernfs_node * kn)2847 int security_kernfs_init_security(struct kernfs_node *kn_dir,
2848 				  struct kernfs_node *kn)
2849 {
2850 	return call_int_hook(kernfs_init_security, kn_dir, kn);
2851 }
2852 
2853 /**
2854  * security_file_permission() - Check file permissions
2855  * @file: file
2856  * @mask: requested permissions
2857  *
2858  * Check file permissions before accessing an open file.  This hook is called
2859  * by various operations that read or write files.  A security module can use
2860  * this hook to perform additional checking on these operations, e.g. to
2861  * revalidate permissions on use to support privilege bracketing or policy
2862  * changes.  Notice that this hook is used when the actual read/write
2863  * operations are performed, whereas the inode_security_ops hook is called when
2864  * a file is opened (as well as many other operations).  Although this hook can
2865  * be used to revalidate permissions for various system call operations that
2866  * read or write files, it does not address the revalidation of permissions for
2867  * memory-mapped files.  Security modules must handle this separately if they
2868  * need such revalidation.
2869  *
2870  * Return: Returns 0 if permission is granted.
2871  */
security_file_permission(struct file * file,int mask)2872 int security_file_permission(struct file *file, int mask)
2873 {
2874 	return call_int_hook(file_permission, file, mask);
2875 }
2876 
2877 /**
2878  * security_file_alloc() - Allocate and init a file's LSM blob
2879  * @file: the file
2880  *
2881  * Allocate and attach a security structure to the file->f_security field.  The
2882  * security field is initialized to NULL when the structure is first created.
2883  *
2884  * Return: Return 0 if the hook is successful and permission is granted.
2885  */
security_file_alloc(struct file * file)2886 int security_file_alloc(struct file *file)
2887 {
2888 	int rc = lsm_file_alloc(file);
2889 
2890 	if (rc)
2891 		return rc;
2892 	rc = call_int_hook(file_alloc_security, file);
2893 	if (unlikely(rc))
2894 		security_file_free(file);
2895 	return rc;
2896 }
2897 
2898 /**
2899  * security_file_release() - Perform actions before releasing the file ref
2900  * @file: the file
2901  *
2902  * Perform actions before releasing the last reference to a file.
2903  */
security_file_release(struct file * file)2904 void security_file_release(struct file *file)
2905 {
2906 	call_void_hook(file_release, file);
2907 }
2908 
2909 /**
2910  * security_file_free() - Free a file's LSM blob
2911  * @file: the file
2912  *
2913  * Deallocate and free any security structures stored in file->f_security.
2914  */
security_file_free(struct file * file)2915 void security_file_free(struct file *file)
2916 {
2917 	void *blob;
2918 
2919 	call_void_hook(file_free_security, file);
2920 
2921 	blob = file->f_security;
2922 	if (blob) {
2923 		file->f_security = NULL;
2924 		kmem_cache_free(lsm_file_cache, blob);
2925 	}
2926 }
2927 
2928 /**
2929  * security_file_ioctl() - Check if an ioctl is allowed
2930  * @file: associated file
2931  * @cmd: ioctl cmd
2932  * @arg: ioctl arguments
2933  *
2934  * Check permission for an ioctl operation on @file.  Note that @arg sometimes
2935  * represents a user space pointer; in other cases, it may be a simple integer
2936  * value.  When @arg represents a user space pointer, it should never be used
2937  * by the security module.
2938  *
2939  * Return: Returns 0 if permission is granted.
2940  */
security_file_ioctl(struct file * file,unsigned int cmd,unsigned long arg)2941 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2942 {
2943 	return call_int_hook(file_ioctl, file, cmd, arg);
2944 }
2945 EXPORT_SYMBOL_GPL(security_file_ioctl);
2946 
2947 /**
2948  * security_file_ioctl_compat() - Check if an ioctl is allowed in compat mode
2949  * @file: associated file
2950  * @cmd: ioctl cmd
2951  * @arg: ioctl arguments
2952  *
2953  * Compat version of security_file_ioctl() that correctly handles 32-bit
2954  * processes running on 64-bit kernels.
2955  *
2956  * Return: Returns 0 if permission is granted.
2957  */
security_file_ioctl_compat(struct file * file,unsigned int cmd,unsigned long arg)2958 int security_file_ioctl_compat(struct file *file, unsigned int cmd,
2959 			       unsigned long arg)
2960 {
2961 	return call_int_hook(file_ioctl_compat, file, cmd, arg);
2962 }
2963 EXPORT_SYMBOL_GPL(security_file_ioctl_compat);
2964 
mmap_prot(struct file * file,unsigned long prot)2965 static inline unsigned long mmap_prot(struct file *file, unsigned long prot)
2966 {
2967 	/*
2968 	 * Does we have PROT_READ and does the application expect
2969 	 * it to imply PROT_EXEC?  If not, nothing to talk about...
2970 	 */
2971 	if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ)
2972 		return prot;
2973 	if (!(current->personality & READ_IMPLIES_EXEC))
2974 		return prot;
2975 	/*
2976 	 * if that's an anonymous mapping, let it.
2977 	 */
2978 	if (!file)
2979 		return prot | PROT_EXEC;
2980 	/*
2981 	 * ditto if it's not on noexec mount, except that on !MMU we need
2982 	 * NOMMU_MAP_EXEC (== VM_MAYEXEC) in this case
2983 	 */
2984 	if (!path_noexec(&file->f_path)) {
2985 #ifndef CONFIG_MMU
2986 		if (file->f_op->mmap_capabilities) {
2987 			unsigned caps = file->f_op->mmap_capabilities(file);
2988 			if (!(caps & NOMMU_MAP_EXEC))
2989 				return prot;
2990 		}
2991 #endif
2992 		return prot | PROT_EXEC;
2993 	}
2994 	/* anything on noexec mount won't get PROT_EXEC */
2995 	return prot;
2996 }
2997 
2998 /**
2999  * security_mmap_file() - Check if mmap'ing a file is allowed
3000  * @file: file
3001  * @prot: protection applied by the kernel
3002  * @flags: flags
3003  *
3004  * Check permissions for a mmap operation.  The @file may be NULL, e.g. if
3005  * mapping anonymous memory.
3006  *
3007  * Return: Returns 0 if permission is granted.
3008  */
security_mmap_file(struct file * file,unsigned long prot,unsigned long flags)3009 int security_mmap_file(struct file *file, unsigned long prot,
3010 		       unsigned long flags)
3011 {
3012 	return call_int_hook(mmap_file, file, prot, mmap_prot(file, prot),
3013 			     flags);
3014 }
3015 
3016 /**
3017  * security_mmap_addr() - Check if mmap'ing an address is allowed
3018  * @addr: address
3019  *
3020  * Check permissions for a mmap operation at @addr.
3021  *
3022  * Return: Returns 0 if permission is granted.
3023  */
security_mmap_addr(unsigned long addr)3024 int security_mmap_addr(unsigned long addr)
3025 {
3026 	return call_int_hook(mmap_addr, addr);
3027 }
3028 
3029 /**
3030  * security_file_mprotect() - Check if changing memory protections is allowed
3031  * @vma: memory region
3032  * @reqprot: application requested protection
3033  * @prot: protection applied by the kernel
3034  *
3035  * Check permissions before changing memory access permissions.
3036  *
3037  * Return: Returns 0 if permission is granted.
3038  */
security_file_mprotect(struct vm_area_struct * vma,unsigned long reqprot,unsigned long prot)3039 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
3040 			   unsigned long prot)
3041 {
3042 	return call_int_hook(file_mprotect, vma, reqprot, prot);
3043 }
3044 
3045 /**
3046  * security_file_lock() - Check if a file lock is allowed
3047  * @file: file
3048  * @cmd: lock operation (e.g. F_RDLCK, F_WRLCK)
3049  *
3050  * Check permission before performing file locking operations.  Note the hook
3051  * mediates both flock and fcntl style locks.
3052  *
3053  * Return: Returns 0 if permission is granted.
3054  */
security_file_lock(struct file * file,unsigned int cmd)3055 int security_file_lock(struct file *file, unsigned int cmd)
3056 {
3057 	return call_int_hook(file_lock, file, cmd);
3058 }
3059 
3060 /**
3061  * security_file_fcntl() - Check if fcntl() op is allowed
3062  * @file: file
3063  * @cmd: fcntl command
3064  * @arg: command argument
3065  *
3066  * Check permission before allowing the file operation specified by @cmd from
3067  * being performed on the file @file.  Note that @arg sometimes represents a
3068  * user space pointer; in other cases, it may be a simple integer value.  When
3069  * @arg represents a user space pointer, it should never be used by the
3070  * security module.
3071  *
3072  * Return: Returns 0 if permission is granted.
3073  */
security_file_fcntl(struct file * file,unsigned int cmd,unsigned long arg)3074 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
3075 {
3076 	return call_int_hook(file_fcntl, file, cmd, arg);
3077 }
3078 
3079 /**
3080  * security_file_set_fowner() - Set the file owner info in the LSM blob
3081  * @file: the file
3082  *
3083  * Save owner security information (typically from current->security) in
3084  * file->f_security for later use by the send_sigiotask hook.
3085  *
3086  * This hook is called with file->f_owner.lock held.
3087  *
3088  * Return: Returns 0 on success.
3089  */
security_file_set_fowner(struct file * file)3090 void security_file_set_fowner(struct file *file)
3091 {
3092 	call_void_hook(file_set_fowner, file);
3093 }
3094 
3095 /**
3096  * security_file_send_sigiotask() - Check if sending SIGIO/SIGURG is allowed
3097  * @tsk: target task
3098  * @fown: signal sender
3099  * @sig: signal to be sent, SIGIO is sent if 0
3100  *
3101  * Check permission for the file owner @fown to send SIGIO or SIGURG to the
3102  * process @tsk.  Note that this hook is sometimes called from interrupt.  Note
3103  * that the fown_struct, @fown, is never outside the context of a struct file,
3104  * so the file structure (and associated security information) can always be
3105  * obtained: container_of(fown, struct file, f_owner).
3106  *
3107  * Return: Returns 0 if permission is granted.
3108  */
security_file_send_sigiotask(struct task_struct * tsk,struct fown_struct * fown,int sig)3109 int security_file_send_sigiotask(struct task_struct *tsk,
3110 				 struct fown_struct *fown, int sig)
3111 {
3112 	return call_int_hook(file_send_sigiotask, tsk, fown, sig);
3113 }
3114 
3115 /**
3116  * security_file_receive() - Check if receiving a file via IPC is allowed
3117  * @file: file being received
3118  *
3119  * This hook allows security modules to control the ability of a process to
3120  * receive an open file descriptor via socket IPC.
3121  *
3122  * Return: Returns 0 if permission is granted.
3123  */
security_file_receive(struct file * file)3124 int security_file_receive(struct file *file)
3125 {
3126 	return call_int_hook(file_receive, file);
3127 }
3128 
3129 /**
3130  * security_file_open() - Save open() time state for late use by the LSM
3131  * @file:
3132  *
3133  * Save open-time permission checking state for later use upon file_permission,
3134  * and recheck access if anything has changed since inode_permission.
3135  *
3136  * We can check if a file is opened for execution (e.g. execve(2) call), either
3137  * directly or indirectly (e.g. ELF's ld.so) by checking file->f_flags &
3138  * __FMODE_EXEC .
3139  *
3140  * Return: Returns 0 if permission is granted.
3141  */
security_file_open(struct file * file)3142 int security_file_open(struct file *file)
3143 {
3144 	return call_int_hook(file_open, file);
3145 }
3146 
3147 /**
3148  * security_file_post_open() - Evaluate a file after it has been opened
3149  * @file: the file
3150  * @mask: access mask
3151  *
3152  * Evaluate an opened file and the access mask requested with open(). The hook
3153  * is useful for LSMs that require the file content to be available in order to
3154  * make decisions.
3155  *
3156  * Return: Returns 0 if permission is granted.
3157  */
security_file_post_open(struct file * file,int mask)3158 int security_file_post_open(struct file *file, int mask)
3159 {
3160 	return call_int_hook(file_post_open, file, mask);
3161 }
3162 EXPORT_SYMBOL_GPL(security_file_post_open);
3163 
3164 /**
3165  * security_file_truncate() - Check if truncating a file is allowed
3166  * @file: file
3167  *
3168  * Check permission before truncating a file, i.e. using ftruncate.  Note that
3169  * truncation permission may also be checked based on the path, using the
3170  * @path_truncate hook.
3171  *
3172  * Return: Returns 0 if permission is granted.
3173  */
security_file_truncate(struct file * file)3174 int security_file_truncate(struct file *file)
3175 {
3176 	return call_int_hook(file_truncate, file);
3177 }
3178 
3179 /**
3180  * security_task_alloc() - Allocate a task's LSM blob
3181  * @task: the task
3182  * @clone_flags: flags indicating what is being shared
3183  *
3184  * Handle allocation of task-related resources.
3185  *
3186  * Return: Returns a zero on success, negative values on failure.
3187  */
security_task_alloc(struct task_struct * task,unsigned long clone_flags)3188 int security_task_alloc(struct task_struct *task, unsigned long clone_flags)
3189 {
3190 	int rc = lsm_task_alloc(task);
3191 
3192 	if (rc)
3193 		return rc;
3194 	rc = call_int_hook(task_alloc, task, clone_flags);
3195 	if (unlikely(rc))
3196 		security_task_free(task);
3197 	return rc;
3198 }
3199 
3200 /**
3201  * security_task_free() - Free a task's LSM blob and related resources
3202  * @task: task
3203  *
3204  * Handle release of task-related resources.  Note that this can be called from
3205  * interrupt context.
3206  */
security_task_free(struct task_struct * task)3207 void security_task_free(struct task_struct *task)
3208 {
3209 	call_void_hook(task_free, task);
3210 
3211 	kfree(task->security);
3212 	task->security = NULL;
3213 }
3214 
3215 /**
3216  * security_cred_alloc_blank() - Allocate the min memory to allow cred_transfer
3217  * @cred: credentials
3218  * @gfp: gfp flags
3219  *
3220  * Only allocate sufficient memory and attach to @cred such that
3221  * cred_transfer() will not get ENOMEM.
3222  *
3223  * Return: Returns 0 on success, negative values on failure.
3224  */
security_cred_alloc_blank(struct cred * cred,gfp_t gfp)3225 int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
3226 {
3227 	int rc = lsm_cred_alloc(cred, gfp);
3228 
3229 	if (rc)
3230 		return rc;
3231 
3232 	rc = call_int_hook(cred_alloc_blank, cred, gfp);
3233 	if (unlikely(rc))
3234 		security_cred_free(cred);
3235 	return rc;
3236 }
3237 
3238 /**
3239  * security_cred_free() - Free the cred's LSM blob and associated resources
3240  * @cred: credentials
3241  *
3242  * Deallocate and clear the cred->security field in a set of credentials.
3243  */
security_cred_free(struct cred * cred)3244 void security_cred_free(struct cred *cred)
3245 {
3246 	/*
3247 	 * There is a failure case in prepare_creds() that
3248 	 * may result in a call here with ->security being NULL.
3249 	 */
3250 	if (unlikely(cred->security == NULL))
3251 		return;
3252 
3253 	call_void_hook(cred_free, cred);
3254 
3255 	kfree(cred->security);
3256 	cred->security = NULL;
3257 }
3258 
3259 /**
3260  * security_prepare_creds() - Prepare a new set of credentials
3261  * @new: new credentials
3262  * @old: original credentials
3263  * @gfp: gfp flags
3264  *
3265  * Prepare a new set of credentials by copying the data from the old set.
3266  *
3267  * Return: Returns 0 on success, negative values on failure.
3268  */
security_prepare_creds(struct cred * new,const struct cred * old,gfp_t gfp)3269 int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
3270 {
3271 	int rc = lsm_cred_alloc(new, gfp);
3272 
3273 	if (rc)
3274 		return rc;
3275 
3276 	rc = call_int_hook(cred_prepare, new, old, gfp);
3277 	if (unlikely(rc))
3278 		security_cred_free(new);
3279 	return rc;
3280 }
3281 
3282 /**
3283  * security_transfer_creds() - Transfer creds
3284  * @new: target credentials
3285  * @old: original credentials
3286  *
3287  * Transfer data from original creds to new creds.
3288  */
security_transfer_creds(struct cred * new,const struct cred * old)3289 void security_transfer_creds(struct cred *new, const struct cred *old)
3290 {
3291 	call_void_hook(cred_transfer, new, old);
3292 }
3293 
3294 /**
3295  * security_cred_getsecid() - Get the secid from a set of credentials
3296  * @c: credentials
3297  * @secid: secid value
3298  *
3299  * Retrieve the security identifier of the cred structure @c.  In case of
3300  * failure, @secid will be set to zero.
3301  */
security_cred_getsecid(const struct cred * c,u32 * secid)3302 void security_cred_getsecid(const struct cred *c, u32 *secid)
3303 {
3304 	*secid = 0;
3305 	call_void_hook(cred_getsecid, c, secid);
3306 }
3307 EXPORT_SYMBOL(security_cred_getsecid);
3308 
3309 /**
3310  * security_cred_getlsmprop() - Get the LSM data from a set of credentials
3311  * @c: credentials
3312  * @prop: destination for the LSM data
3313  *
3314  * Retrieve the security data of the cred structure @c.  In case of
3315  * failure, @prop will be cleared.
3316  */
security_cred_getlsmprop(const struct cred * c,struct lsm_prop * prop)3317 void security_cred_getlsmprop(const struct cred *c, struct lsm_prop *prop)
3318 {
3319 	lsmprop_init(prop);
3320 	call_void_hook(cred_getlsmprop, c, prop);
3321 }
3322 EXPORT_SYMBOL(security_cred_getlsmprop);
3323 
3324 /**
3325  * security_kernel_act_as() - Set the kernel credentials to act as secid
3326  * @new: credentials
3327  * @secid: secid
3328  *
3329  * Set the credentials for a kernel service to act as (subjective context).
3330  * The current task must be the one that nominated @secid.
3331  *
3332  * Return: Returns 0 if successful.
3333  */
security_kernel_act_as(struct cred * new,u32 secid)3334 int security_kernel_act_as(struct cred *new, u32 secid)
3335 {
3336 	return call_int_hook(kernel_act_as, new, secid);
3337 }
3338 
3339 /**
3340  * security_kernel_create_files_as() - Set file creation context using an inode
3341  * @new: target credentials
3342  * @inode: reference inode
3343  *
3344  * Set the file creation context in a set of credentials to be the same as the
3345  * objective context of the specified inode.  The current task must be the one
3346  * that nominated @inode.
3347  *
3348  * Return: Returns 0 if successful.
3349  */
security_kernel_create_files_as(struct cred * new,struct inode * inode)3350 int security_kernel_create_files_as(struct cred *new, struct inode *inode)
3351 {
3352 	return call_int_hook(kernel_create_files_as, new, inode);
3353 }
3354 
3355 /**
3356  * security_kernel_module_request() - Check if loading a module is allowed
3357  * @kmod_name: module name
3358  *
3359  * Ability to trigger the kernel to automatically upcall to userspace for
3360  * userspace to load a kernel module with the given name.
3361  *
3362  * Return: Returns 0 if successful.
3363  */
security_kernel_module_request(char * kmod_name)3364 int security_kernel_module_request(char *kmod_name)
3365 {
3366 	return call_int_hook(kernel_module_request, kmod_name);
3367 }
3368 
3369 /**
3370  * security_kernel_read_file() - Read a file specified by userspace
3371  * @file: file
3372  * @id: file identifier
3373  * @contents: trust if security_kernel_post_read_file() will be called
3374  *
3375  * Read a file specified by userspace.
3376  *
3377  * Return: Returns 0 if permission is granted.
3378  */
security_kernel_read_file(struct file * file,enum kernel_read_file_id id,bool contents)3379 int security_kernel_read_file(struct file *file, enum kernel_read_file_id id,
3380 			      bool contents)
3381 {
3382 	return call_int_hook(kernel_read_file, file, id, contents);
3383 }
3384 EXPORT_SYMBOL_GPL(security_kernel_read_file);
3385 
3386 /**
3387  * security_kernel_post_read_file() - Read a file specified by userspace
3388  * @file: file
3389  * @buf: file contents
3390  * @size: size of file contents
3391  * @id: file identifier
3392  *
3393  * Read a file specified by userspace.  This must be paired with a prior call
3394  * to security_kernel_read_file() call that indicated this hook would also be
3395  * called, see security_kernel_read_file() for more information.
3396  *
3397  * Return: Returns 0 if permission is granted.
3398  */
security_kernel_post_read_file(struct file * file,char * buf,loff_t size,enum kernel_read_file_id id)3399 int security_kernel_post_read_file(struct file *file, char *buf, loff_t size,
3400 				   enum kernel_read_file_id id)
3401 {
3402 	return call_int_hook(kernel_post_read_file, file, buf, size, id);
3403 }
3404 EXPORT_SYMBOL_GPL(security_kernel_post_read_file);
3405 
3406 /**
3407  * security_kernel_load_data() - Load data provided by userspace
3408  * @id: data identifier
3409  * @contents: true if security_kernel_post_load_data() will be called
3410  *
3411  * Load data provided by userspace.
3412  *
3413  * Return: Returns 0 if permission is granted.
3414  */
security_kernel_load_data(enum kernel_load_data_id id,bool contents)3415 int security_kernel_load_data(enum kernel_load_data_id id, bool contents)
3416 {
3417 	return call_int_hook(kernel_load_data, id, contents);
3418 }
3419 EXPORT_SYMBOL_GPL(security_kernel_load_data);
3420 
3421 /**
3422  * security_kernel_post_load_data() - Load userspace data from a non-file source
3423  * @buf: data
3424  * @size: size of data
3425  * @id: data identifier
3426  * @description: text description of data, specific to the id value
3427  *
3428  * Load data provided by a non-file source (usually userspace buffer).  This
3429  * must be paired with a prior security_kernel_load_data() call that indicated
3430  * this hook would also be called, see security_kernel_load_data() for more
3431  * information.
3432  *
3433  * Return: Returns 0 if permission is granted.
3434  */
security_kernel_post_load_data(char * buf,loff_t size,enum kernel_load_data_id id,char * description)3435 int security_kernel_post_load_data(char *buf, loff_t size,
3436 				   enum kernel_load_data_id id,
3437 				   char *description)
3438 {
3439 	return call_int_hook(kernel_post_load_data, buf, size, id, description);
3440 }
3441 EXPORT_SYMBOL_GPL(security_kernel_post_load_data);
3442 
3443 /**
3444  * security_task_fix_setuid() - Update LSM with new user id attributes
3445  * @new: updated credentials
3446  * @old: credentials being replaced
3447  * @flags: LSM_SETID_* flag values
3448  *
3449  * Update the module's state after setting one or more of the user identity
3450  * attributes of the current process.  The @flags parameter indicates which of
3451  * the set*uid system calls invoked this hook.  If @new is the set of
3452  * credentials that will be installed.  Modifications should be made to this
3453  * rather than to @current->cred.
3454  *
3455  * Return: Returns 0 on success.
3456  */
security_task_fix_setuid(struct cred * new,const struct cred * old,int flags)3457 int security_task_fix_setuid(struct cred *new, const struct cred *old,
3458 			     int flags)
3459 {
3460 	return call_int_hook(task_fix_setuid, new, old, flags);
3461 }
3462 
3463 /**
3464  * security_task_fix_setgid() - Update LSM with new group id attributes
3465  * @new: updated credentials
3466  * @old: credentials being replaced
3467  * @flags: LSM_SETID_* flag value
3468  *
3469  * Update the module's state after setting one or more of the group identity
3470  * attributes of the current process.  The @flags parameter indicates which of
3471  * the set*gid system calls invoked this hook.  @new is the set of credentials
3472  * that will be installed.  Modifications should be made to this rather than to
3473  * @current->cred.
3474  *
3475  * Return: Returns 0 on success.
3476  */
security_task_fix_setgid(struct cred * new,const struct cred * old,int flags)3477 int security_task_fix_setgid(struct cred *new, const struct cred *old,
3478 			     int flags)
3479 {
3480 	return call_int_hook(task_fix_setgid, new, old, flags);
3481 }
3482 
3483 /**
3484  * security_task_fix_setgroups() - Update LSM with new supplementary groups
3485  * @new: updated credentials
3486  * @old: credentials being replaced
3487  *
3488  * Update the module's state after setting the supplementary group identity
3489  * attributes of the current process.  @new is the set of credentials that will
3490  * be installed.  Modifications should be made to this rather than to
3491  * @current->cred.
3492  *
3493  * Return: Returns 0 on success.
3494  */
security_task_fix_setgroups(struct cred * new,const struct cred * old)3495 int security_task_fix_setgroups(struct cred *new, const struct cred *old)
3496 {
3497 	return call_int_hook(task_fix_setgroups, new, old);
3498 }
3499 
3500 /**
3501  * security_task_setpgid() - Check if setting the pgid is allowed
3502  * @p: task being modified
3503  * @pgid: new pgid
3504  *
3505  * Check permission before setting the process group identifier of the process
3506  * @p to @pgid.
3507  *
3508  * Return: Returns 0 if permission is granted.
3509  */
security_task_setpgid(struct task_struct * p,pid_t pgid)3510 int security_task_setpgid(struct task_struct *p, pid_t pgid)
3511 {
3512 	return call_int_hook(task_setpgid, p, pgid);
3513 }
3514 
3515 /**
3516  * security_task_getpgid() - Check if getting the pgid is allowed
3517  * @p: task
3518  *
3519  * Check permission before getting the process group identifier of the process
3520  * @p.
3521  *
3522  * Return: Returns 0 if permission is granted.
3523  */
security_task_getpgid(struct task_struct * p)3524 int security_task_getpgid(struct task_struct *p)
3525 {
3526 	return call_int_hook(task_getpgid, p);
3527 }
3528 
3529 /**
3530  * security_task_getsid() - Check if getting the session id is allowed
3531  * @p: task
3532  *
3533  * Check permission before getting the session identifier of the process @p.
3534  *
3535  * Return: Returns 0 if permission is granted.
3536  */
security_task_getsid(struct task_struct * p)3537 int security_task_getsid(struct task_struct *p)
3538 {
3539 	return call_int_hook(task_getsid, p);
3540 }
3541 
3542 /**
3543  * security_current_getlsmprop_subj() - Current task's subjective LSM data
3544  * @prop: lsm specific information
3545  *
3546  * Retrieve the subjective security identifier of the current task and return
3547  * it in @prop.
3548  */
security_current_getlsmprop_subj(struct lsm_prop * prop)3549 void security_current_getlsmprop_subj(struct lsm_prop *prop)
3550 {
3551 	lsmprop_init(prop);
3552 	call_void_hook(current_getlsmprop_subj, prop);
3553 }
3554 EXPORT_SYMBOL(security_current_getlsmprop_subj);
3555 
3556 /**
3557  * security_task_getlsmprop_obj() - Get a task's objective LSM data
3558  * @p: target task
3559  * @prop: lsm specific information
3560  *
3561  * Retrieve the objective security identifier of the task_struct in @p and
3562  * return it in @prop.
3563  */
security_task_getlsmprop_obj(struct task_struct * p,struct lsm_prop * prop)3564 void security_task_getlsmprop_obj(struct task_struct *p, struct lsm_prop *prop)
3565 {
3566 	lsmprop_init(prop);
3567 	call_void_hook(task_getlsmprop_obj, p, prop);
3568 }
3569 EXPORT_SYMBOL(security_task_getlsmprop_obj);
3570 
3571 /**
3572  * security_task_setnice() - Check if setting a task's nice value is allowed
3573  * @p: target task
3574  * @nice: nice value
3575  *
3576  * Check permission before setting the nice value of @p to @nice.
3577  *
3578  * Return: Returns 0 if permission is granted.
3579  */
security_task_setnice(struct task_struct * p,int nice)3580 int security_task_setnice(struct task_struct *p, int nice)
3581 {
3582 	return call_int_hook(task_setnice, p, nice);
3583 }
3584 
3585 /**
3586  * security_task_setioprio() - Check if setting a task's ioprio is allowed
3587  * @p: target task
3588  * @ioprio: ioprio value
3589  *
3590  * Check permission before setting the ioprio value of @p to @ioprio.
3591  *
3592  * Return: Returns 0 if permission is granted.
3593  */
security_task_setioprio(struct task_struct * p,int ioprio)3594 int security_task_setioprio(struct task_struct *p, int ioprio)
3595 {
3596 	return call_int_hook(task_setioprio, p, ioprio);
3597 }
3598 
3599 /**
3600  * security_task_getioprio() - Check if getting a task's ioprio is allowed
3601  * @p: task
3602  *
3603  * Check permission before getting the ioprio value of @p.
3604  *
3605  * Return: Returns 0 if permission is granted.
3606  */
security_task_getioprio(struct task_struct * p)3607 int security_task_getioprio(struct task_struct *p)
3608 {
3609 	return call_int_hook(task_getioprio, p);
3610 }
3611 
3612 /**
3613  * security_task_prlimit() - Check if get/setting resources limits is allowed
3614  * @cred: current task credentials
3615  * @tcred: target task credentials
3616  * @flags: LSM_PRLIMIT_* flag bits indicating a get/set/both
3617  *
3618  * Check permission before getting and/or setting the resource limits of
3619  * another task.
3620  *
3621  * Return: Returns 0 if permission is granted.
3622  */
security_task_prlimit(const struct cred * cred,const struct cred * tcred,unsigned int flags)3623 int security_task_prlimit(const struct cred *cred, const struct cred *tcred,
3624 			  unsigned int flags)
3625 {
3626 	return call_int_hook(task_prlimit, cred, tcred, flags);
3627 }
3628 
3629 /**
3630  * security_task_setrlimit() - Check if setting a new rlimit value is allowed
3631  * @p: target task's group leader
3632  * @resource: resource whose limit is being set
3633  * @new_rlim: new resource limit
3634  *
3635  * Check permission before setting the resource limits of process @p for
3636  * @resource to @new_rlim.  The old resource limit values can be examined by
3637  * dereferencing (p->signal->rlim + resource).
3638  *
3639  * Return: Returns 0 if permission is granted.
3640  */
security_task_setrlimit(struct task_struct * p,unsigned int resource,struct rlimit * new_rlim)3641 int security_task_setrlimit(struct task_struct *p, unsigned int resource,
3642 			    struct rlimit *new_rlim)
3643 {
3644 	return call_int_hook(task_setrlimit, p, resource, new_rlim);
3645 }
3646 
3647 /**
3648  * security_task_setscheduler() - Check if setting sched policy/param is allowed
3649  * @p: target task
3650  *
3651  * Check permission before setting scheduling policy and/or parameters of
3652  * process @p.
3653  *
3654  * Return: Returns 0 if permission is granted.
3655  */
security_task_setscheduler(struct task_struct * p)3656 int security_task_setscheduler(struct task_struct *p)
3657 {
3658 	return call_int_hook(task_setscheduler, p);
3659 }
3660 
3661 /**
3662  * security_task_getscheduler() - Check if getting scheduling info is allowed
3663  * @p: target task
3664  *
3665  * Check permission before obtaining scheduling information for process @p.
3666  *
3667  * Return: Returns 0 if permission is granted.
3668  */
security_task_getscheduler(struct task_struct * p)3669 int security_task_getscheduler(struct task_struct *p)
3670 {
3671 	return call_int_hook(task_getscheduler, p);
3672 }
3673 
3674 /**
3675  * security_task_movememory() - Check if moving memory is allowed
3676  * @p: task
3677  *
3678  * Check permission before moving memory owned by process @p.
3679  *
3680  * Return: Returns 0 if permission is granted.
3681  */
security_task_movememory(struct task_struct * p)3682 int security_task_movememory(struct task_struct *p)
3683 {
3684 	return call_int_hook(task_movememory, p);
3685 }
3686 
3687 /**
3688  * security_task_kill() - Check if sending a signal is allowed
3689  * @p: target process
3690  * @info: signal information
3691  * @sig: signal value
3692  * @cred: credentials of the signal sender, NULL if @current
3693  *
3694  * Check permission before sending signal @sig to @p.  @info can be NULL, the
3695  * constant 1, or a pointer to a kernel_siginfo structure.  If @info is 1 or
3696  * SI_FROMKERNEL(info) is true, then the signal should be viewed as coming from
3697  * the kernel and should typically be permitted.  SIGIO signals are handled
3698  * separately by the send_sigiotask hook in file_security_ops.
3699  *
3700  * Return: Returns 0 if permission is granted.
3701  */
security_task_kill(struct task_struct * p,struct kernel_siginfo * info,int sig,const struct cred * cred)3702 int security_task_kill(struct task_struct *p, struct kernel_siginfo *info,
3703 		       int sig, const struct cred *cred)
3704 {
3705 	return call_int_hook(task_kill, p, info, sig, cred);
3706 }
3707 
3708 /**
3709  * security_task_prctl() - Check if a prctl op is allowed
3710  * @option: operation
3711  * @arg2: argument
3712  * @arg3: argument
3713  * @arg4: argument
3714  * @arg5: argument
3715  *
3716  * Check permission before performing a process control operation on the
3717  * current process.
3718  *
3719  * Return: Return -ENOSYS if no-one wanted to handle this op, any other value
3720  *         to cause prctl() to return immediately with that value.
3721  */
security_task_prctl(int option,unsigned long arg2,unsigned long arg3,unsigned long arg4,unsigned long arg5)3722 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
3723 			unsigned long arg4, unsigned long arg5)
3724 {
3725 	int thisrc;
3726 	int rc = LSM_RET_DEFAULT(task_prctl);
3727 	struct lsm_static_call *scall;
3728 
3729 	lsm_for_each_hook(scall, task_prctl) {
3730 		thisrc = scall->hl->hook.task_prctl(option, arg2, arg3, arg4, arg5);
3731 		if (thisrc != LSM_RET_DEFAULT(task_prctl)) {
3732 			rc = thisrc;
3733 			if (thisrc != 0)
3734 				break;
3735 		}
3736 	}
3737 	return rc;
3738 }
3739 
3740 /**
3741  * security_task_to_inode() - Set the security attributes of a task's inode
3742  * @p: task
3743  * @inode: inode
3744  *
3745  * Set the security attributes for an inode based on an associated task's
3746  * security attributes, e.g. for /proc/pid inodes.
3747  */
security_task_to_inode(struct task_struct * p,struct inode * inode)3748 void security_task_to_inode(struct task_struct *p, struct inode *inode)
3749 {
3750 	call_void_hook(task_to_inode, p, inode);
3751 }
3752 
3753 /**
3754  * security_create_user_ns() - Check if creating a new userns is allowed
3755  * @cred: prepared creds
3756  *
3757  * Check permission prior to creating a new user namespace.
3758  *
3759  * Return: Returns 0 if successful, otherwise < 0 error code.
3760  */
security_create_user_ns(const struct cred * cred)3761 int security_create_user_ns(const struct cred *cred)
3762 {
3763 	return call_int_hook(userns_create, cred);
3764 }
3765 
3766 /**
3767  * security_ipc_permission() - Check if sysv ipc access is allowed
3768  * @ipcp: ipc permission structure
3769  * @flag: requested permissions
3770  *
3771  * Check permissions for access to IPC.
3772  *
3773  * Return: Returns 0 if permission is granted.
3774  */
security_ipc_permission(struct kern_ipc_perm * ipcp,short flag)3775 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
3776 {
3777 	return call_int_hook(ipc_permission, ipcp, flag);
3778 }
3779 
3780 /**
3781  * security_ipc_getlsmprop() - Get the sysv ipc object LSM data
3782  * @ipcp: ipc permission structure
3783  * @prop: pointer to lsm information
3784  *
3785  * Get the lsm information associated with the ipc object.
3786  */
3787 
security_ipc_getlsmprop(struct kern_ipc_perm * ipcp,struct lsm_prop * prop)3788 void security_ipc_getlsmprop(struct kern_ipc_perm *ipcp, struct lsm_prop *prop)
3789 {
3790 	lsmprop_init(prop);
3791 	call_void_hook(ipc_getlsmprop, ipcp, prop);
3792 }
3793 
3794 /**
3795  * security_msg_msg_alloc() - Allocate a sysv ipc message LSM blob
3796  * @msg: message structure
3797  *
3798  * Allocate and attach a security structure to the msg->security field.  The
3799  * security field is initialized to NULL when the structure is first created.
3800  *
3801  * Return: Return 0 if operation was successful and permission is granted.
3802  */
security_msg_msg_alloc(struct msg_msg * msg)3803 int security_msg_msg_alloc(struct msg_msg *msg)
3804 {
3805 	int rc = lsm_msg_msg_alloc(msg);
3806 
3807 	if (unlikely(rc))
3808 		return rc;
3809 	rc = call_int_hook(msg_msg_alloc_security, msg);
3810 	if (unlikely(rc))
3811 		security_msg_msg_free(msg);
3812 	return rc;
3813 }
3814 
3815 /**
3816  * security_msg_msg_free() - Free a sysv ipc message LSM blob
3817  * @msg: message structure
3818  *
3819  * Deallocate the security structure for this message.
3820  */
security_msg_msg_free(struct msg_msg * msg)3821 void security_msg_msg_free(struct msg_msg *msg)
3822 {
3823 	call_void_hook(msg_msg_free_security, msg);
3824 	kfree(msg->security);
3825 	msg->security = NULL;
3826 }
3827 
3828 /**
3829  * security_msg_queue_alloc() - Allocate a sysv ipc msg queue LSM blob
3830  * @msq: sysv ipc permission structure
3831  *
3832  * Allocate and attach a security structure to @msg. The security field is
3833  * initialized to NULL when the structure is first created.
3834  *
3835  * Return: Returns 0 if operation was successful and permission is granted.
3836  */
security_msg_queue_alloc(struct kern_ipc_perm * msq)3837 int security_msg_queue_alloc(struct kern_ipc_perm *msq)
3838 {
3839 	int rc = lsm_ipc_alloc(msq);
3840 
3841 	if (unlikely(rc))
3842 		return rc;
3843 	rc = call_int_hook(msg_queue_alloc_security, msq);
3844 	if (unlikely(rc))
3845 		security_msg_queue_free(msq);
3846 	return rc;
3847 }
3848 
3849 /**
3850  * security_msg_queue_free() - Free a sysv ipc msg queue LSM blob
3851  * @msq: sysv ipc permission structure
3852  *
3853  * Deallocate security field @perm->security for the message queue.
3854  */
security_msg_queue_free(struct kern_ipc_perm * msq)3855 void security_msg_queue_free(struct kern_ipc_perm *msq)
3856 {
3857 	call_void_hook(msg_queue_free_security, msq);
3858 	kfree(msq->security);
3859 	msq->security = NULL;
3860 }
3861 
3862 /**
3863  * security_msg_queue_associate() - Check if a msg queue operation is allowed
3864  * @msq: sysv ipc permission structure
3865  * @msqflg: operation flags
3866  *
3867  * Check permission when a message queue is requested through the msgget system
3868  * call. This hook is only called when returning the message queue identifier
3869  * for an existing message queue, not when a new message queue is created.
3870  *
3871  * Return: Return 0 if permission is granted.
3872  */
security_msg_queue_associate(struct kern_ipc_perm * msq,int msqflg)3873 int security_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg)
3874 {
3875 	return call_int_hook(msg_queue_associate, msq, msqflg);
3876 }
3877 
3878 /**
3879  * security_msg_queue_msgctl() - Check if a msg queue operation is allowed
3880  * @msq: sysv ipc permission structure
3881  * @cmd: operation
3882  *
3883  * Check permission when a message control operation specified by @cmd is to be
3884  * performed on the message queue with permissions.
3885  *
3886  * Return: Returns 0 if permission is granted.
3887  */
security_msg_queue_msgctl(struct kern_ipc_perm * msq,int cmd)3888 int security_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd)
3889 {
3890 	return call_int_hook(msg_queue_msgctl, msq, cmd);
3891 }
3892 
3893 /**
3894  * security_msg_queue_msgsnd() - Check if sending a sysv ipc message is allowed
3895  * @msq: sysv ipc permission structure
3896  * @msg: message
3897  * @msqflg: operation flags
3898  *
3899  * Check permission before a message, @msg, is enqueued on the message queue
3900  * with permissions specified in @msq.
3901  *
3902  * Return: Returns 0 if permission is granted.
3903  */
security_msg_queue_msgsnd(struct kern_ipc_perm * msq,struct msg_msg * msg,int msqflg)3904 int security_msg_queue_msgsnd(struct kern_ipc_perm *msq,
3905 			      struct msg_msg *msg, int msqflg)
3906 {
3907 	return call_int_hook(msg_queue_msgsnd, msq, msg, msqflg);
3908 }
3909 
3910 /**
3911  * security_msg_queue_msgrcv() - Check if receiving a sysv ipc msg is allowed
3912  * @msq: sysv ipc permission structure
3913  * @msg: message
3914  * @target: target task
3915  * @type: type of message requested
3916  * @mode: operation flags
3917  *
3918  * Check permission before a message, @msg, is removed from the message	queue.
3919  * The @target task structure contains a pointer to the process that will be
3920  * receiving the message (not equal to the current process when inline receives
3921  * are being performed).
3922  *
3923  * Return: Returns 0 if permission is granted.
3924  */
security_msg_queue_msgrcv(struct kern_ipc_perm * msq,struct msg_msg * msg,struct task_struct * target,long type,int mode)3925 int security_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg,
3926 			      struct task_struct *target, long type, int mode)
3927 {
3928 	return call_int_hook(msg_queue_msgrcv, msq, msg, target, type, mode);
3929 }
3930 
3931 /**
3932  * security_shm_alloc() - Allocate a sysv shm LSM blob
3933  * @shp: sysv ipc permission structure
3934  *
3935  * Allocate and attach a security structure to the @shp security field.  The
3936  * security field is initialized to NULL when the structure is first created.
3937  *
3938  * Return: Returns 0 if operation was successful and permission is granted.
3939  */
security_shm_alloc(struct kern_ipc_perm * shp)3940 int security_shm_alloc(struct kern_ipc_perm *shp)
3941 {
3942 	int rc = lsm_ipc_alloc(shp);
3943 
3944 	if (unlikely(rc))
3945 		return rc;
3946 	rc = call_int_hook(shm_alloc_security, shp);
3947 	if (unlikely(rc))
3948 		security_shm_free(shp);
3949 	return rc;
3950 }
3951 
3952 /**
3953  * security_shm_free() - Free a sysv shm LSM blob
3954  * @shp: sysv ipc permission structure
3955  *
3956  * Deallocate the security structure @perm->security for the memory segment.
3957  */
security_shm_free(struct kern_ipc_perm * shp)3958 void security_shm_free(struct kern_ipc_perm *shp)
3959 {
3960 	call_void_hook(shm_free_security, shp);
3961 	kfree(shp->security);
3962 	shp->security = NULL;
3963 }
3964 
3965 /**
3966  * security_shm_associate() - Check if a sysv shm operation is allowed
3967  * @shp: sysv ipc permission structure
3968  * @shmflg: operation flags
3969  *
3970  * Check permission when a shared memory region is requested through the shmget
3971  * system call. This hook is only called when returning the shared memory
3972  * region identifier for an existing region, not when a new shared memory
3973  * region is created.
3974  *
3975  * Return: Returns 0 if permission is granted.
3976  */
security_shm_associate(struct kern_ipc_perm * shp,int shmflg)3977 int security_shm_associate(struct kern_ipc_perm *shp, int shmflg)
3978 {
3979 	return call_int_hook(shm_associate, shp, shmflg);
3980 }
3981 
3982 /**
3983  * security_shm_shmctl() - Check if a sysv shm operation is allowed
3984  * @shp: sysv ipc permission structure
3985  * @cmd: operation
3986  *
3987  * Check permission when a shared memory control operation specified by @cmd is
3988  * to be performed on the shared memory region with permissions in @shp.
3989  *
3990  * Return: Return 0 if permission is granted.
3991  */
security_shm_shmctl(struct kern_ipc_perm * shp,int cmd)3992 int security_shm_shmctl(struct kern_ipc_perm *shp, int cmd)
3993 {
3994 	return call_int_hook(shm_shmctl, shp, cmd);
3995 }
3996 
3997 /**
3998  * security_shm_shmat() - Check if a sysv shm attach operation is allowed
3999  * @shp: sysv ipc permission structure
4000  * @shmaddr: address of memory region to attach
4001  * @shmflg: operation flags
4002  *
4003  * Check permissions prior to allowing the shmat system call to attach the
4004  * shared memory segment with permissions @shp to the data segment of the
4005  * calling process. The attaching address is specified by @shmaddr.
4006  *
4007  * Return: Returns 0 if permission is granted.
4008  */
security_shm_shmat(struct kern_ipc_perm * shp,char __user * shmaddr,int shmflg)4009 int security_shm_shmat(struct kern_ipc_perm *shp,
4010 		       char __user *shmaddr, int shmflg)
4011 {
4012 	return call_int_hook(shm_shmat, shp, shmaddr, shmflg);
4013 }
4014 
4015 /**
4016  * security_sem_alloc() - Allocate a sysv semaphore LSM blob
4017  * @sma: sysv ipc permission structure
4018  *
4019  * Allocate and attach a security structure to the @sma security field. The
4020  * security field is initialized to NULL when the structure is first created.
4021  *
4022  * Return: Returns 0 if operation was successful and permission is granted.
4023  */
security_sem_alloc(struct kern_ipc_perm * sma)4024 int security_sem_alloc(struct kern_ipc_perm *sma)
4025 {
4026 	int rc = lsm_ipc_alloc(sma);
4027 
4028 	if (unlikely(rc))
4029 		return rc;
4030 	rc = call_int_hook(sem_alloc_security, sma);
4031 	if (unlikely(rc))
4032 		security_sem_free(sma);
4033 	return rc;
4034 }
4035 
4036 /**
4037  * security_sem_free() - Free a sysv semaphore LSM blob
4038  * @sma: sysv ipc permission structure
4039  *
4040  * Deallocate security structure @sma->security for the semaphore.
4041  */
security_sem_free(struct kern_ipc_perm * sma)4042 void security_sem_free(struct kern_ipc_perm *sma)
4043 {
4044 	call_void_hook(sem_free_security, sma);
4045 	kfree(sma->security);
4046 	sma->security = NULL;
4047 }
4048 
4049 /**
4050  * security_sem_associate() - Check if a sysv semaphore operation is allowed
4051  * @sma: sysv ipc permission structure
4052  * @semflg: operation flags
4053  *
4054  * Check permission when a semaphore is requested through the semget system
4055  * call. This hook is only called when returning the semaphore identifier for
4056  * an existing semaphore, not when a new one must be created.
4057  *
4058  * Return: Returns 0 if permission is granted.
4059  */
security_sem_associate(struct kern_ipc_perm * sma,int semflg)4060 int security_sem_associate(struct kern_ipc_perm *sma, int semflg)
4061 {
4062 	return call_int_hook(sem_associate, sma, semflg);
4063 }
4064 
4065 /**
4066  * security_sem_semctl() - Check if a sysv semaphore operation is allowed
4067  * @sma: sysv ipc permission structure
4068  * @cmd: operation
4069  *
4070  * Check permission when a semaphore operation specified by @cmd is to be
4071  * performed on the semaphore.
4072  *
4073  * Return: Returns 0 if permission is granted.
4074  */
security_sem_semctl(struct kern_ipc_perm * sma,int cmd)4075 int security_sem_semctl(struct kern_ipc_perm *sma, int cmd)
4076 {
4077 	return call_int_hook(sem_semctl, sma, cmd);
4078 }
4079 
4080 /**
4081  * security_sem_semop() - Check if a sysv semaphore operation is allowed
4082  * @sma: sysv ipc permission structure
4083  * @sops: operations to perform
4084  * @nsops: number of operations
4085  * @alter: flag indicating changes will be made
4086  *
4087  * Check permissions before performing operations on members of the semaphore
4088  * set. If the @alter flag is nonzero, the semaphore set may be modified.
4089  *
4090  * Return: Returns 0 if permission is granted.
4091  */
security_sem_semop(struct kern_ipc_perm * sma,struct sembuf * sops,unsigned nsops,int alter)4092 int security_sem_semop(struct kern_ipc_perm *sma, struct sembuf *sops,
4093 		       unsigned nsops, int alter)
4094 {
4095 	return call_int_hook(sem_semop, sma, sops, nsops, alter);
4096 }
4097 
4098 /**
4099  * security_d_instantiate() - Populate an inode's LSM state based on a dentry
4100  * @dentry: dentry
4101  * @inode: inode
4102  *
4103  * Fill in @inode security information for a @dentry if allowed.
4104  */
security_d_instantiate(struct dentry * dentry,struct inode * inode)4105 void security_d_instantiate(struct dentry *dentry, struct inode *inode)
4106 {
4107 	if (unlikely(inode && IS_PRIVATE(inode)))
4108 		return;
4109 	call_void_hook(d_instantiate, dentry, inode);
4110 }
4111 EXPORT_SYMBOL(security_d_instantiate);
4112 
4113 /*
4114  * Please keep this in sync with it's counterpart in security/lsm_syscalls.c
4115  */
4116 
4117 /**
4118  * security_getselfattr - Read an LSM attribute of the current process.
4119  * @attr: which attribute to return
4120  * @uctx: the user-space destination for the information, or NULL
4121  * @size: pointer to the size of space available to receive the data
4122  * @flags: special handling options. LSM_FLAG_SINGLE indicates that only
4123  * attributes associated with the LSM identified in the passed @ctx be
4124  * reported.
4125  *
4126  * A NULL value for @uctx can be used to get both the number of attributes
4127  * and the size of the data.
4128  *
4129  * Returns the number of attributes found on success, negative value
4130  * on error. @size is reset to the total size of the data.
4131  * If @size is insufficient to contain the data -E2BIG is returned.
4132  */
security_getselfattr(unsigned int attr,struct lsm_ctx __user * uctx,u32 __user * size,u32 flags)4133 int security_getselfattr(unsigned int attr, struct lsm_ctx __user *uctx,
4134 			 u32 __user *size, u32 flags)
4135 {
4136 	struct lsm_static_call *scall;
4137 	struct lsm_ctx lctx = { .id = LSM_ID_UNDEF, };
4138 	u8 __user *base = (u8 __user *)uctx;
4139 	u32 entrysize;
4140 	u32 total = 0;
4141 	u32 left;
4142 	bool toobig = false;
4143 	bool single = false;
4144 	int count = 0;
4145 	int rc;
4146 
4147 	if (attr == LSM_ATTR_UNDEF)
4148 		return -EINVAL;
4149 	if (size == NULL)
4150 		return -EINVAL;
4151 	if (get_user(left, size))
4152 		return -EFAULT;
4153 
4154 	if (flags) {
4155 		/*
4156 		 * Only flag supported is LSM_FLAG_SINGLE
4157 		 */
4158 		if (flags != LSM_FLAG_SINGLE || !uctx)
4159 			return -EINVAL;
4160 		if (copy_from_user(&lctx, uctx, sizeof(lctx)))
4161 			return -EFAULT;
4162 		/*
4163 		 * If the LSM ID isn't specified it is an error.
4164 		 */
4165 		if (lctx.id == LSM_ID_UNDEF)
4166 			return -EINVAL;
4167 		single = true;
4168 	}
4169 
4170 	/*
4171 	 * In the usual case gather all the data from the LSMs.
4172 	 * In the single case only get the data from the LSM specified.
4173 	 */
4174 	lsm_for_each_hook(scall, getselfattr) {
4175 		if (single && lctx.id != scall->hl->lsmid->id)
4176 			continue;
4177 		entrysize = left;
4178 		if (base)
4179 			uctx = (struct lsm_ctx __user *)(base + total);
4180 		rc = scall->hl->hook.getselfattr(attr, uctx, &entrysize, flags);
4181 		if (rc == -EOPNOTSUPP)
4182 			continue;
4183 		if (rc == -E2BIG) {
4184 			rc = 0;
4185 			left = 0;
4186 			toobig = true;
4187 		} else if (rc < 0)
4188 			return rc;
4189 		else
4190 			left -= entrysize;
4191 
4192 		total += entrysize;
4193 		count += rc;
4194 		if (single)
4195 			break;
4196 	}
4197 	if (put_user(total, size))
4198 		return -EFAULT;
4199 	if (toobig)
4200 		return -E2BIG;
4201 	if (count == 0)
4202 		return LSM_RET_DEFAULT(getselfattr);
4203 	return count;
4204 }
4205 
4206 /*
4207  * Please keep this in sync with it's counterpart in security/lsm_syscalls.c
4208  */
4209 
4210 /**
4211  * security_setselfattr - Set an LSM attribute on the current process.
4212  * @attr: which attribute to set
4213  * @uctx: the user-space source for the information
4214  * @size: the size of the data
4215  * @flags: reserved for future use, must be 0
4216  *
4217  * Set an LSM attribute for the current process. The LSM, attribute
4218  * and new value are included in @uctx.
4219  *
4220  * Returns 0 on success, -EINVAL if the input is inconsistent, -EFAULT
4221  * if the user buffer is inaccessible, E2BIG if size is too big, or an
4222  * LSM specific failure.
4223  */
security_setselfattr(unsigned int attr,struct lsm_ctx __user * uctx,u32 size,u32 flags)4224 int security_setselfattr(unsigned int attr, struct lsm_ctx __user *uctx,
4225 			 u32 size, u32 flags)
4226 {
4227 	struct lsm_static_call *scall;
4228 	struct lsm_ctx *lctx;
4229 	int rc = LSM_RET_DEFAULT(setselfattr);
4230 	u64 required_len;
4231 
4232 	if (flags)
4233 		return -EINVAL;
4234 	if (size < sizeof(*lctx))
4235 		return -EINVAL;
4236 	if (size > PAGE_SIZE)
4237 		return -E2BIG;
4238 
4239 	lctx = memdup_user(uctx, size);
4240 	if (IS_ERR(lctx))
4241 		return PTR_ERR(lctx);
4242 
4243 	if (size < lctx->len ||
4244 	    check_add_overflow(sizeof(*lctx), lctx->ctx_len, &required_len) ||
4245 	    lctx->len < required_len) {
4246 		rc = -EINVAL;
4247 		goto free_out;
4248 	}
4249 
4250 	lsm_for_each_hook(scall, setselfattr)
4251 		if ((scall->hl->lsmid->id) == lctx->id) {
4252 			rc = scall->hl->hook.setselfattr(attr, lctx, size, flags);
4253 			break;
4254 		}
4255 
4256 free_out:
4257 	kfree(lctx);
4258 	return rc;
4259 }
4260 
4261 /**
4262  * security_getprocattr() - Read an attribute for a task
4263  * @p: the task
4264  * @lsmid: LSM identification
4265  * @name: attribute name
4266  * @value: attribute value
4267  *
4268  * Read attribute @name for task @p and store it into @value if allowed.
4269  *
4270  * Return: Returns the length of @value on success, a negative value otherwise.
4271  */
security_getprocattr(struct task_struct * p,int lsmid,const char * name,char ** value)4272 int security_getprocattr(struct task_struct *p, int lsmid, const char *name,
4273 			 char **value)
4274 {
4275 	struct lsm_static_call *scall;
4276 
4277 	lsm_for_each_hook(scall, getprocattr) {
4278 		if (lsmid != 0 && lsmid != scall->hl->lsmid->id)
4279 			continue;
4280 		return scall->hl->hook.getprocattr(p, name, value);
4281 	}
4282 	return LSM_RET_DEFAULT(getprocattr);
4283 }
4284 
4285 /**
4286  * security_setprocattr() - Set an attribute for a task
4287  * @lsmid: LSM identification
4288  * @name: attribute name
4289  * @value: attribute value
4290  * @size: attribute value size
4291  *
4292  * Write (set) the current task's attribute @name to @value, size @size if
4293  * allowed.
4294  *
4295  * Return: Returns bytes written on success, a negative value otherwise.
4296  */
security_setprocattr(int lsmid,const char * name,void * value,size_t size)4297 int security_setprocattr(int lsmid, const char *name, void *value, size_t size)
4298 {
4299 	struct lsm_static_call *scall;
4300 
4301 	lsm_for_each_hook(scall, setprocattr) {
4302 		if (lsmid != 0 && lsmid != scall->hl->lsmid->id)
4303 			continue;
4304 		return scall->hl->hook.setprocattr(name, value, size);
4305 	}
4306 	return LSM_RET_DEFAULT(setprocattr);
4307 }
4308 
4309 /**
4310  * security_ismaclabel() - Check if the named attribute is a MAC label
4311  * @name: full extended attribute name
4312  *
4313  * Check if the extended attribute specified by @name represents a MAC label.
4314  *
4315  * Return: Returns 1 if name is a MAC attribute otherwise returns 0.
4316  */
security_ismaclabel(const char * name)4317 int security_ismaclabel(const char *name)
4318 {
4319 	return call_int_hook(ismaclabel, name);
4320 }
4321 EXPORT_SYMBOL(security_ismaclabel);
4322 
4323 /**
4324  * security_secid_to_secctx() - Convert a secid to a secctx
4325  * @secid: secid
4326  * @cp: the LSM context
4327  *
4328  * Convert secid to security context.  If @cp is NULL the length of the
4329  * result will be returned, but no data will be returned.  This
4330  * does mean that the length could change between calls to check the length and
4331  * the next call which actually allocates and returns the data.
4332  *
4333  * Return: Return length of data on success, error on failure.
4334  */
security_secid_to_secctx(u32 secid,struct lsm_context * cp)4335 int security_secid_to_secctx(u32 secid, struct lsm_context *cp)
4336 {
4337 	return call_int_hook(secid_to_secctx, secid, cp);
4338 }
4339 EXPORT_SYMBOL(security_secid_to_secctx);
4340 
4341 /**
4342  * security_lsmprop_to_secctx() - Convert a lsm_prop to a secctx
4343  * @prop: lsm specific information
4344  * @cp: the LSM context
4345  *
4346  * Convert a @prop entry to security context.  If @cp is NULL the
4347  * length of the result will be returned. This does mean that the
4348  * length could change between calls to check the length and the
4349  * next call which actually allocates and returns the @cp.
4350  *
4351  * Return: Return length of data on success, error on failure.
4352  */
security_lsmprop_to_secctx(struct lsm_prop * prop,struct lsm_context * cp)4353 int security_lsmprop_to_secctx(struct lsm_prop *prop, struct lsm_context *cp)
4354 {
4355 	return call_int_hook(lsmprop_to_secctx, prop, cp);
4356 }
4357 EXPORT_SYMBOL(security_lsmprop_to_secctx);
4358 
4359 /**
4360  * security_secctx_to_secid() - Convert a secctx to a secid
4361  * @secdata: secctx
4362  * @seclen: length of secctx
4363  * @secid: secid
4364  *
4365  * Convert security context to secid.
4366  *
4367  * Return: Returns 0 on success, error on failure.
4368  */
security_secctx_to_secid(const char * secdata,u32 seclen,u32 * secid)4369 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
4370 {
4371 	*secid = 0;
4372 	return call_int_hook(secctx_to_secid, secdata, seclen, secid);
4373 }
4374 EXPORT_SYMBOL(security_secctx_to_secid);
4375 
4376 /**
4377  * security_release_secctx() - Free a secctx buffer
4378  * @cp: the security context
4379  *
4380  * Release the security context.
4381  */
security_release_secctx(struct lsm_context * cp)4382 void security_release_secctx(struct lsm_context *cp)
4383 {
4384 	call_void_hook(release_secctx, cp);
4385 	memset(cp, 0, sizeof(*cp));
4386 }
4387 EXPORT_SYMBOL(security_release_secctx);
4388 
4389 /**
4390  * security_inode_invalidate_secctx() - Invalidate an inode's security label
4391  * @inode: inode
4392  *
4393  * Notify the security module that it must revalidate the security context of
4394  * an inode.
4395  */
security_inode_invalidate_secctx(struct inode * inode)4396 void security_inode_invalidate_secctx(struct inode *inode)
4397 {
4398 	call_void_hook(inode_invalidate_secctx, inode);
4399 }
4400 EXPORT_SYMBOL(security_inode_invalidate_secctx);
4401 
4402 /**
4403  * security_inode_notifysecctx() - Notify the LSM of an inode's security label
4404  * @inode: inode
4405  * @ctx: secctx
4406  * @ctxlen: length of secctx
4407  *
4408  * Notify the security module of what the security context of an inode should
4409  * be.  Initializes the incore security context managed by the security module
4410  * for this inode.  Example usage: NFS client invokes this hook to initialize
4411  * the security context in its incore inode to the value provided by the server
4412  * for the file when the server returned the file's attributes to the client.
4413  * Must be called with inode->i_mutex locked.
4414  *
4415  * Return: Returns 0 on success, error on failure.
4416  */
security_inode_notifysecctx(struct inode * inode,void * ctx,u32 ctxlen)4417 int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
4418 {
4419 	return call_int_hook(inode_notifysecctx, inode, ctx, ctxlen);
4420 }
4421 EXPORT_SYMBOL(security_inode_notifysecctx);
4422 
4423 /**
4424  * security_inode_setsecctx() - Change the security label of an inode
4425  * @dentry: inode
4426  * @ctx: secctx
4427  * @ctxlen: length of secctx
4428  *
4429  * Change the security context of an inode.  Updates the incore security
4430  * context managed by the security module and invokes the fs code as needed
4431  * (via __vfs_setxattr_noperm) to update any backing xattrs that represent the
4432  * context.  Example usage: NFS server invokes this hook to change the security
4433  * context in its incore inode and on the backing filesystem to a value
4434  * provided by the client on a SETATTR operation.  Must be called with
4435  * inode->i_mutex locked.
4436  *
4437  * Return: Returns 0 on success, error on failure.
4438  */
security_inode_setsecctx(struct dentry * dentry,void * ctx,u32 ctxlen)4439 int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
4440 {
4441 	return call_int_hook(inode_setsecctx, dentry, ctx, ctxlen);
4442 }
4443 EXPORT_SYMBOL(security_inode_setsecctx);
4444 
4445 /**
4446  * security_inode_getsecctx() - Get the security label of an inode
4447  * @inode: inode
4448  * @cp: security context
4449  *
4450  * On success, returns 0 and fills out @cp with the security context
4451  * for the given @inode.
4452  *
4453  * Return: Returns 0 on success, error on failure.
4454  */
security_inode_getsecctx(struct inode * inode,struct lsm_context * cp)4455 int security_inode_getsecctx(struct inode *inode, struct lsm_context *cp)
4456 {
4457 	memset(cp, 0, sizeof(*cp));
4458 	return call_int_hook(inode_getsecctx, inode, cp);
4459 }
4460 EXPORT_SYMBOL(security_inode_getsecctx);
4461 
4462 #ifdef CONFIG_WATCH_QUEUE
4463 /**
4464  * security_post_notification() - Check if a watch notification can be posted
4465  * @w_cred: credentials of the task that set the watch
4466  * @cred: credentials of the task which triggered the watch
4467  * @n: the notification
4468  *
4469  * Check to see if a watch notification can be posted to a particular queue.
4470  *
4471  * Return: Returns 0 if permission is granted.
4472  */
security_post_notification(const struct cred * w_cred,const struct cred * cred,struct watch_notification * n)4473 int security_post_notification(const struct cred *w_cred,
4474 			       const struct cred *cred,
4475 			       struct watch_notification *n)
4476 {
4477 	return call_int_hook(post_notification, w_cred, cred, n);
4478 }
4479 #endif /* CONFIG_WATCH_QUEUE */
4480 
4481 #ifdef CONFIG_KEY_NOTIFICATIONS
4482 /**
4483  * security_watch_key() - Check if a task is allowed to watch for key events
4484  * @key: the key to watch
4485  *
4486  * Check to see if a process is allowed to watch for event notifications from
4487  * a key or keyring.
4488  *
4489  * Return: Returns 0 if permission is granted.
4490  */
security_watch_key(struct key * key)4491 int security_watch_key(struct key *key)
4492 {
4493 	return call_int_hook(watch_key, key);
4494 }
4495 #endif /* CONFIG_KEY_NOTIFICATIONS */
4496 
4497 #ifdef CONFIG_SECURITY_NETWORK
4498 /**
4499  * security_netlink_send() - Save info and check if netlink sending is allowed
4500  * @sk: sending socket
4501  * @skb: netlink message
4502  *
4503  * Save security information for a netlink message so that permission checking
4504  * can be performed when the message is processed.  The security information
4505  * can be saved using the eff_cap field of the netlink_skb_parms structure.
4506  * Also may be used to provide fine grained control over message transmission.
4507  *
4508  * Return: Returns 0 if the information was successfully saved and message is
4509  *         allowed to be transmitted.
4510  */
security_netlink_send(struct sock * sk,struct sk_buff * skb)4511 int security_netlink_send(struct sock *sk, struct sk_buff *skb)
4512 {
4513 	return call_int_hook(netlink_send, sk, skb);
4514 }
4515 
4516 /**
4517  * security_unix_stream_connect() - Check if a AF_UNIX stream is allowed
4518  * @sock: originating sock
4519  * @other: peer sock
4520  * @newsk: new sock
4521  *
4522  * Check permissions before establishing a Unix domain stream connection
4523  * between @sock and @other.
4524  *
4525  * The @unix_stream_connect and @unix_may_send hooks were necessary because
4526  * Linux provides an alternative to the conventional file name space for Unix
4527  * domain sockets.  Whereas binding and connecting to sockets in the file name
4528  * space is mediated by the typical file permissions (and caught by the mknod
4529  * and permission hooks in inode_security_ops), binding and connecting to
4530  * sockets in the abstract name space is completely unmediated.  Sufficient
4531  * control of Unix domain sockets in the abstract name space isn't possible
4532  * using only the socket layer hooks, since we need to know the actual target
4533  * socket, which is not looked up until we are inside the af_unix code.
4534  *
4535  * Return: Returns 0 if permission is granted.
4536  */
security_unix_stream_connect(struct sock * sock,struct sock * other,struct sock * newsk)4537 int security_unix_stream_connect(struct sock *sock, struct sock *other,
4538 				 struct sock *newsk)
4539 {
4540 	return call_int_hook(unix_stream_connect, sock, other, newsk);
4541 }
4542 EXPORT_SYMBOL(security_unix_stream_connect);
4543 
4544 /**
4545  * security_unix_may_send() - Check if AF_UNIX socket can send datagrams
4546  * @sock: originating sock
4547  * @other: peer sock
4548  *
4549  * Check permissions before connecting or sending datagrams from @sock to
4550  * @other.
4551  *
4552  * The @unix_stream_connect and @unix_may_send hooks were necessary because
4553  * Linux provides an alternative to the conventional file name space for Unix
4554  * domain sockets.  Whereas binding and connecting to sockets in the file name
4555  * space is mediated by the typical file permissions (and caught by the mknod
4556  * and permission hooks in inode_security_ops), binding and connecting to
4557  * sockets in the abstract name space is completely unmediated.  Sufficient
4558  * control of Unix domain sockets in the abstract name space isn't possible
4559  * using only the socket layer hooks, since we need to know the actual target
4560  * socket, which is not looked up until we are inside the af_unix code.
4561  *
4562  * Return: Returns 0 if permission is granted.
4563  */
security_unix_may_send(struct socket * sock,struct socket * other)4564 int security_unix_may_send(struct socket *sock,  struct socket *other)
4565 {
4566 	return call_int_hook(unix_may_send, sock, other);
4567 }
4568 EXPORT_SYMBOL(security_unix_may_send);
4569 
4570 /**
4571  * security_socket_create() - Check if creating a new socket is allowed
4572  * @family: protocol family
4573  * @type: communications type
4574  * @protocol: requested protocol
4575  * @kern: set to 1 if a kernel socket is requested
4576  *
4577  * Check permissions prior to creating a new socket.
4578  *
4579  * Return: Returns 0 if permission is granted.
4580  */
security_socket_create(int family,int type,int protocol,int kern)4581 int security_socket_create(int family, int type, int protocol, int kern)
4582 {
4583 	return call_int_hook(socket_create, family, type, protocol, kern);
4584 }
4585 
4586 /**
4587  * security_socket_post_create() - Initialize a newly created socket
4588  * @sock: socket
4589  * @family: protocol family
4590  * @type: communications type
4591  * @protocol: requested protocol
4592  * @kern: set to 1 if a kernel socket is requested
4593  *
4594  * This hook allows a module to update or allocate a per-socket security
4595  * structure. Note that the security field was not added directly to the socket
4596  * structure, but rather, the socket security information is stored in the
4597  * associated inode.  Typically, the inode alloc_security hook will allocate
4598  * and attach security information to SOCK_INODE(sock)->i_security.  This hook
4599  * may be used to update the SOCK_INODE(sock)->i_security field with additional
4600  * information that wasn't available when the inode was allocated.
4601  *
4602  * Return: Returns 0 if permission is granted.
4603  */
security_socket_post_create(struct socket * sock,int family,int type,int protocol,int kern)4604 int security_socket_post_create(struct socket *sock, int family,
4605 				int type, int protocol, int kern)
4606 {
4607 	return call_int_hook(socket_post_create, sock, family, type,
4608 			     protocol, kern);
4609 }
4610 
4611 /**
4612  * security_socket_socketpair() - Check if creating a socketpair is allowed
4613  * @socka: first socket
4614  * @sockb: second socket
4615  *
4616  * Check permissions before creating a fresh pair of sockets.
4617  *
4618  * Return: Returns 0 if permission is granted and the connection was
4619  *         established.
4620  */
security_socket_socketpair(struct socket * socka,struct socket * sockb)4621 int security_socket_socketpair(struct socket *socka, struct socket *sockb)
4622 {
4623 	return call_int_hook(socket_socketpair, socka, sockb);
4624 }
4625 EXPORT_SYMBOL(security_socket_socketpair);
4626 
4627 /**
4628  * security_socket_bind() - Check if a socket bind operation is allowed
4629  * @sock: socket
4630  * @address: requested bind address
4631  * @addrlen: length of address
4632  *
4633  * Check permission before socket protocol layer bind operation is performed
4634  * and the socket @sock is bound to the address specified in the @address
4635  * parameter.
4636  *
4637  * Return: Returns 0 if permission is granted.
4638  */
security_socket_bind(struct socket * sock,struct sockaddr * address,int addrlen)4639 int security_socket_bind(struct socket *sock,
4640 			 struct sockaddr *address, int addrlen)
4641 {
4642 	return call_int_hook(socket_bind, sock, address, addrlen);
4643 }
4644 
4645 /**
4646  * security_socket_connect() - Check if a socket connect operation is allowed
4647  * @sock: socket
4648  * @address: address of remote connection point
4649  * @addrlen: length of address
4650  *
4651  * Check permission before socket protocol layer connect operation attempts to
4652  * connect socket @sock to a remote address, @address.
4653  *
4654  * Return: Returns 0 if permission is granted.
4655  */
security_socket_connect(struct socket * sock,struct sockaddr * address,int addrlen)4656 int security_socket_connect(struct socket *sock,
4657 			    struct sockaddr *address, int addrlen)
4658 {
4659 	return call_int_hook(socket_connect, sock, address, addrlen);
4660 }
4661 
4662 /**
4663  * security_socket_listen() - Check if a socket is allowed to listen
4664  * @sock: socket
4665  * @backlog: connection queue size
4666  *
4667  * Check permission before socket protocol layer listen operation.
4668  *
4669  * Return: Returns 0 if permission is granted.
4670  */
security_socket_listen(struct socket * sock,int backlog)4671 int security_socket_listen(struct socket *sock, int backlog)
4672 {
4673 	return call_int_hook(socket_listen, sock, backlog);
4674 }
4675 
4676 /**
4677  * security_socket_accept() - Check if a socket is allowed to accept connections
4678  * @sock: listening socket
4679  * @newsock: newly creation connection socket
4680  *
4681  * Check permission before accepting a new connection.  Note that the new
4682  * socket, @newsock, has been created and some information copied to it, but
4683  * the accept operation has not actually been performed.
4684  *
4685  * Return: Returns 0 if permission is granted.
4686  */
security_socket_accept(struct socket * sock,struct socket * newsock)4687 int security_socket_accept(struct socket *sock, struct socket *newsock)
4688 {
4689 	return call_int_hook(socket_accept, sock, newsock);
4690 }
4691 
4692 /**
4693  * security_socket_sendmsg() - Check if sending a message is allowed
4694  * @sock: sending socket
4695  * @msg: message to send
4696  * @size: size of message
4697  *
4698  * Check permission before transmitting a message to another socket.
4699  *
4700  * Return: Returns 0 if permission is granted.
4701  */
security_socket_sendmsg(struct socket * sock,struct msghdr * msg,int size)4702 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
4703 {
4704 	return call_int_hook(socket_sendmsg, sock, msg, size);
4705 }
4706 
4707 /**
4708  * security_socket_recvmsg() - Check if receiving a message is allowed
4709  * @sock: receiving socket
4710  * @msg: message to receive
4711  * @size: size of message
4712  * @flags: operational flags
4713  *
4714  * Check permission before receiving a message from a socket.
4715  *
4716  * Return: Returns 0 if permission is granted.
4717  */
security_socket_recvmsg(struct socket * sock,struct msghdr * msg,int size,int flags)4718 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
4719 			    int size, int flags)
4720 {
4721 	return call_int_hook(socket_recvmsg, sock, msg, size, flags);
4722 }
4723 
4724 /**
4725  * security_socket_getsockname() - Check if reading the socket addr is allowed
4726  * @sock: socket
4727  *
4728  * Check permission before reading the local address (name) of the socket
4729  * object.
4730  *
4731  * Return: Returns 0 if permission is granted.
4732  */
security_socket_getsockname(struct socket * sock)4733 int security_socket_getsockname(struct socket *sock)
4734 {
4735 	return call_int_hook(socket_getsockname, sock);
4736 }
4737 
4738 /**
4739  * security_socket_getpeername() - Check if reading the peer's addr is allowed
4740  * @sock: socket
4741  *
4742  * Check permission before the remote address (name) of a socket object.
4743  *
4744  * Return: Returns 0 if permission is granted.
4745  */
security_socket_getpeername(struct socket * sock)4746 int security_socket_getpeername(struct socket *sock)
4747 {
4748 	return call_int_hook(socket_getpeername, sock);
4749 }
4750 
4751 /**
4752  * security_socket_getsockopt() - Check if reading a socket option is allowed
4753  * @sock: socket
4754  * @level: option's protocol level
4755  * @optname: option name
4756  *
4757  * Check permissions before retrieving the options associated with socket
4758  * @sock.
4759  *
4760  * Return: Returns 0 if permission is granted.
4761  */
security_socket_getsockopt(struct socket * sock,int level,int optname)4762 int security_socket_getsockopt(struct socket *sock, int level, int optname)
4763 {
4764 	return call_int_hook(socket_getsockopt, sock, level, optname);
4765 }
4766 
4767 /**
4768  * security_socket_setsockopt() - Check if setting a socket option is allowed
4769  * @sock: socket
4770  * @level: option's protocol level
4771  * @optname: option name
4772  *
4773  * Check permissions before setting the options associated with socket @sock.
4774  *
4775  * Return: Returns 0 if permission is granted.
4776  */
security_socket_setsockopt(struct socket * sock,int level,int optname)4777 int security_socket_setsockopt(struct socket *sock, int level, int optname)
4778 {
4779 	return call_int_hook(socket_setsockopt, sock, level, optname);
4780 }
4781 
4782 /**
4783  * security_socket_shutdown() - Checks if shutting down the socket is allowed
4784  * @sock: socket
4785  * @how: flag indicating how sends and receives are handled
4786  *
4787  * Checks permission before all or part of a connection on the socket @sock is
4788  * shut down.
4789  *
4790  * Return: Returns 0 if permission is granted.
4791  */
security_socket_shutdown(struct socket * sock,int how)4792 int security_socket_shutdown(struct socket *sock, int how)
4793 {
4794 	return call_int_hook(socket_shutdown, sock, how);
4795 }
4796 
4797 /**
4798  * security_sock_rcv_skb() - Check if an incoming network packet is allowed
4799  * @sk: destination sock
4800  * @skb: incoming packet
4801  *
4802  * Check permissions on incoming network packets.  This hook is distinct from
4803  * Netfilter's IP input hooks since it is the first time that the incoming
4804  * sk_buff @skb has been associated with a particular socket, @sk.  Must not
4805  * sleep inside this hook because some callers hold spinlocks.
4806  *
4807  * Return: Returns 0 if permission is granted.
4808  */
security_sock_rcv_skb(struct sock * sk,struct sk_buff * skb)4809 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
4810 {
4811 	return call_int_hook(socket_sock_rcv_skb, sk, skb);
4812 }
4813 EXPORT_SYMBOL(security_sock_rcv_skb);
4814 
4815 /**
4816  * security_socket_getpeersec_stream() - Get the remote peer label
4817  * @sock: socket
4818  * @optval: destination buffer
4819  * @optlen: size of peer label copied into the buffer
4820  * @len: maximum size of the destination buffer
4821  *
4822  * This hook allows the security module to provide peer socket security state
4823  * for unix or connected tcp sockets to userspace via getsockopt SO_GETPEERSEC.
4824  * For tcp sockets this can be meaningful if the socket is associated with an
4825  * ipsec SA.
4826  *
4827  * Return: Returns 0 if all is well, otherwise, typical getsockopt return
4828  *         values.
4829  */
security_socket_getpeersec_stream(struct socket * sock,sockptr_t optval,sockptr_t optlen,unsigned int len)4830 int security_socket_getpeersec_stream(struct socket *sock, sockptr_t optval,
4831 				      sockptr_t optlen, unsigned int len)
4832 {
4833 	return call_int_hook(socket_getpeersec_stream, sock, optval, optlen,
4834 			     len);
4835 }
4836 
4837 /**
4838  * security_socket_getpeersec_dgram() - Get the remote peer label
4839  * @sock: socket
4840  * @skb: datagram packet
4841  * @secid: remote peer label secid
4842  *
4843  * This hook allows the security module to provide peer socket security state
4844  * for udp sockets on a per-packet basis to userspace via getsockopt
4845  * SO_GETPEERSEC. The application must first have indicated the IP_PASSSEC
4846  * option via getsockopt. It can then retrieve the security state returned by
4847  * this hook for a packet via the SCM_SECURITY ancillary message type.
4848  *
4849  * Return: Returns 0 on success, error on failure.
4850  */
security_socket_getpeersec_dgram(struct socket * sock,struct sk_buff * skb,u32 * secid)4851 int security_socket_getpeersec_dgram(struct socket *sock,
4852 				     struct sk_buff *skb, u32 *secid)
4853 {
4854 	return call_int_hook(socket_getpeersec_dgram, sock, skb, secid);
4855 }
4856 EXPORT_SYMBOL(security_socket_getpeersec_dgram);
4857 
4858 /**
4859  * lsm_sock_alloc - allocate a composite sock blob
4860  * @sock: the sock that needs a blob
4861  * @gfp: allocation mode
4862  *
4863  * Allocate the sock blob for all the modules
4864  *
4865  * Returns 0, or -ENOMEM if memory can't be allocated.
4866  */
lsm_sock_alloc(struct sock * sock,gfp_t gfp)4867 static int lsm_sock_alloc(struct sock *sock, gfp_t gfp)
4868 {
4869 	return lsm_blob_alloc(&sock->sk_security, blob_sizes.lbs_sock, gfp);
4870 }
4871 
4872 /**
4873  * security_sk_alloc() - Allocate and initialize a sock's LSM blob
4874  * @sk: sock
4875  * @family: protocol family
4876  * @priority: gfp flags
4877  *
4878  * Allocate and attach a security structure to the sk->sk_security field, which
4879  * is used to copy security attributes between local stream sockets.
4880  *
4881  * Return: Returns 0 on success, error on failure.
4882  */
security_sk_alloc(struct sock * sk,int family,gfp_t priority)4883 int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
4884 {
4885 	int rc = lsm_sock_alloc(sk, priority);
4886 
4887 	if (unlikely(rc))
4888 		return rc;
4889 	rc = call_int_hook(sk_alloc_security, sk, family, priority);
4890 	if (unlikely(rc))
4891 		security_sk_free(sk);
4892 	return rc;
4893 }
4894 
4895 /**
4896  * security_sk_free() - Free the sock's LSM blob
4897  * @sk: sock
4898  *
4899  * Deallocate security structure.
4900  */
security_sk_free(struct sock * sk)4901 void security_sk_free(struct sock *sk)
4902 {
4903 	call_void_hook(sk_free_security, sk);
4904 	kfree(sk->sk_security);
4905 	sk->sk_security = NULL;
4906 }
4907 
4908 /**
4909  * security_sk_clone() - Clone a sock's LSM state
4910  * @sk: original sock
4911  * @newsk: target sock
4912  *
4913  * Clone/copy security structure.
4914  */
security_sk_clone(const struct sock * sk,struct sock * newsk)4915 void security_sk_clone(const struct sock *sk, struct sock *newsk)
4916 {
4917 	call_void_hook(sk_clone_security, sk, newsk);
4918 }
4919 EXPORT_SYMBOL(security_sk_clone);
4920 
4921 /**
4922  * security_sk_classify_flow() - Set a flow's secid based on socket
4923  * @sk: original socket
4924  * @flic: target flow
4925  *
4926  * Set the target flow's secid to socket's secid.
4927  */
security_sk_classify_flow(const struct sock * sk,struct flowi_common * flic)4928 void security_sk_classify_flow(const struct sock *sk, struct flowi_common *flic)
4929 {
4930 	call_void_hook(sk_getsecid, sk, &flic->flowic_secid);
4931 }
4932 EXPORT_SYMBOL(security_sk_classify_flow);
4933 
4934 /**
4935  * security_req_classify_flow() - Set a flow's secid based on request_sock
4936  * @req: request_sock
4937  * @flic: target flow
4938  *
4939  * Sets @flic's secid to @req's secid.
4940  */
security_req_classify_flow(const struct request_sock * req,struct flowi_common * flic)4941 void security_req_classify_flow(const struct request_sock *req,
4942 				struct flowi_common *flic)
4943 {
4944 	call_void_hook(req_classify_flow, req, flic);
4945 }
4946 EXPORT_SYMBOL(security_req_classify_flow);
4947 
4948 /**
4949  * security_sock_graft() - Reconcile LSM state when grafting a sock on a socket
4950  * @sk: sock being grafted
4951  * @parent: target parent socket
4952  *
4953  * Sets @parent's inode secid to @sk's secid and update @sk with any necessary
4954  * LSM state from @parent.
4955  */
security_sock_graft(struct sock * sk,struct socket * parent)4956 void security_sock_graft(struct sock *sk, struct socket *parent)
4957 {
4958 	call_void_hook(sock_graft, sk, parent);
4959 }
4960 EXPORT_SYMBOL(security_sock_graft);
4961 
4962 /**
4963  * security_inet_conn_request() - Set request_sock state using incoming connect
4964  * @sk: parent listening sock
4965  * @skb: incoming connection
4966  * @req: new request_sock
4967  *
4968  * Initialize the @req LSM state based on @sk and the incoming connect in @skb.
4969  *
4970  * Return: Returns 0 if permission is granted.
4971  */
security_inet_conn_request(const struct sock * sk,struct sk_buff * skb,struct request_sock * req)4972 int security_inet_conn_request(const struct sock *sk,
4973 			       struct sk_buff *skb, struct request_sock *req)
4974 {
4975 	return call_int_hook(inet_conn_request, sk, skb, req);
4976 }
4977 EXPORT_SYMBOL(security_inet_conn_request);
4978 
4979 /**
4980  * security_inet_csk_clone() - Set new sock LSM state based on request_sock
4981  * @newsk: new sock
4982  * @req: connection request_sock
4983  *
4984  * Set that LSM state of @sock using the LSM state from @req.
4985  */
security_inet_csk_clone(struct sock * newsk,const struct request_sock * req)4986 void security_inet_csk_clone(struct sock *newsk,
4987 			     const struct request_sock *req)
4988 {
4989 	call_void_hook(inet_csk_clone, newsk, req);
4990 }
4991 
4992 /**
4993  * security_inet_conn_established() - Update sock's LSM state with connection
4994  * @sk: sock
4995  * @skb: connection packet
4996  *
4997  * Update @sock's LSM state to represent a new connection from @skb.
4998  */
security_inet_conn_established(struct sock * sk,struct sk_buff * skb)4999 void security_inet_conn_established(struct sock *sk,
5000 				    struct sk_buff *skb)
5001 {
5002 	call_void_hook(inet_conn_established, sk, skb);
5003 }
5004 EXPORT_SYMBOL(security_inet_conn_established);
5005 
5006 /**
5007  * security_secmark_relabel_packet() - Check if setting a secmark is allowed
5008  * @secid: new secmark value
5009  *
5010  * Check if the process should be allowed to relabel packets to @secid.
5011  *
5012  * Return: Returns 0 if permission is granted.
5013  */
security_secmark_relabel_packet(u32 secid)5014 int security_secmark_relabel_packet(u32 secid)
5015 {
5016 	return call_int_hook(secmark_relabel_packet, secid);
5017 }
5018 EXPORT_SYMBOL(security_secmark_relabel_packet);
5019 
5020 /**
5021  * security_secmark_refcount_inc() - Increment the secmark labeling rule count
5022  *
5023  * Tells the LSM to increment the number of secmark labeling rules loaded.
5024  */
security_secmark_refcount_inc(void)5025 void security_secmark_refcount_inc(void)
5026 {
5027 	call_void_hook(secmark_refcount_inc);
5028 }
5029 EXPORT_SYMBOL(security_secmark_refcount_inc);
5030 
5031 /**
5032  * security_secmark_refcount_dec() - Decrement the secmark labeling rule count
5033  *
5034  * Tells the LSM to decrement the number of secmark labeling rules loaded.
5035  */
security_secmark_refcount_dec(void)5036 void security_secmark_refcount_dec(void)
5037 {
5038 	call_void_hook(secmark_refcount_dec);
5039 }
5040 EXPORT_SYMBOL(security_secmark_refcount_dec);
5041 
5042 /**
5043  * security_tun_dev_alloc_security() - Allocate a LSM blob for a TUN device
5044  * @security: pointer to the LSM blob
5045  *
5046  * This hook allows a module to allocate a security structure for a TUN	device,
5047  * returning the pointer in @security.
5048  *
5049  * Return: Returns a zero on success, negative values on failure.
5050  */
security_tun_dev_alloc_security(void ** security)5051 int security_tun_dev_alloc_security(void **security)
5052 {
5053 	int rc;
5054 
5055 	rc = lsm_blob_alloc(security, blob_sizes.lbs_tun_dev, GFP_KERNEL);
5056 	if (rc)
5057 		return rc;
5058 
5059 	rc = call_int_hook(tun_dev_alloc_security, *security);
5060 	if (rc) {
5061 		kfree(*security);
5062 		*security = NULL;
5063 	}
5064 	return rc;
5065 }
5066 EXPORT_SYMBOL(security_tun_dev_alloc_security);
5067 
5068 /**
5069  * security_tun_dev_free_security() - Free a TUN device LSM blob
5070  * @security: LSM blob
5071  *
5072  * This hook allows a module to free the security structure for a TUN device.
5073  */
security_tun_dev_free_security(void * security)5074 void security_tun_dev_free_security(void *security)
5075 {
5076 	kfree(security);
5077 }
5078 EXPORT_SYMBOL(security_tun_dev_free_security);
5079 
5080 /**
5081  * security_tun_dev_create() - Check if creating a TUN device is allowed
5082  *
5083  * Check permissions prior to creating a new TUN device.
5084  *
5085  * Return: Returns 0 if permission is granted.
5086  */
security_tun_dev_create(void)5087 int security_tun_dev_create(void)
5088 {
5089 	return call_int_hook(tun_dev_create);
5090 }
5091 EXPORT_SYMBOL(security_tun_dev_create);
5092 
5093 /**
5094  * security_tun_dev_attach_queue() - Check if attaching a TUN queue is allowed
5095  * @security: TUN device LSM blob
5096  *
5097  * Check permissions prior to attaching to a TUN device queue.
5098  *
5099  * Return: Returns 0 if permission is granted.
5100  */
security_tun_dev_attach_queue(void * security)5101 int security_tun_dev_attach_queue(void *security)
5102 {
5103 	return call_int_hook(tun_dev_attach_queue, security);
5104 }
5105 EXPORT_SYMBOL(security_tun_dev_attach_queue);
5106 
5107 /**
5108  * security_tun_dev_attach() - Update TUN device LSM state on attach
5109  * @sk: associated sock
5110  * @security: TUN device LSM blob
5111  *
5112  * This hook can be used by the module to update any security state associated
5113  * with the TUN device's sock structure.
5114  *
5115  * Return: Returns 0 if permission is granted.
5116  */
security_tun_dev_attach(struct sock * sk,void * security)5117 int security_tun_dev_attach(struct sock *sk, void *security)
5118 {
5119 	return call_int_hook(tun_dev_attach, sk, security);
5120 }
5121 EXPORT_SYMBOL(security_tun_dev_attach);
5122 
5123 /**
5124  * security_tun_dev_open() - Update TUN device LSM state on open
5125  * @security: TUN device LSM blob
5126  *
5127  * This hook can be used by the module to update any security state associated
5128  * with the TUN device's security structure.
5129  *
5130  * Return: Returns 0 if permission is granted.
5131  */
security_tun_dev_open(void * security)5132 int security_tun_dev_open(void *security)
5133 {
5134 	return call_int_hook(tun_dev_open, security);
5135 }
5136 EXPORT_SYMBOL(security_tun_dev_open);
5137 
5138 /**
5139  * security_sctp_assoc_request() - Update the LSM on a SCTP association req
5140  * @asoc: SCTP association
5141  * @skb: packet requesting the association
5142  *
5143  * Passes the @asoc and @chunk->skb of the association INIT packet to the LSM.
5144  *
5145  * Return: Returns 0 on success, error on failure.
5146  */
security_sctp_assoc_request(struct sctp_association * asoc,struct sk_buff * skb)5147 int security_sctp_assoc_request(struct sctp_association *asoc,
5148 				struct sk_buff *skb)
5149 {
5150 	return call_int_hook(sctp_assoc_request, asoc, skb);
5151 }
5152 EXPORT_SYMBOL(security_sctp_assoc_request);
5153 
5154 /**
5155  * security_sctp_bind_connect() - Validate a list of addrs for a SCTP option
5156  * @sk: socket
5157  * @optname: SCTP option to validate
5158  * @address: list of IP addresses to validate
5159  * @addrlen: length of the address list
5160  *
5161  * Validiate permissions required for each address associated with sock	@sk.
5162  * Depending on @optname, the addresses will be treated as either a connect or
5163  * bind service. The @addrlen is calculated on each IPv4 and IPv6 address using
5164  * sizeof(struct sockaddr_in) or sizeof(struct sockaddr_in6).
5165  *
5166  * Return: Returns 0 on success, error on failure.
5167  */
security_sctp_bind_connect(struct sock * sk,int optname,struct sockaddr * address,int addrlen)5168 int security_sctp_bind_connect(struct sock *sk, int optname,
5169 			       struct sockaddr *address, int addrlen)
5170 {
5171 	return call_int_hook(sctp_bind_connect, sk, optname, address, addrlen);
5172 }
5173 EXPORT_SYMBOL(security_sctp_bind_connect);
5174 
5175 /**
5176  * security_sctp_sk_clone() - Clone a SCTP sock's LSM state
5177  * @asoc: SCTP association
5178  * @sk: original sock
5179  * @newsk: target sock
5180  *
5181  * Called whenever a new socket is created by accept(2) (i.e. a TCP style
5182  * socket) or when a socket is 'peeled off' e.g userspace calls
5183  * sctp_peeloff(3).
5184  */
security_sctp_sk_clone(struct sctp_association * asoc,struct sock * sk,struct sock * newsk)5185 void security_sctp_sk_clone(struct sctp_association *asoc, struct sock *sk,
5186 			    struct sock *newsk)
5187 {
5188 	call_void_hook(sctp_sk_clone, asoc, sk, newsk);
5189 }
5190 EXPORT_SYMBOL(security_sctp_sk_clone);
5191 
5192 /**
5193  * security_sctp_assoc_established() - Update LSM state when assoc established
5194  * @asoc: SCTP association
5195  * @skb: packet establishing the association
5196  *
5197  * Passes the @asoc and @chunk->skb of the association COOKIE_ACK packet to the
5198  * security module.
5199  *
5200  * Return: Returns 0 if permission is granted.
5201  */
security_sctp_assoc_established(struct sctp_association * asoc,struct sk_buff * skb)5202 int security_sctp_assoc_established(struct sctp_association *asoc,
5203 				    struct sk_buff *skb)
5204 {
5205 	return call_int_hook(sctp_assoc_established, asoc, skb);
5206 }
5207 EXPORT_SYMBOL(security_sctp_assoc_established);
5208 
5209 /**
5210  * security_mptcp_add_subflow() - Inherit the LSM label from the MPTCP socket
5211  * @sk: the owning MPTCP socket
5212  * @ssk: the new subflow
5213  *
5214  * Update the labeling for the given MPTCP subflow, to match the one of the
5215  * owning MPTCP socket. This hook has to be called after the socket creation and
5216  * initialization via the security_socket_create() and
5217  * security_socket_post_create() LSM hooks.
5218  *
5219  * Return: Returns 0 on success or a negative error code on failure.
5220  */
security_mptcp_add_subflow(struct sock * sk,struct sock * ssk)5221 int security_mptcp_add_subflow(struct sock *sk, struct sock *ssk)
5222 {
5223 	return call_int_hook(mptcp_add_subflow, sk, ssk);
5224 }
5225 
5226 #endif	/* CONFIG_SECURITY_NETWORK */
5227 
5228 #ifdef CONFIG_SECURITY_INFINIBAND
5229 /**
5230  * security_ib_pkey_access() - Check if access to an IB pkey is allowed
5231  * @sec: LSM blob
5232  * @subnet_prefix: subnet prefix of the port
5233  * @pkey: IB pkey
5234  *
5235  * Check permission to access a pkey when modifying a QP.
5236  *
5237  * Return: Returns 0 if permission is granted.
5238  */
security_ib_pkey_access(void * sec,u64 subnet_prefix,u16 pkey)5239 int security_ib_pkey_access(void *sec, u64 subnet_prefix, u16 pkey)
5240 {
5241 	return call_int_hook(ib_pkey_access, sec, subnet_prefix, pkey);
5242 }
5243 EXPORT_SYMBOL(security_ib_pkey_access);
5244 
5245 /**
5246  * security_ib_endport_manage_subnet() - Check if SMPs traffic is allowed
5247  * @sec: LSM blob
5248  * @dev_name: IB device name
5249  * @port_num: port number
5250  *
5251  * Check permissions to send and receive SMPs on a end port.
5252  *
5253  * Return: Returns 0 if permission is granted.
5254  */
security_ib_endport_manage_subnet(void * sec,const char * dev_name,u8 port_num)5255 int security_ib_endport_manage_subnet(void *sec,
5256 				      const char *dev_name, u8 port_num)
5257 {
5258 	return call_int_hook(ib_endport_manage_subnet, sec, dev_name, port_num);
5259 }
5260 EXPORT_SYMBOL(security_ib_endport_manage_subnet);
5261 
5262 /**
5263  * security_ib_alloc_security() - Allocate an Infiniband LSM blob
5264  * @sec: LSM blob
5265  *
5266  * Allocate a security structure for Infiniband objects.
5267  *
5268  * Return: Returns 0 on success, non-zero on failure.
5269  */
security_ib_alloc_security(void ** sec)5270 int security_ib_alloc_security(void **sec)
5271 {
5272 	int rc;
5273 
5274 	rc = lsm_blob_alloc(sec, blob_sizes.lbs_ib, GFP_KERNEL);
5275 	if (rc)
5276 		return rc;
5277 
5278 	rc = call_int_hook(ib_alloc_security, *sec);
5279 	if (rc) {
5280 		kfree(*sec);
5281 		*sec = NULL;
5282 	}
5283 	return rc;
5284 }
5285 EXPORT_SYMBOL(security_ib_alloc_security);
5286 
5287 /**
5288  * security_ib_free_security() - Free an Infiniband LSM blob
5289  * @sec: LSM blob
5290  *
5291  * Deallocate an Infiniband security structure.
5292  */
security_ib_free_security(void * sec)5293 void security_ib_free_security(void *sec)
5294 {
5295 	kfree(sec);
5296 }
5297 EXPORT_SYMBOL(security_ib_free_security);
5298 #endif	/* CONFIG_SECURITY_INFINIBAND */
5299 
5300 #ifdef CONFIG_SECURITY_NETWORK_XFRM
5301 /**
5302  * security_xfrm_policy_alloc() - Allocate a xfrm policy LSM blob
5303  * @ctxp: xfrm security context being added to the SPD
5304  * @sec_ctx: security label provided by userspace
5305  * @gfp: gfp flags
5306  *
5307  * Allocate a security structure to the xp->security field; the security field
5308  * is initialized to NULL when the xfrm_policy is allocated.
5309  *
5310  * Return:  Return 0 if operation was successful.
5311  */
security_xfrm_policy_alloc(struct xfrm_sec_ctx ** ctxp,struct xfrm_user_sec_ctx * sec_ctx,gfp_t gfp)5312 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp,
5313 			       struct xfrm_user_sec_ctx *sec_ctx,
5314 			       gfp_t gfp)
5315 {
5316 	return call_int_hook(xfrm_policy_alloc_security, ctxp, sec_ctx, gfp);
5317 }
5318 EXPORT_SYMBOL(security_xfrm_policy_alloc);
5319 
5320 /**
5321  * security_xfrm_policy_clone() - Clone xfrm policy LSM state
5322  * @old_ctx: xfrm security context
5323  * @new_ctxp: target xfrm security context
5324  *
5325  * Allocate a security structure in new_ctxp that contains the information from
5326  * the old_ctx structure.
5327  *
5328  * Return: Return 0 if operation was successful.
5329  */
security_xfrm_policy_clone(struct xfrm_sec_ctx * old_ctx,struct xfrm_sec_ctx ** new_ctxp)5330 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
5331 			       struct xfrm_sec_ctx **new_ctxp)
5332 {
5333 	return call_int_hook(xfrm_policy_clone_security, old_ctx, new_ctxp);
5334 }
5335 
5336 /**
5337  * security_xfrm_policy_free() - Free a xfrm security context
5338  * @ctx: xfrm security context
5339  *
5340  * Free LSM resources associated with @ctx.
5341  */
security_xfrm_policy_free(struct xfrm_sec_ctx * ctx)5342 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
5343 {
5344 	call_void_hook(xfrm_policy_free_security, ctx);
5345 }
5346 EXPORT_SYMBOL(security_xfrm_policy_free);
5347 
5348 /**
5349  * security_xfrm_policy_delete() - Check if deleting a xfrm policy is allowed
5350  * @ctx: xfrm security context
5351  *
5352  * Authorize deletion of a SPD entry.
5353  *
5354  * Return: Returns 0 if permission is granted.
5355  */
security_xfrm_policy_delete(struct xfrm_sec_ctx * ctx)5356 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
5357 {
5358 	return call_int_hook(xfrm_policy_delete_security, ctx);
5359 }
5360 
5361 /**
5362  * security_xfrm_state_alloc() - Allocate a xfrm state LSM blob
5363  * @x: xfrm state being added to the SAD
5364  * @sec_ctx: security label provided by userspace
5365  *
5366  * Allocate a security structure to the @x->security field; the security field
5367  * is initialized to NULL when the xfrm_state is allocated. Set the context to
5368  * correspond to @sec_ctx.
5369  *
5370  * Return: Return 0 if operation was successful.
5371  */
security_xfrm_state_alloc(struct xfrm_state * x,struct xfrm_user_sec_ctx * sec_ctx)5372 int security_xfrm_state_alloc(struct xfrm_state *x,
5373 			      struct xfrm_user_sec_ctx *sec_ctx)
5374 {
5375 	return call_int_hook(xfrm_state_alloc, x, sec_ctx);
5376 }
5377 EXPORT_SYMBOL(security_xfrm_state_alloc);
5378 
5379 /**
5380  * security_xfrm_state_alloc_acquire() - Allocate a xfrm state LSM blob
5381  * @x: xfrm state being added to the SAD
5382  * @polsec: associated policy's security context
5383  * @secid: secid from the flow
5384  *
5385  * Allocate a security structure to the x->security field; the security field
5386  * is initialized to NULL when the xfrm_state is allocated.  Set the context to
5387  * correspond to secid.
5388  *
5389  * Return: Returns 0 if operation was successful.
5390  */
security_xfrm_state_alloc_acquire(struct xfrm_state * x,struct xfrm_sec_ctx * polsec,u32 secid)5391 int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
5392 				      struct xfrm_sec_ctx *polsec, u32 secid)
5393 {
5394 	return call_int_hook(xfrm_state_alloc_acquire, x, polsec, secid);
5395 }
5396 
5397 /**
5398  * security_xfrm_state_delete() - Check if deleting a xfrm state is allowed
5399  * @x: xfrm state
5400  *
5401  * Authorize deletion of x->security.
5402  *
5403  * Return: Returns 0 if permission is granted.
5404  */
security_xfrm_state_delete(struct xfrm_state * x)5405 int security_xfrm_state_delete(struct xfrm_state *x)
5406 {
5407 	return call_int_hook(xfrm_state_delete_security, x);
5408 }
5409 EXPORT_SYMBOL(security_xfrm_state_delete);
5410 
5411 /**
5412  * security_xfrm_state_free() - Free a xfrm state
5413  * @x: xfrm state
5414  *
5415  * Deallocate x->security.
5416  */
security_xfrm_state_free(struct xfrm_state * x)5417 void security_xfrm_state_free(struct xfrm_state *x)
5418 {
5419 	call_void_hook(xfrm_state_free_security, x);
5420 }
5421 
5422 /**
5423  * security_xfrm_policy_lookup() - Check if using a xfrm policy is allowed
5424  * @ctx: target xfrm security context
5425  * @fl_secid: flow secid used to authorize access
5426  *
5427  * Check permission when a flow selects a xfrm_policy for processing XFRMs on a
5428  * packet.  The hook is called when selecting either a per-socket policy or a
5429  * generic xfrm policy.
5430  *
5431  * Return: Return 0 if permission is granted, -ESRCH otherwise, or -errno on
5432  *         other errors.
5433  */
security_xfrm_policy_lookup(struct xfrm_sec_ctx * ctx,u32 fl_secid)5434 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid)
5435 {
5436 	return call_int_hook(xfrm_policy_lookup, ctx, fl_secid);
5437 }
5438 
5439 /**
5440  * security_xfrm_state_pol_flow_match() - Check for a xfrm match
5441  * @x: xfrm state to match
5442  * @xp: xfrm policy to check for a match
5443  * @flic: flow to check for a match.
5444  *
5445  * Check @xp and @flic for a match with @x.
5446  *
5447  * Return: Returns 1 if there is a match.
5448  */
security_xfrm_state_pol_flow_match(struct xfrm_state * x,struct xfrm_policy * xp,const struct flowi_common * flic)5449 int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
5450 				       struct xfrm_policy *xp,
5451 				       const struct flowi_common *flic)
5452 {
5453 	struct lsm_static_call *scall;
5454 	int rc = LSM_RET_DEFAULT(xfrm_state_pol_flow_match);
5455 
5456 	/*
5457 	 * Since this function is expected to return 0 or 1, the judgment
5458 	 * becomes difficult if multiple LSMs supply this call. Fortunately,
5459 	 * we can use the first LSM's judgment because currently only SELinux
5460 	 * supplies this call.
5461 	 *
5462 	 * For speed optimization, we explicitly break the loop rather than
5463 	 * using the macro
5464 	 */
5465 	lsm_for_each_hook(scall, xfrm_state_pol_flow_match) {
5466 		rc = scall->hl->hook.xfrm_state_pol_flow_match(x, xp, flic);
5467 		break;
5468 	}
5469 	return rc;
5470 }
5471 
5472 /**
5473  * security_xfrm_decode_session() - Determine the xfrm secid for a packet
5474  * @skb: xfrm packet
5475  * @secid: secid
5476  *
5477  * Decode the packet in @skb and return the security label in @secid.
5478  *
5479  * Return: Return 0 if all xfrms used have the same secid.
5480  */
security_xfrm_decode_session(struct sk_buff * skb,u32 * secid)5481 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
5482 {
5483 	return call_int_hook(xfrm_decode_session, skb, secid, 1);
5484 }
5485 
security_skb_classify_flow(struct sk_buff * skb,struct flowi_common * flic)5486 void security_skb_classify_flow(struct sk_buff *skb, struct flowi_common *flic)
5487 {
5488 	int rc = call_int_hook(xfrm_decode_session, skb, &flic->flowic_secid,
5489 			       0);
5490 
5491 	BUG_ON(rc);
5492 }
5493 EXPORT_SYMBOL(security_skb_classify_flow);
5494 #endif	/* CONFIG_SECURITY_NETWORK_XFRM */
5495 
5496 #ifdef CONFIG_KEYS
5497 /**
5498  * security_key_alloc() - Allocate and initialize a kernel key LSM blob
5499  * @key: key
5500  * @cred: credentials
5501  * @flags: allocation flags
5502  *
5503  * Permit allocation of a key and assign security data. Note that key does not
5504  * have a serial number assigned at this point.
5505  *
5506  * Return: Return 0 if permission is granted, -ve error otherwise.
5507  */
security_key_alloc(struct key * key,const struct cred * cred,unsigned long flags)5508 int security_key_alloc(struct key *key, const struct cred *cred,
5509 		       unsigned long flags)
5510 {
5511 	int rc = lsm_key_alloc(key);
5512 
5513 	if (unlikely(rc))
5514 		return rc;
5515 	rc = call_int_hook(key_alloc, key, cred, flags);
5516 	if (unlikely(rc))
5517 		security_key_free(key);
5518 	return rc;
5519 }
5520 
5521 /**
5522  * security_key_free() - Free a kernel key LSM blob
5523  * @key: key
5524  *
5525  * Notification of destruction; free security data.
5526  */
security_key_free(struct key * key)5527 void security_key_free(struct key *key)
5528 {
5529 	kfree(key->security);
5530 	key->security = NULL;
5531 }
5532 
5533 /**
5534  * security_key_permission() - Check if a kernel key operation is allowed
5535  * @key_ref: key reference
5536  * @cred: credentials of actor requesting access
5537  * @need_perm: requested permissions
5538  *
5539  * See whether a specific operational right is granted to a process on a key.
5540  *
5541  * Return: Return 0 if permission is granted, -ve error otherwise.
5542  */
security_key_permission(key_ref_t key_ref,const struct cred * cred,enum key_need_perm need_perm)5543 int security_key_permission(key_ref_t key_ref, const struct cred *cred,
5544 			    enum key_need_perm need_perm)
5545 {
5546 	return call_int_hook(key_permission, key_ref, cred, need_perm);
5547 }
5548 
5549 /**
5550  * security_key_getsecurity() - Get the key's security label
5551  * @key: key
5552  * @buffer: security label buffer
5553  *
5554  * Get a textual representation of the security context attached to a key for
5555  * the purposes of honouring KEYCTL_GETSECURITY.  This function allocates the
5556  * storage for the NUL-terminated string and the caller should free it.
5557  *
5558  * Return: Returns the length of @buffer (including terminating NUL) or -ve if
5559  *         an error occurs.  May also return 0 (and a NULL buffer pointer) if
5560  *         there is no security label assigned to the key.
5561  */
security_key_getsecurity(struct key * key,char ** buffer)5562 int security_key_getsecurity(struct key *key, char **buffer)
5563 {
5564 	*buffer = NULL;
5565 	return call_int_hook(key_getsecurity, key, buffer);
5566 }
5567 
5568 /**
5569  * security_key_post_create_or_update() - Notification of key create or update
5570  * @keyring: keyring to which the key is linked to
5571  * @key: created or updated key
5572  * @payload: data used to instantiate or update the key
5573  * @payload_len: length of payload
5574  * @flags: key flags
5575  * @create: flag indicating whether the key was created or updated
5576  *
5577  * Notify the caller of a key creation or update.
5578  */
security_key_post_create_or_update(struct key * keyring,struct key * key,const void * payload,size_t payload_len,unsigned long flags,bool create)5579 void security_key_post_create_or_update(struct key *keyring, struct key *key,
5580 					const void *payload, size_t payload_len,
5581 					unsigned long flags, bool create)
5582 {
5583 	call_void_hook(key_post_create_or_update, keyring, key, payload,
5584 		       payload_len, flags, create);
5585 }
5586 #endif	/* CONFIG_KEYS */
5587 
5588 #ifdef CONFIG_AUDIT
5589 /**
5590  * security_audit_rule_init() - Allocate and init an LSM audit rule struct
5591  * @field: audit action
5592  * @op: rule operator
5593  * @rulestr: rule context
5594  * @lsmrule: receive buffer for audit rule struct
5595  * @gfp: GFP flag used for kmalloc
5596  *
5597  * Allocate and initialize an LSM audit rule structure.
5598  *
5599  * Return: Return 0 if @lsmrule has been successfully set, -EINVAL in case of
5600  *         an invalid rule.
5601  */
security_audit_rule_init(u32 field,u32 op,char * rulestr,void ** lsmrule,gfp_t gfp)5602 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule,
5603 			     gfp_t gfp)
5604 {
5605 	return call_int_hook(audit_rule_init, field, op, rulestr, lsmrule, gfp);
5606 }
5607 
5608 /**
5609  * security_audit_rule_known() - Check if an audit rule contains LSM fields
5610  * @krule: audit rule
5611  *
5612  * Specifies whether given @krule contains any fields related to the current
5613  * LSM.
5614  *
5615  * Return: Returns 1 in case of relation found, 0 otherwise.
5616  */
security_audit_rule_known(struct audit_krule * krule)5617 int security_audit_rule_known(struct audit_krule *krule)
5618 {
5619 	return call_int_hook(audit_rule_known, krule);
5620 }
5621 
5622 /**
5623  * security_audit_rule_free() - Free an LSM audit rule struct
5624  * @lsmrule: audit rule struct
5625  *
5626  * Deallocate the LSM audit rule structure previously allocated by
5627  * audit_rule_init().
5628  */
security_audit_rule_free(void * lsmrule)5629 void security_audit_rule_free(void *lsmrule)
5630 {
5631 	call_void_hook(audit_rule_free, lsmrule);
5632 }
5633 
5634 /**
5635  * security_audit_rule_match() - Check if a label matches an audit rule
5636  * @prop: security label
5637  * @field: LSM audit field
5638  * @op: matching operator
5639  * @lsmrule: audit rule
5640  *
5641  * Determine if given @secid matches a rule previously approved by
5642  * security_audit_rule_known().
5643  *
5644  * Return: Returns 1 if secid matches the rule, 0 if it does not, -ERRNO on
5645  *         failure.
5646  */
security_audit_rule_match(struct lsm_prop * prop,u32 field,u32 op,void * lsmrule)5647 int security_audit_rule_match(struct lsm_prop *prop, u32 field, u32 op,
5648 			      void *lsmrule)
5649 {
5650 	return call_int_hook(audit_rule_match, prop, field, op, lsmrule);
5651 }
5652 #endif /* CONFIG_AUDIT */
5653 
5654 #ifdef CONFIG_BPF_SYSCALL
5655 /**
5656  * security_bpf() - Check if the bpf syscall operation is allowed
5657  * @cmd: command
5658  * @attr: bpf attribute
5659  * @size: size
5660  * @kernel: whether or not call originated from kernel
5661  *
5662  * Do a initial check for all bpf syscalls after the attribute is copied into
5663  * the kernel. The actual security module can implement their own rules to
5664  * check the specific cmd they need.
5665  *
5666  * Return: Returns 0 if permission is granted.
5667  */
security_bpf(int cmd,union bpf_attr * attr,unsigned int size,bool kernel)5668 int security_bpf(int cmd, union bpf_attr *attr, unsigned int size, bool kernel)
5669 {
5670 	return call_int_hook(bpf, cmd, attr, size, kernel);
5671 }
5672 
5673 /**
5674  * security_bpf_map() - Check if access to a bpf map is allowed
5675  * @map: bpf map
5676  * @fmode: mode
5677  *
5678  * Do a check when the kernel generates and returns a file descriptor for eBPF
5679  * maps.
5680  *
5681  * Return: Returns 0 if permission is granted.
5682  */
security_bpf_map(struct bpf_map * map,fmode_t fmode)5683 int security_bpf_map(struct bpf_map *map, fmode_t fmode)
5684 {
5685 	return call_int_hook(bpf_map, map, fmode);
5686 }
5687 
5688 /**
5689  * security_bpf_prog() - Check if access to a bpf program is allowed
5690  * @prog: bpf program
5691  *
5692  * Do a check when the kernel generates and returns a file descriptor for eBPF
5693  * programs.
5694  *
5695  * Return: Returns 0 if permission is granted.
5696  */
security_bpf_prog(struct bpf_prog * prog)5697 int security_bpf_prog(struct bpf_prog *prog)
5698 {
5699 	return call_int_hook(bpf_prog, prog);
5700 }
5701 
5702 /**
5703  * security_bpf_map_create() - Check if BPF map creation is allowed
5704  * @map: BPF map object
5705  * @attr: BPF syscall attributes used to create BPF map
5706  * @token: BPF token used to grant user access
5707  * @kernel: whether or not call originated from kernel
5708  *
5709  * Do a check when the kernel creates a new BPF map. This is also the
5710  * point where LSM blob is allocated for LSMs that need them.
5711  *
5712  * Return: Returns 0 on success, error on failure.
5713  */
security_bpf_map_create(struct bpf_map * map,union bpf_attr * attr,struct bpf_token * token,bool kernel)5714 int security_bpf_map_create(struct bpf_map *map, union bpf_attr *attr,
5715 			    struct bpf_token *token, bool kernel)
5716 {
5717 	return call_int_hook(bpf_map_create, map, attr, token, kernel);
5718 }
5719 
5720 /**
5721  * security_bpf_prog_load() - Check if loading of BPF program is allowed
5722  * @prog: BPF program object
5723  * @attr: BPF syscall attributes used to create BPF program
5724  * @token: BPF token used to grant user access to BPF subsystem
5725  * @kernel: whether or not call originated from kernel
5726  *
5727  * Perform an access control check when the kernel loads a BPF program and
5728  * allocates associated BPF program object. This hook is also responsible for
5729  * allocating any required LSM state for the BPF program.
5730  *
5731  * Return: Returns 0 on success, error on failure.
5732  */
security_bpf_prog_load(struct bpf_prog * prog,union bpf_attr * attr,struct bpf_token * token,bool kernel)5733 int security_bpf_prog_load(struct bpf_prog *prog, union bpf_attr *attr,
5734 			   struct bpf_token *token, bool kernel)
5735 {
5736 	return call_int_hook(bpf_prog_load, prog, attr, token, kernel);
5737 }
5738 
5739 /**
5740  * security_bpf_token_create() - Check if creating of BPF token is allowed
5741  * @token: BPF token object
5742  * @attr: BPF syscall attributes used to create BPF token
5743  * @path: path pointing to BPF FS mount point from which BPF token is created
5744  *
5745  * Do a check when the kernel instantiates a new BPF token object from BPF FS
5746  * instance. This is also the point where LSM blob can be allocated for LSMs.
5747  *
5748  * Return: Returns 0 on success, error on failure.
5749  */
security_bpf_token_create(struct bpf_token * token,union bpf_attr * attr,const struct path * path)5750 int security_bpf_token_create(struct bpf_token *token, union bpf_attr *attr,
5751 			      const struct path *path)
5752 {
5753 	return call_int_hook(bpf_token_create, token, attr, path);
5754 }
5755 
5756 /**
5757  * security_bpf_token_cmd() - Check if BPF token is allowed to delegate
5758  * requested BPF syscall command
5759  * @token: BPF token object
5760  * @cmd: BPF syscall command requested to be delegated by BPF token
5761  *
5762  * Do a check when the kernel decides whether provided BPF token should allow
5763  * delegation of requested BPF syscall command.
5764  *
5765  * Return: Returns 0 on success, error on failure.
5766  */
security_bpf_token_cmd(const struct bpf_token * token,enum bpf_cmd cmd)5767 int security_bpf_token_cmd(const struct bpf_token *token, enum bpf_cmd cmd)
5768 {
5769 	return call_int_hook(bpf_token_cmd, token, cmd);
5770 }
5771 
5772 /**
5773  * security_bpf_token_capable() - Check if BPF token is allowed to delegate
5774  * requested BPF-related capability
5775  * @token: BPF token object
5776  * @cap: capabilities requested to be delegated by BPF token
5777  *
5778  * Do a check when the kernel decides whether provided BPF token should allow
5779  * delegation of requested BPF-related capabilities.
5780  *
5781  * Return: Returns 0 on success, error on failure.
5782  */
security_bpf_token_capable(const struct bpf_token * token,int cap)5783 int security_bpf_token_capable(const struct bpf_token *token, int cap)
5784 {
5785 	return call_int_hook(bpf_token_capable, token, cap);
5786 }
5787 
5788 /**
5789  * security_bpf_map_free() - Free a bpf map's LSM blob
5790  * @map: bpf map
5791  *
5792  * Clean up the security information stored inside bpf map.
5793  */
security_bpf_map_free(struct bpf_map * map)5794 void security_bpf_map_free(struct bpf_map *map)
5795 {
5796 	call_void_hook(bpf_map_free, map);
5797 }
5798 
5799 /**
5800  * security_bpf_prog_free() - Free a BPF program's LSM blob
5801  * @prog: BPF program struct
5802  *
5803  * Clean up the security information stored inside BPF program.
5804  */
security_bpf_prog_free(struct bpf_prog * prog)5805 void security_bpf_prog_free(struct bpf_prog *prog)
5806 {
5807 	call_void_hook(bpf_prog_free, prog);
5808 }
5809 
5810 /**
5811  * security_bpf_token_free() - Free a BPF token's LSM blob
5812  * @token: BPF token struct
5813  *
5814  * Clean up the security information stored inside BPF token.
5815  */
security_bpf_token_free(struct bpf_token * token)5816 void security_bpf_token_free(struct bpf_token *token)
5817 {
5818 	call_void_hook(bpf_token_free, token);
5819 }
5820 #endif /* CONFIG_BPF_SYSCALL */
5821 
5822 /**
5823  * security_locked_down() - Check if a kernel feature is allowed
5824  * @what: requested kernel feature
5825  *
5826  * Determine whether a kernel feature that potentially enables arbitrary code
5827  * execution in kernel space should be permitted.
5828  *
5829  * Return: Returns 0 if permission is granted.
5830  */
security_locked_down(enum lockdown_reason what)5831 int security_locked_down(enum lockdown_reason what)
5832 {
5833 	return call_int_hook(locked_down, what);
5834 }
5835 EXPORT_SYMBOL(security_locked_down);
5836 
5837 /**
5838  * security_bdev_alloc() - Allocate a block device LSM blob
5839  * @bdev: block device
5840  *
5841  * Allocate and attach a security structure to @bdev->bd_security.  The
5842  * security field is initialized to NULL when the bdev structure is
5843  * allocated.
5844  *
5845  * Return: Return 0 if operation was successful.
5846  */
security_bdev_alloc(struct block_device * bdev)5847 int security_bdev_alloc(struct block_device *bdev)
5848 {
5849 	int rc = 0;
5850 
5851 	rc = lsm_bdev_alloc(bdev);
5852 	if (unlikely(rc))
5853 		return rc;
5854 
5855 	rc = call_int_hook(bdev_alloc_security, bdev);
5856 	if (unlikely(rc))
5857 		security_bdev_free(bdev);
5858 
5859 	return rc;
5860 }
5861 EXPORT_SYMBOL(security_bdev_alloc);
5862 
5863 /**
5864  * security_bdev_free() - Free a block device's LSM blob
5865  * @bdev: block device
5866  *
5867  * Deallocate the bdev security structure and set @bdev->bd_security to NULL.
5868  */
security_bdev_free(struct block_device * bdev)5869 void security_bdev_free(struct block_device *bdev)
5870 {
5871 	if (!bdev->bd_security)
5872 		return;
5873 
5874 	call_void_hook(bdev_free_security, bdev);
5875 
5876 	kfree(bdev->bd_security);
5877 	bdev->bd_security = NULL;
5878 }
5879 EXPORT_SYMBOL(security_bdev_free);
5880 
5881 /**
5882  * security_bdev_setintegrity() - Set the device's integrity data
5883  * @bdev: block device
5884  * @type: type of integrity, e.g. hash digest, signature, etc
5885  * @value: the integrity value
5886  * @size: size of the integrity value
5887  *
5888  * Register a verified integrity measurement of a bdev with LSMs.
5889  * LSMs should free the previously saved data if @value is NULL.
5890  * Please note that the new hook should be invoked every time the security
5891  * information is updated to keep these data current. For example, in dm-verity,
5892  * if the mapping table is reloaded and configured to use a different dm-verity
5893  * target with a new roothash and signing information, the previously stored
5894  * data in the LSM blob will become obsolete. It is crucial to re-invoke the
5895  * hook to refresh these data and ensure they are up to date. This necessity
5896  * arises from the design of device-mapper, where a device-mapper device is
5897  * first created, and then targets are subsequently loaded into it. These
5898  * targets can be modified multiple times during the device's lifetime.
5899  * Therefore, while the LSM blob is allocated during the creation of the block
5900  * device, its actual contents are not initialized at this stage and can change
5901  * substantially over time. This includes alterations from data that the LSMs
5902  * 'trusts' to those they do not, making it essential to handle these changes
5903  * correctly. Failure to address this dynamic aspect could potentially allow
5904  * for bypassing LSM checks.
5905  *
5906  * Return: Returns 0 on success, negative values on failure.
5907  */
security_bdev_setintegrity(struct block_device * bdev,enum lsm_integrity_type type,const void * value,size_t size)5908 int security_bdev_setintegrity(struct block_device *bdev,
5909 			       enum lsm_integrity_type type, const void *value,
5910 			       size_t size)
5911 {
5912 	return call_int_hook(bdev_setintegrity, bdev, type, value, size);
5913 }
5914 EXPORT_SYMBOL(security_bdev_setintegrity);
5915 
5916 #ifdef CONFIG_PERF_EVENTS
5917 /**
5918  * security_perf_event_open() - Check if a perf event open is allowed
5919  * @type: type of event
5920  *
5921  * Check whether the @type of perf_event_open syscall is allowed.
5922  *
5923  * Return: Returns 0 if permission is granted.
5924  */
security_perf_event_open(int type)5925 int security_perf_event_open(int type)
5926 {
5927 	return call_int_hook(perf_event_open, type);
5928 }
5929 
5930 /**
5931  * security_perf_event_alloc() - Allocate a perf event LSM blob
5932  * @event: perf event
5933  *
5934  * Allocate and save perf_event security info.
5935  *
5936  * Return: Returns 0 on success, error on failure.
5937  */
security_perf_event_alloc(struct perf_event * event)5938 int security_perf_event_alloc(struct perf_event *event)
5939 {
5940 	int rc;
5941 
5942 	rc = lsm_blob_alloc(&event->security, blob_sizes.lbs_perf_event,
5943 			    GFP_KERNEL);
5944 	if (rc)
5945 		return rc;
5946 
5947 	rc = call_int_hook(perf_event_alloc, event);
5948 	if (rc) {
5949 		kfree(event->security);
5950 		event->security = NULL;
5951 	}
5952 	return rc;
5953 }
5954 
5955 /**
5956  * security_perf_event_free() - Free a perf event LSM blob
5957  * @event: perf event
5958  *
5959  * Release (free) perf_event security info.
5960  */
security_perf_event_free(struct perf_event * event)5961 void security_perf_event_free(struct perf_event *event)
5962 {
5963 	kfree(event->security);
5964 	event->security = NULL;
5965 }
5966 
5967 /**
5968  * security_perf_event_read() - Check if reading a perf event label is allowed
5969  * @event: perf event
5970  *
5971  * Read perf_event security info if allowed.
5972  *
5973  * Return: Returns 0 if permission is granted.
5974  */
security_perf_event_read(struct perf_event * event)5975 int security_perf_event_read(struct perf_event *event)
5976 {
5977 	return call_int_hook(perf_event_read, event);
5978 }
5979 
5980 /**
5981  * security_perf_event_write() - Check if writing a perf event label is allowed
5982  * @event: perf event
5983  *
5984  * Write perf_event security info if allowed.
5985  *
5986  * Return: Returns 0 if permission is granted.
5987  */
security_perf_event_write(struct perf_event * event)5988 int security_perf_event_write(struct perf_event *event)
5989 {
5990 	return call_int_hook(perf_event_write, event);
5991 }
5992 #endif /* CONFIG_PERF_EVENTS */
5993 
5994 #ifdef CONFIG_IO_URING
5995 /**
5996  * security_uring_override_creds() - Check if overriding creds is allowed
5997  * @new: new credentials
5998  *
5999  * Check if the current task, executing an io_uring operation, is allowed to
6000  * override it's credentials with @new.
6001  *
6002  * Return: Returns 0 if permission is granted.
6003  */
security_uring_override_creds(const struct cred * new)6004 int security_uring_override_creds(const struct cred *new)
6005 {
6006 	return call_int_hook(uring_override_creds, new);
6007 }
6008 
6009 /**
6010  * security_uring_sqpoll() - Check if IORING_SETUP_SQPOLL is allowed
6011  *
6012  * Check whether the current task is allowed to spawn a io_uring polling thread
6013  * (IORING_SETUP_SQPOLL).
6014  *
6015  * Return: Returns 0 if permission is granted.
6016  */
security_uring_sqpoll(void)6017 int security_uring_sqpoll(void)
6018 {
6019 	return call_int_hook(uring_sqpoll);
6020 }
6021 
6022 /**
6023  * security_uring_cmd() - Check if a io_uring passthrough command is allowed
6024  * @ioucmd: command
6025  *
6026  * Check whether the file_operations uring_cmd is allowed to run.
6027  *
6028  * Return: Returns 0 if permission is granted.
6029  */
security_uring_cmd(struct io_uring_cmd * ioucmd)6030 int security_uring_cmd(struct io_uring_cmd *ioucmd)
6031 {
6032 	return call_int_hook(uring_cmd, ioucmd);
6033 }
6034 
6035 /**
6036  * security_uring_allowed() - Check if io_uring_setup() is allowed
6037  *
6038  * Check whether the current task is allowed to call io_uring_setup().
6039  *
6040  * Return: Returns 0 if permission is granted.
6041  */
security_uring_allowed(void)6042 int security_uring_allowed(void)
6043 {
6044 	return call_int_hook(uring_allowed);
6045 }
6046 #endif /* CONFIG_IO_URING */
6047 
6048 /**
6049  * security_initramfs_populated() - Notify LSMs that initramfs has been loaded
6050  *
6051  * Tells the LSMs the initramfs has been unpacked into the rootfs.
6052  */
security_initramfs_populated(void)6053 void security_initramfs_populated(void)
6054 {
6055 	call_void_hook(initramfs_populated);
6056 }
6057