xref: /linux/drivers/dma/mmp_pdma.c (revision e4c0fdd5af4c590ca07880b97e286c6532437658)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright 2012 Marvell International Ltd.
4  */
5 
6 #include <linux/err.h>
7 #include <linux/module.h>
8 #include <linux/init.h>
9 #include <linux/types.h>
10 #include <linux/interrupt.h>
11 #include <linux/dma-mapping.h>
12 #include <linux/slab.h>
13 #include <linux/dmaengine.h>
14 #include <linux/platform_device.h>
15 #include <linux/device.h>
16 #include <linux/platform_data/mmp_dma.h>
17 #include <linux/dmapool.h>
18 #include <linux/clk.h>
19 #include <linux/reset.h>
20 #include <linux/of_dma.h>
21 #include <linux/of.h>
22 
23 #include "dmaengine.h"
24 
25 #define DCSR		0x0000
26 #define DALGN		0x00a0
27 #define DINT		0x00f0
28 #define DDADR(n)	(0x0200 + ((n) << 4))
29 #define DSADR(n)	(0x0204 + ((n) << 4))
30 #define DTADR(n)	(0x0208 + ((n) << 4))
31 #define DDADRH(n)	(0x0300 + ((n) << 4))
32 #define DSADRH(n)	(0x0304 + ((n) << 4))
33 #define DTADRH(n)	(0x0308 + ((n) << 4))
34 #define DCMD		0x020c
35 
36 #define DCSR_RUN	BIT(31)	/* Run Bit (read / write) */
37 #define DCSR_NODESC	BIT(30)	/* No-Descriptor Fetch (read / write) */
38 #define DCSR_STOPIRQEN	BIT(29)	/* Stop Interrupt Enable (read / write) */
39 #define DCSR_REQPEND	BIT(8)	/* Request Pending (read-only) */
40 #define DCSR_STOPSTATE	BIT(3)	/* Stop State (read-only) */
41 #define DCSR_ENDINTR	BIT(2)	/* End Interrupt (read / write) */
42 #define DCSR_STARTINTR	BIT(1)	/* Start Interrupt (read / write) */
43 #define DCSR_BUSERR	BIT(0)	/* Bus Error Interrupt (read / write) */
44 
45 #define DCSR_EORIRQEN	BIT(28)	/* End of Receive Interrupt Enable (R/W) */
46 #define DCSR_EORJMPEN	BIT(27)	/* Jump to next descriptor on EOR */
47 #define DCSR_EORSTOPEN	BIT(26)	/* STOP on an EOR */
48 #define DCSR_SETCMPST	BIT(25)	/* Set Descriptor Compare Status */
49 #define DCSR_CLRCMPST	BIT(24)	/* Clear Descriptor Compare Status */
50 #define DCSR_LPAEEN	BIT(21)	/* Long Physical Address Extension Enable */
51 #define DCSR_CMPST	BIT(10)	/* The Descriptor Compare Status */
52 #define DCSR_EORINTR	BIT(9)	/* The end of Receive */
53 
54 #define DRCMR(n)	((((n) < 64) ? 0x0100 : 0x1100) + (((n) & 0x3f) << 2))
55 #define DRCMR_MAPVLD	BIT(7)	/* Map Valid (read / write) */
56 #define DRCMR_CHLNUM	0x1f	/* mask for Channel Number (read / write) */
57 
58 #define DDADR_DESCADDR	0xfffffff0	/* Address of next descriptor (mask) */
59 #define DDADR_STOP	BIT(0)	/* Stop (read / write) */
60 
61 #define DCMD_INCSRCADDR	BIT(31)	/* Source Address Increment Setting. */
62 #define DCMD_INCTRGADDR	BIT(30)	/* Target Address Increment Setting. */
63 #define DCMD_FLOWSRC	BIT(29)	/* Flow Control by the source. */
64 #define DCMD_FLOWTRG	BIT(28)	/* Flow Control by the target. */
65 #define DCMD_STARTIRQEN	BIT(22)	/* Start Interrupt Enable */
66 #define DCMD_ENDIRQEN	BIT(21)	/* End Interrupt Enable */
67 #define DCMD_ENDIAN	BIT(18)	/* Device Endian-ness. */
68 #define DCMD_BURST8	(1 << 16)	/* 8 byte burst */
69 #define DCMD_BURST16	(2 << 16)	/* 16 byte burst */
70 #define DCMD_BURST32	(3 << 16)	/* 32 byte burst */
71 #define DCMD_WIDTH1	(1 << 14)	/* 1 byte width */
72 #define DCMD_WIDTH2	(2 << 14)	/* 2 byte width (HalfWord) */
73 #define DCMD_WIDTH4	(3 << 14)	/* 4 byte width (Word) */
74 #define DCMD_LENGTH	0x01fff		/* length mask (max = 8K - 1) */
75 
76 #define PDMA_MAX_DESC_BYTES	DCMD_LENGTH
77 
78 struct mmp_pdma_desc_hw {
79 	u32 ddadr;	/* Points to the next descriptor + flags */
80 	u32 dsadr;	/* DSADR value for the current transfer */
81 	u32 dtadr;	/* DTADR value for the current transfer */
82 	u32 dcmd;	/* DCMD value for the current transfer */
83 	/*
84 	 * The following 32-bit words are only used in the 64-bit, ie.
85 	 * LPAE (Long Physical Address Extension) mode.
86 	 * They are used to specify the high 32 bits of the descriptor's
87 	 * addresses.
88 	 */
89 	u32 ddadrh;	/* High 32-bit of DDADR */
90 	u32 dsadrh;	/* High 32-bit of DSADR */
91 	u32 dtadrh;	/* High 32-bit of DTADR */
92 	u32 rsvd;	/* reserved */
93 } __aligned(32);
94 
95 struct mmp_pdma_desc_sw {
96 	struct mmp_pdma_desc_hw desc;
97 	struct list_head node;
98 	struct list_head tx_list;
99 	struct dma_async_tx_descriptor async_tx;
100 };
101 
102 struct mmp_pdma_phy;
103 
104 struct mmp_pdma_chan {
105 	struct device *dev;
106 	struct dma_chan chan;
107 	struct dma_async_tx_descriptor desc;
108 	struct mmp_pdma_phy *phy;
109 	enum dma_transfer_direction dir;
110 	struct dma_slave_config slave_config;
111 
112 	struct mmp_pdma_desc_sw *cyclic_first;	/* first desc_sw if channel
113 						 * is in cyclic mode */
114 
115 	/* channel's basic info */
116 	struct tasklet_struct tasklet;
117 	u32 dcmd;
118 	u32 drcmr;
119 	u32 dev_addr;
120 
121 	/* list for desc */
122 	spinlock_t desc_lock;		/* Descriptor list lock */
123 	struct list_head chain_pending;	/* Link descriptors queue for pending */
124 	struct list_head chain_running;	/* Link descriptors queue for running */
125 	bool idle;			/* channel statue machine */
126 	bool byte_align;
127 
128 	struct dma_pool *desc_pool;	/* Descriptors pool */
129 };
130 
131 struct mmp_pdma_phy {
132 	int idx;
133 	void __iomem *base;
134 	struct mmp_pdma_chan *vchan;
135 };
136 
137 /**
138  * struct mmp_pdma_ops - Operations for the MMP PDMA controller
139  *
140  * Hardware Register Operations (read/write hardware registers):
141  * @write_next_addr: Function to program address of next descriptor into
142  *                   DDADR/DDADRH
143  * @read_src_addr: Function to read the source address from DSADR/DSADRH
144  * @read_dst_addr: Function to read the destination address from DTADR/DTADRH
145  *
146  * Descriptor Memory Operations (manipulate descriptor structs in memory):
147  * @set_desc_next_addr: Function to set next descriptor address in descriptor
148  * @set_desc_src_addr: Function to set the source address in descriptor
149  * @set_desc_dst_addr: Function to set the destination address in descriptor
150  * @get_desc_src_addr: Function to get the source address from descriptor
151  * @get_desc_dst_addr: Function to get the destination address from descriptor
152  *
153  * Controller Configuration:
154  * @run_bits:   Control bits in DCSR register for channel start/stop
155  * @dma_mask:   DMA addressing capability of controller. 0 to use OF/platform
156  *              settings, or explicit mask like DMA_BIT_MASK(32/64)
157  */
158 struct mmp_pdma_ops {
159 	/* Hardware Register Operations */
160 	void (*write_next_addr)(struct mmp_pdma_phy *phy, dma_addr_t addr);
161 	u64 (*read_src_addr)(struct mmp_pdma_phy *phy);
162 	u64 (*read_dst_addr)(struct mmp_pdma_phy *phy);
163 
164 	/* Descriptor Memory Operations */
165 	void (*set_desc_next_addr)(struct mmp_pdma_desc_hw *desc,
166 				   dma_addr_t addr);
167 	void (*set_desc_src_addr)(struct mmp_pdma_desc_hw *desc,
168 				  dma_addr_t addr);
169 	void (*set_desc_dst_addr)(struct mmp_pdma_desc_hw *desc,
170 				  dma_addr_t addr);
171 	u64 (*get_desc_src_addr)(const struct mmp_pdma_desc_hw *desc);
172 	u64 (*get_desc_dst_addr)(const struct mmp_pdma_desc_hw *desc);
173 
174 	/* Controller Configuration */
175 	u32 run_bits;
176 	u64 dma_mask;
177 };
178 
179 struct mmp_pdma_device {
180 	int				dma_channels;
181 	void __iomem			*base;
182 	struct device			*dev;
183 	struct dma_device		device;
184 	struct mmp_pdma_phy		*phy;
185 	const struct mmp_pdma_ops	*ops;
186 	spinlock_t phy_lock; /* protect alloc/free phy channels */
187 };
188 
189 #define tx_to_mmp_pdma_desc(tx)					\
190 	container_of(tx, struct mmp_pdma_desc_sw, async_tx)
191 #define to_mmp_pdma_desc(lh)					\
192 	container_of(lh, struct mmp_pdma_desc_sw, node)
193 #define to_mmp_pdma_chan(dchan)					\
194 	container_of(dchan, struct mmp_pdma_chan, chan)
195 #define to_mmp_pdma_dev(dmadev)					\
196 	container_of(dmadev, struct mmp_pdma_device, device)
197 
198 /* For 32-bit PDMA */
write_next_addr_32(struct mmp_pdma_phy * phy,dma_addr_t addr)199 static void write_next_addr_32(struct mmp_pdma_phy *phy, dma_addr_t addr)
200 {
201 	writel(addr, phy->base + DDADR(phy->idx));
202 }
203 
read_src_addr_32(struct mmp_pdma_phy * phy)204 static u64 read_src_addr_32(struct mmp_pdma_phy *phy)
205 {
206 	return readl(phy->base + DSADR(phy->idx));
207 }
208 
read_dst_addr_32(struct mmp_pdma_phy * phy)209 static u64 read_dst_addr_32(struct mmp_pdma_phy *phy)
210 {
211 	return readl(phy->base + DTADR(phy->idx));
212 }
213 
set_desc_next_addr_32(struct mmp_pdma_desc_hw * desc,dma_addr_t addr)214 static void set_desc_next_addr_32(struct mmp_pdma_desc_hw *desc, dma_addr_t addr)
215 {
216 	desc->ddadr = addr;
217 }
218 
set_desc_src_addr_32(struct mmp_pdma_desc_hw * desc,dma_addr_t addr)219 static void set_desc_src_addr_32(struct mmp_pdma_desc_hw *desc, dma_addr_t addr)
220 {
221 	desc->dsadr = addr;
222 }
223 
set_desc_dst_addr_32(struct mmp_pdma_desc_hw * desc,dma_addr_t addr)224 static void set_desc_dst_addr_32(struct mmp_pdma_desc_hw *desc, dma_addr_t addr)
225 {
226 	desc->dtadr = addr;
227 }
228 
get_desc_src_addr_32(const struct mmp_pdma_desc_hw * desc)229 static u64 get_desc_src_addr_32(const struct mmp_pdma_desc_hw *desc)
230 {
231 	return desc->dsadr;
232 }
233 
get_desc_dst_addr_32(const struct mmp_pdma_desc_hw * desc)234 static u64 get_desc_dst_addr_32(const struct mmp_pdma_desc_hw *desc)
235 {
236 	return desc->dtadr;
237 }
238 
239 /* For 64-bit PDMA */
write_next_addr_64(struct mmp_pdma_phy * phy,dma_addr_t addr)240 static void write_next_addr_64(struct mmp_pdma_phy *phy, dma_addr_t addr)
241 {
242 	writel(lower_32_bits(addr), phy->base + DDADR(phy->idx));
243 	writel(upper_32_bits(addr), phy->base + DDADRH(phy->idx));
244 }
245 
read_src_addr_64(struct mmp_pdma_phy * phy)246 static u64 read_src_addr_64(struct mmp_pdma_phy *phy)
247 {
248 	u32 low = readl(phy->base + DSADR(phy->idx));
249 	u32 high = readl(phy->base + DSADRH(phy->idx));
250 
251 	return ((u64)high << 32) | low;
252 }
253 
read_dst_addr_64(struct mmp_pdma_phy * phy)254 static u64 read_dst_addr_64(struct mmp_pdma_phy *phy)
255 {
256 	u32 low = readl(phy->base + DTADR(phy->idx));
257 	u32 high = readl(phy->base + DTADRH(phy->idx));
258 
259 	return ((u64)high << 32) | low;
260 }
261 
set_desc_next_addr_64(struct mmp_pdma_desc_hw * desc,dma_addr_t addr)262 static void set_desc_next_addr_64(struct mmp_pdma_desc_hw *desc, dma_addr_t addr)
263 {
264 	desc->ddadr = lower_32_bits(addr);
265 	desc->ddadrh = upper_32_bits(addr);
266 }
267 
set_desc_src_addr_64(struct mmp_pdma_desc_hw * desc,dma_addr_t addr)268 static void set_desc_src_addr_64(struct mmp_pdma_desc_hw *desc, dma_addr_t addr)
269 {
270 	desc->dsadr = lower_32_bits(addr);
271 	desc->dsadrh = upper_32_bits(addr);
272 }
273 
set_desc_dst_addr_64(struct mmp_pdma_desc_hw * desc,dma_addr_t addr)274 static void set_desc_dst_addr_64(struct mmp_pdma_desc_hw *desc, dma_addr_t addr)
275 {
276 	desc->dtadr = lower_32_bits(addr);
277 	desc->dtadrh = upper_32_bits(addr);
278 }
279 
get_desc_src_addr_64(const struct mmp_pdma_desc_hw * desc)280 static u64 get_desc_src_addr_64(const struct mmp_pdma_desc_hw *desc)
281 {
282 	return ((u64)desc->dsadrh << 32) | desc->dsadr;
283 }
284 
get_desc_dst_addr_64(const struct mmp_pdma_desc_hw * desc)285 static u64 get_desc_dst_addr_64(const struct mmp_pdma_desc_hw *desc)
286 {
287 	return ((u64)desc->dtadrh << 32) | desc->dtadr;
288 }
289 
290 static int mmp_pdma_config_write(struct dma_chan *dchan,
291 				 struct dma_slave_config *cfg,
292 				 enum dma_transfer_direction direction);
293 
enable_chan(struct mmp_pdma_phy * phy)294 static void enable_chan(struct mmp_pdma_phy *phy)
295 {
296 	u32 reg, dalgn;
297 	struct mmp_pdma_device *pdev;
298 
299 	if (!phy->vchan)
300 		return;
301 
302 	pdev = to_mmp_pdma_dev(phy->vchan->chan.device);
303 
304 	reg = DRCMR(phy->vchan->drcmr);
305 	writel(DRCMR_MAPVLD | phy->idx, phy->base + reg);
306 
307 	dalgn = readl(phy->base + DALGN);
308 	if (phy->vchan->byte_align)
309 		dalgn |= 1 << phy->idx;
310 	else
311 		dalgn &= ~(1 << phy->idx);
312 	writel(dalgn, phy->base + DALGN);
313 
314 	reg = (phy->idx << 2) + DCSR;
315 	writel(readl(phy->base + reg) | pdev->ops->run_bits,
316 	       phy->base + reg);
317 }
318 
disable_chan(struct mmp_pdma_phy * phy)319 static void disable_chan(struct mmp_pdma_phy *phy)
320 {
321 	u32 reg, dcsr;
322 
323 	if (!phy)
324 		return;
325 
326 	reg = (phy->idx << 2) + DCSR;
327 	dcsr = readl(phy->base + reg);
328 
329 	if (phy->vchan) {
330 		struct mmp_pdma_device *pdev;
331 
332 		pdev = to_mmp_pdma_dev(phy->vchan->chan.device);
333 		writel(dcsr & ~pdev->ops->run_bits, phy->base + reg);
334 	} else {
335 		/* If no vchan, just clear the RUN bit */
336 		writel(dcsr & ~DCSR_RUN, phy->base + reg);
337 	}
338 }
339 
clear_chan_irq(struct mmp_pdma_phy * phy)340 static int clear_chan_irq(struct mmp_pdma_phy *phy)
341 {
342 	u32 dcsr;
343 	u32 dint = readl(phy->base + DINT);
344 	u32 reg = (phy->idx << 2) + DCSR;
345 
346 	if (!(dint & BIT(phy->idx)))
347 		return -EAGAIN;
348 
349 	/* clear irq */
350 	dcsr = readl(phy->base + reg);
351 	writel(dcsr, phy->base + reg);
352 	if ((dcsr & DCSR_BUSERR) && (phy->vchan))
353 		dev_warn(phy->vchan->dev, "DCSR_BUSERR\n");
354 
355 	return 0;
356 }
357 
mmp_pdma_chan_handler(int irq,void * dev_id)358 static irqreturn_t mmp_pdma_chan_handler(int irq, void *dev_id)
359 {
360 	struct mmp_pdma_phy *phy = dev_id;
361 
362 	if (clear_chan_irq(phy) != 0)
363 		return IRQ_NONE;
364 
365 	tasklet_schedule(&phy->vchan->tasklet);
366 	return IRQ_HANDLED;
367 }
368 
mmp_pdma_int_handler(int irq,void * dev_id)369 static irqreturn_t mmp_pdma_int_handler(int irq, void *dev_id)
370 {
371 	struct mmp_pdma_device *pdev = dev_id;
372 	struct mmp_pdma_phy *phy;
373 	u32 dint = readl(pdev->base + DINT);
374 	int i, ret;
375 	int irq_num = 0;
376 
377 	while (dint) {
378 		i = __ffs(dint);
379 		/* only handle interrupts belonging to pdma driver*/
380 		if (i >= pdev->dma_channels)
381 			break;
382 		dint &= (dint - 1);
383 		phy = &pdev->phy[i];
384 		ret = mmp_pdma_chan_handler(irq, phy);
385 		if (ret == IRQ_HANDLED)
386 			irq_num++;
387 	}
388 
389 	if (irq_num)
390 		return IRQ_HANDLED;
391 
392 	return IRQ_NONE;
393 }
394 
395 /* lookup free phy channel as descending priority */
lookup_phy(struct mmp_pdma_chan * pchan)396 static struct mmp_pdma_phy *lookup_phy(struct mmp_pdma_chan *pchan)
397 {
398 	int prio, i;
399 	struct mmp_pdma_device *pdev = to_mmp_pdma_dev(pchan->chan.device);
400 	struct mmp_pdma_phy *phy, *found = NULL;
401 	unsigned long flags;
402 
403 	/*
404 	 * dma channel priorities
405 	 * ch 0 - 3,  16 - 19  <--> (0)
406 	 * ch 4 - 7,  20 - 23  <--> (1)
407 	 * ch 8 - 11, 24 - 27  <--> (2)
408 	 * ch 12 - 15, 28 - 31  <--> (3)
409 	 */
410 
411 	spin_lock_irqsave(&pdev->phy_lock, flags);
412 	for (prio = 0; prio <= ((pdev->dma_channels - 1) & 0xf) >> 2; prio++) {
413 		for (i = 0; i < pdev->dma_channels; i++) {
414 			if (prio != (i & 0xf) >> 2)
415 				continue;
416 			phy = &pdev->phy[i];
417 			if (!phy->vchan) {
418 				phy->vchan = pchan;
419 				found = phy;
420 				goto out_unlock;
421 			}
422 		}
423 	}
424 
425 out_unlock:
426 	spin_unlock_irqrestore(&pdev->phy_lock, flags);
427 	return found;
428 }
429 
mmp_pdma_free_phy(struct mmp_pdma_chan * pchan)430 static void mmp_pdma_free_phy(struct mmp_pdma_chan *pchan)
431 {
432 	struct mmp_pdma_device *pdev = to_mmp_pdma_dev(pchan->chan.device);
433 	unsigned long flags;
434 	u32 reg;
435 
436 	if (!pchan->phy)
437 		return;
438 
439 	/* clear the channel mapping in DRCMR */
440 	reg = DRCMR(pchan->drcmr);
441 	writel(0, pchan->phy->base + reg);
442 
443 	spin_lock_irqsave(&pdev->phy_lock, flags);
444 	pchan->phy->vchan = NULL;
445 	pchan->phy = NULL;
446 	spin_unlock_irqrestore(&pdev->phy_lock, flags);
447 }
448 
449 /*
450  * start_pending_queue - transfer any pending transactions
451  * pending list ==> running list
452  */
start_pending_queue(struct mmp_pdma_chan * chan)453 static void start_pending_queue(struct mmp_pdma_chan *chan)
454 {
455 	struct mmp_pdma_desc_sw *desc;
456 	struct mmp_pdma_device *pdev = to_mmp_pdma_dev(chan->chan.device);
457 
458 	/* still in running, irq will start the pending list */
459 	if (!chan->idle) {
460 		dev_dbg(chan->dev, "DMA controller still busy\n");
461 		return;
462 	}
463 
464 	if (list_empty(&chan->chain_pending)) {
465 		/* chance to re-fetch phy channel with higher prio */
466 		mmp_pdma_free_phy(chan);
467 		dev_dbg(chan->dev, "no pending list\n");
468 		return;
469 	}
470 
471 	if (!chan->phy) {
472 		chan->phy = lookup_phy(chan);
473 		if (!chan->phy) {
474 			dev_dbg(chan->dev, "no free dma channel\n");
475 			return;
476 		}
477 	}
478 
479 	/*
480 	 * pending -> running
481 	 * reintilize pending list
482 	 */
483 	desc = list_first_entry(&chan->chain_pending,
484 				struct mmp_pdma_desc_sw, node);
485 	list_splice_tail_init(&chan->chain_pending, &chan->chain_running);
486 
487 	/*
488 	 * Program the descriptor's address into the DMA controller,
489 	 * then start the DMA transaction
490 	 */
491 	pdev->ops->write_next_addr(chan->phy, desc->async_tx.phys);
492 	enable_chan(chan->phy);
493 	chan->idle = false;
494 }
495 
496 
497 /* desc->tx_list ==> pending list */
mmp_pdma_tx_submit(struct dma_async_tx_descriptor * tx)498 static dma_cookie_t mmp_pdma_tx_submit(struct dma_async_tx_descriptor *tx)
499 {
500 	struct mmp_pdma_chan *chan = to_mmp_pdma_chan(tx->chan);
501 	struct mmp_pdma_desc_sw *desc = tx_to_mmp_pdma_desc(tx);
502 	struct mmp_pdma_desc_sw *child;
503 	unsigned long flags;
504 	dma_cookie_t cookie = -EBUSY;
505 
506 	spin_lock_irqsave(&chan->desc_lock, flags);
507 
508 	list_for_each_entry(child, &desc->tx_list, node) {
509 		cookie = dma_cookie_assign(&child->async_tx);
510 	}
511 
512 	/* softly link to pending list - desc->tx_list ==> pending list */
513 	list_splice_tail_init(&desc->tx_list, &chan->chain_pending);
514 
515 	spin_unlock_irqrestore(&chan->desc_lock, flags);
516 
517 	return cookie;
518 }
519 
520 static struct mmp_pdma_desc_sw *
mmp_pdma_alloc_descriptor(struct mmp_pdma_chan * chan)521 mmp_pdma_alloc_descriptor(struct mmp_pdma_chan *chan)
522 {
523 	struct mmp_pdma_desc_sw *desc;
524 	dma_addr_t pdesc;
525 
526 	desc = dma_pool_zalloc(chan->desc_pool, GFP_ATOMIC, &pdesc);
527 	if (!desc) {
528 		dev_err(chan->dev, "out of memory for link descriptor\n");
529 		return NULL;
530 	}
531 
532 	INIT_LIST_HEAD(&desc->tx_list);
533 	dma_async_tx_descriptor_init(&desc->async_tx, &chan->chan);
534 	/* each desc has submit */
535 	desc->async_tx.tx_submit = mmp_pdma_tx_submit;
536 	desc->async_tx.phys = pdesc;
537 
538 	return desc;
539 }
540 
541 /*
542  * mmp_pdma_alloc_chan_resources - Allocate resources for DMA channel.
543  *
544  * This function will create a dma pool for descriptor allocation.
545  * Request irq only when channel is requested
546  * Return - The number of allocated descriptors.
547  */
548 
mmp_pdma_alloc_chan_resources(struct dma_chan * dchan)549 static int mmp_pdma_alloc_chan_resources(struct dma_chan *dchan)
550 {
551 	struct mmp_pdma_chan *chan = to_mmp_pdma_chan(dchan);
552 
553 	if (chan->desc_pool)
554 		return 1;
555 
556 	chan->desc_pool = dma_pool_create(dev_name(&dchan->dev->device),
557 					  chan->dev,
558 					  sizeof(struct mmp_pdma_desc_sw),
559 					  __alignof__(struct mmp_pdma_desc_sw),
560 					  0);
561 	if (!chan->desc_pool) {
562 		dev_err(chan->dev, "unable to allocate descriptor pool\n");
563 		return -ENOMEM;
564 	}
565 
566 	mmp_pdma_free_phy(chan);
567 	chan->idle = true;
568 	chan->dev_addr = 0;
569 	return 1;
570 }
571 
mmp_pdma_free_desc_list(struct mmp_pdma_chan * chan,struct list_head * list)572 static void mmp_pdma_free_desc_list(struct mmp_pdma_chan *chan,
573 				    struct list_head *list)
574 {
575 	struct mmp_pdma_desc_sw *desc, *_desc;
576 
577 	list_for_each_entry_safe(desc, _desc, list, node) {
578 		list_del(&desc->node);
579 		dma_pool_free(chan->desc_pool, desc, desc->async_tx.phys);
580 	}
581 }
582 
mmp_pdma_free_chan_resources(struct dma_chan * dchan)583 static void mmp_pdma_free_chan_resources(struct dma_chan *dchan)
584 {
585 	struct mmp_pdma_chan *chan = to_mmp_pdma_chan(dchan);
586 	unsigned long flags;
587 
588 	spin_lock_irqsave(&chan->desc_lock, flags);
589 	mmp_pdma_free_desc_list(chan, &chan->chain_pending);
590 	mmp_pdma_free_desc_list(chan, &chan->chain_running);
591 	spin_unlock_irqrestore(&chan->desc_lock, flags);
592 
593 	dma_pool_destroy(chan->desc_pool);
594 	chan->desc_pool = NULL;
595 	chan->idle = true;
596 	chan->dev_addr = 0;
597 	mmp_pdma_free_phy(chan);
598 	return;
599 }
600 
601 static struct dma_async_tx_descriptor *
mmp_pdma_prep_memcpy(struct dma_chan * dchan,dma_addr_t dma_dst,dma_addr_t dma_src,size_t len,unsigned long flags)602 mmp_pdma_prep_memcpy(struct dma_chan *dchan,
603 		     dma_addr_t dma_dst, dma_addr_t dma_src,
604 		     size_t len, unsigned long flags)
605 {
606 	struct mmp_pdma_chan *chan;
607 	struct mmp_pdma_device *pdev;
608 	struct mmp_pdma_desc_sw *first = NULL, *prev = NULL, *new;
609 	size_t copy = 0;
610 
611 	if (!dchan || !len)
612 		return NULL;
613 
614 	pdev = to_mmp_pdma_dev(dchan->device);
615 	chan = to_mmp_pdma_chan(dchan);
616 	chan->byte_align = false;
617 
618 	if (!chan->dir) {
619 		chan->dir = DMA_MEM_TO_MEM;
620 		chan->dcmd = DCMD_INCTRGADDR | DCMD_INCSRCADDR;
621 		chan->dcmd |= DCMD_BURST32;
622 	}
623 
624 	do {
625 		/* Allocate the link descriptor from DMA pool */
626 		new = mmp_pdma_alloc_descriptor(chan);
627 		if (!new) {
628 			dev_err(chan->dev, "no memory for desc\n");
629 			goto fail;
630 		}
631 
632 		copy = min_t(size_t, len, PDMA_MAX_DESC_BYTES);
633 		if (dma_src & 0x7 || dma_dst & 0x7)
634 			chan->byte_align = true;
635 
636 		new->desc.dcmd = chan->dcmd | (DCMD_LENGTH & copy);
637 		pdev->ops->set_desc_src_addr(&new->desc, dma_src);
638 		pdev->ops->set_desc_dst_addr(&new->desc, dma_dst);
639 
640 		if (!first)
641 			first = new;
642 		else
643 			pdev->ops->set_desc_next_addr(&prev->desc,
644 						      new->async_tx.phys);
645 
646 		new->async_tx.cookie = 0;
647 		async_tx_ack(&new->async_tx);
648 
649 		prev = new;
650 		len -= copy;
651 
652 		if (chan->dir == DMA_MEM_TO_DEV) {
653 			dma_src += copy;
654 		} else if (chan->dir == DMA_DEV_TO_MEM) {
655 			dma_dst += copy;
656 		} else if (chan->dir == DMA_MEM_TO_MEM) {
657 			dma_src += copy;
658 			dma_dst += copy;
659 		}
660 
661 		/* Insert the link descriptor to the LD ring */
662 		list_add_tail(&new->node, &first->tx_list);
663 	} while (len);
664 
665 	first->async_tx.flags = flags; /* client is in control of this ack */
666 	first->async_tx.cookie = -EBUSY;
667 
668 	/* last desc and fire IRQ */
669 	new->desc.ddadr = DDADR_STOP;
670 	new->desc.dcmd |= DCMD_ENDIRQEN;
671 
672 	chan->cyclic_first = NULL;
673 
674 	return &first->async_tx;
675 
676 fail:
677 	if (first)
678 		mmp_pdma_free_desc_list(chan, &first->tx_list);
679 	return NULL;
680 }
681 
682 static struct dma_async_tx_descriptor *
mmp_pdma_prep_slave_sg(struct dma_chan * dchan,struct scatterlist * sgl,unsigned int sg_len,enum dma_transfer_direction dir,unsigned long flags,void * context)683 mmp_pdma_prep_slave_sg(struct dma_chan *dchan, struct scatterlist *sgl,
684 		       unsigned int sg_len, enum dma_transfer_direction dir,
685 		       unsigned long flags, void *context)
686 {
687 	struct mmp_pdma_chan *chan = to_mmp_pdma_chan(dchan);
688 	struct mmp_pdma_device *pdev = to_mmp_pdma_dev(dchan->device);
689 	struct mmp_pdma_desc_sw *first = NULL, *prev = NULL, *new = NULL;
690 	size_t len, avail;
691 	struct scatterlist *sg;
692 	dma_addr_t addr;
693 	int i;
694 
695 	if ((sgl == NULL) || (sg_len == 0))
696 		return NULL;
697 
698 	chan->byte_align = false;
699 
700 	mmp_pdma_config_write(dchan, &chan->slave_config, dir);
701 
702 	for_each_sg(sgl, sg, sg_len, i) {
703 		addr = sg_dma_address(sg);
704 		avail = sg_dma_len(sgl);
705 
706 		do {
707 			len = min_t(size_t, avail, PDMA_MAX_DESC_BYTES);
708 			if (addr & 0x7)
709 				chan->byte_align = true;
710 
711 			/* allocate and populate the descriptor */
712 			new = mmp_pdma_alloc_descriptor(chan);
713 			if (!new) {
714 				dev_err(chan->dev, "no memory for desc\n");
715 				goto fail;
716 			}
717 
718 			new->desc.dcmd = chan->dcmd | (DCMD_LENGTH & len);
719 			if (dir == DMA_MEM_TO_DEV) {
720 				pdev->ops->set_desc_src_addr(&new->desc, addr);
721 				new->desc.dtadr = chan->dev_addr;
722 			} else {
723 				new->desc.dsadr = chan->dev_addr;
724 				pdev->ops->set_desc_dst_addr(&new->desc, addr);
725 			}
726 
727 			if (!first)
728 				first = new;
729 			else
730 				pdev->ops->set_desc_next_addr(&prev->desc,
731 							   new->async_tx.phys);
732 
733 			new->async_tx.cookie = 0;
734 			async_tx_ack(&new->async_tx);
735 			prev = new;
736 
737 			/* Insert the link descriptor to the LD ring */
738 			list_add_tail(&new->node, &first->tx_list);
739 
740 			/* update metadata */
741 			addr += len;
742 			avail -= len;
743 		} while (avail);
744 	}
745 
746 	first->async_tx.cookie = -EBUSY;
747 	first->async_tx.flags = flags;
748 
749 	/* last desc and fire IRQ */
750 	new->desc.ddadr = DDADR_STOP;
751 	new->desc.dcmd |= DCMD_ENDIRQEN;
752 
753 	chan->dir = dir;
754 	chan->cyclic_first = NULL;
755 
756 	return &first->async_tx;
757 
758 fail:
759 	if (first)
760 		mmp_pdma_free_desc_list(chan, &first->tx_list);
761 	return NULL;
762 }
763 
764 static struct dma_async_tx_descriptor *
mmp_pdma_prep_dma_cyclic(struct dma_chan * dchan,dma_addr_t buf_addr,size_t len,size_t period_len,enum dma_transfer_direction direction,unsigned long flags)765 mmp_pdma_prep_dma_cyclic(struct dma_chan *dchan,
766 			 dma_addr_t buf_addr, size_t len, size_t period_len,
767 			 enum dma_transfer_direction direction,
768 			 unsigned long flags)
769 {
770 	struct mmp_pdma_chan *chan;
771 	struct mmp_pdma_device *pdev;
772 	struct mmp_pdma_desc_sw *first = NULL, *prev = NULL, *new;
773 	dma_addr_t dma_src, dma_dst;
774 
775 	if (!dchan || !len || !period_len)
776 		return NULL;
777 
778 	pdev = to_mmp_pdma_dev(dchan->device);
779 
780 	/* the buffer length must be a multiple of period_len */
781 	if (len % period_len != 0)
782 		return NULL;
783 
784 	if (period_len > PDMA_MAX_DESC_BYTES)
785 		return NULL;
786 
787 	chan = to_mmp_pdma_chan(dchan);
788 	mmp_pdma_config_write(dchan, &chan->slave_config, direction);
789 
790 	switch (direction) {
791 	case DMA_MEM_TO_DEV:
792 		dma_src = buf_addr;
793 		dma_dst = chan->dev_addr;
794 		break;
795 	case DMA_DEV_TO_MEM:
796 		dma_dst = buf_addr;
797 		dma_src = chan->dev_addr;
798 		break;
799 	default:
800 		dev_err(chan->dev, "Unsupported direction for cyclic DMA\n");
801 		return NULL;
802 	}
803 
804 	chan->dir = direction;
805 
806 	do {
807 		/* Allocate the link descriptor from DMA pool */
808 		new = mmp_pdma_alloc_descriptor(chan);
809 		if (!new) {
810 			dev_err(chan->dev, "no memory for desc\n");
811 			goto fail;
812 		}
813 
814 		new->desc.dcmd = (chan->dcmd | DCMD_ENDIRQEN |
815 				  (DCMD_LENGTH & period_len));
816 		pdev->ops->set_desc_src_addr(&new->desc, dma_src);
817 		pdev->ops->set_desc_dst_addr(&new->desc, dma_dst);
818 
819 		if (!first)
820 			first = new;
821 		else
822 			pdev->ops->set_desc_next_addr(&prev->desc,
823 						      new->async_tx.phys);
824 
825 		new->async_tx.cookie = 0;
826 		async_tx_ack(&new->async_tx);
827 
828 		prev = new;
829 		len -= period_len;
830 
831 		if (chan->dir == DMA_MEM_TO_DEV)
832 			dma_src += period_len;
833 		else
834 			dma_dst += period_len;
835 
836 		/* Insert the link descriptor to the LD ring */
837 		list_add_tail(&new->node, &first->tx_list);
838 	} while (len);
839 
840 	first->async_tx.flags = flags; /* client is in control of this ack */
841 	first->async_tx.cookie = -EBUSY;
842 
843 	/* make the cyclic link */
844 	pdev->ops->set_desc_next_addr(&new->desc, first->async_tx.phys);
845 	chan->cyclic_first = first;
846 
847 	return &first->async_tx;
848 
849 fail:
850 	if (first)
851 		mmp_pdma_free_desc_list(chan, &first->tx_list);
852 	return NULL;
853 }
854 
mmp_pdma_config_write(struct dma_chan * dchan,struct dma_slave_config * cfg,enum dma_transfer_direction direction)855 static int mmp_pdma_config_write(struct dma_chan *dchan,
856 			   struct dma_slave_config *cfg,
857 			   enum dma_transfer_direction direction)
858 {
859 	struct mmp_pdma_chan *chan = to_mmp_pdma_chan(dchan);
860 	u32 maxburst = 0, addr = 0;
861 	enum dma_slave_buswidth width = DMA_SLAVE_BUSWIDTH_UNDEFINED;
862 
863 	if (!dchan)
864 		return -EINVAL;
865 
866 	if (direction == DMA_DEV_TO_MEM) {
867 		chan->dcmd = DCMD_INCTRGADDR | DCMD_FLOWSRC;
868 		maxburst = cfg->src_maxburst;
869 		width = cfg->src_addr_width;
870 		addr = cfg->src_addr;
871 	} else if (direction == DMA_MEM_TO_DEV) {
872 		chan->dcmd = DCMD_INCSRCADDR | DCMD_FLOWTRG;
873 		maxburst = cfg->dst_maxburst;
874 		width = cfg->dst_addr_width;
875 		addr = cfg->dst_addr;
876 	}
877 
878 	if (width == DMA_SLAVE_BUSWIDTH_1_BYTE)
879 		chan->dcmd |= DCMD_WIDTH1;
880 	else if (width == DMA_SLAVE_BUSWIDTH_2_BYTES)
881 		chan->dcmd |= DCMD_WIDTH2;
882 	else if (width == DMA_SLAVE_BUSWIDTH_4_BYTES)
883 		chan->dcmd |= DCMD_WIDTH4;
884 
885 	if (maxburst == 8)
886 		chan->dcmd |= DCMD_BURST8;
887 	else if (maxburst == 16)
888 		chan->dcmd |= DCMD_BURST16;
889 	else if (maxburst == 32)
890 		chan->dcmd |= DCMD_BURST32;
891 
892 	chan->dir = direction;
893 	chan->dev_addr = addr;
894 
895 	return 0;
896 }
897 
mmp_pdma_config(struct dma_chan * dchan,struct dma_slave_config * cfg)898 static int mmp_pdma_config(struct dma_chan *dchan,
899 			   struct dma_slave_config *cfg)
900 {
901 	struct mmp_pdma_chan *chan = to_mmp_pdma_chan(dchan);
902 
903 	memcpy(&chan->slave_config, cfg, sizeof(*cfg));
904 	return 0;
905 }
906 
mmp_pdma_terminate_all(struct dma_chan * dchan)907 static int mmp_pdma_terminate_all(struct dma_chan *dchan)
908 {
909 	struct mmp_pdma_chan *chan = to_mmp_pdma_chan(dchan);
910 	unsigned long flags;
911 
912 	if (!dchan)
913 		return -EINVAL;
914 
915 	disable_chan(chan->phy);
916 	mmp_pdma_free_phy(chan);
917 	spin_lock_irqsave(&chan->desc_lock, flags);
918 	mmp_pdma_free_desc_list(chan, &chan->chain_pending);
919 	mmp_pdma_free_desc_list(chan, &chan->chain_running);
920 	spin_unlock_irqrestore(&chan->desc_lock, flags);
921 	chan->idle = true;
922 
923 	return 0;
924 }
925 
mmp_pdma_residue(struct mmp_pdma_chan * chan,dma_cookie_t cookie)926 static unsigned int mmp_pdma_residue(struct mmp_pdma_chan *chan,
927 				     dma_cookie_t cookie)
928 {
929 	struct mmp_pdma_desc_sw *sw;
930 	struct mmp_pdma_device *pdev = to_mmp_pdma_dev(chan->chan.device);
931 	u64 curr;
932 	u32 residue = 0;
933 	bool passed = false;
934 	bool cyclic = chan->cyclic_first != NULL;
935 
936 	/*
937 	 * If the channel does not have a phy pointer anymore, it has already
938 	 * been completed. Therefore, its residue is 0.
939 	 */
940 	if (!chan->phy)
941 		return 0;
942 
943 	if (chan->dir == DMA_DEV_TO_MEM)
944 		curr = pdev->ops->read_dst_addr(chan->phy);
945 	else
946 		curr = pdev->ops->read_src_addr(chan->phy);
947 
948 	list_for_each_entry(sw, &chan->chain_running, node) {
949 		u64 start, end;
950 		u32 len;
951 
952 		if (chan->dir == DMA_DEV_TO_MEM)
953 			start = pdev->ops->get_desc_dst_addr(&sw->desc);
954 		else
955 			start = pdev->ops->get_desc_src_addr(&sw->desc);
956 
957 		len = sw->desc.dcmd & DCMD_LENGTH;
958 		end = start + len;
959 
960 		/*
961 		 * 'passed' will be latched once we found the descriptor which
962 		 * lies inside the boundaries of the curr pointer. All
963 		 * descriptors that occur in the list _after_ we found that
964 		 * partially handled descriptor are still to be processed and
965 		 * are hence added to the residual bytes counter.
966 		 */
967 
968 		if (passed) {
969 			residue += len;
970 		} else if (curr >= start && curr <= end) {
971 			residue += (u32)(end - curr);
972 			passed = true;
973 		}
974 
975 		/*
976 		 * Descriptors that have the ENDIRQEN bit set mark the end of a
977 		 * transaction chain, and the cookie assigned with it has been
978 		 * returned previously from mmp_pdma_tx_submit().
979 		 *
980 		 * In case we have multiple transactions in the running chain,
981 		 * and the cookie does not match the one the user asked us
982 		 * about, reset the state variables and start over.
983 		 *
984 		 * This logic does not apply to cyclic transactions, where all
985 		 * descriptors have the ENDIRQEN bit set, and for which we
986 		 * can't have multiple transactions on one channel anyway.
987 		 */
988 		if (cyclic || !(sw->desc.dcmd & DCMD_ENDIRQEN))
989 			continue;
990 
991 		if (sw->async_tx.cookie == cookie) {
992 			return residue;
993 		} else {
994 			residue = 0;
995 			passed = false;
996 		}
997 	}
998 
999 	/* We should only get here in case of cyclic transactions */
1000 	return residue;
1001 }
1002 
mmp_pdma_tx_status(struct dma_chan * dchan,dma_cookie_t cookie,struct dma_tx_state * txstate)1003 static enum dma_status mmp_pdma_tx_status(struct dma_chan *dchan,
1004 					  dma_cookie_t cookie,
1005 					  struct dma_tx_state *txstate)
1006 {
1007 	struct mmp_pdma_chan *chan = to_mmp_pdma_chan(dchan);
1008 	enum dma_status ret;
1009 
1010 	ret = dma_cookie_status(dchan, cookie, txstate);
1011 	if (likely(ret != DMA_ERROR))
1012 		dma_set_residue(txstate, mmp_pdma_residue(chan, cookie));
1013 
1014 	return ret;
1015 }
1016 
1017 /*
1018  * mmp_pdma_issue_pending - Issue the DMA start command
1019  * pending list ==> running list
1020  */
mmp_pdma_issue_pending(struct dma_chan * dchan)1021 static void mmp_pdma_issue_pending(struct dma_chan *dchan)
1022 {
1023 	struct mmp_pdma_chan *chan = to_mmp_pdma_chan(dchan);
1024 	unsigned long flags;
1025 
1026 	spin_lock_irqsave(&chan->desc_lock, flags);
1027 	start_pending_queue(chan);
1028 	spin_unlock_irqrestore(&chan->desc_lock, flags);
1029 }
1030 
1031 /*
1032  * dma_do_tasklet
1033  * Do call back
1034  * Start pending list
1035  */
dma_do_tasklet(struct tasklet_struct * t)1036 static void dma_do_tasklet(struct tasklet_struct *t)
1037 {
1038 	struct mmp_pdma_chan *chan = from_tasklet(chan, t, tasklet);
1039 	struct mmp_pdma_desc_sw *desc, *_desc;
1040 	LIST_HEAD(chain_cleanup);
1041 	unsigned long flags;
1042 	struct dmaengine_desc_callback cb;
1043 
1044 	if (chan->cyclic_first) {
1045 		spin_lock_irqsave(&chan->desc_lock, flags);
1046 		desc = chan->cyclic_first;
1047 		dmaengine_desc_get_callback(&desc->async_tx, &cb);
1048 		spin_unlock_irqrestore(&chan->desc_lock, flags);
1049 
1050 		dmaengine_desc_callback_invoke(&cb, NULL);
1051 
1052 		return;
1053 	}
1054 
1055 	/* submit pending list; callback for each desc; free desc */
1056 	spin_lock_irqsave(&chan->desc_lock, flags);
1057 
1058 	list_for_each_entry_safe(desc, _desc, &chan->chain_running, node) {
1059 		/*
1060 		 * move the descriptors to a temporary list so we can drop
1061 		 * the lock during the entire cleanup operation
1062 		 */
1063 		list_move(&desc->node, &chain_cleanup);
1064 
1065 		/*
1066 		 * Look for the first list entry which has the ENDIRQEN flag
1067 		 * set. That is the descriptor we got an interrupt for, so
1068 		 * complete that transaction and its cookie.
1069 		 */
1070 		if (desc->desc.dcmd & DCMD_ENDIRQEN) {
1071 			dma_cookie_t cookie = desc->async_tx.cookie;
1072 			dma_cookie_complete(&desc->async_tx);
1073 			dev_dbg(chan->dev, "completed_cookie=%d\n", cookie);
1074 			break;
1075 		}
1076 	}
1077 
1078 	/*
1079 	 * The hardware is idle and ready for more when the
1080 	 * chain_running list is empty.
1081 	 */
1082 	chan->idle = list_empty(&chan->chain_running);
1083 
1084 	/* Start any pending transactions automatically */
1085 	start_pending_queue(chan);
1086 	spin_unlock_irqrestore(&chan->desc_lock, flags);
1087 
1088 	/* Run the callback for each descriptor, in order */
1089 	list_for_each_entry_safe(desc, _desc, &chain_cleanup, node) {
1090 		struct dma_async_tx_descriptor *txd = &desc->async_tx;
1091 
1092 		/* Remove from the list of transactions */
1093 		list_del(&desc->node);
1094 		/* Run the link descriptor callback function */
1095 		dmaengine_desc_get_callback(txd, &cb);
1096 		dmaengine_desc_callback_invoke(&cb, NULL);
1097 
1098 		dma_pool_free(chan->desc_pool, desc, txd->phys);
1099 	}
1100 }
1101 
mmp_pdma_remove(struct platform_device * op)1102 static void mmp_pdma_remove(struct platform_device *op)
1103 {
1104 	struct mmp_pdma_device *pdev = platform_get_drvdata(op);
1105 	struct mmp_pdma_phy *phy;
1106 	int i, irq = 0, irq_num = 0;
1107 
1108 	if (op->dev.of_node)
1109 		of_dma_controller_free(op->dev.of_node);
1110 
1111 	for (i = 0; i < pdev->dma_channels; i++) {
1112 		if (platform_get_irq(op, i) > 0)
1113 			irq_num++;
1114 	}
1115 
1116 	if (irq_num != pdev->dma_channels) {
1117 		irq = platform_get_irq(op, 0);
1118 		devm_free_irq(&op->dev, irq, pdev);
1119 	} else {
1120 		for (i = 0; i < pdev->dma_channels; i++) {
1121 			phy = &pdev->phy[i];
1122 			irq = platform_get_irq(op, i);
1123 			devm_free_irq(&op->dev, irq, phy);
1124 		}
1125 	}
1126 
1127 	dma_async_device_unregister(&pdev->device);
1128 }
1129 
mmp_pdma_chan_init(struct mmp_pdma_device * pdev,int idx,int irq)1130 static int mmp_pdma_chan_init(struct mmp_pdma_device *pdev, int idx, int irq)
1131 {
1132 	struct mmp_pdma_phy *phy  = &pdev->phy[idx];
1133 	struct mmp_pdma_chan *chan;
1134 	int ret;
1135 
1136 	chan = devm_kzalloc(pdev->dev, sizeof(*chan), GFP_KERNEL);
1137 	if (chan == NULL)
1138 		return -ENOMEM;
1139 
1140 	phy->idx = idx;
1141 	phy->base = pdev->base;
1142 
1143 	if (irq) {
1144 		ret = devm_request_irq(pdev->dev, irq, mmp_pdma_chan_handler,
1145 				       IRQF_SHARED, "pdma", phy);
1146 		if (ret) {
1147 			dev_err(pdev->dev, "channel request irq fail!\n");
1148 			return ret;
1149 		}
1150 	}
1151 
1152 	spin_lock_init(&chan->desc_lock);
1153 	chan->dev = pdev->dev;
1154 	chan->chan.device = &pdev->device;
1155 	tasklet_setup(&chan->tasklet, dma_do_tasklet);
1156 	INIT_LIST_HEAD(&chan->chain_pending);
1157 	INIT_LIST_HEAD(&chan->chain_running);
1158 
1159 	/* register virt channel to dma engine */
1160 	list_add_tail(&chan->chan.device_node, &pdev->device.channels);
1161 
1162 	return 0;
1163 }
1164 
1165 static const struct mmp_pdma_ops marvell_pdma_v1_ops = {
1166 	.write_next_addr = write_next_addr_32,
1167 	.read_src_addr = read_src_addr_32,
1168 	.read_dst_addr = read_dst_addr_32,
1169 	.set_desc_next_addr = set_desc_next_addr_32,
1170 	.set_desc_src_addr = set_desc_src_addr_32,
1171 	.set_desc_dst_addr = set_desc_dst_addr_32,
1172 	.get_desc_src_addr = get_desc_src_addr_32,
1173 	.get_desc_dst_addr = get_desc_dst_addr_32,
1174 	.run_bits = (DCSR_RUN),
1175 	.dma_mask = 0,			/* let OF/platform set DMA mask */
1176 };
1177 
1178 static const struct mmp_pdma_ops spacemit_k1_pdma_ops = {
1179 	.write_next_addr = write_next_addr_64,
1180 	.read_src_addr = read_src_addr_64,
1181 	.read_dst_addr = read_dst_addr_64,
1182 	.set_desc_next_addr = set_desc_next_addr_64,
1183 	.set_desc_src_addr = set_desc_src_addr_64,
1184 	.set_desc_dst_addr = set_desc_dst_addr_64,
1185 	.get_desc_src_addr = get_desc_src_addr_64,
1186 	.get_desc_dst_addr = get_desc_dst_addr_64,
1187 	.run_bits = (DCSR_RUN | DCSR_LPAEEN),
1188 	.dma_mask = DMA_BIT_MASK(64),	/* force 64-bit DMA addr capability */
1189 };
1190 
1191 static const struct of_device_id mmp_pdma_dt_ids[] = {
1192 	{
1193 		.compatible = "marvell,pdma-1.0",
1194 		.data = &marvell_pdma_v1_ops
1195 	}, {
1196 		.compatible = "spacemit,k1-pdma",
1197 		.data = &spacemit_k1_pdma_ops
1198 	}, {
1199 		/* sentinel */
1200 	}
1201 };
1202 MODULE_DEVICE_TABLE(of, mmp_pdma_dt_ids);
1203 
mmp_pdma_dma_xlate(struct of_phandle_args * dma_spec,struct of_dma * ofdma)1204 static struct dma_chan *mmp_pdma_dma_xlate(struct of_phandle_args *dma_spec,
1205 					   struct of_dma *ofdma)
1206 {
1207 	struct mmp_pdma_device *d = ofdma->of_dma_data;
1208 	struct dma_chan *chan;
1209 
1210 	chan = dma_get_any_slave_channel(&d->device);
1211 	if (!chan)
1212 		return NULL;
1213 
1214 	to_mmp_pdma_chan(chan)->drcmr = dma_spec->args[0];
1215 
1216 	return chan;
1217 }
1218 
mmp_pdma_probe(struct platform_device * op)1219 static int mmp_pdma_probe(struct platform_device *op)
1220 {
1221 	struct mmp_pdma_device *pdev;
1222 	struct mmp_dma_platdata *pdata = dev_get_platdata(&op->dev);
1223 	struct clk *clk;
1224 	struct reset_control *rst;
1225 	int i, ret, irq = 0;
1226 	int dma_channels = 0, irq_num = 0;
1227 	const enum dma_slave_buswidth widths =
1228 		DMA_SLAVE_BUSWIDTH_1_BYTE   | DMA_SLAVE_BUSWIDTH_2_BYTES |
1229 		DMA_SLAVE_BUSWIDTH_4_BYTES;
1230 
1231 	pdev = devm_kzalloc(&op->dev, sizeof(*pdev), GFP_KERNEL);
1232 	if (!pdev)
1233 		return -ENOMEM;
1234 
1235 	pdev->dev = &op->dev;
1236 
1237 	spin_lock_init(&pdev->phy_lock);
1238 
1239 	pdev->base = devm_platform_ioremap_resource(op, 0);
1240 	if (IS_ERR(pdev->base))
1241 		return PTR_ERR(pdev->base);
1242 
1243 	clk = devm_clk_get_optional_enabled(pdev->dev, NULL);
1244 	if (IS_ERR(clk))
1245 		return PTR_ERR(clk);
1246 
1247 	rst = devm_reset_control_get_optional_exclusive_deasserted(pdev->dev,
1248 								   NULL);
1249 	if (IS_ERR(rst))
1250 		return PTR_ERR(rst);
1251 
1252 	pdev->ops = of_device_get_match_data(&op->dev);
1253 	if (!pdev->ops)
1254 		return -ENODEV;
1255 
1256 	if (pdev->dev->of_node) {
1257 		/* Parse new and deprecated dma-channels properties */
1258 		if (of_property_read_u32(pdev->dev->of_node, "dma-channels",
1259 					 &dma_channels))
1260 			of_property_read_u32(pdev->dev->of_node, "#dma-channels",
1261 					     &dma_channels);
1262 	} else if (pdata && pdata->dma_channels) {
1263 		dma_channels = pdata->dma_channels;
1264 	} else {
1265 		dma_channels = 32;	/* default 32 channel */
1266 	}
1267 	pdev->dma_channels = dma_channels;
1268 
1269 	for (i = 0; i < dma_channels; i++) {
1270 		if (platform_get_irq_optional(op, i) > 0)
1271 			irq_num++;
1272 	}
1273 
1274 	pdev->phy = devm_kcalloc(pdev->dev, dma_channels, sizeof(*pdev->phy),
1275 				 GFP_KERNEL);
1276 	if (pdev->phy == NULL)
1277 		return -ENOMEM;
1278 
1279 	INIT_LIST_HEAD(&pdev->device.channels);
1280 
1281 	if (irq_num != dma_channels) {
1282 		/* all chan share one irq, demux inside */
1283 		irq = platform_get_irq(op, 0);
1284 		ret = devm_request_irq(pdev->dev, irq, mmp_pdma_int_handler,
1285 				       IRQF_SHARED, "pdma", pdev);
1286 		if (ret)
1287 			return ret;
1288 	}
1289 
1290 	for (i = 0; i < dma_channels; i++) {
1291 		irq = (irq_num != dma_channels) ? 0 : platform_get_irq(op, i);
1292 		ret = mmp_pdma_chan_init(pdev, i, irq);
1293 		if (ret)
1294 			return ret;
1295 	}
1296 
1297 	dma_cap_set(DMA_SLAVE, pdev->device.cap_mask);
1298 	dma_cap_set(DMA_MEMCPY, pdev->device.cap_mask);
1299 	dma_cap_set(DMA_CYCLIC, pdev->device.cap_mask);
1300 	dma_cap_set(DMA_PRIVATE, pdev->device.cap_mask);
1301 	pdev->device.dev = &op->dev;
1302 	pdev->device.device_alloc_chan_resources = mmp_pdma_alloc_chan_resources;
1303 	pdev->device.device_free_chan_resources = mmp_pdma_free_chan_resources;
1304 	pdev->device.device_tx_status = mmp_pdma_tx_status;
1305 	pdev->device.device_prep_dma_memcpy = mmp_pdma_prep_memcpy;
1306 	pdev->device.device_prep_slave_sg = mmp_pdma_prep_slave_sg;
1307 	pdev->device.device_prep_dma_cyclic = mmp_pdma_prep_dma_cyclic;
1308 	pdev->device.device_issue_pending = mmp_pdma_issue_pending;
1309 	pdev->device.device_config = mmp_pdma_config;
1310 	pdev->device.device_terminate_all = mmp_pdma_terminate_all;
1311 	pdev->device.copy_align = DMAENGINE_ALIGN_8_BYTES;
1312 	pdev->device.src_addr_widths = widths;
1313 	pdev->device.dst_addr_widths = widths;
1314 	pdev->device.directions = BIT(DMA_MEM_TO_DEV) | BIT(DMA_DEV_TO_MEM);
1315 	pdev->device.residue_granularity = DMA_RESIDUE_GRANULARITY_DESCRIPTOR;
1316 
1317 	/* Set DMA mask based on ops->dma_mask, or OF/platform */
1318 	if (pdev->ops->dma_mask)
1319 		dma_set_mask(pdev->dev, pdev->ops->dma_mask);
1320 	else if (pdev->dev->coherent_dma_mask)
1321 		dma_set_mask(pdev->dev, pdev->dev->coherent_dma_mask);
1322 	else
1323 		dma_set_mask(pdev->dev, DMA_BIT_MASK(64));
1324 
1325 	ret = dma_async_device_register(&pdev->device);
1326 	if (ret) {
1327 		dev_err(pdev->device.dev, "unable to register\n");
1328 		return ret;
1329 	}
1330 
1331 	if (op->dev.of_node) {
1332 		/* Device-tree DMA controller registration */
1333 		ret = of_dma_controller_register(op->dev.of_node,
1334 						 mmp_pdma_dma_xlate, pdev);
1335 		if (ret < 0) {
1336 			dev_err(&op->dev, "of_dma_controller_register failed\n");
1337 			dma_async_device_unregister(&pdev->device);
1338 			return ret;
1339 		}
1340 	}
1341 
1342 	platform_set_drvdata(op, pdev);
1343 	dev_info(pdev->device.dev, "initialized %d channels\n", dma_channels);
1344 	return 0;
1345 }
1346 
1347 static const struct platform_device_id mmp_pdma_id_table[] = {
1348 	{ "mmp-pdma", },
1349 	{ },
1350 };
1351 
1352 static struct platform_driver mmp_pdma_driver = {
1353 	.driver		= {
1354 		.name	= "mmp-pdma",
1355 		.of_match_table = mmp_pdma_dt_ids,
1356 	},
1357 	.id_table	= mmp_pdma_id_table,
1358 	.probe		= mmp_pdma_probe,
1359 	.remove		= mmp_pdma_remove,
1360 };
1361 
1362 module_platform_driver(mmp_pdma_driver);
1363 
1364 MODULE_DESCRIPTION("MARVELL MMP Peripheral DMA Driver");
1365 MODULE_AUTHOR("Marvell International Ltd.");
1366 MODULE_LICENSE("GPL v2");
1367