1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3 * fs/f2fs/f2fs.h
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8 #ifndef _LINUX_F2FS_H
9 #define _LINUX_F2FS_H
10
11 #include <linux/uio.h>
12 #include <linux/types.h>
13 #include <linux/page-flags.h>
14 #include <linux/slab.h>
15 #include <linux/crc32.h>
16 #include <linux/magic.h>
17 #include <linux/kobject.h>
18 #include <linux/sched.h>
19 #include <linux/cred.h>
20 #include <linux/sched/mm.h>
21 #include <linux/vmalloc.h>
22 #include <linux/bio.h>
23 #include <linux/blkdev.h>
24 #include <linux/quotaops.h>
25 #include <linux/part_stat.h>
26 #include <linux/rw_hint.h>
27
28 #include <linux/fscrypt.h>
29 #include <linux/fsverity.h>
30
31 struct pagevec;
32
33 #ifdef CONFIG_F2FS_CHECK_FS
34 #define f2fs_bug_on(sbi, condition) BUG_ON(condition)
35 #else
36 #define f2fs_bug_on(sbi, condition) \
37 do { \
38 if (WARN_ON(condition)) \
39 set_sbi_flag(sbi, SBI_NEED_FSCK); \
40 } while (0)
41 #endif
42
43 enum {
44 FAULT_KMALLOC,
45 FAULT_KVMALLOC,
46 FAULT_PAGE_ALLOC,
47 FAULT_PAGE_GET,
48 FAULT_ALLOC_BIO, /* it's obsolete due to bio_alloc() will never fail */
49 FAULT_ALLOC_NID,
50 FAULT_ORPHAN,
51 FAULT_BLOCK,
52 FAULT_DIR_DEPTH,
53 FAULT_EVICT_INODE,
54 FAULT_TRUNCATE,
55 FAULT_READ_IO,
56 FAULT_CHECKPOINT,
57 FAULT_DISCARD,
58 FAULT_WRITE_IO,
59 FAULT_SLAB_ALLOC,
60 FAULT_DQUOT_INIT,
61 FAULT_LOCK_OP,
62 FAULT_BLKADDR_VALIDITY,
63 FAULT_BLKADDR_CONSISTENCE,
64 FAULT_NO_SEGMENT,
65 FAULT_INCONSISTENT_FOOTER,
66 FAULT_TIMEOUT,
67 FAULT_VMALLOC,
68 FAULT_MAX,
69 };
70
71 /* indicate which option to update */
72 enum fault_option {
73 FAULT_RATE = 1, /* only update fault rate */
74 FAULT_TYPE = 2, /* only update fault type */
75 FAULT_ALL = 4, /* reset all fault injection options/stats */
76 };
77
78 #ifdef CONFIG_F2FS_FAULT_INJECTION
79 struct f2fs_fault_info {
80 atomic_t inject_ops;
81 int inject_rate;
82 unsigned int inject_type;
83 /* Used to account total count of injection for each type */
84 unsigned int inject_count[FAULT_MAX];
85 };
86
87 extern const char *f2fs_fault_name[FAULT_MAX];
88 #define IS_FAULT_SET(fi, type) ((fi)->inject_type & BIT(type))
89
90 /* maximum retry count for injected failure */
91 #define DEFAULT_FAILURE_RETRY_COUNT 8
92 #else
93 #define DEFAULT_FAILURE_RETRY_COUNT 1
94 #endif
95
96 /*
97 * For mount options
98 */
99 enum f2fs_mount_opt {
100 F2FS_MOUNT_DISABLE_ROLL_FORWARD,
101 F2FS_MOUNT_DISCARD,
102 F2FS_MOUNT_NOHEAP,
103 F2FS_MOUNT_XATTR_USER,
104 F2FS_MOUNT_POSIX_ACL,
105 F2FS_MOUNT_DISABLE_EXT_IDENTIFY,
106 F2FS_MOUNT_INLINE_XATTR,
107 F2FS_MOUNT_INLINE_DATA,
108 F2FS_MOUNT_INLINE_DENTRY,
109 F2FS_MOUNT_FLUSH_MERGE,
110 F2FS_MOUNT_NOBARRIER,
111 F2FS_MOUNT_FASTBOOT,
112 F2FS_MOUNT_READ_EXTENT_CACHE,
113 F2FS_MOUNT_DATA_FLUSH,
114 F2FS_MOUNT_FAULT_INJECTION,
115 F2FS_MOUNT_USRQUOTA,
116 F2FS_MOUNT_GRPQUOTA,
117 F2FS_MOUNT_PRJQUOTA,
118 F2FS_MOUNT_QUOTA,
119 F2FS_MOUNT_INLINE_XATTR_SIZE,
120 F2FS_MOUNT_RESERVE_ROOT,
121 F2FS_MOUNT_DISABLE_CHECKPOINT,
122 F2FS_MOUNT_NORECOVERY,
123 F2FS_MOUNT_ATGC,
124 F2FS_MOUNT_MERGE_CHECKPOINT,
125 F2FS_MOUNT_GC_MERGE,
126 F2FS_MOUNT_COMPRESS_CACHE,
127 F2FS_MOUNT_AGE_EXTENT_CACHE,
128 F2FS_MOUNT_NAT_BITS,
129 F2FS_MOUNT_INLINECRYPT,
130 /*
131 * Some f2fs environments expect to be able to pass the "lazytime" option
132 * string rather than using the MS_LAZYTIME flag, so this must remain.
133 */
134 F2FS_MOUNT_LAZYTIME,
135 F2FS_MOUNT_RESERVE_NODE,
136 };
137
138 #define F2FS_OPTION(sbi) ((sbi)->mount_opt)
139 #define clear_opt(sbi, option) \
140 (F2FS_OPTION(sbi).opt &= ~BIT(F2FS_MOUNT_##option))
141 #define set_opt(sbi, option) \
142 (F2FS_OPTION(sbi).opt |= BIT(F2FS_MOUNT_##option))
143 #define test_opt(sbi, option) \
144 (F2FS_OPTION(sbi).opt & BIT(F2FS_MOUNT_##option))
145
146 #define ver_after(a, b) (typecheck(unsigned long long, a) && \
147 typecheck(unsigned long long, b) && \
148 ((long long)((a) - (b)) > 0))
149
150 typedef u32 block_t; /*
151 * should not change u32, since it is the on-disk block
152 * address format, __le32.
153 */
154 typedef u32 nid_t;
155
156 #define COMPRESS_EXT_NUM 16
157
158 enum blkzone_allocation_policy {
159 BLKZONE_ALLOC_PRIOR_SEQ, /* Prioritize writing to sequential zones */
160 BLKZONE_ALLOC_ONLY_SEQ, /* Only allow writing to sequential zones */
161 BLKZONE_ALLOC_PRIOR_CONV, /* Prioritize writing to conventional zones */
162 };
163
164 enum bggc_io_aware_policy {
165 AWARE_ALL_IO, /* skip background GC if there is any kind of pending IO */
166 AWARE_READ_IO, /* skip background GC if there is pending read IO */
167 AWARE_NONE, /* don't aware IO for background GC */
168 };
169
170 enum device_allocation_policy {
171 ALLOCATE_FORWARD_NOHINT,
172 ALLOCATE_FORWARD_WITHIN_HINT,
173 ALLOCATE_FORWARD_FROM_HINT,
174 };
175
176 /*
177 * An implementation of an rwsem that is explicitly unfair to readers. This
178 * prevents priority inversion when a low-priority reader acquires the read lock
179 * while sleeping on the write lock but the write lock is needed by
180 * higher-priority clients.
181 */
182
183 struct f2fs_rwsem {
184 struct rw_semaphore internal_rwsem;
185 #ifdef CONFIG_F2FS_UNFAIR_RWSEM
186 wait_queue_head_t read_waiters;
187 #endif
188 };
189
190 struct f2fs_mount_info {
191 unsigned long long opt;
192 block_t root_reserved_blocks; /* root reserved blocks */
193 block_t root_reserved_nodes; /* root reserved nodes */
194 kuid_t s_resuid; /* reserved blocks for uid */
195 kgid_t s_resgid; /* reserved blocks for gid */
196 int active_logs; /* # of active logs */
197 int inline_xattr_size; /* inline xattr size */
198 #ifdef CONFIG_F2FS_FAULT_INJECTION
199 struct f2fs_fault_info fault_info; /* For fault injection */
200 #endif
201 #ifdef CONFIG_QUOTA
202 /* Names of quota files with journalled quota */
203 char *s_qf_names[MAXQUOTAS];
204 int s_jquota_fmt; /* Format of quota to use */
205 #endif
206 /* For which write hints are passed down to block layer */
207 int alloc_mode; /* segment allocation policy */
208 int fsync_mode; /* fsync policy */
209 int fs_mode; /* fs mode: LFS or ADAPTIVE */
210 int bggc_mode; /* bggc mode: off, on or sync */
211 int memory_mode; /* memory mode */
212 int errors; /* errors parameter */
213 int discard_unit; /*
214 * discard command's offset/size should
215 * be aligned to this unit: block,
216 * segment or section
217 */
218 struct fscrypt_dummy_policy dummy_enc_policy; /* test dummy encryption */
219 block_t unusable_cap_perc; /* percentage for cap */
220 block_t unusable_cap; /* Amount of space allowed to be
221 * unusable when disabling checkpoint
222 */
223
224 /* For compression */
225 unsigned char compress_algorithm; /* algorithm type */
226 unsigned char compress_log_size; /* cluster log size */
227 unsigned char compress_level; /* compress level */
228 bool compress_chksum; /* compressed data chksum */
229 unsigned char compress_ext_cnt; /* extension count */
230 unsigned char nocompress_ext_cnt; /* nocompress extension count */
231 int compress_mode; /* compression mode */
232 unsigned char extensions[COMPRESS_EXT_NUM][F2FS_EXTENSION_LEN]; /* extensions */
233 unsigned char noextensions[COMPRESS_EXT_NUM][F2FS_EXTENSION_LEN]; /* extensions */
234 unsigned int lookup_mode;
235 };
236
237 #define F2FS_FEATURE_ENCRYPT 0x00000001
238 #define F2FS_FEATURE_BLKZONED 0x00000002
239 #define F2FS_FEATURE_ATOMIC_WRITE 0x00000004
240 #define F2FS_FEATURE_EXTRA_ATTR 0x00000008
241 #define F2FS_FEATURE_PRJQUOTA 0x00000010
242 #define F2FS_FEATURE_INODE_CHKSUM 0x00000020
243 #define F2FS_FEATURE_FLEXIBLE_INLINE_XATTR 0x00000040
244 #define F2FS_FEATURE_QUOTA_INO 0x00000080
245 #define F2FS_FEATURE_INODE_CRTIME 0x00000100
246 #define F2FS_FEATURE_LOST_FOUND 0x00000200
247 #define F2FS_FEATURE_VERITY 0x00000400
248 #define F2FS_FEATURE_SB_CHKSUM 0x00000800
249 #define F2FS_FEATURE_CASEFOLD 0x00001000
250 #define F2FS_FEATURE_COMPRESSION 0x00002000
251 #define F2FS_FEATURE_RO 0x00004000
252 #define F2FS_FEATURE_DEVICE_ALIAS 0x00008000
253 #define F2FS_FEATURE_PACKED_SSA 0x00010000
254
255 #define __F2FS_HAS_FEATURE(raw_super, mask) \
256 ((raw_super->feature & cpu_to_le32(mask)) != 0)
257 #define F2FS_HAS_FEATURE(sbi, mask) __F2FS_HAS_FEATURE(sbi->raw_super, mask)
258
259 /*
260 * Default values for user and/or group using reserved blocks
261 */
262 #define F2FS_DEF_RESUID 0
263 #define F2FS_DEF_RESGID 0
264
265 /*
266 * For checkpoint manager
267 */
268 enum {
269 NAT_BITMAP,
270 SIT_BITMAP
271 };
272
273 #define CP_UMOUNT 0x00000001
274 #define CP_FASTBOOT 0x00000002
275 #define CP_SYNC 0x00000004
276 #define CP_RECOVERY 0x00000008
277 #define CP_DISCARD 0x00000010
278 #define CP_TRIMMED 0x00000020
279 #define CP_PAUSE 0x00000040
280 #define CP_RESIZE 0x00000080
281
282 #define DEF_MAX_DISCARD_REQUEST 8 /* issue 8 discards per round */
283 #define DEF_MIN_DISCARD_ISSUE_TIME 50 /* 50 ms, if exists */
284 #define DEF_MID_DISCARD_ISSUE_TIME 500 /* 500 ms, if device busy */
285 #define DEF_MAX_DISCARD_ISSUE_TIME 60000 /* 60 s, if no candidates */
286 #define DEF_DISCARD_URGENT_UTIL 80 /* do more discard over 80% */
287 #define DEF_CP_INTERVAL 60 /* 60 secs */
288 #define DEF_IDLE_INTERVAL 5 /* 5 secs */
289 #define DEF_DISABLE_INTERVAL 5 /* 5 secs */
290 #define DEF_ENABLE_INTERVAL 5 /* 5 secs */
291 #define DEF_DISABLE_QUICK_INTERVAL 1 /* 1 secs */
292 #define DEF_UMOUNT_DISCARD_TIMEOUT 5 /* 5 secs */
293
294 enum cp_time {
295 CP_TIME_START, /* begin */
296 CP_TIME_LOCK, /* after cp_global_sem */
297 CP_TIME_OP_LOCK, /* after block_operation */
298 CP_TIME_FLUSH_META, /* after flush sit/nat */
299 CP_TIME_SYNC_META, /* after sync_meta_pages */
300 CP_TIME_SYNC_CP_META, /* after sync cp meta pages */
301 CP_TIME_WAIT_DIRTY_META,/* after wait on dirty meta */
302 CP_TIME_WAIT_CP_DATA, /* after wait on cp data */
303 CP_TIME_FLUSH_DEVICE, /* after flush device cache */
304 CP_TIME_WAIT_LAST_CP, /* after wait on last cp pack */
305 CP_TIME_END, /* after unblock_operation */
306 CP_TIME_MAX,
307 };
308
309 /* time cost stats of checkpoint */
310 struct cp_stats {
311 ktime_t times[CP_TIME_MAX];
312 };
313
314 struct cp_control {
315 int reason;
316 __u64 trim_start;
317 __u64 trim_end;
318 __u64 trim_minlen;
319 struct cp_stats stats;
320 };
321
322 enum f2fs_cp_phase {
323 CP_PHASE_START_BLOCK_OPS,
324 CP_PHASE_FINISH_BLOCK_OPS,
325 CP_PHASE_FINISH_CHECKPOINT,
326 };
327
328 /*
329 * indicate meta/data type
330 */
331 enum {
332 META_CP,
333 META_NAT,
334 META_SIT,
335 META_SSA,
336 META_MAX,
337 META_POR,
338 DATA_GENERIC, /* check range only */
339 DATA_GENERIC_ENHANCE, /* strong check on range and segment bitmap */
340 DATA_GENERIC_ENHANCE_READ, /*
341 * strong check on range and segment
342 * bitmap but no warning due to race
343 * condition of read on truncated area
344 * by extent_cache
345 */
346 DATA_GENERIC_ENHANCE_UPDATE, /*
347 * strong check on range and segment
348 * bitmap for update case
349 */
350 META_GENERIC,
351 };
352
353 /* for the list of ino */
354 enum {
355 ORPHAN_INO, /* for orphan ino list */
356 APPEND_INO, /* for append ino list */
357 UPDATE_INO, /* for update ino list */
358 TRANS_DIR_INO, /* for transactions dir ino list */
359 XATTR_DIR_INO, /* for xattr updated dir ino list */
360 FLUSH_INO, /* for multiple device flushing */
361 MAX_INO_ENTRY, /* max. list */
362 };
363
364 struct ino_entry {
365 struct list_head list; /* list head */
366 nid_t ino; /* inode number */
367 unsigned int dirty_device; /* dirty device bitmap */
368 };
369
370 /* for the list of inodes to be GCed */
371 struct inode_entry {
372 struct list_head list; /* list head */
373 struct inode *inode; /* vfs inode pointer */
374 };
375
376 struct fsync_node_entry {
377 struct list_head list; /* list head */
378 struct folio *folio; /* warm node folio pointer */
379 unsigned int seq_id; /* sequence id */
380 };
381
382 struct ckpt_req {
383 struct completion wait; /* completion for checkpoint done */
384 struct llist_node llnode; /* llist_node to be linked in wait queue */
385 int ret; /* return code of checkpoint */
386 union {
387 ktime_t queue_time; /* request queued time */
388 ktime_t delta_time; /* time in queue */
389 };
390 };
391
392 struct ckpt_req_control {
393 struct task_struct *f2fs_issue_ckpt; /* checkpoint task */
394 int ckpt_thread_ioprio; /* checkpoint merge thread ioprio */
395 wait_queue_head_t ckpt_wait_queue; /* waiting queue for wake-up */
396 atomic_t issued_ckpt; /* # of actually issued ckpts */
397 atomic_t total_ckpt; /* # of total ckpts */
398 atomic_t queued_ckpt; /* # of queued ckpts */
399 struct llist_head issue_list; /* list for command issue */
400 spinlock_t stat_lock; /* lock for below checkpoint time stats */
401 unsigned int cur_time; /* cur wait time in msec for currently issued checkpoint */
402 unsigned int peak_time; /* peak wait time in msec until now */
403 };
404
405 /* a time threshold that checkpoint was blocked for, unit: ms */
406 #define CP_LONG_LATENCY_THRESHOLD 5000
407
408 /* for the bitmap indicate blocks to be discarded */
409 struct discard_entry {
410 struct list_head list; /* list head */
411 block_t start_blkaddr; /* start blockaddr of current segment */
412 unsigned char discard_map[SIT_VBLOCK_MAP_SIZE]; /* segment discard bitmap */
413 };
414
415 /* minimum discard granularity, unit: block count */
416 #define MIN_DISCARD_GRANULARITY 1
417 /* default discard granularity of inner discard thread, unit: block count */
418 #define DEFAULT_DISCARD_GRANULARITY 16
419 /* default maximum discard granularity of ordered discard, unit: block count */
420 #define DEFAULT_MAX_ORDERED_DISCARD_GRANULARITY 16
421 /* default interval of periodical discard submission */
422 #define DEFAULT_DISCARD_INTERVAL (msecs_to_jiffies(20))
423
424 /* max discard pend list number */
425 #define MAX_PLIST_NUM 512
426 #define plist_idx(blk_num) ((blk_num) >= MAX_PLIST_NUM ? \
427 (MAX_PLIST_NUM - 1) : ((blk_num) - 1))
428
429 enum {
430 D_PREP, /* initial */
431 D_PARTIAL, /* partially submitted */
432 D_SUBMIT, /* all submitted */
433 D_DONE, /* finished */
434 };
435
436 struct discard_info {
437 block_t lstart; /* logical start address */
438 block_t len; /* length */
439 block_t start; /* actual start address in dev */
440 };
441
442 struct discard_cmd {
443 struct rb_node rb_node; /* rb node located in rb-tree */
444 struct discard_info di; /* discard info */
445 struct list_head list; /* command list */
446 struct completion wait; /* completion */
447 struct block_device *bdev; /* bdev */
448 unsigned short ref; /* reference count */
449 unsigned char state; /* state */
450 unsigned char queued; /* queued discard */
451 int error; /* bio error */
452 spinlock_t lock; /* for state/bio_ref updating */
453 unsigned short bio_ref; /* bio reference count */
454 };
455
456 enum {
457 DPOLICY_BG,
458 DPOLICY_FORCE,
459 DPOLICY_FSTRIM,
460 DPOLICY_UMOUNT,
461 MAX_DPOLICY,
462 };
463
464 enum {
465 DPOLICY_IO_AWARE_DISABLE, /* force to not be aware of IO */
466 DPOLICY_IO_AWARE_ENABLE, /* force to be aware of IO */
467 DPOLICY_IO_AWARE_MAX,
468 };
469
470 struct discard_policy {
471 int type; /* type of discard */
472 unsigned int min_interval; /* used for candidates exist */
473 unsigned int mid_interval; /* used for device busy */
474 unsigned int max_interval; /* used for candidates not exist */
475 unsigned int max_requests; /* # of discards issued per round */
476 unsigned int io_aware_gran; /* minimum granularity discard not be aware of I/O */
477 bool io_aware; /* issue discard in idle time */
478 bool sync; /* submit discard with REQ_SYNC flag */
479 bool ordered; /* issue discard by lba order */
480 bool timeout; /* discard timeout for put_super */
481 unsigned int granularity; /* discard granularity */
482 };
483
484 struct discard_cmd_control {
485 struct task_struct *f2fs_issue_discard; /* discard thread */
486 struct list_head entry_list; /* 4KB discard entry list */
487 struct list_head pend_list[MAX_PLIST_NUM];/* store pending entries */
488 struct list_head wait_list; /* store on-flushing entries */
489 struct list_head fstrim_list; /* in-flight discard from fstrim */
490 wait_queue_head_t discard_wait_queue; /* waiting queue for wake-up */
491 struct mutex cmd_lock;
492 unsigned int nr_discards; /* # of discards in the list */
493 unsigned int max_discards; /* max. discards to be issued */
494 unsigned int max_discard_request; /* max. discard request per round */
495 unsigned int min_discard_issue_time; /* min. interval between discard issue */
496 unsigned int mid_discard_issue_time; /* mid. interval between discard issue */
497 unsigned int max_discard_issue_time; /* max. interval between discard issue */
498 unsigned int discard_io_aware_gran; /* minimum discard granularity not be aware of I/O */
499 unsigned int discard_urgent_util; /* utilization which issue discard proactively */
500 unsigned int discard_granularity; /* discard granularity */
501 unsigned int max_ordered_discard; /* maximum discard granularity issued by lba order */
502 unsigned int discard_io_aware; /* io_aware policy */
503 unsigned int undiscard_blks; /* # of undiscard blocks */
504 unsigned int next_pos; /* next discard position */
505 atomic_t issued_discard; /* # of issued discard */
506 atomic_t queued_discard; /* # of queued discard */
507 atomic_t discard_cmd_cnt; /* # of cached cmd count */
508 struct rb_root_cached root; /* root of discard rb-tree */
509 bool rbtree_check; /* config for consistence check */
510 bool discard_wake; /* to wake up discard thread */
511 };
512
513 /* for the list of fsync inodes, used only during recovery */
514 struct fsync_inode_entry {
515 struct list_head list; /* list head */
516 struct inode *inode; /* vfs inode pointer */
517 block_t blkaddr; /* block address locating the last fsync */
518 block_t last_dentry; /* block address locating the last dentry */
519 };
520
521 #define nats_in_cursum(jnl) (le16_to_cpu((jnl)->n_nats))
522 #define sits_in_cursum(jnl) (le16_to_cpu((jnl)->n_sits))
523
524 #define nat_in_journal(jnl, i) ((jnl)->nat_j.entries[i].ne)
525 #define nid_in_journal(jnl, i) ((jnl)->nat_j.entries[i].nid)
526 #define sit_in_journal(jnl, i) ((jnl)->sit_j.entries[i].se)
527 #define segno_in_journal(jnl, i) ((jnl)->sit_j.entries[i].segno)
528
529 #define MAX_NAT_JENTRIES(jnl) (NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl))
530 #define MAX_SIT_JENTRIES(jnl) (SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl))
531
update_nats_in_cursum(struct f2fs_journal * journal,int i)532 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i)
533 {
534 int before = nats_in_cursum(journal);
535
536 journal->n_nats = cpu_to_le16(before + i);
537 return before;
538 }
539
update_sits_in_cursum(struct f2fs_journal * journal,int i)540 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i)
541 {
542 int before = sits_in_cursum(journal);
543
544 journal->n_sits = cpu_to_le16(before + i);
545 return before;
546 }
547
__has_cursum_space(struct f2fs_journal * journal,int size,int type)548 static inline bool __has_cursum_space(struct f2fs_journal *journal,
549 int size, int type)
550 {
551 if (type == NAT_JOURNAL)
552 return size <= MAX_NAT_JENTRIES(journal);
553 return size <= MAX_SIT_JENTRIES(journal);
554 }
555
556 /* for inline stuff */
557 #define DEF_INLINE_RESERVED_SIZE 1
558 static inline int get_extra_isize(struct inode *inode);
559 static inline int get_inline_xattr_addrs(struct inode *inode);
560 #define MAX_INLINE_DATA(inode) (sizeof(__le32) * \
561 (CUR_ADDRS_PER_INODE(inode) - \
562 get_inline_xattr_addrs(inode) - \
563 DEF_INLINE_RESERVED_SIZE))
564
565 /* for inline dir */
566 #define NR_INLINE_DENTRY(inode) (MAX_INLINE_DATA(inode) * BITS_PER_BYTE / \
567 ((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
568 BITS_PER_BYTE + 1))
569 #define INLINE_DENTRY_BITMAP_SIZE(inode) \
570 DIV_ROUND_UP(NR_INLINE_DENTRY(inode), BITS_PER_BYTE)
571 #define INLINE_RESERVED_SIZE(inode) (MAX_INLINE_DATA(inode) - \
572 ((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
573 NR_INLINE_DENTRY(inode) + \
574 INLINE_DENTRY_BITMAP_SIZE(inode)))
575
576 /*
577 * For INODE and NODE manager
578 */
579 /* for directory operations */
580
581 struct f2fs_filename {
582 /*
583 * The filename the user specified. This is NULL for some
584 * filesystem-internal operations, e.g. converting an inline directory
585 * to a non-inline one, or roll-forward recovering an encrypted dentry.
586 */
587 const struct qstr *usr_fname;
588
589 /*
590 * The on-disk filename. For encrypted directories, this is encrypted.
591 * This may be NULL for lookups in an encrypted dir without the key.
592 */
593 struct fscrypt_str disk_name;
594
595 /* The dirhash of this filename */
596 f2fs_hash_t hash;
597
598 #ifdef CONFIG_FS_ENCRYPTION
599 /*
600 * For lookups in encrypted directories: either the buffer backing
601 * disk_name, or a buffer that holds the decoded no-key name.
602 */
603 struct fscrypt_str crypto_buf;
604 #endif
605 #if IS_ENABLED(CONFIG_UNICODE)
606 /*
607 * For casefolded directories: the casefolded name, but it's left NULL
608 * if the original name is not valid Unicode, if the original name is
609 * "." or "..", if the directory is both casefolded and encrypted and
610 * its encryption key is unavailable, or if the filesystem is doing an
611 * internal operation where usr_fname is also NULL. In all these cases
612 * we fall back to treating the name as an opaque byte sequence.
613 */
614 struct qstr cf_name;
615 #endif
616 };
617
618 struct f2fs_dentry_ptr {
619 struct inode *inode;
620 void *bitmap;
621 struct f2fs_dir_entry *dentry;
622 __u8 (*filename)[F2FS_SLOT_LEN];
623 int max;
624 int nr_bitmap;
625 };
626
make_dentry_ptr_block(struct inode * inode,struct f2fs_dentry_ptr * d,struct f2fs_dentry_block * t)627 static inline void make_dentry_ptr_block(struct inode *inode,
628 struct f2fs_dentry_ptr *d, struct f2fs_dentry_block *t)
629 {
630 d->inode = inode;
631 d->max = NR_DENTRY_IN_BLOCK;
632 d->nr_bitmap = SIZE_OF_DENTRY_BITMAP;
633 d->bitmap = t->dentry_bitmap;
634 d->dentry = t->dentry;
635 d->filename = t->filename;
636 }
637
make_dentry_ptr_inline(struct inode * inode,struct f2fs_dentry_ptr * d,void * t)638 static inline void make_dentry_ptr_inline(struct inode *inode,
639 struct f2fs_dentry_ptr *d, void *t)
640 {
641 int entry_cnt = NR_INLINE_DENTRY(inode);
642 int bitmap_size = INLINE_DENTRY_BITMAP_SIZE(inode);
643 int reserved_size = INLINE_RESERVED_SIZE(inode);
644
645 d->inode = inode;
646 d->max = entry_cnt;
647 d->nr_bitmap = bitmap_size;
648 d->bitmap = t;
649 d->dentry = t + bitmap_size + reserved_size;
650 d->filename = t + bitmap_size + reserved_size +
651 SIZE_OF_DIR_ENTRY * entry_cnt;
652 }
653
654 /*
655 * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
656 * as its node offset to distinguish from index node blocks.
657 * But some bits are used to mark the node block.
658 */
659 #define XATTR_NODE_OFFSET ((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
660 >> OFFSET_BIT_SHIFT)
661 enum {
662 ALLOC_NODE, /* allocate a new node page if needed */
663 LOOKUP_NODE, /* look up a node without readahead */
664 LOOKUP_NODE_RA, /*
665 * look up a node with readahead called
666 * by get_data_block.
667 */
668 };
669
670 #define DEFAULT_RETRY_IO_COUNT 8 /* maximum retry read IO or flush count */
671
672 /* IO/non-IO congestion wait timeout value, default: 1ms */
673 #define DEFAULT_SCHEDULE_TIMEOUT (msecs_to_jiffies(1))
674
675 /* timeout value injected, default: 1000ms */
676 #define DEFAULT_FAULT_TIMEOUT (msecs_to_jiffies(1000))
677
678 /* maximum retry quota flush count */
679 #define DEFAULT_RETRY_QUOTA_FLUSH_COUNT 8
680
681 /* maximum retry of EIO'ed page */
682 #define MAX_RETRY_PAGE_EIO 100
683
684 #define F2FS_LINK_MAX 0xffffffff /* maximum link count per file */
685
686 #define MAX_DIR_RA_PAGES 4 /* maximum ra pages of dir */
687
688 /* dirty segments threshold for triggering CP */
689 #define DEFAULT_DIRTY_THRESHOLD 4
690
691 #define RECOVERY_MAX_RA_BLOCKS BIO_MAX_VECS
692 #define RECOVERY_MIN_RA_BLOCKS 1
693
694 #define F2FS_ONSTACK_PAGES 16 /* nr of onstack pages */
695
696 /* for in-memory extent cache entry */
697 #define F2FS_MIN_EXTENT_LEN 64 /* minimum extent length */
698
699 /* number of extent info in extent cache we try to shrink */
700 #define READ_EXTENT_CACHE_SHRINK_NUMBER 128
701
702 /* number of age extent info in extent cache we try to shrink */
703 #define AGE_EXTENT_CACHE_SHRINK_NUMBER 128
704 #define LAST_AGE_WEIGHT 30
705 #define SAME_AGE_REGION 1024
706
707 /*
708 * Define data block with age less than 1GB as hot data
709 * define data block with age less than 10GB but more than 1GB as warm data
710 */
711 #define DEF_HOT_DATA_AGE_THRESHOLD 262144
712 #define DEF_WARM_DATA_AGE_THRESHOLD 2621440
713
714 /* default max read extent count per inode */
715 #define DEF_MAX_READ_EXTENT_COUNT 10240
716
717 /* extent cache type */
718 enum extent_type {
719 EX_READ,
720 EX_BLOCK_AGE,
721 NR_EXTENT_CACHES,
722 };
723
724 /*
725 * Reserved value to mark invalid age extents, hence valid block range
726 * from 0 to ULLONG_MAX-1
727 */
728 #define F2FS_EXTENT_AGE_INVALID ULLONG_MAX
729
730 struct extent_info {
731 unsigned int fofs; /* start offset in a file */
732 unsigned int len; /* length of the extent */
733 union {
734 /* read extent_cache */
735 struct {
736 /* start block address of the extent */
737 block_t blk;
738 #ifdef CONFIG_F2FS_FS_COMPRESSION
739 /* physical extent length of compressed blocks */
740 unsigned int c_len;
741 #endif
742 };
743 /* block age extent_cache */
744 struct {
745 /* block age of the extent */
746 unsigned long long age;
747 /* last total blocks allocated */
748 unsigned long long last_blocks;
749 };
750 };
751 };
752
753 struct extent_node {
754 struct rb_node rb_node; /* rb node located in rb-tree */
755 struct extent_info ei; /* extent info */
756 struct list_head list; /* node in global extent list of sbi */
757 struct extent_tree *et; /* extent tree pointer */
758 };
759
760 struct extent_tree {
761 nid_t ino; /* inode number */
762 enum extent_type type; /* keep the extent tree type */
763 struct rb_root_cached root; /* root of extent info rb-tree */
764 struct extent_node *cached_en; /* recently accessed extent node */
765 struct list_head list; /* to be used by sbi->zombie_list */
766 rwlock_t lock; /* protect extent info rb-tree */
767 atomic_t node_cnt; /* # of extent node in rb-tree*/
768 bool largest_updated; /* largest extent updated */
769 struct extent_info largest; /* largest cached extent for EX_READ */
770 };
771
772 struct extent_tree_info {
773 struct radix_tree_root extent_tree_root;/* cache extent cache entries */
774 struct mutex extent_tree_lock; /* locking extent radix tree */
775 struct list_head extent_list; /* lru list for shrinker */
776 spinlock_t extent_lock; /* locking extent lru list */
777 atomic_t total_ext_tree; /* extent tree count */
778 struct list_head zombie_list; /* extent zombie tree list */
779 atomic_t total_zombie_tree; /* extent zombie tree count */
780 atomic_t total_ext_node; /* extent info count */
781 };
782
783 /*
784 * State of block returned by f2fs_map_blocks.
785 */
786 #define F2FS_MAP_NEW (1U << 0)
787 #define F2FS_MAP_MAPPED (1U << 1)
788 #define F2FS_MAP_DELALLOC (1U << 2)
789 #define F2FS_MAP_FLAGS (F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
790 F2FS_MAP_DELALLOC)
791
792 struct f2fs_map_blocks {
793 struct block_device *m_bdev; /* for multi-device dio */
794 block_t m_pblk;
795 block_t m_lblk;
796 unsigned int m_len;
797 unsigned int m_flags;
798 unsigned long m_last_pblk; /* last allocated block, only used for DIO in LFS mode */
799 pgoff_t *m_next_pgofs; /* point next possible non-hole pgofs */
800 pgoff_t *m_next_extent; /* point to next possible extent */
801 int m_seg_type;
802 bool m_may_create; /* indicate it is from write path */
803 bool m_multidev_dio; /* indicate it allows multi-device dio */
804 };
805
806 /* for flag in get_data_block */
807 enum {
808 F2FS_GET_BLOCK_DEFAULT,
809 F2FS_GET_BLOCK_FIEMAP,
810 F2FS_GET_BLOCK_BMAP,
811 F2FS_GET_BLOCK_DIO,
812 F2FS_GET_BLOCK_PRE_DIO,
813 F2FS_GET_BLOCK_PRE_AIO,
814 F2FS_GET_BLOCK_PRECACHE,
815 };
816
817 /*
818 * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
819 */
820 #define FADVISE_COLD_BIT 0x01
821 #define FADVISE_LOST_PINO_BIT 0x02
822 #define FADVISE_ENCRYPT_BIT 0x04
823 #define FADVISE_ENC_NAME_BIT 0x08
824 #define FADVISE_KEEP_SIZE_BIT 0x10
825 #define FADVISE_HOT_BIT 0x20
826 #define FADVISE_VERITY_BIT 0x40
827 #define FADVISE_TRUNC_BIT 0x80
828
829 #define FADVISE_MODIFIABLE_BITS (FADVISE_COLD_BIT | FADVISE_HOT_BIT)
830
831 #define file_is_cold(inode) is_file(inode, FADVISE_COLD_BIT)
832 #define file_set_cold(inode) set_file(inode, FADVISE_COLD_BIT)
833 #define file_clear_cold(inode) clear_file(inode, FADVISE_COLD_BIT)
834
835 #define file_wrong_pino(inode) is_file(inode, FADVISE_LOST_PINO_BIT)
836 #define file_lost_pino(inode) set_file(inode, FADVISE_LOST_PINO_BIT)
837 #define file_got_pino(inode) clear_file(inode, FADVISE_LOST_PINO_BIT)
838
839 #define file_is_encrypt(inode) is_file(inode, FADVISE_ENCRYPT_BIT)
840 #define file_set_encrypt(inode) set_file(inode, FADVISE_ENCRYPT_BIT)
841
842 #define file_enc_name(inode) is_file(inode, FADVISE_ENC_NAME_BIT)
843 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
844
845 #define file_keep_isize(inode) is_file(inode, FADVISE_KEEP_SIZE_BIT)
846 #define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT)
847
848 #define file_is_hot(inode) is_file(inode, FADVISE_HOT_BIT)
849 #define file_set_hot(inode) set_file(inode, FADVISE_HOT_BIT)
850 #define file_clear_hot(inode) clear_file(inode, FADVISE_HOT_BIT)
851
852 #define file_is_verity(inode) is_file(inode, FADVISE_VERITY_BIT)
853 #define file_set_verity(inode) set_file(inode, FADVISE_VERITY_BIT)
854
855 #define file_should_truncate(inode) is_file(inode, FADVISE_TRUNC_BIT)
856 #define file_need_truncate(inode) set_file(inode, FADVISE_TRUNC_BIT)
857 #define file_dont_truncate(inode) clear_file(inode, FADVISE_TRUNC_BIT)
858
859 #define DEF_DIR_LEVEL 0
860
861 /* used for f2fs_inode_info->flags */
862 enum {
863 FI_NEW_INODE, /* indicate newly allocated inode */
864 FI_DIRTY_INODE, /* indicate inode is dirty or not */
865 FI_AUTO_RECOVER, /* indicate inode is recoverable */
866 FI_DIRTY_DIR, /* indicate directory has dirty pages */
867 FI_INC_LINK, /* need to increment i_nlink */
868 FI_ACL_MODE, /* indicate acl mode */
869 FI_NO_ALLOC, /* should not allocate any blocks */
870 FI_FREE_NID, /* free allocated nide */
871 FI_NO_EXTENT, /* not to use the extent cache */
872 FI_INLINE_XATTR, /* used for inline xattr */
873 FI_INLINE_DATA, /* used for inline data*/
874 FI_INLINE_DENTRY, /* used for inline dentry */
875 FI_APPEND_WRITE, /* inode has appended data */
876 FI_UPDATE_WRITE, /* inode has in-place-update data */
877 FI_NEED_IPU, /* used for ipu per file */
878 FI_ATOMIC_FILE, /* indicate atomic file */
879 FI_DATA_EXIST, /* indicate data exists */
880 FI_SKIP_WRITES, /* should skip data page writeback */
881 FI_OPU_WRITE, /* used for opu per file */
882 FI_DIRTY_FILE, /* indicate regular/symlink has dirty pages */
883 FI_PREALLOCATED_ALL, /* all blocks for write were preallocated */
884 FI_HOT_DATA, /* indicate file is hot */
885 FI_EXTRA_ATTR, /* indicate file has extra attribute */
886 FI_PROJ_INHERIT, /* indicate file inherits projectid */
887 FI_PIN_FILE, /* indicate file should not be gced */
888 FI_VERITY_IN_PROGRESS, /* building fs-verity Merkle tree */
889 FI_COMPRESSED_FILE, /* indicate file's data can be compressed */
890 FI_COMPRESS_CORRUPT, /* indicate compressed cluster is corrupted */
891 FI_MMAP_FILE, /* indicate file was mmapped */
892 FI_ENABLE_COMPRESS, /* enable compression in "user" compression mode */
893 FI_COMPRESS_RELEASED, /* compressed blocks were released */
894 FI_ALIGNED_WRITE, /* enable aligned write */
895 FI_COW_FILE, /* indicate COW file */
896 FI_ATOMIC_COMMITTED, /* indicate atomic commit completed except disk sync */
897 FI_ATOMIC_DIRTIED, /* indicate atomic file is dirtied */
898 FI_ATOMIC_REPLACE, /* indicate atomic replace */
899 FI_OPENED_FILE, /* indicate file has been opened */
900 FI_DONATE_FINISHED, /* indicate page donation of file has been finished */
901 FI_MAX, /* max flag, never be used */
902 };
903
904 struct f2fs_inode_info {
905 struct inode vfs_inode; /* serve a vfs inode */
906 unsigned long i_flags; /* keep an inode flags for ioctl */
907 unsigned char i_advise; /* use to give file attribute hints */
908 unsigned char i_dir_level; /* use for dentry level for large dir */
909 union {
910 unsigned int i_current_depth; /* only for directory depth */
911 unsigned short i_gc_failures; /* for gc failure statistic */
912 };
913 unsigned int i_pino; /* parent inode number */
914 umode_t i_acl_mode; /* keep file acl mode temporarily */
915
916 /* Use below internally in f2fs*/
917 unsigned long flags[BITS_TO_LONGS(FI_MAX)]; /* use to pass per-file flags */
918 unsigned int ioprio_hint; /* hint for IO priority */
919 struct f2fs_rwsem i_sem; /* protect fi info */
920 atomic_t dirty_pages; /* # of dirty pages */
921 f2fs_hash_t chash; /* hash value of given file name */
922 unsigned int clevel; /* maximum level of given file name */
923 struct task_struct *task; /* lookup and create consistency */
924 struct task_struct *cp_task; /* separate cp/wb IO stats*/
925 struct task_struct *wb_task; /* indicate inode is in context of writeback */
926 nid_t i_xattr_nid; /* node id that contains xattrs */
927 loff_t last_disk_size; /* lastly written file size */
928 spinlock_t i_size_lock; /* protect last_disk_size */
929
930 #ifdef CONFIG_QUOTA
931 struct dquot __rcu *i_dquot[MAXQUOTAS];
932
933 /* quota space reservation, managed internally by quota code */
934 qsize_t i_reserved_quota;
935 #endif
936 struct list_head dirty_list; /* dirty list for dirs and files */
937 struct list_head gdirty_list; /* linked in global dirty list */
938
939 /* linked in global inode list for cache donation */
940 struct list_head gdonate_list;
941 pgoff_t donate_start, donate_end; /* inclusive */
942 atomic_t open_count; /* # of open files */
943
944 struct task_struct *atomic_write_task; /* store atomic write task */
945 struct extent_tree *extent_tree[NR_EXTENT_CACHES];
946 /* cached extent_tree entry */
947 union {
948 struct inode *cow_inode; /* copy-on-write inode for atomic write */
949 struct inode *atomic_inode;
950 /* point to atomic_inode, available only for cow_inode */
951 };
952
953 /* avoid racing between foreground op and gc */
954 struct f2fs_rwsem i_gc_rwsem[2];
955 struct f2fs_rwsem i_xattr_sem; /* avoid racing between reading and changing EAs */
956
957 int i_extra_isize; /* size of extra space located in i_addr */
958 kprojid_t i_projid; /* id for project quota */
959 int i_inline_xattr_size; /* inline xattr size */
960 struct timespec64 i_crtime; /* inode creation time */
961 struct timespec64 i_disk_time[3];/* inode disk times */
962
963 /* for file compress */
964 atomic_t i_compr_blocks; /* # of compressed blocks */
965 unsigned char i_compress_algorithm; /* algorithm type */
966 unsigned char i_log_cluster_size; /* log of cluster size */
967 unsigned char i_compress_level; /* compress level (lz4hc,zstd) */
968 unsigned char i_compress_flag; /* compress flag */
969 unsigned int i_cluster_size; /* cluster size */
970 atomic_t writeback; /* count # of writeback thread */
971
972 unsigned int atomic_write_cnt;
973 loff_t original_i_size; /* original i_size before atomic write */
974 #ifdef CONFIG_FS_ENCRYPTION
975 struct fscrypt_inode_info *i_crypt_info; /* filesystem encryption info */
976 #endif
977 #ifdef CONFIG_FS_VERITY
978 struct fsverity_info *i_verity_info; /* filesystem verity info */
979 #endif
980 };
981
get_read_extent_info(struct extent_info * ext,struct f2fs_extent * i_ext)982 static inline void get_read_extent_info(struct extent_info *ext,
983 struct f2fs_extent *i_ext)
984 {
985 ext->fofs = le32_to_cpu(i_ext->fofs);
986 ext->blk = le32_to_cpu(i_ext->blk);
987 ext->len = le32_to_cpu(i_ext->len);
988 }
989
set_raw_read_extent(struct extent_info * ext,struct f2fs_extent * i_ext)990 static inline void set_raw_read_extent(struct extent_info *ext,
991 struct f2fs_extent *i_ext)
992 {
993 i_ext->fofs = cpu_to_le32(ext->fofs);
994 i_ext->blk = cpu_to_le32(ext->blk);
995 i_ext->len = cpu_to_le32(ext->len);
996 }
997
__is_discard_mergeable(struct discard_info * back,struct discard_info * front,unsigned int max_len)998 static inline bool __is_discard_mergeable(struct discard_info *back,
999 struct discard_info *front, unsigned int max_len)
1000 {
1001 return (back->lstart + back->len == front->lstart) &&
1002 (back->len + front->len <= max_len);
1003 }
1004
__is_discard_back_mergeable(struct discard_info * cur,struct discard_info * back,unsigned int max_len)1005 static inline bool __is_discard_back_mergeable(struct discard_info *cur,
1006 struct discard_info *back, unsigned int max_len)
1007 {
1008 return __is_discard_mergeable(back, cur, max_len);
1009 }
1010
__is_discard_front_mergeable(struct discard_info * cur,struct discard_info * front,unsigned int max_len)1011 static inline bool __is_discard_front_mergeable(struct discard_info *cur,
1012 struct discard_info *front, unsigned int max_len)
1013 {
1014 return __is_discard_mergeable(cur, front, max_len);
1015 }
1016
1017 /*
1018 * For free nid management
1019 */
1020 enum nid_state {
1021 FREE_NID, /* newly added to free nid list */
1022 PREALLOC_NID, /* it is preallocated */
1023 MAX_NID_STATE,
1024 };
1025
1026 enum nat_state {
1027 TOTAL_NAT,
1028 DIRTY_NAT,
1029 RECLAIMABLE_NAT,
1030 MAX_NAT_STATE,
1031 };
1032
1033 struct f2fs_nm_info {
1034 block_t nat_blkaddr; /* base disk address of NAT */
1035 nid_t max_nid; /* maximum possible node ids */
1036 nid_t available_nids; /* # of available node ids */
1037 nid_t next_scan_nid; /* the next nid to be scanned */
1038 nid_t max_rf_node_blocks; /* max # of nodes for recovery */
1039 unsigned int ram_thresh; /* control the memory footprint */
1040 unsigned int ra_nid_pages; /* # of nid pages to be readaheaded */
1041 unsigned int dirty_nats_ratio; /* control dirty nats ratio threshold */
1042
1043 /* NAT cache management */
1044 struct radix_tree_root nat_root;/* root of the nat entry cache */
1045 struct radix_tree_root nat_set_root;/* root of the nat set cache */
1046 struct f2fs_rwsem nat_tree_lock; /* protect nat entry tree */
1047 struct list_head nat_entries; /* cached nat entry list (clean) */
1048 spinlock_t nat_list_lock; /* protect clean nat entry list */
1049 unsigned int nat_cnt[MAX_NAT_STATE]; /* the # of cached nat entries */
1050 unsigned int nat_blocks; /* # of nat blocks */
1051
1052 /* free node ids management */
1053 struct radix_tree_root free_nid_root;/* root of the free_nid cache */
1054 struct list_head free_nid_list; /* list for free nids excluding preallocated nids */
1055 unsigned int nid_cnt[MAX_NID_STATE]; /* the number of free node id */
1056 spinlock_t nid_list_lock; /* protect nid lists ops */
1057 struct mutex build_lock; /* lock for build free nids */
1058 unsigned char **free_nid_bitmap;
1059 unsigned char *nat_block_bitmap;
1060 unsigned short *free_nid_count; /* free nid count of NAT block */
1061
1062 /* for checkpoint */
1063 char *nat_bitmap; /* NAT bitmap pointer */
1064
1065 unsigned int nat_bits_blocks; /* # of nat bits blocks */
1066 unsigned char *nat_bits; /* NAT bits blocks */
1067 unsigned char *full_nat_bits; /* full NAT pages */
1068 unsigned char *empty_nat_bits; /* empty NAT pages */
1069 #ifdef CONFIG_F2FS_CHECK_FS
1070 char *nat_bitmap_mir; /* NAT bitmap mirror */
1071 #endif
1072 int bitmap_size; /* bitmap size */
1073 };
1074
1075 /*
1076 * this structure is used as one of function parameters.
1077 * all the information are dedicated to a given direct node block determined
1078 * by the data offset in a file.
1079 */
1080 struct dnode_of_data {
1081 struct inode *inode; /* vfs inode pointer */
1082 struct folio *inode_folio; /* its inode folio, NULL is possible */
1083 struct folio *node_folio; /* cached direct node folio */
1084 nid_t nid; /* node id of the direct node block */
1085 unsigned int ofs_in_node; /* data offset in the node page */
1086 bool inode_folio_locked; /* inode folio is locked or not */
1087 bool node_changed; /* is node block changed */
1088 char cur_level; /* level of hole node page */
1089 char max_level; /* level of current page located */
1090 block_t data_blkaddr; /* block address of the node block */
1091 };
1092
set_new_dnode(struct dnode_of_data * dn,struct inode * inode,struct folio * ifolio,struct folio * nfolio,nid_t nid)1093 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
1094 struct folio *ifolio, struct folio *nfolio, nid_t nid)
1095 {
1096 memset(dn, 0, sizeof(*dn));
1097 dn->inode = inode;
1098 dn->inode_folio = ifolio;
1099 dn->node_folio = nfolio;
1100 dn->nid = nid;
1101 }
1102
1103 /*
1104 * For SIT manager
1105 *
1106 * By default, there are 6 active log areas across the whole main area.
1107 * When considering hot and cold data separation to reduce cleaning overhead,
1108 * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
1109 * respectively.
1110 * In the current design, you should not change the numbers intentionally.
1111 * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
1112 * logs individually according to the underlying devices. (default: 6)
1113 * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
1114 * data and 8 for node logs.
1115 */
1116 #define NR_CURSEG_DATA_TYPE (3)
1117 #define NR_CURSEG_NODE_TYPE (3)
1118 #define NR_CURSEG_INMEM_TYPE (2)
1119 #define NR_CURSEG_RO_TYPE (2)
1120 #define NR_CURSEG_PERSIST_TYPE (NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
1121 #define NR_CURSEG_TYPE (NR_CURSEG_INMEM_TYPE + NR_CURSEG_PERSIST_TYPE)
1122
1123 enum log_type {
1124 CURSEG_HOT_DATA = 0, /* directory entry blocks */
1125 CURSEG_WARM_DATA, /* data blocks */
1126 CURSEG_COLD_DATA, /* multimedia or GCed data blocks */
1127 CURSEG_HOT_NODE, /* direct node blocks of directory files */
1128 CURSEG_WARM_NODE, /* direct node blocks of normal files */
1129 CURSEG_COLD_NODE, /* indirect node blocks */
1130 NR_PERSISTENT_LOG, /* number of persistent log */
1131 CURSEG_COLD_DATA_PINNED = NR_PERSISTENT_LOG,
1132 /* pinned file that needs consecutive block address */
1133 CURSEG_ALL_DATA_ATGC, /* SSR alloctor in hot/warm/cold data area */
1134 NO_CHECK_TYPE, /* number of persistent & inmem log */
1135 };
1136
1137 struct flush_cmd {
1138 struct completion wait;
1139 struct llist_node llnode;
1140 nid_t ino;
1141 int ret;
1142 };
1143
1144 struct flush_cmd_control {
1145 struct task_struct *f2fs_issue_flush; /* flush thread */
1146 wait_queue_head_t flush_wait_queue; /* waiting queue for wake-up */
1147 atomic_t issued_flush; /* # of issued flushes */
1148 atomic_t queued_flush; /* # of queued flushes */
1149 struct llist_head issue_list; /* list for command issue */
1150 struct llist_node *dispatch_list; /* list for command dispatch */
1151 };
1152
1153 struct f2fs_sm_info {
1154 struct sit_info *sit_info; /* whole segment information */
1155 struct free_segmap_info *free_info; /* free segment information */
1156 struct dirty_seglist_info *dirty_info; /* dirty segment information */
1157 struct curseg_info *curseg_array; /* active segment information */
1158
1159 struct f2fs_rwsem curseg_lock; /* for preventing curseg change */
1160
1161 block_t seg0_blkaddr; /* block address of 0'th segment */
1162 block_t main_blkaddr; /* start block address of main area */
1163 block_t ssa_blkaddr; /* start block address of SSA area */
1164
1165 unsigned int segment_count; /* total # of segments */
1166 unsigned int main_segments; /* # of segments in main area */
1167 unsigned int reserved_segments; /* # of reserved segments */
1168 unsigned int ovp_segments; /* # of overprovision segments */
1169
1170 /* a threshold to reclaim prefree segments */
1171 unsigned int rec_prefree_segments;
1172
1173 struct list_head sit_entry_set; /* sit entry set list */
1174
1175 unsigned int ipu_policy; /* in-place-update policy */
1176 unsigned int min_ipu_util; /* in-place-update threshold */
1177 unsigned int min_fsync_blocks; /* threshold for fsync */
1178 unsigned int min_seq_blocks; /* threshold for sequential blocks */
1179 unsigned int min_hot_blocks; /* threshold for hot block allocation */
1180 unsigned int min_ssr_sections; /* threshold to trigger SSR allocation */
1181
1182 /* for flush command control */
1183 struct flush_cmd_control *fcc_info;
1184
1185 /* for discard command control */
1186 struct discard_cmd_control *dcc_info;
1187 };
1188
1189 /*
1190 * For superblock
1191 */
1192 /*
1193 * COUNT_TYPE for monitoring
1194 *
1195 * f2fs monitors the number of several block types such as on-writeback,
1196 * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
1197 */
1198 #define WB_DATA_TYPE(folio, f) \
1199 (f || f2fs_is_cp_guaranteed(folio) ? F2FS_WB_CP_DATA : F2FS_WB_DATA)
1200 enum count_type {
1201 F2FS_DIRTY_DENTS,
1202 F2FS_DIRTY_DATA,
1203 F2FS_DIRTY_QDATA,
1204 F2FS_DIRTY_NODES,
1205 F2FS_DIRTY_META,
1206 F2FS_DIRTY_IMETA,
1207 F2FS_WB_CP_DATA,
1208 F2FS_WB_DATA,
1209 F2FS_RD_DATA,
1210 F2FS_RD_NODE,
1211 F2FS_RD_META,
1212 F2FS_DIO_WRITE,
1213 F2FS_DIO_READ,
1214 NR_COUNT_TYPE,
1215 };
1216
1217 /*
1218 * The below are the page types of bios used in submit_bio().
1219 * The available types are:
1220 * DATA User data pages. It operates as async mode.
1221 * NODE Node pages. It operates as async mode.
1222 * META FS metadata pages such as SIT, NAT, CP.
1223 * NR_PAGE_TYPE The number of page types.
1224 * META_FLUSH Make sure the previous pages are written
1225 * with waiting the bio's completion
1226 * ... Only can be used with META.
1227 */
1228 #define PAGE_TYPE_OF_BIO(type) ((type) > META ? META : (type))
1229 #define PAGE_TYPE_ON_MAIN(type) ((type) == DATA || (type) == NODE)
1230 enum page_type {
1231 DATA = 0,
1232 NODE = 1, /* should not change this */
1233 META,
1234 NR_PAGE_TYPE,
1235 META_FLUSH,
1236 IPU, /* the below types are used by tracepoints only. */
1237 OPU,
1238 };
1239
1240 enum temp_type {
1241 HOT = 0, /* must be zero for meta bio */
1242 WARM,
1243 COLD,
1244 NR_TEMP_TYPE,
1245 };
1246
1247 enum need_lock_type {
1248 LOCK_REQ = 0,
1249 LOCK_DONE,
1250 LOCK_RETRY,
1251 };
1252
1253 enum cp_reason_type {
1254 CP_NO_NEEDED,
1255 CP_NON_REGULAR,
1256 CP_COMPRESSED,
1257 CP_HARDLINK,
1258 CP_SB_NEED_CP,
1259 CP_WRONG_PINO,
1260 CP_NO_SPC_ROLL,
1261 CP_NODE_NEED_CP,
1262 CP_FASTBOOT_MODE,
1263 CP_SPEC_LOG_NUM,
1264 CP_RECOVER_DIR,
1265 CP_XATTR_DIR,
1266 };
1267
1268 enum iostat_type {
1269 /* WRITE IO */
1270 APP_DIRECT_IO, /* app direct write IOs */
1271 APP_BUFFERED_IO, /* app buffered write IOs */
1272 APP_WRITE_IO, /* app write IOs */
1273 APP_MAPPED_IO, /* app mapped IOs */
1274 APP_BUFFERED_CDATA_IO, /* app buffered write IOs on compressed file */
1275 APP_MAPPED_CDATA_IO, /* app mapped write IOs on compressed file */
1276 FS_DATA_IO, /* data IOs from kworker/fsync/reclaimer */
1277 FS_CDATA_IO, /* data IOs from kworker/fsync/reclaimer on compressed file */
1278 FS_NODE_IO, /* node IOs from kworker/fsync/reclaimer */
1279 FS_META_IO, /* meta IOs from kworker/reclaimer */
1280 FS_GC_DATA_IO, /* data IOs from forground gc */
1281 FS_GC_NODE_IO, /* node IOs from forground gc */
1282 FS_CP_DATA_IO, /* data IOs from checkpoint */
1283 FS_CP_NODE_IO, /* node IOs from checkpoint */
1284 FS_CP_META_IO, /* meta IOs from checkpoint */
1285
1286 /* READ IO */
1287 APP_DIRECT_READ_IO, /* app direct read IOs */
1288 APP_BUFFERED_READ_IO, /* app buffered read IOs */
1289 APP_READ_IO, /* app read IOs */
1290 APP_MAPPED_READ_IO, /* app mapped read IOs */
1291 APP_BUFFERED_CDATA_READ_IO, /* app buffered read IOs on compressed file */
1292 APP_MAPPED_CDATA_READ_IO, /* app mapped read IOs on compressed file */
1293 FS_DATA_READ_IO, /* data read IOs */
1294 FS_GDATA_READ_IO, /* data read IOs from background gc */
1295 FS_CDATA_READ_IO, /* compressed data read IOs */
1296 FS_NODE_READ_IO, /* node read IOs */
1297 FS_META_READ_IO, /* meta read IOs */
1298
1299 /* other */
1300 FS_DISCARD_IO, /* discard */
1301 FS_FLUSH_IO, /* flush */
1302 FS_ZONE_RESET_IO, /* zone reset */
1303 NR_IO_TYPE,
1304 };
1305
1306 struct f2fs_io_info {
1307 struct f2fs_sb_info *sbi; /* f2fs_sb_info pointer */
1308 nid_t ino; /* inode number */
1309 enum page_type type; /* contains DATA/NODE/META/META_FLUSH */
1310 enum temp_type temp; /* contains HOT/WARM/COLD */
1311 enum req_op op; /* contains REQ_OP_ */
1312 blk_opf_t op_flags; /* req_flag_bits */
1313 block_t new_blkaddr; /* new block address to be written */
1314 block_t old_blkaddr; /* old block address before Cow */
1315 union {
1316 struct page *page; /* page to be written */
1317 struct folio *folio;
1318 };
1319 struct page *encrypted_page; /* encrypted page */
1320 struct page *compressed_page; /* compressed page */
1321 struct list_head list; /* serialize IOs */
1322 unsigned int compr_blocks; /* # of compressed block addresses */
1323 unsigned int need_lock:8; /* indicate we need to lock cp_rwsem */
1324 unsigned int version:8; /* version of the node */
1325 unsigned int submitted:1; /* indicate IO submission */
1326 unsigned int in_list:1; /* indicate fio is in io_list */
1327 unsigned int is_por:1; /* indicate IO is from recovery or not */
1328 unsigned int encrypted:1; /* indicate file is encrypted */
1329 unsigned int meta_gc:1; /* require meta inode GC */
1330 enum iostat_type io_type; /* io type */
1331 struct writeback_control *io_wbc; /* writeback control */
1332 struct bio **bio; /* bio for ipu */
1333 sector_t *last_block; /* last block number in bio */
1334 };
1335
1336 struct bio_entry {
1337 struct bio *bio;
1338 struct list_head list;
1339 };
1340
1341 #define is_read_io(rw) ((rw) == READ)
1342 struct f2fs_bio_info {
1343 struct f2fs_sb_info *sbi; /* f2fs superblock */
1344 struct bio *bio; /* bios to merge */
1345 sector_t last_block_in_bio; /* last block number */
1346 struct f2fs_io_info fio; /* store buffered io info. */
1347 #ifdef CONFIG_BLK_DEV_ZONED
1348 struct completion zone_wait; /* condition value for the previous open zone to close */
1349 struct bio *zone_pending_bio; /* pending bio for the previous zone */
1350 void *bi_private; /* previous bi_private for pending bio */
1351 #endif
1352 struct f2fs_rwsem io_rwsem; /* blocking op for bio */
1353 spinlock_t io_lock; /* serialize DATA/NODE IOs */
1354 struct list_head io_list; /* track fios */
1355 struct list_head bio_list; /* bio entry list head */
1356 struct f2fs_rwsem bio_list_lock; /* lock to protect bio entry list */
1357 };
1358
1359 #define FDEV(i) (sbi->devs[i])
1360 #define RDEV(i) (raw_super->devs[i])
1361 struct f2fs_dev_info {
1362 struct file *bdev_file;
1363 struct block_device *bdev;
1364 char path[MAX_PATH_LEN + 1];
1365 unsigned int total_segments;
1366 block_t start_blk;
1367 block_t end_blk;
1368 #ifdef CONFIG_BLK_DEV_ZONED
1369 unsigned int nr_blkz; /* Total number of zones */
1370 unsigned long *blkz_seq; /* Bitmap indicating sequential zones */
1371 #endif
1372 };
1373
1374 enum inode_type {
1375 DIR_INODE, /* for dirty dir inode */
1376 FILE_INODE, /* for dirty regular/symlink inode */
1377 DIRTY_META, /* for all dirtied inode metadata */
1378 DONATE_INODE, /* for all inode to donate pages */
1379 NR_INODE_TYPE,
1380 };
1381
1382 /* for inner inode cache management */
1383 struct inode_management {
1384 struct radix_tree_root ino_root; /* ino entry array */
1385 spinlock_t ino_lock; /* for ino entry lock */
1386 struct list_head ino_list; /* inode list head */
1387 unsigned long ino_num; /* number of entries */
1388 };
1389
1390 /* for GC_AT */
1391 struct atgc_management {
1392 bool atgc_enabled; /* ATGC is enabled or not */
1393 struct rb_root_cached root; /* root of victim rb-tree */
1394 struct list_head victim_list; /* linked with all victim entries */
1395 unsigned int victim_count; /* victim count in rb-tree */
1396 unsigned int candidate_ratio; /* candidate ratio */
1397 unsigned int max_candidate_count; /* max candidate count */
1398 unsigned int age_weight; /* age weight, vblock_weight = 100 - age_weight */
1399 unsigned long long age_threshold; /* age threshold */
1400 };
1401
1402 struct f2fs_gc_control {
1403 unsigned int victim_segno; /* target victim segment number */
1404 int init_gc_type; /* FG_GC or BG_GC */
1405 bool no_bg_gc; /* check the space and stop bg_gc */
1406 bool should_migrate_blocks; /* should migrate blocks */
1407 bool err_gc_skipped; /* return EAGAIN if GC skipped */
1408 bool one_time; /* require one time GC in one migration unit */
1409 unsigned int nr_free_secs; /* # of free sections to do GC */
1410 };
1411
1412 /*
1413 * For s_flag in struct f2fs_sb_info
1414 * Modification on enum should be synchronized with s_flag array
1415 */
1416 enum {
1417 SBI_IS_DIRTY, /* dirty flag for checkpoint */
1418 SBI_IS_CLOSE, /* specify unmounting */
1419 SBI_NEED_FSCK, /* need fsck.f2fs to fix */
1420 SBI_POR_DOING, /* recovery is doing or not */
1421 SBI_NEED_SB_WRITE, /* need to recover superblock */
1422 SBI_NEED_CP, /* need to checkpoint */
1423 SBI_IS_SHUTDOWN, /* shutdown by ioctl */
1424 SBI_IS_RECOVERED, /* recovered orphan/data */
1425 SBI_CP_DISABLED, /* CP was disabled last mount */
1426 SBI_CP_DISABLED_QUICK, /* CP was disabled quickly */
1427 SBI_QUOTA_NEED_FLUSH, /* need to flush quota info in CP */
1428 SBI_QUOTA_SKIP_FLUSH, /* skip flushing quota in current CP */
1429 SBI_QUOTA_NEED_REPAIR, /* quota file may be corrupted */
1430 SBI_IS_RESIZEFS, /* resizefs is in process */
1431 SBI_IS_FREEZING, /* freezefs is in process */
1432 SBI_IS_WRITABLE, /* remove ro mountoption transiently */
1433 MAX_SBI_FLAG,
1434 };
1435
1436 enum {
1437 CP_TIME,
1438 REQ_TIME,
1439 DISCARD_TIME,
1440 GC_TIME,
1441 DISABLE_TIME,
1442 ENABLE_TIME,
1443 UMOUNT_DISCARD_TIMEOUT,
1444 MAX_TIME,
1445 };
1446
1447 /* Note that you need to keep synchronization with this gc_mode_names array */
1448 enum {
1449 GC_NORMAL,
1450 GC_IDLE_CB,
1451 GC_IDLE_GREEDY,
1452 GC_IDLE_AT,
1453 GC_URGENT_HIGH,
1454 GC_URGENT_LOW,
1455 GC_URGENT_MID,
1456 MAX_GC_MODE,
1457 };
1458
1459 enum {
1460 BGGC_MODE_ON, /* background gc is on */
1461 BGGC_MODE_OFF, /* background gc is off */
1462 BGGC_MODE_SYNC, /*
1463 * background gc is on, migrating blocks
1464 * like foreground gc
1465 */
1466 };
1467
1468 enum {
1469 FS_MODE_ADAPTIVE, /* use both lfs/ssr allocation */
1470 FS_MODE_LFS, /* use lfs allocation only */
1471 FS_MODE_FRAGMENT_SEG, /* segment fragmentation mode */
1472 FS_MODE_FRAGMENT_BLK, /* block fragmentation mode */
1473 };
1474
1475 enum {
1476 ALLOC_MODE_DEFAULT, /* stay default */
1477 ALLOC_MODE_REUSE, /* reuse segments as much as possible */
1478 };
1479
1480 enum fsync_mode {
1481 FSYNC_MODE_POSIX, /* fsync follows posix semantics */
1482 FSYNC_MODE_STRICT, /* fsync behaves in line with ext4 */
1483 FSYNC_MODE_NOBARRIER, /* fsync behaves nobarrier based on posix */
1484 };
1485
1486 enum {
1487 COMPR_MODE_FS, /*
1488 * automatically compress compression
1489 * enabled files
1490 */
1491 COMPR_MODE_USER, /*
1492 * automatical compression is disabled.
1493 * user can control the file compression
1494 * using ioctls
1495 */
1496 };
1497
1498 enum {
1499 DISCARD_UNIT_BLOCK, /* basic discard unit is block */
1500 DISCARD_UNIT_SEGMENT, /* basic discard unit is segment */
1501 DISCARD_UNIT_SECTION, /* basic discard unit is section */
1502 };
1503
1504 enum {
1505 MEMORY_MODE_NORMAL, /* memory mode for normal devices */
1506 MEMORY_MODE_LOW, /* memory mode for low memory devices */
1507 };
1508
1509 enum errors_option {
1510 MOUNT_ERRORS_READONLY, /* remount fs ro on errors */
1511 MOUNT_ERRORS_CONTINUE, /* continue on errors */
1512 MOUNT_ERRORS_PANIC, /* panic on errors */
1513 };
1514
1515 enum {
1516 BACKGROUND,
1517 FOREGROUND,
1518 MAX_CALL_TYPE,
1519 TOTAL_CALL = FOREGROUND,
1520 };
1521
1522 enum f2fs_lookup_mode {
1523 LOOKUP_PERF,
1524 LOOKUP_COMPAT,
1525 LOOKUP_AUTO,
1526 };
1527
1528 static inline int f2fs_test_bit(unsigned int nr, char *addr);
1529 static inline void f2fs_set_bit(unsigned int nr, char *addr);
1530 static inline void f2fs_clear_bit(unsigned int nr, char *addr);
1531
1532 /*
1533 * Layout of f2fs page.private:
1534 *
1535 * Layout A: lowest bit should be 1
1536 * | bit0 = 1 | bit1 | bit2 | ... | bit MAX | private data .... |
1537 * bit 0 PAGE_PRIVATE_NOT_POINTER
1538 * bit 1 PAGE_PRIVATE_ONGOING_MIGRATION
1539 * bit 2 PAGE_PRIVATE_INLINE_INODE
1540 * bit 3 PAGE_PRIVATE_REF_RESOURCE
1541 * bit 4 PAGE_PRIVATE_ATOMIC_WRITE
1542 * bit 5- f2fs private data
1543 *
1544 * Layout B: lowest bit should be 0
1545 * page.private is a wrapped pointer.
1546 */
1547 enum {
1548 PAGE_PRIVATE_NOT_POINTER, /* private contains non-pointer data */
1549 PAGE_PRIVATE_ONGOING_MIGRATION, /* data page which is on-going migrating */
1550 PAGE_PRIVATE_INLINE_INODE, /* inode page contains inline data */
1551 PAGE_PRIVATE_REF_RESOURCE, /* dirty page has referenced resources */
1552 PAGE_PRIVATE_ATOMIC_WRITE, /* data page from atomic write path */
1553 PAGE_PRIVATE_MAX
1554 };
1555
1556 /* For compression */
1557 enum compress_algorithm_type {
1558 COMPRESS_LZO,
1559 COMPRESS_LZ4,
1560 COMPRESS_ZSTD,
1561 COMPRESS_LZORLE,
1562 COMPRESS_MAX,
1563 };
1564
1565 enum compress_flag {
1566 COMPRESS_CHKSUM,
1567 COMPRESS_MAX_FLAG,
1568 };
1569
1570 #define COMPRESS_WATERMARK 20
1571 #define COMPRESS_PERCENT 20
1572
1573 #define COMPRESS_DATA_RESERVED_SIZE 4
1574 struct compress_data {
1575 __le32 clen; /* compressed data size */
1576 __le32 chksum; /* compressed data checksum */
1577 __le32 reserved[COMPRESS_DATA_RESERVED_SIZE]; /* reserved */
1578 u8 cdata[]; /* compressed data */
1579 };
1580
1581 #define COMPRESS_HEADER_SIZE (sizeof(struct compress_data))
1582
1583 #define F2FS_COMPRESSED_PAGE_MAGIC 0xF5F2C000
1584
1585 #define F2FS_ZSTD_DEFAULT_CLEVEL 1
1586
1587 #define COMPRESS_LEVEL_OFFSET 8
1588
1589 /* compress context */
1590 struct compress_ctx {
1591 struct inode *inode; /* inode the context belong to */
1592 pgoff_t cluster_idx; /* cluster index number */
1593 unsigned int cluster_size; /* page count in cluster */
1594 unsigned int log_cluster_size; /* log of cluster size */
1595 struct page **rpages; /* pages store raw data in cluster */
1596 unsigned int nr_rpages; /* total page number in rpages */
1597 struct page **cpages; /* pages store compressed data in cluster */
1598 unsigned int nr_cpages; /* total page number in cpages */
1599 unsigned int valid_nr_cpages; /* valid page number in cpages */
1600 void *rbuf; /* virtual mapped address on rpages */
1601 struct compress_data *cbuf; /* virtual mapped address on cpages */
1602 size_t rlen; /* valid data length in rbuf */
1603 size_t clen; /* valid data length in cbuf */
1604 void *private; /* payload buffer for specified compression algorithm */
1605 void *private2; /* extra payload buffer */
1606 };
1607
1608 /* compress context for write IO path */
1609 struct compress_io_ctx {
1610 u32 magic; /* magic number to indicate page is compressed */
1611 struct inode *inode; /* inode the context belong to */
1612 struct page **rpages; /* pages store raw data in cluster */
1613 unsigned int nr_rpages; /* total page number in rpages */
1614 atomic_t pending_pages; /* in-flight compressed page count */
1615 };
1616
1617 /* Context for decompressing one cluster on the read IO path */
1618 struct decompress_io_ctx {
1619 u32 magic; /* magic number to indicate page is compressed */
1620 struct inode *inode; /* inode the context belong to */
1621 struct f2fs_sb_info *sbi; /* f2fs_sb_info pointer */
1622 pgoff_t cluster_idx; /* cluster index number */
1623 unsigned int cluster_size; /* page count in cluster */
1624 unsigned int log_cluster_size; /* log of cluster size */
1625 struct page **rpages; /* pages store raw data in cluster */
1626 unsigned int nr_rpages; /* total page number in rpages */
1627 struct page **cpages; /* pages store compressed data in cluster */
1628 unsigned int nr_cpages; /* total page number in cpages */
1629 struct page **tpages; /* temp pages to pad holes in cluster */
1630 void *rbuf; /* virtual mapped address on rpages */
1631 struct compress_data *cbuf; /* virtual mapped address on cpages */
1632 size_t rlen; /* valid data length in rbuf */
1633 size_t clen; /* valid data length in cbuf */
1634
1635 /*
1636 * The number of compressed pages remaining to be read in this cluster.
1637 * This is initially nr_cpages. It is decremented by 1 each time a page
1638 * has been read (or failed to be read). When it reaches 0, the cluster
1639 * is decompressed (or an error is reported).
1640 *
1641 * If an error occurs before all the pages have been submitted for I/O,
1642 * then this will never reach 0. In this case the I/O submitter is
1643 * responsible for calling f2fs_decompress_end_io() instead.
1644 */
1645 atomic_t remaining_pages;
1646
1647 /*
1648 * Number of references to this decompress_io_ctx.
1649 *
1650 * One reference is held for I/O completion. This reference is dropped
1651 * after the pagecache pages are updated and unlocked -- either after
1652 * decompression (and verity if enabled), or after an error.
1653 *
1654 * In addition, each compressed page holds a reference while it is in a
1655 * bio. These references are necessary prevent compressed pages from
1656 * being freed while they are still in a bio.
1657 */
1658 refcount_t refcnt;
1659
1660 bool failed; /* IO error occurred before decompression? */
1661 bool need_verity; /* need fs-verity verification after decompression? */
1662 unsigned char compress_algorithm; /* backup algorithm type */
1663 void *private; /* payload buffer for specified decompression algorithm */
1664 void *private2; /* extra payload buffer */
1665 struct work_struct verity_work; /* work to verify the decompressed pages */
1666 struct work_struct free_work; /* work for late free this structure itself */
1667 };
1668
1669 #define NULL_CLUSTER ((unsigned int)(~0))
1670 #define MIN_COMPRESS_LOG_SIZE 2
1671 #define MAX_COMPRESS_LOG_SIZE 8
1672 #define MAX_COMPRESS_WINDOW_SIZE(log_size) ((PAGE_SIZE) << (log_size))
1673
1674 struct f2fs_sb_info {
1675 struct super_block *sb; /* pointer to VFS super block */
1676 struct proc_dir_entry *s_proc; /* proc entry */
1677 struct f2fs_super_block *raw_super; /* raw super block pointer */
1678 struct f2fs_rwsem sb_lock; /* lock for raw super block */
1679 int valid_super_block; /* valid super block no */
1680 unsigned long s_flag; /* flags for sbi */
1681 struct mutex writepages; /* mutex for writepages() */
1682
1683 #ifdef CONFIG_BLK_DEV_ZONED
1684 unsigned int blocks_per_blkz; /* F2FS blocks per zone */
1685 unsigned int unusable_blocks_per_sec; /* unusable blocks per section */
1686 unsigned int max_open_zones; /* max open zone resources of the zoned device */
1687 /* For adjust the priority writing position of data in zone UFS */
1688 unsigned int blkzone_alloc_policy;
1689 #endif
1690
1691 /* for node-related operations */
1692 struct f2fs_nm_info *nm_info; /* node manager */
1693 struct inode *node_inode; /* cache node blocks */
1694
1695 /* for segment-related operations */
1696 struct f2fs_sm_info *sm_info; /* segment manager */
1697
1698 /* for bio operations */
1699 struct f2fs_bio_info *write_io[NR_PAGE_TYPE]; /* for write bios */
1700 /* keep migration IO order for LFS mode */
1701 struct f2fs_rwsem io_order_lock;
1702 pgoff_t page_eio_ofs[NR_PAGE_TYPE]; /* EIO page offset */
1703 int page_eio_cnt[NR_PAGE_TYPE]; /* EIO count */
1704
1705 /* for checkpoint */
1706 struct f2fs_checkpoint *ckpt; /* raw checkpoint pointer */
1707 int cur_cp_pack; /* remain current cp pack */
1708 spinlock_t cp_lock; /* for flag in ckpt */
1709 struct inode *meta_inode; /* cache meta blocks */
1710 struct f2fs_rwsem cp_global_sem; /* checkpoint procedure lock */
1711 struct f2fs_rwsem cp_rwsem; /* blocking FS operations */
1712 struct f2fs_rwsem node_write; /* locking node writes */
1713 struct f2fs_rwsem node_change; /* locking node change */
1714 wait_queue_head_t cp_wait;
1715 unsigned long last_time[MAX_TIME]; /* to store time in jiffies */
1716 long interval_time[MAX_TIME]; /* to store thresholds */
1717 struct ckpt_req_control cprc_info; /* for checkpoint request control */
1718 struct cp_stats cp_stats; /* for time stat of checkpoint */
1719 struct f2fs_rwsem cp_enable_rwsem; /* block cache/dio write */
1720
1721 struct inode_management im[MAX_INO_ENTRY]; /* manage inode cache */
1722
1723 spinlock_t fsync_node_lock; /* for node entry lock */
1724 struct list_head fsync_node_list; /* node list head */
1725 unsigned int fsync_seg_id; /* sequence id */
1726 unsigned int fsync_node_num; /* number of node entries */
1727
1728 /* for orphan inode, use 0'th array */
1729 unsigned int max_orphans; /* max orphan inodes */
1730
1731 /* for inode management */
1732 struct list_head inode_list[NR_INODE_TYPE]; /* dirty inode list */
1733 spinlock_t inode_lock[NR_INODE_TYPE]; /* for dirty inode list lock */
1734 struct mutex flush_lock; /* for flush exclusion */
1735
1736 /* for extent tree cache */
1737 struct extent_tree_info extent_tree[NR_EXTENT_CACHES];
1738 atomic64_t allocated_data_blocks; /* for block age extent_cache */
1739 unsigned int max_read_extent_count; /* max read extent count per inode */
1740
1741 /* The threshold used for hot and warm data seperation*/
1742 unsigned int hot_data_age_threshold;
1743 unsigned int warm_data_age_threshold;
1744 unsigned int last_age_weight;
1745
1746 /* control donate caches */
1747 unsigned int donate_files;
1748
1749 /* basic filesystem units */
1750 unsigned int log_sectors_per_block; /* log2 sectors per block */
1751 unsigned int log_blocksize; /* log2 block size */
1752 unsigned int blocksize; /* block size */
1753 unsigned int root_ino_num; /* root inode number*/
1754 unsigned int node_ino_num; /* node inode number*/
1755 unsigned int meta_ino_num; /* meta inode number*/
1756 unsigned int log_blocks_per_seg; /* log2 blocks per segment */
1757 unsigned int blocks_per_seg; /* blocks per segment */
1758 unsigned int segs_per_sec; /* segments per section */
1759 unsigned int secs_per_zone; /* sections per zone */
1760 unsigned int total_sections; /* total section count */
1761 unsigned int total_node_count; /* total node block count */
1762 unsigned int total_valid_node_count; /* valid node block count */
1763 int dir_level; /* directory level */
1764 bool readdir_ra; /* readahead inode in readdir */
1765 u64 max_io_bytes; /* max io bytes to merge IOs */
1766
1767 block_t user_block_count; /* # of user blocks */
1768 block_t total_valid_block_count; /* # of valid blocks */
1769 block_t discard_blks; /* discard command candidats */
1770 block_t last_valid_block_count; /* for recovery */
1771 block_t reserved_blocks; /* configurable reserved blocks */
1772 block_t current_reserved_blocks; /* current reserved blocks */
1773
1774 /* Additional tracking for no checkpoint mode */
1775 block_t unusable_block_count; /* # of blocks saved by last cp */
1776
1777 unsigned int nquota_files; /* # of quota sysfile */
1778 struct f2fs_rwsem quota_sem; /* blocking cp for flags */
1779 struct task_struct *umount_lock_holder; /* s_umount lock holder */
1780
1781 /* # of pages, see count_type */
1782 atomic_t nr_pages[NR_COUNT_TYPE];
1783 /* # of allocated blocks */
1784 struct percpu_counter alloc_valid_block_count;
1785 /* # of node block writes as roll forward recovery */
1786 struct percpu_counter rf_node_block_count;
1787
1788 /* writeback control */
1789 atomic_t wb_sync_req[META]; /* count # of WB_SYNC threads */
1790
1791 /* valid inode count */
1792 struct percpu_counter total_valid_inode_count;
1793
1794 struct f2fs_mount_info mount_opt; /* mount options */
1795
1796 /* for cleaning operations */
1797 struct f2fs_rwsem gc_lock; /*
1798 * semaphore for GC, avoid
1799 * race between GC and GC or CP
1800 */
1801 struct f2fs_gc_kthread *gc_thread; /* GC thread */
1802 struct atgc_management am; /* atgc management */
1803 unsigned int cur_victim_sec; /* current victim section num */
1804 unsigned int gc_mode; /* current GC state */
1805 unsigned int next_victim_seg[2]; /* next segment in victim section */
1806 spinlock_t gc_remaining_trials_lock;
1807 /* remaining trial count for GC_URGENT_* and GC_IDLE_* */
1808 unsigned int gc_remaining_trials;
1809
1810 /* for skip statistic */
1811 unsigned long long skipped_gc_rwsem; /* FG_GC only */
1812
1813 /* free sections reserved for pinned file */
1814 unsigned int reserved_pin_section;
1815
1816 /* threshold for gc trials on pinned files */
1817 unsigned short gc_pin_file_threshold;
1818 struct f2fs_rwsem pin_sem;
1819
1820 /* maximum # of trials to find a victim segment for SSR and GC */
1821 unsigned int max_victim_search;
1822 /* migration granularity of garbage collection, unit: segment */
1823 unsigned int migration_granularity;
1824 /* migration window granularity of garbage collection, unit: segment */
1825 unsigned int migration_window_granularity;
1826
1827 /*
1828 * for stat information.
1829 * one is for the LFS mode, and the other is for the SSR mode.
1830 */
1831 #ifdef CONFIG_F2FS_STAT_FS
1832 struct f2fs_stat_info *stat_info; /* FS status information */
1833 atomic_t meta_count[META_MAX]; /* # of meta blocks */
1834 unsigned int segment_count[2]; /* # of allocated segments */
1835 unsigned int block_count[2]; /* # of allocated blocks */
1836 atomic_t inplace_count; /* # of inplace update */
1837 /* # of lookup extent cache */
1838 atomic64_t total_hit_ext[NR_EXTENT_CACHES];
1839 /* # of hit rbtree extent node */
1840 atomic64_t read_hit_rbtree[NR_EXTENT_CACHES];
1841 /* # of hit cached extent node */
1842 atomic64_t read_hit_cached[NR_EXTENT_CACHES];
1843 /* # of hit largest extent node in read extent cache */
1844 atomic64_t read_hit_largest;
1845 atomic_t inline_xattr; /* # of inline_xattr inodes */
1846 atomic_t inline_inode; /* # of inline_data inodes */
1847 atomic_t inline_dir; /* # of inline_dentry inodes */
1848 atomic_t compr_inode; /* # of compressed inodes */
1849 atomic64_t compr_blocks; /* # of compressed blocks */
1850 atomic_t swapfile_inode; /* # of swapfile inodes */
1851 atomic_t atomic_files; /* # of opened atomic file */
1852 atomic_t max_aw_cnt; /* max # of atomic writes */
1853 unsigned int io_skip_bggc; /* skip background gc for in-flight IO */
1854 unsigned int other_skip_bggc; /* skip background gc for other reasons */
1855 unsigned int ndirty_inode[NR_INODE_TYPE]; /* # of dirty inodes */
1856 atomic_t cp_call_count[MAX_CALL_TYPE]; /* # of cp call */
1857 #endif
1858 spinlock_t stat_lock; /* lock for stat operations */
1859
1860 /* to attach REQ_META|REQ_FUA flags */
1861 unsigned int data_io_flag;
1862 unsigned int node_io_flag;
1863
1864 /* For sysfs support */
1865 struct kobject s_kobj; /* /sys/fs/f2fs/<devname> */
1866 struct completion s_kobj_unregister;
1867
1868 struct kobject s_stat_kobj; /* /sys/fs/f2fs/<devname>/stat */
1869 struct completion s_stat_kobj_unregister;
1870
1871 struct kobject s_feature_list_kobj; /* /sys/fs/f2fs/<devname>/feature_list */
1872 struct completion s_feature_list_kobj_unregister;
1873
1874 /* For shrinker support */
1875 struct list_head s_list;
1876 struct mutex umount_mutex;
1877 unsigned int shrinker_run_no;
1878
1879 /* For multi devices */
1880 int s_ndevs; /* number of devices */
1881 struct f2fs_dev_info *devs; /* for device list */
1882 unsigned int dirty_device; /* for checkpoint data flush */
1883 spinlock_t dev_lock; /* protect dirty_device */
1884 bool aligned_blksize; /* all devices has the same logical blksize */
1885 unsigned int first_seq_zone_segno; /* first segno in sequential zone */
1886 unsigned int bggc_io_aware; /* For adjust the BG_GC priority when pending IO */
1887 unsigned int allocate_section_hint; /* the boundary position between devices */
1888 unsigned int allocate_section_policy; /* determine the section writing priority */
1889
1890 /* For write statistics */
1891 u64 sectors_written_start;
1892 u64 kbytes_written;
1893
1894 /* Precomputed FS UUID checksum for seeding other checksums */
1895 __u32 s_chksum_seed;
1896
1897 struct workqueue_struct *post_read_wq; /* post read workqueue */
1898
1899 /*
1900 * If we are in irq context, let's update error information into
1901 * on-disk superblock in the work.
1902 */
1903 struct work_struct s_error_work;
1904 unsigned char errors[MAX_F2FS_ERRORS]; /* error flags */
1905 unsigned char stop_reason[MAX_STOP_REASON]; /* stop reason */
1906 spinlock_t error_lock; /* protect errors/stop_reason array */
1907 bool error_dirty; /* errors of sb is dirty */
1908
1909 /* For reclaimed segs statistics per each GC mode */
1910 unsigned int gc_segment_mode; /* GC state for reclaimed segments */
1911 unsigned int gc_reclaimed_segs[MAX_GC_MODE]; /* Reclaimed segs for each mode */
1912
1913 unsigned long seq_file_ra_mul; /* multiplier for ra_pages of seq. files in fadvise */
1914
1915 int max_fragment_chunk; /* max chunk size for block fragmentation mode */
1916 int max_fragment_hole; /* max hole size for block fragmentation mode */
1917
1918 /* For atomic write statistics */
1919 atomic64_t current_atomic_write;
1920 s64 peak_atomic_write;
1921 u64 committed_atomic_block;
1922 u64 revoked_atomic_block;
1923
1924 /* carve out reserved_blocks from total blocks */
1925 bool carve_out;
1926
1927 #ifdef CONFIG_F2FS_FS_COMPRESSION
1928 struct kmem_cache *page_array_slab; /* page array entry */
1929 unsigned int page_array_slab_size; /* default page array slab size */
1930
1931 /* For runtime compression statistics */
1932 u64 compr_written_block;
1933 u64 compr_saved_block;
1934 u32 compr_new_inode;
1935
1936 /* For compressed block cache */
1937 struct inode *compress_inode; /* cache compressed blocks */
1938 unsigned int compress_percent; /* cache page percentage */
1939 unsigned int compress_watermark; /* cache page watermark */
1940 atomic_t compress_page_hit; /* cache hit count */
1941 #endif
1942
1943 #ifdef CONFIG_F2FS_IOSTAT
1944 /* For app/fs IO statistics */
1945 spinlock_t iostat_lock;
1946 unsigned long long iostat_count[NR_IO_TYPE];
1947 unsigned long long iostat_bytes[NR_IO_TYPE];
1948 unsigned long long prev_iostat_bytes[NR_IO_TYPE];
1949 bool iostat_enable;
1950 unsigned long iostat_next_period;
1951 unsigned int iostat_period_ms;
1952
1953 /* For io latency related statistics info in one iostat period */
1954 spinlock_t iostat_lat_lock;
1955 struct iostat_lat_info *iostat_io_lat;
1956 #endif
1957 };
1958
1959 /* Definitions to access f2fs_sb_info */
1960 #define SEGS_TO_BLKS(sbi, segs) \
1961 ((segs) << (sbi)->log_blocks_per_seg)
1962 #define BLKS_TO_SEGS(sbi, blks) \
1963 ((blks) >> (sbi)->log_blocks_per_seg)
1964
1965 #define BLKS_PER_SEG(sbi) ((sbi)->blocks_per_seg)
1966 #define BLKS_PER_SEC(sbi) (SEGS_TO_BLKS(sbi, (sbi)->segs_per_sec))
1967 #define SEGS_PER_SEC(sbi) ((sbi)->segs_per_sec)
1968
1969 __printf(3, 4)
1970 void f2fs_printk(struct f2fs_sb_info *sbi, bool limit_rate, const char *fmt, ...);
1971
1972 #define f2fs_err(sbi, fmt, ...) \
1973 f2fs_printk(sbi, false, KERN_ERR fmt, ##__VA_ARGS__)
1974 #define f2fs_warn(sbi, fmt, ...) \
1975 f2fs_printk(sbi, false, KERN_WARNING fmt, ##__VA_ARGS__)
1976 #define f2fs_notice(sbi, fmt, ...) \
1977 f2fs_printk(sbi, false, KERN_NOTICE fmt, ##__VA_ARGS__)
1978 #define f2fs_info(sbi, fmt, ...) \
1979 f2fs_printk(sbi, false, KERN_INFO fmt, ##__VA_ARGS__)
1980 #define f2fs_debug(sbi, fmt, ...) \
1981 f2fs_printk(sbi, false, KERN_DEBUG fmt, ##__VA_ARGS__)
1982
1983 #define f2fs_err_ratelimited(sbi, fmt, ...) \
1984 f2fs_printk(sbi, true, KERN_ERR fmt, ##__VA_ARGS__)
1985 #define f2fs_warn_ratelimited(sbi, fmt, ...) \
1986 f2fs_printk(sbi, true, KERN_WARNING fmt, ##__VA_ARGS__)
1987 #define f2fs_info_ratelimited(sbi, fmt, ...) \
1988 f2fs_printk(sbi, true, KERN_INFO fmt, ##__VA_ARGS__)
1989
1990 #ifdef CONFIG_F2FS_FAULT_INJECTION
1991 #define time_to_inject(sbi, type) __time_to_inject(sbi, type, __func__, \
1992 __builtin_return_address(0))
__time_to_inject(struct f2fs_sb_info * sbi,int type,const char * func,const char * parent_func)1993 static inline bool __time_to_inject(struct f2fs_sb_info *sbi, int type,
1994 const char *func, const char *parent_func)
1995 {
1996 struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info;
1997
1998 if (!ffi->inject_rate)
1999 return false;
2000
2001 if (!IS_FAULT_SET(ffi, type))
2002 return false;
2003
2004 atomic_inc(&ffi->inject_ops);
2005 if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) {
2006 atomic_set(&ffi->inject_ops, 0);
2007 ffi->inject_count[type]++;
2008 f2fs_info_ratelimited(sbi, "inject %s in %s of %pS",
2009 f2fs_fault_name[type], func, parent_func);
2010 return true;
2011 }
2012 return false;
2013 }
2014 #else
time_to_inject(struct f2fs_sb_info * sbi,int type)2015 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
2016 {
2017 return false;
2018 }
2019 #endif
2020
2021 /*
2022 * Test if the mounted volume is a multi-device volume.
2023 * - For a single regular disk volume, sbi->s_ndevs is 0.
2024 * - For a single zoned disk volume, sbi->s_ndevs is 1.
2025 * - For a multi-device volume, sbi->s_ndevs is always 2 or more.
2026 */
f2fs_is_multi_device(struct f2fs_sb_info * sbi)2027 static inline bool f2fs_is_multi_device(struct f2fs_sb_info *sbi)
2028 {
2029 return sbi->s_ndevs > 1;
2030 }
2031
f2fs_update_time(struct f2fs_sb_info * sbi,int type)2032 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
2033 {
2034 unsigned long now = jiffies;
2035
2036 sbi->last_time[type] = now;
2037
2038 /* DISCARD_TIME and GC_TIME are based on REQ_TIME */
2039 if (type == REQ_TIME) {
2040 sbi->last_time[DISCARD_TIME] = now;
2041 sbi->last_time[GC_TIME] = now;
2042 }
2043 }
2044
f2fs_time_over(struct f2fs_sb_info * sbi,int type)2045 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
2046 {
2047 unsigned long interval = sbi->interval_time[type] * HZ;
2048
2049 return time_after(jiffies, sbi->last_time[type] + interval);
2050 }
2051
f2fs_time_to_wait(struct f2fs_sb_info * sbi,int type)2052 static inline unsigned int f2fs_time_to_wait(struct f2fs_sb_info *sbi,
2053 int type)
2054 {
2055 unsigned long interval = sbi->interval_time[type] * HZ;
2056 unsigned int wait_ms = 0;
2057 long delta;
2058
2059 delta = (sbi->last_time[type] + interval) - jiffies;
2060 if (delta > 0)
2061 wait_ms = jiffies_to_msecs(delta);
2062
2063 return wait_ms;
2064 }
2065
2066 /*
2067 * Inline functions
2068 */
__f2fs_crc32(u32 crc,const void * address,unsigned int length)2069 static inline u32 __f2fs_crc32(u32 crc, const void *address,
2070 unsigned int length)
2071 {
2072 return crc32(crc, address, length);
2073 }
2074
f2fs_crc32(const void * address,unsigned int length)2075 static inline u32 f2fs_crc32(const void *address, unsigned int length)
2076 {
2077 return __f2fs_crc32(F2FS_SUPER_MAGIC, address, length);
2078 }
2079
f2fs_chksum(u32 crc,const void * address,unsigned int length)2080 static inline u32 f2fs_chksum(u32 crc, const void *address, unsigned int length)
2081 {
2082 return __f2fs_crc32(crc, address, length);
2083 }
2084
F2FS_I(struct inode * inode)2085 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
2086 {
2087 return container_of(inode, struct f2fs_inode_info, vfs_inode);
2088 }
2089
F2FS_SB(struct super_block * sb)2090 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
2091 {
2092 return sb->s_fs_info;
2093 }
2094
F2FS_I_SB(struct inode * inode)2095 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
2096 {
2097 return F2FS_SB(inode->i_sb);
2098 }
2099
F2FS_M_SB(struct address_space * mapping)2100 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
2101 {
2102 return F2FS_I_SB(mapping->host);
2103 }
2104
F2FS_F_SB(const struct folio * folio)2105 static inline struct f2fs_sb_info *F2FS_F_SB(const struct folio *folio)
2106 {
2107 return F2FS_M_SB(folio->mapping);
2108 }
2109
F2FS_RAW_SUPER(struct f2fs_sb_info * sbi)2110 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
2111 {
2112 return (struct f2fs_super_block *)(sbi->raw_super);
2113 }
2114
F2FS_SUPER_BLOCK(struct folio * folio,pgoff_t index)2115 static inline struct f2fs_super_block *F2FS_SUPER_BLOCK(struct folio *folio,
2116 pgoff_t index)
2117 {
2118 pgoff_t idx_in_folio = index % folio_nr_pages(folio);
2119
2120 return (struct f2fs_super_block *)
2121 (page_address(folio_page(folio, idx_in_folio)) +
2122 F2FS_SUPER_OFFSET);
2123 }
2124
F2FS_CKPT(struct f2fs_sb_info * sbi)2125 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
2126 {
2127 return (struct f2fs_checkpoint *)(sbi->ckpt);
2128 }
2129
F2FS_NODE(const struct folio * folio)2130 static inline struct f2fs_node *F2FS_NODE(const struct folio *folio)
2131 {
2132 return (struct f2fs_node *)folio_address(folio);
2133 }
2134
F2FS_INODE(const struct folio * folio)2135 static inline struct f2fs_inode *F2FS_INODE(const struct folio *folio)
2136 {
2137 return &((struct f2fs_node *)folio_address(folio))->i;
2138 }
2139
NM_I(struct f2fs_sb_info * sbi)2140 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
2141 {
2142 return (struct f2fs_nm_info *)(sbi->nm_info);
2143 }
2144
SM_I(struct f2fs_sb_info * sbi)2145 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
2146 {
2147 return (struct f2fs_sm_info *)(sbi->sm_info);
2148 }
2149
SIT_I(struct f2fs_sb_info * sbi)2150 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
2151 {
2152 return (struct sit_info *)(SM_I(sbi)->sit_info);
2153 }
2154
FREE_I(struct f2fs_sb_info * sbi)2155 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
2156 {
2157 return (struct free_segmap_info *)(SM_I(sbi)->free_info);
2158 }
2159
DIRTY_I(struct f2fs_sb_info * sbi)2160 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
2161 {
2162 return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
2163 }
2164
META_MAPPING(struct f2fs_sb_info * sbi)2165 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
2166 {
2167 return sbi->meta_inode->i_mapping;
2168 }
2169
NODE_MAPPING(struct f2fs_sb_info * sbi)2170 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
2171 {
2172 return sbi->node_inode->i_mapping;
2173 }
2174
is_meta_folio(struct folio * folio)2175 static inline bool is_meta_folio(struct folio *folio)
2176 {
2177 return folio->mapping == META_MAPPING(F2FS_F_SB(folio));
2178 }
2179
is_node_folio(struct folio * folio)2180 static inline bool is_node_folio(struct folio *folio)
2181 {
2182 return folio->mapping == NODE_MAPPING(F2FS_F_SB(folio));
2183 }
2184
is_sbi_flag_set(struct f2fs_sb_info * sbi,unsigned int type)2185 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
2186 {
2187 return test_bit(type, &sbi->s_flag);
2188 }
2189
set_sbi_flag(struct f2fs_sb_info * sbi,unsigned int type)2190 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
2191 {
2192 set_bit(type, &sbi->s_flag);
2193 }
2194
clear_sbi_flag(struct f2fs_sb_info * sbi,unsigned int type)2195 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
2196 {
2197 clear_bit(type, &sbi->s_flag);
2198 }
2199
cur_cp_version(struct f2fs_checkpoint * cp)2200 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
2201 {
2202 return le64_to_cpu(cp->checkpoint_ver);
2203 }
2204
f2fs_qf_ino(struct super_block * sb,int type)2205 static inline unsigned long f2fs_qf_ino(struct super_block *sb, int type)
2206 {
2207 if (type < F2FS_MAX_QUOTAS)
2208 return le32_to_cpu(F2FS_SB(sb)->raw_super->qf_ino[type]);
2209 return 0;
2210 }
2211
cur_cp_crc(struct f2fs_checkpoint * cp)2212 static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp)
2213 {
2214 size_t crc_offset = le32_to_cpu(cp->checksum_offset);
2215 return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset)));
2216 }
2217
__is_set_ckpt_flags(struct f2fs_checkpoint * cp,unsigned int f)2218 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
2219 {
2220 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
2221
2222 return ckpt_flags & f;
2223 }
2224
is_set_ckpt_flags(struct f2fs_sb_info * sbi,unsigned int f)2225 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
2226 {
2227 return __is_set_ckpt_flags(F2FS_CKPT(sbi), f);
2228 }
2229
__set_ckpt_flags(struct f2fs_checkpoint * cp,unsigned int f)2230 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
2231 {
2232 unsigned int ckpt_flags;
2233
2234 ckpt_flags = le32_to_cpu(cp->ckpt_flags);
2235 ckpt_flags |= f;
2236 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
2237 }
2238
set_ckpt_flags(struct f2fs_sb_info * sbi,unsigned int f)2239 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
2240 {
2241 unsigned long flags;
2242
2243 spin_lock_irqsave(&sbi->cp_lock, flags);
2244 __set_ckpt_flags(F2FS_CKPT(sbi), f);
2245 spin_unlock_irqrestore(&sbi->cp_lock, flags);
2246 }
2247
__clear_ckpt_flags(struct f2fs_checkpoint * cp,unsigned int f)2248 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
2249 {
2250 unsigned int ckpt_flags;
2251
2252 ckpt_flags = le32_to_cpu(cp->ckpt_flags);
2253 ckpt_flags &= (~f);
2254 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
2255 }
2256
clear_ckpt_flags(struct f2fs_sb_info * sbi,unsigned int f)2257 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
2258 {
2259 unsigned long flags;
2260
2261 spin_lock_irqsave(&sbi->cp_lock, flags);
2262 __clear_ckpt_flags(F2FS_CKPT(sbi), f);
2263 spin_unlock_irqrestore(&sbi->cp_lock, flags);
2264 }
2265
2266 #define init_f2fs_rwsem(sem) \
2267 do { \
2268 static struct lock_class_key __key; \
2269 \
2270 __init_f2fs_rwsem((sem), #sem, &__key); \
2271 } while (0)
2272
__init_f2fs_rwsem(struct f2fs_rwsem * sem,const char * sem_name,struct lock_class_key * key)2273 static inline void __init_f2fs_rwsem(struct f2fs_rwsem *sem,
2274 const char *sem_name, struct lock_class_key *key)
2275 {
2276 __init_rwsem(&sem->internal_rwsem, sem_name, key);
2277 #ifdef CONFIG_F2FS_UNFAIR_RWSEM
2278 init_waitqueue_head(&sem->read_waiters);
2279 #endif
2280 }
2281
f2fs_rwsem_is_locked(struct f2fs_rwsem * sem)2282 static inline int f2fs_rwsem_is_locked(struct f2fs_rwsem *sem)
2283 {
2284 return rwsem_is_locked(&sem->internal_rwsem);
2285 }
2286
f2fs_rwsem_is_contended(struct f2fs_rwsem * sem)2287 static inline int f2fs_rwsem_is_contended(struct f2fs_rwsem *sem)
2288 {
2289 return rwsem_is_contended(&sem->internal_rwsem);
2290 }
2291
f2fs_down_read(struct f2fs_rwsem * sem)2292 static inline void f2fs_down_read(struct f2fs_rwsem *sem)
2293 {
2294 #ifdef CONFIG_F2FS_UNFAIR_RWSEM
2295 wait_event(sem->read_waiters, down_read_trylock(&sem->internal_rwsem));
2296 #else
2297 down_read(&sem->internal_rwsem);
2298 #endif
2299 }
2300
f2fs_down_read_trylock(struct f2fs_rwsem * sem)2301 static inline int f2fs_down_read_trylock(struct f2fs_rwsem *sem)
2302 {
2303 return down_read_trylock(&sem->internal_rwsem);
2304 }
2305
f2fs_up_read(struct f2fs_rwsem * sem)2306 static inline void f2fs_up_read(struct f2fs_rwsem *sem)
2307 {
2308 up_read(&sem->internal_rwsem);
2309 }
2310
f2fs_down_write(struct f2fs_rwsem * sem)2311 static inline void f2fs_down_write(struct f2fs_rwsem *sem)
2312 {
2313 down_write(&sem->internal_rwsem);
2314 }
2315
2316 #ifdef CONFIG_DEBUG_LOCK_ALLOC
f2fs_down_read_nested(struct f2fs_rwsem * sem,int subclass)2317 static inline void f2fs_down_read_nested(struct f2fs_rwsem *sem, int subclass)
2318 {
2319 down_read_nested(&sem->internal_rwsem, subclass);
2320 }
2321
f2fs_down_write_nested(struct f2fs_rwsem * sem,int subclass)2322 static inline void f2fs_down_write_nested(struct f2fs_rwsem *sem, int subclass)
2323 {
2324 down_write_nested(&sem->internal_rwsem, subclass);
2325 }
2326 #else
2327 #define f2fs_down_read_nested(sem, subclass) f2fs_down_read(sem)
2328 #define f2fs_down_write_nested(sem, subclass) f2fs_down_write(sem)
2329 #endif
2330
f2fs_down_write_trylock(struct f2fs_rwsem * sem)2331 static inline int f2fs_down_write_trylock(struct f2fs_rwsem *sem)
2332 {
2333 return down_write_trylock(&sem->internal_rwsem);
2334 }
2335
f2fs_up_write(struct f2fs_rwsem * sem)2336 static inline void f2fs_up_write(struct f2fs_rwsem *sem)
2337 {
2338 up_write(&sem->internal_rwsem);
2339 #ifdef CONFIG_F2FS_UNFAIR_RWSEM
2340 wake_up_all(&sem->read_waiters);
2341 #endif
2342 }
2343
disable_nat_bits(struct f2fs_sb_info * sbi,bool lock)2344 static inline void disable_nat_bits(struct f2fs_sb_info *sbi, bool lock)
2345 {
2346 unsigned long flags;
2347 unsigned char *nat_bits;
2348
2349 /*
2350 * In order to re-enable nat_bits we need to call fsck.f2fs by
2351 * set_sbi_flag(sbi, SBI_NEED_FSCK). But it may give huge cost,
2352 * so let's rely on regular fsck or unclean shutdown.
2353 */
2354
2355 if (lock)
2356 spin_lock_irqsave(&sbi->cp_lock, flags);
2357 __clear_ckpt_flags(F2FS_CKPT(sbi), CP_NAT_BITS_FLAG);
2358 nat_bits = NM_I(sbi)->nat_bits;
2359 NM_I(sbi)->nat_bits = NULL;
2360 if (lock)
2361 spin_unlock_irqrestore(&sbi->cp_lock, flags);
2362
2363 kvfree(nat_bits);
2364 }
2365
enabled_nat_bits(struct f2fs_sb_info * sbi,struct cp_control * cpc)2366 static inline bool enabled_nat_bits(struct f2fs_sb_info *sbi,
2367 struct cp_control *cpc)
2368 {
2369 bool set = is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG);
2370
2371 return (cpc) ? (cpc->reason & CP_UMOUNT) && set : set;
2372 }
2373
f2fs_lock_op(struct f2fs_sb_info * sbi)2374 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
2375 {
2376 f2fs_down_read(&sbi->cp_rwsem);
2377 }
2378
f2fs_trylock_op(struct f2fs_sb_info * sbi)2379 static inline int f2fs_trylock_op(struct f2fs_sb_info *sbi)
2380 {
2381 if (time_to_inject(sbi, FAULT_LOCK_OP))
2382 return 0;
2383 return f2fs_down_read_trylock(&sbi->cp_rwsem);
2384 }
2385
f2fs_unlock_op(struct f2fs_sb_info * sbi)2386 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
2387 {
2388 f2fs_up_read(&sbi->cp_rwsem);
2389 }
2390
f2fs_lock_all(struct f2fs_sb_info * sbi)2391 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
2392 {
2393 f2fs_down_write(&sbi->cp_rwsem);
2394 }
2395
f2fs_unlock_all(struct f2fs_sb_info * sbi)2396 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
2397 {
2398 f2fs_up_write(&sbi->cp_rwsem);
2399 }
2400
__get_cp_reason(struct f2fs_sb_info * sbi)2401 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
2402 {
2403 int reason = CP_SYNC;
2404
2405 if (test_opt(sbi, FASTBOOT))
2406 reason = CP_FASTBOOT;
2407 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
2408 reason = CP_UMOUNT;
2409 return reason;
2410 }
2411
__remain_node_summaries(int reason)2412 static inline bool __remain_node_summaries(int reason)
2413 {
2414 return (reason & (CP_UMOUNT | CP_FASTBOOT));
2415 }
2416
__exist_node_summaries(struct f2fs_sb_info * sbi)2417 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
2418 {
2419 return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) ||
2420 is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG));
2421 }
2422
2423 /*
2424 * Check whether the inode has blocks or not
2425 */
F2FS_HAS_BLOCKS(struct inode * inode)2426 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
2427 {
2428 block_t xattr_block = F2FS_I(inode)->i_xattr_nid ? 1 : 0;
2429
2430 return (inode->i_blocks >> F2FS_LOG_SECTORS_PER_BLOCK) > xattr_block;
2431 }
2432
f2fs_has_xattr_block(unsigned int ofs)2433 static inline bool f2fs_has_xattr_block(unsigned int ofs)
2434 {
2435 return ofs == XATTR_NODE_OFFSET;
2436 }
2437
__allow_reserved_root(struct f2fs_sb_info * sbi,struct inode * inode,bool cap)2438 static inline bool __allow_reserved_root(struct f2fs_sb_info *sbi,
2439 struct inode *inode, bool cap)
2440 {
2441 if (!inode)
2442 return true;
2443 if (IS_NOQUOTA(inode))
2444 return true;
2445 if (uid_eq(F2FS_OPTION(sbi).s_resuid, current_fsuid()))
2446 return true;
2447 if (!gid_eq(F2FS_OPTION(sbi).s_resgid, GLOBAL_ROOT_GID) &&
2448 in_group_p(F2FS_OPTION(sbi).s_resgid))
2449 return true;
2450 if (cap && capable(CAP_SYS_RESOURCE))
2451 return true;
2452 return false;
2453 }
2454
get_available_block_count(struct f2fs_sb_info * sbi,struct inode * inode,bool cap)2455 static inline unsigned int get_available_block_count(struct f2fs_sb_info *sbi,
2456 struct inode *inode, bool cap)
2457 {
2458 block_t avail_user_block_count;
2459
2460 avail_user_block_count = sbi->user_block_count -
2461 sbi->current_reserved_blocks;
2462
2463 if (test_opt(sbi, RESERVE_ROOT) && !__allow_reserved_root(sbi, inode, cap))
2464 avail_user_block_count -= F2FS_OPTION(sbi).root_reserved_blocks;
2465
2466 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2467 if (avail_user_block_count > sbi->unusable_block_count)
2468 avail_user_block_count -= sbi->unusable_block_count;
2469 else
2470 avail_user_block_count = 0;
2471 }
2472
2473 return avail_user_block_count;
2474 }
2475
2476 static inline void f2fs_i_blocks_write(struct inode *, block_t, bool, bool);
inc_valid_block_count(struct f2fs_sb_info * sbi,struct inode * inode,blkcnt_t * count,bool partial)2477 static inline int inc_valid_block_count(struct f2fs_sb_info *sbi,
2478 struct inode *inode, blkcnt_t *count, bool partial)
2479 {
2480 long long diff = 0, release = 0;
2481 block_t avail_user_block_count;
2482 int ret;
2483
2484 ret = dquot_reserve_block(inode, *count);
2485 if (ret)
2486 return ret;
2487
2488 if (time_to_inject(sbi, FAULT_BLOCK)) {
2489 release = *count;
2490 goto release_quota;
2491 }
2492
2493 /*
2494 * let's increase this in prior to actual block count change in order
2495 * for f2fs_sync_file to avoid data races when deciding checkpoint.
2496 */
2497 percpu_counter_add(&sbi->alloc_valid_block_count, (*count));
2498
2499 spin_lock(&sbi->stat_lock);
2500
2501 avail_user_block_count = get_available_block_count(sbi, inode, true);
2502 diff = (long long)sbi->total_valid_block_count + *count -
2503 avail_user_block_count;
2504 if (unlikely(diff > 0)) {
2505 if (!partial) {
2506 spin_unlock(&sbi->stat_lock);
2507 release = *count;
2508 goto enospc;
2509 }
2510 if (diff > *count)
2511 diff = *count;
2512 *count -= diff;
2513 release = diff;
2514 if (!*count) {
2515 spin_unlock(&sbi->stat_lock);
2516 goto enospc;
2517 }
2518 }
2519 sbi->total_valid_block_count += (block_t)(*count);
2520
2521 spin_unlock(&sbi->stat_lock);
2522
2523 if (unlikely(release)) {
2524 percpu_counter_sub(&sbi->alloc_valid_block_count, release);
2525 dquot_release_reservation_block(inode, release);
2526 }
2527 f2fs_i_blocks_write(inode, *count, true, true);
2528 return 0;
2529
2530 enospc:
2531 percpu_counter_sub(&sbi->alloc_valid_block_count, release);
2532 release_quota:
2533 dquot_release_reservation_block(inode, release);
2534 return -ENOSPC;
2535 }
2536
2537 #define PAGE_PRIVATE_GET_FUNC(name, flagname) \
2538 static inline bool folio_test_f2fs_##name(const struct folio *folio) \
2539 { \
2540 unsigned long priv = (unsigned long)folio->private; \
2541 unsigned long v = (1UL << PAGE_PRIVATE_NOT_POINTER) | \
2542 (1UL << PAGE_PRIVATE_##flagname); \
2543 return (priv & v) == v; \
2544 } \
2545 static inline bool page_private_##name(struct page *page) \
2546 { \
2547 return PagePrivate(page) && \
2548 test_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page)) && \
2549 test_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
2550 }
2551
2552 #define PAGE_PRIVATE_SET_FUNC(name, flagname) \
2553 static inline void folio_set_f2fs_##name(struct folio *folio) \
2554 { \
2555 unsigned long v = (1UL << PAGE_PRIVATE_NOT_POINTER) | \
2556 (1UL << PAGE_PRIVATE_##flagname); \
2557 if (!folio->private) \
2558 folio_attach_private(folio, (void *)v); \
2559 else { \
2560 v |= (unsigned long)folio->private; \
2561 folio->private = (void *)v; \
2562 } \
2563 } \
2564 static inline void set_page_private_##name(struct page *page) \
2565 { \
2566 if (!PagePrivate(page)) \
2567 attach_page_private(page, (void *)0); \
2568 set_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page)); \
2569 set_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
2570 }
2571
2572 #define PAGE_PRIVATE_CLEAR_FUNC(name, flagname) \
2573 static inline void folio_clear_f2fs_##name(struct folio *folio) \
2574 { \
2575 unsigned long v = (unsigned long)folio->private; \
2576 \
2577 v &= ~(1UL << PAGE_PRIVATE_##flagname); \
2578 if (v == (1UL << PAGE_PRIVATE_NOT_POINTER)) \
2579 folio_detach_private(folio); \
2580 else \
2581 folio->private = (void *)v; \
2582 } \
2583 static inline void clear_page_private_##name(struct page *page) \
2584 { \
2585 clear_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
2586 if (page_private(page) == BIT(PAGE_PRIVATE_NOT_POINTER)) \
2587 detach_page_private(page); \
2588 }
2589
2590 PAGE_PRIVATE_GET_FUNC(nonpointer, NOT_POINTER);
2591 PAGE_PRIVATE_GET_FUNC(inline, INLINE_INODE);
2592 PAGE_PRIVATE_GET_FUNC(gcing, ONGOING_MIGRATION);
2593 PAGE_PRIVATE_GET_FUNC(atomic, ATOMIC_WRITE);
2594
2595 PAGE_PRIVATE_SET_FUNC(reference, REF_RESOURCE);
2596 PAGE_PRIVATE_SET_FUNC(inline, INLINE_INODE);
2597 PAGE_PRIVATE_SET_FUNC(gcing, ONGOING_MIGRATION);
2598 PAGE_PRIVATE_SET_FUNC(atomic, ATOMIC_WRITE);
2599
2600 PAGE_PRIVATE_CLEAR_FUNC(reference, REF_RESOURCE);
2601 PAGE_PRIVATE_CLEAR_FUNC(inline, INLINE_INODE);
2602 PAGE_PRIVATE_CLEAR_FUNC(gcing, ONGOING_MIGRATION);
2603 PAGE_PRIVATE_CLEAR_FUNC(atomic, ATOMIC_WRITE);
2604
folio_get_f2fs_data(struct folio * folio)2605 static inline unsigned long folio_get_f2fs_data(struct folio *folio)
2606 {
2607 unsigned long data = (unsigned long)folio->private;
2608
2609 if (!test_bit(PAGE_PRIVATE_NOT_POINTER, &data))
2610 return 0;
2611 return data >> PAGE_PRIVATE_MAX;
2612 }
2613
folio_set_f2fs_data(struct folio * folio,unsigned long data)2614 static inline void folio_set_f2fs_data(struct folio *folio, unsigned long data)
2615 {
2616 data = (1UL << PAGE_PRIVATE_NOT_POINTER) | (data << PAGE_PRIVATE_MAX);
2617
2618 if (!folio_test_private(folio))
2619 folio_attach_private(folio, (void *)data);
2620 else
2621 folio->private = (void *)((unsigned long)folio->private | data);
2622 }
2623
dec_valid_block_count(struct f2fs_sb_info * sbi,struct inode * inode,block_t count)2624 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
2625 struct inode *inode,
2626 block_t count)
2627 {
2628 blkcnt_t sectors = count << F2FS_LOG_SECTORS_PER_BLOCK;
2629
2630 spin_lock(&sbi->stat_lock);
2631 if (unlikely(sbi->total_valid_block_count < count)) {
2632 f2fs_warn(sbi, "Inconsistent total_valid_block_count:%u, ino:%lu, count:%u",
2633 sbi->total_valid_block_count, inode->i_ino, count);
2634 sbi->total_valid_block_count = 0;
2635 set_sbi_flag(sbi, SBI_NEED_FSCK);
2636 } else {
2637 sbi->total_valid_block_count -= count;
2638 }
2639 if (sbi->reserved_blocks &&
2640 sbi->current_reserved_blocks < sbi->reserved_blocks)
2641 sbi->current_reserved_blocks = min(sbi->reserved_blocks,
2642 sbi->current_reserved_blocks + count);
2643 spin_unlock(&sbi->stat_lock);
2644 if (unlikely(inode->i_blocks < sectors)) {
2645 f2fs_warn(sbi, "Inconsistent i_blocks, ino:%lu, iblocks:%llu, sectors:%llu",
2646 inode->i_ino,
2647 (unsigned long long)inode->i_blocks,
2648 (unsigned long long)sectors);
2649 set_sbi_flag(sbi, SBI_NEED_FSCK);
2650 return;
2651 }
2652 f2fs_i_blocks_write(inode, count, false, true);
2653 }
2654
inc_page_count(struct f2fs_sb_info * sbi,int count_type)2655 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
2656 {
2657 atomic_inc(&sbi->nr_pages[count_type]);
2658
2659 if (count_type == F2FS_DIRTY_DENTS ||
2660 count_type == F2FS_DIRTY_NODES ||
2661 count_type == F2FS_DIRTY_META ||
2662 count_type == F2FS_DIRTY_QDATA ||
2663 count_type == F2FS_DIRTY_IMETA)
2664 set_sbi_flag(sbi, SBI_IS_DIRTY);
2665 }
2666
inode_inc_dirty_pages(struct inode * inode)2667 static inline void inode_inc_dirty_pages(struct inode *inode)
2668 {
2669 atomic_inc(&F2FS_I(inode)->dirty_pages);
2670 inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
2671 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
2672 if (IS_NOQUOTA(inode))
2673 inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
2674 }
2675
dec_page_count(struct f2fs_sb_info * sbi,int count_type)2676 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
2677 {
2678 atomic_dec(&sbi->nr_pages[count_type]);
2679 }
2680
inode_dec_dirty_pages(struct inode * inode)2681 static inline void inode_dec_dirty_pages(struct inode *inode)
2682 {
2683 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
2684 !S_ISLNK(inode->i_mode))
2685 return;
2686
2687 atomic_dec(&F2FS_I(inode)->dirty_pages);
2688 dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
2689 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
2690 if (IS_NOQUOTA(inode))
2691 dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
2692 }
2693
inc_atomic_write_cnt(struct inode * inode)2694 static inline void inc_atomic_write_cnt(struct inode *inode)
2695 {
2696 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2697 struct f2fs_inode_info *fi = F2FS_I(inode);
2698 u64 current_write;
2699
2700 fi->atomic_write_cnt++;
2701 atomic64_inc(&sbi->current_atomic_write);
2702 current_write = atomic64_read(&sbi->current_atomic_write);
2703 if (current_write > sbi->peak_atomic_write)
2704 sbi->peak_atomic_write = current_write;
2705 }
2706
release_atomic_write_cnt(struct inode * inode)2707 static inline void release_atomic_write_cnt(struct inode *inode)
2708 {
2709 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2710 struct f2fs_inode_info *fi = F2FS_I(inode);
2711
2712 atomic64_sub(fi->atomic_write_cnt, &sbi->current_atomic_write);
2713 fi->atomic_write_cnt = 0;
2714 }
2715
get_pages(struct f2fs_sb_info * sbi,int count_type)2716 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type)
2717 {
2718 return atomic_read(&sbi->nr_pages[count_type]);
2719 }
2720
get_dirty_pages(struct inode * inode)2721 static inline int get_dirty_pages(struct inode *inode)
2722 {
2723 return atomic_read(&F2FS_I(inode)->dirty_pages);
2724 }
2725
get_blocktype_secs(struct f2fs_sb_info * sbi,int block_type)2726 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
2727 {
2728 return div_u64(get_pages(sbi, block_type) + BLKS_PER_SEC(sbi) - 1,
2729 BLKS_PER_SEC(sbi));
2730 }
2731
valid_user_blocks(struct f2fs_sb_info * sbi)2732 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
2733 {
2734 return sbi->total_valid_block_count;
2735 }
2736
discard_blocks(struct f2fs_sb_info * sbi)2737 static inline block_t discard_blocks(struct f2fs_sb_info *sbi)
2738 {
2739 return sbi->discard_blks;
2740 }
2741
__bitmap_size(struct f2fs_sb_info * sbi,int flag)2742 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
2743 {
2744 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2745
2746 /* return NAT or SIT bitmap */
2747 if (flag == NAT_BITMAP)
2748 return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
2749 else if (flag == SIT_BITMAP)
2750 return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
2751
2752 return 0;
2753 }
2754
__cp_payload(struct f2fs_sb_info * sbi)2755 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
2756 {
2757 return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
2758 }
2759
__bitmap_ptr(struct f2fs_sb_info * sbi,int flag)2760 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
2761 {
2762 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2763 void *tmp_ptr = &ckpt->sit_nat_version_bitmap;
2764 int offset;
2765
2766 if (is_set_ckpt_flags(sbi, CP_LARGE_NAT_BITMAP_FLAG)) {
2767 offset = (flag == SIT_BITMAP) ?
2768 le32_to_cpu(ckpt->nat_ver_bitmap_bytesize) : 0;
2769 /*
2770 * if large_nat_bitmap feature is enabled, leave checksum
2771 * protection for all nat/sit bitmaps.
2772 */
2773 return tmp_ptr + offset + sizeof(__le32);
2774 }
2775
2776 if (__cp_payload(sbi) > 0) {
2777 if (flag == NAT_BITMAP)
2778 return tmp_ptr;
2779 else
2780 return (unsigned char *)ckpt + F2FS_BLKSIZE;
2781 } else {
2782 offset = (flag == NAT_BITMAP) ?
2783 le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
2784 return tmp_ptr + offset;
2785 }
2786 }
2787
__start_cp_addr(struct f2fs_sb_info * sbi)2788 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
2789 {
2790 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
2791
2792 if (sbi->cur_cp_pack == 2)
2793 start_addr += BLKS_PER_SEG(sbi);
2794 return start_addr;
2795 }
2796
__start_cp_next_addr(struct f2fs_sb_info * sbi)2797 static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi)
2798 {
2799 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
2800
2801 if (sbi->cur_cp_pack == 1)
2802 start_addr += BLKS_PER_SEG(sbi);
2803 return start_addr;
2804 }
2805
__set_cp_next_pack(struct f2fs_sb_info * sbi)2806 static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi)
2807 {
2808 sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1;
2809 }
2810
__start_sum_addr(struct f2fs_sb_info * sbi)2811 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
2812 {
2813 return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
2814 }
2815
2816 extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync);
inc_valid_node_count(struct f2fs_sb_info * sbi,struct inode * inode,bool is_inode)2817 static inline int inc_valid_node_count(struct f2fs_sb_info *sbi,
2818 struct inode *inode, bool is_inode)
2819 {
2820 block_t valid_block_count;
2821 unsigned int valid_node_count, avail_user_node_count;
2822 unsigned int avail_user_block_count;
2823 int err;
2824
2825 if (is_inode) {
2826 if (inode) {
2827 err = dquot_alloc_inode(inode);
2828 if (err)
2829 return err;
2830 }
2831 } else {
2832 err = dquot_reserve_block(inode, 1);
2833 if (err)
2834 return err;
2835 }
2836
2837 if (time_to_inject(sbi, FAULT_BLOCK))
2838 goto enospc;
2839
2840 spin_lock(&sbi->stat_lock);
2841
2842 valid_block_count = sbi->total_valid_block_count + 1;
2843 avail_user_block_count = get_available_block_count(sbi, inode,
2844 test_opt(sbi, RESERVE_NODE));
2845
2846 if (unlikely(valid_block_count > avail_user_block_count)) {
2847 spin_unlock(&sbi->stat_lock);
2848 goto enospc;
2849 }
2850
2851 avail_user_node_count = sbi->total_node_count - F2FS_RESERVED_NODE_NUM;
2852 if (test_opt(sbi, RESERVE_NODE) &&
2853 !__allow_reserved_root(sbi, inode, true))
2854 avail_user_node_count -= F2FS_OPTION(sbi).root_reserved_nodes;
2855 valid_node_count = sbi->total_valid_node_count + 1;
2856 if (unlikely(valid_node_count > avail_user_node_count)) {
2857 spin_unlock(&sbi->stat_lock);
2858 goto enospc;
2859 }
2860
2861 sbi->total_valid_node_count++;
2862 sbi->total_valid_block_count++;
2863 spin_unlock(&sbi->stat_lock);
2864
2865 if (inode) {
2866 if (is_inode)
2867 f2fs_mark_inode_dirty_sync(inode, true);
2868 else
2869 f2fs_i_blocks_write(inode, 1, true, true);
2870 }
2871
2872 percpu_counter_inc(&sbi->alloc_valid_block_count);
2873 return 0;
2874
2875 enospc:
2876 if (is_inode) {
2877 if (inode)
2878 dquot_free_inode(inode);
2879 } else {
2880 dquot_release_reservation_block(inode, 1);
2881 }
2882 return -ENOSPC;
2883 }
2884
dec_valid_node_count(struct f2fs_sb_info * sbi,struct inode * inode,bool is_inode)2885 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
2886 struct inode *inode, bool is_inode)
2887 {
2888 spin_lock(&sbi->stat_lock);
2889
2890 if (unlikely(!sbi->total_valid_block_count ||
2891 !sbi->total_valid_node_count)) {
2892 f2fs_warn(sbi, "dec_valid_node_count: inconsistent block counts, total_valid_block:%u, total_valid_node:%u",
2893 sbi->total_valid_block_count,
2894 sbi->total_valid_node_count);
2895 set_sbi_flag(sbi, SBI_NEED_FSCK);
2896 } else {
2897 sbi->total_valid_block_count--;
2898 sbi->total_valid_node_count--;
2899 }
2900
2901 if (sbi->reserved_blocks &&
2902 sbi->current_reserved_blocks < sbi->reserved_blocks)
2903 sbi->current_reserved_blocks++;
2904
2905 spin_unlock(&sbi->stat_lock);
2906
2907 if (is_inode) {
2908 dquot_free_inode(inode);
2909 } else {
2910 if (unlikely(inode->i_blocks == 0)) {
2911 f2fs_warn(sbi, "dec_valid_node_count: inconsistent i_blocks, ino:%lu, iblocks:%llu",
2912 inode->i_ino,
2913 (unsigned long long)inode->i_blocks);
2914 set_sbi_flag(sbi, SBI_NEED_FSCK);
2915 return;
2916 }
2917 f2fs_i_blocks_write(inode, 1, false, true);
2918 }
2919 }
2920
valid_node_count(struct f2fs_sb_info * sbi)2921 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
2922 {
2923 return sbi->total_valid_node_count;
2924 }
2925
inc_valid_inode_count(struct f2fs_sb_info * sbi)2926 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
2927 {
2928 percpu_counter_inc(&sbi->total_valid_inode_count);
2929 }
2930
dec_valid_inode_count(struct f2fs_sb_info * sbi)2931 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
2932 {
2933 percpu_counter_dec(&sbi->total_valid_inode_count);
2934 }
2935
valid_inode_count(struct f2fs_sb_info * sbi)2936 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi)
2937 {
2938 return percpu_counter_sum_positive(&sbi->total_valid_inode_count);
2939 }
2940
f2fs_grab_cache_folio(struct address_space * mapping,pgoff_t index,bool for_write)2941 static inline struct folio *f2fs_grab_cache_folio(struct address_space *mapping,
2942 pgoff_t index, bool for_write)
2943 {
2944 struct folio *folio;
2945 unsigned int flags;
2946
2947 if (IS_ENABLED(CONFIG_F2FS_FAULT_INJECTION)) {
2948 fgf_t fgf_flags;
2949
2950 if (!for_write)
2951 fgf_flags = FGP_LOCK | FGP_ACCESSED;
2952 else
2953 fgf_flags = FGP_LOCK;
2954 folio = __filemap_get_folio(mapping, index, fgf_flags, 0);
2955 if (!IS_ERR(folio))
2956 return folio;
2957
2958 if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC))
2959 return ERR_PTR(-ENOMEM);
2960 }
2961
2962 if (!for_write)
2963 return filemap_grab_folio(mapping, index);
2964
2965 flags = memalloc_nofs_save();
2966 folio = __filemap_get_folio(mapping, index, FGP_WRITEBEGIN,
2967 mapping_gfp_mask(mapping));
2968 memalloc_nofs_restore(flags);
2969
2970 return folio;
2971 }
2972
f2fs_filemap_get_folio(struct address_space * mapping,pgoff_t index,fgf_t fgp_flags,gfp_t gfp_mask)2973 static inline struct folio *f2fs_filemap_get_folio(
2974 struct address_space *mapping, pgoff_t index,
2975 fgf_t fgp_flags, gfp_t gfp_mask)
2976 {
2977 if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_GET))
2978 return ERR_PTR(-ENOMEM);
2979
2980 return __filemap_get_folio(mapping, index, fgp_flags, gfp_mask);
2981 }
2982
f2fs_folio_put(struct folio * folio,bool unlock)2983 static inline void f2fs_folio_put(struct folio *folio, bool unlock)
2984 {
2985 if (IS_ERR_OR_NULL(folio))
2986 return;
2987
2988 if (unlock) {
2989 f2fs_bug_on(F2FS_F_SB(folio), !folio_test_locked(folio));
2990 folio_unlock(folio);
2991 }
2992 folio_put(folio);
2993 }
2994
f2fs_put_page(struct page * page,bool unlock)2995 static inline void f2fs_put_page(struct page *page, bool unlock)
2996 {
2997 if (!page)
2998 return;
2999 f2fs_folio_put(page_folio(page), unlock);
3000 }
3001
f2fs_put_dnode(struct dnode_of_data * dn)3002 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
3003 {
3004 if (dn->node_folio)
3005 f2fs_folio_put(dn->node_folio, true);
3006 if (dn->inode_folio && dn->node_folio != dn->inode_folio)
3007 f2fs_folio_put(dn->inode_folio, false);
3008 dn->node_folio = NULL;
3009 dn->inode_folio = NULL;
3010 }
3011
f2fs_kmem_cache_create(const char * name,size_t size)3012 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
3013 size_t size)
3014 {
3015 return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
3016 }
3017
f2fs_kmem_cache_alloc_nofail(struct kmem_cache * cachep,gfp_t flags)3018 static inline void *f2fs_kmem_cache_alloc_nofail(struct kmem_cache *cachep,
3019 gfp_t flags)
3020 {
3021 void *entry;
3022
3023 entry = kmem_cache_alloc(cachep, flags);
3024 if (!entry)
3025 entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
3026 return entry;
3027 }
3028
f2fs_kmem_cache_alloc(struct kmem_cache * cachep,gfp_t flags,bool nofail,struct f2fs_sb_info * sbi)3029 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
3030 gfp_t flags, bool nofail, struct f2fs_sb_info *sbi)
3031 {
3032 if (nofail)
3033 return f2fs_kmem_cache_alloc_nofail(cachep, flags);
3034
3035 if (time_to_inject(sbi, FAULT_SLAB_ALLOC))
3036 return NULL;
3037
3038 return kmem_cache_alloc(cachep, flags);
3039 }
3040
is_inflight_io(struct f2fs_sb_info * sbi,int type)3041 static inline bool is_inflight_io(struct f2fs_sb_info *sbi, int type)
3042 {
3043 if (get_pages(sbi, F2FS_RD_DATA) || get_pages(sbi, F2FS_RD_NODE) ||
3044 get_pages(sbi, F2FS_RD_META) || get_pages(sbi, F2FS_WB_DATA) ||
3045 get_pages(sbi, F2FS_WB_CP_DATA) ||
3046 get_pages(sbi, F2FS_DIO_READ) ||
3047 get_pages(sbi, F2FS_DIO_WRITE))
3048 return true;
3049
3050 if (type != DISCARD_TIME && SM_I(sbi) && SM_I(sbi)->dcc_info &&
3051 atomic_read(&SM_I(sbi)->dcc_info->queued_discard))
3052 return true;
3053
3054 if (SM_I(sbi) && SM_I(sbi)->fcc_info &&
3055 atomic_read(&SM_I(sbi)->fcc_info->queued_flush))
3056 return true;
3057 return false;
3058 }
3059
is_inflight_read_io(struct f2fs_sb_info * sbi)3060 static inline bool is_inflight_read_io(struct f2fs_sb_info *sbi)
3061 {
3062 return get_pages(sbi, F2FS_RD_DATA) || get_pages(sbi, F2FS_DIO_READ);
3063 }
3064
is_idle(struct f2fs_sb_info * sbi,int type)3065 static inline bool is_idle(struct f2fs_sb_info *sbi, int type)
3066 {
3067 bool zoned_gc = (type == GC_TIME &&
3068 F2FS_HAS_FEATURE(sbi, F2FS_FEATURE_BLKZONED));
3069
3070 if (sbi->gc_mode == GC_URGENT_HIGH)
3071 return true;
3072
3073 if (sbi->bggc_io_aware == AWARE_READ_IO && is_inflight_read_io(sbi))
3074 return false;
3075 if (sbi->bggc_io_aware == AWARE_ALL_IO && is_inflight_io(sbi, type))
3076 return false;
3077
3078 if (sbi->gc_mode == GC_URGENT_MID)
3079 return true;
3080
3081 if (sbi->gc_mode == GC_URGENT_LOW &&
3082 (type == DISCARD_TIME || type == GC_TIME))
3083 return true;
3084
3085 if (zoned_gc)
3086 return true;
3087
3088 return f2fs_time_over(sbi, type);
3089 }
3090
f2fs_radix_tree_insert(struct radix_tree_root * root,unsigned long index,void * item)3091 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
3092 unsigned long index, void *item)
3093 {
3094 while (radix_tree_insert(root, index, item))
3095 cond_resched();
3096 }
3097
3098 #define RAW_IS_INODE(p) ((p)->footer.nid == (p)->footer.ino)
3099
IS_INODE(const struct folio * folio)3100 static inline bool IS_INODE(const struct folio *folio)
3101 {
3102 struct f2fs_node *p = F2FS_NODE(folio);
3103
3104 return RAW_IS_INODE(p);
3105 }
3106
offset_in_addr(struct f2fs_inode * i)3107 static inline int offset_in_addr(struct f2fs_inode *i)
3108 {
3109 return (i->i_inline & F2FS_EXTRA_ATTR) ?
3110 (le16_to_cpu(i->i_extra_isize) / sizeof(__le32)) : 0;
3111 }
3112
blkaddr_in_node(struct f2fs_node * node)3113 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
3114 {
3115 return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
3116 }
3117
3118 static inline int f2fs_has_extra_attr(struct inode *inode);
get_dnode_base(struct inode * inode,struct folio * node_folio)3119 static inline unsigned int get_dnode_base(struct inode *inode,
3120 struct folio *node_folio)
3121 {
3122 if (!IS_INODE(node_folio))
3123 return 0;
3124
3125 return inode ? get_extra_isize(inode) :
3126 offset_in_addr(&F2FS_NODE(node_folio)->i);
3127 }
3128
get_dnode_addr(struct inode * inode,struct folio * node_folio)3129 static inline __le32 *get_dnode_addr(struct inode *inode,
3130 struct folio *node_folio)
3131 {
3132 return blkaddr_in_node(F2FS_NODE(node_folio)) +
3133 get_dnode_base(inode, node_folio);
3134 }
3135
data_blkaddr(struct inode * inode,struct folio * node_folio,unsigned int offset)3136 static inline block_t data_blkaddr(struct inode *inode,
3137 struct folio *node_folio, unsigned int offset)
3138 {
3139 return le32_to_cpu(*(get_dnode_addr(inode, node_folio) + offset));
3140 }
3141
f2fs_data_blkaddr(struct dnode_of_data * dn)3142 static inline block_t f2fs_data_blkaddr(struct dnode_of_data *dn)
3143 {
3144 return data_blkaddr(dn->inode, dn->node_folio, dn->ofs_in_node);
3145 }
3146
f2fs_test_bit(unsigned int nr,char * addr)3147 static inline int f2fs_test_bit(unsigned int nr, char *addr)
3148 {
3149 int mask;
3150
3151 addr += (nr >> 3);
3152 mask = BIT(7 - (nr & 0x07));
3153 return mask & *addr;
3154 }
3155
f2fs_set_bit(unsigned int nr,char * addr)3156 static inline void f2fs_set_bit(unsigned int nr, char *addr)
3157 {
3158 int mask;
3159
3160 addr += (nr >> 3);
3161 mask = BIT(7 - (nr & 0x07));
3162 *addr |= mask;
3163 }
3164
f2fs_clear_bit(unsigned int nr,char * addr)3165 static inline void f2fs_clear_bit(unsigned int nr, char *addr)
3166 {
3167 int mask;
3168
3169 addr += (nr >> 3);
3170 mask = BIT(7 - (nr & 0x07));
3171 *addr &= ~mask;
3172 }
3173
f2fs_test_and_set_bit(unsigned int nr,char * addr)3174 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
3175 {
3176 int mask;
3177 int ret;
3178
3179 addr += (nr >> 3);
3180 mask = BIT(7 - (nr & 0x07));
3181 ret = mask & *addr;
3182 *addr |= mask;
3183 return ret;
3184 }
3185
f2fs_test_and_clear_bit(unsigned int nr,char * addr)3186 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
3187 {
3188 int mask;
3189 int ret;
3190
3191 addr += (nr >> 3);
3192 mask = BIT(7 - (nr & 0x07));
3193 ret = mask & *addr;
3194 *addr &= ~mask;
3195 return ret;
3196 }
3197
f2fs_change_bit(unsigned int nr,char * addr)3198 static inline void f2fs_change_bit(unsigned int nr, char *addr)
3199 {
3200 int mask;
3201
3202 addr += (nr >> 3);
3203 mask = BIT(7 - (nr & 0x07));
3204 *addr ^= mask;
3205 }
3206
3207 /*
3208 * On-disk inode flags (f2fs_inode::i_flags)
3209 */
3210 #define F2FS_COMPR_FL 0x00000004 /* Compress file */
3211 #define F2FS_SYNC_FL 0x00000008 /* Synchronous updates */
3212 #define F2FS_IMMUTABLE_FL 0x00000010 /* Immutable file */
3213 #define F2FS_APPEND_FL 0x00000020 /* writes to file may only append */
3214 #define F2FS_NODUMP_FL 0x00000040 /* do not dump file */
3215 #define F2FS_NOATIME_FL 0x00000080 /* do not update atime */
3216 #define F2FS_NOCOMP_FL 0x00000400 /* Don't compress */
3217 #define F2FS_INDEX_FL 0x00001000 /* hash-indexed directory */
3218 #define F2FS_DIRSYNC_FL 0x00010000 /* dirsync behaviour (directories only) */
3219 #define F2FS_PROJINHERIT_FL 0x20000000 /* Create with parents projid */
3220 #define F2FS_CASEFOLD_FL 0x40000000 /* Casefolded file */
3221 #define F2FS_DEVICE_ALIAS_FL 0x80000000 /* File for aliasing a device */
3222
3223 #define F2FS_QUOTA_DEFAULT_FL (F2FS_NOATIME_FL | F2FS_IMMUTABLE_FL)
3224
3225 /* Flags that should be inherited by new inodes from their parent. */
3226 #define F2FS_FL_INHERITED (F2FS_SYNC_FL | F2FS_NODUMP_FL | F2FS_NOATIME_FL | \
3227 F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
3228 F2FS_CASEFOLD_FL)
3229
3230 /* Flags that are appropriate for regular files (all but dir-specific ones). */
3231 #define F2FS_REG_FLMASK (~(F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
3232 F2FS_CASEFOLD_FL))
3233
3234 /* Flags that are appropriate for non-directories/regular files. */
3235 #define F2FS_OTHER_FLMASK (F2FS_NODUMP_FL | F2FS_NOATIME_FL)
3236
3237 #define IS_DEVICE_ALIASING(inode) (F2FS_I(inode)->i_flags & F2FS_DEVICE_ALIAS_FL)
3238
f2fs_mask_flags(umode_t mode,__u32 flags)3239 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
3240 {
3241 if (S_ISDIR(mode))
3242 return flags;
3243 else if (S_ISREG(mode))
3244 return flags & F2FS_REG_FLMASK;
3245 else
3246 return flags & F2FS_OTHER_FLMASK;
3247 }
3248
__mark_inode_dirty_flag(struct inode * inode,int flag,bool set)3249 static inline void __mark_inode_dirty_flag(struct inode *inode,
3250 int flag, bool set)
3251 {
3252 switch (flag) {
3253 case FI_INLINE_XATTR:
3254 case FI_INLINE_DATA:
3255 case FI_INLINE_DENTRY:
3256 case FI_NEW_INODE:
3257 if (set)
3258 return;
3259 fallthrough;
3260 case FI_DATA_EXIST:
3261 case FI_PIN_FILE:
3262 case FI_COMPRESS_RELEASED:
3263 f2fs_mark_inode_dirty_sync(inode, true);
3264 }
3265 }
3266
set_inode_flag(struct inode * inode,int flag)3267 static inline void set_inode_flag(struct inode *inode, int flag)
3268 {
3269 set_bit(flag, F2FS_I(inode)->flags);
3270 __mark_inode_dirty_flag(inode, flag, true);
3271 }
3272
is_inode_flag_set(struct inode * inode,int flag)3273 static inline int is_inode_flag_set(struct inode *inode, int flag)
3274 {
3275 return test_bit(flag, F2FS_I(inode)->flags);
3276 }
3277
clear_inode_flag(struct inode * inode,int flag)3278 static inline void clear_inode_flag(struct inode *inode, int flag)
3279 {
3280 clear_bit(flag, F2FS_I(inode)->flags);
3281 __mark_inode_dirty_flag(inode, flag, false);
3282 }
3283
f2fs_verity_in_progress(struct inode * inode)3284 static inline bool f2fs_verity_in_progress(struct inode *inode)
3285 {
3286 return IS_ENABLED(CONFIG_FS_VERITY) &&
3287 is_inode_flag_set(inode, FI_VERITY_IN_PROGRESS);
3288 }
3289
set_acl_inode(struct inode * inode,umode_t mode)3290 static inline void set_acl_inode(struct inode *inode, umode_t mode)
3291 {
3292 F2FS_I(inode)->i_acl_mode = mode;
3293 set_inode_flag(inode, FI_ACL_MODE);
3294 f2fs_mark_inode_dirty_sync(inode, false);
3295 }
3296
f2fs_i_links_write(struct inode * inode,bool inc)3297 static inline void f2fs_i_links_write(struct inode *inode, bool inc)
3298 {
3299 if (inc)
3300 inc_nlink(inode);
3301 else
3302 drop_nlink(inode);
3303 f2fs_mark_inode_dirty_sync(inode, true);
3304 }
3305
f2fs_i_blocks_write(struct inode * inode,block_t diff,bool add,bool claim)3306 static inline void f2fs_i_blocks_write(struct inode *inode,
3307 block_t diff, bool add, bool claim)
3308 {
3309 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
3310 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
3311
3312 /* add = 1, claim = 1 should be dquot_reserve_block in pair */
3313 if (add) {
3314 if (claim)
3315 dquot_claim_block(inode, diff);
3316 else
3317 dquot_alloc_block_nofail(inode, diff);
3318 } else {
3319 dquot_free_block(inode, diff);
3320 }
3321
3322 f2fs_mark_inode_dirty_sync(inode, true);
3323 if (clean || recover)
3324 set_inode_flag(inode, FI_AUTO_RECOVER);
3325 }
3326
3327 static inline bool f2fs_is_atomic_file(struct inode *inode);
3328
f2fs_i_size_write(struct inode * inode,loff_t i_size)3329 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size)
3330 {
3331 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
3332 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
3333
3334 if (i_size_read(inode) == i_size)
3335 return;
3336
3337 i_size_write(inode, i_size);
3338
3339 if (f2fs_is_atomic_file(inode))
3340 return;
3341
3342 f2fs_mark_inode_dirty_sync(inode, true);
3343 if (clean || recover)
3344 set_inode_flag(inode, FI_AUTO_RECOVER);
3345 }
3346
f2fs_i_depth_write(struct inode * inode,unsigned int depth)3347 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth)
3348 {
3349 F2FS_I(inode)->i_current_depth = depth;
3350 f2fs_mark_inode_dirty_sync(inode, true);
3351 }
3352
f2fs_i_gc_failures_write(struct inode * inode,unsigned int count)3353 static inline void f2fs_i_gc_failures_write(struct inode *inode,
3354 unsigned int count)
3355 {
3356 F2FS_I(inode)->i_gc_failures = count;
3357 f2fs_mark_inode_dirty_sync(inode, true);
3358 }
3359
f2fs_i_xnid_write(struct inode * inode,nid_t xnid)3360 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid)
3361 {
3362 F2FS_I(inode)->i_xattr_nid = xnid;
3363 f2fs_mark_inode_dirty_sync(inode, true);
3364 }
3365
f2fs_i_pino_write(struct inode * inode,nid_t pino)3366 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino)
3367 {
3368 F2FS_I(inode)->i_pino = pino;
3369 f2fs_mark_inode_dirty_sync(inode, true);
3370 }
3371
get_inline_info(struct inode * inode,struct f2fs_inode * ri)3372 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri)
3373 {
3374 struct f2fs_inode_info *fi = F2FS_I(inode);
3375
3376 if (ri->i_inline & F2FS_INLINE_XATTR)
3377 set_bit(FI_INLINE_XATTR, fi->flags);
3378 if (ri->i_inline & F2FS_INLINE_DATA)
3379 set_bit(FI_INLINE_DATA, fi->flags);
3380 if (ri->i_inline & F2FS_INLINE_DENTRY)
3381 set_bit(FI_INLINE_DENTRY, fi->flags);
3382 if (ri->i_inline & F2FS_DATA_EXIST)
3383 set_bit(FI_DATA_EXIST, fi->flags);
3384 if (ri->i_inline & F2FS_EXTRA_ATTR)
3385 set_bit(FI_EXTRA_ATTR, fi->flags);
3386 if (ri->i_inline & F2FS_PIN_FILE)
3387 set_bit(FI_PIN_FILE, fi->flags);
3388 if (ri->i_inline & F2FS_COMPRESS_RELEASED)
3389 set_bit(FI_COMPRESS_RELEASED, fi->flags);
3390 }
3391
set_raw_inline(struct inode * inode,struct f2fs_inode * ri)3392 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri)
3393 {
3394 ri->i_inline = 0;
3395
3396 if (is_inode_flag_set(inode, FI_INLINE_XATTR))
3397 ri->i_inline |= F2FS_INLINE_XATTR;
3398 if (is_inode_flag_set(inode, FI_INLINE_DATA))
3399 ri->i_inline |= F2FS_INLINE_DATA;
3400 if (is_inode_flag_set(inode, FI_INLINE_DENTRY))
3401 ri->i_inline |= F2FS_INLINE_DENTRY;
3402 if (is_inode_flag_set(inode, FI_DATA_EXIST))
3403 ri->i_inline |= F2FS_DATA_EXIST;
3404 if (is_inode_flag_set(inode, FI_EXTRA_ATTR))
3405 ri->i_inline |= F2FS_EXTRA_ATTR;
3406 if (is_inode_flag_set(inode, FI_PIN_FILE))
3407 ri->i_inline |= F2FS_PIN_FILE;
3408 if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED))
3409 ri->i_inline |= F2FS_COMPRESS_RELEASED;
3410 }
3411
f2fs_has_extra_attr(struct inode * inode)3412 static inline int f2fs_has_extra_attr(struct inode *inode)
3413 {
3414 return is_inode_flag_set(inode, FI_EXTRA_ATTR);
3415 }
3416
f2fs_has_inline_xattr(struct inode * inode)3417 static inline int f2fs_has_inline_xattr(struct inode *inode)
3418 {
3419 return is_inode_flag_set(inode, FI_INLINE_XATTR);
3420 }
3421
f2fs_compressed_file(struct inode * inode)3422 static inline int f2fs_compressed_file(struct inode *inode)
3423 {
3424 return S_ISREG(inode->i_mode) &&
3425 is_inode_flag_set(inode, FI_COMPRESSED_FILE);
3426 }
3427
f2fs_need_compress_data(struct inode * inode)3428 static inline bool f2fs_need_compress_data(struct inode *inode)
3429 {
3430 int compress_mode = F2FS_OPTION(F2FS_I_SB(inode)).compress_mode;
3431
3432 if (!f2fs_compressed_file(inode))
3433 return false;
3434
3435 if (compress_mode == COMPR_MODE_FS)
3436 return true;
3437 else if (compress_mode == COMPR_MODE_USER &&
3438 is_inode_flag_set(inode, FI_ENABLE_COMPRESS))
3439 return true;
3440
3441 return false;
3442 }
3443
addrs_per_page(struct inode * inode,bool is_inode)3444 static inline unsigned int addrs_per_page(struct inode *inode,
3445 bool is_inode)
3446 {
3447 unsigned int addrs = is_inode ? (CUR_ADDRS_PER_INODE(inode) -
3448 get_inline_xattr_addrs(inode)) : DEF_ADDRS_PER_BLOCK;
3449
3450 if (f2fs_compressed_file(inode))
3451 return ALIGN_DOWN(addrs, F2FS_I(inode)->i_cluster_size);
3452 return addrs;
3453 }
3454
3455 static inline
inline_xattr_addr(struct inode * inode,const struct folio * folio)3456 void *inline_xattr_addr(struct inode *inode, const struct folio *folio)
3457 {
3458 struct f2fs_inode *ri = F2FS_INODE(folio);
3459
3460 return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
3461 get_inline_xattr_addrs(inode)]);
3462 }
3463
inline_xattr_size(struct inode * inode)3464 static inline int inline_xattr_size(struct inode *inode)
3465 {
3466 if (f2fs_has_inline_xattr(inode))
3467 return get_inline_xattr_addrs(inode) * sizeof(__le32);
3468 return 0;
3469 }
3470
3471 /*
3472 * Notice: check inline_data flag without inode page lock is unsafe.
3473 * It could change at any time by f2fs_convert_inline_folio().
3474 */
f2fs_has_inline_data(struct inode * inode)3475 static inline int f2fs_has_inline_data(struct inode *inode)
3476 {
3477 return is_inode_flag_set(inode, FI_INLINE_DATA);
3478 }
3479
f2fs_exist_data(struct inode * inode)3480 static inline int f2fs_exist_data(struct inode *inode)
3481 {
3482 return is_inode_flag_set(inode, FI_DATA_EXIST);
3483 }
3484
f2fs_is_mmap_file(struct inode * inode)3485 static inline int f2fs_is_mmap_file(struct inode *inode)
3486 {
3487 return is_inode_flag_set(inode, FI_MMAP_FILE);
3488 }
3489
f2fs_is_pinned_file(struct inode * inode)3490 static inline bool f2fs_is_pinned_file(struct inode *inode)
3491 {
3492 return is_inode_flag_set(inode, FI_PIN_FILE);
3493 }
3494
f2fs_is_atomic_file(struct inode * inode)3495 static inline bool f2fs_is_atomic_file(struct inode *inode)
3496 {
3497 return is_inode_flag_set(inode, FI_ATOMIC_FILE);
3498 }
3499
f2fs_is_cow_file(struct inode * inode)3500 static inline bool f2fs_is_cow_file(struct inode *inode)
3501 {
3502 return is_inode_flag_set(inode, FI_COW_FILE);
3503 }
3504
inline_data_addr(struct inode * inode,struct folio * folio)3505 static inline void *inline_data_addr(struct inode *inode, struct folio *folio)
3506 {
3507 __le32 *addr = get_dnode_addr(inode, folio);
3508
3509 return (void *)(addr + DEF_INLINE_RESERVED_SIZE);
3510 }
3511
f2fs_has_inline_dentry(struct inode * inode)3512 static inline int f2fs_has_inline_dentry(struct inode *inode)
3513 {
3514 return is_inode_flag_set(inode, FI_INLINE_DENTRY);
3515 }
3516
is_file(struct inode * inode,int type)3517 static inline int is_file(struct inode *inode, int type)
3518 {
3519 return F2FS_I(inode)->i_advise & type;
3520 }
3521
set_file(struct inode * inode,int type)3522 static inline void set_file(struct inode *inode, int type)
3523 {
3524 if (is_file(inode, type))
3525 return;
3526 F2FS_I(inode)->i_advise |= type;
3527 f2fs_mark_inode_dirty_sync(inode, true);
3528 }
3529
clear_file(struct inode * inode,int type)3530 static inline void clear_file(struct inode *inode, int type)
3531 {
3532 if (!is_file(inode, type))
3533 return;
3534 F2FS_I(inode)->i_advise &= ~type;
3535 f2fs_mark_inode_dirty_sync(inode, true);
3536 }
3537
f2fs_is_time_consistent(struct inode * inode)3538 static inline bool f2fs_is_time_consistent(struct inode *inode)
3539 {
3540 struct timespec64 ts = inode_get_atime(inode);
3541
3542 if (!timespec64_equal(F2FS_I(inode)->i_disk_time, &ts))
3543 return false;
3544 ts = inode_get_ctime(inode);
3545 if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 1, &ts))
3546 return false;
3547 ts = inode_get_mtime(inode);
3548 if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 2, &ts))
3549 return false;
3550 return true;
3551 }
3552
f2fs_skip_inode_update(struct inode * inode,int dsync)3553 static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync)
3554 {
3555 bool ret;
3556
3557 if (dsync) {
3558 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3559
3560 spin_lock(&sbi->inode_lock[DIRTY_META]);
3561 ret = list_empty(&F2FS_I(inode)->gdirty_list);
3562 spin_unlock(&sbi->inode_lock[DIRTY_META]);
3563 return ret;
3564 }
3565 if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) ||
3566 file_keep_isize(inode) ||
3567 i_size_read(inode) & ~PAGE_MASK)
3568 return false;
3569
3570 if (!f2fs_is_time_consistent(inode))
3571 return false;
3572
3573 spin_lock(&F2FS_I(inode)->i_size_lock);
3574 ret = F2FS_I(inode)->last_disk_size == i_size_read(inode);
3575 spin_unlock(&F2FS_I(inode)->i_size_lock);
3576
3577 return ret;
3578 }
3579
f2fs_readonly(struct super_block * sb)3580 static inline bool f2fs_readonly(struct super_block *sb)
3581 {
3582 return sb_rdonly(sb);
3583 }
3584
f2fs_cp_error(struct f2fs_sb_info * sbi)3585 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
3586 {
3587 return is_set_ckpt_flags(sbi, CP_ERROR_FLAG);
3588 }
3589
f2fs_kmalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)3590 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi,
3591 size_t size, gfp_t flags)
3592 {
3593 if (time_to_inject(sbi, FAULT_KMALLOC))
3594 return NULL;
3595
3596 return kmalloc(size, flags);
3597 }
3598
f2fs_getname(struct f2fs_sb_info * sbi)3599 static inline void *f2fs_getname(struct f2fs_sb_info *sbi)
3600 {
3601 if (time_to_inject(sbi, FAULT_KMALLOC))
3602 return NULL;
3603
3604 return __getname();
3605 }
3606
f2fs_putname(char * buf)3607 static inline void f2fs_putname(char *buf)
3608 {
3609 __putname(buf);
3610 }
3611
f2fs_kzalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)3612 static inline void *f2fs_kzalloc(struct f2fs_sb_info *sbi,
3613 size_t size, gfp_t flags)
3614 {
3615 return f2fs_kmalloc(sbi, size, flags | __GFP_ZERO);
3616 }
3617
f2fs_kvmalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)3618 static inline void *f2fs_kvmalloc(struct f2fs_sb_info *sbi,
3619 size_t size, gfp_t flags)
3620 {
3621 if (time_to_inject(sbi, FAULT_KVMALLOC))
3622 return NULL;
3623
3624 return kvmalloc(size, flags);
3625 }
3626
f2fs_kvzalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)3627 static inline void *f2fs_kvzalloc(struct f2fs_sb_info *sbi,
3628 size_t size, gfp_t flags)
3629 {
3630 return f2fs_kvmalloc(sbi, size, flags | __GFP_ZERO);
3631 }
3632
f2fs_vmalloc(struct f2fs_sb_info * sbi,size_t size)3633 static inline void *f2fs_vmalloc(struct f2fs_sb_info *sbi, size_t size)
3634 {
3635 if (time_to_inject(sbi, FAULT_VMALLOC))
3636 return NULL;
3637
3638 return vmalloc(size);
3639 }
3640
get_extra_isize(struct inode * inode)3641 static inline int get_extra_isize(struct inode *inode)
3642 {
3643 return F2FS_I(inode)->i_extra_isize / sizeof(__le32);
3644 }
3645
get_inline_xattr_addrs(struct inode * inode)3646 static inline int get_inline_xattr_addrs(struct inode *inode)
3647 {
3648 return F2FS_I(inode)->i_inline_xattr_size;
3649 }
3650
3651 #define f2fs_get_inode_mode(i) \
3652 ((is_inode_flag_set(i, FI_ACL_MODE)) ? \
3653 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
3654
3655 #define F2FS_MIN_EXTRA_ATTR_SIZE (sizeof(__le32))
3656
3657 #define F2FS_TOTAL_EXTRA_ATTR_SIZE \
3658 (offsetof(struct f2fs_inode, i_extra_end) - \
3659 offsetof(struct f2fs_inode, i_extra_isize)) \
3660
3661 #define F2FS_OLD_ATTRIBUTE_SIZE (offsetof(struct f2fs_inode, i_addr))
3662 #define F2FS_FITS_IN_INODE(f2fs_inode, extra_isize, field) \
3663 ((offsetof(typeof(*(f2fs_inode)), field) + \
3664 sizeof((f2fs_inode)->field)) \
3665 <= (F2FS_OLD_ATTRIBUTE_SIZE + (extra_isize))) \
3666
3667 #define __is_large_section(sbi) (SEGS_PER_SEC(sbi) > 1)
3668
3669 #define __is_meta_io(fio) (PAGE_TYPE_OF_BIO((fio)->type) == META)
3670
3671 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3672 block_t blkaddr, int type);
verify_blkaddr(struct f2fs_sb_info * sbi,block_t blkaddr,int type)3673 static inline void verify_blkaddr(struct f2fs_sb_info *sbi,
3674 block_t blkaddr, int type)
3675 {
3676 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, type))
3677 f2fs_err(sbi, "invalid blkaddr: %u, type: %d, run fsck to fix.",
3678 blkaddr, type);
3679 }
3680
__is_valid_data_blkaddr(block_t blkaddr)3681 static inline bool __is_valid_data_blkaddr(block_t blkaddr)
3682 {
3683 if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR ||
3684 blkaddr == COMPRESS_ADDR)
3685 return false;
3686 return true;
3687 }
3688
3689 /*
3690 * file.c
3691 */
3692 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
3693 int f2fs_do_truncate_blocks(struct inode *inode, u64 from, bool lock);
3694 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock);
3695 int f2fs_truncate(struct inode *inode);
3696 int f2fs_getattr(struct mnt_idmap *idmap, const struct path *path,
3697 struct kstat *stat, u32 request_mask, unsigned int flags);
3698 int f2fs_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
3699 struct iattr *attr);
3700 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end);
3701 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count);
3702 int f2fs_do_shutdown(struct f2fs_sb_info *sbi, unsigned int flag,
3703 bool readonly, bool need_lock);
3704 int f2fs_precache_extents(struct inode *inode);
3705 int f2fs_fileattr_get(struct dentry *dentry, struct file_kattr *fa);
3706 int f2fs_fileattr_set(struct mnt_idmap *idmap,
3707 struct dentry *dentry, struct file_kattr *fa);
3708 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg);
3709 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
3710 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid);
3711 int f2fs_pin_file_control(struct inode *inode, bool inc);
3712
3713 /*
3714 * inode.c
3715 */
3716 void f2fs_set_inode_flags(struct inode *inode);
3717 bool f2fs_inode_chksum_verify(struct f2fs_sb_info *sbi, struct folio *folio);
3718 void f2fs_inode_chksum_set(struct f2fs_sb_info *sbi, struct folio *folio);
3719 struct inode *f2fs_iget(struct super_block *sb, unsigned long ino);
3720 struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino);
3721 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink);
3722 void f2fs_update_inode(struct inode *inode, struct folio *node_folio);
3723 void f2fs_update_inode_page(struct inode *inode);
3724 int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc);
3725 void f2fs_remove_donate_inode(struct inode *inode);
3726 void f2fs_evict_inode(struct inode *inode);
3727 void f2fs_handle_failed_inode(struct inode *inode);
3728
3729 /*
3730 * namei.c
3731 */
3732 int f2fs_update_extension_list(struct f2fs_sb_info *sbi, const char *name,
3733 bool hot, bool set);
3734 struct dentry *f2fs_get_parent(struct dentry *child);
3735 int f2fs_get_tmpfile(struct mnt_idmap *idmap, struct inode *dir,
3736 struct inode **new_inode);
3737
3738 /*
3739 * dir.c
3740 */
3741 #if IS_ENABLED(CONFIG_UNICODE)
3742 int f2fs_init_casefolded_name(const struct inode *dir,
3743 struct f2fs_filename *fname);
3744 void f2fs_free_casefolded_name(struct f2fs_filename *fname);
3745 #else
f2fs_init_casefolded_name(const struct inode * dir,struct f2fs_filename * fname)3746 static inline int f2fs_init_casefolded_name(const struct inode *dir,
3747 struct f2fs_filename *fname)
3748 {
3749 return 0;
3750 }
3751
f2fs_free_casefolded_name(struct f2fs_filename * fname)3752 static inline void f2fs_free_casefolded_name(struct f2fs_filename *fname)
3753 {
3754 }
3755 #endif /* CONFIG_UNICODE */
3756
3757 int f2fs_setup_filename(struct inode *dir, const struct qstr *iname,
3758 int lookup, struct f2fs_filename *fname);
3759 int f2fs_prepare_lookup(struct inode *dir, struct dentry *dentry,
3760 struct f2fs_filename *fname);
3761 void f2fs_free_filename(struct f2fs_filename *fname);
3762 struct f2fs_dir_entry *f2fs_find_target_dentry(const struct f2fs_dentry_ptr *d,
3763 const struct f2fs_filename *fname, int *max_slots,
3764 bool use_hash);
3765 int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d,
3766 unsigned int start_pos, struct fscrypt_str *fstr);
3767 void f2fs_do_make_empty_dir(struct inode *inode, struct inode *parent,
3768 struct f2fs_dentry_ptr *d);
3769 struct folio *f2fs_init_inode_metadata(struct inode *inode, struct inode *dir,
3770 const struct f2fs_filename *fname, struct folio *dfolio);
3771 void f2fs_update_parent_metadata(struct inode *dir, struct inode *inode,
3772 unsigned int current_depth);
3773 int f2fs_room_for_filename(const void *bitmap, int slots, int max_slots);
3774 void f2fs_drop_nlink(struct inode *dir, struct inode *inode);
3775 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir,
3776 const struct f2fs_filename *fname, struct folio **res_folio);
3777 struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir,
3778 const struct qstr *child, struct folio **res_folio);
3779 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct folio **f);
3780 ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr,
3781 struct folio **folio);
3782 void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de,
3783 struct folio *folio, struct inode *inode);
3784 bool f2fs_has_enough_room(struct inode *dir, struct folio *ifolio,
3785 const struct f2fs_filename *fname);
3786 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d,
3787 const struct fscrypt_str *name, f2fs_hash_t name_hash,
3788 unsigned int bit_pos);
3789 int f2fs_add_regular_entry(struct inode *dir, const struct f2fs_filename *fname,
3790 struct inode *inode, nid_t ino, umode_t mode);
3791 int f2fs_add_dentry(struct inode *dir, const struct f2fs_filename *fname,
3792 struct inode *inode, nid_t ino, umode_t mode);
3793 int f2fs_do_add_link(struct inode *dir, const struct qstr *name,
3794 struct inode *inode, nid_t ino, umode_t mode);
3795 void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct folio *folio,
3796 struct inode *dir, struct inode *inode);
3797 int f2fs_do_tmpfile(struct inode *inode, struct inode *dir,
3798 struct f2fs_filename *fname);
3799 bool f2fs_empty_dir(struct inode *dir);
3800
f2fs_add_link(struct dentry * dentry,struct inode * inode)3801 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
3802 {
3803 if (fscrypt_is_nokey_name(dentry))
3804 return -ENOKEY;
3805 return f2fs_do_add_link(d_inode(dentry->d_parent), &dentry->d_name,
3806 inode, inode->i_ino, inode->i_mode);
3807 }
3808
3809 /*
3810 * super.c
3811 */
3812 int f2fs_inode_dirtied(struct inode *inode, bool sync);
3813 void f2fs_inode_synced(struct inode *inode);
3814 int f2fs_dquot_initialize(struct inode *inode);
3815 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly);
3816 int f2fs_do_quota_sync(struct super_block *sb, int type);
3817 loff_t max_file_blocks(struct inode *inode);
3818 void f2fs_quota_off_umount(struct super_block *sb);
3819 void f2fs_save_errors(struct f2fs_sb_info *sbi, unsigned char flag);
3820 void f2fs_handle_critical_error(struct f2fs_sb_info *sbi, unsigned char reason);
3821 void f2fs_handle_error(struct f2fs_sb_info *sbi, unsigned char error);
3822 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover);
3823 int f2fs_sync_fs(struct super_block *sb, int sync);
3824 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi);
3825
3826 /*
3827 * hash.c
3828 */
3829 void f2fs_hash_filename(const struct inode *dir, struct f2fs_filename *fname);
3830
3831 /*
3832 * node.c
3833 */
3834 struct node_info;
3835 enum node_type;
3836
3837 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid);
3838 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type);
3839 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct folio *folio);
3840 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi);
3841 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct folio *folio);
3842 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi);
3843 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid);
3844 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid);
3845 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino);
3846 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
3847 struct node_info *ni, bool checkpoint_context);
3848 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs);
3849 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode);
3850 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from);
3851 int f2fs_truncate_xattr_node(struct inode *inode);
3852 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
3853 unsigned int seq_id);
3854 int f2fs_remove_inode_page(struct inode *inode);
3855 struct folio *f2fs_new_inode_folio(struct inode *inode);
3856 struct folio *f2fs_new_node_folio(struct dnode_of_data *dn, unsigned int ofs);
3857 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid);
3858 struct folio *f2fs_get_node_folio(struct f2fs_sb_info *sbi, pgoff_t nid,
3859 enum node_type node_type);
3860 struct folio *f2fs_get_inode_folio(struct f2fs_sb_info *sbi, pgoff_t ino);
3861 struct folio *f2fs_get_xnode_folio(struct f2fs_sb_info *sbi, pgoff_t xnid);
3862 int f2fs_move_node_folio(struct folio *node_folio, int gc_type);
3863 void f2fs_flush_inline_data(struct f2fs_sb_info *sbi);
3864 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
3865 struct writeback_control *wbc, bool atomic,
3866 unsigned int *seq_id);
3867 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
3868 struct writeback_control *wbc,
3869 bool do_balance, enum iostat_type io_type);
3870 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount);
3871 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid);
3872 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid);
3873 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid);
3874 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink);
3875 int f2fs_recover_inline_xattr(struct inode *inode, struct folio *folio);
3876 int f2fs_recover_xattr_data(struct inode *inode, struct folio *folio);
3877 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct folio *folio);
3878 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
3879 unsigned int segno, struct f2fs_summary_block *sum);
3880 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3881 int f2fs_build_node_manager(struct f2fs_sb_info *sbi);
3882 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi);
3883 int __init f2fs_create_node_manager_caches(void);
3884 void f2fs_destroy_node_manager_caches(void);
3885
3886 /*
3887 * segment.c
3888 */
3889 bool f2fs_need_SSR(struct f2fs_sb_info *sbi);
3890 int f2fs_commit_atomic_write(struct inode *inode);
3891 void f2fs_abort_atomic_write(struct inode *inode, bool clean);
3892 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need);
3893 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg);
3894 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino);
3895 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi);
3896 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi);
3897 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free);
3898 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr,
3899 unsigned int len);
3900 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr);
3901 int f2fs_start_discard_thread(struct f2fs_sb_info *sbi);
3902 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi);
3903 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi);
3904 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi);
3905 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
3906 struct cp_control *cpc);
3907 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi);
3908 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi);
3909 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable);
3910 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi);
3911 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra);
3912 bool f2fs_segment_has_free_slot(struct f2fs_sb_info *sbi, int segno);
3913 int f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi);
3914 int f2fs_reinit_atgc_curseg(struct f2fs_sb_info *sbi);
3915 void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi);
3916 void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi);
3917 int f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
3918 unsigned int start, unsigned int end);
3919 int f2fs_allocate_new_section(struct f2fs_sb_info *sbi, int type, bool force);
3920 int f2fs_allocate_pinning_section(struct f2fs_sb_info *sbi);
3921 int f2fs_allocate_new_segments(struct f2fs_sb_info *sbi);
3922 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range);
3923 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
3924 struct cp_control *cpc);
3925 struct folio *f2fs_get_sum_folio(struct f2fs_sb_info *sbi, unsigned int segno);
3926 void f2fs_update_meta_page(struct f2fs_sb_info *sbi, void *src,
3927 block_t blk_addr);
3928 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct folio *folio,
3929 enum iostat_type io_type);
3930 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio);
3931 void f2fs_outplace_write_data(struct dnode_of_data *dn,
3932 struct f2fs_io_info *fio);
3933 int f2fs_inplace_write_data(struct f2fs_io_info *fio);
3934 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3935 block_t old_blkaddr, block_t new_blkaddr,
3936 bool recover_curseg, bool recover_newaddr,
3937 bool from_gc);
3938 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3939 block_t old_addr, block_t new_addr,
3940 unsigned char version, bool recover_curseg,
3941 bool recover_newaddr);
3942 enum temp_type f2fs_get_segment_temp(struct f2fs_sb_info *sbi,
3943 enum log_type seg_type);
3944 int f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct folio *folio,
3945 block_t old_blkaddr, block_t *new_blkaddr,
3946 struct f2fs_summary *sum, int type,
3947 struct f2fs_io_info *fio);
3948 void f2fs_update_device_state(struct f2fs_sb_info *sbi, nid_t ino,
3949 block_t blkaddr, unsigned int blkcnt);
3950 void f2fs_folio_wait_writeback(struct folio *folio, enum page_type type,
3951 bool ordered, bool locked);
3952 #define f2fs_wait_on_page_writeback(page, type, ordered, locked) \
3953 f2fs_folio_wait_writeback(page_folio(page), type, ordered, locked)
3954 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr);
3955 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3956 block_t len);
3957 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3958 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3959 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
3960 unsigned int val, int alloc);
3961 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3962 int f2fs_check_and_fix_write_pointer(struct f2fs_sb_info *sbi);
3963 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi);
3964 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi);
3965 int __init f2fs_create_segment_manager_caches(void);
3966 void f2fs_destroy_segment_manager_caches(void);
3967 int f2fs_rw_hint_to_seg_type(struct f2fs_sb_info *sbi, enum rw_hint hint);
3968 enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi,
3969 enum page_type type, enum temp_type temp);
3970 unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi);
3971 unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi,
3972 unsigned int segno);
3973 unsigned long long f2fs_get_section_mtime(struct f2fs_sb_info *sbi,
3974 unsigned int segno);
3975
fio_inode(struct f2fs_io_info * fio)3976 static inline struct inode *fio_inode(struct f2fs_io_info *fio)
3977 {
3978 return fio->folio->mapping->host;
3979 }
3980
3981 #define DEF_FRAGMENT_SIZE 4
3982 #define MIN_FRAGMENT_SIZE 1
3983 #define MAX_FRAGMENT_SIZE 512
3984
f2fs_need_rand_seg(struct f2fs_sb_info * sbi)3985 static inline bool f2fs_need_rand_seg(struct f2fs_sb_info *sbi)
3986 {
3987 return F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_SEG ||
3988 F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK;
3989 }
3990
3991 /*
3992 * checkpoint.c
3993 */
3994 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io,
3995 unsigned char reason);
3996 void f2fs_flush_ckpt_thread(struct f2fs_sb_info *sbi);
3997 struct folio *f2fs_grab_meta_folio(struct f2fs_sb_info *sbi, pgoff_t index);
3998 struct folio *f2fs_get_meta_folio(struct f2fs_sb_info *sbi, pgoff_t index);
3999 struct folio *f2fs_get_meta_folio_retry(struct f2fs_sb_info *sbi, pgoff_t index);
4000 struct folio *f2fs_get_tmp_folio(struct f2fs_sb_info *sbi, pgoff_t index);
4001 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
4002 block_t blkaddr, int type);
4003 bool f2fs_is_valid_blkaddr_raw(struct f2fs_sb_info *sbi,
4004 block_t blkaddr, int type);
4005 int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
4006 int type, bool sync);
4007 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index,
4008 unsigned int ra_blocks);
4009 long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
4010 long nr_to_write, enum iostat_type io_type);
4011 void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
4012 void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
4013 void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all);
4014 bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode);
4015 void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
4016 unsigned int devidx, int type);
4017 bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
4018 unsigned int devidx, int type);
4019 int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi);
4020 void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi);
4021 void f2fs_add_orphan_inode(struct inode *inode);
4022 void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino);
4023 int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi);
4024 int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi);
4025 void f2fs_update_dirty_folio(struct inode *inode, struct folio *folio);
4026 void f2fs_remove_dirty_inode(struct inode *inode);
4027 int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type,
4028 bool from_cp);
4029 void f2fs_wait_on_all_pages(struct f2fs_sb_info *sbi, int type);
4030 u64 f2fs_get_sectors_written(struct f2fs_sb_info *sbi);
4031 int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc);
4032 void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi);
4033 int __init f2fs_create_checkpoint_caches(void);
4034 void f2fs_destroy_checkpoint_caches(void);
4035 int f2fs_issue_checkpoint(struct f2fs_sb_info *sbi);
4036 int f2fs_start_ckpt_thread(struct f2fs_sb_info *sbi);
4037 void f2fs_stop_ckpt_thread(struct f2fs_sb_info *sbi);
4038 void f2fs_init_ckpt_req_control(struct f2fs_sb_info *sbi);
4039
4040 /*
4041 * data.c
4042 */
4043 int __init f2fs_init_bioset(void);
4044 void f2fs_destroy_bioset(void);
4045 bool f2fs_is_cp_guaranteed(const struct folio *folio);
4046 int f2fs_init_bio_entry_cache(void);
4047 void f2fs_destroy_bio_entry_cache(void);
4048 void f2fs_submit_read_bio(struct f2fs_sb_info *sbi, struct bio *bio,
4049 enum page_type type);
4050 int f2fs_init_write_merge_io(struct f2fs_sb_info *sbi);
4051 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type);
4052 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
4053 struct inode *inode, struct folio *folio,
4054 nid_t ino, enum page_type type);
4055 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi,
4056 struct bio **bio, struct folio *folio);
4057 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi);
4058 int f2fs_submit_page_bio(struct f2fs_io_info *fio);
4059 int f2fs_merge_page_bio(struct f2fs_io_info *fio);
4060 void f2fs_submit_page_write(struct f2fs_io_info *fio);
4061 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
4062 block_t blk_addr, sector_t *sector);
4063 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr);
4064 void f2fs_set_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr);
4065 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr);
4066 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count);
4067 int f2fs_reserve_new_block(struct dnode_of_data *dn);
4068 int f2fs_get_block_locked(struct dnode_of_data *dn, pgoff_t index);
4069 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index);
4070 struct folio *f2fs_get_read_data_folio(struct inode *inode, pgoff_t index,
4071 blk_opf_t op_flags, bool for_write, pgoff_t *next_pgofs);
4072 struct folio *f2fs_find_data_folio(struct inode *inode, pgoff_t index,
4073 pgoff_t *next_pgofs);
4074 struct folio *f2fs_get_lock_data_folio(struct inode *inode, pgoff_t index,
4075 bool for_write);
4076 struct folio *f2fs_get_new_data_folio(struct inode *inode,
4077 struct folio *ifolio, pgoff_t index, bool new_i_size);
4078 int f2fs_do_write_data_page(struct f2fs_io_info *fio);
4079 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map, int flag);
4080 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4081 u64 start, u64 len);
4082 int f2fs_encrypt_one_page(struct f2fs_io_info *fio);
4083 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio);
4084 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio);
4085 int f2fs_write_single_data_page(struct folio *folio, int *submitted,
4086 struct bio **bio, sector_t *last_block,
4087 struct writeback_control *wbc,
4088 enum iostat_type io_type,
4089 int compr_blocks, bool allow_balance);
4090 void f2fs_write_failed(struct inode *inode, loff_t to);
4091 void f2fs_invalidate_folio(struct folio *folio, size_t offset, size_t length);
4092 bool f2fs_release_folio(struct folio *folio, gfp_t wait);
4093 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len);
4094 void f2fs_clear_page_cache_dirty_tag(struct folio *folio);
4095 int f2fs_init_post_read_processing(void);
4096 void f2fs_destroy_post_read_processing(void);
4097 int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi);
4098 void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi);
4099 extern const struct iomap_ops f2fs_iomap_ops;
4100
4101 /*
4102 * gc.c
4103 */
4104 int f2fs_start_gc_thread(struct f2fs_sb_info *sbi);
4105 void f2fs_stop_gc_thread(struct f2fs_sb_info *sbi);
4106 block_t f2fs_start_bidx_of_node(unsigned int node_ofs, struct inode *inode);
4107 int f2fs_gc(struct f2fs_sb_info *sbi, struct f2fs_gc_control *gc_control);
4108 void f2fs_build_gc_manager(struct f2fs_sb_info *sbi);
4109 int f2fs_gc_range(struct f2fs_sb_info *sbi,
4110 unsigned int start_seg, unsigned int end_seg,
4111 bool dry_run, unsigned int dry_run_sections);
4112 int f2fs_resize_fs(struct file *filp, __u64 block_count);
4113 int __init f2fs_create_garbage_collection_cache(void);
4114 void f2fs_destroy_garbage_collection_cache(void);
4115 /* victim selection function for cleaning and SSR */
4116 int f2fs_get_victim(struct f2fs_sb_info *sbi, unsigned int *result,
4117 int gc_type, int type, char alloc_mode,
4118 unsigned long long age, bool one_time);
4119
4120 /*
4121 * recovery.c
4122 */
4123 int f2fs_recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only);
4124 bool f2fs_space_for_roll_forward(struct f2fs_sb_info *sbi);
4125 int __init f2fs_create_recovery_cache(void);
4126 void f2fs_destroy_recovery_cache(void);
4127
4128 /*
4129 * debug.c
4130 */
4131 #ifdef CONFIG_F2FS_STAT_FS
4132 enum {
4133 DEVSTAT_INUSE,
4134 DEVSTAT_DIRTY,
4135 DEVSTAT_FULL,
4136 DEVSTAT_FREE,
4137 DEVSTAT_PREFREE,
4138 DEVSTAT_MAX,
4139 };
4140
4141 struct f2fs_dev_stats {
4142 unsigned int devstats[2][DEVSTAT_MAX]; /* 0: segs, 1: secs */
4143 };
4144
4145 struct f2fs_stat_info {
4146 struct list_head stat_list;
4147 struct f2fs_sb_info *sbi;
4148 int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
4149 int main_area_segs, main_area_sections, main_area_zones;
4150 unsigned long long hit_cached[NR_EXTENT_CACHES];
4151 unsigned long long hit_rbtree[NR_EXTENT_CACHES];
4152 unsigned long long total_ext[NR_EXTENT_CACHES];
4153 unsigned long long hit_total[NR_EXTENT_CACHES];
4154 int ext_tree[NR_EXTENT_CACHES];
4155 int zombie_tree[NR_EXTENT_CACHES];
4156 int ext_node[NR_EXTENT_CACHES];
4157 /* to count memory footprint */
4158 unsigned long long ext_mem[NR_EXTENT_CACHES];
4159 /* for read extent cache */
4160 unsigned long long hit_largest;
4161 /* for block age extent cache */
4162 unsigned long long allocated_data_blocks;
4163 int ndirty_node, ndirty_dent, ndirty_meta, ndirty_imeta;
4164 int ndirty_data, ndirty_qdata;
4165 unsigned int ndirty_dirs, ndirty_files, ndirty_all;
4166 unsigned int nquota_files, ndonate_files;
4167 int nats, dirty_nats, sits, dirty_sits;
4168 int free_nids, avail_nids, alloc_nids;
4169 int total_count, utilization;
4170 int nr_wb_cp_data, nr_wb_data;
4171 int nr_rd_data, nr_rd_node, nr_rd_meta;
4172 int nr_dio_read, nr_dio_write;
4173 unsigned int io_skip_bggc, other_skip_bggc;
4174 int nr_flushing, nr_flushed, flush_list_empty;
4175 int nr_discarding, nr_discarded;
4176 int nr_discard_cmd;
4177 unsigned int undiscard_blks;
4178 int nr_issued_ckpt, nr_total_ckpt, nr_queued_ckpt;
4179 unsigned int cur_ckpt_time, peak_ckpt_time;
4180 int inline_xattr, inline_inode, inline_dir, append, update, orphans;
4181 int compr_inode, swapfile_inode;
4182 unsigned long long compr_blocks;
4183 int aw_cnt, max_aw_cnt;
4184 unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks;
4185 unsigned int bimodal, avg_vblocks;
4186 int util_free, util_valid, util_invalid;
4187 int rsvd_segs, overp_segs;
4188 int dirty_count, node_pages, meta_pages, compress_pages;
4189 int compress_page_hit;
4190 int prefree_count, free_segs, free_secs;
4191 int cp_call_count[MAX_CALL_TYPE], cp_count;
4192 int gc_call_count[MAX_CALL_TYPE];
4193 int gc_segs[2][2];
4194 int gc_secs[2][2];
4195 int tot_blks, data_blks, node_blks;
4196 int bg_data_blks, bg_node_blks;
4197 int blkoff[NR_CURSEG_TYPE];
4198 int curseg[NR_CURSEG_TYPE];
4199 int cursec[NR_CURSEG_TYPE];
4200 int curzone[NR_CURSEG_TYPE];
4201 unsigned int dirty_seg[NR_CURSEG_TYPE];
4202 unsigned int full_seg[NR_CURSEG_TYPE];
4203 unsigned int valid_blks[NR_CURSEG_TYPE];
4204
4205 unsigned int meta_count[META_MAX];
4206 unsigned int segment_count[2];
4207 unsigned int block_count[2];
4208 unsigned int inplace_count;
4209 unsigned long long base_mem, cache_mem, page_mem;
4210 struct f2fs_dev_stats *dev_stats;
4211 };
4212
F2FS_STAT(struct f2fs_sb_info * sbi)4213 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
4214 {
4215 return (struct f2fs_stat_info *)sbi->stat_info;
4216 }
4217
4218 #define stat_inc_cp_call_count(sbi, foreground) \
4219 atomic_inc(&sbi->cp_call_count[(foreground)])
4220 #define stat_inc_cp_count(sbi) (F2FS_STAT(sbi)->cp_count++)
4221 #define stat_io_skip_bggc_count(sbi) ((sbi)->io_skip_bggc++)
4222 #define stat_other_skip_bggc_count(sbi) ((sbi)->other_skip_bggc++)
4223 #define stat_inc_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]++)
4224 #define stat_dec_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]--)
4225 #define stat_inc_total_hit(sbi, type) (atomic64_inc(&(sbi)->total_hit_ext[type]))
4226 #define stat_inc_rbtree_node_hit(sbi, type) (atomic64_inc(&(sbi)->read_hit_rbtree[type]))
4227 #define stat_inc_largest_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_largest))
4228 #define stat_inc_cached_node_hit(sbi, type) (atomic64_inc(&(sbi)->read_hit_cached[type]))
4229 #define stat_inc_inline_xattr(inode) \
4230 do { \
4231 if (f2fs_has_inline_xattr(inode)) \
4232 (atomic_inc(&F2FS_I_SB(inode)->inline_xattr)); \
4233 } while (0)
4234 #define stat_dec_inline_xattr(inode) \
4235 do { \
4236 if (f2fs_has_inline_xattr(inode)) \
4237 (atomic_dec(&F2FS_I_SB(inode)->inline_xattr)); \
4238 } while (0)
4239 #define stat_inc_inline_inode(inode) \
4240 do { \
4241 if (f2fs_has_inline_data(inode)) \
4242 (atomic_inc(&F2FS_I_SB(inode)->inline_inode)); \
4243 } while (0)
4244 #define stat_dec_inline_inode(inode) \
4245 do { \
4246 if (f2fs_has_inline_data(inode)) \
4247 (atomic_dec(&F2FS_I_SB(inode)->inline_inode)); \
4248 } while (0)
4249 #define stat_inc_inline_dir(inode) \
4250 do { \
4251 if (f2fs_has_inline_dentry(inode)) \
4252 (atomic_inc(&F2FS_I_SB(inode)->inline_dir)); \
4253 } while (0)
4254 #define stat_dec_inline_dir(inode) \
4255 do { \
4256 if (f2fs_has_inline_dentry(inode)) \
4257 (atomic_dec(&F2FS_I_SB(inode)->inline_dir)); \
4258 } while (0)
4259 #define stat_inc_compr_inode(inode) \
4260 do { \
4261 if (f2fs_compressed_file(inode)) \
4262 (atomic_inc(&F2FS_I_SB(inode)->compr_inode)); \
4263 } while (0)
4264 #define stat_dec_compr_inode(inode) \
4265 do { \
4266 if (f2fs_compressed_file(inode)) \
4267 (atomic_dec(&F2FS_I_SB(inode)->compr_inode)); \
4268 } while (0)
4269 #define stat_add_compr_blocks(inode, blocks) \
4270 (atomic64_add(blocks, &F2FS_I_SB(inode)->compr_blocks))
4271 #define stat_sub_compr_blocks(inode, blocks) \
4272 (atomic64_sub(blocks, &F2FS_I_SB(inode)->compr_blocks))
4273 #define stat_inc_swapfile_inode(inode) \
4274 (atomic_inc(&F2FS_I_SB(inode)->swapfile_inode))
4275 #define stat_dec_swapfile_inode(inode) \
4276 (atomic_dec(&F2FS_I_SB(inode)->swapfile_inode))
4277 #define stat_inc_atomic_inode(inode) \
4278 (atomic_inc(&F2FS_I_SB(inode)->atomic_files))
4279 #define stat_dec_atomic_inode(inode) \
4280 (atomic_dec(&F2FS_I_SB(inode)->atomic_files))
4281 #define stat_inc_meta_count(sbi, blkaddr) \
4282 do { \
4283 if (blkaddr < SIT_I(sbi)->sit_base_addr) \
4284 atomic_inc(&(sbi)->meta_count[META_CP]); \
4285 else if (blkaddr < NM_I(sbi)->nat_blkaddr) \
4286 atomic_inc(&(sbi)->meta_count[META_SIT]); \
4287 else if (blkaddr < SM_I(sbi)->ssa_blkaddr) \
4288 atomic_inc(&(sbi)->meta_count[META_NAT]); \
4289 else if (blkaddr < SM_I(sbi)->main_blkaddr) \
4290 atomic_inc(&(sbi)->meta_count[META_SSA]); \
4291 } while (0)
4292 #define stat_inc_seg_type(sbi, curseg) \
4293 ((sbi)->segment_count[(curseg)->alloc_type]++)
4294 #define stat_inc_block_count(sbi, curseg) \
4295 ((sbi)->block_count[(curseg)->alloc_type]++)
4296 #define stat_inc_inplace_blocks(sbi) \
4297 (atomic_inc(&(sbi)->inplace_count))
4298 #define stat_update_max_atomic_write(inode) \
4299 do { \
4300 int cur = atomic_read(&F2FS_I_SB(inode)->atomic_files); \
4301 int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt); \
4302 if (cur > max) \
4303 atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur); \
4304 } while (0)
4305 #define stat_inc_gc_call_count(sbi, foreground) \
4306 (F2FS_STAT(sbi)->gc_call_count[(foreground)]++)
4307 #define stat_inc_gc_sec_count(sbi, type, gc_type) \
4308 (F2FS_STAT(sbi)->gc_secs[(type)][(gc_type)]++)
4309 #define stat_inc_gc_seg_count(sbi, type, gc_type) \
4310 (F2FS_STAT(sbi)->gc_segs[(type)][(gc_type)]++)
4311
4312 #define stat_inc_tot_blk_count(si, blks) \
4313 ((si)->tot_blks += (blks))
4314
4315 #define stat_inc_data_blk_count(sbi, blks, gc_type) \
4316 do { \
4317 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
4318 stat_inc_tot_blk_count(si, blks); \
4319 si->data_blks += (blks); \
4320 si->bg_data_blks += ((gc_type) == BG_GC) ? (blks) : 0; \
4321 } while (0)
4322
4323 #define stat_inc_node_blk_count(sbi, blks, gc_type) \
4324 do { \
4325 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
4326 stat_inc_tot_blk_count(si, blks); \
4327 si->node_blks += (blks); \
4328 si->bg_node_blks += ((gc_type) == BG_GC) ? (blks) : 0; \
4329 } while (0)
4330
4331 int f2fs_build_stats(struct f2fs_sb_info *sbi);
4332 void f2fs_destroy_stats(struct f2fs_sb_info *sbi);
4333 void __init f2fs_create_root_stats(void);
4334 void f2fs_destroy_root_stats(void);
4335 void f2fs_update_sit_info(struct f2fs_sb_info *sbi);
4336 #else
4337 #define stat_inc_cp_call_count(sbi, foreground) do { } while (0)
4338 #define stat_inc_cp_count(sbi) do { } while (0)
4339 #define stat_io_skip_bggc_count(sbi) do { } while (0)
4340 #define stat_other_skip_bggc_count(sbi) do { } while (0)
4341 #define stat_inc_dirty_inode(sbi, type) do { } while (0)
4342 #define stat_dec_dirty_inode(sbi, type) do { } while (0)
4343 #define stat_inc_total_hit(sbi, type) do { } while (0)
4344 #define stat_inc_rbtree_node_hit(sbi, type) do { } while (0)
4345 #define stat_inc_largest_node_hit(sbi) do { } while (0)
4346 #define stat_inc_cached_node_hit(sbi, type) do { } while (0)
4347 #define stat_inc_inline_xattr(inode) do { } while (0)
4348 #define stat_dec_inline_xattr(inode) do { } while (0)
4349 #define stat_inc_inline_inode(inode) do { } while (0)
4350 #define stat_dec_inline_inode(inode) do { } while (0)
4351 #define stat_inc_inline_dir(inode) do { } while (0)
4352 #define stat_dec_inline_dir(inode) do { } while (0)
4353 #define stat_inc_compr_inode(inode) do { } while (0)
4354 #define stat_dec_compr_inode(inode) do { } while (0)
4355 #define stat_add_compr_blocks(inode, blocks) do { } while (0)
4356 #define stat_sub_compr_blocks(inode, blocks) do { } while (0)
4357 #define stat_inc_swapfile_inode(inode) do { } while (0)
4358 #define stat_dec_swapfile_inode(inode) do { } while (0)
4359 #define stat_inc_atomic_inode(inode) do { } while (0)
4360 #define stat_dec_atomic_inode(inode) do { } while (0)
4361 #define stat_update_max_atomic_write(inode) do { } while (0)
4362 #define stat_inc_meta_count(sbi, blkaddr) do { } while (0)
4363 #define stat_inc_seg_type(sbi, curseg) do { } while (0)
4364 #define stat_inc_block_count(sbi, curseg) do { } while (0)
4365 #define stat_inc_inplace_blocks(sbi) do { } while (0)
4366 #define stat_inc_gc_call_count(sbi, foreground) do { } while (0)
4367 #define stat_inc_gc_sec_count(sbi, type, gc_type) do { } while (0)
4368 #define stat_inc_gc_seg_count(sbi, type, gc_type) do { } while (0)
4369 #define stat_inc_tot_blk_count(si, blks) do { } while (0)
4370 #define stat_inc_data_blk_count(sbi, blks, gc_type) do { } while (0)
4371 #define stat_inc_node_blk_count(sbi, blks, gc_type) do { } while (0)
4372
f2fs_build_stats(struct f2fs_sb_info * sbi)4373 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
f2fs_destroy_stats(struct f2fs_sb_info * sbi)4374 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
f2fs_create_root_stats(void)4375 static inline void __init f2fs_create_root_stats(void) { }
f2fs_destroy_root_stats(void)4376 static inline void f2fs_destroy_root_stats(void) { }
f2fs_update_sit_info(struct f2fs_sb_info * sbi)4377 static inline void f2fs_update_sit_info(struct f2fs_sb_info *sbi) {}
4378 #endif
4379
4380 extern const struct file_operations f2fs_dir_operations;
4381 extern const struct file_operations f2fs_file_operations;
4382 extern const struct inode_operations f2fs_file_inode_operations;
4383 extern const struct address_space_operations f2fs_dblock_aops;
4384 extern const struct address_space_operations f2fs_node_aops;
4385 extern const struct address_space_operations f2fs_meta_aops;
4386 extern const struct inode_operations f2fs_dir_inode_operations;
4387 extern const struct inode_operations f2fs_symlink_inode_operations;
4388 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
4389 extern const struct inode_operations f2fs_special_inode_operations;
4390 extern struct kmem_cache *f2fs_inode_entry_slab;
4391
4392 /*
4393 * inline.c
4394 */
4395 bool f2fs_may_inline_data(struct inode *inode);
4396 bool f2fs_sanity_check_inline_data(struct inode *inode, struct folio *ifolio);
4397 bool f2fs_may_inline_dentry(struct inode *inode);
4398 void f2fs_do_read_inline_data(struct folio *folio, struct folio *ifolio);
4399 void f2fs_truncate_inline_inode(struct inode *inode, struct folio *ifolio,
4400 u64 from);
4401 int f2fs_read_inline_data(struct inode *inode, struct folio *folio);
4402 int f2fs_convert_inline_folio(struct dnode_of_data *dn, struct folio *folio);
4403 int f2fs_convert_inline_inode(struct inode *inode);
4404 int f2fs_try_convert_inline_dir(struct inode *dir, struct dentry *dentry);
4405 int f2fs_write_inline_data(struct inode *inode, struct folio *folio);
4406 int f2fs_recover_inline_data(struct inode *inode, struct folio *nfolio);
4407 struct f2fs_dir_entry *f2fs_find_in_inline_dir(struct inode *dir,
4408 const struct f2fs_filename *fname, struct folio **res_folio,
4409 bool use_hash);
4410 int f2fs_make_empty_inline_dir(struct inode *inode, struct inode *parent,
4411 struct folio *ifolio);
4412 int f2fs_add_inline_entry(struct inode *dir, const struct f2fs_filename *fname,
4413 struct inode *inode, nid_t ino, umode_t mode);
4414 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry,
4415 struct folio *folio, struct inode *dir, struct inode *inode);
4416 bool f2fs_empty_inline_dir(struct inode *dir);
4417 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx,
4418 struct fscrypt_str *fstr);
4419 int f2fs_inline_data_fiemap(struct inode *inode,
4420 struct fiemap_extent_info *fieinfo,
4421 __u64 start, __u64 len);
4422
4423 /*
4424 * shrinker.c
4425 */
4426 unsigned long f2fs_shrink_count(struct shrinker *shrink,
4427 struct shrink_control *sc);
4428 unsigned long f2fs_shrink_scan(struct shrinker *shrink,
4429 struct shrink_control *sc);
4430 unsigned int f2fs_donate_files(void);
4431 void f2fs_reclaim_caches(unsigned int reclaim_caches_kb);
4432 void f2fs_join_shrinker(struct f2fs_sb_info *sbi);
4433 void f2fs_leave_shrinker(struct f2fs_sb_info *sbi);
4434
4435 /*
4436 * extent_cache.c
4437 */
4438 bool sanity_check_extent_cache(struct inode *inode, struct folio *ifolio);
4439 void f2fs_init_extent_tree(struct inode *inode);
4440 void f2fs_drop_extent_tree(struct inode *inode);
4441 void f2fs_destroy_extent_node(struct inode *inode);
4442 void f2fs_destroy_extent_tree(struct inode *inode);
4443 void f2fs_init_extent_cache_info(struct f2fs_sb_info *sbi);
4444 int __init f2fs_create_extent_cache(void);
4445 void f2fs_destroy_extent_cache(void);
4446
4447 /* read extent cache ops */
4448 void f2fs_init_read_extent_tree(struct inode *inode, struct folio *ifolio);
4449 bool f2fs_lookup_read_extent_cache(struct inode *inode, pgoff_t pgofs,
4450 struct extent_info *ei);
4451 bool f2fs_lookup_read_extent_cache_block(struct inode *inode, pgoff_t index,
4452 block_t *blkaddr);
4453 void f2fs_update_read_extent_cache(struct dnode_of_data *dn);
4454 void f2fs_update_read_extent_cache_range(struct dnode_of_data *dn,
4455 pgoff_t fofs, block_t blkaddr, unsigned int len);
4456 unsigned int f2fs_shrink_read_extent_tree(struct f2fs_sb_info *sbi,
4457 int nr_shrink);
4458
4459 /* block age extent cache ops */
4460 void f2fs_init_age_extent_tree(struct inode *inode);
4461 bool f2fs_lookup_age_extent_cache(struct inode *inode, pgoff_t pgofs,
4462 struct extent_info *ei);
4463 void f2fs_update_age_extent_cache(struct dnode_of_data *dn);
4464 void f2fs_update_age_extent_cache_range(struct dnode_of_data *dn,
4465 pgoff_t fofs, unsigned int len);
4466 unsigned int f2fs_shrink_age_extent_tree(struct f2fs_sb_info *sbi,
4467 int nr_shrink);
4468
4469 /*
4470 * sysfs.c
4471 */
4472 #define MIN_RA_MUL 2
4473 #define MAX_RA_MUL 256
4474
4475 int __init f2fs_init_sysfs(void);
4476 void f2fs_exit_sysfs(void);
4477 int f2fs_register_sysfs(struct f2fs_sb_info *sbi);
4478 void f2fs_unregister_sysfs(struct f2fs_sb_info *sbi);
4479
4480 /* verity.c */
4481 extern const struct fsverity_operations f2fs_verityops;
4482
4483 /*
4484 * crypto support
4485 */
f2fs_encrypted_file(struct inode * inode)4486 static inline bool f2fs_encrypted_file(struct inode *inode)
4487 {
4488 return IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode);
4489 }
4490
f2fs_set_encrypted_inode(struct inode * inode)4491 static inline void f2fs_set_encrypted_inode(struct inode *inode)
4492 {
4493 #ifdef CONFIG_FS_ENCRYPTION
4494 file_set_encrypt(inode);
4495 f2fs_set_inode_flags(inode);
4496 #endif
4497 }
4498
4499 /*
4500 * Returns true if the reads of the inode's data need to undergo some
4501 * postprocessing step, like decryption or authenticity verification.
4502 */
f2fs_post_read_required(struct inode * inode)4503 static inline bool f2fs_post_read_required(struct inode *inode)
4504 {
4505 return f2fs_encrypted_file(inode) || fsverity_active(inode) ||
4506 f2fs_compressed_file(inode);
4507 }
4508
f2fs_used_in_atomic_write(struct inode * inode)4509 static inline bool f2fs_used_in_atomic_write(struct inode *inode)
4510 {
4511 return f2fs_is_atomic_file(inode) || f2fs_is_cow_file(inode);
4512 }
4513
f2fs_meta_inode_gc_required(struct inode * inode)4514 static inline bool f2fs_meta_inode_gc_required(struct inode *inode)
4515 {
4516 return f2fs_post_read_required(inode) || f2fs_used_in_atomic_write(inode);
4517 }
4518
4519 /*
4520 * compress.c
4521 */
4522 #ifdef CONFIG_F2FS_FS_COMPRESSION
4523 enum cluster_check_type {
4524 CLUSTER_IS_COMPR, /* check only if compressed cluster */
4525 CLUSTER_COMPR_BLKS, /* return # of compressed blocks in a cluster */
4526 CLUSTER_RAW_BLKS /* return # of raw blocks in a cluster */
4527 };
4528 bool f2fs_is_compressed_page(struct folio *folio);
4529 struct folio *f2fs_compress_control_folio(struct folio *folio);
4530 int f2fs_prepare_compress_overwrite(struct inode *inode,
4531 struct page **pagep, pgoff_t index, void **fsdata);
4532 bool f2fs_compress_write_end(struct inode *inode, void *fsdata,
4533 pgoff_t index, unsigned copied);
4534 int f2fs_truncate_partial_cluster(struct inode *inode, u64 from, bool lock);
4535 void f2fs_compress_write_end_io(struct bio *bio, struct folio *folio);
4536 bool f2fs_is_compress_backend_ready(struct inode *inode);
4537 bool f2fs_is_compress_level_valid(int alg, int lvl);
4538 int __init f2fs_init_compress_mempool(void);
4539 void f2fs_destroy_compress_mempool(void);
4540 void f2fs_decompress_cluster(struct decompress_io_ctx *dic, bool in_task);
4541 void f2fs_end_read_compressed_page(struct folio *folio, bool failed,
4542 block_t blkaddr, bool in_task);
4543 bool f2fs_cluster_is_empty(struct compress_ctx *cc);
4544 bool f2fs_cluster_can_merge_page(struct compress_ctx *cc, pgoff_t index);
4545 bool f2fs_all_cluster_page_ready(struct compress_ctx *cc, struct page **pages,
4546 int index, int nr_pages, bool uptodate);
4547 bool f2fs_sanity_check_cluster(struct dnode_of_data *dn);
4548 void f2fs_compress_ctx_add_page(struct compress_ctx *cc, struct folio *folio);
4549 int f2fs_write_multi_pages(struct compress_ctx *cc,
4550 int *submitted,
4551 struct writeback_control *wbc,
4552 enum iostat_type io_type);
4553 int f2fs_is_compressed_cluster(struct inode *inode, pgoff_t index);
4554 bool f2fs_is_sparse_cluster(struct inode *inode, pgoff_t index);
4555 void f2fs_update_read_extent_tree_range_compressed(struct inode *inode,
4556 pgoff_t fofs, block_t blkaddr,
4557 unsigned int llen, unsigned int c_len);
4558 int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret,
4559 unsigned nr_pages, sector_t *last_block_in_bio,
4560 struct readahead_control *rac, bool for_write);
4561 struct decompress_io_ctx *f2fs_alloc_dic(struct compress_ctx *cc);
4562 void f2fs_decompress_end_io(struct decompress_io_ctx *dic, bool failed,
4563 bool in_task);
4564 void f2fs_put_folio_dic(struct folio *folio, bool in_task);
4565 unsigned int f2fs_cluster_blocks_are_contiguous(struct dnode_of_data *dn,
4566 unsigned int ofs_in_node);
4567 int f2fs_init_compress_ctx(struct compress_ctx *cc);
4568 void f2fs_destroy_compress_ctx(struct compress_ctx *cc, bool reuse);
4569 void f2fs_init_compress_info(struct f2fs_sb_info *sbi);
4570 int f2fs_init_compress_inode(struct f2fs_sb_info *sbi);
4571 void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi);
4572 int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi);
4573 void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi);
4574 int __init f2fs_init_compress_cache(void);
4575 void f2fs_destroy_compress_cache(void);
4576 struct address_space *COMPRESS_MAPPING(struct f2fs_sb_info *sbi);
4577 void f2fs_invalidate_compress_pages_range(struct f2fs_sb_info *sbi,
4578 block_t blkaddr, unsigned int len);
4579 bool f2fs_load_compressed_folio(struct f2fs_sb_info *sbi, struct folio *folio,
4580 block_t blkaddr);
4581 void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi, nid_t ino);
4582 #define inc_compr_inode_stat(inode) \
4583 do { \
4584 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); \
4585 sbi->compr_new_inode++; \
4586 } while (0)
4587 #define add_compr_block_stat(inode, blocks) \
4588 do { \
4589 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); \
4590 int diff = F2FS_I(inode)->i_cluster_size - blocks; \
4591 sbi->compr_written_block += blocks; \
4592 sbi->compr_saved_block += diff; \
4593 } while (0)
4594 #else
f2fs_is_compressed_page(struct folio * folio)4595 static inline bool f2fs_is_compressed_page(struct folio *folio) { return false; }
f2fs_is_compress_backend_ready(struct inode * inode)4596 static inline bool f2fs_is_compress_backend_ready(struct inode *inode)
4597 {
4598 if (!f2fs_compressed_file(inode))
4599 return true;
4600 /* not support compression */
4601 return false;
4602 }
f2fs_is_compress_level_valid(int alg,int lvl)4603 static inline bool f2fs_is_compress_level_valid(int alg, int lvl) { return false; }
f2fs_compress_control_folio(struct folio * folio)4604 static inline struct folio *f2fs_compress_control_folio(struct folio *folio)
4605 {
4606 WARN_ON_ONCE(1);
4607 return ERR_PTR(-EINVAL);
4608 }
f2fs_init_compress_mempool(void)4609 static inline int __init f2fs_init_compress_mempool(void) { return 0; }
f2fs_destroy_compress_mempool(void)4610 static inline void f2fs_destroy_compress_mempool(void) { }
f2fs_decompress_cluster(struct decompress_io_ctx * dic,bool in_task)4611 static inline void f2fs_decompress_cluster(struct decompress_io_ctx *dic,
4612 bool in_task) { }
f2fs_end_read_compressed_page(struct folio * folio,bool failed,block_t blkaddr,bool in_task)4613 static inline void f2fs_end_read_compressed_page(struct folio *folio,
4614 bool failed, block_t blkaddr, bool in_task)
4615 {
4616 WARN_ON_ONCE(1);
4617 }
f2fs_put_folio_dic(struct folio * folio,bool in_task)4618 static inline void f2fs_put_folio_dic(struct folio *folio, bool in_task)
4619 {
4620 WARN_ON_ONCE(1);
4621 }
f2fs_cluster_blocks_are_contiguous(struct dnode_of_data * dn,unsigned int ofs_in_node)4622 static inline unsigned int f2fs_cluster_blocks_are_contiguous(
4623 struct dnode_of_data *dn, unsigned int ofs_in_node) { return 0; }
f2fs_sanity_check_cluster(struct dnode_of_data * dn)4624 static inline bool f2fs_sanity_check_cluster(struct dnode_of_data *dn) { return false; }
f2fs_init_compress_inode(struct f2fs_sb_info * sbi)4625 static inline int f2fs_init_compress_inode(struct f2fs_sb_info *sbi) { return 0; }
f2fs_destroy_compress_inode(struct f2fs_sb_info * sbi)4626 static inline void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi) { }
f2fs_init_page_array_cache(struct f2fs_sb_info * sbi)4627 static inline int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi) { return 0; }
f2fs_destroy_page_array_cache(struct f2fs_sb_info * sbi)4628 static inline void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi) { }
f2fs_init_compress_cache(void)4629 static inline int __init f2fs_init_compress_cache(void) { return 0; }
f2fs_destroy_compress_cache(void)4630 static inline void f2fs_destroy_compress_cache(void) { }
f2fs_invalidate_compress_pages_range(struct f2fs_sb_info * sbi,block_t blkaddr,unsigned int len)4631 static inline void f2fs_invalidate_compress_pages_range(struct f2fs_sb_info *sbi,
4632 block_t blkaddr, unsigned int len) { }
f2fs_load_compressed_folio(struct f2fs_sb_info * sbi,struct folio * folio,block_t blkaddr)4633 static inline bool f2fs_load_compressed_folio(struct f2fs_sb_info *sbi,
4634 struct folio *folio, block_t blkaddr) { return false; }
f2fs_invalidate_compress_pages(struct f2fs_sb_info * sbi,nid_t ino)4635 static inline void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi,
4636 nid_t ino) { }
4637 #define inc_compr_inode_stat(inode) do { } while (0)
f2fs_is_compressed_cluster(struct inode * inode,pgoff_t index)4638 static inline int f2fs_is_compressed_cluster(
4639 struct inode *inode,
4640 pgoff_t index) { return 0; }
f2fs_is_sparse_cluster(struct inode * inode,pgoff_t index)4641 static inline bool f2fs_is_sparse_cluster(
4642 struct inode *inode,
4643 pgoff_t index) { return true; }
f2fs_update_read_extent_tree_range_compressed(struct inode * inode,pgoff_t fofs,block_t blkaddr,unsigned int llen,unsigned int c_len)4644 static inline void f2fs_update_read_extent_tree_range_compressed(
4645 struct inode *inode,
4646 pgoff_t fofs, block_t blkaddr,
4647 unsigned int llen, unsigned int c_len) { }
4648 #endif
4649
set_compress_context(struct inode * inode)4650 static inline int set_compress_context(struct inode *inode)
4651 {
4652 #ifdef CONFIG_F2FS_FS_COMPRESSION
4653 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4654 struct f2fs_inode_info *fi = F2FS_I(inode);
4655
4656 fi->i_compress_algorithm = F2FS_OPTION(sbi).compress_algorithm;
4657 fi->i_log_cluster_size = F2FS_OPTION(sbi).compress_log_size;
4658 fi->i_compress_flag = F2FS_OPTION(sbi).compress_chksum ?
4659 BIT(COMPRESS_CHKSUM) : 0;
4660 fi->i_cluster_size = BIT(fi->i_log_cluster_size);
4661 if ((fi->i_compress_algorithm == COMPRESS_LZ4 ||
4662 fi->i_compress_algorithm == COMPRESS_ZSTD) &&
4663 F2FS_OPTION(sbi).compress_level)
4664 fi->i_compress_level = F2FS_OPTION(sbi).compress_level;
4665 fi->i_flags |= F2FS_COMPR_FL;
4666 set_inode_flag(inode, FI_COMPRESSED_FILE);
4667 stat_inc_compr_inode(inode);
4668 inc_compr_inode_stat(inode);
4669 f2fs_mark_inode_dirty_sync(inode, true);
4670 return 0;
4671 #else
4672 return -EOPNOTSUPP;
4673 #endif
4674 }
4675
f2fs_disable_compressed_file(struct inode * inode)4676 static inline bool f2fs_disable_compressed_file(struct inode *inode)
4677 {
4678 struct f2fs_inode_info *fi = F2FS_I(inode);
4679
4680 f2fs_down_write(&fi->i_sem);
4681
4682 if (!f2fs_compressed_file(inode)) {
4683 f2fs_up_write(&fi->i_sem);
4684 return true;
4685 }
4686 if (f2fs_is_mmap_file(inode) || atomic_read(&fi->writeback) ||
4687 (S_ISREG(inode->i_mode) && F2FS_HAS_BLOCKS(inode))) {
4688 f2fs_up_write(&fi->i_sem);
4689 return false;
4690 }
4691
4692 fi->i_flags &= ~F2FS_COMPR_FL;
4693 stat_dec_compr_inode(inode);
4694 clear_inode_flag(inode, FI_COMPRESSED_FILE);
4695 f2fs_mark_inode_dirty_sync(inode, true);
4696
4697 f2fs_up_write(&fi->i_sem);
4698 return true;
4699 }
4700
4701 #define F2FS_FEATURE_FUNCS(name, flagname) \
4702 static inline bool f2fs_sb_has_##name(struct f2fs_sb_info *sbi) \
4703 { \
4704 return F2FS_HAS_FEATURE(sbi, F2FS_FEATURE_##flagname); \
4705 }
4706
4707 F2FS_FEATURE_FUNCS(encrypt, ENCRYPT);
4708 F2FS_FEATURE_FUNCS(blkzoned, BLKZONED);
4709 F2FS_FEATURE_FUNCS(extra_attr, EXTRA_ATTR);
4710 F2FS_FEATURE_FUNCS(project_quota, PRJQUOTA);
4711 F2FS_FEATURE_FUNCS(inode_chksum, INODE_CHKSUM);
4712 F2FS_FEATURE_FUNCS(flexible_inline_xattr, FLEXIBLE_INLINE_XATTR);
4713 F2FS_FEATURE_FUNCS(quota_ino, QUOTA_INO);
4714 F2FS_FEATURE_FUNCS(inode_crtime, INODE_CRTIME);
4715 F2FS_FEATURE_FUNCS(lost_found, LOST_FOUND);
4716 F2FS_FEATURE_FUNCS(verity, VERITY);
4717 F2FS_FEATURE_FUNCS(sb_chksum, SB_CHKSUM);
4718 F2FS_FEATURE_FUNCS(casefold, CASEFOLD);
4719 F2FS_FEATURE_FUNCS(compression, COMPRESSION);
4720 F2FS_FEATURE_FUNCS(readonly, RO);
4721 F2FS_FEATURE_FUNCS(device_alias, DEVICE_ALIAS);
4722 F2FS_FEATURE_FUNCS(packed_ssa, PACKED_SSA);
4723
4724 #ifdef CONFIG_BLK_DEV_ZONED
f2fs_zone_is_seq(struct f2fs_sb_info * sbi,int devi,unsigned int zone)4725 static inline bool f2fs_zone_is_seq(struct f2fs_sb_info *sbi, int devi,
4726 unsigned int zone)
4727 {
4728 return test_bit(zone, FDEV(devi).blkz_seq);
4729 }
4730
f2fs_blkz_is_seq(struct f2fs_sb_info * sbi,int devi,block_t blkaddr)4731 static inline bool f2fs_blkz_is_seq(struct f2fs_sb_info *sbi, int devi,
4732 block_t blkaddr)
4733 {
4734 return f2fs_zone_is_seq(sbi, devi, blkaddr / sbi->blocks_per_blkz);
4735 }
4736 #endif
4737
f2fs_bdev_index(struct f2fs_sb_info * sbi,struct block_device * bdev)4738 static inline int f2fs_bdev_index(struct f2fs_sb_info *sbi,
4739 struct block_device *bdev)
4740 {
4741 int i;
4742
4743 if (!f2fs_is_multi_device(sbi))
4744 return 0;
4745
4746 for (i = 0; i < sbi->s_ndevs; i++)
4747 if (FDEV(i).bdev == bdev)
4748 return i;
4749
4750 WARN_ON(1);
4751 return -1;
4752 }
4753
f2fs_hw_should_discard(struct f2fs_sb_info * sbi)4754 static inline bool f2fs_hw_should_discard(struct f2fs_sb_info *sbi)
4755 {
4756 return f2fs_sb_has_blkzoned(sbi);
4757 }
4758
f2fs_bdev_support_discard(struct block_device * bdev)4759 static inline bool f2fs_bdev_support_discard(struct block_device *bdev)
4760 {
4761 return bdev_max_discard_sectors(bdev) || bdev_is_zoned(bdev);
4762 }
4763
f2fs_hw_support_discard(struct f2fs_sb_info * sbi)4764 static inline bool f2fs_hw_support_discard(struct f2fs_sb_info *sbi)
4765 {
4766 int i;
4767
4768 if (!f2fs_is_multi_device(sbi))
4769 return f2fs_bdev_support_discard(sbi->sb->s_bdev);
4770
4771 for (i = 0; i < sbi->s_ndevs; i++)
4772 if (f2fs_bdev_support_discard(FDEV(i).bdev))
4773 return true;
4774 return false;
4775 }
4776
f2fs_hw_discard_granularity(struct f2fs_sb_info * sbi)4777 static inline unsigned int f2fs_hw_discard_granularity(struct f2fs_sb_info *sbi)
4778 {
4779 int i = 1;
4780 unsigned int discard_granularity = bdev_discard_granularity(sbi->sb->s_bdev);
4781
4782 if (f2fs_is_multi_device(sbi))
4783 for (; i < sbi->s_ndevs && !bdev_is_zoned(FDEV(i).bdev); i++)
4784 discard_granularity = max_t(unsigned int, discard_granularity,
4785 bdev_discard_granularity(FDEV(i).bdev));
4786 return discard_granularity;
4787 }
4788
f2fs_realtime_discard_enable(struct f2fs_sb_info * sbi)4789 static inline bool f2fs_realtime_discard_enable(struct f2fs_sb_info *sbi)
4790 {
4791 return (test_opt(sbi, DISCARD) && f2fs_hw_support_discard(sbi)) ||
4792 f2fs_hw_should_discard(sbi);
4793 }
4794
f2fs_hw_is_readonly(struct f2fs_sb_info * sbi)4795 static inline bool f2fs_hw_is_readonly(struct f2fs_sb_info *sbi)
4796 {
4797 int i;
4798
4799 if (!f2fs_is_multi_device(sbi))
4800 return bdev_read_only(sbi->sb->s_bdev);
4801
4802 for (i = 0; i < sbi->s_ndevs; i++)
4803 if (bdev_read_only(FDEV(i).bdev))
4804 return true;
4805 return false;
4806 }
4807
f2fs_dev_is_readonly(struct f2fs_sb_info * sbi)4808 static inline bool f2fs_dev_is_readonly(struct f2fs_sb_info *sbi)
4809 {
4810 return f2fs_sb_has_readonly(sbi) || f2fs_hw_is_readonly(sbi);
4811 }
4812
f2fs_lfs_mode(struct f2fs_sb_info * sbi)4813 static inline bool f2fs_lfs_mode(struct f2fs_sb_info *sbi)
4814 {
4815 return F2FS_OPTION(sbi).fs_mode == FS_MODE_LFS;
4816 }
4817
f2fs_is_sequential_zone_area(struct f2fs_sb_info * sbi,block_t blkaddr)4818 static inline bool f2fs_is_sequential_zone_area(struct f2fs_sb_info *sbi,
4819 block_t blkaddr)
4820 {
4821 if (f2fs_sb_has_blkzoned(sbi)) {
4822 #ifdef CONFIG_BLK_DEV_ZONED
4823 int devi = f2fs_target_device_index(sbi, blkaddr);
4824
4825 if (!bdev_is_zoned(FDEV(devi).bdev))
4826 return false;
4827
4828 if (f2fs_is_multi_device(sbi)) {
4829 if (blkaddr < FDEV(devi).start_blk ||
4830 blkaddr > FDEV(devi).end_blk) {
4831 f2fs_err(sbi, "Invalid block %x", blkaddr);
4832 return false;
4833 }
4834 blkaddr -= FDEV(devi).start_blk;
4835 }
4836
4837 return f2fs_blkz_is_seq(sbi, devi, blkaddr);
4838 #else
4839 return false;
4840 #endif
4841 }
4842 return false;
4843 }
4844
f2fs_low_mem_mode(struct f2fs_sb_info * sbi)4845 static inline bool f2fs_low_mem_mode(struct f2fs_sb_info *sbi)
4846 {
4847 return F2FS_OPTION(sbi).memory_mode == MEMORY_MODE_LOW;
4848 }
4849
f2fs_may_compress(struct inode * inode)4850 static inline bool f2fs_may_compress(struct inode *inode)
4851 {
4852 if (IS_SWAPFILE(inode) || f2fs_is_pinned_file(inode) ||
4853 f2fs_is_atomic_file(inode) || f2fs_has_inline_data(inode) ||
4854 f2fs_is_mmap_file(inode))
4855 return false;
4856 return S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode);
4857 }
4858
f2fs_i_compr_blocks_update(struct inode * inode,u64 blocks,bool add)4859 static inline void f2fs_i_compr_blocks_update(struct inode *inode,
4860 u64 blocks, bool add)
4861 {
4862 struct f2fs_inode_info *fi = F2FS_I(inode);
4863 int diff = fi->i_cluster_size - blocks;
4864
4865 /* don't update i_compr_blocks if saved blocks were released */
4866 if (!add && !atomic_read(&fi->i_compr_blocks))
4867 return;
4868
4869 if (add) {
4870 atomic_add(diff, &fi->i_compr_blocks);
4871 stat_add_compr_blocks(inode, diff);
4872 } else {
4873 atomic_sub(diff, &fi->i_compr_blocks);
4874 stat_sub_compr_blocks(inode, diff);
4875 }
4876 f2fs_mark_inode_dirty_sync(inode, true);
4877 }
4878
f2fs_allow_multi_device_dio(struct f2fs_sb_info * sbi,int flag)4879 static inline bool f2fs_allow_multi_device_dio(struct f2fs_sb_info *sbi,
4880 int flag)
4881 {
4882 if (!f2fs_is_multi_device(sbi))
4883 return false;
4884 if (flag != F2FS_GET_BLOCK_DIO)
4885 return false;
4886 return sbi->aligned_blksize;
4887 }
4888
f2fs_need_verity(const struct inode * inode,pgoff_t idx)4889 static inline bool f2fs_need_verity(const struct inode *inode, pgoff_t idx)
4890 {
4891 return fsverity_active(inode) &&
4892 idx < DIV_ROUND_UP(inode->i_size, PAGE_SIZE);
4893 }
4894
4895 #ifdef CONFIG_F2FS_FAULT_INJECTION
4896 extern int f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned long rate,
4897 unsigned long type, enum fault_option fo);
4898 #else
f2fs_build_fault_attr(struct f2fs_sb_info * sbi,unsigned long rate,unsigned long type,enum fault_option fo)4899 static inline int f2fs_build_fault_attr(struct f2fs_sb_info *sbi,
4900 unsigned long rate, unsigned long type,
4901 enum fault_option fo)
4902 {
4903 return 0;
4904 }
4905 #endif
4906
is_journalled_quota(struct f2fs_sb_info * sbi)4907 static inline bool is_journalled_quota(struct f2fs_sb_info *sbi)
4908 {
4909 #ifdef CONFIG_QUOTA
4910 if (f2fs_sb_has_quota_ino(sbi))
4911 return true;
4912 if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] ||
4913 F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] ||
4914 F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
4915 return true;
4916 #endif
4917 return false;
4918 }
4919
f2fs_block_unit_discard(struct f2fs_sb_info * sbi)4920 static inline bool f2fs_block_unit_discard(struct f2fs_sb_info *sbi)
4921 {
4922 return F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_BLOCK;
4923 }
4924
__f2fs_schedule_timeout(long timeout,bool io)4925 static inline void __f2fs_schedule_timeout(long timeout, bool io)
4926 {
4927 set_current_state(TASK_UNINTERRUPTIBLE);
4928 if (io)
4929 io_schedule_timeout(timeout);
4930 else
4931 schedule_timeout(timeout);
4932 }
4933
4934 #define f2fs_io_schedule_timeout(timeout) \
4935 __f2fs_schedule_timeout(timeout, true)
4936 #define f2fs_schedule_timeout(timeout) \
4937 __f2fs_schedule_timeout(timeout, false)
4938
f2fs_io_schedule_timeout_killable(long timeout)4939 static inline void f2fs_io_schedule_timeout_killable(long timeout)
4940 {
4941 while (timeout) {
4942 if (fatal_signal_pending(current))
4943 return;
4944 set_current_state(TASK_UNINTERRUPTIBLE);
4945 io_schedule_timeout(DEFAULT_SCHEDULE_TIMEOUT);
4946 if (timeout <= DEFAULT_SCHEDULE_TIMEOUT)
4947 return;
4948 timeout -= DEFAULT_SCHEDULE_TIMEOUT;
4949 }
4950 }
4951
f2fs_handle_page_eio(struct f2fs_sb_info * sbi,struct folio * folio,enum page_type type)4952 static inline void f2fs_handle_page_eio(struct f2fs_sb_info *sbi,
4953 struct folio *folio, enum page_type type)
4954 {
4955 pgoff_t ofs = folio->index;
4956
4957 if (unlikely(f2fs_cp_error(sbi)))
4958 return;
4959
4960 if (ofs == sbi->page_eio_ofs[type]) {
4961 if (sbi->page_eio_cnt[type]++ == MAX_RETRY_PAGE_EIO)
4962 set_ckpt_flags(sbi, CP_ERROR_FLAG);
4963 } else {
4964 sbi->page_eio_ofs[type] = ofs;
4965 sbi->page_eio_cnt[type] = 0;
4966 }
4967 }
4968
f2fs_is_readonly(struct f2fs_sb_info * sbi)4969 static inline bool f2fs_is_readonly(struct f2fs_sb_info *sbi)
4970 {
4971 return f2fs_sb_has_readonly(sbi) || f2fs_readonly(sbi->sb);
4972 }
4973
f2fs_truncate_meta_inode_pages(struct f2fs_sb_info * sbi,block_t blkaddr,unsigned int cnt)4974 static inline void f2fs_truncate_meta_inode_pages(struct f2fs_sb_info *sbi,
4975 block_t blkaddr, unsigned int cnt)
4976 {
4977 bool need_submit = false;
4978 int i = 0;
4979
4980 do {
4981 struct folio *folio;
4982
4983 folio = filemap_get_folio(META_MAPPING(sbi), blkaddr + i);
4984 if (!IS_ERR(folio)) {
4985 if (folio_test_writeback(folio))
4986 need_submit = true;
4987 f2fs_folio_put(folio, false);
4988 }
4989 } while (++i < cnt && !need_submit);
4990
4991 if (need_submit)
4992 f2fs_submit_merged_write_cond(sbi, sbi->meta_inode,
4993 NULL, 0, DATA);
4994
4995 truncate_inode_pages_range(META_MAPPING(sbi),
4996 F2FS_BLK_TO_BYTES((loff_t)blkaddr),
4997 F2FS_BLK_END_BYTES((loff_t)(blkaddr + cnt - 1)));
4998 }
4999
f2fs_invalidate_internal_cache(struct f2fs_sb_info * sbi,block_t blkaddr,unsigned int len)5000 static inline void f2fs_invalidate_internal_cache(struct f2fs_sb_info *sbi,
5001 block_t blkaddr, unsigned int len)
5002 {
5003 f2fs_truncate_meta_inode_pages(sbi, blkaddr, len);
5004 f2fs_invalidate_compress_pages_range(sbi, blkaddr, len);
5005 }
5006
5007 #define EFSBADCRC EBADMSG /* Bad CRC detected */
5008 #define EFSCORRUPTED EUCLEAN /* Filesystem is corrupted */
5009
5010 #endif /* _LINUX_F2FS_H */
5011