xref: /linux/arch/x86/entry/entry_64.S (revision 3a07362fab1653d3aca31a9155c8cc776138fd02)
1/* SPDX-License-Identifier: GPL-2.0 */
2/*
3 *  linux/arch/x86_64/entry.S
4 *
5 *  Copyright (C) 1991, 1992  Linus Torvalds
6 *  Copyright (C) 2000, 2001, 2002  Andi Kleen SuSE Labs
7 *  Copyright (C) 2000  Pavel Machek <pavel@suse.cz>
8 *
9 * entry.S contains the system-call and fault low-level handling routines.
10 *
11 * Some of this is documented in Documentation/arch/x86/entry_64.rst
12 *
13 * A note on terminology:
14 * - iret frame:	Architecture defined interrupt frame from SS to RIP
15 *			at the top of the kernel process stack.
16 *
17 * Some macro usage:
18 * - SYM_FUNC_START/END:Define functions in the symbol table.
19 * - idtentry:		Define exception entry points.
20 */
21#include <linux/export.h>
22#include <linux/linkage.h>
23#include <asm/segment.h>
24#include <asm/cache.h>
25#include <asm/errno.h>
26#include <asm/asm-offsets.h>
27#include <asm/msr.h>
28#include <asm/unistd.h>
29#include <asm/thread_info.h>
30#include <asm/hw_irq.h>
31#include <asm/page_types.h>
32#include <asm/irqflags.h>
33#include <asm/paravirt.h>
34#include <asm/percpu.h>
35#include <asm/asm.h>
36#include <asm/smap.h>
37#include <asm/pgtable_types.h>
38#include <asm/frame.h>
39#include <asm/trapnr.h>
40#include <asm/nospec-branch.h>
41#include <asm/fsgsbase.h>
42#include <linux/err.h>
43
44#include "calling.h"
45
46.code64
47.section .entry.text, "ax"
48
49/*
50 * 64-bit SYSCALL instruction entry. Up to 6 arguments in registers.
51 *
52 * This is the only entry point used for 64-bit system calls.  The
53 * hardware interface is reasonably well designed and the register to
54 * argument mapping Linux uses fits well with the registers that are
55 * available when SYSCALL is used.
56 *
57 * SYSCALL instructions can be found inlined in libc implementations as
58 * well as some other programs and libraries.  There are also a handful
59 * of SYSCALL instructions in the vDSO used, for example, as a
60 * clock_gettimeofday fallback.
61 *
62 * 64-bit SYSCALL saves rip to rcx, clears rflags.RF, then saves rflags to r11,
63 * then loads new ss, cs, and rip from previously programmed MSRs.
64 * rflags gets masked by a value from another MSR (so CLD and CLAC
65 * are not needed). SYSCALL does not save anything on the stack
66 * and does not change rsp.
67 *
68 * Registers on entry:
69 * rax  system call number
70 * rcx  return address
71 * r11  saved rflags (note: r11 is callee-clobbered register in C ABI)
72 * rdi  arg0
73 * rsi  arg1
74 * rdx  arg2
75 * r10  arg3 (needs to be moved to rcx to conform to C ABI)
76 * r8   arg4
77 * r9   arg5
78 * (note: r12-r15, rbp, rbx are callee-preserved in C ABI)
79 *
80 * Only called from user space.
81 *
82 * When user can change pt_regs->foo always force IRET. That is because
83 * it deals with uncanonical addresses better. SYSRET has trouble
84 * with them due to bugs in both AMD and Intel CPUs.
85 */
86
87SYM_CODE_START(entry_SYSCALL_64)
88	UNWIND_HINT_ENTRY
89	ENDBR
90
91	swapgs
92	/* tss.sp2 is scratch space. */
93	movq	%rsp, PER_CPU_VAR(cpu_tss_rw + TSS_sp2)
94	SWITCH_TO_KERNEL_CR3 scratch_reg=%rsp
95	movq	PER_CPU_VAR(pcpu_hot + X86_top_of_stack), %rsp
96
97SYM_INNER_LABEL(entry_SYSCALL_64_safe_stack, SYM_L_GLOBAL)
98	ANNOTATE_NOENDBR
99
100	/* Construct struct pt_regs on stack */
101	pushq	$__USER_DS				/* pt_regs->ss */
102	pushq	PER_CPU_VAR(cpu_tss_rw + TSS_sp2)	/* pt_regs->sp */
103	pushq	%r11					/* pt_regs->flags */
104	pushq	$__USER_CS				/* pt_regs->cs */
105	pushq	%rcx					/* pt_regs->ip */
106SYM_INNER_LABEL(entry_SYSCALL_64_after_hwframe, SYM_L_GLOBAL)
107	pushq	%rax					/* pt_regs->orig_ax */
108
109	PUSH_AND_CLEAR_REGS rax=$-ENOSYS
110
111	/* IRQs are off. */
112	movq	%rsp, %rdi
113	/* Sign extend the lower 32bit as syscall numbers are treated as int */
114	movslq	%eax, %rsi
115
116	/* clobbers %rax, make sure it is after saving the syscall nr */
117	IBRS_ENTER
118	UNTRAIN_RET
119	CLEAR_BRANCH_HISTORY
120
121	call	do_syscall_64		/* returns with IRQs disabled */
122
123	/*
124	 * Try to use SYSRET instead of IRET if we're returning to
125	 * a completely clean 64-bit userspace context.  If we're not,
126	 * go to the slow exit path.
127	 * In the Xen PV case we must use iret anyway.
128	 */
129
130	ALTERNATIVE "testb %al, %al; jz swapgs_restore_regs_and_return_to_usermode", \
131		"jmp swapgs_restore_regs_and_return_to_usermode", X86_FEATURE_XENPV
132
133	/*
134	 * We win! This label is here just for ease of understanding
135	 * perf profiles. Nothing jumps here.
136	 */
137syscall_return_via_sysret:
138	IBRS_EXIT
139	POP_REGS pop_rdi=0
140
141	/*
142	 * Now all regs are restored except RSP and RDI.
143	 * Save old stack pointer and switch to trampoline stack.
144	 */
145	movq	%rsp, %rdi
146	movq	PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %rsp
147	UNWIND_HINT_END_OF_STACK
148
149	pushq	RSP-RDI(%rdi)	/* RSP */
150	pushq	(%rdi)		/* RDI */
151
152	/*
153	 * We are on the trampoline stack.  All regs except RDI are live.
154	 * We can do future final exit work right here.
155	 */
156	STACKLEAK_ERASE_NOCLOBBER
157
158	SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
159
160	popq	%rdi
161	popq	%rsp
162SYM_INNER_LABEL(entry_SYSRETQ_unsafe_stack, SYM_L_GLOBAL)
163	ANNOTATE_NOENDBR
164	swapgs
165	CLEAR_CPU_BUFFERS
166	sysretq
167SYM_INNER_LABEL(entry_SYSRETQ_end, SYM_L_GLOBAL)
168	ANNOTATE_NOENDBR
169	int3
170SYM_CODE_END(entry_SYSCALL_64)
171
172/*
173 * %rdi: prev task
174 * %rsi: next task
175 */
176.pushsection .text, "ax"
177SYM_FUNC_START(__switch_to_asm)
178	/*
179	 * Save callee-saved registers
180	 * This must match the order in inactive_task_frame
181	 */
182	pushq	%rbp
183	pushq	%rbx
184	pushq	%r12
185	pushq	%r13
186	pushq	%r14
187	pushq	%r15
188
189	/* switch stack */
190	movq	%rsp, TASK_threadsp(%rdi)
191	movq	TASK_threadsp(%rsi), %rsp
192
193#ifdef CONFIG_STACKPROTECTOR
194	movq	TASK_stack_canary(%rsi), %rbx
195	movq	%rbx, PER_CPU_VAR(fixed_percpu_data + FIXED_stack_canary)
196#endif
197
198	/*
199	 * When switching from a shallower to a deeper call stack
200	 * the RSB may either underflow or use entries populated
201	 * with userspace addresses. On CPUs where those concerns
202	 * exist, overwrite the RSB with entries which capture
203	 * speculative execution to prevent attack.
204	 */
205	FILL_RETURN_BUFFER %r12, RSB_CLEAR_LOOPS, X86_FEATURE_RSB_CTXSW
206
207	/* restore callee-saved registers */
208	popq	%r15
209	popq	%r14
210	popq	%r13
211	popq	%r12
212	popq	%rbx
213	popq	%rbp
214
215	jmp	__switch_to
216SYM_FUNC_END(__switch_to_asm)
217.popsection
218
219/*
220 * A newly forked process directly context switches into this address.
221 *
222 * rax: prev task we switched from
223 * rbx: kernel thread func (NULL for user thread)
224 * r12: kernel thread arg
225 */
226.pushsection .text, "ax"
227SYM_CODE_START(ret_from_fork_asm)
228	/*
229	 * This is the start of the kernel stack; even through there's a
230	 * register set at the top, the regset isn't necessarily coherent
231	 * (consider kthreads) and one cannot unwind further.
232	 *
233	 * This ensures stack unwinds of kernel threads terminate in a known
234	 * good state.
235	 */
236	UNWIND_HINT_END_OF_STACK
237	ANNOTATE_NOENDBR // copy_thread
238	CALL_DEPTH_ACCOUNT
239
240	movq	%rax, %rdi		/* prev */
241	movq	%rsp, %rsi		/* regs */
242	movq	%rbx, %rdx		/* fn */
243	movq	%r12, %rcx		/* fn_arg */
244	call	ret_from_fork
245
246	/*
247	 * Set the stack state to what is expected for the target function
248	 * -- at this point the register set should be a valid user set
249	 * and unwind should work normally.
250	 */
251	UNWIND_HINT_REGS
252
253#ifdef CONFIG_X86_FRED
254	ALTERNATIVE "jmp swapgs_restore_regs_and_return_to_usermode", \
255		    "jmp asm_fred_exit_user", X86_FEATURE_FRED
256#else
257	jmp	swapgs_restore_regs_and_return_to_usermode
258#endif
259SYM_CODE_END(ret_from_fork_asm)
260.popsection
261
262.macro DEBUG_ENTRY_ASSERT_IRQS_OFF
263#ifdef CONFIG_DEBUG_ENTRY
264	pushq %rax
265	SAVE_FLAGS
266	testl $X86_EFLAGS_IF, %eax
267	jz .Lokay_\@
268	ud2
269.Lokay_\@:
270	popq %rax
271#endif
272.endm
273
274SYM_CODE_START(xen_error_entry)
275	ANNOTATE_NOENDBR
276	UNWIND_HINT_FUNC
277	PUSH_AND_CLEAR_REGS save_ret=1
278	ENCODE_FRAME_POINTER 8
279	UNTRAIN_RET_FROM_CALL
280	RET
281SYM_CODE_END(xen_error_entry)
282
283/**
284 * idtentry_body - Macro to emit code calling the C function
285 * @cfunc:		C function to be called
286 * @has_error_code:	Hardware pushed error code on stack
287 */
288.macro idtentry_body cfunc has_error_code:req
289
290	/*
291	 * Call error_entry() and switch to the task stack if from userspace.
292	 *
293	 * When in XENPV, it is already in the task stack, and it can't fault
294	 * for native_iret() nor native_load_gs_index() since XENPV uses its
295	 * own pvops for IRET and load_gs_index().  And it doesn't need to
296	 * switch the CR3.  So it can skip invoking error_entry().
297	 */
298	ALTERNATIVE "call error_entry; movq %rax, %rsp", \
299		    "call xen_error_entry", X86_FEATURE_XENPV
300
301	ENCODE_FRAME_POINTER
302	UNWIND_HINT_REGS
303
304	movq	%rsp, %rdi			/* pt_regs pointer into 1st argument*/
305
306	.if \has_error_code == 1
307		movq	ORIG_RAX(%rsp), %rsi	/* get error code into 2nd argument*/
308		movq	$-1, ORIG_RAX(%rsp)	/* no syscall to restart */
309	.endif
310
311	call	\cfunc
312
313	/* For some configurations \cfunc ends up being a noreturn. */
314	REACHABLE
315
316	jmp	error_return
317.endm
318
319/**
320 * idtentry - Macro to generate entry stubs for simple IDT entries
321 * @vector:		Vector number
322 * @asmsym:		ASM symbol for the entry point
323 * @cfunc:		C function to be called
324 * @has_error_code:	Hardware pushed error code on stack
325 *
326 * The macro emits code to set up the kernel context for straight forward
327 * and simple IDT entries. No IST stack, no paranoid entry checks.
328 */
329.macro idtentry vector asmsym cfunc has_error_code:req
330SYM_CODE_START(\asmsym)
331
332	.if \vector == X86_TRAP_BP
333		/* #BP advances %rip to the next instruction */
334		UNWIND_HINT_IRET_ENTRY offset=\has_error_code*8 signal=0
335	.else
336		UNWIND_HINT_IRET_ENTRY offset=\has_error_code*8
337	.endif
338
339	ENDBR
340	ASM_CLAC
341	cld
342
343	.if \has_error_code == 0
344		pushq	$-1			/* ORIG_RAX: no syscall to restart */
345	.endif
346
347	.if \vector == X86_TRAP_BP
348		/*
349		 * If coming from kernel space, create a 6-word gap to allow the
350		 * int3 handler to emulate a call instruction.
351		 */
352		testb	$3, CS-ORIG_RAX(%rsp)
353		jnz	.Lfrom_usermode_no_gap_\@
354		.rept	6
355		pushq	5*8(%rsp)
356		.endr
357		UNWIND_HINT_IRET_REGS offset=8
358.Lfrom_usermode_no_gap_\@:
359	.endif
360
361	idtentry_body \cfunc \has_error_code
362
363_ASM_NOKPROBE(\asmsym)
364SYM_CODE_END(\asmsym)
365.endm
366
367/*
368 * Interrupt entry/exit.
369 *
370 + The interrupt stubs push (vector) onto the stack, which is the error_code
371 * position of idtentry exceptions, and jump to one of the two idtentry points
372 * (common/spurious).
373 *
374 * common_interrupt is a hotpath, align it to a cache line
375 */
376.macro idtentry_irq vector cfunc
377	.p2align CONFIG_X86_L1_CACHE_SHIFT
378	idtentry \vector asm_\cfunc \cfunc has_error_code=1
379.endm
380
381/**
382 * idtentry_mce_db - Macro to generate entry stubs for #MC and #DB
383 * @vector:		Vector number
384 * @asmsym:		ASM symbol for the entry point
385 * @cfunc:		C function to be called
386 *
387 * The macro emits code to set up the kernel context for #MC and #DB
388 *
389 * If the entry comes from user space it uses the normal entry path
390 * including the return to user space work and preemption checks on
391 * exit.
392 *
393 * If hits in kernel mode then it needs to go through the paranoid
394 * entry as the exception can hit any random state. No preemption
395 * check on exit to keep the paranoid path simple.
396 */
397.macro idtentry_mce_db vector asmsym cfunc
398SYM_CODE_START(\asmsym)
399	UNWIND_HINT_IRET_ENTRY
400	ENDBR
401	ASM_CLAC
402	cld
403
404	pushq	$-1			/* ORIG_RAX: no syscall to restart */
405
406	/*
407	 * If the entry is from userspace, switch stacks and treat it as
408	 * a normal entry.
409	 */
410	testb	$3, CS-ORIG_RAX(%rsp)
411	jnz	.Lfrom_usermode_switch_stack_\@
412
413	/* paranoid_entry returns GS information for paranoid_exit in EBX. */
414	call	paranoid_entry
415
416	UNWIND_HINT_REGS
417
418	movq	%rsp, %rdi		/* pt_regs pointer */
419
420	call	\cfunc
421
422	jmp	paranoid_exit
423
424	/* Switch to the regular task stack and use the noist entry point */
425.Lfrom_usermode_switch_stack_\@:
426	idtentry_body noist_\cfunc, has_error_code=0
427
428_ASM_NOKPROBE(\asmsym)
429SYM_CODE_END(\asmsym)
430.endm
431
432#ifdef CONFIG_AMD_MEM_ENCRYPT
433/**
434 * idtentry_vc - Macro to generate entry stub for #VC
435 * @vector:		Vector number
436 * @asmsym:		ASM symbol for the entry point
437 * @cfunc:		C function to be called
438 *
439 * The macro emits code to set up the kernel context for #VC. The #VC handler
440 * runs on an IST stack and needs to be able to cause nested #VC exceptions.
441 *
442 * To make this work the #VC entry code tries its best to pretend it doesn't use
443 * an IST stack by switching to the task stack if coming from user-space (which
444 * includes early SYSCALL entry path) or back to the stack in the IRET frame if
445 * entered from kernel-mode.
446 *
447 * If entered from kernel-mode the return stack is validated first, and if it is
448 * not safe to use (e.g. because it points to the entry stack) the #VC handler
449 * will switch to a fall-back stack (VC2) and call a special handler function.
450 *
451 * The macro is only used for one vector, but it is planned to be extended in
452 * the future for the #HV exception.
453 */
454.macro idtentry_vc vector asmsym cfunc
455SYM_CODE_START(\asmsym)
456	UNWIND_HINT_IRET_ENTRY
457	ENDBR
458	ASM_CLAC
459	cld
460
461	/*
462	 * If the entry is from userspace, switch stacks and treat it as
463	 * a normal entry.
464	 */
465	testb	$3, CS-ORIG_RAX(%rsp)
466	jnz	.Lfrom_usermode_switch_stack_\@
467
468	/*
469	 * paranoid_entry returns SWAPGS flag for paranoid_exit in EBX.
470	 * EBX == 0 -> SWAPGS, EBX == 1 -> no SWAPGS
471	 */
472	call	paranoid_entry
473
474	UNWIND_HINT_REGS
475
476	/*
477	 * Switch off the IST stack to make it free for nested exceptions. The
478	 * vc_switch_off_ist() function will switch back to the interrupted
479	 * stack if it is safe to do so. If not it switches to the VC fall-back
480	 * stack.
481	 */
482	movq	%rsp, %rdi		/* pt_regs pointer */
483	call	vc_switch_off_ist
484	movq	%rax, %rsp		/* Switch to new stack */
485
486	ENCODE_FRAME_POINTER
487	UNWIND_HINT_REGS
488
489	/* Update pt_regs */
490	movq	ORIG_RAX(%rsp), %rsi	/* get error code into 2nd argument*/
491	movq	$-1, ORIG_RAX(%rsp)	/* no syscall to restart */
492
493	movq	%rsp, %rdi		/* pt_regs pointer */
494
495	call	kernel_\cfunc
496
497	/*
498	 * No need to switch back to the IST stack. The current stack is either
499	 * identical to the stack in the IRET frame or the VC fall-back stack,
500	 * so it is definitely mapped even with PTI enabled.
501	 */
502	jmp	paranoid_exit
503
504	/* Switch to the regular task stack */
505.Lfrom_usermode_switch_stack_\@:
506	idtentry_body user_\cfunc, has_error_code=1
507
508_ASM_NOKPROBE(\asmsym)
509SYM_CODE_END(\asmsym)
510.endm
511#endif
512
513/*
514 * Double fault entry. Straight paranoid. No checks from which context
515 * this comes because for the espfix induced #DF this would do the wrong
516 * thing.
517 */
518.macro idtentry_df vector asmsym cfunc
519SYM_CODE_START(\asmsym)
520	UNWIND_HINT_IRET_ENTRY offset=8
521	ENDBR
522	ASM_CLAC
523	cld
524
525	/* paranoid_entry returns GS information for paranoid_exit in EBX. */
526	call	paranoid_entry
527	UNWIND_HINT_REGS
528
529	movq	%rsp, %rdi		/* pt_regs pointer into first argument */
530	movq	ORIG_RAX(%rsp), %rsi	/* get error code into 2nd argument*/
531	movq	$-1, ORIG_RAX(%rsp)	/* no syscall to restart */
532	call	\cfunc
533
534	/* For some configurations \cfunc ends up being a noreturn. */
535	REACHABLE
536
537	jmp	paranoid_exit
538
539_ASM_NOKPROBE(\asmsym)
540SYM_CODE_END(\asmsym)
541.endm
542
543/*
544 * Include the defines which emit the idt entries which are shared
545 * shared between 32 and 64 bit and emit the __irqentry_text_* markers
546 * so the stacktrace boundary checks work.
547 */
548	__ALIGN
549	.globl __irqentry_text_start
550__irqentry_text_start:
551
552#include <asm/idtentry.h>
553
554	__ALIGN
555	.globl __irqentry_text_end
556__irqentry_text_end:
557	ANNOTATE_NOENDBR
558
559SYM_CODE_START_LOCAL(common_interrupt_return)
560SYM_INNER_LABEL(swapgs_restore_regs_and_return_to_usermode, SYM_L_GLOBAL)
561	IBRS_EXIT
562#ifdef CONFIG_XEN_PV
563	ALTERNATIVE "", "jmp xenpv_restore_regs_and_return_to_usermode", X86_FEATURE_XENPV
564#endif
565#ifdef CONFIG_MITIGATION_PAGE_TABLE_ISOLATION
566	ALTERNATIVE "", "jmp .Lpti_restore_regs_and_return_to_usermode", X86_FEATURE_PTI
567#endif
568
569	STACKLEAK_ERASE
570	POP_REGS
571	add	$8, %rsp	/* orig_ax */
572	UNWIND_HINT_IRET_REGS
573
574.Lswapgs_and_iret:
575	swapgs
576	CLEAR_CPU_BUFFERS
577	/* Assert that the IRET frame indicates user mode. */
578	testb	$3, 8(%rsp)
579	jnz	.Lnative_iret
580	ud2
581
582#ifdef CONFIG_MITIGATION_PAGE_TABLE_ISOLATION
583.Lpti_restore_regs_and_return_to_usermode:
584	POP_REGS pop_rdi=0
585
586	/*
587	 * The stack is now user RDI, orig_ax, RIP, CS, EFLAGS, RSP, SS.
588	 * Save old stack pointer and switch to trampoline stack.
589	 */
590	movq	%rsp, %rdi
591	movq	PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %rsp
592	UNWIND_HINT_END_OF_STACK
593
594	/* Copy the IRET frame to the trampoline stack. */
595	pushq	6*8(%rdi)	/* SS */
596	pushq	5*8(%rdi)	/* RSP */
597	pushq	4*8(%rdi)	/* EFLAGS */
598	pushq	3*8(%rdi)	/* CS */
599	pushq	2*8(%rdi)	/* RIP */
600
601	/* Push user RDI on the trampoline stack. */
602	pushq	(%rdi)
603
604	/*
605	 * We are on the trampoline stack.  All regs except RDI are live.
606	 * We can do future final exit work right here.
607	 */
608	STACKLEAK_ERASE_NOCLOBBER
609
610	push	%rax
611	SWITCH_TO_USER_CR3 scratch_reg=%rdi scratch_reg2=%rax
612	pop	%rax
613
614	/* Restore RDI. */
615	popq	%rdi
616	jmp	.Lswapgs_and_iret
617#endif
618
619SYM_INNER_LABEL(restore_regs_and_return_to_kernel, SYM_L_GLOBAL)
620#ifdef CONFIG_DEBUG_ENTRY
621	/* Assert that pt_regs indicates kernel mode. */
622	testb	$3, CS(%rsp)
623	jz	1f
624	ud2
6251:
626#endif
627	POP_REGS
628	addq	$8, %rsp	/* skip regs->orig_ax */
629	/*
630	 * ARCH_HAS_MEMBARRIER_SYNC_CORE rely on IRET core serialization
631	 * when returning from IPI handler.
632	 */
633#ifdef CONFIG_XEN_PV
634SYM_INNER_LABEL(early_xen_iret_patch, SYM_L_GLOBAL)
635	ANNOTATE_NOENDBR
636	.byte 0xe9
637	.long .Lnative_iret - (. + 4)
638#endif
639
640.Lnative_iret:
641	UNWIND_HINT_IRET_REGS
642	/*
643	 * Are we returning to a stack segment from the LDT?  Note: in
644	 * 64-bit mode SS:RSP on the exception stack is always valid.
645	 */
646#ifdef CONFIG_X86_ESPFIX64
647	testb	$4, (SS-RIP)(%rsp)
648	jnz	native_irq_return_ldt
649#endif
650
651SYM_INNER_LABEL(native_irq_return_iret, SYM_L_GLOBAL)
652	ANNOTATE_NOENDBR // exc_double_fault
653	/*
654	 * This may fault.  Non-paranoid faults on return to userspace are
655	 * handled by fixup_bad_iret.  These include #SS, #GP, and #NP.
656	 * Double-faults due to espfix64 are handled in exc_double_fault.
657	 * Other faults here are fatal.
658	 */
659	iretq
660
661#ifdef CONFIG_X86_ESPFIX64
662native_irq_return_ldt:
663	/*
664	 * We are running with user GSBASE.  All GPRs contain their user
665	 * values.  We have a percpu ESPFIX stack that is eight slots
666	 * long (see ESPFIX_STACK_SIZE).  espfix_waddr points to the bottom
667	 * of the ESPFIX stack.
668	 *
669	 * We clobber RAX and RDI in this code.  We stash RDI on the
670	 * normal stack and RAX on the ESPFIX stack.
671	 *
672	 * The ESPFIX stack layout we set up looks like this:
673	 *
674	 * --- top of ESPFIX stack ---
675	 * SS
676	 * RSP
677	 * RFLAGS
678	 * CS
679	 * RIP  <-- RSP points here when we're done
680	 * RAX  <-- espfix_waddr points here
681	 * --- bottom of ESPFIX stack ---
682	 */
683
684	pushq	%rdi				/* Stash user RDI */
685	swapgs					/* to kernel GS */
686	SWITCH_TO_KERNEL_CR3 scratch_reg=%rdi	/* to kernel CR3 */
687
688	movq	PER_CPU_VAR(espfix_waddr), %rdi
689	movq	%rax, (0*8)(%rdi)		/* user RAX */
690	movq	(1*8)(%rsp), %rax		/* user RIP */
691	movq	%rax, (1*8)(%rdi)
692	movq	(2*8)(%rsp), %rax		/* user CS */
693	movq	%rax, (2*8)(%rdi)
694	movq	(3*8)(%rsp), %rax		/* user RFLAGS */
695	movq	%rax, (3*8)(%rdi)
696	movq	(5*8)(%rsp), %rax		/* user SS */
697	movq	%rax, (5*8)(%rdi)
698	movq	(4*8)(%rsp), %rax		/* user RSP */
699	movq	%rax, (4*8)(%rdi)
700	/* Now RAX == RSP. */
701
702	andl	$0xffff0000, %eax		/* RAX = (RSP & 0xffff0000) */
703
704	/*
705	 * espfix_stack[31:16] == 0.  The page tables are set up such that
706	 * (espfix_stack | (X & 0xffff0000)) points to a read-only alias of
707	 * espfix_waddr for any X.  That is, there are 65536 RO aliases of
708	 * the same page.  Set up RSP so that RSP[31:16] contains the
709	 * respective 16 bits of the /userspace/ RSP and RSP nonetheless
710	 * still points to an RO alias of the ESPFIX stack.
711	 */
712	orq	PER_CPU_VAR(espfix_stack), %rax
713
714	SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
715	swapgs					/* to user GS */
716	popq	%rdi				/* Restore user RDI */
717
718	movq	%rax, %rsp
719	UNWIND_HINT_IRET_REGS offset=8
720
721	/*
722	 * At this point, we cannot write to the stack any more, but we can
723	 * still read.
724	 */
725	popq	%rax				/* Restore user RAX */
726
727	CLEAR_CPU_BUFFERS
728
729	/*
730	 * RSP now points to an ordinary IRET frame, except that the page
731	 * is read-only and RSP[31:16] are preloaded with the userspace
732	 * values.  We can now IRET back to userspace.
733	 */
734	jmp	native_irq_return_iret
735#endif
736SYM_CODE_END(common_interrupt_return)
737_ASM_NOKPROBE(common_interrupt_return)
738
739/*
740 * Reload gs selector with exception handling
741 *  di:  new selector
742 *
743 * Is in entry.text as it shouldn't be instrumented.
744 */
745SYM_FUNC_START(asm_load_gs_index)
746	FRAME_BEGIN
747	swapgs
748.Lgs_change:
749	ANNOTATE_NOENDBR // error_entry
750	movl	%edi, %gs
7512:	ALTERNATIVE "", "mfence", X86_BUG_SWAPGS_FENCE
752	swapgs
753	FRAME_END
754	RET
755
756	/* running with kernelgs */
757.Lbad_gs:
758	swapgs					/* switch back to user gs */
759.macro ZAP_GS
760	/* This can't be a string because the preprocessor needs to see it. */
761	movl $__USER_DS, %eax
762	movl %eax, %gs
763.endm
764	ALTERNATIVE "", "ZAP_GS", X86_BUG_NULL_SEG
765	xorl	%eax, %eax
766	movl	%eax, %gs
767	jmp	2b
768
769	_ASM_EXTABLE(.Lgs_change, .Lbad_gs)
770
771SYM_FUNC_END(asm_load_gs_index)
772EXPORT_SYMBOL(asm_load_gs_index)
773
774#ifdef CONFIG_XEN_PV
775/*
776 * A note on the "critical region" in our callback handler.
777 * We want to avoid stacking callback handlers due to events occurring
778 * during handling of the last event. To do this, we keep events disabled
779 * until we've done all processing. HOWEVER, we must enable events before
780 * popping the stack frame (can't be done atomically) and so it would still
781 * be possible to get enough handler activations to overflow the stack.
782 * Although unlikely, bugs of that kind are hard to track down, so we'd
783 * like to avoid the possibility.
784 * So, on entry to the handler we detect whether we interrupted an
785 * existing activation in its critical region -- if so, we pop the current
786 * activation and restart the handler using the previous one.
787 *
788 * C calling convention: exc_xen_hypervisor_callback(struct *pt_regs)
789 */
790	__FUNC_ALIGN
791SYM_CODE_START_LOCAL_NOALIGN(exc_xen_hypervisor_callback)
792
793/*
794 * Since we don't modify %rdi, evtchn_do_upall(struct *pt_regs) will
795 * see the correct pointer to the pt_regs
796 */
797	UNWIND_HINT_FUNC
798	movq	%rdi, %rsp			/* we don't return, adjust the stack frame */
799	UNWIND_HINT_REGS
800
801	call	xen_pv_evtchn_do_upcall
802
803	jmp	error_return
804SYM_CODE_END(exc_xen_hypervisor_callback)
805
806/*
807 * Hypervisor uses this for application faults while it executes.
808 * We get here for two reasons:
809 *  1. Fault while reloading DS, ES, FS or GS
810 *  2. Fault while executing IRET
811 * Category 1 we do not need to fix up as Xen has already reloaded all segment
812 * registers that could be reloaded and zeroed the others.
813 * Category 2 we fix up by killing the current process. We cannot use the
814 * normal Linux return path in this case because if we use the IRET hypercall
815 * to pop the stack frame we end up in an infinite loop of failsafe callbacks.
816 * We distinguish between categories by comparing each saved segment register
817 * with its current contents: any discrepancy means we in category 1.
818 */
819	__FUNC_ALIGN
820SYM_CODE_START_NOALIGN(xen_failsafe_callback)
821	UNWIND_HINT_UNDEFINED
822	ENDBR
823	movl	%ds, %ecx
824	cmpw	%cx, 0x10(%rsp)
825	jne	1f
826	movl	%es, %ecx
827	cmpw	%cx, 0x18(%rsp)
828	jne	1f
829	movl	%fs, %ecx
830	cmpw	%cx, 0x20(%rsp)
831	jne	1f
832	movl	%gs, %ecx
833	cmpw	%cx, 0x28(%rsp)
834	jne	1f
835	/* All segments match their saved values => Category 2 (Bad IRET). */
836	movq	(%rsp), %rcx
837	movq	8(%rsp), %r11
838	addq	$0x30, %rsp
839	pushq	$0				/* RIP */
840	UNWIND_HINT_IRET_REGS offset=8
841	jmp	asm_exc_general_protection
8421:	/* Segment mismatch => Category 1 (Bad segment). Retry the IRET. */
843	movq	(%rsp), %rcx
844	movq	8(%rsp), %r11
845	addq	$0x30, %rsp
846	UNWIND_HINT_IRET_REGS
847	pushq	$-1 /* orig_ax = -1 => not a system call */
848	PUSH_AND_CLEAR_REGS
849	ENCODE_FRAME_POINTER
850	jmp	error_return
851SYM_CODE_END(xen_failsafe_callback)
852#endif /* CONFIG_XEN_PV */
853
854/*
855 * Save all registers in pt_regs. Return GSBASE related information
856 * in EBX depending on the availability of the FSGSBASE instructions:
857 *
858 * FSGSBASE	R/EBX
859 *     N        0 -> SWAPGS on exit
860 *              1 -> no SWAPGS on exit
861 *
862 *     Y        GSBASE value at entry, must be restored in paranoid_exit
863 *
864 * R14 - old CR3
865 * R15 - old SPEC_CTRL
866 */
867SYM_CODE_START(paranoid_entry)
868	ANNOTATE_NOENDBR
869	UNWIND_HINT_FUNC
870	PUSH_AND_CLEAR_REGS save_ret=1
871	ENCODE_FRAME_POINTER 8
872
873	/*
874	 * Always stash CR3 in %r14.  This value will be restored,
875	 * verbatim, at exit.  Needed if paranoid_entry interrupted
876	 * another entry that already switched to the user CR3 value
877	 * but has not yet returned to userspace.
878	 *
879	 * This is also why CS (stashed in the "iret frame" by the
880	 * hardware at entry) can not be used: this may be a return
881	 * to kernel code, but with a user CR3 value.
882	 *
883	 * Switching CR3 does not depend on kernel GSBASE so it can
884	 * be done before switching to the kernel GSBASE. This is
885	 * required for FSGSBASE because the kernel GSBASE has to
886	 * be retrieved from a kernel internal table.
887	 */
888	SAVE_AND_SWITCH_TO_KERNEL_CR3 scratch_reg=%rax save_reg=%r14
889
890	/*
891	 * Handling GSBASE depends on the availability of FSGSBASE.
892	 *
893	 * Without FSGSBASE the kernel enforces that negative GSBASE
894	 * values indicate kernel GSBASE. With FSGSBASE no assumptions
895	 * can be made about the GSBASE value when entering from user
896	 * space.
897	 */
898	ALTERNATIVE "jmp .Lparanoid_entry_checkgs", "", X86_FEATURE_FSGSBASE
899
900	/*
901	 * Read the current GSBASE and store it in %rbx unconditionally,
902	 * retrieve and set the current CPUs kernel GSBASE. The stored value
903	 * has to be restored in paranoid_exit unconditionally.
904	 *
905	 * The unconditional write to GS base below ensures that no subsequent
906	 * loads based on a mispredicted GS base can happen, therefore no LFENCE
907	 * is needed here.
908	 */
909	SAVE_AND_SET_GSBASE scratch_reg=%rax save_reg=%rbx
910	jmp .Lparanoid_gsbase_done
911
912.Lparanoid_entry_checkgs:
913	/* EBX = 1 -> kernel GSBASE active, no restore required */
914	movl	$1, %ebx
915
916	/*
917	 * The kernel-enforced convention is a negative GSBASE indicates
918	 * a kernel value. No SWAPGS needed on entry and exit.
919	 */
920	movl	$MSR_GS_BASE, %ecx
921	rdmsr
922	testl	%edx, %edx
923	js	.Lparanoid_kernel_gsbase
924
925	/* EBX = 0 -> SWAPGS required on exit */
926	xorl	%ebx, %ebx
927	swapgs
928.Lparanoid_kernel_gsbase:
929	FENCE_SWAPGS_KERNEL_ENTRY
930.Lparanoid_gsbase_done:
931
932	/*
933	 * Once we have CR3 and %GS setup save and set SPEC_CTRL. Just like
934	 * CR3 above, keep the old value in a callee saved register.
935	 */
936	IBRS_ENTER save_reg=%r15
937	UNTRAIN_RET_FROM_CALL
938
939	RET
940SYM_CODE_END(paranoid_entry)
941
942/*
943 * "Paranoid" exit path from exception stack.  This is invoked
944 * only on return from non-NMI IST interrupts that came
945 * from kernel space.
946 *
947 * We may be returning to very strange contexts (e.g. very early
948 * in syscall entry), so checking for preemption here would
949 * be complicated.  Fortunately, there's no good reason to try
950 * to handle preemption here.
951 *
952 * R/EBX contains the GSBASE related information depending on the
953 * availability of the FSGSBASE instructions:
954 *
955 * FSGSBASE	R/EBX
956 *     N        0 -> SWAPGS on exit
957 *              1 -> no SWAPGS on exit
958 *
959 *     Y        User space GSBASE, must be restored unconditionally
960 *
961 * R14 - old CR3
962 * R15 - old SPEC_CTRL
963 */
964SYM_CODE_START_LOCAL(paranoid_exit)
965	UNWIND_HINT_REGS
966
967	/*
968	 * Must restore IBRS state before both CR3 and %GS since we need access
969	 * to the per-CPU x86_spec_ctrl_shadow variable.
970	 */
971	IBRS_EXIT save_reg=%r15
972
973	/*
974	 * The order of operations is important. PARANOID_RESTORE_CR3 requires
975	 * kernel GSBASE.
976	 *
977	 * NB to anyone to try to optimize this code: this code does
978	 * not execute at all for exceptions from user mode. Those
979	 * exceptions go through error_return instead.
980	 */
981	PARANOID_RESTORE_CR3 scratch_reg=%rax save_reg=%r14
982
983	/* Handle the three GSBASE cases */
984	ALTERNATIVE "jmp .Lparanoid_exit_checkgs", "", X86_FEATURE_FSGSBASE
985
986	/* With FSGSBASE enabled, unconditionally restore GSBASE */
987	wrgsbase	%rbx
988	jmp		restore_regs_and_return_to_kernel
989
990.Lparanoid_exit_checkgs:
991	/* On non-FSGSBASE systems, conditionally do SWAPGS */
992	testl		%ebx, %ebx
993	jnz		restore_regs_and_return_to_kernel
994
995	/* We are returning to a context with user GSBASE */
996	swapgs
997	jmp		restore_regs_and_return_to_kernel
998SYM_CODE_END(paranoid_exit)
999
1000/*
1001 * Switch GS and CR3 if needed.
1002 */
1003SYM_CODE_START(error_entry)
1004	ANNOTATE_NOENDBR
1005	UNWIND_HINT_FUNC
1006
1007	PUSH_AND_CLEAR_REGS save_ret=1
1008	ENCODE_FRAME_POINTER 8
1009
1010	testb	$3, CS+8(%rsp)
1011	jz	.Lerror_kernelspace
1012
1013	/*
1014	 * We entered from user mode or we're pretending to have entered
1015	 * from user mode due to an IRET fault.
1016	 */
1017	swapgs
1018	FENCE_SWAPGS_USER_ENTRY
1019	/* We have user CR3.  Change to kernel CR3. */
1020	SWITCH_TO_KERNEL_CR3 scratch_reg=%rax
1021	IBRS_ENTER
1022	UNTRAIN_RET_FROM_CALL
1023
1024	leaq	8(%rsp), %rdi			/* arg0 = pt_regs pointer */
1025	/* Put us onto the real thread stack. */
1026	jmp	sync_regs
1027
1028	/*
1029	 * There are two places in the kernel that can potentially fault with
1030	 * usergs. Handle them here.  B stepping K8s sometimes report a
1031	 * truncated RIP for IRET exceptions returning to compat mode. Check
1032	 * for these here too.
1033	 */
1034.Lerror_kernelspace:
1035	leaq	native_irq_return_iret(%rip), %rcx
1036	cmpq	%rcx, RIP+8(%rsp)
1037	je	.Lerror_bad_iret
1038	movl	%ecx, %eax			/* zero extend */
1039	cmpq	%rax, RIP+8(%rsp)
1040	je	.Lbstep_iret
1041	cmpq	$.Lgs_change, RIP+8(%rsp)
1042	jne	.Lerror_entry_done_lfence
1043
1044	/*
1045	 * hack: .Lgs_change can fail with user gsbase.  If this happens, fix up
1046	 * gsbase and proceed.  We'll fix up the exception and land in
1047	 * .Lgs_change's error handler with kernel gsbase.
1048	 */
1049	swapgs
1050
1051	/*
1052	 * Issue an LFENCE to prevent GS speculation, regardless of whether it is a
1053	 * kernel or user gsbase.
1054	 */
1055.Lerror_entry_done_lfence:
1056	FENCE_SWAPGS_KERNEL_ENTRY
1057	CALL_DEPTH_ACCOUNT
1058	leaq	8(%rsp), %rax			/* return pt_regs pointer */
1059	VALIDATE_UNRET_END
1060	RET
1061
1062.Lbstep_iret:
1063	/* Fix truncated RIP */
1064	movq	%rcx, RIP+8(%rsp)
1065	/* fall through */
1066
1067.Lerror_bad_iret:
1068	/*
1069	 * We came from an IRET to user mode, so we have user
1070	 * gsbase and CR3.  Switch to kernel gsbase and CR3:
1071	 */
1072	swapgs
1073	FENCE_SWAPGS_USER_ENTRY
1074	SWITCH_TO_KERNEL_CR3 scratch_reg=%rax
1075	IBRS_ENTER
1076	UNTRAIN_RET_FROM_CALL
1077
1078	/*
1079	 * Pretend that the exception came from user mode: set up pt_regs
1080	 * as if we faulted immediately after IRET.
1081	 */
1082	leaq	8(%rsp), %rdi			/* arg0 = pt_regs pointer */
1083	call	fixup_bad_iret
1084	mov	%rax, %rdi
1085	jmp	sync_regs
1086SYM_CODE_END(error_entry)
1087
1088SYM_CODE_START_LOCAL(error_return)
1089	UNWIND_HINT_REGS
1090	DEBUG_ENTRY_ASSERT_IRQS_OFF
1091	testb	$3, CS(%rsp)
1092	jz	restore_regs_and_return_to_kernel
1093	jmp	swapgs_restore_regs_and_return_to_usermode
1094SYM_CODE_END(error_return)
1095
1096/*
1097 * Runs on exception stack.  Xen PV does not go through this path at all,
1098 * so we can use real assembly here.
1099 *
1100 * Registers:
1101 *	%r14: Used to save/restore the CR3 of the interrupted context
1102 *	      when MITIGATION_PAGE_TABLE_ISOLATION is in use.  Do not clobber.
1103 */
1104SYM_CODE_START(asm_exc_nmi)
1105	UNWIND_HINT_IRET_ENTRY
1106	ENDBR
1107
1108	/*
1109	 * We allow breakpoints in NMIs. If a breakpoint occurs, then
1110	 * the iretq it performs will take us out of NMI context.
1111	 * This means that we can have nested NMIs where the next
1112	 * NMI is using the top of the stack of the previous NMI. We
1113	 * can't let it execute because the nested NMI will corrupt the
1114	 * stack of the previous NMI. NMI handlers are not re-entrant
1115	 * anyway.
1116	 *
1117	 * To handle this case we do the following:
1118	 *  Check a special location on the stack that contains a
1119	 *  variable that is set when NMIs are executing.
1120	 *  The interrupted task's stack is also checked to see if it
1121	 *  is an NMI stack.
1122	 *  If the variable is not set and the stack is not the NMI
1123	 *  stack then:
1124	 *    o Set the special variable on the stack
1125	 *    o Copy the interrupt frame into an "outermost" location on the
1126	 *      stack
1127	 *    o Copy the interrupt frame into an "iret" location on the stack
1128	 *    o Continue processing the NMI
1129	 *  If the variable is set or the previous stack is the NMI stack:
1130	 *    o Modify the "iret" location to jump to the repeat_nmi
1131	 *    o return back to the first NMI
1132	 *
1133	 * Now on exit of the first NMI, we first clear the stack variable
1134	 * The NMI stack will tell any nested NMIs at that point that it is
1135	 * nested. Then we pop the stack normally with iret, and if there was
1136	 * a nested NMI that updated the copy interrupt stack frame, a
1137	 * jump will be made to the repeat_nmi code that will handle the second
1138	 * NMI.
1139	 *
1140	 * However, espfix prevents us from directly returning to userspace
1141	 * with a single IRET instruction.  Similarly, IRET to user mode
1142	 * can fault.  We therefore handle NMIs from user space like
1143	 * other IST entries.
1144	 */
1145
1146	ASM_CLAC
1147	cld
1148
1149	/* Use %rdx as our temp variable throughout */
1150	pushq	%rdx
1151
1152	testb	$3, CS-RIP+8(%rsp)
1153	jz	.Lnmi_from_kernel
1154
1155	/*
1156	 * NMI from user mode.  We need to run on the thread stack, but we
1157	 * can't go through the normal entry paths: NMIs are masked, and
1158	 * we don't want to enable interrupts, because then we'll end
1159	 * up in an awkward situation in which IRQs are on but NMIs
1160	 * are off.
1161	 *
1162	 * We also must not push anything to the stack before switching
1163	 * stacks lest we corrupt the "NMI executing" variable.
1164	 */
1165
1166	swapgs
1167	FENCE_SWAPGS_USER_ENTRY
1168	SWITCH_TO_KERNEL_CR3 scratch_reg=%rdx
1169	movq	%rsp, %rdx
1170	movq	PER_CPU_VAR(pcpu_hot + X86_top_of_stack), %rsp
1171	UNWIND_HINT_IRET_REGS base=%rdx offset=8
1172	pushq	5*8(%rdx)	/* pt_regs->ss */
1173	pushq	4*8(%rdx)	/* pt_regs->rsp */
1174	pushq	3*8(%rdx)	/* pt_regs->flags */
1175	pushq	2*8(%rdx)	/* pt_regs->cs */
1176	pushq	1*8(%rdx)	/* pt_regs->rip */
1177	UNWIND_HINT_IRET_REGS
1178	pushq   $-1		/* pt_regs->orig_ax */
1179	PUSH_AND_CLEAR_REGS rdx=(%rdx)
1180	ENCODE_FRAME_POINTER
1181
1182	IBRS_ENTER
1183	UNTRAIN_RET
1184
1185	/*
1186	 * At this point we no longer need to worry about stack damage
1187	 * due to nesting -- we're on the normal thread stack and we're
1188	 * done with the NMI stack.
1189	 */
1190
1191	movq	%rsp, %rdi
1192	call	exc_nmi
1193
1194	/*
1195	 * Return back to user mode.  We must *not* do the normal exit
1196	 * work, because we don't want to enable interrupts.
1197	 */
1198	jmp	swapgs_restore_regs_and_return_to_usermode
1199
1200.Lnmi_from_kernel:
1201	/*
1202	 * Here's what our stack frame will look like:
1203	 * +---------------------------------------------------------+
1204	 * | original SS                                             |
1205	 * | original Return RSP                                     |
1206	 * | original RFLAGS                                         |
1207	 * | original CS                                             |
1208	 * | original RIP                                            |
1209	 * +---------------------------------------------------------+
1210	 * | temp storage for rdx                                    |
1211	 * +---------------------------------------------------------+
1212	 * | "NMI executing" variable                                |
1213	 * +---------------------------------------------------------+
1214	 * | iret SS          } Copied from "outermost" frame        |
1215	 * | iret Return RSP  } on each loop iteration; overwritten  |
1216	 * | iret RFLAGS      } by a nested NMI to force another     |
1217	 * | iret CS          } iteration if needed.                 |
1218	 * | iret RIP         }                                      |
1219	 * +---------------------------------------------------------+
1220	 * | outermost SS          } initialized in first_nmi;       |
1221	 * | outermost Return RSP  } will not be changed before      |
1222	 * | outermost RFLAGS      } NMI processing is done.         |
1223	 * | outermost CS          } Copied to "iret" frame on each  |
1224	 * | outermost RIP         } iteration.                      |
1225	 * +---------------------------------------------------------+
1226	 * | pt_regs                                                 |
1227	 * +---------------------------------------------------------+
1228	 *
1229	 * The "original" frame is used by hardware.  Before re-enabling
1230	 * NMIs, we need to be done with it, and we need to leave enough
1231	 * space for the asm code here.
1232	 *
1233	 * We return by executing IRET while RSP points to the "iret" frame.
1234	 * That will either return for real or it will loop back into NMI
1235	 * processing.
1236	 *
1237	 * The "outermost" frame is copied to the "iret" frame on each
1238	 * iteration of the loop, so each iteration starts with the "iret"
1239	 * frame pointing to the final return target.
1240	 */
1241
1242	/*
1243	 * Determine whether we're a nested NMI.
1244	 *
1245	 * If we interrupted kernel code between repeat_nmi and
1246	 * end_repeat_nmi, then we are a nested NMI.  We must not
1247	 * modify the "iret" frame because it's being written by
1248	 * the outer NMI.  That's okay; the outer NMI handler is
1249	 * about to call exc_nmi() anyway, so we can just resume
1250	 * the outer NMI.
1251	 */
1252
1253	movq	$repeat_nmi, %rdx
1254	cmpq	8(%rsp), %rdx
1255	ja	1f
1256	movq	$end_repeat_nmi, %rdx
1257	cmpq	8(%rsp), %rdx
1258	ja	nested_nmi_out
12591:
1260
1261	/*
1262	 * Now check "NMI executing".  If it's set, then we're nested.
1263	 * This will not detect if we interrupted an outer NMI just
1264	 * before IRET.
1265	 */
1266	cmpl	$1, -8(%rsp)
1267	je	nested_nmi
1268
1269	/*
1270	 * Now test if the previous stack was an NMI stack.  This covers
1271	 * the case where we interrupt an outer NMI after it clears
1272	 * "NMI executing" but before IRET.  We need to be careful, though:
1273	 * there is one case in which RSP could point to the NMI stack
1274	 * despite there being no NMI active: naughty userspace controls
1275	 * RSP at the very beginning of the SYSCALL targets.  We can
1276	 * pull a fast one on naughty userspace, though: we program
1277	 * SYSCALL to mask DF, so userspace cannot cause DF to be set
1278	 * if it controls the kernel's RSP.  We set DF before we clear
1279	 * "NMI executing".
1280	 */
1281	lea	6*8(%rsp), %rdx
1282	/* Compare the NMI stack (rdx) with the stack we came from (4*8(%rsp)) */
1283	cmpq	%rdx, 4*8(%rsp)
1284	/* If the stack pointer is above the NMI stack, this is a normal NMI */
1285	ja	first_nmi
1286
1287	subq	$EXCEPTION_STKSZ, %rdx
1288	cmpq	%rdx, 4*8(%rsp)
1289	/* If it is below the NMI stack, it is a normal NMI */
1290	jb	first_nmi
1291
1292	/* Ah, it is within the NMI stack. */
1293
1294	testb	$(X86_EFLAGS_DF >> 8), (3*8 + 1)(%rsp)
1295	jz	first_nmi	/* RSP was user controlled. */
1296
1297	/* This is a nested NMI. */
1298
1299nested_nmi:
1300	/*
1301	 * Modify the "iret" frame to point to repeat_nmi, forcing another
1302	 * iteration of NMI handling.
1303	 */
1304	subq	$8, %rsp
1305	leaq	-10*8(%rsp), %rdx
1306	pushq	$__KERNEL_DS
1307	pushq	%rdx
1308	pushfq
1309	pushq	$__KERNEL_CS
1310	pushq	$repeat_nmi
1311
1312	/* Put stack back */
1313	addq	$(6*8), %rsp
1314
1315nested_nmi_out:
1316	popq	%rdx
1317
1318	/* We are returning to kernel mode, so this cannot result in a fault. */
1319	iretq
1320
1321first_nmi:
1322	/* Restore rdx. */
1323	movq	(%rsp), %rdx
1324
1325	/* Make room for "NMI executing". */
1326	pushq	$0
1327
1328	/* Leave room for the "iret" frame */
1329	subq	$(5*8), %rsp
1330
1331	/* Copy the "original" frame to the "outermost" frame */
1332	.rept 5
1333	pushq	11*8(%rsp)
1334	.endr
1335	UNWIND_HINT_IRET_REGS
1336
1337	/* Everything up to here is safe from nested NMIs */
1338
1339#ifdef CONFIG_DEBUG_ENTRY
1340	/*
1341	 * For ease of testing, unmask NMIs right away.  Disabled by
1342	 * default because IRET is very expensive.
1343	 */
1344	pushq	$0		/* SS */
1345	pushq	%rsp		/* RSP (minus 8 because of the previous push) */
1346	addq	$8, (%rsp)	/* Fix up RSP */
1347	pushfq			/* RFLAGS */
1348	pushq	$__KERNEL_CS	/* CS */
1349	pushq	$1f		/* RIP */
1350	iretq			/* continues at repeat_nmi below */
1351	UNWIND_HINT_IRET_REGS
13521:
1353#endif
1354
1355repeat_nmi:
1356	ANNOTATE_NOENDBR // this code
1357	/*
1358	 * If there was a nested NMI, the first NMI's iret will return
1359	 * here. But NMIs are still enabled and we can take another
1360	 * nested NMI. The nested NMI checks the interrupted RIP to see
1361	 * if it is between repeat_nmi and end_repeat_nmi, and if so
1362	 * it will just return, as we are about to repeat an NMI anyway.
1363	 * This makes it safe to copy to the stack frame that a nested
1364	 * NMI will update.
1365	 *
1366	 * RSP is pointing to "outermost RIP".  gsbase is unknown, but, if
1367	 * we're repeating an NMI, gsbase has the same value that it had on
1368	 * the first iteration.  paranoid_entry will load the kernel
1369	 * gsbase if needed before we call exc_nmi().  "NMI executing"
1370	 * is zero.
1371	 */
1372	movq	$1, 10*8(%rsp)		/* Set "NMI executing". */
1373
1374	/*
1375	 * Copy the "outermost" frame to the "iret" frame.  NMIs that nest
1376	 * here must not modify the "iret" frame while we're writing to
1377	 * it or it will end up containing garbage.
1378	 */
1379	addq	$(10*8), %rsp
1380	.rept 5
1381	pushq	-6*8(%rsp)
1382	.endr
1383	subq	$(5*8), %rsp
1384end_repeat_nmi:
1385	ANNOTATE_NOENDBR // this code
1386
1387	/*
1388	 * Everything below this point can be preempted by a nested NMI.
1389	 * If this happens, then the inner NMI will change the "iret"
1390	 * frame to point back to repeat_nmi.
1391	 */
1392	pushq	$-1				/* ORIG_RAX: no syscall to restart */
1393
1394	/*
1395	 * Use paranoid_entry to handle SWAPGS, but no need to use paranoid_exit
1396	 * as we should not be calling schedule in NMI context.
1397	 * Even with normal interrupts enabled. An NMI should not be
1398	 * setting NEED_RESCHED or anything that normal interrupts and
1399	 * exceptions might do.
1400	 */
1401	call	paranoid_entry
1402	UNWIND_HINT_REGS
1403
1404	movq	%rsp, %rdi
1405	call	exc_nmi
1406
1407	/* Always restore stashed SPEC_CTRL value (see paranoid_entry) */
1408	IBRS_EXIT save_reg=%r15
1409
1410	PARANOID_RESTORE_CR3 scratch_reg=%r15 save_reg=%r14
1411
1412	/*
1413	 * The above invocation of paranoid_entry stored the GSBASE
1414	 * related information in R/EBX depending on the availability
1415	 * of FSGSBASE.
1416	 *
1417	 * If FSGSBASE is enabled, restore the saved GSBASE value
1418	 * unconditionally, otherwise take the conditional SWAPGS path.
1419	 */
1420	ALTERNATIVE "jmp nmi_no_fsgsbase", "", X86_FEATURE_FSGSBASE
1421
1422	wrgsbase	%rbx
1423	jmp	nmi_restore
1424
1425nmi_no_fsgsbase:
1426	/* EBX == 0 -> invoke SWAPGS */
1427	testl	%ebx, %ebx
1428	jnz	nmi_restore
1429
1430nmi_swapgs:
1431	swapgs
1432
1433nmi_restore:
1434	POP_REGS
1435
1436	/*
1437	 * Skip orig_ax and the "outermost" frame to point RSP at the "iret"
1438	 * at the "iret" frame.
1439	 */
1440	addq	$6*8, %rsp
1441
1442	/*
1443	 * Clear "NMI executing".  Set DF first so that we can easily
1444	 * distinguish the remaining code between here and IRET from
1445	 * the SYSCALL entry and exit paths.
1446	 *
1447	 * We arguably should just inspect RIP instead, but I (Andy) wrote
1448	 * this code when I had the misapprehension that Xen PV supported
1449	 * NMIs, and Xen PV would break that approach.
1450	 */
1451	std
1452	movq	$0, 5*8(%rsp)		/* clear "NMI executing" */
1453
1454	/*
1455	 * Skip CLEAR_CPU_BUFFERS here, since it only helps in rare cases like
1456	 * NMI in kernel after user state is restored. For an unprivileged user
1457	 * these conditions are hard to meet.
1458	 */
1459
1460	/*
1461	 * iretq reads the "iret" frame and exits the NMI stack in a
1462	 * single instruction.  We are returning to kernel mode, so this
1463	 * cannot result in a fault.  Similarly, we don't need to worry
1464	 * about espfix64 on the way back to kernel mode.
1465	 */
1466	iretq
1467SYM_CODE_END(asm_exc_nmi)
1468
1469/*
1470 * This handles SYSCALL from 32-bit code.  There is no way to program
1471 * MSRs to fully disable 32-bit SYSCALL.
1472 */
1473SYM_CODE_START(entry_SYSCALL32_ignore)
1474	UNWIND_HINT_END_OF_STACK
1475	ENDBR
1476	mov	$-ENOSYS, %eax
1477	CLEAR_CPU_BUFFERS
1478	sysretl
1479SYM_CODE_END(entry_SYSCALL32_ignore)
1480
1481.pushsection .text, "ax"
1482	__FUNC_ALIGN
1483SYM_CODE_START_NOALIGN(rewind_stack_and_make_dead)
1484	UNWIND_HINT_FUNC
1485	/* Prevent any naive code from trying to unwind to our caller. */
1486	xorl	%ebp, %ebp
1487
1488	movq	PER_CPU_VAR(pcpu_hot + X86_top_of_stack), %rax
1489	leaq	-PTREGS_SIZE(%rax), %rsp
1490	UNWIND_HINT_REGS
1491
1492	call	make_task_dead
1493SYM_CODE_END(rewind_stack_and_make_dead)
1494.popsection
1495
1496/*
1497 * This sequence executes branches in order to remove user branch information
1498 * from the branch history tracker in the Branch Predictor, therefore removing
1499 * user influence on subsequent BTB lookups.
1500 *
1501 * It should be used on parts prior to Alder Lake. Newer parts should use the
1502 * BHI_DIS_S hardware control instead. If a pre-Alder Lake part is being
1503 * virtualized on newer hardware the VMM should protect against BHI attacks by
1504 * setting BHI_DIS_S for the guests.
1505 *
1506 * CALLs/RETs are necessary to prevent Loop Stream Detector(LSD) from engaging
1507 * and not clearing the branch history. The call tree looks like:
1508 *
1509 * call 1
1510 *    call 2
1511 *      call 2
1512 *        call 2
1513 *          call 2
1514 * 	      call 2
1515 * 	      ret
1516 * 	    ret
1517 *        ret
1518 *      ret
1519 *    ret
1520 * ret
1521 *
1522 * This means that the stack is non-constant and ORC can't unwind it with %rsp
1523 * alone.  Therefore we unconditionally set up the frame pointer, which allows
1524 * ORC to unwind properly.
1525 *
1526 * The alignment is for performance and not for safety, and may be safely
1527 * refactored in the future if needed.
1528 */
1529SYM_FUNC_START(clear_bhb_loop)
1530	push	%rbp
1531	mov	%rsp, %rbp
1532	movl	$5, %ecx
1533	ANNOTATE_INTRA_FUNCTION_CALL
1534	call	1f
1535	jmp	5f
1536	.align 64, 0xcc
1537	ANNOTATE_INTRA_FUNCTION_CALL
15381:	call	2f
1539	RET
1540	.align 64, 0xcc
15412:	movl	$5, %eax
15423:	jmp	4f
1543	nop
15444:	sub	$1, %eax
1545	jnz	3b
1546	sub	$1, %ecx
1547	jnz	1b
1548	RET
15495:	lfence
1550	pop	%rbp
1551	RET
1552SYM_FUNC_END(clear_bhb_loop)
1553EXPORT_SYMBOL_GPL(clear_bhb_loop)
1554STACK_FRAME_NON_STANDARD(clear_bhb_loop)
1555