//===- X86CompressEVEX.cpp ------------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This pass compresses instructions from EVEX space to legacy/VEX/EVEX space // when possible in order to reduce code size or facilitate HW decoding. // // Possible compression: // a. AVX512 instruction (EVEX) -> AVX instruction (VEX) // b. Promoted instruction (EVEX) -> pre-promotion instruction (legacy/VEX) // c. NDD (EVEX) -> non-NDD (legacy) // d. NF_ND (EVEX) -> NF (EVEX) // e. NonNF (EVEX) -> NF (EVEX) // // Compression a, b and c can always reduce code size, with some exceptions // such as promoted 16-bit CRC32 which is as long as the legacy version. // // legacy: // crc32w %si, %eax ## encoding: [0x66,0xf2,0x0f,0x38,0xf1,0xc6] // promoted: // crc32w %si, %eax ## encoding: [0x62,0xf4,0x7d,0x08,0xf1,0xc6] // // From performance perspective, these should be same (same uops and same EXE // ports). From a FMV perspective, an older legacy encoding is preferred b/c it // can execute in more places (broader HW install base). So we will still do // the compression. // // Compression d can help hardware decode (HW may skip reading the NDD // register) although the instruction length remains unchanged. // // Compression e can help hardware skip updating EFLAGS although the instruction // length remains unchanged. //===----------------------------------------------------------------------===// #include "MCTargetDesc/X86BaseInfo.h" #include "MCTargetDesc/X86InstComments.h" #include "X86.h" #include "X86InstrInfo.h" #include "X86Subtarget.h" #include "llvm/ADT/StringRef.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/MachineOperand.h" #include "llvm/MC/MCInstrDesc.h" #include "llvm/Pass.h" #include #include #include using namespace llvm; #define COMP_EVEX_DESC "Compressing EVEX instrs when possible" #define COMP_EVEX_NAME "x86-compress-evex" #define DEBUG_TYPE COMP_EVEX_NAME namespace { // Including the generated EVEX compression tables. #define GET_X86_COMPRESS_EVEX_TABLE #include "X86GenInstrMapping.inc" class CompressEVEXPass : public MachineFunctionPass { public: static char ID; CompressEVEXPass() : MachineFunctionPass(ID) {} StringRef getPassName() const override { return COMP_EVEX_DESC; } bool runOnMachineFunction(MachineFunction &MF) override; // This pass runs after regalloc and doesn't support VReg operands. MachineFunctionProperties getRequiredProperties() const override { return MachineFunctionProperties().set( MachineFunctionProperties::Property::NoVRegs); } }; } // end anonymous namespace char CompressEVEXPass::ID = 0; static bool usesExtendedRegister(const MachineInstr &MI) { auto isHiRegIdx = [](unsigned Reg) { // Check for XMM register with indexes between 16 - 31. if (Reg >= X86::XMM16 && Reg <= X86::XMM31) return true; // Check for YMM register with indexes between 16 - 31. if (Reg >= X86::YMM16 && Reg <= X86::YMM31) return true; // Check for GPR with indexes between 16 - 31. if (X86II::isApxExtendedReg(Reg)) return true; return false; }; // Check that operands are not ZMM regs or // XMM/YMM regs with hi indexes between 16 - 31. for (const MachineOperand &MO : MI.explicit_operands()) { if (!MO.isReg()) continue; Register Reg = MO.getReg(); assert(!X86II::isZMMReg(Reg) && "ZMM instructions should not be in the EVEX->VEX tables"); if (isHiRegIdx(Reg)) return true; } return false; } // Do any custom cleanup needed to finalize the conversion. static bool performCustomAdjustments(MachineInstr &MI, unsigned NewOpc) { (void)NewOpc; unsigned Opc = MI.getOpcode(); switch (Opc) { case X86::VALIGNDZ128rri: case X86::VALIGNDZ128rmi: case X86::VALIGNQZ128rri: case X86::VALIGNQZ128rmi: { assert((NewOpc == X86::VPALIGNRrri || NewOpc == X86::VPALIGNRrmi) && "Unexpected new opcode!"); unsigned Scale = (Opc == X86::VALIGNQZ128rri || Opc == X86::VALIGNQZ128rmi) ? 8 : 4; MachineOperand &Imm = MI.getOperand(MI.getNumExplicitOperands() - 1); Imm.setImm(Imm.getImm() * Scale); break; } case X86::VSHUFF32X4Z256rmi: case X86::VSHUFF32X4Z256rri: case X86::VSHUFF64X2Z256rmi: case X86::VSHUFF64X2Z256rri: case X86::VSHUFI32X4Z256rmi: case X86::VSHUFI32X4Z256rri: case X86::VSHUFI64X2Z256rmi: case X86::VSHUFI64X2Z256rri: { assert((NewOpc == X86::VPERM2F128rr || NewOpc == X86::VPERM2I128rr || NewOpc == X86::VPERM2F128rm || NewOpc == X86::VPERM2I128rm) && "Unexpected new opcode!"); MachineOperand &Imm = MI.getOperand(MI.getNumExplicitOperands() - 1); int64_t ImmVal = Imm.getImm(); // Set bit 5, move bit 1 to bit 4, copy bit 0. Imm.setImm(0x20 | ((ImmVal & 2) << 3) | (ImmVal & 1)); break; } case X86::VRNDSCALEPDZ128rri: case X86::VRNDSCALEPDZ128rmi: case X86::VRNDSCALEPSZ128rri: case X86::VRNDSCALEPSZ128rmi: case X86::VRNDSCALEPDZ256rri: case X86::VRNDSCALEPDZ256rmi: case X86::VRNDSCALEPSZ256rri: case X86::VRNDSCALEPSZ256rmi: case X86::VRNDSCALESDZr: case X86::VRNDSCALESDZm: case X86::VRNDSCALESSZr: case X86::VRNDSCALESSZm: case X86::VRNDSCALESDZr_Int: case X86::VRNDSCALESDZm_Int: case X86::VRNDSCALESSZr_Int: case X86::VRNDSCALESSZm_Int: const MachineOperand &Imm = MI.getOperand(MI.getNumExplicitOperands() - 1); int64_t ImmVal = Imm.getImm(); // Ensure that only bits 3:0 of the immediate are used. if ((ImmVal & 0xf) != ImmVal) return false; break; } return true; } static bool CompressEVEXImpl(MachineInstr &MI, const X86Subtarget &ST) { uint64_t TSFlags = MI.getDesc().TSFlags; // Check for EVEX instructions only. if ((TSFlags & X86II::EncodingMask) != X86II::EVEX) return false; // Instructions with mask or 512-bit vector can't be converted to VEX. if (TSFlags & (X86II::EVEX_K | X86II::EVEX_L2)) return false; auto IsRedundantNewDataDest = [&](unsigned &Opc) { // $rbx = ADD64rr_ND $rbx, $rax / $rbx = ADD64rr_ND $rax, $rbx // -> // $rbx = ADD64rr $rbx, $rax const MCInstrDesc &Desc = MI.getDesc(); Register Reg0 = MI.getOperand(0).getReg(); const MachineOperand &Op1 = MI.getOperand(1); if (!Op1.isReg() || X86::getFirstAddrOperandIdx(MI) == 1 || X86::isCFCMOVCC(MI.getOpcode())) return false; Register Reg1 = Op1.getReg(); if (Reg1 == Reg0) return true; // Op1 and Op2 may be commutable for ND instructions. if (!Desc.isCommutable() || Desc.getNumOperands() < 3 || !MI.getOperand(2).isReg() || MI.getOperand(2).getReg() != Reg0) return false; // Opcode may change after commute, e.g. SHRD -> SHLD ST.getInstrInfo()->commuteInstruction(MI, false, 1, 2); Opc = MI.getOpcode(); return true; }; // EVEX_B has several meanings. // AVX512: // register form: rounding control or SAE // memory form: broadcast // // APX: // MAP4: NDD // // For AVX512 cases, EVEX prefix is needed in order to carry this information // thus preventing the transformation to VEX encoding. bool IsND = X86II::hasNewDataDest(TSFlags); if (TSFlags & X86II::EVEX_B && !IsND) return false; unsigned Opc = MI.getOpcode(); // MOVBE*rr is special because it has semantic of NDD but not set EVEX_B. bool IsNDLike = IsND || Opc == X86::MOVBE32rr || Opc == X86::MOVBE64rr; bool IsRedundantNDD = IsNDLike ? IsRedundantNewDataDest(Opc) : false; auto GetCompressedOpc = [&](unsigned Opc) -> unsigned { ArrayRef Table = ArrayRef(X86CompressEVEXTable); const auto I = llvm::lower_bound(Table, Opc); if (I == Table.end() || I->OldOpc != Opc) return 0; if (usesExtendedRegister(MI) || !checkPredicate(I->NewOpc, &ST) || !performCustomAdjustments(MI, I->NewOpc)) return 0; return I->NewOpc; }; // NonNF -> NF only if it's not a compressible NDD instruction and eflags is // dead. unsigned NewOpc = IsRedundantNDD ? X86::getNonNDVariant(Opc) : ((IsNDLike && ST.hasNF() && MI.registerDefIsDead(X86::EFLAGS, /*TRI=*/nullptr)) ? X86::getNFVariant(Opc) : GetCompressedOpc(Opc)); if (!NewOpc) return false; const MCInstrDesc &NewDesc = ST.getInstrInfo()->get(NewOpc); MI.setDesc(NewDesc); unsigned AsmComment; switch (NewDesc.TSFlags & X86II::EncodingMask) { case X86II::LEGACY: AsmComment = X86::AC_EVEX_2_LEGACY; break; case X86II::VEX: AsmComment = X86::AC_EVEX_2_VEX; break; case X86II::EVEX: AsmComment = X86::AC_EVEX_2_EVEX; assert(IsND && (NewDesc.TSFlags & X86II::EVEX_NF) && "Unknown EVEX2EVEX compression"); break; default: llvm_unreachable("Unknown EVEX compression"); } MI.setAsmPrinterFlag(AsmComment); if (IsRedundantNDD) MI.tieOperands(0, 1); return true; } bool CompressEVEXPass::runOnMachineFunction(MachineFunction &MF) { #ifndef NDEBUG // Make sure the tables are sorted. static std::atomic TableChecked(false); if (!TableChecked.load(std::memory_order_relaxed)) { assert(llvm::is_sorted(X86CompressEVEXTable) && "X86CompressEVEXTable is not sorted!"); TableChecked.store(true, std::memory_order_relaxed); } #endif const X86Subtarget &ST = MF.getSubtarget(); if (!ST.hasAVX512() && !ST.hasEGPR() && !ST.hasNDD()) return false; bool Changed = false; for (MachineBasicBlock &MBB : MF) { // Traverse the basic block. for (MachineInstr &MI : MBB) Changed |= CompressEVEXImpl(MI, ST); } return Changed; } INITIALIZE_PASS(CompressEVEXPass, COMP_EVEX_NAME, COMP_EVEX_DESC, false, false) FunctionPass *llvm::createX86CompressEVEXPass() { return new CompressEVEXPass(); }