1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright(c) 2017 Intel Corporation. All rights reserved.
4 */
5 #include <linux/pagemap.h>
6 #include <linux/module.h>
7 #include <linux/mount.h>
8 #include <linux/pseudo_fs.h>
9 #include <linux/magic.h>
10 #include <linux/pfn_t.h>
11 #include <linux/cdev.h>
12 #include <linux/slab.h>
13 #include <linux/uio.h>
14 #include <linux/dax.h>
15 #include <linux/fs.h>
16 #include <linux/cacheinfo.h>
17 #include "dax-private.h"
18
19 /**
20 * struct dax_device - anchor object for dax services
21 * @inode: core vfs
22 * @cdev: optional character interface for "device dax"
23 * @private: dax driver private data
24 * @flags: state and boolean properties
25 * @ops: operations for this device
26 * @holder_data: holder of a dax_device: could be filesystem or mapped device
27 * @holder_ops: operations for the inner holder
28 */
29 struct dax_device {
30 struct inode inode;
31 struct cdev cdev;
32 void *private;
33 unsigned long flags;
34 const struct dax_operations *ops;
35 void *holder_data;
36 const struct dax_holder_operations *holder_ops;
37 };
38
39 static dev_t dax_devt;
40 DEFINE_STATIC_SRCU(dax_srcu);
41 static struct vfsmount *dax_mnt;
42 static DEFINE_IDA(dax_minor_ida);
43 static struct kmem_cache *dax_cache __read_mostly;
44 static struct super_block *dax_superblock __read_mostly;
45
dax_read_lock(void)46 int dax_read_lock(void)
47 {
48 return srcu_read_lock(&dax_srcu);
49 }
50 EXPORT_SYMBOL_GPL(dax_read_lock);
51
dax_read_unlock(int id)52 void dax_read_unlock(int id)
53 {
54 srcu_read_unlock(&dax_srcu, id);
55 }
56 EXPORT_SYMBOL_GPL(dax_read_unlock);
57
58 #if defined(CONFIG_BLOCK) && defined(CONFIG_FS_DAX)
59 #include <linux/blkdev.h>
60
61 static DEFINE_XARRAY(dax_hosts);
62
dax_add_host(struct dax_device * dax_dev,struct gendisk * disk)63 int dax_add_host(struct dax_device *dax_dev, struct gendisk *disk)
64 {
65 return xa_insert(&dax_hosts, (unsigned long)disk, dax_dev, GFP_KERNEL);
66 }
67 EXPORT_SYMBOL_GPL(dax_add_host);
68
dax_remove_host(struct gendisk * disk)69 void dax_remove_host(struct gendisk *disk)
70 {
71 xa_erase(&dax_hosts, (unsigned long)disk);
72 }
73 EXPORT_SYMBOL_GPL(dax_remove_host);
74
75 /**
76 * fs_dax_get_by_bdev() - temporary lookup mechanism for filesystem-dax
77 * @bdev: block device to find a dax_device for
78 * @start_off: returns the byte offset into the dax_device that @bdev starts
79 * @holder: filesystem or mapped device inside the dax_device
80 * @ops: operations for the inner holder
81 */
fs_dax_get_by_bdev(struct block_device * bdev,u64 * start_off,void * holder,const struct dax_holder_operations * ops)82 struct dax_device *fs_dax_get_by_bdev(struct block_device *bdev, u64 *start_off,
83 void *holder, const struct dax_holder_operations *ops)
84 {
85 struct dax_device *dax_dev;
86 u64 part_size;
87 int id;
88
89 if (!blk_queue_dax(bdev->bd_disk->queue))
90 return NULL;
91
92 *start_off = get_start_sect(bdev) * SECTOR_SIZE;
93 part_size = bdev_nr_sectors(bdev) * SECTOR_SIZE;
94 if (*start_off % PAGE_SIZE || part_size % PAGE_SIZE) {
95 pr_info("%pg: error: unaligned partition for dax\n", bdev);
96 return NULL;
97 }
98
99 id = dax_read_lock();
100 dax_dev = xa_load(&dax_hosts, (unsigned long)bdev->bd_disk);
101 if (!dax_dev || !dax_alive(dax_dev) || !igrab(&dax_dev->inode))
102 dax_dev = NULL;
103 else if (holder) {
104 if (!cmpxchg(&dax_dev->holder_data, NULL, holder))
105 dax_dev->holder_ops = ops;
106 else
107 dax_dev = NULL;
108 }
109 dax_read_unlock(id);
110
111 return dax_dev;
112 }
113 EXPORT_SYMBOL_GPL(fs_dax_get_by_bdev);
114
fs_put_dax(struct dax_device * dax_dev,void * holder)115 void fs_put_dax(struct dax_device *dax_dev, void *holder)
116 {
117 if (dax_dev && holder &&
118 cmpxchg(&dax_dev->holder_data, holder, NULL) == holder)
119 dax_dev->holder_ops = NULL;
120 put_dax(dax_dev);
121 }
122 EXPORT_SYMBOL_GPL(fs_put_dax);
123 #endif /* CONFIG_BLOCK && CONFIG_FS_DAX */
124
125 enum dax_device_flags {
126 /* !alive + rcu grace period == no new operations / mappings */
127 DAXDEV_ALIVE,
128 /* gate whether dax_flush() calls the low level flush routine */
129 DAXDEV_WRITE_CACHE,
130 /* flag to check if device supports synchronous flush */
131 DAXDEV_SYNC,
132 /* do not leave the caches dirty after writes */
133 DAXDEV_NOCACHE,
134 /* handle CPU fetch exceptions during reads */
135 DAXDEV_NOMC,
136 };
137
138 /**
139 * dax_direct_access() - translate a device pgoff to an absolute pfn
140 * @dax_dev: a dax_device instance representing the logical memory range
141 * @pgoff: offset in pages from the start of the device to translate
142 * @nr_pages: number of consecutive pages caller can handle relative to @pfn
143 * @mode: indicator on normal access or recovery write
144 * @kaddr: output parameter that returns a virtual address mapping of pfn
145 * @pfn: output parameter that returns an absolute pfn translation of @pgoff
146 *
147 * Return: negative errno if an error occurs, otherwise the number of
148 * pages accessible at the device relative @pgoff.
149 */
dax_direct_access(struct dax_device * dax_dev,pgoff_t pgoff,long nr_pages,enum dax_access_mode mode,void ** kaddr,pfn_t * pfn)150 long dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff, long nr_pages,
151 enum dax_access_mode mode, void **kaddr, pfn_t *pfn)
152 {
153 long avail;
154
155 if (!dax_dev)
156 return -EOPNOTSUPP;
157
158 if (!dax_alive(dax_dev))
159 return -ENXIO;
160
161 if (nr_pages < 0)
162 return -EINVAL;
163
164 avail = dax_dev->ops->direct_access(dax_dev, pgoff, nr_pages,
165 mode, kaddr, pfn);
166 if (!avail)
167 return -ERANGE;
168 return min(avail, nr_pages);
169 }
170 EXPORT_SYMBOL_GPL(dax_direct_access);
171
dax_copy_from_iter(struct dax_device * dax_dev,pgoff_t pgoff,void * addr,size_t bytes,struct iov_iter * i)172 size_t dax_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff, void *addr,
173 size_t bytes, struct iov_iter *i)
174 {
175 if (!dax_alive(dax_dev))
176 return 0;
177
178 /*
179 * The userspace address for the memory copy has already been validated
180 * via access_ok() in vfs_write, so use the 'no check' version to bypass
181 * the HARDENED_USERCOPY overhead.
182 */
183 if (test_bit(DAXDEV_NOCACHE, &dax_dev->flags))
184 return _copy_from_iter_flushcache(addr, bytes, i);
185 return _copy_from_iter(addr, bytes, i);
186 }
187
dax_copy_to_iter(struct dax_device * dax_dev,pgoff_t pgoff,void * addr,size_t bytes,struct iov_iter * i)188 size_t dax_copy_to_iter(struct dax_device *dax_dev, pgoff_t pgoff, void *addr,
189 size_t bytes, struct iov_iter *i)
190 {
191 if (!dax_alive(dax_dev))
192 return 0;
193
194 /*
195 * The userspace address for the memory copy has already been validated
196 * via access_ok() in vfs_red, so use the 'no check' version to bypass
197 * the HARDENED_USERCOPY overhead.
198 */
199 if (test_bit(DAXDEV_NOMC, &dax_dev->flags))
200 return _copy_mc_to_iter(addr, bytes, i);
201 return _copy_to_iter(addr, bytes, i);
202 }
203
dax_zero_page_range(struct dax_device * dax_dev,pgoff_t pgoff,size_t nr_pages)204 int dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff,
205 size_t nr_pages)
206 {
207 int ret;
208
209 if (!dax_alive(dax_dev))
210 return -ENXIO;
211 /*
212 * There are no callers that want to zero more than one page as of now.
213 * Once users are there, this check can be removed after the
214 * device mapper code has been updated to split ranges across targets.
215 */
216 if (nr_pages != 1)
217 return -EIO;
218
219 ret = dax_dev->ops->zero_page_range(dax_dev, pgoff, nr_pages);
220 return dax_mem2blk_err(ret);
221 }
222 EXPORT_SYMBOL_GPL(dax_zero_page_range);
223
dax_recovery_write(struct dax_device * dax_dev,pgoff_t pgoff,void * addr,size_t bytes,struct iov_iter * iter)224 size_t dax_recovery_write(struct dax_device *dax_dev, pgoff_t pgoff,
225 void *addr, size_t bytes, struct iov_iter *iter)
226 {
227 if (!dax_dev->ops->recovery_write)
228 return 0;
229 return dax_dev->ops->recovery_write(dax_dev, pgoff, addr, bytes, iter);
230 }
231 EXPORT_SYMBOL_GPL(dax_recovery_write);
232
dax_holder_notify_failure(struct dax_device * dax_dev,u64 off,u64 len,int mf_flags)233 int dax_holder_notify_failure(struct dax_device *dax_dev, u64 off,
234 u64 len, int mf_flags)
235 {
236 int rc, id;
237
238 id = dax_read_lock();
239 if (!dax_alive(dax_dev)) {
240 rc = -ENXIO;
241 goto out;
242 }
243
244 if (!dax_dev->holder_ops) {
245 rc = -EOPNOTSUPP;
246 goto out;
247 }
248
249 rc = dax_dev->holder_ops->notify_failure(dax_dev, off, len, mf_flags);
250 out:
251 dax_read_unlock(id);
252 return rc;
253 }
254 EXPORT_SYMBOL_GPL(dax_holder_notify_failure);
255
256 #ifdef CONFIG_ARCH_HAS_PMEM_API
257 void arch_wb_cache_pmem(void *addr, size_t size);
dax_flush(struct dax_device * dax_dev,void * addr,size_t size)258 void dax_flush(struct dax_device *dax_dev, void *addr, size_t size)
259 {
260 if (unlikely(!dax_write_cache_enabled(dax_dev)))
261 return;
262
263 arch_wb_cache_pmem(addr, size);
264 }
265 #else
dax_flush(struct dax_device * dax_dev,void * addr,size_t size)266 void dax_flush(struct dax_device *dax_dev, void *addr, size_t size)
267 {
268 }
269 #endif
270 EXPORT_SYMBOL_GPL(dax_flush);
271
dax_write_cache(struct dax_device * dax_dev,bool wc)272 void dax_write_cache(struct dax_device *dax_dev, bool wc)
273 {
274 if (wc)
275 set_bit(DAXDEV_WRITE_CACHE, &dax_dev->flags);
276 else
277 clear_bit(DAXDEV_WRITE_CACHE, &dax_dev->flags);
278 }
279 EXPORT_SYMBOL_GPL(dax_write_cache);
280
dax_write_cache_enabled(struct dax_device * dax_dev)281 bool dax_write_cache_enabled(struct dax_device *dax_dev)
282 {
283 return test_bit(DAXDEV_WRITE_CACHE, &dax_dev->flags);
284 }
285 EXPORT_SYMBOL_GPL(dax_write_cache_enabled);
286
dax_synchronous(struct dax_device * dax_dev)287 bool dax_synchronous(struct dax_device *dax_dev)
288 {
289 return test_bit(DAXDEV_SYNC, &dax_dev->flags);
290 }
291 EXPORT_SYMBOL_GPL(dax_synchronous);
292
set_dax_synchronous(struct dax_device * dax_dev)293 void set_dax_synchronous(struct dax_device *dax_dev)
294 {
295 set_bit(DAXDEV_SYNC, &dax_dev->flags);
296 }
297 EXPORT_SYMBOL_GPL(set_dax_synchronous);
298
set_dax_nocache(struct dax_device * dax_dev)299 void set_dax_nocache(struct dax_device *dax_dev)
300 {
301 set_bit(DAXDEV_NOCACHE, &dax_dev->flags);
302 }
303 EXPORT_SYMBOL_GPL(set_dax_nocache);
304
set_dax_nomc(struct dax_device * dax_dev)305 void set_dax_nomc(struct dax_device *dax_dev)
306 {
307 set_bit(DAXDEV_NOMC, &dax_dev->flags);
308 }
309 EXPORT_SYMBOL_GPL(set_dax_nomc);
310
dax_alive(struct dax_device * dax_dev)311 bool dax_alive(struct dax_device *dax_dev)
312 {
313 lockdep_assert_held(&dax_srcu);
314 return test_bit(DAXDEV_ALIVE, &dax_dev->flags);
315 }
316 EXPORT_SYMBOL_GPL(dax_alive);
317
318 /*
319 * Note, rcu is not protecting the liveness of dax_dev, rcu is ensuring
320 * that any fault handlers or operations that might have seen
321 * dax_alive(), have completed. Any operations that start after
322 * synchronize_srcu() has run will abort upon seeing !dax_alive().
323 *
324 * Note, because alloc_dax() returns an ERR_PTR() on error, callers
325 * typically store its result into a local variable in order to check
326 * the result. Therefore, care must be taken to populate the struct
327 * device dax_dev field make sure the dax_dev is not leaked.
328 */
kill_dax(struct dax_device * dax_dev)329 void kill_dax(struct dax_device *dax_dev)
330 {
331 if (!dax_dev)
332 return;
333
334 if (dax_dev->holder_data != NULL)
335 dax_holder_notify_failure(dax_dev, 0, U64_MAX,
336 MF_MEM_PRE_REMOVE);
337
338 clear_bit(DAXDEV_ALIVE, &dax_dev->flags);
339 synchronize_srcu(&dax_srcu);
340
341 /* clear holder data */
342 dax_dev->holder_ops = NULL;
343 dax_dev->holder_data = NULL;
344 }
345 EXPORT_SYMBOL_GPL(kill_dax);
346
run_dax(struct dax_device * dax_dev)347 void run_dax(struct dax_device *dax_dev)
348 {
349 set_bit(DAXDEV_ALIVE, &dax_dev->flags);
350 }
351 EXPORT_SYMBOL_GPL(run_dax);
352
dax_alloc_inode(struct super_block * sb)353 static struct inode *dax_alloc_inode(struct super_block *sb)
354 {
355 struct dax_device *dax_dev;
356 struct inode *inode;
357
358 dax_dev = alloc_inode_sb(sb, dax_cache, GFP_KERNEL);
359 if (!dax_dev)
360 return NULL;
361
362 inode = &dax_dev->inode;
363 inode->i_rdev = 0;
364 return inode;
365 }
366
to_dax_dev(struct inode * inode)367 static struct dax_device *to_dax_dev(struct inode *inode)
368 {
369 return container_of(inode, struct dax_device, inode);
370 }
371
dax_free_inode(struct inode * inode)372 static void dax_free_inode(struct inode *inode)
373 {
374 struct dax_device *dax_dev = to_dax_dev(inode);
375 if (inode->i_rdev)
376 ida_free(&dax_minor_ida, iminor(inode));
377 kmem_cache_free(dax_cache, dax_dev);
378 }
379
dax_destroy_inode(struct inode * inode)380 static void dax_destroy_inode(struct inode *inode)
381 {
382 struct dax_device *dax_dev = to_dax_dev(inode);
383 WARN_ONCE(test_bit(DAXDEV_ALIVE, &dax_dev->flags),
384 "kill_dax() must be called before final iput()\n");
385 }
386
387 static const struct super_operations dax_sops = {
388 .statfs = simple_statfs,
389 .alloc_inode = dax_alloc_inode,
390 .destroy_inode = dax_destroy_inode,
391 .free_inode = dax_free_inode,
392 .drop_inode = generic_delete_inode,
393 };
394
dax_init_fs_context(struct fs_context * fc)395 static int dax_init_fs_context(struct fs_context *fc)
396 {
397 struct pseudo_fs_context *ctx = init_pseudo(fc, DAXFS_MAGIC);
398 if (!ctx)
399 return -ENOMEM;
400 ctx->ops = &dax_sops;
401 return 0;
402 }
403
404 static struct file_system_type dax_fs_type = {
405 .name = "dax",
406 .init_fs_context = dax_init_fs_context,
407 .kill_sb = kill_anon_super,
408 };
409
dax_test(struct inode * inode,void * data)410 static int dax_test(struct inode *inode, void *data)
411 {
412 dev_t devt = *(dev_t *) data;
413
414 return inode->i_rdev == devt;
415 }
416
dax_set(struct inode * inode,void * data)417 static int dax_set(struct inode *inode, void *data)
418 {
419 dev_t devt = *(dev_t *) data;
420
421 inode->i_rdev = devt;
422 return 0;
423 }
424
dax_dev_get(dev_t devt)425 static struct dax_device *dax_dev_get(dev_t devt)
426 {
427 struct dax_device *dax_dev;
428 struct inode *inode;
429
430 inode = iget5_locked(dax_superblock, hash_32(devt + DAXFS_MAGIC, 31),
431 dax_test, dax_set, &devt);
432
433 if (!inode)
434 return NULL;
435
436 dax_dev = to_dax_dev(inode);
437 if (inode->i_state & I_NEW) {
438 set_bit(DAXDEV_ALIVE, &dax_dev->flags);
439 inode->i_cdev = &dax_dev->cdev;
440 inode->i_mode = S_IFCHR;
441 inode->i_flags = S_DAX;
442 mapping_set_gfp_mask(&inode->i_data, GFP_USER);
443 unlock_new_inode(inode);
444 }
445
446 return dax_dev;
447 }
448
alloc_dax(void * private,const struct dax_operations * ops)449 struct dax_device *alloc_dax(void *private, const struct dax_operations *ops)
450 {
451 struct dax_device *dax_dev;
452 dev_t devt;
453 int minor;
454
455 /*
456 * Unavailable on architectures with virtually aliased data caches,
457 * except for device-dax (NULL operations pointer), which does
458 * not use aliased mappings from the kernel.
459 */
460 if (ops && cpu_dcache_is_aliasing())
461 return ERR_PTR(-EOPNOTSUPP);
462
463 if (WARN_ON_ONCE(ops && !ops->zero_page_range))
464 return ERR_PTR(-EINVAL);
465
466 minor = ida_alloc_max(&dax_minor_ida, MINORMASK, GFP_KERNEL);
467 if (minor < 0)
468 return ERR_PTR(-ENOMEM);
469
470 devt = MKDEV(MAJOR(dax_devt), minor);
471 dax_dev = dax_dev_get(devt);
472 if (!dax_dev)
473 goto err_dev;
474
475 dax_dev->ops = ops;
476 dax_dev->private = private;
477 return dax_dev;
478
479 err_dev:
480 ida_free(&dax_minor_ida, minor);
481 return ERR_PTR(-ENOMEM);
482 }
483 EXPORT_SYMBOL_GPL(alloc_dax);
484
put_dax(struct dax_device * dax_dev)485 void put_dax(struct dax_device *dax_dev)
486 {
487 if (!dax_dev)
488 return;
489 iput(&dax_dev->inode);
490 }
491 EXPORT_SYMBOL_GPL(put_dax);
492
493 /**
494 * dax_holder() - obtain the holder of a dax device
495 * @dax_dev: a dax_device instance
496 *
497 * Return: the holder's data which represents the holder if registered,
498 * otherwize NULL.
499 */
dax_holder(struct dax_device * dax_dev)500 void *dax_holder(struct dax_device *dax_dev)
501 {
502 return dax_dev->holder_data;
503 }
504 EXPORT_SYMBOL_GPL(dax_holder);
505
506 /**
507 * inode_dax: convert a public inode into its dax_dev
508 * @inode: An inode with i_cdev pointing to a dax_dev
509 *
510 * Note this is not equivalent to to_dax_dev() which is for private
511 * internal use where we know the inode filesystem type == dax_fs_type.
512 */
inode_dax(struct inode * inode)513 struct dax_device *inode_dax(struct inode *inode)
514 {
515 struct cdev *cdev = inode->i_cdev;
516
517 return container_of(cdev, struct dax_device, cdev);
518 }
519 EXPORT_SYMBOL_GPL(inode_dax);
520
dax_inode(struct dax_device * dax_dev)521 struct inode *dax_inode(struct dax_device *dax_dev)
522 {
523 return &dax_dev->inode;
524 }
525 EXPORT_SYMBOL_GPL(dax_inode);
526
dax_get_private(struct dax_device * dax_dev)527 void *dax_get_private(struct dax_device *dax_dev)
528 {
529 if (!test_bit(DAXDEV_ALIVE, &dax_dev->flags))
530 return NULL;
531 return dax_dev->private;
532 }
533 EXPORT_SYMBOL_GPL(dax_get_private);
534
init_once(void * _dax_dev)535 static void init_once(void *_dax_dev)
536 {
537 struct dax_device *dax_dev = _dax_dev;
538 struct inode *inode = &dax_dev->inode;
539
540 memset(dax_dev, 0, sizeof(*dax_dev));
541 inode_init_once(inode);
542 }
543
dax_fs_init(void)544 static int dax_fs_init(void)
545 {
546 int rc;
547
548 dax_cache = kmem_cache_create("dax_cache", sizeof(struct dax_device), 0,
549 SLAB_HWCACHE_ALIGN | SLAB_RECLAIM_ACCOUNT | SLAB_ACCOUNT,
550 init_once);
551 if (!dax_cache)
552 return -ENOMEM;
553
554 dax_mnt = kern_mount(&dax_fs_type);
555 if (IS_ERR(dax_mnt)) {
556 rc = PTR_ERR(dax_mnt);
557 goto err_mount;
558 }
559 dax_superblock = dax_mnt->mnt_sb;
560
561 return 0;
562
563 err_mount:
564 kmem_cache_destroy(dax_cache);
565
566 return rc;
567 }
568
dax_fs_exit(void)569 static void dax_fs_exit(void)
570 {
571 kern_unmount(dax_mnt);
572 rcu_barrier();
573 kmem_cache_destroy(dax_cache);
574 }
575
dax_core_init(void)576 static int __init dax_core_init(void)
577 {
578 int rc;
579
580 rc = dax_fs_init();
581 if (rc)
582 return rc;
583
584 rc = alloc_chrdev_region(&dax_devt, 0, MINORMASK+1, "dax");
585 if (rc)
586 goto err_chrdev;
587
588 rc = dax_bus_init();
589 if (rc)
590 goto err_bus;
591 return 0;
592
593 err_bus:
594 unregister_chrdev_region(dax_devt, MINORMASK+1);
595 err_chrdev:
596 dax_fs_exit();
597 return 0;
598 }
599
dax_core_exit(void)600 static void __exit dax_core_exit(void)
601 {
602 dax_bus_exit();
603 unregister_chrdev_region(dax_devt, MINORMASK+1);
604 ida_destroy(&dax_minor_ida);
605 dax_fs_exit();
606 }
607
608 MODULE_AUTHOR("Intel Corporation");
609 MODULE_DESCRIPTION("DAX: direct access to differentiated memory");
610 MODULE_LICENSE("GPL v2");
611 subsys_initcall(dax_core_init);
612 module_exit(dax_core_exit);
613