xref: /freebsd/contrib/llvm-project/llvm/lib/Target/X86/X86CompressEVEX.cpp (revision 0fca6ea1d4eea4c934cfff25ac9ee8ad6fe95583)
1 //===- X86CompressEVEX.cpp ------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass compresses instructions from EVEX space to legacy/VEX/EVEX space
10 // when possible in order to reduce code size or facilitate HW decoding.
11 //
12 // Possible compression:
13 //   a. AVX512 instruction (EVEX) -> AVX instruction (VEX)
14 //   b. Promoted instruction (EVEX) -> pre-promotion instruction (legacy/VEX)
15 //   c. NDD (EVEX) -> non-NDD (legacy)
16 //   d. NF_ND (EVEX) -> NF (EVEX)
17 //   e. NonNF (EVEX) -> NF (EVEX)
18 //
19 // Compression a, b and c can always reduce code size, with some exceptions
20 // such as promoted 16-bit CRC32 which is as long as the legacy version.
21 //
22 // legacy:
23 //   crc32w %si, %eax ## encoding: [0x66,0xf2,0x0f,0x38,0xf1,0xc6]
24 // promoted:
25 //   crc32w %si, %eax ## encoding: [0x62,0xf4,0x7d,0x08,0xf1,0xc6]
26 //
27 // From performance perspective, these should be same (same uops and same EXE
28 // ports). From a FMV perspective, an older legacy encoding is preferred b/c it
29 // can execute in more places (broader HW install base). So we will still do
30 // the compression.
31 //
32 // Compression d can help hardware decode (HW may skip reading the NDD
33 // register) although the instruction length remains unchanged.
34 //
35 // Compression e can help hardware skip updating EFLAGS although the instruction
36 // length remains unchanged.
37 //===----------------------------------------------------------------------===//
38 
39 #include "MCTargetDesc/X86BaseInfo.h"
40 #include "MCTargetDesc/X86InstComments.h"
41 #include "X86.h"
42 #include "X86InstrInfo.h"
43 #include "X86Subtarget.h"
44 #include "llvm/ADT/StringRef.h"
45 #include "llvm/CodeGen/MachineFunction.h"
46 #include "llvm/CodeGen/MachineFunctionPass.h"
47 #include "llvm/CodeGen/MachineInstr.h"
48 #include "llvm/CodeGen/MachineOperand.h"
49 #include "llvm/MC/MCInstrDesc.h"
50 #include "llvm/Pass.h"
51 #include <atomic>
52 #include <cassert>
53 #include <cstdint>
54 
55 using namespace llvm;
56 
57 #define COMP_EVEX_DESC "Compressing EVEX instrs when possible"
58 #define COMP_EVEX_NAME "x86-compress-evex"
59 
60 #define DEBUG_TYPE COMP_EVEX_NAME
61 
62 namespace {
63 // Including the generated EVEX compression tables.
64 #define GET_X86_COMPRESS_EVEX_TABLE
65 #include "X86GenInstrMapping.inc"
66 
67 class CompressEVEXPass : public MachineFunctionPass {
68 public:
69   static char ID;
CompressEVEXPass()70   CompressEVEXPass() : MachineFunctionPass(ID) {}
getPassName() const71   StringRef getPassName() const override { return COMP_EVEX_DESC; }
72 
73   bool runOnMachineFunction(MachineFunction &MF) override;
74 
75   // This pass runs after regalloc and doesn't support VReg operands.
getRequiredProperties() const76   MachineFunctionProperties getRequiredProperties() const override {
77     return MachineFunctionProperties().set(
78         MachineFunctionProperties::Property::NoVRegs);
79   }
80 };
81 
82 } // end anonymous namespace
83 
84 char CompressEVEXPass::ID = 0;
85 
usesExtendedRegister(const MachineInstr & MI)86 static bool usesExtendedRegister(const MachineInstr &MI) {
87   auto isHiRegIdx = [](unsigned Reg) {
88     // Check for XMM register with indexes between 16 - 31.
89     if (Reg >= X86::XMM16 && Reg <= X86::XMM31)
90       return true;
91     // Check for YMM register with indexes between 16 - 31.
92     if (Reg >= X86::YMM16 && Reg <= X86::YMM31)
93       return true;
94     // Check for GPR with indexes between 16 - 31.
95     if (X86II::isApxExtendedReg(Reg))
96       return true;
97     return false;
98   };
99 
100   // Check that operands are not ZMM regs or
101   // XMM/YMM regs with hi indexes between 16 - 31.
102   for (const MachineOperand &MO : MI.explicit_operands()) {
103     if (!MO.isReg())
104       continue;
105 
106     Register Reg = MO.getReg();
107     assert(!X86II::isZMMReg(Reg) &&
108            "ZMM instructions should not be in the EVEX->VEX tables");
109     if (isHiRegIdx(Reg))
110       return true;
111   }
112 
113   return false;
114 }
115 
116 // Do any custom cleanup needed to finalize the conversion.
performCustomAdjustments(MachineInstr & MI,unsigned NewOpc)117 static bool performCustomAdjustments(MachineInstr &MI, unsigned NewOpc) {
118   (void)NewOpc;
119   unsigned Opc = MI.getOpcode();
120   switch (Opc) {
121   case X86::VALIGNDZ128rri:
122   case X86::VALIGNDZ128rmi:
123   case X86::VALIGNQZ128rri:
124   case X86::VALIGNQZ128rmi: {
125     assert((NewOpc == X86::VPALIGNRrri || NewOpc == X86::VPALIGNRrmi) &&
126            "Unexpected new opcode!");
127     unsigned Scale =
128         (Opc == X86::VALIGNQZ128rri || Opc == X86::VALIGNQZ128rmi) ? 8 : 4;
129     MachineOperand &Imm = MI.getOperand(MI.getNumExplicitOperands() - 1);
130     Imm.setImm(Imm.getImm() * Scale);
131     break;
132   }
133   case X86::VSHUFF32X4Z256rmi:
134   case X86::VSHUFF32X4Z256rri:
135   case X86::VSHUFF64X2Z256rmi:
136   case X86::VSHUFF64X2Z256rri:
137   case X86::VSHUFI32X4Z256rmi:
138   case X86::VSHUFI32X4Z256rri:
139   case X86::VSHUFI64X2Z256rmi:
140   case X86::VSHUFI64X2Z256rri: {
141     assert((NewOpc == X86::VPERM2F128rr || NewOpc == X86::VPERM2I128rr ||
142             NewOpc == X86::VPERM2F128rm || NewOpc == X86::VPERM2I128rm) &&
143            "Unexpected new opcode!");
144     MachineOperand &Imm = MI.getOperand(MI.getNumExplicitOperands() - 1);
145     int64_t ImmVal = Imm.getImm();
146     // Set bit 5, move bit 1 to bit 4, copy bit 0.
147     Imm.setImm(0x20 | ((ImmVal & 2) << 3) | (ImmVal & 1));
148     break;
149   }
150   case X86::VRNDSCALEPDZ128rri:
151   case X86::VRNDSCALEPDZ128rmi:
152   case X86::VRNDSCALEPSZ128rri:
153   case X86::VRNDSCALEPSZ128rmi:
154   case X86::VRNDSCALEPDZ256rri:
155   case X86::VRNDSCALEPDZ256rmi:
156   case X86::VRNDSCALEPSZ256rri:
157   case X86::VRNDSCALEPSZ256rmi:
158   case X86::VRNDSCALESDZr:
159   case X86::VRNDSCALESDZm:
160   case X86::VRNDSCALESSZr:
161   case X86::VRNDSCALESSZm:
162   case X86::VRNDSCALESDZr_Int:
163   case X86::VRNDSCALESDZm_Int:
164   case X86::VRNDSCALESSZr_Int:
165   case X86::VRNDSCALESSZm_Int:
166     const MachineOperand &Imm = MI.getOperand(MI.getNumExplicitOperands() - 1);
167     int64_t ImmVal = Imm.getImm();
168     // Ensure that only bits 3:0 of the immediate are used.
169     if ((ImmVal & 0xf) != ImmVal)
170       return false;
171     break;
172   }
173 
174   return true;
175 }
176 
CompressEVEXImpl(MachineInstr & MI,const X86Subtarget & ST)177 static bool CompressEVEXImpl(MachineInstr &MI, const X86Subtarget &ST) {
178   uint64_t TSFlags = MI.getDesc().TSFlags;
179 
180   // Check for EVEX instructions only.
181   if ((TSFlags & X86II::EncodingMask) != X86II::EVEX)
182     return false;
183 
184   // Instructions with mask or 512-bit vector can't be converted to VEX.
185   if (TSFlags & (X86II::EVEX_K | X86II::EVEX_L2))
186     return false;
187 
188   auto IsRedundantNewDataDest = [&](unsigned &Opc) {
189     // $rbx = ADD64rr_ND $rbx, $rax / $rbx = ADD64rr_ND $rax, $rbx
190     //   ->
191     // $rbx = ADD64rr $rbx, $rax
192     const MCInstrDesc &Desc = MI.getDesc();
193     Register Reg0 = MI.getOperand(0).getReg();
194     const MachineOperand &Op1 = MI.getOperand(1);
195     if (!Op1.isReg() || X86::getFirstAddrOperandIdx(MI) == 1 ||
196         X86::isCFCMOVCC(MI.getOpcode()))
197       return false;
198     Register Reg1 = Op1.getReg();
199     if (Reg1 == Reg0)
200       return true;
201 
202     // Op1 and Op2 may be commutable for ND instructions.
203     if (!Desc.isCommutable() || Desc.getNumOperands() < 3 ||
204         !MI.getOperand(2).isReg() || MI.getOperand(2).getReg() != Reg0)
205       return false;
206     // Opcode may change after commute, e.g. SHRD -> SHLD
207     ST.getInstrInfo()->commuteInstruction(MI, false, 1, 2);
208     Opc = MI.getOpcode();
209     return true;
210   };
211 
212   // EVEX_B has several meanings.
213   // AVX512:
214   //  register form: rounding control or SAE
215   //  memory form: broadcast
216   //
217   // APX:
218   //  MAP4: NDD
219   //
220   // For AVX512 cases, EVEX prefix is needed in order to carry this information
221   // thus preventing the transformation to VEX encoding.
222   bool IsND = X86II::hasNewDataDest(TSFlags);
223   if (TSFlags & X86II::EVEX_B && !IsND)
224     return false;
225   unsigned Opc = MI.getOpcode();
226   // MOVBE*rr is special because it has semantic of NDD but not set EVEX_B.
227   bool IsNDLike = IsND || Opc == X86::MOVBE32rr || Opc == X86::MOVBE64rr;
228   bool IsRedundantNDD = IsNDLike ? IsRedundantNewDataDest(Opc) : false;
229 
230   auto GetCompressedOpc = [&](unsigned Opc) -> unsigned {
231     ArrayRef<X86TableEntry> Table = ArrayRef(X86CompressEVEXTable);
232     const auto I = llvm::lower_bound(Table, Opc);
233     if (I == Table.end() || I->OldOpc != Opc)
234       return 0;
235 
236     if (usesExtendedRegister(MI) || !checkPredicate(I->NewOpc, &ST) ||
237         !performCustomAdjustments(MI, I->NewOpc))
238       return 0;
239     return I->NewOpc;
240   };
241   // NonNF -> NF only if it's not a compressible NDD instruction and eflags is
242   // dead.
243   unsigned NewOpc = IsRedundantNDD
244                         ? X86::getNonNDVariant(Opc)
245                         : ((IsNDLike && ST.hasNF() &&
246                             MI.registerDefIsDead(X86::EFLAGS, /*TRI=*/nullptr))
247                                ? X86::getNFVariant(Opc)
248                                : GetCompressedOpc(Opc));
249 
250   if (!NewOpc)
251     return false;
252 
253   const MCInstrDesc &NewDesc = ST.getInstrInfo()->get(NewOpc);
254   MI.setDesc(NewDesc);
255   unsigned AsmComment;
256   switch (NewDesc.TSFlags & X86II::EncodingMask) {
257   case X86II::LEGACY:
258     AsmComment = X86::AC_EVEX_2_LEGACY;
259     break;
260   case X86II::VEX:
261     AsmComment = X86::AC_EVEX_2_VEX;
262     break;
263   case X86II::EVEX:
264     AsmComment = X86::AC_EVEX_2_EVEX;
265     assert(IsND && (NewDesc.TSFlags & X86II::EVEX_NF) &&
266            "Unknown EVEX2EVEX compression");
267     break;
268   default:
269     llvm_unreachable("Unknown EVEX compression");
270   }
271   MI.setAsmPrinterFlag(AsmComment);
272   if (IsRedundantNDD)
273     MI.tieOperands(0, 1);
274 
275   return true;
276 }
277 
runOnMachineFunction(MachineFunction & MF)278 bool CompressEVEXPass::runOnMachineFunction(MachineFunction &MF) {
279 #ifndef NDEBUG
280   // Make sure the tables are sorted.
281   static std::atomic<bool> TableChecked(false);
282   if (!TableChecked.load(std::memory_order_relaxed)) {
283     assert(llvm::is_sorted(X86CompressEVEXTable) &&
284            "X86CompressEVEXTable is not sorted!");
285     TableChecked.store(true, std::memory_order_relaxed);
286   }
287 #endif
288   const X86Subtarget &ST = MF.getSubtarget<X86Subtarget>();
289   if (!ST.hasAVX512() && !ST.hasEGPR() && !ST.hasNDD())
290     return false;
291 
292   bool Changed = false;
293 
294   for (MachineBasicBlock &MBB : MF) {
295     // Traverse the basic block.
296     for (MachineInstr &MI : MBB)
297       Changed |= CompressEVEXImpl(MI, ST);
298   }
299 
300   return Changed;
301 }
302 
INITIALIZE_PASS(CompressEVEXPass,COMP_EVEX_NAME,COMP_EVEX_DESC,false,false)303 INITIALIZE_PASS(CompressEVEXPass, COMP_EVEX_NAME, COMP_EVEX_DESC, false, false)
304 
305 FunctionPass *llvm::createX86CompressEVEXPass() {
306   return new CompressEVEXPass();
307 }
308