1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3 * DAMON api
4 *
5 * Author: SeongJae Park <sj@kernel.org>
6 */
7
8 #ifndef _DAMON_H_
9 #define _DAMON_H_
10
11 #include <linux/memcontrol.h>
12 #include <linux/mutex.h>
13 #include <linux/time64.h>
14 #include <linux/types.h>
15 #include <linux/random.h>
16
17 /* Minimal region size. Every damon_region is aligned by this. */
18 #define DAMON_MIN_REGION PAGE_SIZE
19 /* Max priority score for DAMON-based operation schemes */
20 #define DAMOS_MAX_SCORE (99)
21
22 /* Get a random number in [l, r) */
damon_rand(unsigned long l,unsigned long r)23 static inline unsigned long damon_rand(unsigned long l, unsigned long r)
24 {
25 return l + get_random_u32_below(r - l);
26 }
27
28 /**
29 * struct damon_addr_range - Represents an address region of [@start, @end).
30 * @start: Start address of the region (inclusive).
31 * @end: End address of the region (exclusive).
32 */
33 struct damon_addr_range {
34 unsigned long start;
35 unsigned long end;
36 };
37
38 /**
39 * struct damon_region - Represents a monitoring target region.
40 * @ar: The address range of the region.
41 * @sampling_addr: Address of the sample for the next access check.
42 * @nr_accesses: Access frequency of this region.
43 * @nr_accesses_bp: @nr_accesses in basis point (0.01%) that updated for
44 * each sampling interval.
45 * @list: List head for siblings.
46 * @age: Age of this region.
47 *
48 * @nr_accesses is reset to zero for every &damon_attrs->aggr_interval and be
49 * increased for every &damon_attrs->sample_interval if an access to the region
50 * during the last sampling interval is found. The update of this field should
51 * not be done with direct access but with the helper function,
52 * damon_update_region_access_rate().
53 *
54 * @nr_accesses_bp is another representation of @nr_accesses in basis point
55 * (1 in 10,000) that updated for every &damon_attrs->sample_interval in a
56 * manner similar to moving sum. By the algorithm, this value becomes
57 * @nr_accesses * 10000 for every &struct damon_attrs->aggr_interval. This can
58 * be used when the aggregation interval is too huge and therefore cannot wait
59 * for it before getting the access monitoring results.
60 *
61 * @age is initially zero, increased for each aggregation interval, and reset
62 * to zero again if the access frequency is significantly changed. If two
63 * regions are merged into a new region, both @nr_accesses and @age of the new
64 * region are set as region size-weighted average of those of the two regions.
65 */
66 struct damon_region {
67 struct damon_addr_range ar;
68 unsigned long sampling_addr;
69 unsigned int nr_accesses;
70 unsigned int nr_accesses_bp;
71 struct list_head list;
72
73 unsigned int age;
74 /* private: Internal value for age calculation. */
75 unsigned int last_nr_accesses;
76 };
77
78 /**
79 * struct damon_target - Represents a monitoring target.
80 * @pid: The PID of the virtual address space to monitor.
81 * @nr_regions: Number of monitoring target regions of this target.
82 * @regions_list: Head of the monitoring target regions of this target.
83 * @list: List head for siblings.
84 *
85 * Each monitoring context could have multiple targets. For example, a context
86 * for virtual memory address spaces could have multiple target processes. The
87 * @pid should be set for appropriate &struct damon_operations including the
88 * virtual address spaces monitoring operations.
89 */
90 struct damon_target {
91 struct pid *pid;
92 unsigned int nr_regions;
93 struct list_head regions_list;
94 struct list_head list;
95 };
96
97 /**
98 * enum damos_action - Represents an action of a Data Access Monitoring-based
99 * Operation Scheme.
100 *
101 * @DAMOS_WILLNEED: Call ``madvise()`` for the region with MADV_WILLNEED.
102 * @DAMOS_COLD: Call ``madvise()`` for the region with MADV_COLD.
103 * @DAMOS_PAGEOUT: Call ``madvise()`` for the region with MADV_PAGEOUT.
104 * @DAMOS_HUGEPAGE: Call ``madvise()`` for the region with MADV_HUGEPAGE.
105 * @DAMOS_NOHUGEPAGE: Call ``madvise()`` for the region with MADV_NOHUGEPAGE.
106 * @DAMOS_LRU_PRIO: Prioritize the region on its LRU lists.
107 * @DAMOS_LRU_DEPRIO: Deprioritize the region on its LRU lists.
108 * @DAMOS_MIGRATE_HOT: Migrate the regions prioritizing warmer regions.
109 * @DAMOS_MIGRATE_COLD: Migrate the regions prioritizing colder regions.
110 * @DAMOS_STAT: Do nothing but count the stat.
111 * @NR_DAMOS_ACTIONS: Total number of DAMOS actions
112 *
113 * The support of each action is up to running &struct damon_operations.
114 * &enum DAMON_OPS_VADDR and &enum DAMON_OPS_FVADDR supports all actions except
115 * &enum DAMOS_LRU_PRIO and &enum DAMOS_LRU_DEPRIO. &enum DAMON_OPS_PADDR
116 * supports only &enum DAMOS_PAGEOUT, &enum DAMOS_LRU_PRIO, &enum
117 * DAMOS_LRU_DEPRIO, and &DAMOS_STAT.
118 */
119 enum damos_action {
120 DAMOS_WILLNEED,
121 DAMOS_COLD,
122 DAMOS_PAGEOUT,
123 DAMOS_HUGEPAGE,
124 DAMOS_NOHUGEPAGE,
125 DAMOS_LRU_PRIO,
126 DAMOS_LRU_DEPRIO,
127 DAMOS_MIGRATE_HOT,
128 DAMOS_MIGRATE_COLD,
129 DAMOS_STAT, /* Do nothing but only record the stat */
130 NR_DAMOS_ACTIONS,
131 };
132
133 /**
134 * enum damos_quota_goal_metric - Represents the metric to be used as the goal
135 *
136 * @DAMOS_QUOTA_USER_INPUT: User-input value.
137 * @DAMOS_QUOTA_SOME_MEM_PSI_US: System level some memory PSI in us.
138 * @NR_DAMOS_QUOTA_GOAL_METRICS: Number of DAMOS quota goal metrics.
139 *
140 * Metrics equal to larger than @NR_DAMOS_QUOTA_GOAL_METRICS are unsupported.
141 */
142 enum damos_quota_goal_metric {
143 DAMOS_QUOTA_USER_INPUT,
144 DAMOS_QUOTA_SOME_MEM_PSI_US,
145 NR_DAMOS_QUOTA_GOAL_METRICS,
146 };
147
148 /**
149 * struct damos_quota_goal - DAMOS scheme quota auto-tuning goal.
150 * @metric: Metric to be used for representing the goal.
151 * @target_value: Target value of @metric to achieve with the tuning.
152 * @current_value: Current value of @metric.
153 * @last_psi_total: Last measured total PSI
154 * @list: List head for siblings.
155 *
156 * Data structure for getting the current score of the quota tuning goal. The
157 * score is calculated by how close @current_value and @target_value are. Then
158 * the score is entered to DAMON's internal feedback loop mechanism to get the
159 * auto-tuned quota.
160 *
161 * If @metric is DAMOS_QUOTA_USER_INPUT, @current_value should be manually
162 * entered by the user, probably inside the kdamond callbacks. Otherwise,
163 * DAMON sets @current_value with self-measured value of @metric.
164 */
165 struct damos_quota_goal {
166 enum damos_quota_goal_metric metric;
167 unsigned long target_value;
168 unsigned long current_value;
169 /* metric-dependent fields */
170 union {
171 u64 last_psi_total;
172 };
173 struct list_head list;
174 };
175
176 /**
177 * struct damos_quota - Controls the aggressiveness of the given scheme.
178 * @reset_interval: Charge reset interval in milliseconds.
179 * @ms: Maximum milliseconds that the scheme can use.
180 * @sz: Maximum bytes of memory that the action can be applied.
181 * @goals: Head of quota tuning goals (&damos_quota_goal) list.
182 * @esz: Effective size quota in bytes.
183 *
184 * @weight_sz: Weight of the region's size for prioritization.
185 * @weight_nr_accesses: Weight of the region's nr_accesses for prioritization.
186 * @weight_age: Weight of the region's age for prioritization.
187 *
188 * To avoid consuming too much CPU time or IO resources for applying the
189 * &struct damos->action to large memory, DAMON allows users to set time and/or
190 * size quotas. The quotas can be set by writing non-zero values to &ms and
191 * &sz, respectively. If the time quota is set, DAMON tries to use only up to
192 * &ms milliseconds within &reset_interval for applying the action. If the
193 * size quota is set, DAMON tries to apply the action only up to &sz bytes
194 * within &reset_interval.
195 *
196 * To convince the different types of quotas and goals, DAMON internally
197 * converts those into one single size quota called "effective quota". DAMON
198 * internally uses it as the only one real quota. The conversion is made as
199 * follows.
200 *
201 * The time quota is transformed to a size quota using estimated throughput of
202 * the scheme's action. DAMON then compares it against &sz and uses smaller
203 * one as the effective quota.
204 *
205 * If @goals is not empty, DAMON calculates yet another size quota based on the
206 * goals using its internal feedback loop algorithm, for every @reset_interval.
207 * Then, if the new size quota is smaller than the effective quota, it uses the
208 * new size quota as the effective quota.
209 *
210 * The resulting effective size quota in bytes is set to @esz.
211 *
212 * For selecting regions within the quota, DAMON prioritizes current scheme's
213 * target memory regions using the &struct damon_operations->get_scheme_score.
214 * You could customize the prioritization logic by setting &weight_sz,
215 * &weight_nr_accesses, and &weight_age, because monitoring operations are
216 * encouraged to respect those.
217 */
218 struct damos_quota {
219 unsigned long reset_interval;
220 unsigned long ms;
221 unsigned long sz;
222 struct list_head goals;
223 unsigned long esz;
224
225 unsigned int weight_sz;
226 unsigned int weight_nr_accesses;
227 unsigned int weight_age;
228
229 /* private: */
230 /* For throughput estimation */
231 unsigned long total_charged_sz;
232 unsigned long total_charged_ns;
233
234 /* For charging the quota */
235 unsigned long charged_sz;
236 unsigned long charged_from;
237 struct damon_target *charge_target_from;
238 unsigned long charge_addr_from;
239
240 /* For prioritization */
241 unsigned int min_score;
242
243 /* For feedback loop */
244 unsigned long esz_bp;
245 };
246
247 /**
248 * enum damos_wmark_metric - Represents the watermark metric.
249 *
250 * @DAMOS_WMARK_NONE: Ignore the watermarks of the given scheme.
251 * @DAMOS_WMARK_FREE_MEM_RATE: Free memory rate of the system in [0,1000].
252 * @NR_DAMOS_WMARK_METRICS: Total number of DAMOS watermark metrics
253 */
254 enum damos_wmark_metric {
255 DAMOS_WMARK_NONE,
256 DAMOS_WMARK_FREE_MEM_RATE,
257 NR_DAMOS_WMARK_METRICS,
258 };
259
260 /**
261 * struct damos_watermarks - Controls when a given scheme should be activated.
262 * @metric: Metric for the watermarks.
263 * @interval: Watermarks check time interval in microseconds.
264 * @high: High watermark.
265 * @mid: Middle watermark.
266 * @low: Low watermark.
267 *
268 * If &metric is &DAMOS_WMARK_NONE, the scheme is always active. Being active
269 * means DAMON does monitoring and applying the action of the scheme to
270 * appropriate memory regions. Else, DAMON checks &metric of the system for at
271 * least every &interval microseconds and works as below.
272 *
273 * If &metric is higher than &high, the scheme is inactivated. If &metric is
274 * between &mid and &low, the scheme is activated. If &metric is lower than
275 * &low, the scheme is inactivated.
276 */
277 struct damos_watermarks {
278 enum damos_wmark_metric metric;
279 unsigned long interval;
280 unsigned long high;
281 unsigned long mid;
282 unsigned long low;
283
284 /* private: */
285 bool activated;
286 };
287
288 /**
289 * struct damos_stat - Statistics on a given scheme.
290 * @nr_tried: Total number of regions that the scheme is tried to be applied.
291 * @sz_tried: Total size of regions that the scheme is tried to be applied.
292 * @nr_applied: Total number of regions that the scheme is applied.
293 * @sz_applied: Total size of regions that the scheme is applied.
294 * @sz_ops_filter_passed:
295 * Total bytes that passed ops layer-handled DAMOS filters.
296 * @qt_exceeds: Total number of times the quota of the scheme has exceeded.
297 *
298 * "Tried an action to a region" in this context means the DAMOS core logic
299 * determined the region as eligible to apply the action. The access pattern
300 * (&struct damos_access_pattern), quotas (&struct damos_quota), watermarks
301 * (&struct damos_watermarks) and filters (&struct damos_filter) that handled
302 * on core logic can affect this. The core logic asks the operation set
303 * (&struct damon_operations) to apply the action to the region.
304 *
305 * "Applied an action to a region" in this context means the operation set
306 * (&struct damon_operations) successfully applied the action to the region, at
307 * least to a part of the region. The filters (&struct damos_filter) that
308 * handled on operation set layer and type of the action and pages of the
309 * region can affect this. For example, if a filter is set to exclude
310 * anonymous pages and the region has only anonymous pages, the region will be
311 * failed at applying the action. If the action is &DAMOS_PAGEOUT and all
312 * pages of the region are already paged out, the region will be failed at
313 * applying the action.
314 */
315 struct damos_stat {
316 unsigned long nr_tried;
317 unsigned long sz_tried;
318 unsigned long nr_applied;
319 unsigned long sz_applied;
320 unsigned long sz_ops_filter_passed;
321 unsigned long qt_exceeds;
322 };
323
324 /**
325 * enum damos_filter_type - Type of memory for &struct damos_filter
326 * @DAMOS_FILTER_TYPE_ANON: Anonymous pages.
327 * @DAMOS_FILTER_TYPE_MEMCG: Specific memcg's pages.
328 * @DAMOS_FILTER_TYPE_YOUNG: Recently accessed pages.
329 * @DAMOS_FILTER_TYPE_ADDR: Address range.
330 * @DAMOS_FILTER_TYPE_TARGET: Data Access Monitoring target.
331 * @NR_DAMOS_FILTER_TYPES: Number of filter types.
332 *
333 * The anon pages type and memcg type filters are handled by underlying
334 * &struct damon_operations as a part of scheme action trying, and therefore
335 * accounted as 'tried'. In contrast, other types are handled by core layer
336 * before trying of the action and therefore not accounted as 'tried'.
337 *
338 * The support of the filters that handled by &struct damon_operations depend
339 * on the running &struct damon_operations.
340 * &enum DAMON_OPS_PADDR supports both anon pages type and memcg type filters,
341 * while &enum DAMON_OPS_VADDR and &enum DAMON_OPS_FVADDR don't support any of
342 * the two types.
343 */
344 enum damos_filter_type {
345 DAMOS_FILTER_TYPE_ANON,
346 DAMOS_FILTER_TYPE_MEMCG,
347 DAMOS_FILTER_TYPE_YOUNG,
348 DAMOS_FILTER_TYPE_ADDR,
349 DAMOS_FILTER_TYPE_TARGET,
350 NR_DAMOS_FILTER_TYPES,
351 };
352
353 /**
354 * struct damos_filter - DAMOS action target memory filter.
355 * @type: Type of the target memory.
356 * @matching: Whether this is for @type-matching memory.
357 * @allow: Whether to include or exclude the @matching memory.
358 * @memcg_id: Memcg id of the question if @type is DAMOS_FILTER_MEMCG.
359 * @addr_range: Address range if @type is DAMOS_FILTER_TYPE_ADDR.
360 * @target_idx: Index of the &struct damon_target of
361 * &damon_ctx->adaptive_targets if @type is
362 * DAMOS_FILTER_TYPE_TARGET.
363 * @list: List head for siblings.
364 *
365 * Before applying the &damos->action to a memory region, DAMOS checks if each
366 * byte of the region matches to this given condition and avoid applying the
367 * action if so. Support of each filter type depends on the running &struct
368 * damon_operations and the type. Refer to &enum damos_filter_type for more
369 * details.
370 */
371 struct damos_filter {
372 enum damos_filter_type type;
373 bool matching;
374 bool allow;
375 union {
376 unsigned short memcg_id;
377 struct damon_addr_range addr_range;
378 int target_idx;
379 };
380 struct list_head list;
381 };
382
383 struct damon_ctx;
384 struct damos;
385
386 /**
387 * struct damos_walk_control - Control damos_walk().
388 *
389 * @walk_fn: Function to be called back for each region.
390 * @data: Data that will be passed to walk functions.
391 *
392 * Control damos_walk(), which requests specific kdamond to invoke the given
393 * function to each region that eligible to apply actions of the kdamond's
394 * schemes. Refer to damos_walk() for more details.
395 */
396 struct damos_walk_control {
397 void (*walk_fn)(void *data, struct damon_ctx *ctx,
398 struct damon_target *t, struct damon_region *r,
399 struct damos *s, unsigned long sz_filter_passed);
400 void *data;
401 /* private: internal use only */
402 /* informs if the kdamond finished handling of the walk request */
403 struct completion completion;
404 /* informs if the walk is canceled. */
405 bool canceled;
406 };
407
408 /**
409 * struct damos_access_pattern - Target access pattern of the given scheme.
410 * @min_sz_region: Minimum size of target regions.
411 * @max_sz_region: Maximum size of target regions.
412 * @min_nr_accesses: Minimum ``->nr_accesses`` of target regions.
413 * @max_nr_accesses: Maximum ``->nr_accesses`` of target regions.
414 * @min_age_region: Minimum age of target regions.
415 * @max_age_region: Maximum age of target regions.
416 */
417 struct damos_access_pattern {
418 unsigned long min_sz_region;
419 unsigned long max_sz_region;
420 unsigned int min_nr_accesses;
421 unsigned int max_nr_accesses;
422 unsigned int min_age_region;
423 unsigned int max_age_region;
424 };
425
426 /**
427 * struct damos - Represents a Data Access Monitoring-based Operation Scheme.
428 * @pattern: Access pattern of target regions.
429 * @action: &damo_action to be applied to the target regions.
430 * @apply_interval_us: The time between applying the @action.
431 * @quota: Control the aggressiveness of this scheme.
432 * @wmarks: Watermarks for automated (in)activation of this scheme.
433 * @target_nid: Destination node if @action is "migrate_{hot,cold}".
434 * @filters: Additional set of &struct damos_filter for &action.
435 * @stat: Statistics of this scheme.
436 * @list: List head for siblings.
437 *
438 * For each @apply_interval_us, DAMON finds regions which fit in the
439 * &pattern and applies &action to those. To avoid consuming too much
440 * CPU time or IO resources for the &action, "a is used.
441 *
442 * If @apply_interval_us is zero, &damon_attrs->aggr_interval is used instead.
443 *
444 * To do the work only when needed, schemes can be activated for specific
445 * system situations using &wmarks. If all schemes that registered to the
446 * monitoring context are inactive, DAMON stops monitoring either, and just
447 * repeatedly checks the watermarks.
448 *
449 * @target_nid is used to set the migration target node for migrate_hot or
450 * migrate_cold actions, which means it's only meaningful when @action is either
451 * "migrate_hot" or "migrate_cold".
452 *
453 * Before applying the &action to a memory region, &struct damon_operations
454 * implementation could check pages of the region and skip &action to respect
455 * &filters
456 *
457 * After applying the &action to each region, &stat_count and &stat_sz is
458 * updated to reflect the number of regions and total size of regions that the
459 * &action is applied.
460 */
461 struct damos {
462 struct damos_access_pattern pattern;
463 enum damos_action action;
464 unsigned long apply_interval_us;
465 /* private: internal use only */
466 /*
467 * number of sample intervals that should be passed before applying
468 * @action
469 */
470 unsigned long next_apply_sis;
471 /* informs if ongoing DAMOS walk for this scheme is finished */
472 bool walk_completed;
473 /*
474 * If the current region in the filtering stage is allowed by core
475 * layer-handled filters. If true, operations layer allows it, too.
476 */
477 bool core_filters_allowed;
478 /* public: */
479 struct damos_quota quota;
480 struct damos_watermarks wmarks;
481 union {
482 int target_nid;
483 };
484 struct list_head filters;
485 struct damos_stat stat;
486 struct list_head list;
487 };
488
489 /**
490 * enum damon_ops_id - Identifier for each monitoring operations implementation
491 *
492 * @DAMON_OPS_VADDR: Monitoring operations for virtual address spaces
493 * @DAMON_OPS_FVADDR: Monitoring operations for only fixed ranges of virtual
494 * address spaces
495 * @DAMON_OPS_PADDR: Monitoring operations for the physical address space
496 * @NR_DAMON_OPS: Number of monitoring operations implementations
497 */
498 enum damon_ops_id {
499 DAMON_OPS_VADDR,
500 DAMON_OPS_FVADDR,
501 DAMON_OPS_PADDR,
502 NR_DAMON_OPS,
503 };
504
505 /**
506 * struct damon_operations - Monitoring operations for given use cases.
507 *
508 * @id: Identifier of this operations set.
509 * @init: Initialize operations-related data structures.
510 * @update: Update operations-related data structures.
511 * @prepare_access_checks: Prepare next access check of target regions.
512 * @check_accesses: Check the accesses to target regions.
513 * @reset_aggregated: Reset aggregated accesses monitoring results.
514 * @get_scheme_score: Get the score of a region for a scheme.
515 * @apply_scheme: Apply a DAMON-based operation scheme.
516 * @target_valid: Determine if the target is valid.
517 * @cleanup: Clean up the context.
518 *
519 * DAMON can be extended for various address spaces and usages. For this,
520 * users should register the low level operations for their target address
521 * space and usecase via the &damon_ctx.ops. Then, the monitoring thread
522 * (&damon_ctx.kdamond) calls @init and @prepare_access_checks before starting
523 * the monitoring, @update after each &damon_attrs.ops_update_interval, and
524 * @check_accesses, @target_valid and @prepare_access_checks after each
525 * &damon_attrs.sample_interval. Finally, @reset_aggregated is called after
526 * each &damon_attrs.aggr_interval.
527 *
528 * Each &struct damon_operations instance having valid @id can be registered
529 * via damon_register_ops() and selected by damon_select_ops() later.
530 * @init should initialize operations-related data structures. For example,
531 * this could be used to construct proper monitoring target regions and link
532 * those to @damon_ctx.adaptive_targets.
533 * @update should update the operations-related data structures. For example,
534 * this could be used to update monitoring target regions for current status.
535 * @prepare_access_checks should manipulate the monitoring regions to be
536 * prepared for the next access check.
537 * @check_accesses should check the accesses to each region that made after the
538 * last preparation and update the number of observed accesses of each region.
539 * It should also return max number of observed accesses that made as a result
540 * of its update. The value will be used for regions adjustment threshold.
541 * @reset_aggregated should reset the access monitoring results that aggregated
542 * by @check_accesses.
543 * @get_scheme_score should return the priority score of a region for a scheme
544 * as an integer in [0, &DAMOS_MAX_SCORE].
545 * @apply_scheme is called from @kdamond when a region for user provided
546 * DAMON-based operation scheme is found. It should apply the scheme's action
547 * to the region and return bytes of the region that the action is successfully
548 * applied. It should also report how many bytes of the region has passed
549 * filters (&struct damos_filter) that handled by itself.
550 * @target_valid should check whether the target is still valid for the
551 * monitoring.
552 * @cleanup is called from @kdamond just before its termination.
553 */
554 struct damon_operations {
555 enum damon_ops_id id;
556 void (*init)(struct damon_ctx *context);
557 void (*update)(struct damon_ctx *context);
558 void (*prepare_access_checks)(struct damon_ctx *context);
559 unsigned int (*check_accesses)(struct damon_ctx *context);
560 void (*reset_aggregated)(struct damon_ctx *context);
561 int (*get_scheme_score)(struct damon_ctx *context,
562 struct damon_target *t, struct damon_region *r,
563 struct damos *scheme);
564 unsigned long (*apply_scheme)(struct damon_ctx *context,
565 struct damon_target *t, struct damon_region *r,
566 struct damos *scheme, unsigned long *sz_filter_passed);
567 bool (*target_valid)(struct damon_target *t);
568 void (*cleanup)(struct damon_ctx *context);
569 };
570
571 /**
572 * struct damon_callback - Monitoring events notification callbacks.
573 *
574 * @before_start: Called before starting the monitoring.
575 * @after_wmarks_check: Called after each schemes' watermarks check.
576 * @after_sampling: Called after each sampling.
577 * @after_aggregation: Called after each aggregation.
578 * @before_damos_apply: Called before applying DAMOS action.
579 * @before_terminate: Called before terminating the monitoring.
580 * @private: User private data.
581 *
582 * The monitoring thread (&damon_ctx.kdamond) calls @before_start and
583 * @before_terminate just before starting and finishing the monitoring,
584 * respectively. Therefore, those are good places for installing and cleaning
585 * @private.
586 *
587 * The monitoring thread calls @after_wmarks_check after each DAMON-based
588 * operation schemes' watermarks check. If users need to make changes to the
589 * attributes of the monitoring context while it's deactivated due to the
590 * watermarks, this is the good place to do.
591 *
592 * The monitoring thread calls @after_sampling and @after_aggregation for each
593 * of the sampling intervals and aggregation intervals, respectively.
594 * Therefore, users can safely access the monitoring results without additional
595 * protection. For the reason, users are recommended to use these callback for
596 * the accesses to the results.
597 *
598 * If any callback returns non-zero, monitoring stops.
599 */
600 struct damon_callback {
601 void *private;
602
603 int (*before_start)(struct damon_ctx *context);
604 int (*after_wmarks_check)(struct damon_ctx *context);
605 int (*after_sampling)(struct damon_ctx *context);
606 int (*after_aggregation)(struct damon_ctx *context);
607 int (*before_damos_apply)(struct damon_ctx *context,
608 struct damon_target *target,
609 struct damon_region *region,
610 struct damos *scheme);
611 void (*before_terminate)(struct damon_ctx *context);
612 };
613
614 /*
615 * struct damon_call_control - Control damon_call().
616 *
617 * @fn: Function to be called back.
618 * @data: Data that will be passed to @fn.
619 * @return_code: Return code from @fn invocation.
620 *
621 * Control damon_call(), which requests specific kdamond to invoke a given
622 * function. Refer to damon_call() for more details.
623 */
624 struct damon_call_control {
625 int (*fn)(void *data);
626 void *data;
627 int return_code;
628 /* private: internal use only */
629 /* informs if the kdamond finished handling of the request */
630 struct completion completion;
631 /* informs if the kdamond canceled @fn infocation */
632 bool canceled;
633 };
634
635 /**
636 * struct damon_attrs - Monitoring attributes for accuracy/overhead control.
637 *
638 * @sample_interval: The time between access samplings.
639 * @aggr_interval: The time between monitor results aggregations.
640 * @ops_update_interval: The time between monitoring operations updates.
641 * @min_nr_regions: The minimum number of adaptive monitoring
642 * regions.
643 * @max_nr_regions: The maximum number of adaptive monitoring
644 * regions.
645 *
646 * For each @sample_interval, DAMON checks whether each region is accessed or
647 * not during the last @sample_interval. If such access is found, DAMON
648 * aggregates the information by increasing &damon_region->nr_accesses for
649 * @aggr_interval time. For each @aggr_interval, the count is reset. DAMON
650 * also checks whether the target memory regions need update (e.g., by
651 * ``mmap()`` calls from the application, in case of virtual memory monitoring)
652 * and applies the changes for each @ops_update_interval. All time intervals
653 * are in micro-seconds. Please refer to &struct damon_operations and &struct
654 * damon_callback for more detail.
655 */
656 struct damon_attrs {
657 unsigned long sample_interval;
658 unsigned long aggr_interval;
659 unsigned long ops_update_interval;
660 unsigned long min_nr_regions;
661 unsigned long max_nr_regions;
662 };
663
664 /**
665 * struct damon_ctx - Represents a context for each monitoring. This is the
666 * main interface that allows users to set the attributes and get the results
667 * of the monitoring.
668 *
669 * @attrs: Monitoring attributes for accuracy/overhead control.
670 * @kdamond: Kernel thread who does the monitoring.
671 * @kdamond_lock: Mutex for the synchronizations with @kdamond.
672 *
673 * For each monitoring context, one kernel thread for the monitoring is
674 * created. The pointer to the thread is stored in @kdamond.
675 *
676 * Once started, the monitoring thread runs until explicitly required to be
677 * terminated or every monitoring target is invalid. The validity of the
678 * targets is checked via the &damon_operations.target_valid of @ops. The
679 * termination can also be explicitly requested by calling damon_stop().
680 * The thread sets @kdamond to NULL when it terminates. Therefore, users can
681 * know whether the monitoring is ongoing or terminated by reading @kdamond.
682 * Reads and writes to @kdamond from outside of the monitoring thread must
683 * be protected by @kdamond_lock.
684 *
685 * Note that the monitoring thread protects only @kdamond via @kdamond_lock.
686 * Accesses to other fields must be protected by themselves.
687 *
688 * @ops: Set of monitoring operations for given use cases.
689 * @callback: Set of callbacks for monitoring events notifications.
690 *
691 * @adaptive_targets: Head of monitoring targets (&damon_target) list.
692 * @schemes: Head of schemes (&damos) list.
693 */
694 struct damon_ctx {
695 struct damon_attrs attrs;
696
697 /* private: internal use only */
698 /* number of sample intervals that passed since this context started */
699 unsigned long passed_sample_intervals;
700 /*
701 * number of sample intervals that should be passed before next
702 * aggregation
703 */
704 unsigned long next_aggregation_sis;
705 /*
706 * number of sample intervals that should be passed before next ops
707 * update
708 */
709 unsigned long next_ops_update_sis;
710 /* for waiting until the execution of the kdamond_fn is started */
711 struct completion kdamond_started;
712 /* for scheme quotas prioritization */
713 unsigned long *regions_score_histogram;
714
715 struct damon_call_control *call_control;
716 struct mutex call_control_lock;
717
718 struct damos_walk_control *walk_control;
719 struct mutex walk_control_lock;
720
721 /* public: */
722 struct task_struct *kdamond;
723 struct mutex kdamond_lock;
724
725 struct damon_operations ops;
726 struct damon_callback callback;
727
728 struct list_head adaptive_targets;
729 struct list_head schemes;
730 };
731
damon_next_region(struct damon_region * r)732 static inline struct damon_region *damon_next_region(struct damon_region *r)
733 {
734 return container_of(r->list.next, struct damon_region, list);
735 }
736
damon_prev_region(struct damon_region * r)737 static inline struct damon_region *damon_prev_region(struct damon_region *r)
738 {
739 return container_of(r->list.prev, struct damon_region, list);
740 }
741
damon_last_region(struct damon_target * t)742 static inline struct damon_region *damon_last_region(struct damon_target *t)
743 {
744 return list_last_entry(&t->regions_list, struct damon_region, list);
745 }
746
damon_first_region(struct damon_target * t)747 static inline struct damon_region *damon_first_region(struct damon_target *t)
748 {
749 return list_first_entry(&t->regions_list, struct damon_region, list);
750 }
751
damon_sz_region(struct damon_region * r)752 static inline unsigned long damon_sz_region(struct damon_region *r)
753 {
754 return r->ar.end - r->ar.start;
755 }
756
757
758 #define damon_for_each_region(r, t) \
759 list_for_each_entry(r, &t->regions_list, list)
760
761 #define damon_for_each_region_from(r, t) \
762 list_for_each_entry_from(r, &t->regions_list, list)
763
764 #define damon_for_each_region_safe(r, next, t) \
765 list_for_each_entry_safe(r, next, &t->regions_list, list)
766
767 #define damon_for_each_target(t, ctx) \
768 list_for_each_entry(t, &(ctx)->adaptive_targets, list)
769
770 #define damon_for_each_target_safe(t, next, ctx) \
771 list_for_each_entry_safe(t, next, &(ctx)->adaptive_targets, list)
772
773 #define damon_for_each_scheme(s, ctx) \
774 list_for_each_entry(s, &(ctx)->schemes, list)
775
776 #define damon_for_each_scheme_safe(s, next, ctx) \
777 list_for_each_entry_safe(s, next, &(ctx)->schemes, list)
778
779 #define damos_for_each_quota_goal(goal, quota) \
780 list_for_each_entry(goal, "a->goals, list)
781
782 #define damos_for_each_quota_goal_safe(goal, next, quota) \
783 list_for_each_entry_safe(goal, next, &(quota)->goals, list)
784
785 #define damos_for_each_filter(f, scheme) \
786 list_for_each_entry(f, &(scheme)->filters, list)
787
788 #define damos_for_each_filter_safe(f, next, scheme) \
789 list_for_each_entry_safe(f, next, &(scheme)->filters, list)
790
791 #ifdef CONFIG_DAMON
792
793 struct damon_region *damon_new_region(unsigned long start, unsigned long end);
794
795 /*
796 * Add a region between two other regions
797 */
damon_insert_region(struct damon_region * r,struct damon_region * prev,struct damon_region * next,struct damon_target * t)798 static inline void damon_insert_region(struct damon_region *r,
799 struct damon_region *prev, struct damon_region *next,
800 struct damon_target *t)
801 {
802 __list_add(&r->list, &prev->list, &next->list);
803 t->nr_regions++;
804 }
805
806 void damon_add_region(struct damon_region *r, struct damon_target *t);
807 void damon_destroy_region(struct damon_region *r, struct damon_target *t);
808 int damon_set_regions(struct damon_target *t, struct damon_addr_range *ranges,
809 unsigned int nr_ranges);
810 void damon_update_region_access_rate(struct damon_region *r, bool accessed,
811 struct damon_attrs *attrs);
812
813 struct damos_filter *damos_new_filter(enum damos_filter_type type,
814 bool matching, bool allow);
815 void damos_add_filter(struct damos *s, struct damos_filter *f);
816 void damos_destroy_filter(struct damos_filter *f);
817
818 struct damos_quota_goal *damos_new_quota_goal(
819 enum damos_quota_goal_metric metric,
820 unsigned long target_value);
821 void damos_add_quota_goal(struct damos_quota *q, struct damos_quota_goal *g);
822 void damos_destroy_quota_goal(struct damos_quota_goal *goal);
823
824 struct damos *damon_new_scheme(struct damos_access_pattern *pattern,
825 enum damos_action action,
826 unsigned long apply_interval_us,
827 struct damos_quota *quota,
828 struct damos_watermarks *wmarks,
829 int target_nid);
830 void damon_add_scheme(struct damon_ctx *ctx, struct damos *s);
831 void damon_destroy_scheme(struct damos *s);
832 int damos_commit_quota_goals(struct damos_quota *dst, struct damos_quota *src);
833
834 struct damon_target *damon_new_target(void);
835 void damon_add_target(struct damon_ctx *ctx, struct damon_target *t);
836 bool damon_targets_empty(struct damon_ctx *ctx);
837 void damon_free_target(struct damon_target *t);
838 void damon_destroy_target(struct damon_target *t);
839 unsigned int damon_nr_regions(struct damon_target *t);
840
841 struct damon_ctx *damon_new_ctx(void);
842 void damon_destroy_ctx(struct damon_ctx *ctx);
843 int damon_set_attrs(struct damon_ctx *ctx, struct damon_attrs *attrs);
844 void damon_set_schemes(struct damon_ctx *ctx,
845 struct damos **schemes, ssize_t nr_schemes);
846 int damon_commit_ctx(struct damon_ctx *old_ctx, struct damon_ctx *new_ctx);
847 int damon_nr_running_ctxs(void);
848 bool damon_is_registered_ops(enum damon_ops_id id);
849 int damon_register_ops(struct damon_operations *ops);
850 int damon_select_ops(struct damon_ctx *ctx, enum damon_ops_id id);
851
damon_target_has_pid(const struct damon_ctx * ctx)852 static inline bool damon_target_has_pid(const struct damon_ctx *ctx)
853 {
854 return ctx->ops.id == DAMON_OPS_VADDR || ctx->ops.id == DAMON_OPS_FVADDR;
855 }
856
damon_max_nr_accesses(const struct damon_attrs * attrs)857 static inline unsigned int damon_max_nr_accesses(const struct damon_attrs *attrs)
858 {
859 /* {aggr,sample}_interval are unsigned long, hence could overflow */
860 return min(attrs->aggr_interval / attrs->sample_interval,
861 (unsigned long)UINT_MAX);
862 }
863
864
865 int damon_start(struct damon_ctx **ctxs, int nr_ctxs, bool exclusive);
866 int damon_stop(struct damon_ctx **ctxs, int nr_ctxs);
867
868 int damon_call(struct damon_ctx *ctx, struct damon_call_control *control);
869 int damos_walk(struct damon_ctx *ctx, struct damos_walk_control *control);
870
871 int damon_set_region_biggest_system_ram_default(struct damon_target *t,
872 unsigned long *start, unsigned long *end);
873
874 #endif /* CONFIG_DAMON */
875
876 #endif /* _DAMON_H */
877