xref: /linux/arch/arm64/kvm/sys_regs.c (revision adc4fb9c814b5d5cc6021022900fd5eb0b3c8165)
1  // SPDX-License-Identifier: GPL-2.0-only
2  /*
3   * Copyright (C) 2012,2013 - ARM Ltd
4   * Author: Marc Zyngier <marc.zyngier@arm.com>
5   *
6   * Derived from arch/arm/kvm/coproc.c:
7   * Copyright (C) 2012 - Virtual Open Systems and Columbia University
8   * Authors: Rusty Russell <rusty@rustcorp.com.au>
9   *          Christoffer Dall <c.dall@virtualopensystems.com>
10   */
11  
12  #include <linux/bitfield.h>
13  #include <linux/bsearch.h>
14  #include <linux/cacheinfo.h>
15  #include <linux/debugfs.h>
16  #include <linux/kvm_host.h>
17  #include <linux/mm.h>
18  #include <linux/printk.h>
19  #include <linux/uaccess.h>
20  #include <linux/irqchip/arm-gic-v3.h>
21  
22  #include <asm/arm_pmuv3.h>
23  #include <asm/cacheflush.h>
24  #include <asm/cputype.h>
25  #include <asm/debug-monitors.h>
26  #include <asm/esr.h>
27  #include <asm/kvm_arm.h>
28  #include <asm/kvm_emulate.h>
29  #include <asm/kvm_hyp.h>
30  #include <asm/kvm_mmu.h>
31  #include <asm/kvm_nested.h>
32  #include <asm/perf_event.h>
33  #include <asm/sysreg.h>
34  
35  #include <trace/events/kvm.h>
36  
37  #include "sys_regs.h"
38  #include "vgic/vgic.h"
39  
40  #include "trace.h"
41  
42  /*
43   * For AArch32, we only take care of what is being trapped. Anything
44   * that has to do with init and userspace access has to go via the
45   * 64bit interface.
46   */
47  
48  static u64 sys_reg_to_index(const struct sys_reg_desc *reg);
49  static int set_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
50  		      u64 val);
51  
undef_access(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)52  static bool undef_access(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
53  			 const struct sys_reg_desc *r)
54  {
55  	kvm_inject_undefined(vcpu);
56  	return false;
57  }
58  
bad_trap(struct kvm_vcpu * vcpu,struct sys_reg_params * params,const struct sys_reg_desc * r,const char * msg)59  static bool bad_trap(struct kvm_vcpu *vcpu,
60  		     struct sys_reg_params *params,
61  		     const struct sys_reg_desc *r,
62  		     const char *msg)
63  {
64  	WARN_ONCE(1, "Unexpected %s\n", msg);
65  	print_sys_reg_instr(params);
66  	return undef_access(vcpu, params, r);
67  }
68  
read_from_write_only(struct kvm_vcpu * vcpu,struct sys_reg_params * params,const struct sys_reg_desc * r)69  static bool read_from_write_only(struct kvm_vcpu *vcpu,
70  				 struct sys_reg_params *params,
71  				 const struct sys_reg_desc *r)
72  {
73  	return bad_trap(vcpu, params, r,
74  			"sys_reg read to write-only register");
75  }
76  
write_to_read_only(struct kvm_vcpu * vcpu,struct sys_reg_params * params,const struct sys_reg_desc * r)77  static bool write_to_read_only(struct kvm_vcpu *vcpu,
78  			       struct sys_reg_params *params,
79  			       const struct sys_reg_desc *r)
80  {
81  	return bad_trap(vcpu, params, r,
82  			"sys_reg write to read-only register");
83  }
84  
85  #define PURE_EL2_SYSREG(el2)						\
86  	case el2: {							\
87  		*el1r = el2;						\
88  		return true;						\
89  	}
90  
91  #define MAPPED_EL2_SYSREG(el2, el1, fn)					\
92  	case el2: {							\
93  		*xlate = fn;						\
94  		*el1r = el1;						\
95  		return true;						\
96  	}
97  
get_el2_to_el1_mapping(unsigned int reg,unsigned int * el1r,u64 (** xlate)(u64))98  static bool get_el2_to_el1_mapping(unsigned int reg,
99  				   unsigned int *el1r, u64 (**xlate)(u64))
100  {
101  	switch (reg) {
102  		PURE_EL2_SYSREG(  VPIDR_EL2	);
103  		PURE_EL2_SYSREG(  VMPIDR_EL2	);
104  		PURE_EL2_SYSREG(  ACTLR_EL2	);
105  		PURE_EL2_SYSREG(  HCR_EL2	);
106  		PURE_EL2_SYSREG(  MDCR_EL2	);
107  		PURE_EL2_SYSREG(  HSTR_EL2	);
108  		PURE_EL2_SYSREG(  HACR_EL2	);
109  		PURE_EL2_SYSREG(  VTTBR_EL2	);
110  		PURE_EL2_SYSREG(  VTCR_EL2	);
111  		PURE_EL2_SYSREG(  RVBAR_EL2	);
112  		PURE_EL2_SYSREG(  TPIDR_EL2	);
113  		PURE_EL2_SYSREG(  HPFAR_EL2	);
114  		PURE_EL2_SYSREG(  HCRX_EL2	);
115  		PURE_EL2_SYSREG(  HFGRTR_EL2	);
116  		PURE_EL2_SYSREG(  HFGWTR_EL2	);
117  		PURE_EL2_SYSREG(  HFGITR_EL2	);
118  		PURE_EL2_SYSREG(  HDFGRTR_EL2	);
119  		PURE_EL2_SYSREG(  HDFGWTR_EL2	);
120  		PURE_EL2_SYSREG(  HAFGRTR_EL2	);
121  		PURE_EL2_SYSREG(  CNTVOFF_EL2	);
122  		PURE_EL2_SYSREG(  CNTHCTL_EL2	);
123  		MAPPED_EL2_SYSREG(SCTLR_EL2,   SCTLR_EL1,
124  				  translate_sctlr_el2_to_sctlr_el1	     );
125  		MAPPED_EL2_SYSREG(CPTR_EL2,    CPACR_EL1,
126  				  translate_cptr_el2_to_cpacr_el1	     );
127  		MAPPED_EL2_SYSREG(TTBR0_EL2,   TTBR0_EL1,
128  				  translate_ttbr0_el2_to_ttbr0_el1	     );
129  		MAPPED_EL2_SYSREG(TTBR1_EL2,   TTBR1_EL1,   NULL	     );
130  		MAPPED_EL2_SYSREG(TCR_EL2,     TCR_EL1,
131  				  translate_tcr_el2_to_tcr_el1		     );
132  		MAPPED_EL2_SYSREG(VBAR_EL2,    VBAR_EL1,    NULL	     );
133  		MAPPED_EL2_SYSREG(AFSR0_EL2,   AFSR0_EL1,   NULL	     );
134  		MAPPED_EL2_SYSREG(AFSR1_EL2,   AFSR1_EL1,   NULL	     );
135  		MAPPED_EL2_SYSREG(ESR_EL2,     ESR_EL1,     NULL	     );
136  		MAPPED_EL2_SYSREG(FAR_EL2,     FAR_EL1,     NULL	     );
137  		MAPPED_EL2_SYSREG(MAIR_EL2,    MAIR_EL1,    NULL	     );
138  		MAPPED_EL2_SYSREG(TCR2_EL2,    TCR2_EL1,    NULL	     );
139  		MAPPED_EL2_SYSREG(PIR_EL2,     PIR_EL1,     NULL	     );
140  		MAPPED_EL2_SYSREG(PIRE0_EL2,   PIRE0_EL1,   NULL	     );
141  		MAPPED_EL2_SYSREG(POR_EL2,     POR_EL1,     NULL	     );
142  		MAPPED_EL2_SYSREG(AMAIR_EL2,   AMAIR_EL1,   NULL	     );
143  		MAPPED_EL2_SYSREG(ELR_EL2,     ELR_EL1,	    NULL	     );
144  		MAPPED_EL2_SYSREG(SPSR_EL2,    SPSR_EL1,    NULL	     );
145  		MAPPED_EL2_SYSREG(ZCR_EL2,     ZCR_EL1,     NULL	     );
146  		MAPPED_EL2_SYSREG(CONTEXTIDR_EL2, CONTEXTIDR_EL1, NULL	     );
147  	default:
148  		return false;
149  	}
150  }
151  
vcpu_read_sys_reg(const struct kvm_vcpu * vcpu,int reg)152  u64 vcpu_read_sys_reg(const struct kvm_vcpu *vcpu, int reg)
153  {
154  	u64 val = 0x8badf00d8badf00d;
155  	u64 (*xlate)(u64) = NULL;
156  	unsigned int el1r;
157  
158  	if (!vcpu_get_flag(vcpu, SYSREGS_ON_CPU))
159  		goto memory_read;
160  
161  	if (unlikely(get_el2_to_el1_mapping(reg, &el1r, &xlate))) {
162  		if (!is_hyp_ctxt(vcpu))
163  			goto memory_read;
164  
165  		/*
166  		 * CNTHCTL_EL2 requires some special treatment to
167  		 * account for the bits that can be set via CNTKCTL_EL1.
168  		 */
169  		switch (reg) {
170  		case CNTHCTL_EL2:
171  			if (vcpu_el2_e2h_is_set(vcpu)) {
172  				val = read_sysreg_el1(SYS_CNTKCTL);
173  				val &= CNTKCTL_VALID_BITS;
174  				val |= __vcpu_sys_reg(vcpu, reg) & ~CNTKCTL_VALID_BITS;
175  				return val;
176  			}
177  			break;
178  		}
179  
180  		/*
181  		 * If this register does not have an EL1 counterpart,
182  		 * then read the stored EL2 version.
183  		 */
184  		if (reg == el1r)
185  			goto memory_read;
186  
187  		/*
188  		 * If we have a non-VHE guest and that the sysreg
189  		 * requires translation to be used at EL1, use the
190  		 * in-memory copy instead.
191  		 */
192  		if (!vcpu_el2_e2h_is_set(vcpu) && xlate)
193  			goto memory_read;
194  
195  		/* Get the current version of the EL1 counterpart. */
196  		WARN_ON(!__vcpu_read_sys_reg_from_cpu(el1r, &val));
197  		if (reg >= __SANITISED_REG_START__)
198  			val = kvm_vcpu_apply_reg_masks(vcpu, reg, val);
199  
200  		return val;
201  	}
202  
203  	/* EL1 register can't be on the CPU if the guest is in vEL2. */
204  	if (unlikely(is_hyp_ctxt(vcpu)))
205  		goto memory_read;
206  
207  	if (__vcpu_read_sys_reg_from_cpu(reg, &val))
208  		return val;
209  
210  memory_read:
211  	return __vcpu_sys_reg(vcpu, reg);
212  }
213  
vcpu_write_sys_reg(struct kvm_vcpu * vcpu,u64 val,int reg)214  void vcpu_write_sys_reg(struct kvm_vcpu *vcpu, u64 val, int reg)
215  {
216  	u64 (*xlate)(u64) = NULL;
217  	unsigned int el1r;
218  
219  	if (!vcpu_get_flag(vcpu, SYSREGS_ON_CPU))
220  		goto memory_write;
221  
222  	if (unlikely(get_el2_to_el1_mapping(reg, &el1r, &xlate))) {
223  		if (!is_hyp_ctxt(vcpu))
224  			goto memory_write;
225  
226  		/*
227  		 * Always store a copy of the write to memory to avoid having
228  		 * to reverse-translate virtual EL2 system registers for a
229  		 * non-VHE guest hypervisor.
230  		 */
231  		__vcpu_sys_reg(vcpu, reg) = val;
232  
233  		switch (reg) {
234  		case CNTHCTL_EL2:
235  			/*
236  			 * If E2H=0, CNHTCTL_EL2 is a pure shadow register.
237  			 * Otherwise, some of the bits are backed by
238  			 * CNTKCTL_EL1, while the rest is kept in memory.
239  			 * Yes, this is fun stuff.
240  			 */
241  			if (vcpu_el2_e2h_is_set(vcpu))
242  				write_sysreg_el1(val, SYS_CNTKCTL);
243  			return;
244  		}
245  
246  		/* No EL1 counterpart? We're done here.? */
247  		if (reg == el1r)
248  			return;
249  
250  		if (!vcpu_el2_e2h_is_set(vcpu) && xlate)
251  			val = xlate(val);
252  
253  		/* Redirect this to the EL1 version of the register. */
254  		WARN_ON(!__vcpu_write_sys_reg_to_cpu(val, el1r));
255  		return;
256  	}
257  
258  	/* EL1 register can't be on the CPU if the guest is in vEL2. */
259  	if (unlikely(is_hyp_ctxt(vcpu)))
260  		goto memory_write;
261  
262  	if (__vcpu_write_sys_reg_to_cpu(val, reg))
263  		return;
264  
265  memory_write:
266  	 __vcpu_sys_reg(vcpu, reg) = val;
267  }
268  
269  /* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
270  #define CSSELR_MAX 14
271  
272  /*
273   * Returns the minimum line size for the selected cache, expressed as
274   * Log2(bytes).
275   */
get_min_cache_line_size(bool icache)276  static u8 get_min_cache_line_size(bool icache)
277  {
278  	u64 ctr = read_sanitised_ftr_reg(SYS_CTR_EL0);
279  	u8 field;
280  
281  	if (icache)
282  		field = SYS_FIELD_GET(CTR_EL0, IminLine, ctr);
283  	else
284  		field = SYS_FIELD_GET(CTR_EL0, DminLine, ctr);
285  
286  	/*
287  	 * Cache line size is represented as Log2(words) in CTR_EL0.
288  	 * Log2(bytes) can be derived with the following:
289  	 *
290  	 * Log2(words) + 2 = Log2(bytes / 4) + 2
291  	 * 		   = Log2(bytes) - 2 + 2
292  	 * 		   = Log2(bytes)
293  	 */
294  	return field + 2;
295  }
296  
297  /* Which cache CCSIDR represents depends on CSSELR value. */
get_ccsidr(struct kvm_vcpu * vcpu,u32 csselr)298  static u32 get_ccsidr(struct kvm_vcpu *vcpu, u32 csselr)
299  {
300  	u8 line_size;
301  
302  	if (vcpu->arch.ccsidr)
303  		return vcpu->arch.ccsidr[csselr];
304  
305  	line_size = get_min_cache_line_size(csselr & CSSELR_EL1_InD);
306  
307  	/*
308  	 * Fabricate a CCSIDR value as the overriding value does not exist.
309  	 * The real CCSIDR value will not be used as it can vary by the
310  	 * physical CPU which the vcpu currently resides in.
311  	 *
312  	 * The line size is determined with get_min_cache_line_size(), which
313  	 * should be valid for all CPUs even if they have different cache
314  	 * configuration.
315  	 *
316  	 * The associativity bits are cleared, meaning the geometry of all data
317  	 * and unified caches (which are guaranteed to be PIPT and thus
318  	 * non-aliasing) are 1 set and 1 way.
319  	 * Guests should not be doing cache operations by set/way at all, and
320  	 * for this reason, we trap them and attempt to infer the intent, so
321  	 * that we can flush the entire guest's address space at the appropriate
322  	 * time. The exposed geometry minimizes the number of the traps.
323  	 * [If guests should attempt to infer aliasing properties from the
324  	 * geometry (which is not permitted by the architecture), they would
325  	 * only do so for virtually indexed caches.]
326  	 *
327  	 * We don't check if the cache level exists as it is allowed to return
328  	 * an UNKNOWN value if not.
329  	 */
330  	return SYS_FIELD_PREP(CCSIDR_EL1, LineSize, line_size - 4);
331  }
332  
set_ccsidr(struct kvm_vcpu * vcpu,u32 csselr,u32 val)333  static int set_ccsidr(struct kvm_vcpu *vcpu, u32 csselr, u32 val)
334  {
335  	u8 line_size = FIELD_GET(CCSIDR_EL1_LineSize, val) + 4;
336  	u32 *ccsidr = vcpu->arch.ccsidr;
337  	u32 i;
338  
339  	if ((val & CCSIDR_EL1_RES0) ||
340  	    line_size < get_min_cache_line_size(csselr & CSSELR_EL1_InD))
341  		return -EINVAL;
342  
343  	if (!ccsidr) {
344  		if (val == get_ccsidr(vcpu, csselr))
345  			return 0;
346  
347  		ccsidr = kmalloc_array(CSSELR_MAX, sizeof(u32), GFP_KERNEL_ACCOUNT);
348  		if (!ccsidr)
349  			return -ENOMEM;
350  
351  		for (i = 0; i < CSSELR_MAX; i++)
352  			ccsidr[i] = get_ccsidr(vcpu, i);
353  
354  		vcpu->arch.ccsidr = ccsidr;
355  	}
356  
357  	ccsidr[csselr] = val;
358  
359  	return 0;
360  }
361  
access_rw(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)362  static bool access_rw(struct kvm_vcpu *vcpu,
363  		      struct sys_reg_params *p,
364  		      const struct sys_reg_desc *r)
365  {
366  	if (p->is_write)
367  		vcpu_write_sys_reg(vcpu, p->regval, r->reg);
368  	else
369  		p->regval = vcpu_read_sys_reg(vcpu, r->reg);
370  
371  	return true;
372  }
373  
374  /*
375   * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
376   */
access_dcsw(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)377  static bool access_dcsw(struct kvm_vcpu *vcpu,
378  			struct sys_reg_params *p,
379  			const struct sys_reg_desc *r)
380  {
381  	if (!p->is_write)
382  		return read_from_write_only(vcpu, p, r);
383  
384  	/*
385  	 * Only track S/W ops if we don't have FWB. It still indicates
386  	 * that the guest is a bit broken (S/W operations should only
387  	 * be done by firmware, knowing that there is only a single
388  	 * CPU left in the system, and certainly not from non-secure
389  	 * software).
390  	 */
391  	if (!cpus_have_final_cap(ARM64_HAS_STAGE2_FWB))
392  		kvm_set_way_flush(vcpu);
393  
394  	return true;
395  }
396  
access_dcgsw(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)397  static bool access_dcgsw(struct kvm_vcpu *vcpu,
398  			 struct sys_reg_params *p,
399  			 const struct sys_reg_desc *r)
400  {
401  	if (!kvm_has_mte(vcpu->kvm))
402  		return undef_access(vcpu, p, r);
403  
404  	/* Treat MTE S/W ops as we treat the classic ones: with contempt */
405  	return access_dcsw(vcpu, p, r);
406  }
407  
get_access_mask(const struct sys_reg_desc * r,u64 * mask,u64 * shift)408  static void get_access_mask(const struct sys_reg_desc *r, u64 *mask, u64 *shift)
409  {
410  	switch (r->aarch32_map) {
411  	case AA32_LO:
412  		*mask = GENMASK_ULL(31, 0);
413  		*shift = 0;
414  		break;
415  	case AA32_HI:
416  		*mask = GENMASK_ULL(63, 32);
417  		*shift = 32;
418  		break;
419  	default:
420  		*mask = GENMASK_ULL(63, 0);
421  		*shift = 0;
422  		break;
423  	}
424  }
425  
426  /*
427   * Generic accessor for VM registers. Only called as long as HCR_TVM
428   * is set. If the guest enables the MMU, we stop trapping the VM
429   * sys_regs and leave it in complete control of the caches.
430   */
access_vm_reg(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)431  static bool access_vm_reg(struct kvm_vcpu *vcpu,
432  			  struct sys_reg_params *p,
433  			  const struct sys_reg_desc *r)
434  {
435  	bool was_enabled = vcpu_has_cache_enabled(vcpu);
436  	u64 val, mask, shift;
437  
438  	BUG_ON(!p->is_write);
439  
440  	get_access_mask(r, &mask, &shift);
441  
442  	if (~mask) {
443  		val = vcpu_read_sys_reg(vcpu, r->reg);
444  		val &= ~mask;
445  	} else {
446  		val = 0;
447  	}
448  
449  	val |= (p->regval & (mask >> shift)) << shift;
450  	vcpu_write_sys_reg(vcpu, val, r->reg);
451  
452  	kvm_toggle_cache(vcpu, was_enabled);
453  	return true;
454  }
455  
access_actlr(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)456  static bool access_actlr(struct kvm_vcpu *vcpu,
457  			 struct sys_reg_params *p,
458  			 const struct sys_reg_desc *r)
459  {
460  	u64 mask, shift;
461  
462  	if (p->is_write)
463  		return ignore_write(vcpu, p);
464  
465  	get_access_mask(r, &mask, &shift);
466  	p->regval = (vcpu_read_sys_reg(vcpu, r->reg) & mask) >> shift;
467  
468  	return true;
469  }
470  
471  /*
472   * Trap handler for the GICv3 SGI generation system register.
473   * Forward the request to the VGIC emulation.
474   * The cp15_64 code makes sure this automatically works
475   * for both AArch64 and AArch32 accesses.
476   */
access_gic_sgi(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)477  static bool access_gic_sgi(struct kvm_vcpu *vcpu,
478  			   struct sys_reg_params *p,
479  			   const struct sys_reg_desc *r)
480  {
481  	bool g1;
482  
483  	if (!kvm_has_gicv3(vcpu->kvm))
484  		return undef_access(vcpu, p, r);
485  
486  	if (!p->is_write)
487  		return read_from_write_only(vcpu, p, r);
488  
489  	/*
490  	 * In a system where GICD_CTLR.DS=1, a ICC_SGI0R_EL1 access generates
491  	 * Group0 SGIs only, while ICC_SGI1R_EL1 can generate either group,
492  	 * depending on the SGI configuration. ICC_ASGI1R_EL1 is effectively
493  	 * equivalent to ICC_SGI0R_EL1, as there is no "alternative" secure
494  	 * group.
495  	 */
496  	if (p->Op0 == 0) {		/* AArch32 */
497  		switch (p->Op1) {
498  		default:		/* Keep GCC quiet */
499  		case 0:			/* ICC_SGI1R */
500  			g1 = true;
501  			break;
502  		case 1:			/* ICC_ASGI1R */
503  		case 2:			/* ICC_SGI0R */
504  			g1 = false;
505  			break;
506  		}
507  	} else {			/* AArch64 */
508  		switch (p->Op2) {
509  		default:		/* Keep GCC quiet */
510  		case 5:			/* ICC_SGI1R_EL1 */
511  			g1 = true;
512  			break;
513  		case 6:			/* ICC_ASGI1R_EL1 */
514  		case 7:			/* ICC_SGI0R_EL1 */
515  			g1 = false;
516  			break;
517  		}
518  	}
519  
520  	vgic_v3_dispatch_sgi(vcpu, p->regval, g1);
521  
522  	return true;
523  }
524  
access_gic_sre(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)525  static bool access_gic_sre(struct kvm_vcpu *vcpu,
526  			   struct sys_reg_params *p,
527  			   const struct sys_reg_desc *r)
528  {
529  	if (!kvm_has_gicv3(vcpu->kvm))
530  		return undef_access(vcpu, p, r);
531  
532  	if (p->is_write)
533  		return ignore_write(vcpu, p);
534  
535  	if (p->Op1 == 4) {	/* ICC_SRE_EL2 */
536  		p->regval = (ICC_SRE_EL2_ENABLE | ICC_SRE_EL2_SRE |
537  			     ICC_SRE_EL1_DIB | ICC_SRE_EL1_DFB);
538  	} else {		/* ICC_SRE_EL1 */
539  		p->regval = vcpu->arch.vgic_cpu.vgic_v3.vgic_sre;
540  	}
541  
542  	return true;
543  }
544  
trap_raz_wi(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)545  static bool trap_raz_wi(struct kvm_vcpu *vcpu,
546  			struct sys_reg_params *p,
547  			const struct sys_reg_desc *r)
548  {
549  	if (p->is_write)
550  		return ignore_write(vcpu, p);
551  	else
552  		return read_zero(vcpu, p);
553  }
554  
555  /*
556   * ARMv8.1 mandates at least a trivial LORegion implementation, where all the
557   * RW registers are RES0 (which we can implement as RAZ/WI). On an ARMv8.0
558   * system, these registers should UNDEF. LORID_EL1 being a RO register, we
559   * treat it separately.
560   */
trap_loregion(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)561  static bool trap_loregion(struct kvm_vcpu *vcpu,
562  			  struct sys_reg_params *p,
563  			  const struct sys_reg_desc *r)
564  {
565  	u32 sr = reg_to_encoding(r);
566  
567  	if (!kvm_has_feat(vcpu->kvm, ID_AA64MMFR1_EL1, LO, IMP))
568  		return undef_access(vcpu, p, r);
569  
570  	if (p->is_write && sr == SYS_LORID_EL1)
571  		return write_to_read_only(vcpu, p, r);
572  
573  	return trap_raz_wi(vcpu, p, r);
574  }
575  
trap_oslar_el1(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)576  static bool trap_oslar_el1(struct kvm_vcpu *vcpu,
577  			   struct sys_reg_params *p,
578  			   const struct sys_reg_desc *r)
579  {
580  	if (!p->is_write)
581  		return read_from_write_only(vcpu, p, r);
582  
583  	kvm_debug_handle_oslar(vcpu, p->regval);
584  	return true;
585  }
586  
trap_oslsr_el1(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)587  static bool trap_oslsr_el1(struct kvm_vcpu *vcpu,
588  			   struct sys_reg_params *p,
589  			   const struct sys_reg_desc *r)
590  {
591  	if (p->is_write)
592  		return write_to_read_only(vcpu, p, r);
593  
594  	p->regval = __vcpu_sys_reg(vcpu, r->reg);
595  	return true;
596  }
597  
set_oslsr_el1(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,u64 val)598  static int set_oslsr_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
599  			 u64 val)
600  {
601  	/*
602  	 * The only modifiable bit is the OSLK bit. Refuse the write if
603  	 * userspace attempts to change any other bit in the register.
604  	 */
605  	if ((val ^ rd->val) & ~OSLSR_EL1_OSLK)
606  		return -EINVAL;
607  
608  	__vcpu_sys_reg(vcpu, rd->reg) = val;
609  	return 0;
610  }
611  
trap_dbgauthstatus_el1(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)612  static bool trap_dbgauthstatus_el1(struct kvm_vcpu *vcpu,
613  				   struct sys_reg_params *p,
614  				   const struct sys_reg_desc *r)
615  {
616  	if (p->is_write) {
617  		return ignore_write(vcpu, p);
618  	} else {
619  		p->regval = read_sysreg(dbgauthstatus_el1);
620  		return true;
621  	}
622  }
623  
trap_debug_regs(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)624  static bool trap_debug_regs(struct kvm_vcpu *vcpu,
625  			    struct sys_reg_params *p,
626  			    const struct sys_reg_desc *r)
627  {
628  	access_rw(vcpu, p, r);
629  
630  	kvm_debug_set_guest_ownership(vcpu);
631  	return true;
632  }
633  
634  /*
635   * reg_to_dbg/dbg_to_reg
636   *
637   * A 32 bit write to a debug register leave top bits alone
638   * A 32 bit read from a debug register only returns the bottom bits
639   */
reg_to_dbg(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * rd,u64 * dbg_reg)640  static void reg_to_dbg(struct kvm_vcpu *vcpu,
641  		       struct sys_reg_params *p,
642  		       const struct sys_reg_desc *rd,
643  		       u64 *dbg_reg)
644  {
645  	u64 mask, shift, val;
646  
647  	get_access_mask(rd, &mask, &shift);
648  
649  	val = *dbg_reg;
650  	val &= ~mask;
651  	val |= (p->regval & (mask >> shift)) << shift;
652  	*dbg_reg = val;
653  }
654  
dbg_to_reg(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * rd,u64 * dbg_reg)655  static void dbg_to_reg(struct kvm_vcpu *vcpu,
656  		       struct sys_reg_params *p,
657  		       const struct sys_reg_desc *rd,
658  		       u64 *dbg_reg)
659  {
660  	u64 mask, shift;
661  
662  	get_access_mask(rd, &mask, &shift);
663  	p->regval = (*dbg_reg & mask) >> shift;
664  }
665  
demux_wb_reg(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd)666  static u64 *demux_wb_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd)
667  {
668  	struct kvm_guest_debug_arch *dbg = &vcpu->arch.vcpu_debug_state;
669  
670  	switch (rd->Op2) {
671  	case 0b100:
672  		return &dbg->dbg_bvr[rd->CRm];
673  	case 0b101:
674  		return &dbg->dbg_bcr[rd->CRm];
675  	case 0b110:
676  		return &dbg->dbg_wvr[rd->CRm];
677  	case 0b111:
678  		return &dbg->dbg_wcr[rd->CRm];
679  	default:
680  		KVM_BUG_ON(1, vcpu->kvm);
681  		return NULL;
682  	}
683  }
684  
trap_dbg_wb_reg(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * rd)685  static bool trap_dbg_wb_reg(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
686  			    const struct sys_reg_desc *rd)
687  {
688  	u64 *reg = demux_wb_reg(vcpu, rd);
689  
690  	if (!reg)
691  		return false;
692  
693  	if (p->is_write)
694  		reg_to_dbg(vcpu, p, rd, reg);
695  	else
696  		dbg_to_reg(vcpu, p, rd, reg);
697  
698  	kvm_debug_set_guest_ownership(vcpu);
699  	return true;
700  }
701  
set_dbg_wb_reg(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,u64 val)702  static int set_dbg_wb_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
703  			  u64 val)
704  {
705  	u64 *reg = demux_wb_reg(vcpu, rd);
706  
707  	if (!reg)
708  		return -EINVAL;
709  
710  	*reg = val;
711  	return 0;
712  }
713  
get_dbg_wb_reg(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,u64 * val)714  static int get_dbg_wb_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
715  			  u64 *val)
716  {
717  	u64 *reg = demux_wb_reg(vcpu, rd);
718  
719  	if (!reg)
720  		return -EINVAL;
721  
722  	*val = *reg;
723  	return 0;
724  }
725  
reset_dbg_wb_reg(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd)726  static u64 reset_dbg_wb_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd)
727  {
728  	u64 *reg = demux_wb_reg(vcpu, rd);
729  
730  	/*
731  	 * Bail early if we couldn't find storage for the register, the
732  	 * KVM_BUG_ON() in demux_wb_reg() will prevent this VM from ever
733  	 * being run.
734  	 */
735  	if (!reg)
736  		return 0;
737  
738  	*reg = rd->val;
739  	return rd->val;
740  }
741  
reset_amair_el1(struct kvm_vcpu * vcpu,const struct sys_reg_desc * r)742  static u64 reset_amair_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
743  {
744  	u64 amair = read_sysreg(amair_el1);
745  	vcpu_write_sys_reg(vcpu, amair, AMAIR_EL1);
746  	return amair;
747  }
748  
reset_actlr(struct kvm_vcpu * vcpu,const struct sys_reg_desc * r)749  static u64 reset_actlr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
750  {
751  	u64 actlr = read_sysreg(actlr_el1);
752  	vcpu_write_sys_reg(vcpu, actlr, ACTLR_EL1);
753  	return actlr;
754  }
755  
reset_mpidr(struct kvm_vcpu * vcpu,const struct sys_reg_desc * r)756  static u64 reset_mpidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
757  {
758  	u64 mpidr;
759  
760  	/*
761  	 * Map the vcpu_id into the first three affinity level fields of
762  	 * the MPIDR. We limit the number of VCPUs in level 0 due to a
763  	 * limitation to 16 CPUs in that level in the ICC_SGIxR registers
764  	 * of the GICv3 to be able to address each CPU directly when
765  	 * sending IPIs.
766  	 */
767  	mpidr = (vcpu->vcpu_id & 0x0f) << MPIDR_LEVEL_SHIFT(0);
768  	mpidr |= ((vcpu->vcpu_id >> 4) & 0xff) << MPIDR_LEVEL_SHIFT(1);
769  	mpidr |= ((vcpu->vcpu_id >> 12) & 0xff) << MPIDR_LEVEL_SHIFT(2);
770  	mpidr |= (1ULL << 31);
771  	vcpu_write_sys_reg(vcpu, mpidr, MPIDR_EL1);
772  
773  	return mpidr;
774  }
775  
pmu_visibility(const struct kvm_vcpu * vcpu,const struct sys_reg_desc * r)776  static unsigned int pmu_visibility(const struct kvm_vcpu *vcpu,
777  				   const struct sys_reg_desc *r)
778  {
779  	if (kvm_vcpu_has_pmu(vcpu))
780  		return 0;
781  
782  	return REG_HIDDEN;
783  }
784  
reset_pmu_reg(struct kvm_vcpu * vcpu,const struct sys_reg_desc * r)785  static u64 reset_pmu_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
786  {
787  	u64 mask = BIT(ARMV8_PMU_CYCLE_IDX);
788  	u8 n = vcpu->kvm->arch.pmcr_n;
789  
790  	if (n)
791  		mask |= GENMASK(n - 1, 0);
792  
793  	reset_unknown(vcpu, r);
794  	__vcpu_sys_reg(vcpu, r->reg) &= mask;
795  
796  	return __vcpu_sys_reg(vcpu, r->reg);
797  }
798  
reset_pmevcntr(struct kvm_vcpu * vcpu,const struct sys_reg_desc * r)799  static u64 reset_pmevcntr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
800  {
801  	reset_unknown(vcpu, r);
802  	__vcpu_sys_reg(vcpu, r->reg) &= GENMASK(31, 0);
803  
804  	return __vcpu_sys_reg(vcpu, r->reg);
805  }
806  
reset_pmevtyper(struct kvm_vcpu * vcpu,const struct sys_reg_desc * r)807  static u64 reset_pmevtyper(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
808  {
809  	/* This thing will UNDEF, who cares about the reset value? */
810  	if (!kvm_vcpu_has_pmu(vcpu))
811  		return 0;
812  
813  	reset_unknown(vcpu, r);
814  	__vcpu_sys_reg(vcpu, r->reg) &= kvm_pmu_evtyper_mask(vcpu->kvm);
815  
816  	return __vcpu_sys_reg(vcpu, r->reg);
817  }
818  
reset_pmselr(struct kvm_vcpu * vcpu,const struct sys_reg_desc * r)819  static u64 reset_pmselr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
820  {
821  	reset_unknown(vcpu, r);
822  	__vcpu_sys_reg(vcpu, r->reg) &= PMSELR_EL0_SEL_MASK;
823  
824  	return __vcpu_sys_reg(vcpu, r->reg);
825  }
826  
reset_pmcr(struct kvm_vcpu * vcpu,const struct sys_reg_desc * r)827  static u64 reset_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
828  {
829  	u64 pmcr = 0;
830  
831  	if (!kvm_supports_32bit_el0())
832  		pmcr |= ARMV8_PMU_PMCR_LC;
833  
834  	/*
835  	 * The value of PMCR.N field is included when the
836  	 * vCPU register is read via kvm_vcpu_read_pmcr().
837  	 */
838  	__vcpu_sys_reg(vcpu, r->reg) = pmcr;
839  
840  	return __vcpu_sys_reg(vcpu, r->reg);
841  }
842  
check_pmu_access_disabled(struct kvm_vcpu * vcpu,u64 flags)843  static bool check_pmu_access_disabled(struct kvm_vcpu *vcpu, u64 flags)
844  {
845  	u64 reg = __vcpu_sys_reg(vcpu, PMUSERENR_EL0);
846  	bool enabled = (reg & flags) || vcpu_mode_priv(vcpu);
847  
848  	if (!enabled)
849  		kvm_inject_undefined(vcpu);
850  
851  	return !enabled;
852  }
853  
pmu_access_el0_disabled(struct kvm_vcpu * vcpu)854  static bool pmu_access_el0_disabled(struct kvm_vcpu *vcpu)
855  {
856  	return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_EN);
857  }
858  
pmu_write_swinc_el0_disabled(struct kvm_vcpu * vcpu)859  static bool pmu_write_swinc_el0_disabled(struct kvm_vcpu *vcpu)
860  {
861  	return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_SW | ARMV8_PMU_USERENR_EN);
862  }
863  
pmu_access_cycle_counter_el0_disabled(struct kvm_vcpu * vcpu)864  static bool pmu_access_cycle_counter_el0_disabled(struct kvm_vcpu *vcpu)
865  {
866  	return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_CR | ARMV8_PMU_USERENR_EN);
867  }
868  
pmu_access_event_counter_el0_disabled(struct kvm_vcpu * vcpu)869  static bool pmu_access_event_counter_el0_disabled(struct kvm_vcpu *vcpu)
870  {
871  	return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_ER | ARMV8_PMU_USERENR_EN);
872  }
873  
access_pmcr(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)874  static bool access_pmcr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
875  			const struct sys_reg_desc *r)
876  {
877  	u64 val;
878  
879  	if (pmu_access_el0_disabled(vcpu))
880  		return false;
881  
882  	if (p->is_write) {
883  		/*
884  		 * Only update writeable bits of PMCR (continuing into
885  		 * kvm_pmu_handle_pmcr() as well)
886  		 */
887  		val = kvm_vcpu_read_pmcr(vcpu);
888  		val &= ~ARMV8_PMU_PMCR_MASK;
889  		val |= p->regval & ARMV8_PMU_PMCR_MASK;
890  		if (!kvm_supports_32bit_el0())
891  			val |= ARMV8_PMU_PMCR_LC;
892  		kvm_pmu_handle_pmcr(vcpu, val);
893  	} else {
894  		/* PMCR.P & PMCR.C are RAZ */
895  		val = kvm_vcpu_read_pmcr(vcpu)
896  		      & ~(ARMV8_PMU_PMCR_P | ARMV8_PMU_PMCR_C);
897  		p->regval = val;
898  	}
899  
900  	return true;
901  }
902  
access_pmselr(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)903  static bool access_pmselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
904  			  const struct sys_reg_desc *r)
905  {
906  	if (pmu_access_event_counter_el0_disabled(vcpu))
907  		return false;
908  
909  	if (p->is_write)
910  		__vcpu_sys_reg(vcpu, PMSELR_EL0) = p->regval;
911  	else
912  		/* return PMSELR.SEL field */
913  		p->regval = __vcpu_sys_reg(vcpu, PMSELR_EL0)
914  			    & PMSELR_EL0_SEL_MASK;
915  
916  	return true;
917  }
918  
access_pmceid(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)919  static bool access_pmceid(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
920  			  const struct sys_reg_desc *r)
921  {
922  	u64 pmceid, mask, shift;
923  
924  	BUG_ON(p->is_write);
925  
926  	if (pmu_access_el0_disabled(vcpu))
927  		return false;
928  
929  	get_access_mask(r, &mask, &shift);
930  
931  	pmceid = kvm_pmu_get_pmceid(vcpu, (p->Op2 & 1));
932  	pmceid &= mask;
933  	pmceid >>= shift;
934  
935  	p->regval = pmceid;
936  
937  	return true;
938  }
939  
pmu_counter_idx_valid(struct kvm_vcpu * vcpu,u64 idx)940  static bool pmu_counter_idx_valid(struct kvm_vcpu *vcpu, u64 idx)
941  {
942  	u64 pmcr, val;
943  
944  	pmcr = kvm_vcpu_read_pmcr(vcpu);
945  	val = FIELD_GET(ARMV8_PMU_PMCR_N, pmcr);
946  	if (idx >= val && idx != ARMV8_PMU_CYCLE_IDX) {
947  		kvm_inject_undefined(vcpu);
948  		return false;
949  	}
950  
951  	return true;
952  }
953  
get_pmu_evcntr(struct kvm_vcpu * vcpu,const struct sys_reg_desc * r,u64 * val)954  static int get_pmu_evcntr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r,
955  			  u64 *val)
956  {
957  	u64 idx;
958  
959  	if (r->CRn == 9 && r->CRm == 13 && r->Op2 == 0)
960  		/* PMCCNTR_EL0 */
961  		idx = ARMV8_PMU_CYCLE_IDX;
962  	else
963  		/* PMEVCNTRn_EL0 */
964  		idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
965  
966  	*val = kvm_pmu_get_counter_value(vcpu, idx);
967  	return 0;
968  }
969  
set_pmu_evcntr(struct kvm_vcpu * vcpu,const struct sys_reg_desc * r,u64 val)970  static int set_pmu_evcntr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r,
971  			  u64 val)
972  {
973  	u64 idx;
974  
975  	if (r->CRn == 9 && r->CRm == 13 && r->Op2 == 0)
976  		/* PMCCNTR_EL0 */
977  		idx = ARMV8_PMU_CYCLE_IDX;
978  	else
979  		/* PMEVCNTRn_EL0 */
980  		idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
981  
982  	kvm_pmu_set_counter_value_user(vcpu, idx, val);
983  	return 0;
984  }
985  
access_pmu_evcntr(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)986  static bool access_pmu_evcntr(struct kvm_vcpu *vcpu,
987  			      struct sys_reg_params *p,
988  			      const struct sys_reg_desc *r)
989  {
990  	u64 idx = ~0UL;
991  
992  	if (r->CRn == 9 && r->CRm == 13) {
993  		if (r->Op2 == 2) {
994  			/* PMXEVCNTR_EL0 */
995  			if (pmu_access_event_counter_el0_disabled(vcpu))
996  				return false;
997  
998  			idx = SYS_FIELD_GET(PMSELR_EL0, SEL,
999  					    __vcpu_sys_reg(vcpu, PMSELR_EL0));
1000  		} else if (r->Op2 == 0) {
1001  			/* PMCCNTR_EL0 */
1002  			if (pmu_access_cycle_counter_el0_disabled(vcpu))
1003  				return false;
1004  
1005  			idx = ARMV8_PMU_CYCLE_IDX;
1006  		}
1007  	} else if (r->CRn == 0 && r->CRm == 9) {
1008  		/* PMCCNTR */
1009  		if (pmu_access_event_counter_el0_disabled(vcpu))
1010  			return false;
1011  
1012  		idx = ARMV8_PMU_CYCLE_IDX;
1013  	} else if (r->CRn == 14 && (r->CRm & 12) == 8) {
1014  		/* PMEVCNTRn_EL0 */
1015  		if (pmu_access_event_counter_el0_disabled(vcpu))
1016  			return false;
1017  
1018  		idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
1019  	}
1020  
1021  	/* Catch any decoding mistake */
1022  	WARN_ON(idx == ~0UL);
1023  
1024  	if (!pmu_counter_idx_valid(vcpu, idx))
1025  		return false;
1026  
1027  	if (p->is_write) {
1028  		if (pmu_access_el0_disabled(vcpu))
1029  			return false;
1030  
1031  		kvm_pmu_set_counter_value(vcpu, idx, p->regval);
1032  	} else {
1033  		p->regval = kvm_pmu_get_counter_value(vcpu, idx);
1034  	}
1035  
1036  	return true;
1037  }
1038  
access_pmu_evtyper(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)1039  static bool access_pmu_evtyper(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1040  			       const struct sys_reg_desc *r)
1041  {
1042  	u64 idx, reg;
1043  
1044  	if (pmu_access_el0_disabled(vcpu))
1045  		return false;
1046  
1047  	if (r->CRn == 9 && r->CRm == 13 && r->Op2 == 1) {
1048  		/* PMXEVTYPER_EL0 */
1049  		idx = SYS_FIELD_GET(PMSELR_EL0, SEL, __vcpu_sys_reg(vcpu, PMSELR_EL0));
1050  		reg = PMEVTYPER0_EL0 + idx;
1051  	} else if (r->CRn == 14 && (r->CRm & 12) == 12) {
1052  		idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
1053  		if (idx == ARMV8_PMU_CYCLE_IDX)
1054  			reg = PMCCFILTR_EL0;
1055  		else
1056  			/* PMEVTYPERn_EL0 */
1057  			reg = PMEVTYPER0_EL0 + idx;
1058  	} else {
1059  		BUG();
1060  	}
1061  
1062  	if (!pmu_counter_idx_valid(vcpu, idx))
1063  		return false;
1064  
1065  	if (p->is_write) {
1066  		kvm_pmu_set_counter_event_type(vcpu, p->regval, idx);
1067  		kvm_vcpu_pmu_restore_guest(vcpu);
1068  	} else {
1069  		p->regval = __vcpu_sys_reg(vcpu, reg);
1070  	}
1071  
1072  	return true;
1073  }
1074  
set_pmreg(struct kvm_vcpu * vcpu,const struct sys_reg_desc * r,u64 val)1075  static int set_pmreg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r, u64 val)
1076  {
1077  	u64 mask = kvm_pmu_accessible_counter_mask(vcpu);
1078  
1079  	__vcpu_sys_reg(vcpu, r->reg) = val & mask;
1080  	kvm_make_request(KVM_REQ_RELOAD_PMU, vcpu);
1081  
1082  	return 0;
1083  }
1084  
get_pmreg(struct kvm_vcpu * vcpu,const struct sys_reg_desc * r,u64 * val)1085  static int get_pmreg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r, u64 *val)
1086  {
1087  	u64 mask = kvm_pmu_accessible_counter_mask(vcpu);
1088  
1089  	*val = __vcpu_sys_reg(vcpu, r->reg) & mask;
1090  	return 0;
1091  }
1092  
access_pmcnten(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)1093  static bool access_pmcnten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1094  			   const struct sys_reg_desc *r)
1095  {
1096  	u64 val, mask;
1097  
1098  	if (pmu_access_el0_disabled(vcpu))
1099  		return false;
1100  
1101  	mask = kvm_pmu_accessible_counter_mask(vcpu);
1102  	if (p->is_write) {
1103  		val = p->regval & mask;
1104  		if (r->Op2 & 0x1)
1105  			/* accessing PMCNTENSET_EL0 */
1106  			__vcpu_sys_reg(vcpu, PMCNTENSET_EL0) |= val;
1107  		else
1108  			/* accessing PMCNTENCLR_EL0 */
1109  			__vcpu_sys_reg(vcpu, PMCNTENSET_EL0) &= ~val;
1110  
1111  		kvm_pmu_reprogram_counter_mask(vcpu, val);
1112  	} else {
1113  		p->regval = __vcpu_sys_reg(vcpu, PMCNTENSET_EL0);
1114  	}
1115  
1116  	return true;
1117  }
1118  
access_pminten(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)1119  static bool access_pminten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1120  			   const struct sys_reg_desc *r)
1121  {
1122  	u64 mask = kvm_pmu_accessible_counter_mask(vcpu);
1123  
1124  	if (check_pmu_access_disabled(vcpu, 0))
1125  		return false;
1126  
1127  	if (p->is_write) {
1128  		u64 val = p->regval & mask;
1129  
1130  		if (r->Op2 & 0x1)
1131  			/* accessing PMINTENSET_EL1 */
1132  			__vcpu_sys_reg(vcpu, PMINTENSET_EL1) |= val;
1133  		else
1134  			/* accessing PMINTENCLR_EL1 */
1135  			__vcpu_sys_reg(vcpu, PMINTENSET_EL1) &= ~val;
1136  	} else {
1137  		p->regval = __vcpu_sys_reg(vcpu, PMINTENSET_EL1);
1138  	}
1139  
1140  	return true;
1141  }
1142  
access_pmovs(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)1143  static bool access_pmovs(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1144  			 const struct sys_reg_desc *r)
1145  {
1146  	u64 mask = kvm_pmu_accessible_counter_mask(vcpu);
1147  
1148  	if (pmu_access_el0_disabled(vcpu))
1149  		return false;
1150  
1151  	if (p->is_write) {
1152  		if (r->CRm & 0x2)
1153  			/* accessing PMOVSSET_EL0 */
1154  			__vcpu_sys_reg(vcpu, PMOVSSET_EL0) |= (p->regval & mask);
1155  		else
1156  			/* accessing PMOVSCLR_EL0 */
1157  			__vcpu_sys_reg(vcpu, PMOVSSET_EL0) &= ~(p->regval & mask);
1158  	} else {
1159  		p->regval = __vcpu_sys_reg(vcpu, PMOVSSET_EL0);
1160  	}
1161  
1162  	return true;
1163  }
1164  
access_pmswinc(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)1165  static bool access_pmswinc(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1166  			   const struct sys_reg_desc *r)
1167  {
1168  	u64 mask;
1169  
1170  	if (!p->is_write)
1171  		return read_from_write_only(vcpu, p, r);
1172  
1173  	if (pmu_write_swinc_el0_disabled(vcpu))
1174  		return false;
1175  
1176  	mask = kvm_pmu_accessible_counter_mask(vcpu);
1177  	kvm_pmu_software_increment(vcpu, p->regval & mask);
1178  	return true;
1179  }
1180  
access_pmuserenr(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)1181  static bool access_pmuserenr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1182  			     const struct sys_reg_desc *r)
1183  {
1184  	if (p->is_write) {
1185  		if (!vcpu_mode_priv(vcpu))
1186  			return undef_access(vcpu, p, r);
1187  
1188  		__vcpu_sys_reg(vcpu, PMUSERENR_EL0) =
1189  			       p->regval & ARMV8_PMU_USERENR_MASK;
1190  	} else {
1191  		p->regval = __vcpu_sys_reg(vcpu, PMUSERENR_EL0)
1192  			    & ARMV8_PMU_USERENR_MASK;
1193  	}
1194  
1195  	return true;
1196  }
1197  
get_pmcr(struct kvm_vcpu * vcpu,const struct sys_reg_desc * r,u64 * val)1198  static int get_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r,
1199  		    u64 *val)
1200  {
1201  	*val = kvm_vcpu_read_pmcr(vcpu);
1202  	return 0;
1203  }
1204  
set_pmcr(struct kvm_vcpu * vcpu,const struct sys_reg_desc * r,u64 val)1205  static int set_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r,
1206  		    u64 val)
1207  {
1208  	u8 new_n = FIELD_GET(ARMV8_PMU_PMCR_N, val);
1209  	struct kvm *kvm = vcpu->kvm;
1210  
1211  	mutex_lock(&kvm->arch.config_lock);
1212  
1213  	/*
1214  	 * The vCPU can't have more counters than the PMU hardware
1215  	 * implements. Ignore this error to maintain compatibility
1216  	 * with the existing KVM behavior.
1217  	 */
1218  	if (!kvm_vm_has_ran_once(kvm) &&
1219  	    new_n <= kvm_arm_pmu_get_max_counters(kvm))
1220  		kvm->arch.pmcr_n = new_n;
1221  
1222  	mutex_unlock(&kvm->arch.config_lock);
1223  
1224  	/*
1225  	 * Ignore writes to RES0 bits, read only bits that are cleared on
1226  	 * vCPU reset, and writable bits that KVM doesn't support yet.
1227  	 * (i.e. only PMCR.N and bits [7:0] are mutable from userspace)
1228  	 * The LP bit is RES0 when FEAT_PMUv3p5 is not supported on the vCPU.
1229  	 * But, we leave the bit as it is here, as the vCPU's PMUver might
1230  	 * be changed later (NOTE: the bit will be cleared on first vCPU run
1231  	 * if necessary).
1232  	 */
1233  	val &= ARMV8_PMU_PMCR_MASK;
1234  
1235  	/* The LC bit is RES1 when AArch32 is not supported */
1236  	if (!kvm_supports_32bit_el0())
1237  		val |= ARMV8_PMU_PMCR_LC;
1238  
1239  	__vcpu_sys_reg(vcpu, r->reg) = val;
1240  	kvm_make_request(KVM_REQ_RELOAD_PMU, vcpu);
1241  
1242  	return 0;
1243  }
1244  
1245  /* Silly macro to expand the DBG{BCR,BVR,WVR,WCR}n_EL1 registers in one go */
1246  #define DBG_BCR_BVR_WCR_WVR_EL1(n)					\
1247  	{ SYS_DESC(SYS_DBGBVRn_EL1(n)),					\
1248  	  trap_dbg_wb_reg, reset_dbg_wb_reg, 0, 0,			\
1249  	  get_dbg_wb_reg, set_dbg_wb_reg },				\
1250  	{ SYS_DESC(SYS_DBGBCRn_EL1(n)),					\
1251  	  trap_dbg_wb_reg, reset_dbg_wb_reg, 0, 0,			\
1252  	  get_dbg_wb_reg, set_dbg_wb_reg },				\
1253  	{ SYS_DESC(SYS_DBGWVRn_EL1(n)),					\
1254  	  trap_dbg_wb_reg, reset_dbg_wb_reg, 0, 0,			\
1255  	  get_dbg_wb_reg, set_dbg_wb_reg },				\
1256  	{ SYS_DESC(SYS_DBGWCRn_EL1(n)),					\
1257  	  trap_dbg_wb_reg, reset_dbg_wb_reg, 0, 0,			\
1258  	  get_dbg_wb_reg, set_dbg_wb_reg }
1259  
1260  #define PMU_SYS_REG(name)						\
1261  	SYS_DESC(SYS_##name), .reset = reset_pmu_reg,			\
1262  	.visibility = pmu_visibility
1263  
1264  /* Macro to expand the PMEVCNTRn_EL0 register */
1265  #define PMU_PMEVCNTR_EL0(n)						\
1266  	{ PMU_SYS_REG(PMEVCNTRn_EL0(n)),				\
1267  	  .reset = reset_pmevcntr, .get_user = get_pmu_evcntr,		\
1268  	  .set_user = set_pmu_evcntr,					\
1269  	  .access = access_pmu_evcntr, .reg = (PMEVCNTR0_EL0 + n), }
1270  
1271  /* Macro to expand the PMEVTYPERn_EL0 register */
1272  #define PMU_PMEVTYPER_EL0(n)						\
1273  	{ PMU_SYS_REG(PMEVTYPERn_EL0(n)),				\
1274  	  .reset = reset_pmevtyper,					\
1275  	  .access = access_pmu_evtyper, .reg = (PMEVTYPER0_EL0 + n), }
1276  
1277  /* Macro to expand the AMU counter and type registers*/
1278  #define AMU_AMEVCNTR0_EL0(n) { SYS_DESC(SYS_AMEVCNTR0_EL0(n)), undef_access }
1279  #define AMU_AMEVTYPER0_EL0(n) { SYS_DESC(SYS_AMEVTYPER0_EL0(n)), undef_access }
1280  #define AMU_AMEVCNTR1_EL0(n) { SYS_DESC(SYS_AMEVCNTR1_EL0(n)), undef_access }
1281  #define AMU_AMEVTYPER1_EL0(n) { SYS_DESC(SYS_AMEVTYPER1_EL0(n)), undef_access }
1282  
ptrauth_visibility(const struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd)1283  static unsigned int ptrauth_visibility(const struct kvm_vcpu *vcpu,
1284  			const struct sys_reg_desc *rd)
1285  {
1286  	return vcpu_has_ptrauth(vcpu) ? 0 : REG_HIDDEN;
1287  }
1288  
1289  /*
1290   * If we land here on a PtrAuth access, that is because we didn't
1291   * fixup the access on exit by allowing the PtrAuth sysregs. The only
1292   * way this happens is when the guest does not have PtrAuth support
1293   * enabled.
1294   */
1295  #define __PTRAUTH_KEY(k)						\
1296  	{ SYS_DESC(SYS_## k), undef_access, reset_unknown, k,		\
1297  	.visibility = ptrauth_visibility}
1298  
1299  #define PTRAUTH_KEY(k)							\
1300  	__PTRAUTH_KEY(k ## KEYLO_EL1),					\
1301  	__PTRAUTH_KEY(k ## KEYHI_EL1)
1302  
access_arch_timer(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)1303  static bool access_arch_timer(struct kvm_vcpu *vcpu,
1304  			      struct sys_reg_params *p,
1305  			      const struct sys_reg_desc *r)
1306  {
1307  	enum kvm_arch_timers tmr;
1308  	enum kvm_arch_timer_regs treg;
1309  	u64 reg = reg_to_encoding(r);
1310  
1311  	switch (reg) {
1312  	case SYS_CNTP_TVAL_EL0:
1313  		if (is_hyp_ctxt(vcpu) && vcpu_el2_e2h_is_set(vcpu))
1314  			tmr = TIMER_HPTIMER;
1315  		else
1316  			tmr = TIMER_PTIMER;
1317  		treg = TIMER_REG_TVAL;
1318  		break;
1319  
1320  	case SYS_CNTV_TVAL_EL0:
1321  		if (is_hyp_ctxt(vcpu) && vcpu_el2_e2h_is_set(vcpu))
1322  			tmr = TIMER_HVTIMER;
1323  		else
1324  			tmr = TIMER_VTIMER;
1325  		treg = TIMER_REG_TVAL;
1326  		break;
1327  
1328  	case SYS_AARCH32_CNTP_TVAL:
1329  	case SYS_CNTP_TVAL_EL02:
1330  		tmr = TIMER_PTIMER;
1331  		treg = TIMER_REG_TVAL;
1332  		break;
1333  
1334  	case SYS_CNTV_TVAL_EL02:
1335  		tmr = TIMER_VTIMER;
1336  		treg = TIMER_REG_TVAL;
1337  		break;
1338  
1339  	case SYS_CNTHP_TVAL_EL2:
1340  		tmr = TIMER_HPTIMER;
1341  		treg = TIMER_REG_TVAL;
1342  		break;
1343  
1344  	case SYS_CNTHV_TVAL_EL2:
1345  		tmr = TIMER_HVTIMER;
1346  		treg = TIMER_REG_TVAL;
1347  		break;
1348  
1349  	case SYS_CNTP_CTL_EL0:
1350  		if (is_hyp_ctxt(vcpu) && vcpu_el2_e2h_is_set(vcpu))
1351  			tmr = TIMER_HPTIMER;
1352  		else
1353  			tmr = TIMER_PTIMER;
1354  		treg = TIMER_REG_CTL;
1355  		break;
1356  
1357  	case SYS_CNTV_CTL_EL0:
1358  		if (is_hyp_ctxt(vcpu) && vcpu_el2_e2h_is_set(vcpu))
1359  			tmr = TIMER_HVTIMER;
1360  		else
1361  			tmr = TIMER_VTIMER;
1362  		treg = TIMER_REG_CTL;
1363  		break;
1364  
1365  	case SYS_AARCH32_CNTP_CTL:
1366  	case SYS_CNTP_CTL_EL02:
1367  		tmr = TIMER_PTIMER;
1368  		treg = TIMER_REG_CTL;
1369  		break;
1370  
1371  	case SYS_CNTV_CTL_EL02:
1372  		tmr = TIMER_VTIMER;
1373  		treg = TIMER_REG_CTL;
1374  		break;
1375  
1376  	case SYS_CNTHP_CTL_EL2:
1377  		tmr = TIMER_HPTIMER;
1378  		treg = TIMER_REG_CTL;
1379  		break;
1380  
1381  	case SYS_CNTHV_CTL_EL2:
1382  		tmr = TIMER_HVTIMER;
1383  		treg = TIMER_REG_CTL;
1384  		break;
1385  
1386  	case SYS_CNTP_CVAL_EL0:
1387  		if (is_hyp_ctxt(vcpu) && vcpu_el2_e2h_is_set(vcpu))
1388  			tmr = TIMER_HPTIMER;
1389  		else
1390  			tmr = TIMER_PTIMER;
1391  		treg = TIMER_REG_CVAL;
1392  		break;
1393  
1394  	case SYS_CNTV_CVAL_EL0:
1395  		if (is_hyp_ctxt(vcpu) && vcpu_el2_e2h_is_set(vcpu))
1396  			tmr = TIMER_HVTIMER;
1397  		else
1398  			tmr = TIMER_VTIMER;
1399  		treg = TIMER_REG_CVAL;
1400  		break;
1401  
1402  	case SYS_AARCH32_CNTP_CVAL:
1403  	case SYS_CNTP_CVAL_EL02:
1404  		tmr = TIMER_PTIMER;
1405  		treg = TIMER_REG_CVAL;
1406  		break;
1407  
1408  	case SYS_CNTV_CVAL_EL02:
1409  		tmr = TIMER_VTIMER;
1410  		treg = TIMER_REG_CVAL;
1411  		break;
1412  
1413  	case SYS_CNTHP_CVAL_EL2:
1414  		tmr = TIMER_HPTIMER;
1415  		treg = TIMER_REG_CVAL;
1416  		break;
1417  
1418  	case SYS_CNTHV_CVAL_EL2:
1419  		tmr = TIMER_HVTIMER;
1420  		treg = TIMER_REG_CVAL;
1421  		break;
1422  
1423  	case SYS_CNTPCT_EL0:
1424  	case SYS_CNTPCTSS_EL0:
1425  		if (is_hyp_ctxt(vcpu))
1426  			tmr = TIMER_HPTIMER;
1427  		else
1428  			tmr = TIMER_PTIMER;
1429  		treg = TIMER_REG_CNT;
1430  		break;
1431  
1432  	case SYS_AARCH32_CNTPCT:
1433  	case SYS_AARCH32_CNTPCTSS:
1434  		tmr = TIMER_PTIMER;
1435  		treg = TIMER_REG_CNT;
1436  		break;
1437  
1438  	case SYS_CNTVCT_EL0:
1439  	case SYS_CNTVCTSS_EL0:
1440  		if (is_hyp_ctxt(vcpu))
1441  			tmr = TIMER_HVTIMER;
1442  		else
1443  			tmr = TIMER_VTIMER;
1444  		treg = TIMER_REG_CNT;
1445  		break;
1446  
1447  	case SYS_AARCH32_CNTVCT:
1448  	case SYS_AARCH32_CNTVCTSS:
1449  		tmr = TIMER_VTIMER;
1450  		treg = TIMER_REG_CNT;
1451  		break;
1452  
1453  	default:
1454  		print_sys_reg_msg(p, "%s", "Unhandled trapped timer register");
1455  		return undef_access(vcpu, p, r);
1456  	}
1457  
1458  	if (p->is_write)
1459  		kvm_arm_timer_write_sysreg(vcpu, tmr, treg, p->regval);
1460  	else
1461  		p->regval = kvm_arm_timer_read_sysreg(vcpu, tmr, treg);
1462  
1463  	return true;
1464  }
1465  
access_hv_timer(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)1466  static bool access_hv_timer(struct kvm_vcpu *vcpu,
1467  			    struct sys_reg_params *p,
1468  			    const struct sys_reg_desc *r)
1469  {
1470  	if (!vcpu_el2_e2h_is_set(vcpu))
1471  		return undef_access(vcpu, p, r);
1472  
1473  	return access_arch_timer(vcpu, p, r);
1474  }
1475  
kvm_arm64_ftr_safe_value(u32 id,const struct arm64_ftr_bits * ftrp,s64 new,s64 cur)1476  static s64 kvm_arm64_ftr_safe_value(u32 id, const struct arm64_ftr_bits *ftrp,
1477  				    s64 new, s64 cur)
1478  {
1479  	struct arm64_ftr_bits kvm_ftr = *ftrp;
1480  
1481  	/* Some features have different safe value type in KVM than host features */
1482  	switch (id) {
1483  	case SYS_ID_AA64DFR0_EL1:
1484  		switch (kvm_ftr.shift) {
1485  		case ID_AA64DFR0_EL1_PMUVer_SHIFT:
1486  			kvm_ftr.type = FTR_LOWER_SAFE;
1487  			break;
1488  		case ID_AA64DFR0_EL1_DebugVer_SHIFT:
1489  			kvm_ftr.type = FTR_LOWER_SAFE;
1490  			break;
1491  		}
1492  		break;
1493  	case SYS_ID_DFR0_EL1:
1494  		if (kvm_ftr.shift == ID_DFR0_EL1_PerfMon_SHIFT)
1495  			kvm_ftr.type = FTR_LOWER_SAFE;
1496  		break;
1497  	}
1498  
1499  	return arm64_ftr_safe_value(&kvm_ftr, new, cur);
1500  }
1501  
1502  /*
1503   * arm64_check_features() - Check if a feature register value constitutes
1504   * a subset of features indicated by the idreg's KVM sanitised limit.
1505   *
1506   * This function will check if each feature field of @val is the "safe" value
1507   * against idreg's KVM sanitised limit return from reset() callback.
1508   * If a field value in @val is the same as the one in limit, it is always
1509   * considered the safe value regardless For register fields that are not in
1510   * writable, only the value in limit is considered the safe value.
1511   *
1512   * Return: 0 if all the fields are safe. Otherwise, return negative errno.
1513   */
arm64_check_features(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,u64 val)1514  static int arm64_check_features(struct kvm_vcpu *vcpu,
1515  				const struct sys_reg_desc *rd,
1516  				u64 val)
1517  {
1518  	const struct arm64_ftr_reg *ftr_reg;
1519  	const struct arm64_ftr_bits *ftrp = NULL;
1520  	u32 id = reg_to_encoding(rd);
1521  	u64 writable_mask = rd->val;
1522  	u64 limit = rd->reset(vcpu, rd);
1523  	u64 mask = 0;
1524  
1525  	/*
1526  	 * Hidden and unallocated ID registers may not have a corresponding
1527  	 * struct arm64_ftr_reg. Of course, if the register is RAZ we know the
1528  	 * only safe value is 0.
1529  	 */
1530  	if (sysreg_visible_as_raz(vcpu, rd))
1531  		return val ? -E2BIG : 0;
1532  
1533  	ftr_reg = get_arm64_ftr_reg(id);
1534  	if (!ftr_reg)
1535  		return -EINVAL;
1536  
1537  	ftrp = ftr_reg->ftr_bits;
1538  
1539  	for (; ftrp && ftrp->width; ftrp++) {
1540  		s64 f_val, f_lim, safe_val;
1541  		u64 ftr_mask;
1542  
1543  		ftr_mask = arm64_ftr_mask(ftrp);
1544  		if ((ftr_mask & writable_mask) != ftr_mask)
1545  			continue;
1546  
1547  		f_val = arm64_ftr_value(ftrp, val);
1548  		f_lim = arm64_ftr_value(ftrp, limit);
1549  		mask |= ftr_mask;
1550  
1551  		if (f_val == f_lim)
1552  			safe_val = f_val;
1553  		else
1554  			safe_val = kvm_arm64_ftr_safe_value(id, ftrp, f_val, f_lim);
1555  
1556  		if (safe_val != f_val)
1557  			return -E2BIG;
1558  	}
1559  
1560  	/* For fields that are not writable, values in limit are the safe values. */
1561  	if ((val & ~mask) != (limit & ~mask))
1562  		return -E2BIG;
1563  
1564  	return 0;
1565  }
1566  
pmuver_to_perfmon(u8 pmuver)1567  static u8 pmuver_to_perfmon(u8 pmuver)
1568  {
1569  	switch (pmuver) {
1570  	case ID_AA64DFR0_EL1_PMUVer_IMP:
1571  		return ID_DFR0_EL1_PerfMon_PMUv3;
1572  	case ID_AA64DFR0_EL1_PMUVer_IMP_DEF:
1573  		return ID_DFR0_EL1_PerfMon_IMPDEF;
1574  	default:
1575  		/* Anything ARMv8.1+ and NI have the same value. For now. */
1576  		return pmuver;
1577  	}
1578  }
1579  
1580  static u64 sanitise_id_aa64pfr0_el1(const struct kvm_vcpu *vcpu, u64 val);
1581  static u64 sanitise_id_aa64dfr0_el1(const struct kvm_vcpu *vcpu, u64 val);
1582  
1583  /* Read a sanitised cpufeature ID register by sys_reg_desc */
__kvm_read_sanitised_id_reg(const struct kvm_vcpu * vcpu,const struct sys_reg_desc * r)1584  static u64 __kvm_read_sanitised_id_reg(const struct kvm_vcpu *vcpu,
1585  				       const struct sys_reg_desc *r)
1586  {
1587  	u32 id = reg_to_encoding(r);
1588  	u64 val;
1589  
1590  	if (sysreg_visible_as_raz(vcpu, r))
1591  		return 0;
1592  
1593  	val = read_sanitised_ftr_reg(id);
1594  
1595  	switch (id) {
1596  	case SYS_ID_AA64DFR0_EL1:
1597  		val = sanitise_id_aa64dfr0_el1(vcpu, val);
1598  		break;
1599  	case SYS_ID_AA64PFR0_EL1:
1600  		val = sanitise_id_aa64pfr0_el1(vcpu, val);
1601  		break;
1602  	case SYS_ID_AA64PFR1_EL1:
1603  		if (!kvm_has_mte(vcpu->kvm))
1604  			val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_MTE);
1605  
1606  		val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_SME);
1607  		val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_RNDR_trap);
1608  		val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_NMI);
1609  		val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_MTE_frac);
1610  		val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_GCS);
1611  		val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_THE);
1612  		val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_MTEX);
1613  		val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_DF2);
1614  		val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_PFAR);
1615  		val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_MPAM_frac);
1616  		break;
1617  	case SYS_ID_AA64PFR2_EL1:
1618  		/* We only expose FPMR */
1619  		val &= ID_AA64PFR2_EL1_FPMR;
1620  		break;
1621  	case SYS_ID_AA64ISAR1_EL1:
1622  		if (!vcpu_has_ptrauth(vcpu))
1623  			val &= ~(ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_APA) |
1624  				 ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_API) |
1625  				 ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_GPA) |
1626  				 ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_GPI));
1627  		break;
1628  	case SYS_ID_AA64ISAR2_EL1:
1629  		if (!vcpu_has_ptrauth(vcpu))
1630  			val &= ~(ARM64_FEATURE_MASK(ID_AA64ISAR2_EL1_APA3) |
1631  				 ARM64_FEATURE_MASK(ID_AA64ISAR2_EL1_GPA3));
1632  		if (!cpus_have_final_cap(ARM64_HAS_WFXT) ||
1633  		    has_broken_cntvoff())
1634  			val &= ~ARM64_FEATURE_MASK(ID_AA64ISAR2_EL1_WFxT);
1635  		break;
1636  	case SYS_ID_AA64ISAR3_EL1:
1637  		val &= ID_AA64ISAR3_EL1_FPRCVT | ID_AA64ISAR3_EL1_FAMINMAX;
1638  		break;
1639  	case SYS_ID_AA64MMFR2_EL1:
1640  		val &= ~ID_AA64MMFR2_EL1_CCIDX_MASK;
1641  		val &= ~ID_AA64MMFR2_EL1_NV;
1642  		break;
1643  	case SYS_ID_AA64MMFR3_EL1:
1644  		val &= ID_AA64MMFR3_EL1_TCRX | ID_AA64MMFR3_EL1_S1POE |
1645  			ID_AA64MMFR3_EL1_S1PIE;
1646  		break;
1647  	case SYS_ID_MMFR4_EL1:
1648  		val &= ~ARM64_FEATURE_MASK(ID_MMFR4_EL1_CCIDX);
1649  		break;
1650  	}
1651  
1652  	if (vcpu_has_nv(vcpu))
1653  		val = limit_nv_id_reg(vcpu->kvm, id, val);
1654  
1655  	return val;
1656  }
1657  
kvm_read_sanitised_id_reg(struct kvm_vcpu * vcpu,const struct sys_reg_desc * r)1658  static u64 kvm_read_sanitised_id_reg(struct kvm_vcpu *vcpu,
1659  				     const struct sys_reg_desc *r)
1660  {
1661  	return __kvm_read_sanitised_id_reg(vcpu, r);
1662  }
1663  
read_id_reg(const struct kvm_vcpu * vcpu,const struct sys_reg_desc * r)1664  static u64 read_id_reg(const struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
1665  {
1666  	return kvm_read_vm_id_reg(vcpu->kvm, reg_to_encoding(r));
1667  }
1668  
is_feature_id_reg(u32 encoding)1669  static bool is_feature_id_reg(u32 encoding)
1670  {
1671  	return (sys_reg_Op0(encoding) == 3 &&
1672  		(sys_reg_Op1(encoding) < 2 || sys_reg_Op1(encoding) == 3) &&
1673  		sys_reg_CRn(encoding) == 0 &&
1674  		sys_reg_CRm(encoding) <= 7);
1675  }
1676  
1677  /*
1678   * Return true if the register's (Op0, Op1, CRn, CRm, Op2) is
1679   * (3, 0, 0, crm, op2), where 1<=crm<8, 0<=op2<8, which is the range of ID
1680   * registers KVM maintains on a per-VM basis.
1681   *
1682   * Additionally, the implementation ID registers and CTR_EL0 are handled as
1683   * per-VM registers.
1684   */
is_vm_ftr_id_reg(u32 id)1685  static inline bool is_vm_ftr_id_reg(u32 id)
1686  {
1687  	switch (id) {
1688  	case SYS_CTR_EL0:
1689  	case SYS_MIDR_EL1:
1690  	case SYS_REVIDR_EL1:
1691  	case SYS_AIDR_EL1:
1692  		return true;
1693  	default:
1694  		return (sys_reg_Op0(id) == 3 && sys_reg_Op1(id) == 0 &&
1695  			sys_reg_CRn(id) == 0 && sys_reg_CRm(id) >= 1 &&
1696  			sys_reg_CRm(id) < 8);
1697  
1698  	}
1699  }
1700  
is_vcpu_ftr_id_reg(u32 id)1701  static inline bool is_vcpu_ftr_id_reg(u32 id)
1702  {
1703  	return is_feature_id_reg(id) && !is_vm_ftr_id_reg(id);
1704  }
1705  
is_aa32_id_reg(u32 id)1706  static inline bool is_aa32_id_reg(u32 id)
1707  {
1708  	return (sys_reg_Op0(id) == 3 && sys_reg_Op1(id) == 0 &&
1709  		sys_reg_CRn(id) == 0 && sys_reg_CRm(id) >= 1 &&
1710  		sys_reg_CRm(id) <= 3);
1711  }
1712  
id_visibility(const struct kvm_vcpu * vcpu,const struct sys_reg_desc * r)1713  static unsigned int id_visibility(const struct kvm_vcpu *vcpu,
1714  				  const struct sys_reg_desc *r)
1715  {
1716  	u32 id = reg_to_encoding(r);
1717  
1718  	switch (id) {
1719  	case SYS_ID_AA64ZFR0_EL1:
1720  		if (!vcpu_has_sve(vcpu))
1721  			return REG_RAZ;
1722  		break;
1723  	}
1724  
1725  	return 0;
1726  }
1727  
aa32_id_visibility(const struct kvm_vcpu * vcpu,const struct sys_reg_desc * r)1728  static unsigned int aa32_id_visibility(const struct kvm_vcpu *vcpu,
1729  				       const struct sys_reg_desc *r)
1730  {
1731  	/*
1732  	 * AArch32 ID registers are UNKNOWN if AArch32 isn't implemented at any
1733  	 * EL. Promote to RAZ/WI in order to guarantee consistency between
1734  	 * systems.
1735  	 */
1736  	if (!kvm_supports_32bit_el0())
1737  		return REG_RAZ | REG_USER_WI;
1738  
1739  	return id_visibility(vcpu, r);
1740  }
1741  
raz_visibility(const struct kvm_vcpu * vcpu,const struct sys_reg_desc * r)1742  static unsigned int raz_visibility(const struct kvm_vcpu *vcpu,
1743  				   const struct sys_reg_desc *r)
1744  {
1745  	return REG_RAZ;
1746  }
1747  
1748  /* cpufeature ID register access trap handlers */
1749  
access_id_reg(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)1750  static bool access_id_reg(struct kvm_vcpu *vcpu,
1751  			  struct sys_reg_params *p,
1752  			  const struct sys_reg_desc *r)
1753  {
1754  	if (p->is_write)
1755  		return write_to_read_only(vcpu, p, r);
1756  
1757  	p->regval = read_id_reg(vcpu, r);
1758  
1759  	return true;
1760  }
1761  
1762  /* Visibility overrides for SVE-specific control registers */
sve_visibility(const struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd)1763  static unsigned int sve_visibility(const struct kvm_vcpu *vcpu,
1764  				   const struct sys_reg_desc *rd)
1765  {
1766  	if (vcpu_has_sve(vcpu))
1767  		return 0;
1768  
1769  	return REG_HIDDEN;
1770  }
1771  
sme_visibility(const struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd)1772  static unsigned int sme_visibility(const struct kvm_vcpu *vcpu,
1773  				   const struct sys_reg_desc *rd)
1774  {
1775  	if (kvm_has_feat(vcpu->kvm, ID_AA64PFR1_EL1, SME, IMP))
1776  		return 0;
1777  
1778  	return REG_HIDDEN;
1779  }
1780  
fp8_visibility(const struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd)1781  static unsigned int fp8_visibility(const struct kvm_vcpu *vcpu,
1782  				   const struct sys_reg_desc *rd)
1783  {
1784  	if (kvm_has_fpmr(vcpu->kvm))
1785  		return 0;
1786  
1787  	return REG_HIDDEN;
1788  }
1789  
sanitise_id_aa64pfr0_el1(const struct kvm_vcpu * vcpu,u64 val)1790  static u64 sanitise_id_aa64pfr0_el1(const struct kvm_vcpu *vcpu, u64 val)
1791  {
1792  	if (!vcpu_has_sve(vcpu))
1793  		val &= ~ID_AA64PFR0_EL1_SVE_MASK;
1794  
1795  	/*
1796  	 * The default is to expose CSV2 == 1 if the HW isn't affected.
1797  	 * Although this is a per-CPU feature, we make it global because
1798  	 * asymmetric systems are just a nuisance.
1799  	 *
1800  	 * Userspace can override this as long as it doesn't promise
1801  	 * the impossible.
1802  	 */
1803  	if (arm64_get_spectre_v2_state() == SPECTRE_UNAFFECTED) {
1804  		val &= ~ID_AA64PFR0_EL1_CSV2_MASK;
1805  		val |= SYS_FIELD_PREP_ENUM(ID_AA64PFR0_EL1, CSV2, IMP);
1806  	}
1807  	if (arm64_get_meltdown_state() == SPECTRE_UNAFFECTED) {
1808  		val &= ~ID_AA64PFR0_EL1_CSV3_MASK;
1809  		val |= SYS_FIELD_PREP_ENUM(ID_AA64PFR0_EL1, CSV3, IMP);
1810  	}
1811  
1812  	if (kvm_vgic_global_state.type == VGIC_V3) {
1813  		val &= ~ID_AA64PFR0_EL1_GIC_MASK;
1814  		val |= SYS_FIELD_PREP_ENUM(ID_AA64PFR0_EL1, GIC, IMP);
1815  	}
1816  
1817  	val &= ~ID_AA64PFR0_EL1_AMU_MASK;
1818  
1819  	/*
1820  	 * MPAM is disabled by default as KVM also needs a set of PARTID to
1821  	 * program the MPAMVPMx_EL2 PARTID remapping registers with. But some
1822  	 * older kernels let the guest see the ID bit.
1823  	 */
1824  	val &= ~ID_AA64PFR0_EL1_MPAM_MASK;
1825  
1826  	return val;
1827  }
1828  
sanitise_id_aa64dfr0_el1(const struct kvm_vcpu * vcpu,u64 val)1829  static u64 sanitise_id_aa64dfr0_el1(const struct kvm_vcpu *vcpu, u64 val)
1830  {
1831  	val = ID_REG_LIMIT_FIELD_ENUM(val, ID_AA64DFR0_EL1, DebugVer, V8P8);
1832  
1833  	/*
1834  	 * Only initialize the PMU version if the vCPU was configured with one.
1835  	 */
1836  	val &= ~ID_AA64DFR0_EL1_PMUVer_MASK;
1837  	if (kvm_vcpu_has_pmu(vcpu))
1838  		val |= SYS_FIELD_PREP(ID_AA64DFR0_EL1, PMUVer,
1839  				      kvm_arm_pmu_get_pmuver_limit());
1840  
1841  	/* Hide SPE from guests */
1842  	val &= ~ID_AA64DFR0_EL1_PMSVer_MASK;
1843  
1844  	/* Hide BRBE from guests */
1845  	val &= ~ID_AA64DFR0_EL1_BRBE_MASK;
1846  
1847  	return val;
1848  }
1849  
set_id_aa64dfr0_el1(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,u64 val)1850  static int set_id_aa64dfr0_el1(struct kvm_vcpu *vcpu,
1851  			       const struct sys_reg_desc *rd,
1852  			       u64 val)
1853  {
1854  	u8 debugver = SYS_FIELD_GET(ID_AA64DFR0_EL1, DebugVer, val);
1855  	u8 pmuver = SYS_FIELD_GET(ID_AA64DFR0_EL1, PMUVer, val);
1856  
1857  	/*
1858  	 * Prior to commit 3d0dba5764b9 ("KVM: arm64: PMU: Move the
1859  	 * ID_AA64DFR0_EL1.PMUver limit to VM creation"), KVM erroneously
1860  	 * exposed an IMP_DEF PMU to userspace and the guest on systems w/
1861  	 * non-architectural PMUs. Of course, PMUv3 is the only game in town for
1862  	 * PMU virtualization, so the IMP_DEF value was rather user-hostile.
1863  	 *
1864  	 * At minimum, we're on the hook to allow values that were given to
1865  	 * userspace by KVM. Cover our tracks here and replace the IMP_DEF value
1866  	 * with a more sensible NI. The value of an ID register changing under
1867  	 * the nose of the guest is unfortunate, but is certainly no more
1868  	 * surprising than an ill-guided PMU driver poking at impdef system
1869  	 * registers that end in an UNDEF...
1870  	 */
1871  	if (pmuver == ID_AA64DFR0_EL1_PMUVer_IMP_DEF)
1872  		val &= ~ID_AA64DFR0_EL1_PMUVer_MASK;
1873  
1874  	/*
1875  	 * ID_AA64DFR0_EL1.DebugVer is one of those awkward fields with a
1876  	 * nonzero minimum safe value.
1877  	 */
1878  	if (debugver < ID_AA64DFR0_EL1_DebugVer_IMP)
1879  		return -EINVAL;
1880  
1881  	return set_id_reg(vcpu, rd, val);
1882  }
1883  
read_sanitised_id_dfr0_el1(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd)1884  static u64 read_sanitised_id_dfr0_el1(struct kvm_vcpu *vcpu,
1885  				      const struct sys_reg_desc *rd)
1886  {
1887  	u8 perfmon;
1888  	u64 val = read_sanitised_ftr_reg(SYS_ID_DFR0_EL1);
1889  
1890  	val &= ~ID_DFR0_EL1_PerfMon_MASK;
1891  	if (kvm_vcpu_has_pmu(vcpu)) {
1892  		perfmon = pmuver_to_perfmon(kvm_arm_pmu_get_pmuver_limit());
1893  		val |= SYS_FIELD_PREP(ID_DFR0_EL1, PerfMon, perfmon);
1894  	}
1895  
1896  	val = ID_REG_LIMIT_FIELD_ENUM(val, ID_DFR0_EL1, CopDbg, Debugv8p8);
1897  
1898  	return val;
1899  }
1900  
set_id_dfr0_el1(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,u64 val)1901  static int set_id_dfr0_el1(struct kvm_vcpu *vcpu,
1902  			   const struct sys_reg_desc *rd,
1903  			   u64 val)
1904  {
1905  	u8 perfmon = SYS_FIELD_GET(ID_DFR0_EL1, PerfMon, val);
1906  	u8 copdbg = SYS_FIELD_GET(ID_DFR0_EL1, CopDbg, val);
1907  
1908  	if (perfmon == ID_DFR0_EL1_PerfMon_IMPDEF) {
1909  		val &= ~ID_DFR0_EL1_PerfMon_MASK;
1910  		perfmon = 0;
1911  	}
1912  
1913  	/*
1914  	 * Allow DFR0_EL1.PerfMon to be set from userspace as long as
1915  	 * it doesn't promise more than what the HW gives us on the
1916  	 * AArch64 side (as everything is emulated with that), and
1917  	 * that this is a PMUv3.
1918  	 */
1919  	if (perfmon != 0 && perfmon < ID_DFR0_EL1_PerfMon_PMUv3)
1920  		return -EINVAL;
1921  
1922  	if (copdbg < ID_DFR0_EL1_CopDbg_Armv8)
1923  		return -EINVAL;
1924  
1925  	return set_id_reg(vcpu, rd, val);
1926  }
1927  
set_id_aa64pfr0_el1(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,u64 user_val)1928  static int set_id_aa64pfr0_el1(struct kvm_vcpu *vcpu,
1929  			       const struct sys_reg_desc *rd, u64 user_val)
1930  {
1931  	u64 hw_val = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
1932  	u64 mpam_mask = ID_AA64PFR0_EL1_MPAM_MASK;
1933  
1934  	/*
1935  	 * Commit 011e5f5bf529f ("arm64/cpufeature: Add remaining feature bits
1936  	 * in ID_AA64PFR0 register") exposed the MPAM field of AA64PFR0_EL1 to
1937  	 * guests, but didn't add trap handling. KVM doesn't support MPAM and
1938  	 * always returns an UNDEF for these registers. The guest must see 0
1939  	 * for this field.
1940  	 *
1941  	 * But KVM must also accept values from user-space that were provided
1942  	 * by KVM. On CPUs that support MPAM, permit user-space to write
1943  	 * the sanitizied value to ID_AA64PFR0_EL1.MPAM, but ignore this field.
1944  	 */
1945  	if ((hw_val & mpam_mask) == (user_val & mpam_mask))
1946  		user_val &= ~ID_AA64PFR0_EL1_MPAM_MASK;
1947  
1948  	return set_id_reg(vcpu, rd, user_val);
1949  }
1950  
set_id_aa64pfr1_el1(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,u64 user_val)1951  static int set_id_aa64pfr1_el1(struct kvm_vcpu *vcpu,
1952  			       const struct sys_reg_desc *rd, u64 user_val)
1953  {
1954  	u64 hw_val = read_sanitised_ftr_reg(SYS_ID_AA64PFR1_EL1);
1955  	u64 mpam_mask = ID_AA64PFR1_EL1_MPAM_frac_MASK;
1956  
1957  	/* See set_id_aa64pfr0_el1 for comment about MPAM */
1958  	if ((hw_val & mpam_mask) == (user_val & mpam_mask))
1959  		user_val &= ~ID_AA64PFR1_EL1_MPAM_frac_MASK;
1960  
1961  	return set_id_reg(vcpu, rd, user_val);
1962  }
1963  
set_id_aa64mmfr0_el1(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,u64 user_val)1964  static int set_id_aa64mmfr0_el1(struct kvm_vcpu *vcpu,
1965  				const struct sys_reg_desc *rd, u64 user_val)
1966  {
1967  	u64 sanitized_val = kvm_read_sanitised_id_reg(vcpu, rd);
1968  	u64 tgran2_mask = ID_AA64MMFR0_EL1_TGRAN4_2_MASK |
1969  			  ID_AA64MMFR0_EL1_TGRAN16_2_MASK |
1970  			  ID_AA64MMFR0_EL1_TGRAN64_2_MASK;
1971  
1972  	if (vcpu_has_nv(vcpu) &&
1973  	    ((sanitized_val & tgran2_mask) != (user_val & tgran2_mask)))
1974  		return -EINVAL;
1975  
1976  	return set_id_reg(vcpu, rd, user_val);
1977  }
1978  
set_id_aa64mmfr2_el1(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,u64 user_val)1979  static int set_id_aa64mmfr2_el1(struct kvm_vcpu *vcpu,
1980  				const struct sys_reg_desc *rd, u64 user_val)
1981  {
1982  	u64 hw_val = read_sanitised_ftr_reg(SYS_ID_AA64MMFR2_EL1);
1983  	u64 nv_mask = ID_AA64MMFR2_EL1_NV_MASK;
1984  
1985  	/*
1986  	 * We made the mistake to expose the now deprecated NV field,
1987  	 * so allow userspace to write it, but silently ignore it.
1988  	 */
1989  	if ((hw_val & nv_mask) == (user_val & nv_mask))
1990  		user_val &= ~nv_mask;
1991  
1992  	return set_id_reg(vcpu, rd, user_val);
1993  }
1994  
set_ctr_el0(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,u64 user_val)1995  static int set_ctr_el0(struct kvm_vcpu *vcpu,
1996  		       const struct sys_reg_desc *rd, u64 user_val)
1997  {
1998  	u8 user_L1Ip = SYS_FIELD_GET(CTR_EL0, L1Ip, user_val);
1999  
2000  	/*
2001  	 * Both AIVIVT (0b01) and VPIPT (0b00) are documented as reserved.
2002  	 * Hence only allow to set VIPT(0b10) or PIPT(0b11) for L1Ip based
2003  	 * on what hardware reports.
2004  	 *
2005  	 * Using a VIPT software model on PIPT will lead to over invalidation,
2006  	 * but still correct. Hence, we can allow downgrading PIPT to VIPT,
2007  	 * but not the other way around. This is handled via arm64_ftr_safe_value()
2008  	 * as CTR_EL0 ftr_bits has L1Ip field with type FTR_EXACT and safe value
2009  	 * set as VIPT.
2010  	 */
2011  	switch (user_L1Ip) {
2012  	case CTR_EL0_L1Ip_RESERVED_VPIPT:
2013  	case CTR_EL0_L1Ip_RESERVED_AIVIVT:
2014  		return -EINVAL;
2015  	case CTR_EL0_L1Ip_VIPT:
2016  	case CTR_EL0_L1Ip_PIPT:
2017  		return set_id_reg(vcpu, rd, user_val);
2018  	default:
2019  		return -ENOENT;
2020  	}
2021  }
2022  
2023  /*
2024   * cpufeature ID register user accessors
2025   *
2026   * For now, these registers are immutable for userspace, so no values
2027   * are stored, and for set_id_reg() we don't allow the effective value
2028   * to be changed.
2029   */
get_id_reg(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,u64 * val)2030  static int get_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
2031  		      u64 *val)
2032  {
2033  	/*
2034  	 * Avoid locking if the VM has already started, as the ID registers are
2035  	 * guaranteed to be invariant at that point.
2036  	 */
2037  	if (kvm_vm_has_ran_once(vcpu->kvm)) {
2038  		*val = read_id_reg(vcpu, rd);
2039  		return 0;
2040  	}
2041  
2042  	mutex_lock(&vcpu->kvm->arch.config_lock);
2043  	*val = read_id_reg(vcpu, rd);
2044  	mutex_unlock(&vcpu->kvm->arch.config_lock);
2045  
2046  	return 0;
2047  }
2048  
set_id_reg(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,u64 val)2049  static int set_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
2050  		      u64 val)
2051  {
2052  	u32 id = reg_to_encoding(rd);
2053  	int ret;
2054  
2055  	mutex_lock(&vcpu->kvm->arch.config_lock);
2056  
2057  	/*
2058  	 * Once the VM has started the ID registers are immutable. Reject any
2059  	 * write that does not match the final register value.
2060  	 */
2061  	if (kvm_vm_has_ran_once(vcpu->kvm)) {
2062  		if (val != read_id_reg(vcpu, rd))
2063  			ret = -EBUSY;
2064  		else
2065  			ret = 0;
2066  
2067  		mutex_unlock(&vcpu->kvm->arch.config_lock);
2068  		return ret;
2069  	}
2070  
2071  	ret = arm64_check_features(vcpu, rd, val);
2072  	if (!ret)
2073  		kvm_set_vm_id_reg(vcpu->kvm, id, val);
2074  
2075  	mutex_unlock(&vcpu->kvm->arch.config_lock);
2076  
2077  	/*
2078  	 * arm64_check_features() returns -E2BIG to indicate the register's
2079  	 * feature set is a superset of the maximally-allowed register value.
2080  	 * While it would be nice to precisely describe this to userspace, the
2081  	 * existing UAPI for KVM_SET_ONE_REG has it that invalid register
2082  	 * writes return -EINVAL.
2083  	 */
2084  	if (ret == -E2BIG)
2085  		ret = -EINVAL;
2086  	return ret;
2087  }
2088  
kvm_set_vm_id_reg(struct kvm * kvm,u32 reg,u64 val)2089  void kvm_set_vm_id_reg(struct kvm *kvm, u32 reg, u64 val)
2090  {
2091  	u64 *p = __vm_id_reg(&kvm->arch, reg);
2092  
2093  	lockdep_assert_held(&kvm->arch.config_lock);
2094  
2095  	if (KVM_BUG_ON(kvm_vm_has_ran_once(kvm) || !p, kvm))
2096  		return;
2097  
2098  	*p = val;
2099  }
2100  
get_raz_reg(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,u64 * val)2101  static int get_raz_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
2102  		       u64 *val)
2103  {
2104  	*val = 0;
2105  	return 0;
2106  }
2107  
set_wi_reg(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,u64 val)2108  static int set_wi_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
2109  		      u64 val)
2110  {
2111  	return 0;
2112  }
2113  
access_ctr(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)2114  static bool access_ctr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
2115  		       const struct sys_reg_desc *r)
2116  {
2117  	if (p->is_write)
2118  		return write_to_read_only(vcpu, p, r);
2119  
2120  	p->regval = kvm_read_vm_id_reg(vcpu->kvm, SYS_CTR_EL0);
2121  	return true;
2122  }
2123  
access_clidr(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)2124  static bool access_clidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
2125  			 const struct sys_reg_desc *r)
2126  {
2127  	if (p->is_write)
2128  		return write_to_read_only(vcpu, p, r);
2129  
2130  	p->regval = __vcpu_sys_reg(vcpu, r->reg);
2131  	return true;
2132  }
2133  
2134  /*
2135   * Fabricate a CLIDR_EL1 value instead of using the real value, which can vary
2136   * by the physical CPU which the vcpu currently resides in.
2137   */
reset_clidr(struct kvm_vcpu * vcpu,const struct sys_reg_desc * r)2138  static u64 reset_clidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
2139  {
2140  	u64 ctr_el0 = read_sanitised_ftr_reg(SYS_CTR_EL0);
2141  	u64 clidr;
2142  	u8 loc;
2143  
2144  	if ((ctr_el0 & CTR_EL0_IDC)) {
2145  		/*
2146  		 * Data cache clean to the PoU is not required so LoUU and LoUIS
2147  		 * will not be set and a unified cache, which will be marked as
2148  		 * LoC, will be added.
2149  		 *
2150  		 * If not DIC, let the unified cache L2 so that an instruction
2151  		 * cache can be added as L1 later.
2152  		 */
2153  		loc = (ctr_el0 & CTR_EL0_DIC) ? 1 : 2;
2154  		clidr = CACHE_TYPE_UNIFIED << CLIDR_CTYPE_SHIFT(loc);
2155  	} else {
2156  		/*
2157  		 * Data cache clean to the PoU is required so let L1 have a data
2158  		 * cache and mark it as LoUU and LoUIS. As L1 has a data cache,
2159  		 * it can be marked as LoC too.
2160  		 */
2161  		loc = 1;
2162  		clidr = 1 << CLIDR_LOUU_SHIFT;
2163  		clidr |= 1 << CLIDR_LOUIS_SHIFT;
2164  		clidr |= CACHE_TYPE_DATA << CLIDR_CTYPE_SHIFT(1);
2165  	}
2166  
2167  	/*
2168  	 * Instruction cache invalidation to the PoU is required so let L1 have
2169  	 * an instruction cache. If L1 already has a data cache, it will be
2170  	 * CACHE_TYPE_SEPARATE.
2171  	 */
2172  	if (!(ctr_el0 & CTR_EL0_DIC))
2173  		clidr |= CACHE_TYPE_INST << CLIDR_CTYPE_SHIFT(1);
2174  
2175  	clidr |= loc << CLIDR_LOC_SHIFT;
2176  
2177  	/*
2178  	 * Add tag cache unified to data cache. Allocation tags and data are
2179  	 * unified in a cache line so that it looks valid even if there is only
2180  	 * one cache line.
2181  	 */
2182  	if (kvm_has_mte(vcpu->kvm))
2183  		clidr |= 2ULL << CLIDR_TTYPE_SHIFT(loc);
2184  
2185  	__vcpu_sys_reg(vcpu, r->reg) = clidr;
2186  
2187  	return __vcpu_sys_reg(vcpu, r->reg);
2188  }
2189  
set_clidr(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,u64 val)2190  static int set_clidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
2191  		      u64 val)
2192  {
2193  	u64 ctr_el0 = read_sanitised_ftr_reg(SYS_CTR_EL0);
2194  	u64 idc = !CLIDR_LOC(val) || (!CLIDR_LOUIS(val) && !CLIDR_LOUU(val));
2195  
2196  	if ((val & CLIDR_EL1_RES0) || (!(ctr_el0 & CTR_EL0_IDC) && idc))
2197  		return -EINVAL;
2198  
2199  	__vcpu_sys_reg(vcpu, rd->reg) = val;
2200  
2201  	return 0;
2202  }
2203  
access_csselr(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)2204  static bool access_csselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
2205  			  const struct sys_reg_desc *r)
2206  {
2207  	int reg = r->reg;
2208  
2209  	if (p->is_write)
2210  		vcpu_write_sys_reg(vcpu, p->regval, reg);
2211  	else
2212  		p->regval = vcpu_read_sys_reg(vcpu, reg);
2213  	return true;
2214  }
2215  
access_ccsidr(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)2216  static bool access_ccsidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
2217  			  const struct sys_reg_desc *r)
2218  {
2219  	u32 csselr;
2220  
2221  	if (p->is_write)
2222  		return write_to_read_only(vcpu, p, r);
2223  
2224  	csselr = vcpu_read_sys_reg(vcpu, CSSELR_EL1);
2225  	csselr &= CSSELR_EL1_Level | CSSELR_EL1_InD;
2226  	if (csselr < CSSELR_MAX)
2227  		p->regval = get_ccsidr(vcpu, csselr);
2228  
2229  	return true;
2230  }
2231  
mte_visibility(const struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd)2232  static unsigned int mte_visibility(const struct kvm_vcpu *vcpu,
2233  				   const struct sys_reg_desc *rd)
2234  {
2235  	if (kvm_has_mte(vcpu->kvm))
2236  		return 0;
2237  
2238  	return REG_HIDDEN;
2239  }
2240  
2241  #define MTE_REG(name) {				\
2242  	SYS_DESC(SYS_##name),			\
2243  	.access = undef_access,			\
2244  	.reset = reset_unknown,			\
2245  	.reg = name,				\
2246  	.visibility = mte_visibility,		\
2247  }
2248  
el2_visibility(const struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd)2249  static unsigned int el2_visibility(const struct kvm_vcpu *vcpu,
2250  				   const struct sys_reg_desc *rd)
2251  {
2252  	if (vcpu_has_nv(vcpu))
2253  		return 0;
2254  
2255  	return REG_HIDDEN;
2256  }
2257  
bad_vncr_trap(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)2258  static bool bad_vncr_trap(struct kvm_vcpu *vcpu,
2259  			  struct sys_reg_params *p,
2260  			  const struct sys_reg_desc *r)
2261  {
2262  	/*
2263  	 * We really shouldn't be here, and this is likely the result
2264  	 * of a misconfigured trap, as this register should target the
2265  	 * VNCR page, and nothing else.
2266  	 */
2267  	return bad_trap(vcpu, p, r,
2268  			"trap of VNCR-backed register");
2269  }
2270  
bad_redir_trap(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)2271  static bool bad_redir_trap(struct kvm_vcpu *vcpu,
2272  			   struct sys_reg_params *p,
2273  			   const struct sys_reg_desc *r)
2274  {
2275  	/*
2276  	 * We really shouldn't be here, and this is likely the result
2277  	 * of a misconfigured trap, as this register should target the
2278  	 * corresponding EL1, and nothing else.
2279  	 */
2280  	return bad_trap(vcpu, p, r,
2281  			"trap of EL2 register redirected to EL1");
2282  }
2283  
2284  #define EL2_REG(name, acc, rst, v) {		\
2285  	SYS_DESC(SYS_##name),			\
2286  	.access = acc,				\
2287  	.reset = rst,				\
2288  	.reg = name,				\
2289  	.visibility = el2_visibility,		\
2290  	.val = v,				\
2291  }
2292  
2293  #define EL2_REG_FILTERED(name, acc, rst, v, filter) {	\
2294  	SYS_DESC(SYS_##name),			\
2295  	.access = acc,				\
2296  	.reset = rst,				\
2297  	.reg = name,				\
2298  	.visibility = filter,			\
2299  	.val = v,				\
2300  }
2301  
2302  #define EL2_REG_VNCR(name, rst, v)	EL2_REG(name, bad_vncr_trap, rst, v)
2303  #define EL2_REG_REDIR(name, rst, v)	EL2_REG(name, bad_redir_trap, rst, v)
2304  
2305  /*
2306   * Since reset() callback and field val are not used for idregs, they will be
2307   * used for specific purposes for idregs.
2308   * The reset() would return KVM sanitised register value. The value would be the
2309   * same as the host kernel sanitised value if there is no KVM sanitisation.
2310   * The val would be used as a mask indicating writable fields for the idreg.
2311   * Only bits with 1 are writable from userspace. This mask might not be
2312   * necessary in the future whenever all ID registers are enabled as writable
2313   * from userspace.
2314   */
2315  
2316  #define ID_DESC_DEFAULT_CALLBACKS		\
2317  	.access	= access_id_reg,		\
2318  	.get_user = get_id_reg,			\
2319  	.set_user = set_id_reg,			\
2320  	.visibility = id_visibility,		\
2321  	.reset = kvm_read_sanitised_id_reg
2322  
2323  #define ID_DESC(name)				\
2324  	SYS_DESC(SYS_##name),			\
2325  	ID_DESC_DEFAULT_CALLBACKS
2326  
2327  /* sys_reg_desc initialiser for known cpufeature ID registers */
2328  #define ID_SANITISED(name) {			\
2329  	ID_DESC(name),				\
2330  	.val = 0,				\
2331  }
2332  
2333  /* sys_reg_desc initialiser for known cpufeature ID registers */
2334  #define AA32_ID_SANITISED(name) {		\
2335  	ID_DESC(name),				\
2336  	.visibility = aa32_id_visibility,	\
2337  	.val = 0,				\
2338  }
2339  
2340  /* sys_reg_desc initialiser for writable ID registers */
2341  #define ID_WRITABLE(name, mask) {		\
2342  	ID_DESC(name),				\
2343  	.val = mask,				\
2344  }
2345  
2346  /* sys_reg_desc initialiser for cpufeature ID registers that need filtering */
2347  #define ID_FILTERED(sysreg, name, mask) {	\
2348  	ID_DESC(sysreg),				\
2349  	.set_user = set_##name,				\
2350  	.val = (mask),					\
2351  }
2352  
2353  /*
2354   * sys_reg_desc initialiser for architecturally unallocated cpufeature ID
2355   * register with encoding Op0=3, Op1=0, CRn=0, CRm=crm, Op2=op2
2356   * (1 <= crm < 8, 0 <= Op2 < 8).
2357   */
2358  #define ID_UNALLOCATED(crm, op2) {			\
2359  	.name = "S3_0_0_" #crm "_" #op2,		\
2360  	Op0(3), Op1(0), CRn(0), CRm(crm), Op2(op2),	\
2361  	ID_DESC_DEFAULT_CALLBACKS,			\
2362  	.visibility = raz_visibility,			\
2363  	.val = 0,					\
2364  }
2365  
2366  /*
2367   * sys_reg_desc initialiser for known ID registers that we hide from guests.
2368   * For now, these are exposed just like unallocated ID regs: they appear
2369   * RAZ for the guest.
2370   */
2371  #define ID_HIDDEN(name) {			\
2372  	ID_DESC(name),				\
2373  	.visibility = raz_visibility,		\
2374  	.val = 0,				\
2375  }
2376  
access_sp_el1(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)2377  static bool access_sp_el1(struct kvm_vcpu *vcpu,
2378  			  struct sys_reg_params *p,
2379  			  const struct sys_reg_desc *r)
2380  {
2381  	if (p->is_write)
2382  		__vcpu_sys_reg(vcpu, SP_EL1) = p->regval;
2383  	else
2384  		p->regval = __vcpu_sys_reg(vcpu, SP_EL1);
2385  
2386  	return true;
2387  }
2388  
access_elr(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)2389  static bool access_elr(struct kvm_vcpu *vcpu,
2390  		       struct sys_reg_params *p,
2391  		       const struct sys_reg_desc *r)
2392  {
2393  	if (p->is_write)
2394  		vcpu_write_sys_reg(vcpu, p->regval, ELR_EL1);
2395  	else
2396  		p->regval = vcpu_read_sys_reg(vcpu, ELR_EL1);
2397  
2398  	return true;
2399  }
2400  
access_spsr(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)2401  static bool access_spsr(struct kvm_vcpu *vcpu,
2402  			struct sys_reg_params *p,
2403  			const struct sys_reg_desc *r)
2404  {
2405  	if (p->is_write)
2406  		__vcpu_sys_reg(vcpu, SPSR_EL1) = p->regval;
2407  	else
2408  		p->regval = __vcpu_sys_reg(vcpu, SPSR_EL1);
2409  
2410  	return true;
2411  }
2412  
access_cntkctl_el12(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)2413  static bool access_cntkctl_el12(struct kvm_vcpu *vcpu,
2414  				struct sys_reg_params *p,
2415  				const struct sys_reg_desc *r)
2416  {
2417  	if (p->is_write)
2418  		__vcpu_sys_reg(vcpu, CNTKCTL_EL1) = p->regval;
2419  	else
2420  		p->regval = __vcpu_sys_reg(vcpu, CNTKCTL_EL1);
2421  
2422  	return true;
2423  }
2424  
reset_hcr(struct kvm_vcpu * vcpu,const struct sys_reg_desc * r)2425  static u64 reset_hcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
2426  {
2427  	u64 val = r->val;
2428  
2429  	if (!cpus_have_final_cap(ARM64_HAS_HCR_NV1))
2430  		val |= HCR_E2H;
2431  
2432  	return __vcpu_sys_reg(vcpu, r->reg) = val;
2433  }
2434  
__el2_visibility(const struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,unsigned int (* fn)(const struct kvm_vcpu *,const struct sys_reg_desc *))2435  static unsigned int __el2_visibility(const struct kvm_vcpu *vcpu,
2436  				     const struct sys_reg_desc *rd,
2437  				     unsigned int (*fn)(const struct kvm_vcpu *,
2438  							const struct sys_reg_desc *))
2439  {
2440  	return el2_visibility(vcpu, rd) ?: fn(vcpu, rd);
2441  }
2442  
sve_el2_visibility(const struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd)2443  static unsigned int sve_el2_visibility(const struct kvm_vcpu *vcpu,
2444  				       const struct sys_reg_desc *rd)
2445  {
2446  	return __el2_visibility(vcpu, rd, sve_visibility);
2447  }
2448  
access_zcr_el2(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)2449  static bool access_zcr_el2(struct kvm_vcpu *vcpu,
2450  			   struct sys_reg_params *p,
2451  			   const struct sys_reg_desc *r)
2452  {
2453  	unsigned int vq;
2454  
2455  	if (guest_hyp_sve_traps_enabled(vcpu)) {
2456  		kvm_inject_nested_sve_trap(vcpu);
2457  		return true;
2458  	}
2459  
2460  	if (!p->is_write) {
2461  		p->regval = vcpu_read_sys_reg(vcpu, ZCR_EL2);
2462  		return true;
2463  	}
2464  
2465  	vq = SYS_FIELD_GET(ZCR_ELx, LEN, p->regval) + 1;
2466  	vq = min(vq, vcpu_sve_max_vq(vcpu));
2467  	vcpu_write_sys_reg(vcpu, vq - 1, ZCR_EL2);
2468  
2469  	return true;
2470  }
2471  
access_gic_vtr(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)2472  static bool access_gic_vtr(struct kvm_vcpu *vcpu,
2473  			   struct sys_reg_params *p,
2474  			   const struct sys_reg_desc *r)
2475  {
2476  	if (p->is_write)
2477  		return write_to_read_only(vcpu, p, r);
2478  
2479  	p->regval = kvm_vgic_global_state.ich_vtr_el2;
2480  	p->regval &= ~(ICH_VTR_EL2_DVIM 	|
2481  		       ICH_VTR_EL2_A3V		|
2482  		       ICH_VTR_EL2_IDbits);
2483  	p->regval |= ICH_VTR_EL2_nV4;
2484  
2485  	return true;
2486  }
2487  
access_gic_misr(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)2488  static bool access_gic_misr(struct kvm_vcpu *vcpu,
2489  			    struct sys_reg_params *p,
2490  			    const struct sys_reg_desc *r)
2491  {
2492  	if (p->is_write)
2493  		return write_to_read_only(vcpu, p, r);
2494  
2495  	p->regval = vgic_v3_get_misr(vcpu);
2496  
2497  	return true;
2498  }
2499  
access_gic_eisr(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)2500  static bool access_gic_eisr(struct kvm_vcpu *vcpu,
2501  			    struct sys_reg_params *p,
2502  			    const struct sys_reg_desc *r)
2503  {
2504  	if (p->is_write)
2505  		return write_to_read_only(vcpu, p, r);
2506  
2507  	p->regval = vgic_v3_get_eisr(vcpu);
2508  
2509  	return true;
2510  }
2511  
access_gic_elrsr(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)2512  static bool access_gic_elrsr(struct kvm_vcpu *vcpu,
2513  			     struct sys_reg_params *p,
2514  			     const struct sys_reg_desc *r)
2515  {
2516  	if (p->is_write)
2517  		return write_to_read_only(vcpu, p, r);
2518  
2519  	p->regval = vgic_v3_get_elrsr(vcpu);
2520  
2521  	return true;
2522  }
2523  
s1poe_visibility(const struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd)2524  static unsigned int s1poe_visibility(const struct kvm_vcpu *vcpu,
2525  				     const struct sys_reg_desc *rd)
2526  {
2527  	if (kvm_has_s1poe(vcpu->kvm))
2528  		return 0;
2529  
2530  	return REG_HIDDEN;
2531  }
2532  
s1poe_el2_visibility(const struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd)2533  static unsigned int s1poe_el2_visibility(const struct kvm_vcpu *vcpu,
2534  					 const struct sys_reg_desc *rd)
2535  {
2536  	return __el2_visibility(vcpu, rd, s1poe_visibility);
2537  }
2538  
tcr2_visibility(const struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd)2539  static unsigned int tcr2_visibility(const struct kvm_vcpu *vcpu,
2540  				    const struct sys_reg_desc *rd)
2541  {
2542  	if (kvm_has_tcr2(vcpu->kvm))
2543  		return 0;
2544  
2545  	return REG_HIDDEN;
2546  }
2547  
tcr2_el2_visibility(const struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd)2548  static unsigned int tcr2_el2_visibility(const struct kvm_vcpu *vcpu,
2549  				    const struct sys_reg_desc *rd)
2550  {
2551  	return __el2_visibility(vcpu, rd, tcr2_visibility);
2552  }
2553  
s1pie_visibility(const struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd)2554  static unsigned int s1pie_visibility(const struct kvm_vcpu *vcpu,
2555  				     const struct sys_reg_desc *rd)
2556  {
2557  	if (kvm_has_s1pie(vcpu->kvm))
2558  		return 0;
2559  
2560  	return REG_HIDDEN;
2561  }
2562  
s1pie_el2_visibility(const struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd)2563  static unsigned int s1pie_el2_visibility(const struct kvm_vcpu *vcpu,
2564  					 const struct sys_reg_desc *rd)
2565  {
2566  	return __el2_visibility(vcpu, rd, s1pie_visibility);
2567  }
2568  
access_mdcr(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)2569  static bool access_mdcr(struct kvm_vcpu *vcpu,
2570  			struct sys_reg_params *p,
2571  			const struct sys_reg_desc *r)
2572  {
2573  	u64 old = __vcpu_sys_reg(vcpu, MDCR_EL2);
2574  
2575  	if (!access_rw(vcpu, p, r))
2576  		return false;
2577  
2578  	/*
2579  	 * Request a reload of the PMU to enable/disable the counters affected
2580  	 * by HPME.
2581  	 */
2582  	if ((old ^ __vcpu_sys_reg(vcpu, MDCR_EL2)) & MDCR_EL2_HPME)
2583  		kvm_make_request(KVM_REQ_RELOAD_PMU, vcpu);
2584  
2585  	return true;
2586  }
2587  
2588  /*
2589   * For historical (ahem ABI) reasons, KVM treated MIDR_EL1, REVIDR_EL1, and
2590   * AIDR_EL1 as "invariant" registers, meaning userspace cannot change them.
2591   * The values made visible to userspace were the register values of the boot
2592   * CPU.
2593   *
2594   * At the same time, reads from these registers at EL1 previously were not
2595   * trapped, allowing the guest to read the actual hardware value. On big-little
2596   * machines, this means the VM can see different values depending on where a
2597   * given vCPU got scheduled.
2598   *
2599   * These registers are now trapped as collateral damage from SME, and what
2600   * follows attempts to give a user / guest view consistent with the existing
2601   * ABI.
2602   */
access_imp_id_reg(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)2603  static bool access_imp_id_reg(struct kvm_vcpu *vcpu,
2604  			      struct sys_reg_params *p,
2605  			      const struct sys_reg_desc *r)
2606  {
2607  	if (p->is_write)
2608  		return write_to_read_only(vcpu, p, r);
2609  
2610  	/*
2611  	 * Return the VM-scoped implementation ID register values if userspace
2612  	 * has made them writable.
2613  	 */
2614  	if (test_bit(KVM_ARCH_FLAG_WRITABLE_IMP_ID_REGS, &vcpu->kvm->arch.flags))
2615  		return access_id_reg(vcpu, p, r);
2616  
2617  	/*
2618  	 * Otherwise, fall back to the old behavior of returning the value of
2619  	 * the current CPU.
2620  	 */
2621  	switch (reg_to_encoding(r)) {
2622  	case SYS_REVIDR_EL1:
2623  		p->regval = read_sysreg(revidr_el1);
2624  		break;
2625  	case SYS_AIDR_EL1:
2626  		p->regval = read_sysreg(aidr_el1);
2627  		break;
2628  	default:
2629  		WARN_ON_ONCE(1);
2630  	}
2631  
2632  	return true;
2633  }
2634  
2635  static u64 __ro_after_init boot_cpu_midr_val;
2636  static u64 __ro_after_init boot_cpu_revidr_val;
2637  static u64 __ro_after_init boot_cpu_aidr_val;
2638  
init_imp_id_regs(void)2639  static void init_imp_id_regs(void)
2640  {
2641  	boot_cpu_midr_val = read_sysreg(midr_el1);
2642  	boot_cpu_revidr_val = read_sysreg(revidr_el1);
2643  	boot_cpu_aidr_val = read_sysreg(aidr_el1);
2644  }
2645  
reset_imp_id_reg(struct kvm_vcpu * vcpu,const struct sys_reg_desc * r)2646  static u64 reset_imp_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
2647  {
2648  	switch (reg_to_encoding(r)) {
2649  	case SYS_MIDR_EL1:
2650  		return boot_cpu_midr_val;
2651  	case SYS_REVIDR_EL1:
2652  		return boot_cpu_revidr_val;
2653  	case SYS_AIDR_EL1:
2654  		return boot_cpu_aidr_val;
2655  	default:
2656  		KVM_BUG_ON(1, vcpu->kvm);
2657  		return 0;
2658  	}
2659  }
2660  
set_imp_id_reg(struct kvm_vcpu * vcpu,const struct sys_reg_desc * r,u64 val)2661  static int set_imp_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r,
2662  			  u64 val)
2663  {
2664  	struct kvm *kvm = vcpu->kvm;
2665  	u64 expected;
2666  
2667  	guard(mutex)(&kvm->arch.config_lock);
2668  
2669  	expected = read_id_reg(vcpu, r);
2670  	if (expected == val)
2671  		return 0;
2672  
2673  	if (!test_bit(KVM_ARCH_FLAG_WRITABLE_IMP_ID_REGS, &kvm->arch.flags))
2674  		return -EINVAL;
2675  
2676  	/*
2677  	 * Once the VM has started the ID registers are immutable. Reject the
2678  	 * write if userspace tries to change it.
2679  	 */
2680  	if (kvm_vm_has_ran_once(kvm))
2681  		return -EBUSY;
2682  
2683  	/*
2684  	 * Any value is allowed for the implementation ID registers so long as
2685  	 * it is within the writable mask.
2686  	 */
2687  	if ((val & r->val) != val)
2688  		return -EINVAL;
2689  
2690  	kvm_set_vm_id_reg(kvm, reg_to_encoding(r), val);
2691  	return 0;
2692  }
2693  
2694  #define IMPLEMENTATION_ID(reg, mask) {			\
2695  	SYS_DESC(SYS_##reg),				\
2696  	.access = access_imp_id_reg,			\
2697  	.get_user = get_id_reg,				\
2698  	.set_user = set_imp_id_reg,			\
2699  	.reset = reset_imp_id_reg,			\
2700  	.val = mask,					\
2701  }
2702  
2703  /*
2704   * Architected system registers.
2705   * Important: Must be sorted ascending by Op0, Op1, CRn, CRm, Op2
2706   *
2707   * Debug handling: We do trap most, if not all debug related system
2708   * registers. The implementation is good enough to ensure that a guest
2709   * can use these with minimal performance degradation. The drawback is
2710   * that we don't implement any of the external debug architecture.
2711   * This should be revisited if we ever encounter a more demanding
2712   * guest...
2713   */
2714  static const struct sys_reg_desc sys_reg_descs[] = {
2715  	DBG_BCR_BVR_WCR_WVR_EL1(0),
2716  	DBG_BCR_BVR_WCR_WVR_EL1(1),
2717  	{ SYS_DESC(SYS_MDCCINT_EL1), trap_debug_regs, reset_val, MDCCINT_EL1, 0 },
2718  	{ SYS_DESC(SYS_MDSCR_EL1), trap_debug_regs, reset_val, MDSCR_EL1, 0 },
2719  	DBG_BCR_BVR_WCR_WVR_EL1(2),
2720  	DBG_BCR_BVR_WCR_WVR_EL1(3),
2721  	DBG_BCR_BVR_WCR_WVR_EL1(4),
2722  	DBG_BCR_BVR_WCR_WVR_EL1(5),
2723  	DBG_BCR_BVR_WCR_WVR_EL1(6),
2724  	DBG_BCR_BVR_WCR_WVR_EL1(7),
2725  	DBG_BCR_BVR_WCR_WVR_EL1(8),
2726  	DBG_BCR_BVR_WCR_WVR_EL1(9),
2727  	DBG_BCR_BVR_WCR_WVR_EL1(10),
2728  	DBG_BCR_BVR_WCR_WVR_EL1(11),
2729  	DBG_BCR_BVR_WCR_WVR_EL1(12),
2730  	DBG_BCR_BVR_WCR_WVR_EL1(13),
2731  	DBG_BCR_BVR_WCR_WVR_EL1(14),
2732  	DBG_BCR_BVR_WCR_WVR_EL1(15),
2733  
2734  	{ SYS_DESC(SYS_MDRAR_EL1), trap_raz_wi },
2735  	{ SYS_DESC(SYS_OSLAR_EL1), trap_oslar_el1 },
2736  	{ SYS_DESC(SYS_OSLSR_EL1), trap_oslsr_el1, reset_val, OSLSR_EL1,
2737  		OSLSR_EL1_OSLM_IMPLEMENTED, .set_user = set_oslsr_el1, },
2738  	{ SYS_DESC(SYS_OSDLR_EL1), trap_raz_wi },
2739  	{ SYS_DESC(SYS_DBGPRCR_EL1), trap_raz_wi },
2740  	{ SYS_DESC(SYS_DBGCLAIMSET_EL1), trap_raz_wi },
2741  	{ SYS_DESC(SYS_DBGCLAIMCLR_EL1), trap_raz_wi },
2742  	{ SYS_DESC(SYS_DBGAUTHSTATUS_EL1), trap_dbgauthstatus_el1 },
2743  
2744  	{ SYS_DESC(SYS_MDCCSR_EL0), trap_raz_wi },
2745  	{ SYS_DESC(SYS_DBGDTR_EL0), trap_raz_wi },
2746  	// DBGDTR[TR]X_EL0 share the same encoding
2747  	{ SYS_DESC(SYS_DBGDTRTX_EL0), trap_raz_wi },
2748  
2749  	{ SYS_DESC(SYS_DBGVCR32_EL2), undef_access, reset_val, DBGVCR32_EL2, 0 },
2750  
2751  	IMPLEMENTATION_ID(MIDR_EL1, GENMASK_ULL(31, 0)),
2752  	{ SYS_DESC(SYS_MPIDR_EL1), NULL, reset_mpidr, MPIDR_EL1 },
2753  	IMPLEMENTATION_ID(REVIDR_EL1, GENMASK_ULL(63, 0)),
2754  
2755  	/*
2756  	 * ID regs: all ID_SANITISED() entries here must have corresponding
2757  	 * entries in arm64_ftr_regs[].
2758  	 */
2759  
2760  	/* AArch64 mappings of the AArch32 ID registers */
2761  	/* CRm=1 */
2762  	AA32_ID_SANITISED(ID_PFR0_EL1),
2763  	AA32_ID_SANITISED(ID_PFR1_EL1),
2764  	{ SYS_DESC(SYS_ID_DFR0_EL1),
2765  	  .access = access_id_reg,
2766  	  .get_user = get_id_reg,
2767  	  .set_user = set_id_dfr0_el1,
2768  	  .visibility = aa32_id_visibility,
2769  	  .reset = read_sanitised_id_dfr0_el1,
2770  	  .val = ID_DFR0_EL1_PerfMon_MASK |
2771  		 ID_DFR0_EL1_CopDbg_MASK, },
2772  	ID_HIDDEN(ID_AFR0_EL1),
2773  	AA32_ID_SANITISED(ID_MMFR0_EL1),
2774  	AA32_ID_SANITISED(ID_MMFR1_EL1),
2775  	AA32_ID_SANITISED(ID_MMFR2_EL1),
2776  	AA32_ID_SANITISED(ID_MMFR3_EL1),
2777  
2778  	/* CRm=2 */
2779  	AA32_ID_SANITISED(ID_ISAR0_EL1),
2780  	AA32_ID_SANITISED(ID_ISAR1_EL1),
2781  	AA32_ID_SANITISED(ID_ISAR2_EL1),
2782  	AA32_ID_SANITISED(ID_ISAR3_EL1),
2783  	AA32_ID_SANITISED(ID_ISAR4_EL1),
2784  	AA32_ID_SANITISED(ID_ISAR5_EL1),
2785  	AA32_ID_SANITISED(ID_MMFR4_EL1),
2786  	AA32_ID_SANITISED(ID_ISAR6_EL1),
2787  
2788  	/* CRm=3 */
2789  	AA32_ID_SANITISED(MVFR0_EL1),
2790  	AA32_ID_SANITISED(MVFR1_EL1),
2791  	AA32_ID_SANITISED(MVFR2_EL1),
2792  	ID_UNALLOCATED(3,3),
2793  	AA32_ID_SANITISED(ID_PFR2_EL1),
2794  	ID_HIDDEN(ID_DFR1_EL1),
2795  	AA32_ID_SANITISED(ID_MMFR5_EL1),
2796  	ID_UNALLOCATED(3,7),
2797  
2798  	/* AArch64 ID registers */
2799  	/* CRm=4 */
2800  	ID_FILTERED(ID_AA64PFR0_EL1, id_aa64pfr0_el1,
2801  		    ~(ID_AA64PFR0_EL1_AMU |
2802  		      ID_AA64PFR0_EL1_MPAM |
2803  		      ID_AA64PFR0_EL1_SVE |
2804  		      ID_AA64PFR0_EL1_RAS |
2805  		      ID_AA64PFR0_EL1_AdvSIMD |
2806  		      ID_AA64PFR0_EL1_FP)),
2807  	ID_FILTERED(ID_AA64PFR1_EL1, id_aa64pfr1_el1,
2808  				     ~(ID_AA64PFR1_EL1_PFAR |
2809  				       ID_AA64PFR1_EL1_DF2 |
2810  				       ID_AA64PFR1_EL1_MTEX |
2811  				       ID_AA64PFR1_EL1_THE |
2812  				       ID_AA64PFR1_EL1_GCS |
2813  				       ID_AA64PFR1_EL1_MTE_frac |
2814  				       ID_AA64PFR1_EL1_NMI |
2815  				       ID_AA64PFR1_EL1_RNDR_trap |
2816  				       ID_AA64PFR1_EL1_SME |
2817  				       ID_AA64PFR1_EL1_RES0 |
2818  				       ID_AA64PFR1_EL1_MPAM_frac |
2819  				       ID_AA64PFR1_EL1_RAS_frac |
2820  				       ID_AA64PFR1_EL1_MTE)),
2821  	ID_WRITABLE(ID_AA64PFR2_EL1, ID_AA64PFR2_EL1_FPMR),
2822  	ID_UNALLOCATED(4,3),
2823  	ID_WRITABLE(ID_AA64ZFR0_EL1, ~ID_AA64ZFR0_EL1_RES0),
2824  	ID_HIDDEN(ID_AA64SMFR0_EL1),
2825  	ID_UNALLOCATED(4,6),
2826  	ID_WRITABLE(ID_AA64FPFR0_EL1, ~ID_AA64FPFR0_EL1_RES0),
2827  
2828  	/* CRm=5 */
2829  	/*
2830  	 * Prior to FEAT_Debugv8.9, the architecture defines context-aware
2831  	 * breakpoints (CTX_CMPs) as the highest numbered breakpoints (BRPs).
2832  	 * KVM does not trap + emulate the breakpoint registers, and as such
2833  	 * cannot support a layout that misaligns with the underlying hardware.
2834  	 * While it may be possible to describe a subset that aligns with
2835  	 * hardware, just prevent changes to BRPs and CTX_CMPs altogether for
2836  	 * simplicity.
2837  	 *
2838  	 * See DDI0487K.a, section D2.8.3 Breakpoint types and linking
2839  	 * of breakpoints for more details.
2840  	 */
2841  	ID_FILTERED(ID_AA64DFR0_EL1, id_aa64dfr0_el1,
2842  		    ID_AA64DFR0_EL1_DoubleLock_MASK |
2843  		    ID_AA64DFR0_EL1_WRPs_MASK |
2844  		    ID_AA64DFR0_EL1_PMUVer_MASK |
2845  		    ID_AA64DFR0_EL1_DebugVer_MASK),
2846  	ID_SANITISED(ID_AA64DFR1_EL1),
2847  	ID_UNALLOCATED(5,2),
2848  	ID_UNALLOCATED(5,3),
2849  	ID_HIDDEN(ID_AA64AFR0_EL1),
2850  	ID_HIDDEN(ID_AA64AFR1_EL1),
2851  	ID_UNALLOCATED(5,6),
2852  	ID_UNALLOCATED(5,7),
2853  
2854  	/* CRm=6 */
2855  	ID_WRITABLE(ID_AA64ISAR0_EL1, ~ID_AA64ISAR0_EL1_RES0),
2856  	ID_WRITABLE(ID_AA64ISAR1_EL1, ~(ID_AA64ISAR1_EL1_GPI |
2857  					ID_AA64ISAR1_EL1_GPA |
2858  					ID_AA64ISAR1_EL1_API |
2859  					ID_AA64ISAR1_EL1_APA)),
2860  	ID_WRITABLE(ID_AA64ISAR2_EL1, ~(ID_AA64ISAR2_EL1_RES0 |
2861  					ID_AA64ISAR2_EL1_APA3 |
2862  					ID_AA64ISAR2_EL1_GPA3)),
2863  	ID_WRITABLE(ID_AA64ISAR3_EL1, (ID_AA64ISAR3_EL1_FPRCVT |
2864  				       ID_AA64ISAR3_EL1_FAMINMAX)),
2865  	ID_UNALLOCATED(6,4),
2866  	ID_UNALLOCATED(6,5),
2867  	ID_UNALLOCATED(6,6),
2868  	ID_UNALLOCATED(6,7),
2869  
2870  	/* CRm=7 */
2871  	ID_FILTERED(ID_AA64MMFR0_EL1, id_aa64mmfr0_el1,
2872  				      ~(ID_AA64MMFR0_EL1_RES0 |
2873  					ID_AA64MMFR0_EL1_ASIDBITS)),
2874  	ID_WRITABLE(ID_AA64MMFR1_EL1, ~(ID_AA64MMFR1_EL1_RES0 |
2875  					ID_AA64MMFR1_EL1_HCX |
2876  					ID_AA64MMFR1_EL1_TWED |
2877  					ID_AA64MMFR1_EL1_XNX |
2878  					ID_AA64MMFR1_EL1_VH |
2879  					ID_AA64MMFR1_EL1_VMIDBits)),
2880  	ID_FILTERED(ID_AA64MMFR2_EL1,
2881  		    id_aa64mmfr2_el1, ~(ID_AA64MMFR2_EL1_RES0 |
2882  					ID_AA64MMFR2_EL1_EVT |
2883  					ID_AA64MMFR2_EL1_FWB |
2884  					ID_AA64MMFR2_EL1_IDS |
2885  					ID_AA64MMFR2_EL1_NV |
2886  					ID_AA64MMFR2_EL1_CCIDX)),
2887  	ID_WRITABLE(ID_AA64MMFR3_EL1, (ID_AA64MMFR3_EL1_TCRX	|
2888  				       ID_AA64MMFR3_EL1_S1PIE   |
2889  				       ID_AA64MMFR3_EL1_S1POE)),
2890  	ID_WRITABLE(ID_AA64MMFR4_EL1, ID_AA64MMFR4_EL1_NV_frac),
2891  	ID_UNALLOCATED(7,5),
2892  	ID_UNALLOCATED(7,6),
2893  	ID_UNALLOCATED(7,7),
2894  
2895  	{ SYS_DESC(SYS_SCTLR_EL1), access_vm_reg, reset_val, SCTLR_EL1, 0x00C50078 },
2896  	{ SYS_DESC(SYS_ACTLR_EL1), access_actlr, reset_actlr, ACTLR_EL1 },
2897  	{ SYS_DESC(SYS_CPACR_EL1), NULL, reset_val, CPACR_EL1, 0 },
2898  
2899  	MTE_REG(RGSR_EL1),
2900  	MTE_REG(GCR_EL1),
2901  
2902  	{ SYS_DESC(SYS_ZCR_EL1), NULL, reset_val, ZCR_EL1, 0, .visibility = sve_visibility },
2903  	{ SYS_DESC(SYS_TRFCR_EL1), undef_access },
2904  	{ SYS_DESC(SYS_SMPRI_EL1), undef_access },
2905  	{ SYS_DESC(SYS_SMCR_EL1), undef_access },
2906  	{ SYS_DESC(SYS_TTBR0_EL1), access_vm_reg, reset_unknown, TTBR0_EL1 },
2907  	{ SYS_DESC(SYS_TTBR1_EL1), access_vm_reg, reset_unknown, TTBR1_EL1 },
2908  	{ SYS_DESC(SYS_TCR_EL1), access_vm_reg, reset_val, TCR_EL1, 0 },
2909  	{ SYS_DESC(SYS_TCR2_EL1), access_vm_reg, reset_val, TCR2_EL1, 0,
2910  	  .visibility = tcr2_visibility },
2911  
2912  	PTRAUTH_KEY(APIA),
2913  	PTRAUTH_KEY(APIB),
2914  	PTRAUTH_KEY(APDA),
2915  	PTRAUTH_KEY(APDB),
2916  	PTRAUTH_KEY(APGA),
2917  
2918  	{ SYS_DESC(SYS_SPSR_EL1), access_spsr},
2919  	{ SYS_DESC(SYS_ELR_EL1), access_elr},
2920  
2921  	{ SYS_DESC(SYS_ICC_PMR_EL1), undef_access },
2922  
2923  	{ SYS_DESC(SYS_AFSR0_EL1), access_vm_reg, reset_unknown, AFSR0_EL1 },
2924  	{ SYS_DESC(SYS_AFSR1_EL1), access_vm_reg, reset_unknown, AFSR1_EL1 },
2925  	{ SYS_DESC(SYS_ESR_EL1), access_vm_reg, reset_unknown, ESR_EL1 },
2926  
2927  	{ SYS_DESC(SYS_ERRIDR_EL1), trap_raz_wi },
2928  	{ SYS_DESC(SYS_ERRSELR_EL1), trap_raz_wi },
2929  	{ SYS_DESC(SYS_ERXFR_EL1), trap_raz_wi },
2930  	{ SYS_DESC(SYS_ERXCTLR_EL1), trap_raz_wi },
2931  	{ SYS_DESC(SYS_ERXSTATUS_EL1), trap_raz_wi },
2932  	{ SYS_DESC(SYS_ERXADDR_EL1), trap_raz_wi },
2933  	{ SYS_DESC(SYS_ERXMISC0_EL1), trap_raz_wi },
2934  	{ SYS_DESC(SYS_ERXMISC1_EL1), trap_raz_wi },
2935  
2936  	MTE_REG(TFSR_EL1),
2937  	MTE_REG(TFSRE0_EL1),
2938  
2939  	{ SYS_DESC(SYS_FAR_EL1), access_vm_reg, reset_unknown, FAR_EL1 },
2940  	{ SYS_DESC(SYS_PAR_EL1), NULL, reset_unknown, PAR_EL1 },
2941  
2942  	{ SYS_DESC(SYS_PMSCR_EL1), undef_access },
2943  	{ SYS_DESC(SYS_PMSNEVFR_EL1), undef_access },
2944  	{ SYS_DESC(SYS_PMSICR_EL1), undef_access },
2945  	{ SYS_DESC(SYS_PMSIRR_EL1), undef_access },
2946  	{ SYS_DESC(SYS_PMSFCR_EL1), undef_access },
2947  	{ SYS_DESC(SYS_PMSEVFR_EL1), undef_access },
2948  	{ SYS_DESC(SYS_PMSLATFR_EL1), undef_access },
2949  	{ SYS_DESC(SYS_PMSIDR_EL1), undef_access },
2950  	{ SYS_DESC(SYS_PMBLIMITR_EL1), undef_access },
2951  	{ SYS_DESC(SYS_PMBPTR_EL1), undef_access },
2952  	{ SYS_DESC(SYS_PMBSR_EL1), undef_access },
2953  	/* PMBIDR_EL1 is not trapped */
2954  
2955  	{ PMU_SYS_REG(PMINTENSET_EL1),
2956  	  .access = access_pminten, .reg = PMINTENSET_EL1,
2957  	  .get_user = get_pmreg, .set_user = set_pmreg },
2958  	{ PMU_SYS_REG(PMINTENCLR_EL1),
2959  	  .access = access_pminten, .reg = PMINTENSET_EL1,
2960  	  .get_user = get_pmreg, .set_user = set_pmreg },
2961  	{ SYS_DESC(SYS_PMMIR_EL1), trap_raz_wi },
2962  
2963  	{ SYS_DESC(SYS_MAIR_EL1), access_vm_reg, reset_unknown, MAIR_EL1 },
2964  	{ SYS_DESC(SYS_PIRE0_EL1), NULL, reset_unknown, PIRE0_EL1,
2965  	  .visibility = s1pie_visibility },
2966  	{ SYS_DESC(SYS_PIR_EL1), NULL, reset_unknown, PIR_EL1,
2967  	  .visibility = s1pie_visibility },
2968  	{ SYS_DESC(SYS_POR_EL1), NULL, reset_unknown, POR_EL1,
2969  	  .visibility = s1poe_visibility },
2970  	{ SYS_DESC(SYS_AMAIR_EL1), access_vm_reg, reset_amair_el1, AMAIR_EL1 },
2971  
2972  	{ SYS_DESC(SYS_LORSA_EL1), trap_loregion },
2973  	{ SYS_DESC(SYS_LOREA_EL1), trap_loregion },
2974  	{ SYS_DESC(SYS_LORN_EL1), trap_loregion },
2975  	{ SYS_DESC(SYS_LORC_EL1), trap_loregion },
2976  	{ SYS_DESC(SYS_MPAMIDR_EL1), undef_access },
2977  	{ SYS_DESC(SYS_LORID_EL1), trap_loregion },
2978  
2979  	{ SYS_DESC(SYS_MPAM1_EL1), undef_access },
2980  	{ SYS_DESC(SYS_MPAM0_EL1), undef_access },
2981  	{ SYS_DESC(SYS_VBAR_EL1), access_rw, reset_val, VBAR_EL1, 0 },
2982  	{ SYS_DESC(SYS_DISR_EL1), NULL, reset_val, DISR_EL1, 0 },
2983  
2984  	{ SYS_DESC(SYS_ICC_IAR0_EL1), undef_access },
2985  	{ SYS_DESC(SYS_ICC_EOIR0_EL1), undef_access },
2986  	{ SYS_DESC(SYS_ICC_HPPIR0_EL1), undef_access },
2987  	{ SYS_DESC(SYS_ICC_BPR0_EL1), undef_access },
2988  	{ SYS_DESC(SYS_ICC_AP0R0_EL1), undef_access },
2989  	{ SYS_DESC(SYS_ICC_AP0R1_EL1), undef_access },
2990  	{ SYS_DESC(SYS_ICC_AP0R2_EL1), undef_access },
2991  	{ SYS_DESC(SYS_ICC_AP0R3_EL1), undef_access },
2992  	{ SYS_DESC(SYS_ICC_AP1R0_EL1), undef_access },
2993  	{ SYS_DESC(SYS_ICC_AP1R1_EL1), undef_access },
2994  	{ SYS_DESC(SYS_ICC_AP1R2_EL1), undef_access },
2995  	{ SYS_DESC(SYS_ICC_AP1R3_EL1), undef_access },
2996  	{ SYS_DESC(SYS_ICC_DIR_EL1), undef_access },
2997  	{ SYS_DESC(SYS_ICC_RPR_EL1), undef_access },
2998  	{ SYS_DESC(SYS_ICC_SGI1R_EL1), access_gic_sgi },
2999  	{ SYS_DESC(SYS_ICC_ASGI1R_EL1), access_gic_sgi },
3000  	{ SYS_DESC(SYS_ICC_SGI0R_EL1), access_gic_sgi },
3001  	{ SYS_DESC(SYS_ICC_IAR1_EL1), undef_access },
3002  	{ SYS_DESC(SYS_ICC_EOIR1_EL1), undef_access },
3003  	{ SYS_DESC(SYS_ICC_HPPIR1_EL1), undef_access },
3004  	{ SYS_DESC(SYS_ICC_BPR1_EL1), undef_access },
3005  	{ SYS_DESC(SYS_ICC_CTLR_EL1), undef_access },
3006  	{ SYS_DESC(SYS_ICC_SRE_EL1), access_gic_sre },
3007  	{ SYS_DESC(SYS_ICC_IGRPEN0_EL1), undef_access },
3008  	{ SYS_DESC(SYS_ICC_IGRPEN1_EL1), undef_access },
3009  
3010  	{ SYS_DESC(SYS_CONTEXTIDR_EL1), access_vm_reg, reset_val, CONTEXTIDR_EL1, 0 },
3011  	{ SYS_DESC(SYS_TPIDR_EL1), NULL, reset_unknown, TPIDR_EL1 },
3012  
3013  	{ SYS_DESC(SYS_ACCDATA_EL1), undef_access },
3014  
3015  	{ SYS_DESC(SYS_SCXTNUM_EL1), undef_access },
3016  
3017  	{ SYS_DESC(SYS_CNTKCTL_EL1), NULL, reset_val, CNTKCTL_EL1, 0},
3018  
3019  	{ SYS_DESC(SYS_CCSIDR_EL1), access_ccsidr },
3020  	{ SYS_DESC(SYS_CLIDR_EL1), access_clidr, reset_clidr, CLIDR_EL1,
3021  	  .set_user = set_clidr, .val = ~CLIDR_EL1_RES0 },
3022  	{ SYS_DESC(SYS_CCSIDR2_EL1), undef_access },
3023  	{ SYS_DESC(SYS_SMIDR_EL1), undef_access },
3024  	IMPLEMENTATION_ID(AIDR_EL1, GENMASK_ULL(63, 0)),
3025  	{ SYS_DESC(SYS_CSSELR_EL1), access_csselr, reset_unknown, CSSELR_EL1 },
3026  	ID_FILTERED(CTR_EL0, ctr_el0,
3027  		    CTR_EL0_DIC_MASK |
3028  		    CTR_EL0_IDC_MASK |
3029  		    CTR_EL0_DminLine_MASK |
3030  		    CTR_EL0_L1Ip_MASK |
3031  		    CTR_EL0_IminLine_MASK),
3032  	{ SYS_DESC(SYS_SVCR), undef_access, reset_val, SVCR, 0, .visibility = sme_visibility  },
3033  	{ SYS_DESC(SYS_FPMR), undef_access, reset_val, FPMR, 0, .visibility = fp8_visibility },
3034  
3035  	{ PMU_SYS_REG(PMCR_EL0), .access = access_pmcr, .reset = reset_pmcr,
3036  	  .reg = PMCR_EL0, .get_user = get_pmcr, .set_user = set_pmcr },
3037  	{ PMU_SYS_REG(PMCNTENSET_EL0),
3038  	  .access = access_pmcnten, .reg = PMCNTENSET_EL0,
3039  	  .get_user = get_pmreg, .set_user = set_pmreg },
3040  	{ PMU_SYS_REG(PMCNTENCLR_EL0),
3041  	  .access = access_pmcnten, .reg = PMCNTENSET_EL0,
3042  	  .get_user = get_pmreg, .set_user = set_pmreg },
3043  	{ PMU_SYS_REG(PMOVSCLR_EL0),
3044  	  .access = access_pmovs, .reg = PMOVSSET_EL0,
3045  	  .get_user = get_pmreg, .set_user = set_pmreg },
3046  	/*
3047  	 * PM_SWINC_EL0 is exposed to userspace as RAZ/WI, as it was
3048  	 * previously (and pointlessly) advertised in the past...
3049  	 */
3050  	{ PMU_SYS_REG(PMSWINC_EL0),
3051  	  .get_user = get_raz_reg, .set_user = set_wi_reg,
3052  	  .access = access_pmswinc, .reset = NULL },
3053  	{ PMU_SYS_REG(PMSELR_EL0),
3054  	  .access = access_pmselr, .reset = reset_pmselr, .reg = PMSELR_EL0 },
3055  	{ PMU_SYS_REG(PMCEID0_EL0),
3056  	  .access = access_pmceid, .reset = NULL },
3057  	{ PMU_SYS_REG(PMCEID1_EL0),
3058  	  .access = access_pmceid, .reset = NULL },
3059  	{ PMU_SYS_REG(PMCCNTR_EL0),
3060  	  .access = access_pmu_evcntr, .reset = reset_unknown,
3061  	  .reg = PMCCNTR_EL0, .get_user = get_pmu_evcntr,
3062  	  .set_user = set_pmu_evcntr },
3063  	{ PMU_SYS_REG(PMXEVTYPER_EL0),
3064  	  .access = access_pmu_evtyper, .reset = NULL },
3065  	{ PMU_SYS_REG(PMXEVCNTR_EL0),
3066  	  .access = access_pmu_evcntr, .reset = NULL },
3067  	/*
3068  	 * PMUSERENR_EL0 resets as unknown in 64bit mode while it resets as zero
3069  	 * in 32bit mode. Here we choose to reset it as zero for consistency.
3070  	 */
3071  	{ PMU_SYS_REG(PMUSERENR_EL0), .access = access_pmuserenr,
3072  	  .reset = reset_val, .reg = PMUSERENR_EL0, .val = 0 },
3073  	{ PMU_SYS_REG(PMOVSSET_EL0),
3074  	  .access = access_pmovs, .reg = PMOVSSET_EL0,
3075  	  .get_user = get_pmreg, .set_user = set_pmreg },
3076  
3077  	{ SYS_DESC(SYS_POR_EL0), NULL, reset_unknown, POR_EL0,
3078  	  .visibility = s1poe_visibility },
3079  	{ SYS_DESC(SYS_TPIDR_EL0), NULL, reset_unknown, TPIDR_EL0 },
3080  	{ SYS_DESC(SYS_TPIDRRO_EL0), NULL, reset_unknown, TPIDRRO_EL0 },
3081  	{ SYS_DESC(SYS_TPIDR2_EL0), undef_access },
3082  
3083  	{ SYS_DESC(SYS_SCXTNUM_EL0), undef_access },
3084  
3085  	{ SYS_DESC(SYS_AMCR_EL0), undef_access },
3086  	{ SYS_DESC(SYS_AMCFGR_EL0), undef_access },
3087  	{ SYS_DESC(SYS_AMCGCR_EL0), undef_access },
3088  	{ SYS_DESC(SYS_AMUSERENR_EL0), undef_access },
3089  	{ SYS_DESC(SYS_AMCNTENCLR0_EL0), undef_access },
3090  	{ SYS_DESC(SYS_AMCNTENSET0_EL0), undef_access },
3091  	{ SYS_DESC(SYS_AMCNTENCLR1_EL0), undef_access },
3092  	{ SYS_DESC(SYS_AMCNTENSET1_EL0), undef_access },
3093  	AMU_AMEVCNTR0_EL0(0),
3094  	AMU_AMEVCNTR0_EL0(1),
3095  	AMU_AMEVCNTR0_EL0(2),
3096  	AMU_AMEVCNTR0_EL0(3),
3097  	AMU_AMEVCNTR0_EL0(4),
3098  	AMU_AMEVCNTR0_EL0(5),
3099  	AMU_AMEVCNTR0_EL0(6),
3100  	AMU_AMEVCNTR0_EL0(7),
3101  	AMU_AMEVCNTR0_EL0(8),
3102  	AMU_AMEVCNTR0_EL0(9),
3103  	AMU_AMEVCNTR0_EL0(10),
3104  	AMU_AMEVCNTR0_EL0(11),
3105  	AMU_AMEVCNTR0_EL0(12),
3106  	AMU_AMEVCNTR0_EL0(13),
3107  	AMU_AMEVCNTR0_EL0(14),
3108  	AMU_AMEVCNTR0_EL0(15),
3109  	AMU_AMEVTYPER0_EL0(0),
3110  	AMU_AMEVTYPER0_EL0(1),
3111  	AMU_AMEVTYPER0_EL0(2),
3112  	AMU_AMEVTYPER0_EL0(3),
3113  	AMU_AMEVTYPER0_EL0(4),
3114  	AMU_AMEVTYPER0_EL0(5),
3115  	AMU_AMEVTYPER0_EL0(6),
3116  	AMU_AMEVTYPER0_EL0(7),
3117  	AMU_AMEVTYPER0_EL0(8),
3118  	AMU_AMEVTYPER0_EL0(9),
3119  	AMU_AMEVTYPER0_EL0(10),
3120  	AMU_AMEVTYPER0_EL0(11),
3121  	AMU_AMEVTYPER0_EL0(12),
3122  	AMU_AMEVTYPER0_EL0(13),
3123  	AMU_AMEVTYPER0_EL0(14),
3124  	AMU_AMEVTYPER0_EL0(15),
3125  	AMU_AMEVCNTR1_EL0(0),
3126  	AMU_AMEVCNTR1_EL0(1),
3127  	AMU_AMEVCNTR1_EL0(2),
3128  	AMU_AMEVCNTR1_EL0(3),
3129  	AMU_AMEVCNTR1_EL0(4),
3130  	AMU_AMEVCNTR1_EL0(5),
3131  	AMU_AMEVCNTR1_EL0(6),
3132  	AMU_AMEVCNTR1_EL0(7),
3133  	AMU_AMEVCNTR1_EL0(8),
3134  	AMU_AMEVCNTR1_EL0(9),
3135  	AMU_AMEVCNTR1_EL0(10),
3136  	AMU_AMEVCNTR1_EL0(11),
3137  	AMU_AMEVCNTR1_EL0(12),
3138  	AMU_AMEVCNTR1_EL0(13),
3139  	AMU_AMEVCNTR1_EL0(14),
3140  	AMU_AMEVCNTR1_EL0(15),
3141  	AMU_AMEVTYPER1_EL0(0),
3142  	AMU_AMEVTYPER1_EL0(1),
3143  	AMU_AMEVTYPER1_EL0(2),
3144  	AMU_AMEVTYPER1_EL0(3),
3145  	AMU_AMEVTYPER1_EL0(4),
3146  	AMU_AMEVTYPER1_EL0(5),
3147  	AMU_AMEVTYPER1_EL0(6),
3148  	AMU_AMEVTYPER1_EL0(7),
3149  	AMU_AMEVTYPER1_EL0(8),
3150  	AMU_AMEVTYPER1_EL0(9),
3151  	AMU_AMEVTYPER1_EL0(10),
3152  	AMU_AMEVTYPER1_EL0(11),
3153  	AMU_AMEVTYPER1_EL0(12),
3154  	AMU_AMEVTYPER1_EL0(13),
3155  	AMU_AMEVTYPER1_EL0(14),
3156  	AMU_AMEVTYPER1_EL0(15),
3157  
3158  	{ SYS_DESC(SYS_CNTPCT_EL0), access_arch_timer },
3159  	{ SYS_DESC(SYS_CNTVCT_EL0), access_arch_timer },
3160  	{ SYS_DESC(SYS_CNTPCTSS_EL0), access_arch_timer },
3161  	{ SYS_DESC(SYS_CNTVCTSS_EL0), access_arch_timer },
3162  	{ SYS_DESC(SYS_CNTP_TVAL_EL0), access_arch_timer },
3163  	{ SYS_DESC(SYS_CNTP_CTL_EL0), access_arch_timer },
3164  	{ SYS_DESC(SYS_CNTP_CVAL_EL0), access_arch_timer },
3165  
3166  	{ SYS_DESC(SYS_CNTV_TVAL_EL0), access_arch_timer },
3167  	{ SYS_DESC(SYS_CNTV_CTL_EL0), access_arch_timer },
3168  	{ SYS_DESC(SYS_CNTV_CVAL_EL0), access_arch_timer },
3169  
3170  	/* PMEVCNTRn_EL0 */
3171  	PMU_PMEVCNTR_EL0(0),
3172  	PMU_PMEVCNTR_EL0(1),
3173  	PMU_PMEVCNTR_EL0(2),
3174  	PMU_PMEVCNTR_EL0(3),
3175  	PMU_PMEVCNTR_EL0(4),
3176  	PMU_PMEVCNTR_EL0(5),
3177  	PMU_PMEVCNTR_EL0(6),
3178  	PMU_PMEVCNTR_EL0(7),
3179  	PMU_PMEVCNTR_EL0(8),
3180  	PMU_PMEVCNTR_EL0(9),
3181  	PMU_PMEVCNTR_EL0(10),
3182  	PMU_PMEVCNTR_EL0(11),
3183  	PMU_PMEVCNTR_EL0(12),
3184  	PMU_PMEVCNTR_EL0(13),
3185  	PMU_PMEVCNTR_EL0(14),
3186  	PMU_PMEVCNTR_EL0(15),
3187  	PMU_PMEVCNTR_EL0(16),
3188  	PMU_PMEVCNTR_EL0(17),
3189  	PMU_PMEVCNTR_EL0(18),
3190  	PMU_PMEVCNTR_EL0(19),
3191  	PMU_PMEVCNTR_EL0(20),
3192  	PMU_PMEVCNTR_EL0(21),
3193  	PMU_PMEVCNTR_EL0(22),
3194  	PMU_PMEVCNTR_EL0(23),
3195  	PMU_PMEVCNTR_EL0(24),
3196  	PMU_PMEVCNTR_EL0(25),
3197  	PMU_PMEVCNTR_EL0(26),
3198  	PMU_PMEVCNTR_EL0(27),
3199  	PMU_PMEVCNTR_EL0(28),
3200  	PMU_PMEVCNTR_EL0(29),
3201  	PMU_PMEVCNTR_EL0(30),
3202  	/* PMEVTYPERn_EL0 */
3203  	PMU_PMEVTYPER_EL0(0),
3204  	PMU_PMEVTYPER_EL0(1),
3205  	PMU_PMEVTYPER_EL0(2),
3206  	PMU_PMEVTYPER_EL0(3),
3207  	PMU_PMEVTYPER_EL0(4),
3208  	PMU_PMEVTYPER_EL0(5),
3209  	PMU_PMEVTYPER_EL0(6),
3210  	PMU_PMEVTYPER_EL0(7),
3211  	PMU_PMEVTYPER_EL0(8),
3212  	PMU_PMEVTYPER_EL0(9),
3213  	PMU_PMEVTYPER_EL0(10),
3214  	PMU_PMEVTYPER_EL0(11),
3215  	PMU_PMEVTYPER_EL0(12),
3216  	PMU_PMEVTYPER_EL0(13),
3217  	PMU_PMEVTYPER_EL0(14),
3218  	PMU_PMEVTYPER_EL0(15),
3219  	PMU_PMEVTYPER_EL0(16),
3220  	PMU_PMEVTYPER_EL0(17),
3221  	PMU_PMEVTYPER_EL0(18),
3222  	PMU_PMEVTYPER_EL0(19),
3223  	PMU_PMEVTYPER_EL0(20),
3224  	PMU_PMEVTYPER_EL0(21),
3225  	PMU_PMEVTYPER_EL0(22),
3226  	PMU_PMEVTYPER_EL0(23),
3227  	PMU_PMEVTYPER_EL0(24),
3228  	PMU_PMEVTYPER_EL0(25),
3229  	PMU_PMEVTYPER_EL0(26),
3230  	PMU_PMEVTYPER_EL0(27),
3231  	PMU_PMEVTYPER_EL0(28),
3232  	PMU_PMEVTYPER_EL0(29),
3233  	PMU_PMEVTYPER_EL0(30),
3234  	/*
3235  	 * PMCCFILTR_EL0 resets as unknown in 64bit mode while it resets as zero
3236  	 * in 32bit mode. Here we choose to reset it as zero for consistency.
3237  	 */
3238  	{ PMU_SYS_REG(PMCCFILTR_EL0), .access = access_pmu_evtyper,
3239  	  .reset = reset_val, .reg = PMCCFILTR_EL0, .val = 0 },
3240  
3241  	EL2_REG_VNCR(VPIDR_EL2, reset_unknown, 0),
3242  	EL2_REG_VNCR(VMPIDR_EL2, reset_unknown, 0),
3243  	EL2_REG(SCTLR_EL2, access_rw, reset_val, SCTLR_EL2_RES1),
3244  	EL2_REG(ACTLR_EL2, access_rw, reset_val, 0),
3245  	EL2_REG_VNCR(HCR_EL2, reset_hcr, 0),
3246  	EL2_REG(MDCR_EL2, access_mdcr, reset_val, 0),
3247  	EL2_REG(CPTR_EL2, access_rw, reset_val, CPTR_NVHE_EL2_RES1),
3248  	EL2_REG_VNCR(HSTR_EL2, reset_val, 0),
3249  	EL2_REG_VNCR(HFGRTR_EL2, reset_val, 0),
3250  	EL2_REG_VNCR(HFGWTR_EL2, reset_val, 0),
3251  	EL2_REG_VNCR(HFGITR_EL2, reset_val, 0),
3252  	EL2_REG_VNCR(HACR_EL2, reset_val, 0),
3253  
3254  	EL2_REG_FILTERED(ZCR_EL2, access_zcr_el2, reset_val, 0,
3255  			 sve_el2_visibility),
3256  
3257  	EL2_REG_VNCR(HCRX_EL2, reset_val, 0),
3258  
3259  	EL2_REG(TTBR0_EL2, access_rw, reset_val, 0),
3260  	EL2_REG(TTBR1_EL2, access_rw, reset_val, 0),
3261  	EL2_REG(TCR_EL2, access_rw, reset_val, TCR_EL2_RES1),
3262  	EL2_REG_FILTERED(TCR2_EL2, access_rw, reset_val, TCR2_EL2_RES1,
3263  			 tcr2_el2_visibility),
3264  	EL2_REG_VNCR(VTTBR_EL2, reset_val, 0),
3265  	EL2_REG_VNCR(VTCR_EL2, reset_val, 0),
3266  
3267  	{ SYS_DESC(SYS_DACR32_EL2), undef_access, reset_unknown, DACR32_EL2 },
3268  	EL2_REG_VNCR(HDFGRTR_EL2, reset_val, 0),
3269  	EL2_REG_VNCR(HDFGWTR_EL2, reset_val, 0),
3270  	EL2_REG_VNCR(HAFGRTR_EL2, reset_val, 0),
3271  	EL2_REG_REDIR(SPSR_EL2, reset_val, 0),
3272  	EL2_REG_REDIR(ELR_EL2, reset_val, 0),
3273  	{ SYS_DESC(SYS_SP_EL1), access_sp_el1},
3274  
3275  	/* AArch32 SPSR_* are RES0 if trapped from a NV guest */
3276  	{ SYS_DESC(SYS_SPSR_irq), .access = trap_raz_wi },
3277  	{ SYS_DESC(SYS_SPSR_abt), .access = trap_raz_wi },
3278  	{ SYS_DESC(SYS_SPSR_und), .access = trap_raz_wi },
3279  	{ SYS_DESC(SYS_SPSR_fiq), .access = trap_raz_wi },
3280  
3281  	{ SYS_DESC(SYS_IFSR32_EL2), undef_access, reset_unknown, IFSR32_EL2 },
3282  	EL2_REG(AFSR0_EL2, access_rw, reset_val, 0),
3283  	EL2_REG(AFSR1_EL2, access_rw, reset_val, 0),
3284  	EL2_REG_REDIR(ESR_EL2, reset_val, 0),
3285  	{ SYS_DESC(SYS_FPEXC32_EL2), undef_access, reset_val, FPEXC32_EL2, 0x700 },
3286  
3287  	EL2_REG_REDIR(FAR_EL2, reset_val, 0),
3288  	EL2_REG(HPFAR_EL2, access_rw, reset_val, 0),
3289  
3290  	EL2_REG(MAIR_EL2, access_rw, reset_val, 0),
3291  	EL2_REG_FILTERED(PIRE0_EL2, access_rw, reset_val, 0,
3292  			 s1pie_el2_visibility),
3293  	EL2_REG_FILTERED(PIR_EL2, access_rw, reset_val, 0,
3294  			 s1pie_el2_visibility),
3295  	EL2_REG_FILTERED(POR_EL2, access_rw, reset_val, 0,
3296  			 s1poe_el2_visibility),
3297  	EL2_REG(AMAIR_EL2, access_rw, reset_val, 0),
3298  	{ SYS_DESC(SYS_MPAMHCR_EL2), undef_access },
3299  	{ SYS_DESC(SYS_MPAMVPMV_EL2), undef_access },
3300  	{ SYS_DESC(SYS_MPAM2_EL2), undef_access },
3301  	{ SYS_DESC(SYS_MPAMVPM0_EL2), undef_access },
3302  	{ SYS_DESC(SYS_MPAMVPM1_EL2), undef_access },
3303  	{ SYS_DESC(SYS_MPAMVPM2_EL2), undef_access },
3304  	{ SYS_DESC(SYS_MPAMVPM3_EL2), undef_access },
3305  	{ SYS_DESC(SYS_MPAMVPM4_EL2), undef_access },
3306  	{ SYS_DESC(SYS_MPAMVPM5_EL2), undef_access },
3307  	{ SYS_DESC(SYS_MPAMVPM6_EL2), undef_access },
3308  	{ SYS_DESC(SYS_MPAMVPM7_EL2), undef_access },
3309  
3310  	EL2_REG(VBAR_EL2, access_rw, reset_val, 0),
3311  	EL2_REG(RVBAR_EL2, access_rw, reset_val, 0),
3312  	{ SYS_DESC(SYS_RMR_EL2), undef_access },
3313  
3314  	EL2_REG_VNCR(ICH_AP0R0_EL2, reset_val, 0),
3315  	EL2_REG_VNCR(ICH_AP0R1_EL2, reset_val, 0),
3316  	EL2_REG_VNCR(ICH_AP0R2_EL2, reset_val, 0),
3317  	EL2_REG_VNCR(ICH_AP0R3_EL2, reset_val, 0),
3318  	EL2_REG_VNCR(ICH_AP1R0_EL2, reset_val, 0),
3319  	EL2_REG_VNCR(ICH_AP1R1_EL2, reset_val, 0),
3320  	EL2_REG_VNCR(ICH_AP1R2_EL2, reset_val, 0),
3321  	EL2_REG_VNCR(ICH_AP1R3_EL2, reset_val, 0),
3322  
3323  	{ SYS_DESC(SYS_ICC_SRE_EL2), access_gic_sre },
3324  
3325  	EL2_REG_VNCR(ICH_HCR_EL2, reset_val, 0),
3326  	{ SYS_DESC(SYS_ICH_VTR_EL2), access_gic_vtr },
3327  	{ SYS_DESC(SYS_ICH_MISR_EL2), access_gic_misr },
3328  	{ SYS_DESC(SYS_ICH_EISR_EL2), access_gic_eisr },
3329  	{ SYS_DESC(SYS_ICH_ELRSR_EL2), access_gic_elrsr },
3330  	EL2_REG_VNCR(ICH_VMCR_EL2, reset_val, 0),
3331  
3332  	EL2_REG_VNCR(ICH_LR0_EL2, reset_val, 0),
3333  	EL2_REG_VNCR(ICH_LR1_EL2, reset_val, 0),
3334  	EL2_REG_VNCR(ICH_LR2_EL2, reset_val, 0),
3335  	EL2_REG_VNCR(ICH_LR3_EL2, reset_val, 0),
3336  	EL2_REG_VNCR(ICH_LR4_EL2, reset_val, 0),
3337  	EL2_REG_VNCR(ICH_LR5_EL2, reset_val, 0),
3338  	EL2_REG_VNCR(ICH_LR6_EL2, reset_val, 0),
3339  	EL2_REG_VNCR(ICH_LR7_EL2, reset_val, 0),
3340  	EL2_REG_VNCR(ICH_LR8_EL2, reset_val, 0),
3341  	EL2_REG_VNCR(ICH_LR9_EL2, reset_val, 0),
3342  	EL2_REG_VNCR(ICH_LR10_EL2, reset_val, 0),
3343  	EL2_REG_VNCR(ICH_LR11_EL2, reset_val, 0),
3344  	EL2_REG_VNCR(ICH_LR12_EL2, reset_val, 0),
3345  	EL2_REG_VNCR(ICH_LR13_EL2, reset_val, 0),
3346  	EL2_REG_VNCR(ICH_LR14_EL2, reset_val, 0),
3347  	EL2_REG_VNCR(ICH_LR15_EL2, reset_val, 0),
3348  
3349  	EL2_REG(CONTEXTIDR_EL2, access_rw, reset_val, 0),
3350  	EL2_REG(TPIDR_EL2, access_rw, reset_val, 0),
3351  
3352  	EL2_REG_VNCR(CNTVOFF_EL2, reset_val, 0),
3353  	EL2_REG(CNTHCTL_EL2, access_rw, reset_val, 0),
3354  	{ SYS_DESC(SYS_CNTHP_TVAL_EL2), access_arch_timer },
3355  	EL2_REG(CNTHP_CTL_EL2, access_arch_timer, reset_val, 0),
3356  	EL2_REG(CNTHP_CVAL_EL2, access_arch_timer, reset_val, 0),
3357  
3358  	{ SYS_DESC(SYS_CNTHV_TVAL_EL2), access_hv_timer },
3359  	EL2_REG(CNTHV_CTL_EL2, access_hv_timer, reset_val, 0),
3360  	EL2_REG(CNTHV_CVAL_EL2, access_hv_timer, reset_val, 0),
3361  
3362  	{ SYS_DESC(SYS_CNTKCTL_EL12), access_cntkctl_el12 },
3363  
3364  	{ SYS_DESC(SYS_CNTP_TVAL_EL02), access_arch_timer },
3365  	{ SYS_DESC(SYS_CNTP_CTL_EL02), access_arch_timer },
3366  	{ SYS_DESC(SYS_CNTP_CVAL_EL02), access_arch_timer },
3367  
3368  	{ SYS_DESC(SYS_CNTV_TVAL_EL02), access_arch_timer },
3369  	{ SYS_DESC(SYS_CNTV_CTL_EL02), access_arch_timer },
3370  	{ SYS_DESC(SYS_CNTV_CVAL_EL02), access_arch_timer },
3371  
3372  	EL2_REG(SP_EL2, NULL, reset_unknown, 0),
3373  };
3374  
handle_at_s1e01(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)3375  static bool handle_at_s1e01(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
3376  			    const struct sys_reg_desc *r)
3377  {
3378  	u32 op = sys_insn(p->Op0, p->Op1, p->CRn, p->CRm, p->Op2);
3379  
3380  	__kvm_at_s1e01(vcpu, op, p->regval);
3381  
3382  	return true;
3383  }
3384  
handle_at_s1e2(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)3385  static bool handle_at_s1e2(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
3386  			   const struct sys_reg_desc *r)
3387  {
3388  	u32 op = sys_insn(p->Op0, p->Op1, p->CRn, p->CRm, p->Op2);
3389  
3390  	/* There is no FGT associated with AT S1E2A :-( */
3391  	if (op == OP_AT_S1E2A &&
3392  	    !kvm_has_feat(vcpu->kvm, ID_AA64ISAR2_EL1, ATS1A, IMP)) {
3393  		kvm_inject_undefined(vcpu);
3394  		return false;
3395  	}
3396  
3397  	__kvm_at_s1e2(vcpu, op, p->regval);
3398  
3399  	return true;
3400  }
3401  
handle_at_s12(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)3402  static bool handle_at_s12(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
3403  			  const struct sys_reg_desc *r)
3404  {
3405  	u32 op = sys_insn(p->Op0, p->Op1, p->CRn, p->CRm, p->Op2);
3406  
3407  	__kvm_at_s12(vcpu, op, p->regval);
3408  
3409  	return true;
3410  }
3411  
kvm_supported_tlbi_s12_op(struct kvm_vcpu * vpcu,u32 instr)3412  static bool kvm_supported_tlbi_s12_op(struct kvm_vcpu *vpcu, u32 instr)
3413  {
3414  	struct kvm *kvm = vpcu->kvm;
3415  	u8 CRm = sys_reg_CRm(instr);
3416  
3417  	if (sys_reg_CRn(instr) == TLBI_CRn_nXS &&
3418  	    !kvm_has_feat(kvm, ID_AA64ISAR1_EL1, XS, IMP))
3419  		return false;
3420  
3421  	if (CRm == TLBI_CRm_nROS &&
3422  	    !kvm_has_feat(kvm, ID_AA64ISAR0_EL1, TLB, OS))
3423  		return false;
3424  
3425  	return true;
3426  }
3427  
handle_alle1is(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)3428  static bool handle_alle1is(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
3429  			   const struct sys_reg_desc *r)
3430  {
3431  	u32 sys_encoding = sys_insn(p->Op0, p->Op1, p->CRn, p->CRm, p->Op2);
3432  
3433  	if (!kvm_supported_tlbi_s12_op(vcpu, sys_encoding))
3434  		return undef_access(vcpu, p, r);
3435  
3436  	write_lock(&vcpu->kvm->mmu_lock);
3437  
3438  	/*
3439  	 * Drop all shadow S2s, resulting in S1/S2 TLBIs for each of the
3440  	 * corresponding VMIDs.
3441  	 */
3442  	kvm_nested_s2_unmap(vcpu->kvm, true);
3443  
3444  	write_unlock(&vcpu->kvm->mmu_lock);
3445  
3446  	return true;
3447  }
3448  
kvm_supported_tlbi_ipas2_op(struct kvm_vcpu * vpcu,u32 instr)3449  static bool kvm_supported_tlbi_ipas2_op(struct kvm_vcpu *vpcu, u32 instr)
3450  {
3451  	struct kvm *kvm = vpcu->kvm;
3452  	u8 CRm = sys_reg_CRm(instr);
3453  	u8 Op2 = sys_reg_Op2(instr);
3454  
3455  	if (sys_reg_CRn(instr) == TLBI_CRn_nXS &&
3456  	    !kvm_has_feat(kvm, ID_AA64ISAR1_EL1, XS, IMP))
3457  		return false;
3458  
3459  	if (CRm == TLBI_CRm_IPAIS && (Op2 == 2 || Op2 == 6) &&
3460  	    !kvm_has_feat(kvm, ID_AA64ISAR0_EL1, TLB, RANGE))
3461  		return false;
3462  
3463  	if (CRm == TLBI_CRm_IPAONS && (Op2 == 0 || Op2 == 4) &&
3464  	    !kvm_has_feat(kvm, ID_AA64ISAR0_EL1, TLB, OS))
3465  		return false;
3466  
3467  	if (CRm == TLBI_CRm_IPAONS && (Op2 == 3 || Op2 == 7) &&
3468  	    !kvm_has_feat(kvm, ID_AA64ISAR0_EL1, TLB, RANGE))
3469  		return false;
3470  
3471  	return true;
3472  }
3473  
3474  /* Only defined here as this is an internal "abstraction" */
3475  union tlbi_info {
3476  	struct {
3477  		u64	start;
3478  		u64	size;
3479  	} range;
3480  
3481  	struct {
3482  		u64	addr;
3483  	} ipa;
3484  
3485  	struct {
3486  		u64	addr;
3487  		u32	encoding;
3488  	} va;
3489  };
3490  
s2_mmu_unmap_range(struct kvm_s2_mmu * mmu,const union tlbi_info * info)3491  static void s2_mmu_unmap_range(struct kvm_s2_mmu *mmu,
3492  			       const union tlbi_info *info)
3493  {
3494  	/*
3495  	 * The unmap operation is allowed to drop the MMU lock and block, which
3496  	 * means that @mmu could be used for a different context than the one
3497  	 * currently being invalidated.
3498  	 *
3499  	 * This behavior is still safe, as:
3500  	 *
3501  	 *  1) The vCPU(s) that recycled the MMU are responsible for invalidating
3502  	 *     the entire MMU before reusing it, which still honors the intent
3503  	 *     of a TLBI.
3504  	 *
3505  	 *  2) Until the guest TLBI instruction is 'retired' (i.e. increment PC
3506  	 *     and ERET to the guest), other vCPUs are allowed to use stale
3507  	 *     translations.
3508  	 *
3509  	 *  3) Accidentally unmapping an unrelated MMU context is nonfatal, and
3510  	 *     at worst may cause more aborts for shadow stage-2 fills.
3511  	 *
3512  	 * Dropping the MMU lock also implies that shadow stage-2 fills could
3513  	 * happen behind the back of the TLBI. This is still safe, though, as
3514  	 * the L1 needs to put its stage-2 in a consistent state before doing
3515  	 * the TLBI.
3516  	 */
3517  	kvm_stage2_unmap_range(mmu, info->range.start, info->range.size, true);
3518  }
3519  
handle_vmalls12e1is(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)3520  static bool handle_vmalls12e1is(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
3521  				const struct sys_reg_desc *r)
3522  {
3523  	u32 sys_encoding = sys_insn(p->Op0, p->Op1, p->CRn, p->CRm, p->Op2);
3524  	u64 limit, vttbr;
3525  
3526  	if (!kvm_supported_tlbi_s12_op(vcpu, sys_encoding))
3527  		return undef_access(vcpu, p, r);
3528  
3529  	vttbr = vcpu_read_sys_reg(vcpu, VTTBR_EL2);
3530  	limit = BIT_ULL(kvm_get_pa_bits(vcpu->kvm));
3531  
3532  	kvm_s2_mmu_iterate_by_vmid(vcpu->kvm, get_vmid(vttbr),
3533  				   &(union tlbi_info) {
3534  					   .range = {
3535  						   .start = 0,
3536  						   .size = limit,
3537  					   },
3538  				   },
3539  				   s2_mmu_unmap_range);
3540  
3541  	return true;
3542  }
3543  
handle_ripas2e1is(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)3544  static bool handle_ripas2e1is(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
3545  			      const struct sys_reg_desc *r)
3546  {
3547  	u32 sys_encoding = sys_insn(p->Op0, p->Op1, p->CRn, p->CRm, p->Op2);
3548  	u64 vttbr = vcpu_read_sys_reg(vcpu, VTTBR_EL2);
3549  	u64 base, range, tg, num, scale;
3550  	int shift;
3551  
3552  	if (!kvm_supported_tlbi_ipas2_op(vcpu, sys_encoding))
3553  		return undef_access(vcpu, p, r);
3554  
3555  	/*
3556  	 * Because the shadow S2 structure doesn't necessarily reflect that
3557  	 * of the guest's S2 (different base granule size, for example), we
3558  	 * decide to ignore TTL and only use the described range.
3559  	 */
3560  	tg	= FIELD_GET(GENMASK(47, 46), p->regval);
3561  	scale	= FIELD_GET(GENMASK(45, 44), p->regval);
3562  	num	= FIELD_GET(GENMASK(43, 39), p->regval);
3563  	base	= p->regval & GENMASK(36, 0);
3564  
3565  	switch(tg) {
3566  	case 1:
3567  		shift = 12;
3568  		break;
3569  	case 2:
3570  		shift = 14;
3571  		break;
3572  	case 3:
3573  	default:		/* IMPDEF: handle tg==0 as 64k */
3574  		shift = 16;
3575  		break;
3576  	}
3577  
3578  	base <<= shift;
3579  	range = __TLBI_RANGE_PAGES(num, scale) << shift;
3580  
3581  	kvm_s2_mmu_iterate_by_vmid(vcpu->kvm, get_vmid(vttbr),
3582  				   &(union tlbi_info) {
3583  					   .range = {
3584  						   .start = base,
3585  						   .size = range,
3586  					   },
3587  				   },
3588  				   s2_mmu_unmap_range);
3589  
3590  	return true;
3591  }
3592  
s2_mmu_unmap_ipa(struct kvm_s2_mmu * mmu,const union tlbi_info * info)3593  static void s2_mmu_unmap_ipa(struct kvm_s2_mmu *mmu,
3594  			     const union tlbi_info *info)
3595  {
3596  	unsigned long max_size;
3597  	u64 base_addr;
3598  
3599  	/*
3600  	 * We drop a number of things from the supplied value:
3601  	 *
3602  	 * - NS bit: we're non-secure only.
3603  	 *
3604  	 * - IPA[51:48]: We don't support 52bit IPA just yet...
3605  	 *
3606  	 * And of course, adjust the IPA to be on an actual address.
3607  	 */
3608  	base_addr = (info->ipa.addr & GENMASK_ULL(35, 0)) << 12;
3609  	max_size = compute_tlb_inval_range(mmu, info->ipa.addr);
3610  	base_addr &= ~(max_size - 1);
3611  
3612  	/*
3613  	 * See comment in s2_mmu_unmap_range() for why this is allowed to
3614  	 * reschedule.
3615  	 */
3616  	kvm_stage2_unmap_range(mmu, base_addr, max_size, true);
3617  }
3618  
handle_ipas2e1is(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)3619  static bool handle_ipas2e1is(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
3620  			     const struct sys_reg_desc *r)
3621  {
3622  	u32 sys_encoding = sys_insn(p->Op0, p->Op1, p->CRn, p->CRm, p->Op2);
3623  	u64 vttbr = vcpu_read_sys_reg(vcpu, VTTBR_EL2);
3624  
3625  	if (!kvm_supported_tlbi_ipas2_op(vcpu, sys_encoding))
3626  		return undef_access(vcpu, p, r);
3627  
3628  	kvm_s2_mmu_iterate_by_vmid(vcpu->kvm, get_vmid(vttbr),
3629  				   &(union tlbi_info) {
3630  					   .ipa = {
3631  						   .addr = p->regval,
3632  					   },
3633  				   },
3634  				   s2_mmu_unmap_ipa);
3635  
3636  	return true;
3637  }
3638  
s2_mmu_tlbi_s1e1(struct kvm_s2_mmu * mmu,const union tlbi_info * info)3639  static void s2_mmu_tlbi_s1e1(struct kvm_s2_mmu *mmu,
3640  			     const union tlbi_info *info)
3641  {
3642  	WARN_ON(__kvm_tlbi_s1e2(mmu, info->va.addr, info->va.encoding));
3643  }
3644  
handle_tlbi_el1(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)3645  static bool handle_tlbi_el1(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
3646  			    const struct sys_reg_desc *r)
3647  {
3648  	u32 sys_encoding = sys_insn(p->Op0, p->Op1, p->CRn, p->CRm, p->Op2);
3649  	u64 vttbr = vcpu_read_sys_reg(vcpu, VTTBR_EL2);
3650  
3651  	/*
3652  	 * If we're here, this is because we've trapped on a EL1 TLBI
3653  	 * instruction that affects the EL1 translation regime while
3654  	 * we're running in a context that doesn't allow us to let the
3655  	 * HW do its thing (aka vEL2):
3656  	 *
3657  	 * - HCR_EL2.E2H == 0 : a non-VHE guest
3658  	 * - HCR_EL2.{E2H,TGE} == { 1, 0 } : a VHE guest in guest mode
3659  	 *
3660  	 * We don't expect these helpers to ever be called when running
3661  	 * in a vEL1 context.
3662  	 */
3663  
3664  	WARN_ON(!vcpu_is_el2(vcpu));
3665  
3666  	if (!kvm_supported_tlbi_s1e1_op(vcpu, sys_encoding))
3667  		return undef_access(vcpu, p, r);
3668  
3669  	kvm_s2_mmu_iterate_by_vmid(vcpu->kvm, get_vmid(vttbr),
3670  				   &(union tlbi_info) {
3671  					   .va = {
3672  						   .addr = p->regval,
3673  						   .encoding = sys_encoding,
3674  					   },
3675  				   },
3676  				   s2_mmu_tlbi_s1e1);
3677  
3678  	return true;
3679  }
3680  
3681  #define SYS_INSN(insn, access_fn)					\
3682  	{								\
3683  		SYS_DESC(OP_##insn),					\
3684  		.access = (access_fn),					\
3685  	}
3686  
3687  static struct sys_reg_desc sys_insn_descs[] = {
3688  	{ SYS_DESC(SYS_DC_ISW), access_dcsw },
3689  	{ SYS_DESC(SYS_DC_IGSW), access_dcgsw },
3690  	{ SYS_DESC(SYS_DC_IGDSW), access_dcgsw },
3691  
3692  	SYS_INSN(AT_S1E1R, handle_at_s1e01),
3693  	SYS_INSN(AT_S1E1W, handle_at_s1e01),
3694  	SYS_INSN(AT_S1E0R, handle_at_s1e01),
3695  	SYS_INSN(AT_S1E0W, handle_at_s1e01),
3696  	SYS_INSN(AT_S1E1RP, handle_at_s1e01),
3697  	SYS_INSN(AT_S1E1WP, handle_at_s1e01),
3698  
3699  	{ SYS_DESC(SYS_DC_CSW), access_dcsw },
3700  	{ SYS_DESC(SYS_DC_CGSW), access_dcgsw },
3701  	{ SYS_DESC(SYS_DC_CGDSW), access_dcgsw },
3702  	{ SYS_DESC(SYS_DC_CISW), access_dcsw },
3703  	{ SYS_DESC(SYS_DC_CIGSW), access_dcgsw },
3704  	{ SYS_DESC(SYS_DC_CIGDSW), access_dcgsw },
3705  
3706  	SYS_INSN(TLBI_VMALLE1OS, handle_tlbi_el1),
3707  	SYS_INSN(TLBI_VAE1OS, handle_tlbi_el1),
3708  	SYS_INSN(TLBI_ASIDE1OS, handle_tlbi_el1),
3709  	SYS_INSN(TLBI_VAAE1OS, handle_tlbi_el1),
3710  	SYS_INSN(TLBI_VALE1OS, handle_tlbi_el1),
3711  	SYS_INSN(TLBI_VAALE1OS, handle_tlbi_el1),
3712  
3713  	SYS_INSN(TLBI_RVAE1IS, handle_tlbi_el1),
3714  	SYS_INSN(TLBI_RVAAE1IS, handle_tlbi_el1),
3715  	SYS_INSN(TLBI_RVALE1IS, handle_tlbi_el1),
3716  	SYS_INSN(TLBI_RVAALE1IS, handle_tlbi_el1),
3717  
3718  	SYS_INSN(TLBI_VMALLE1IS, handle_tlbi_el1),
3719  	SYS_INSN(TLBI_VAE1IS, handle_tlbi_el1),
3720  	SYS_INSN(TLBI_ASIDE1IS, handle_tlbi_el1),
3721  	SYS_INSN(TLBI_VAAE1IS, handle_tlbi_el1),
3722  	SYS_INSN(TLBI_VALE1IS, handle_tlbi_el1),
3723  	SYS_INSN(TLBI_VAALE1IS, handle_tlbi_el1),
3724  
3725  	SYS_INSN(TLBI_RVAE1OS, handle_tlbi_el1),
3726  	SYS_INSN(TLBI_RVAAE1OS, handle_tlbi_el1),
3727  	SYS_INSN(TLBI_RVALE1OS, handle_tlbi_el1),
3728  	SYS_INSN(TLBI_RVAALE1OS, handle_tlbi_el1),
3729  
3730  	SYS_INSN(TLBI_RVAE1, handle_tlbi_el1),
3731  	SYS_INSN(TLBI_RVAAE1, handle_tlbi_el1),
3732  	SYS_INSN(TLBI_RVALE1, handle_tlbi_el1),
3733  	SYS_INSN(TLBI_RVAALE1, handle_tlbi_el1),
3734  
3735  	SYS_INSN(TLBI_VMALLE1, handle_tlbi_el1),
3736  	SYS_INSN(TLBI_VAE1, handle_tlbi_el1),
3737  	SYS_INSN(TLBI_ASIDE1, handle_tlbi_el1),
3738  	SYS_INSN(TLBI_VAAE1, handle_tlbi_el1),
3739  	SYS_INSN(TLBI_VALE1, handle_tlbi_el1),
3740  	SYS_INSN(TLBI_VAALE1, handle_tlbi_el1),
3741  
3742  	SYS_INSN(TLBI_VMALLE1OSNXS, handle_tlbi_el1),
3743  	SYS_INSN(TLBI_VAE1OSNXS, handle_tlbi_el1),
3744  	SYS_INSN(TLBI_ASIDE1OSNXS, handle_tlbi_el1),
3745  	SYS_INSN(TLBI_VAAE1OSNXS, handle_tlbi_el1),
3746  	SYS_INSN(TLBI_VALE1OSNXS, handle_tlbi_el1),
3747  	SYS_INSN(TLBI_VAALE1OSNXS, handle_tlbi_el1),
3748  
3749  	SYS_INSN(TLBI_RVAE1ISNXS, handle_tlbi_el1),
3750  	SYS_INSN(TLBI_RVAAE1ISNXS, handle_tlbi_el1),
3751  	SYS_INSN(TLBI_RVALE1ISNXS, handle_tlbi_el1),
3752  	SYS_INSN(TLBI_RVAALE1ISNXS, handle_tlbi_el1),
3753  
3754  	SYS_INSN(TLBI_VMALLE1ISNXS, handle_tlbi_el1),
3755  	SYS_INSN(TLBI_VAE1ISNXS, handle_tlbi_el1),
3756  	SYS_INSN(TLBI_ASIDE1ISNXS, handle_tlbi_el1),
3757  	SYS_INSN(TLBI_VAAE1ISNXS, handle_tlbi_el1),
3758  	SYS_INSN(TLBI_VALE1ISNXS, handle_tlbi_el1),
3759  	SYS_INSN(TLBI_VAALE1ISNXS, handle_tlbi_el1),
3760  
3761  	SYS_INSN(TLBI_RVAE1OSNXS, handle_tlbi_el1),
3762  	SYS_INSN(TLBI_RVAAE1OSNXS, handle_tlbi_el1),
3763  	SYS_INSN(TLBI_RVALE1OSNXS, handle_tlbi_el1),
3764  	SYS_INSN(TLBI_RVAALE1OSNXS, handle_tlbi_el1),
3765  
3766  	SYS_INSN(TLBI_RVAE1NXS, handle_tlbi_el1),
3767  	SYS_INSN(TLBI_RVAAE1NXS, handle_tlbi_el1),
3768  	SYS_INSN(TLBI_RVALE1NXS, handle_tlbi_el1),
3769  	SYS_INSN(TLBI_RVAALE1NXS, handle_tlbi_el1),
3770  
3771  	SYS_INSN(TLBI_VMALLE1NXS, handle_tlbi_el1),
3772  	SYS_INSN(TLBI_VAE1NXS, handle_tlbi_el1),
3773  	SYS_INSN(TLBI_ASIDE1NXS, handle_tlbi_el1),
3774  	SYS_INSN(TLBI_VAAE1NXS, handle_tlbi_el1),
3775  	SYS_INSN(TLBI_VALE1NXS, handle_tlbi_el1),
3776  	SYS_INSN(TLBI_VAALE1NXS, handle_tlbi_el1),
3777  
3778  	SYS_INSN(AT_S1E2R, handle_at_s1e2),
3779  	SYS_INSN(AT_S1E2W, handle_at_s1e2),
3780  	SYS_INSN(AT_S12E1R, handle_at_s12),
3781  	SYS_INSN(AT_S12E1W, handle_at_s12),
3782  	SYS_INSN(AT_S12E0R, handle_at_s12),
3783  	SYS_INSN(AT_S12E0W, handle_at_s12),
3784  	SYS_INSN(AT_S1E2A, handle_at_s1e2),
3785  
3786  	SYS_INSN(TLBI_IPAS2E1IS, handle_ipas2e1is),
3787  	SYS_INSN(TLBI_RIPAS2E1IS, handle_ripas2e1is),
3788  	SYS_INSN(TLBI_IPAS2LE1IS, handle_ipas2e1is),
3789  	SYS_INSN(TLBI_RIPAS2LE1IS, handle_ripas2e1is),
3790  
3791  	SYS_INSN(TLBI_ALLE2OS, undef_access),
3792  	SYS_INSN(TLBI_VAE2OS, undef_access),
3793  	SYS_INSN(TLBI_ALLE1OS, handle_alle1is),
3794  	SYS_INSN(TLBI_VALE2OS, undef_access),
3795  	SYS_INSN(TLBI_VMALLS12E1OS, handle_vmalls12e1is),
3796  
3797  	SYS_INSN(TLBI_RVAE2IS, undef_access),
3798  	SYS_INSN(TLBI_RVALE2IS, undef_access),
3799  
3800  	SYS_INSN(TLBI_ALLE1IS, handle_alle1is),
3801  	SYS_INSN(TLBI_VMALLS12E1IS, handle_vmalls12e1is),
3802  	SYS_INSN(TLBI_IPAS2E1OS, handle_ipas2e1is),
3803  	SYS_INSN(TLBI_IPAS2E1, handle_ipas2e1is),
3804  	SYS_INSN(TLBI_RIPAS2E1, handle_ripas2e1is),
3805  	SYS_INSN(TLBI_RIPAS2E1OS, handle_ripas2e1is),
3806  	SYS_INSN(TLBI_IPAS2LE1OS, handle_ipas2e1is),
3807  	SYS_INSN(TLBI_IPAS2LE1, handle_ipas2e1is),
3808  	SYS_INSN(TLBI_RIPAS2LE1, handle_ripas2e1is),
3809  	SYS_INSN(TLBI_RIPAS2LE1OS, handle_ripas2e1is),
3810  	SYS_INSN(TLBI_RVAE2OS, undef_access),
3811  	SYS_INSN(TLBI_RVALE2OS, undef_access),
3812  	SYS_INSN(TLBI_RVAE2, undef_access),
3813  	SYS_INSN(TLBI_RVALE2, undef_access),
3814  	SYS_INSN(TLBI_ALLE1, handle_alle1is),
3815  	SYS_INSN(TLBI_VMALLS12E1, handle_vmalls12e1is),
3816  
3817  	SYS_INSN(TLBI_IPAS2E1ISNXS, handle_ipas2e1is),
3818  	SYS_INSN(TLBI_RIPAS2E1ISNXS, handle_ripas2e1is),
3819  	SYS_INSN(TLBI_IPAS2LE1ISNXS, handle_ipas2e1is),
3820  	SYS_INSN(TLBI_RIPAS2LE1ISNXS, handle_ripas2e1is),
3821  
3822  	SYS_INSN(TLBI_ALLE2OSNXS, undef_access),
3823  	SYS_INSN(TLBI_VAE2OSNXS, undef_access),
3824  	SYS_INSN(TLBI_ALLE1OSNXS, handle_alle1is),
3825  	SYS_INSN(TLBI_VALE2OSNXS, undef_access),
3826  	SYS_INSN(TLBI_VMALLS12E1OSNXS, handle_vmalls12e1is),
3827  
3828  	SYS_INSN(TLBI_RVAE2ISNXS, undef_access),
3829  	SYS_INSN(TLBI_RVALE2ISNXS, undef_access),
3830  	SYS_INSN(TLBI_ALLE2ISNXS, undef_access),
3831  	SYS_INSN(TLBI_VAE2ISNXS, undef_access),
3832  
3833  	SYS_INSN(TLBI_ALLE1ISNXS, handle_alle1is),
3834  	SYS_INSN(TLBI_VALE2ISNXS, undef_access),
3835  	SYS_INSN(TLBI_VMALLS12E1ISNXS, handle_vmalls12e1is),
3836  	SYS_INSN(TLBI_IPAS2E1OSNXS, handle_ipas2e1is),
3837  	SYS_INSN(TLBI_IPAS2E1NXS, handle_ipas2e1is),
3838  	SYS_INSN(TLBI_RIPAS2E1NXS, handle_ripas2e1is),
3839  	SYS_INSN(TLBI_RIPAS2E1OSNXS, handle_ripas2e1is),
3840  	SYS_INSN(TLBI_IPAS2LE1OSNXS, handle_ipas2e1is),
3841  	SYS_INSN(TLBI_IPAS2LE1NXS, handle_ipas2e1is),
3842  	SYS_INSN(TLBI_RIPAS2LE1NXS, handle_ripas2e1is),
3843  	SYS_INSN(TLBI_RIPAS2LE1OSNXS, handle_ripas2e1is),
3844  	SYS_INSN(TLBI_RVAE2OSNXS, undef_access),
3845  	SYS_INSN(TLBI_RVALE2OSNXS, undef_access),
3846  	SYS_INSN(TLBI_RVAE2NXS, undef_access),
3847  	SYS_INSN(TLBI_RVALE2NXS, undef_access),
3848  	SYS_INSN(TLBI_ALLE2NXS, undef_access),
3849  	SYS_INSN(TLBI_VAE2NXS, undef_access),
3850  	SYS_INSN(TLBI_ALLE1NXS, handle_alle1is),
3851  	SYS_INSN(TLBI_VALE2NXS, undef_access),
3852  	SYS_INSN(TLBI_VMALLS12E1NXS, handle_vmalls12e1is),
3853  };
3854  
trap_dbgdidr(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)3855  static bool trap_dbgdidr(struct kvm_vcpu *vcpu,
3856  			struct sys_reg_params *p,
3857  			const struct sys_reg_desc *r)
3858  {
3859  	if (p->is_write) {
3860  		return ignore_write(vcpu, p);
3861  	} else {
3862  		u64 dfr = kvm_read_vm_id_reg(vcpu->kvm, SYS_ID_AA64DFR0_EL1);
3863  		u32 el3 = kvm_has_feat(vcpu->kvm, ID_AA64PFR0_EL1, EL3, IMP);
3864  
3865  		p->regval = ((SYS_FIELD_GET(ID_AA64DFR0_EL1, WRPs, dfr) << 28) |
3866  			     (SYS_FIELD_GET(ID_AA64DFR0_EL1, BRPs, dfr) << 24) |
3867  			     (SYS_FIELD_GET(ID_AA64DFR0_EL1, CTX_CMPs, dfr) << 20) |
3868  			     (SYS_FIELD_GET(ID_AA64DFR0_EL1, DebugVer, dfr) << 16) |
3869  			     (1 << 15) | (el3 << 14) | (el3 << 12));
3870  		return true;
3871  	}
3872  }
3873  
3874  /*
3875   * AArch32 debug register mappings
3876   *
3877   * AArch32 DBGBVRn is mapped to DBGBVRn_EL1[31:0]
3878   * AArch32 DBGBXVRn is mapped to DBGBVRn_EL1[63:32]
3879   *
3880   * None of the other registers share their location, so treat them as
3881   * if they were 64bit.
3882   */
3883  #define DBG_BCR_BVR_WCR_WVR(n)							\
3884  	/* DBGBVRn */								\
3885  	{ AA32(LO), Op1( 0), CRn( 0), CRm((n)), Op2( 4),			\
3886  	  trap_dbg_wb_reg, NULL, n },						\
3887  	/* DBGBCRn */								\
3888  	{ Op1( 0), CRn( 0), CRm((n)), Op2( 5), trap_dbg_wb_reg, NULL, n },	\
3889  	/* DBGWVRn */								\
3890  	{ Op1( 0), CRn( 0), CRm((n)), Op2( 6), trap_dbg_wb_reg, NULL, n },	\
3891  	/* DBGWCRn */								\
3892  	{ Op1( 0), CRn( 0), CRm((n)), Op2( 7), trap_dbg_wb_reg, NULL, n }
3893  
3894  #define DBGBXVR(n)								\
3895  	{ AA32(HI), Op1( 0), CRn( 1), CRm((n)), Op2( 1),			\
3896  	  trap_dbg_wb_reg, NULL, n }
3897  
3898  /*
3899   * Trapped cp14 registers. We generally ignore most of the external
3900   * debug, on the principle that they don't really make sense to a
3901   * guest. Revisit this one day, would this principle change.
3902   */
3903  static const struct sys_reg_desc cp14_regs[] = {
3904  	/* DBGDIDR */
3905  	{ Op1( 0), CRn( 0), CRm( 0), Op2( 0), trap_dbgdidr },
3906  	/* DBGDTRRXext */
3907  	{ Op1( 0), CRn( 0), CRm( 0), Op2( 2), trap_raz_wi },
3908  
3909  	DBG_BCR_BVR_WCR_WVR(0),
3910  	/* DBGDSCRint */
3911  	{ Op1( 0), CRn( 0), CRm( 1), Op2( 0), trap_raz_wi },
3912  	DBG_BCR_BVR_WCR_WVR(1),
3913  	/* DBGDCCINT */
3914  	{ Op1( 0), CRn( 0), CRm( 2), Op2( 0), trap_debug_regs, NULL, MDCCINT_EL1 },
3915  	/* DBGDSCRext */
3916  	{ Op1( 0), CRn( 0), CRm( 2), Op2( 2), trap_debug_regs, NULL, MDSCR_EL1 },
3917  	DBG_BCR_BVR_WCR_WVR(2),
3918  	/* DBGDTR[RT]Xint */
3919  	{ Op1( 0), CRn( 0), CRm( 3), Op2( 0), trap_raz_wi },
3920  	/* DBGDTR[RT]Xext */
3921  	{ Op1( 0), CRn( 0), CRm( 3), Op2( 2), trap_raz_wi },
3922  	DBG_BCR_BVR_WCR_WVR(3),
3923  	DBG_BCR_BVR_WCR_WVR(4),
3924  	DBG_BCR_BVR_WCR_WVR(5),
3925  	/* DBGWFAR */
3926  	{ Op1( 0), CRn( 0), CRm( 6), Op2( 0), trap_raz_wi },
3927  	/* DBGOSECCR */
3928  	{ Op1( 0), CRn( 0), CRm( 6), Op2( 2), trap_raz_wi },
3929  	DBG_BCR_BVR_WCR_WVR(6),
3930  	/* DBGVCR */
3931  	{ Op1( 0), CRn( 0), CRm( 7), Op2( 0), trap_debug_regs, NULL, DBGVCR32_EL2 },
3932  	DBG_BCR_BVR_WCR_WVR(7),
3933  	DBG_BCR_BVR_WCR_WVR(8),
3934  	DBG_BCR_BVR_WCR_WVR(9),
3935  	DBG_BCR_BVR_WCR_WVR(10),
3936  	DBG_BCR_BVR_WCR_WVR(11),
3937  	DBG_BCR_BVR_WCR_WVR(12),
3938  	DBG_BCR_BVR_WCR_WVR(13),
3939  	DBG_BCR_BVR_WCR_WVR(14),
3940  	DBG_BCR_BVR_WCR_WVR(15),
3941  
3942  	/* DBGDRAR (32bit) */
3943  	{ Op1( 0), CRn( 1), CRm( 0), Op2( 0), trap_raz_wi },
3944  
3945  	DBGBXVR(0),
3946  	/* DBGOSLAR */
3947  	{ Op1( 0), CRn( 1), CRm( 0), Op2( 4), trap_oslar_el1 },
3948  	DBGBXVR(1),
3949  	/* DBGOSLSR */
3950  	{ Op1( 0), CRn( 1), CRm( 1), Op2( 4), trap_oslsr_el1, NULL, OSLSR_EL1 },
3951  	DBGBXVR(2),
3952  	DBGBXVR(3),
3953  	/* DBGOSDLR */
3954  	{ Op1( 0), CRn( 1), CRm( 3), Op2( 4), trap_raz_wi },
3955  	DBGBXVR(4),
3956  	/* DBGPRCR */
3957  	{ Op1( 0), CRn( 1), CRm( 4), Op2( 4), trap_raz_wi },
3958  	DBGBXVR(5),
3959  	DBGBXVR(6),
3960  	DBGBXVR(7),
3961  	DBGBXVR(8),
3962  	DBGBXVR(9),
3963  	DBGBXVR(10),
3964  	DBGBXVR(11),
3965  	DBGBXVR(12),
3966  	DBGBXVR(13),
3967  	DBGBXVR(14),
3968  	DBGBXVR(15),
3969  
3970  	/* DBGDSAR (32bit) */
3971  	{ Op1( 0), CRn( 2), CRm( 0), Op2( 0), trap_raz_wi },
3972  
3973  	/* DBGDEVID2 */
3974  	{ Op1( 0), CRn( 7), CRm( 0), Op2( 7), trap_raz_wi },
3975  	/* DBGDEVID1 */
3976  	{ Op1( 0), CRn( 7), CRm( 1), Op2( 7), trap_raz_wi },
3977  	/* DBGDEVID */
3978  	{ Op1( 0), CRn( 7), CRm( 2), Op2( 7), trap_raz_wi },
3979  	/* DBGCLAIMSET */
3980  	{ Op1( 0), CRn( 7), CRm( 8), Op2( 6), trap_raz_wi },
3981  	/* DBGCLAIMCLR */
3982  	{ Op1( 0), CRn( 7), CRm( 9), Op2( 6), trap_raz_wi },
3983  	/* DBGAUTHSTATUS */
3984  	{ Op1( 0), CRn( 7), CRm(14), Op2( 6), trap_dbgauthstatus_el1 },
3985  };
3986  
3987  /* Trapped cp14 64bit registers */
3988  static const struct sys_reg_desc cp14_64_regs[] = {
3989  	/* DBGDRAR (64bit) */
3990  	{ Op1( 0), CRm( 1), .access = trap_raz_wi },
3991  
3992  	/* DBGDSAR (64bit) */
3993  	{ Op1( 0), CRm( 2), .access = trap_raz_wi },
3994  };
3995  
3996  #define CP15_PMU_SYS_REG(_map, _Op1, _CRn, _CRm, _Op2)			\
3997  	AA32(_map),							\
3998  	Op1(_Op1), CRn(_CRn), CRm(_CRm), Op2(_Op2),			\
3999  	.visibility = pmu_visibility
4000  
4001  /* Macro to expand the PMEVCNTRn register */
4002  #define PMU_PMEVCNTR(n)							\
4003  	{ CP15_PMU_SYS_REG(DIRECT, 0, 0b1110,				\
4004  	  (0b1000 | (((n) >> 3) & 0x3)), ((n) & 0x7)),			\
4005  	  .access = access_pmu_evcntr }
4006  
4007  /* Macro to expand the PMEVTYPERn register */
4008  #define PMU_PMEVTYPER(n)						\
4009  	{ CP15_PMU_SYS_REG(DIRECT, 0, 0b1110,				\
4010  	  (0b1100 | (((n) >> 3) & 0x3)), ((n) & 0x7)),			\
4011  	  .access = access_pmu_evtyper }
4012  /*
4013   * Trapped cp15 registers. TTBR0/TTBR1 get a double encoding,
4014   * depending on the way they are accessed (as a 32bit or a 64bit
4015   * register).
4016   */
4017  static const struct sys_reg_desc cp15_regs[] = {
4018  	{ Op1( 0), CRn( 0), CRm( 0), Op2( 1), access_ctr },
4019  	{ Op1( 0), CRn( 1), CRm( 0), Op2( 0), access_vm_reg, NULL, SCTLR_EL1 },
4020  	/* ACTLR */
4021  	{ AA32(LO), Op1( 0), CRn( 1), CRm( 0), Op2( 1), access_actlr, NULL, ACTLR_EL1 },
4022  	/* ACTLR2 */
4023  	{ AA32(HI), Op1( 0), CRn( 1), CRm( 0), Op2( 3), access_actlr, NULL, ACTLR_EL1 },
4024  	{ Op1( 0), CRn( 2), CRm( 0), Op2( 0), access_vm_reg, NULL, TTBR0_EL1 },
4025  	{ Op1( 0), CRn( 2), CRm( 0), Op2( 1), access_vm_reg, NULL, TTBR1_EL1 },
4026  	/* TTBCR */
4027  	{ AA32(LO), Op1( 0), CRn( 2), CRm( 0), Op2( 2), access_vm_reg, NULL, TCR_EL1 },
4028  	/* TTBCR2 */
4029  	{ AA32(HI), Op1( 0), CRn( 2), CRm( 0), Op2( 3), access_vm_reg, NULL, TCR_EL1 },
4030  	{ Op1( 0), CRn( 3), CRm( 0), Op2( 0), access_vm_reg, NULL, DACR32_EL2 },
4031  	{ CP15_SYS_DESC(SYS_ICC_PMR_EL1), undef_access },
4032  	/* DFSR */
4033  	{ Op1( 0), CRn( 5), CRm( 0), Op2( 0), access_vm_reg, NULL, ESR_EL1 },
4034  	{ Op1( 0), CRn( 5), CRm( 0), Op2( 1), access_vm_reg, NULL, IFSR32_EL2 },
4035  	/* ADFSR */
4036  	{ Op1( 0), CRn( 5), CRm( 1), Op2( 0), access_vm_reg, NULL, AFSR0_EL1 },
4037  	/* AIFSR */
4038  	{ Op1( 0), CRn( 5), CRm( 1), Op2( 1), access_vm_reg, NULL, AFSR1_EL1 },
4039  	/* DFAR */
4040  	{ AA32(LO), Op1( 0), CRn( 6), CRm( 0), Op2( 0), access_vm_reg, NULL, FAR_EL1 },
4041  	/* IFAR */
4042  	{ AA32(HI), Op1( 0), CRn( 6), CRm( 0), Op2( 2), access_vm_reg, NULL, FAR_EL1 },
4043  
4044  	/*
4045  	 * DC{C,I,CI}SW operations:
4046  	 */
4047  	{ Op1( 0), CRn( 7), CRm( 6), Op2( 2), access_dcsw },
4048  	{ Op1( 0), CRn( 7), CRm(10), Op2( 2), access_dcsw },
4049  	{ Op1( 0), CRn( 7), CRm(14), Op2( 2), access_dcsw },
4050  
4051  	/* PMU */
4052  	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 0), .access = access_pmcr },
4053  	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 1), .access = access_pmcnten },
4054  	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 2), .access = access_pmcnten },
4055  	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 3), .access = access_pmovs },
4056  	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 4), .access = access_pmswinc },
4057  	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 5), .access = access_pmselr },
4058  	{ CP15_PMU_SYS_REG(LO,     0, 9, 12, 6), .access = access_pmceid },
4059  	{ CP15_PMU_SYS_REG(LO,     0, 9, 12, 7), .access = access_pmceid },
4060  	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 13, 0), .access = access_pmu_evcntr },
4061  	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 13, 1), .access = access_pmu_evtyper },
4062  	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 13, 2), .access = access_pmu_evcntr },
4063  	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 0), .access = access_pmuserenr },
4064  	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 1), .access = access_pminten },
4065  	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 2), .access = access_pminten },
4066  	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 3), .access = access_pmovs },
4067  	{ CP15_PMU_SYS_REG(HI,     0, 9, 14, 4), .access = access_pmceid },
4068  	{ CP15_PMU_SYS_REG(HI,     0, 9, 14, 5), .access = access_pmceid },
4069  	/* PMMIR */
4070  	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 6), .access = trap_raz_wi },
4071  
4072  	/* PRRR/MAIR0 */
4073  	{ AA32(LO), Op1( 0), CRn(10), CRm( 2), Op2( 0), access_vm_reg, NULL, MAIR_EL1 },
4074  	/* NMRR/MAIR1 */
4075  	{ AA32(HI), Op1( 0), CRn(10), CRm( 2), Op2( 1), access_vm_reg, NULL, MAIR_EL1 },
4076  	/* AMAIR0 */
4077  	{ AA32(LO), Op1( 0), CRn(10), CRm( 3), Op2( 0), access_vm_reg, NULL, AMAIR_EL1 },
4078  	/* AMAIR1 */
4079  	{ AA32(HI), Op1( 0), CRn(10), CRm( 3), Op2( 1), access_vm_reg, NULL, AMAIR_EL1 },
4080  
4081  	{ CP15_SYS_DESC(SYS_ICC_IAR0_EL1), undef_access },
4082  	{ CP15_SYS_DESC(SYS_ICC_EOIR0_EL1), undef_access },
4083  	{ CP15_SYS_DESC(SYS_ICC_HPPIR0_EL1), undef_access },
4084  	{ CP15_SYS_DESC(SYS_ICC_BPR0_EL1), undef_access },
4085  	{ CP15_SYS_DESC(SYS_ICC_AP0R0_EL1), undef_access },
4086  	{ CP15_SYS_DESC(SYS_ICC_AP0R1_EL1), undef_access },
4087  	{ CP15_SYS_DESC(SYS_ICC_AP0R2_EL1), undef_access },
4088  	{ CP15_SYS_DESC(SYS_ICC_AP0R3_EL1), undef_access },
4089  	{ CP15_SYS_DESC(SYS_ICC_AP1R0_EL1), undef_access },
4090  	{ CP15_SYS_DESC(SYS_ICC_AP1R1_EL1), undef_access },
4091  	{ CP15_SYS_DESC(SYS_ICC_AP1R2_EL1), undef_access },
4092  	{ CP15_SYS_DESC(SYS_ICC_AP1R3_EL1), undef_access },
4093  	{ CP15_SYS_DESC(SYS_ICC_DIR_EL1), undef_access },
4094  	{ CP15_SYS_DESC(SYS_ICC_RPR_EL1), undef_access },
4095  	{ CP15_SYS_DESC(SYS_ICC_IAR1_EL1), undef_access },
4096  	{ CP15_SYS_DESC(SYS_ICC_EOIR1_EL1), undef_access },
4097  	{ CP15_SYS_DESC(SYS_ICC_HPPIR1_EL1), undef_access },
4098  	{ CP15_SYS_DESC(SYS_ICC_BPR1_EL1), undef_access },
4099  	{ CP15_SYS_DESC(SYS_ICC_CTLR_EL1), undef_access },
4100  	{ CP15_SYS_DESC(SYS_ICC_SRE_EL1), access_gic_sre },
4101  	{ CP15_SYS_DESC(SYS_ICC_IGRPEN0_EL1), undef_access },
4102  	{ CP15_SYS_DESC(SYS_ICC_IGRPEN1_EL1), undef_access },
4103  
4104  	{ Op1( 0), CRn(13), CRm( 0), Op2( 1), access_vm_reg, NULL, CONTEXTIDR_EL1 },
4105  
4106  	/* Arch Tmers */
4107  	{ SYS_DESC(SYS_AARCH32_CNTP_TVAL), access_arch_timer },
4108  	{ SYS_DESC(SYS_AARCH32_CNTP_CTL), access_arch_timer },
4109  
4110  	/* PMEVCNTRn */
4111  	PMU_PMEVCNTR(0),
4112  	PMU_PMEVCNTR(1),
4113  	PMU_PMEVCNTR(2),
4114  	PMU_PMEVCNTR(3),
4115  	PMU_PMEVCNTR(4),
4116  	PMU_PMEVCNTR(5),
4117  	PMU_PMEVCNTR(6),
4118  	PMU_PMEVCNTR(7),
4119  	PMU_PMEVCNTR(8),
4120  	PMU_PMEVCNTR(9),
4121  	PMU_PMEVCNTR(10),
4122  	PMU_PMEVCNTR(11),
4123  	PMU_PMEVCNTR(12),
4124  	PMU_PMEVCNTR(13),
4125  	PMU_PMEVCNTR(14),
4126  	PMU_PMEVCNTR(15),
4127  	PMU_PMEVCNTR(16),
4128  	PMU_PMEVCNTR(17),
4129  	PMU_PMEVCNTR(18),
4130  	PMU_PMEVCNTR(19),
4131  	PMU_PMEVCNTR(20),
4132  	PMU_PMEVCNTR(21),
4133  	PMU_PMEVCNTR(22),
4134  	PMU_PMEVCNTR(23),
4135  	PMU_PMEVCNTR(24),
4136  	PMU_PMEVCNTR(25),
4137  	PMU_PMEVCNTR(26),
4138  	PMU_PMEVCNTR(27),
4139  	PMU_PMEVCNTR(28),
4140  	PMU_PMEVCNTR(29),
4141  	PMU_PMEVCNTR(30),
4142  	/* PMEVTYPERn */
4143  	PMU_PMEVTYPER(0),
4144  	PMU_PMEVTYPER(1),
4145  	PMU_PMEVTYPER(2),
4146  	PMU_PMEVTYPER(3),
4147  	PMU_PMEVTYPER(4),
4148  	PMU_PMEVTYPER(5),
4149  	PMU_PMEVTYPER(6),
4150  	PMU_PMEVTYPER(7),
4151  	PMU_PMEVTYPER(8),
4152  	PMU_PMEVTYPER(9),
4153  	PMU_PMEVTYPER(10),
4154  	PMU_PMEVTYPER(11),
4155  	PMU_PMEVTYPER(12),
4156  	PMU_PMEVTYPER(13),
4157  	PMU_PMEVTYPER(14),
4158  	PMU_PMEVTYPER(15),
4159  	PMU_PMEVTYPER(16),
4160  	PMU_PMEVTYPER(17),
4161  	PMU_PMEVTYPER(18),
4162  	PMU_PMEVTYPER(19),
4163  	PMU_PMEVTYPER(20),
4164  	PMU_PMEVTYPER(21),
4165  	PMU_PMEVTYPER(22),
4166  	PMU_PMEVTYPER(23),
4167  	PMU_PMEVTYPER(24),
4168  	PMU_PMEVTYPER(25),
4169  	PMU_PMEVTYPER(26),
4170  	PMU_PMEVTYPER(27),
4171  	PMU_PMEVTYPER(28),
4172  	PMU_PMEVTYPER(29),
4173  	PMU_PMEVTYPER(30),
4174  	/* PMCCFILTR */
4175  	{ CP15_PMU_SYS_REG(DIRECT, 0, 14, 15, 7), .access = access_pmu_evtyper },
4176  
4177  	{ Op1(1), CRn( 0), CRm( 0), Op2(0), access_ccsidr },
4178  	{ Op1(1), CRn( 0), CRm( 0), Op2(1), access_clidr },
4179  
4180  	/* CCSIDR2 */
4181  	{ Op1(1), CRn( 0), CRm( 0),  Op2(2), undef_access },
4182  
4183  	{ Op1(2), CRn( 0), CRm( 0), Op2(0), access_csselr, NULL, CSSELR_EL1 },
4184  };
4185  
4186  static const struct sys_reg_desc cp15_64_regs[] = {
4187  	{ Op1( 0), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, TTBR0_EL1 },
4188  	{ CP15_PMU_SYS_REG(DIRECT, 0, 0, 9, 0), .access = access_pmu_evcntr },
4189  	{ Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI1R */
4190  	{ SYS_DESC(SYS_AARCH32_CNTPCT),	      access_arch_timer },
4191  	{ Op1( 1), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, TTBR1_EL1 },
4192  	{ Op1( 1), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_ASGI1R */
4193  	{ SYS_DESC(SYS_AARCH32_CNTVCT),	      access_arch_timer },
4194  	{ Op1( 2), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI0R */
4195  	{ SYS_DESC(SYS_AARCH32_CNTP_CVAL),    access_arch_timer },
4196  	{ SYS_DESC(SYS_AARCH32_CNTPCTSS),     access_arch_timer },
4197  	{ SYS_DESC(SYS_AARCH32_CNTVCTSS),     access_arch_timer },
4198  };
4199  
check_sysreg_table(const struct sys_reg_desc * table,unsigned int n,bool is_32)4200  static bool check_sysreg_table(const struct sys_reg_desc *table, unsigned int n,
4201  			       bool is_32)
4202  {
4203  	unsigned int i;
4204  
4205  	for (i = 0; i < n; i++) {
4206  		if (!is_32 && table[i].reg && !table[i].reset) {
4207  			kvm_err("sys_reg table %pS entry %d (%s) lacks reset\n",
4208  				&table[i], i, table[i].name);
4209  			return false;
4210  		}
4211  
4212  		if (i && cmp_sys_reg(&table[i-1], &table[i]) >= 0) {
4213  			kvm_err("sys_reg table %pS entry %d (%s -> %s) out of order\n",
4214  				&table[i], i, table[i - 1].name, table[i].name);
4215  			return false;
4216  		}
4217  	}
4218  
4219  	return true;
4220  }
4221  
kvm_handle_cp14_load_store(struct kvm_vcpu * vcpu)4222  int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu)
4223  {
4224  	kvm_inject_undefined(vcpu);
4225  	return 1;
4226  }
4227  
perform_access(struct kvm_vcpu * vcpu,struct sys_reg_params * params,const struct sys_reg_desc * r)4228  static void perform_access(struct kvm_vcpu *vcpu,
4229  			   struct sys_reg_params *params,
4230  			   const struct sys_reg_desc *r)
4231  {
4232  	trace_kvm_sys_access(*vcpu_pc(vcpu), params, r);
4233  
4234  	/* Check for regs disabled by runtime config */
4235  	if (sysreg_hidden(vcpu, r)) {
4236  		kvm_inject_undefined(vcpu);
4237  		return;
4238  	}
4239  
4240  	/*
4241  	 * Not having an accessor means that we have configured a trap
4242  	 * that we don't know how to handle. This certainly qualifies
4243  	 * as a gross bug that should be fixed right away.
4244  	 */
4245  	BUG_ON(!r->access);
4246  
4247  	/* Skip instruction if instructed so */
4248  	if (likely(r->access(vcpu, params, r)))
4249  		kvm_incr_pc(vcpu);
4250  }
4251  
4252  /*
4253   * emulate_cp --  tries to match a sys_reg access in a handling table, and
4254   *                call the corresponding trap handler.
4255   *
4256   * @params: pointer to the descriptor of the access
4257   * @table: array of trap descriptors
4258   * @num: size of the trap descriptor array
4259   *
4260   * Return true if the access has been handled, false if not.
4261   */
emulate_cp(struct kvm_vcpu * vcpu,struct sys_reg_params * params,const struct sys_reg_desc * table,size_t num)4262  static bool emulate_cp(struct kvm_vcpu *vcpu,
4263  		       struct sys_reg_params *params,
4264  		       const struct sys_reg_desc *table,
4265  		       size_t num)
4266  {
4267  	const struct sys_reg_desc *r;
4268  
4269  	if (!table)
4270  		return false;	/* Not handled */
4271  
4272  	r = find_reg(params, table, num);
4273  
4274  	if (r) {
4275  		perform_access(vcpu, params, r);
4276  		return true;
4277  	}
4278  
4279  	/* Not handled */
4280  	return false;
4281  }
4282  
unhandled_cp_access(struct kvm_vcpu * vcpu,struct sys_reg_params * params)4283  static void unhandled_cp_access(struct kvm_vcpu *vcpu,
4284  				struct sys_reg_params *params)
4285  {
4286  	u8 esr_ec = kvm_vcpu_trap_get_class(vcpu);
4287  	int cp = -1;
4288  
4289  	switch (esr_ec) {
4290  	case ESR_ELx_EC_CP15_32:
4291  	case ESR_ELx_EC_CP15_64:
4292  		cp = 15;
4293  		break;
4294  	case ESR_ELx_EC_CP14_MR:
4295  	case ESR_ELx_EC_CP14_64:
4296  		cp = 14;
4297  		break;
4298  	default:
4299  		WARN_ON(1);
4300  	}
4301  
4302  	print_sys_reg_msg(params,
4303  			  "Unsupported guest CP%d access at: %08lx [%08lx]\n",
4304  			  cp, *vcpu_pc(vcpu), *vcpu_cpsr(vcpu));
4305  	kvm_inject_undefined(vcpu);
4306  }
4307  
4308  /**
4309   * kvm_handle_cp_64 -- handles a mrrc/mcrr trap on a guest CP14/CP15 access
4310   * @vcpu: The VCPU pointer
4311   * @global: &struct sys_reg_desc
4312   * @nr_global: size of the @global array
4313   */
kvm_handle_cp_64(struct kvm_vcpu * vcpu,const struct sys_reg_desc * global,size_t nr_global)4314  static int kvm_handle_cp_64(struct kvm_vcpu *vcpu,
4315  			    const struct sys_reg_desc *global,
4316  			    size_t nr_global)
4317  {
4318  	struct sys_reg_params params;
4319  	u64 esr = kvm_vcpu_get_esr(vcpu);
4320  	int Rt = kvm_vcpu_sys_get_rt(vcpu);
4321  	int Rt2 = (esr >> 10) & 0x1f;
4322  
4323  	params.CRm = (esr >> 1) & 0xf;
4324  	params.is_write = ((esr & 1) == 0);
4325  
4326  	params.Op0 = 0;
4327  	params.Op1 = (esr >> 16) & 0xf;
4328  	params.Op2 = 0;
4329  	params.CRn = 0;
4330  
4331  	/*
4332  	 * Make a 64-bit value out of Rt and Rt2. As we use the same trap
4333  	 * backends between AArch32 and AArch64, we get away with it.
4334  	 */
4335  	if (params.is_write) {
4336  		params.regval = vcpu_get_reg(vcpu, Rt) & 0xffffffff;
4337  		params.regval |= vcpu_get_reg(vcpu, Rt2) << 32;
4338  	}
4339  
4340  	/*
4341  	 * If the table contains a handler, handle the
4342  	 * potential register operation in the case of a read and return
4343  	 * with success.
4344  	 */
4345  	if (emulate_cp(vcpu, &params, global, nr_global)) {
4346  		/* Split up the value between registers for the read side */
4347  		if (!params.is_write) {
4348  			vcpu_set_reg(vcpu, Rt, lower_32_bits(params.regval));
4349  			vcpu_set_reg(vcpu, Rt2, upper_32_bits(params.regval));
4350  		}
4351  
4352  		return 1;
4353  	}
4354  
4355  	unhandled_cp_access(vcpu, &params);
4356  	return 1;
4357  }
4358  
4359  static bool emulate_sys_reg(struct kvm_vcpu *vcpu, struct sys_reg_params *params);
4360  
4361  /*
4362   * The CP10 ID registers are architecturally mapped to AArch64 feature
4363   * registers. Abuse that fact so we can rely on the AArch64 handler for accesses
4364   * from AArch32.
4365   */
kvm_esr_cp10_id_to_sys64(u64 esr,struct sys_reg_params * params)4366  static bool kvm_esr_cp10_id_to_sys64(u64 esr, struct sys_reg_params *params)
4367  {
4368  	u8 reg_id = (esr >> 10) & 0xf;
4369  	bool valid;
4370  
4371  	params->is_write = ((esr & 1) == 0);
4372  	params->Op0 = 3;
4373  	params->Op1 = 0;
4374  	params->CRn = 0;
4375  	params->CRm = 3;
4376  
4377  	/* CP10 ID registers are read-only */
4378  	valid = !params->is_write;
4379  
4380  	switch (reg_id) {
4381  	/* MVFR0 */
4382  	case 0b0111:
4383  		params->Op2 = 0;
4384  		break;
4385  	/* MVFR1 */
4386  	case 0b0110:
4387  		params->Op2 = 1;
4388  		break;
4389  	/* MVFR2 */
4390  	case 0b0101:
4391  		params->Op2 = 2;
4392  		break;
4393  	default:
4394  		valid = false;
4395  	}
4396  
4397  	if (valid)
4398  		return true;
4399  
4400  	kvm_pr_unimpl("Unhandled cp10 register %s: %u\n",
4401  		      params->is_write ? "write" : "read", reg_id);
4402  	return false;
4403  }
4404  
4405  /**
4406   * kvm_handle_cp10_id() - Handles a VMRS trap on guest access to a 'Media and
4407   *			  VFP Register' from AArch32.
4408   * @vcpu: The vCPU pointer
4409   *
4410   * MVFR{0-2} are architecturally mapped to the AArch64 MVFR{0-2}_EL1 registers.
4411   * Work out the correct AArch64 system register encoding and reroute to the
4412   * AArch64 system register emulation.
4413   */
kvm_handle_cp10_id(struct kvm_vcpu * vcpu)4414  int kvm_handle_cp10_id(struct kvm_vcpu *vcpu)
4415  {
4416  	int Rt = kvm_vcpu_sys_get_rt(vcpu);
4417  	u64 esr = kvm_vcpu_get_esr(vcpu);
4418  	struct sys_reg_params params;
4419  
4420  	/* UNDEF on any unhandled register access */
4421  	if (!kvm_esr_cp10_id_to_sys64(esr, &params)) {
4422  		kvm_inject_undefined(vcpu);
4423  		return 1;
4424  	}
4425  
4426  	if (emulate_sys_reg(vcpu, &params))
4427  		vcpu_set_reg(vcpu, Rt, params.regval);
4428  
4429  	return 1;
4430  }
4431  
4432  /**
4433   * kvm_emulate_cp15_id_reg() - Handles an MRC trap on a guest CP15 access where
4434   *			       CRn=0, which corresponds to the AArch32 feature
4435   *			       registers.
4436   * @vcpu: the vCPU pointer
4437   * @params: the system register access parameters.
4438   *
4439   * Our cp15 system register tables do not enumerate the AArch32 feature
4440   * registers. Conveniently, our AArch64 table does, and the AArch32 system
4441   * register encoding can be trivially remapped into the AArch64 for the feature
4442   * registers: Append op0=3, leaving op1, CRn, CRm, and op2 the same.
4443   *
4444   * According to DDI0487G.b G7.3.1, paragraph "Behavior of VMSAv8-32 32-bit
4445   * System registers with (coproc=0b1111, CRn==c0)", read accesses from this
4446   * range are either UNKNOWN or RES0. Rerouting remains architectural as we
4447   * treat undefined registers in this range as RAZ.
4448   */
kvm_emulate_cp15_id_reg(struct kvm_vcpu * vcpu,struct sys_reg_params * params)4449  static int kvm_emulate_cp15_id_reg(struct kvm_vcpu *vcpu,
4450  				   struct sys_reg_params *params)
4451  {
4452  	int Rt = kvm_vcpu_sys_get_rt(vcpu);
4453  
4454  	/* Treat impossible writes to RO registers as UNDEFINED */
4455  	if (params->is_write) {
4456  		unhandled_cp_access(vcpu, params);
4457  		return 1;
4458  	}
4459  
4460  	params->Op0 = 3;
4461  
4462  	/*
4463  	 * All registers where CRm > 3 are known to be UNKNOWN/RAZ from AArch32.
4464  	 * Avoid conflicting with future expansion of AArch64 feature registers
4465  	 * and simply treat them as RAZ here.
4466  	 */
4467  	if (params->CRm > 3)
4468  		params->regval = 0;
4469  	else if (!emulate_sys_reg(vcpu, params))
4470  		return 1;
4471  
4472  	vcpu_set_reg(vcpu, Rt, params->regval);
4473  	return 1;
4474  }
4475  
4476  /**
4477   * kvm_handle_cp_32 -- handles a mrc/mcr trap on a guest CP14/CP15 access
4478   * @vcpu: The VCPU pointer
4479   * @params: &struct sys_reg_params
4480   * @global: &struct sys_reg_desc
4481   * @nr_global: size of the @global array
4482   */
kvm_handle_cp_32(struct kvm_vcpu * vcpu,struct sys_reg_params * params,const struct sys_reg_desc * global,size_t nr_global)4483  static int kvm_handle_cp_32(struct kvm_vcpu *vcpu,
4484  			    struct sys_reg_params *params,
4485  			    const struct sys_reg_desc *global,
4486  			    size_t nr_global)
4487  {
4488  	int Rt  = kvm_vcpu_sys_get_rt(vcpu);
4489  
4490  	params->regval = vcpu_get_reg(vcpu, Rt);
4491  
4492  	if (emulate_cp(vcpu, params, global, nr_global)) {
4493  		if (!params->is_write)
4494  			vcpu_set_reg(vcpu, Rt, params->regval);
4495  		return 1;
4496  	}
4497  
4498  	unhandled_cp_access(vcpu, params);
4499  	return 1;
4500  }
4501  
kvm_handle_cp15_64(struct kvm_vcpu * vcpu)4502  int kvm_handle_cp15_64(struct kvm_vcpu *vcpu)
4503  {
4504  	return kvm_handle_cp_64(vcpu, cp15_64_regs, ARRAY_SIZE(cp15_64_regs));
4505  }
4506  
kvm_handle_cp15_32(struct kvm_vcpu * vcpu)4507  int kvm_handle_cp15_32(struct kvm_vcpu *vcpu)
4508  {
4509  	struct sys_reg_params params;
4510  
4511  	params = esr_cp1x_32_to_params(kvm_vcpu_get_esr(vcpu));
4512  
4513  	/*
4514  	 * Certain AArch32 ID registers are handled by rerouting to the AArch64
4515  	 * system register table. Registers in the ID range where CRm=0 are
4516  	 * excluded from this scheme as they do not trivially map into AArch64
4517  	 * system register encodings, except for AIDR/REVIDR.
4518  	 */
4519  	if (params.Op1 == 0 && params.CRn == 0 &&
4520  	    (params.CRm || params.Op2 == 6 /* REVIDR */))
4521  		return kvm_emulate_cp15_id_reg(vcpu, &params);
4522  	if (params.Op1 == 1 && params.CRn == 0 &&
4523  	    params.CRm == 0 && params.Op2 == 7 /* AIDR */)
4524  		return kvm_emulate_cp15_id_reg(vcpu, &params);
4525  
4526  	return kvm_handle_cp_32(vcpu, &params, cp15_regs, ARRAY_SIZE(cp15_regs));
4527  }
4528  
kvm_handle_cp14_64(struct kvm_vcpu * vcpu)4529  int kvm_handle_cp14_64(struct kvm_vcpu *vcpu)
4530  {
4531  	return kvm_handle_cp_64(vcpu, cp14_64_regs, ARRAY_SIZE(cp14_64_regs));
4532  }
4533  
kvm_handle_cp14_32(struct kvm_vcpu * vcpu)4534  int kvm_handle_cp14_32(struct kvm_vcpu *vcpu)
4535  {
4536  	struct sys_reg_params params;
4537  
4538  	params = esr_cp1x_32_to_params(kvm_vcpu_get_esr(vcpu));
4539  
4540  	return kvm_handle_cp_32(vcpu, &params, cp14_regs, ARRAY_SIZE(cp14_regs));
4541  }
4542  
4543  /**
4544   * emulate_sys_reg - Emulate a guest access to an AArch64 system register
4545   * @vcpu: The VCPU pointer
4546   * @params: Decoded system register parameters
4547   *
4548   * Return: true if the system register access was successful, false otherwise.
4549   */
emulate_sys_reg(struct kvm_vcpu * vcpu,struct sys_reg_params * params)4550  static bool emulate_sys_reg(struct kvm_vcpu *vcpu,
4551  			    struct sys_reg_params *params)
4552  {
4553  	const struct sys_reg_desc *r;
4554  
4555  	r = find_reg(params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
4556  	if (likely(r)) {
4557  		perform_access(vcpu, params, r);
4558  		return true;
4559  	}
4560  
4561  	print_sys_reg_msg(params,
4562  			  "Unsupported guest sys_reg access at: %lx [%08lx]\n",
4563  			  *vcpu_pc(vcpu), *vcpu_cpsr(vcpu));
4564  	kvm_inject_undefined(vcpu);
4565  
4566  	return false;
4567  }
4568  
idregs_debug_find(struct kvm * kvm,u8 pos)4569  static const struct sys_reg_desc *idregs_debug_find(struct kvm *kvm, u8 pos)
4570  {
4571  	unsigned long i, idreg_idx = 0;
4572  
4573  	for (i = 0; i < ARRAY_SIZE(sys_reg_descs); i++) {
4574  		const struct sys_reg_desc *r = &sys_reg_descs[i];
4575  
4576  		if (!is_vm_ftr_id_reg(reg_to_encoding(r)))
4577  			continue;
4578  
4579  		if (idreg_idx == pos)
4580  			return r;
4581  
4582  		idreg_idx++;
4583  	}
4584  
4585  	return NULL;
4586  }
4587  
idregs_debug_start(struct seq_file * s,loff_t * pos)4588  static void *idregs_debug_start(struct seq_file *s, loff_t *pos)
4589  {
4590  	struct kvm *kvm = s->private;
4591  	u8 *iter;
4592  
4593  	mutex_lock(&kvm->arch.config_lock);
4594  
4595  	iter = &kvm->arch.idreg_debugfs_iter;
4596  	if (test_bit(KVM_ARCH_FLAG_ID_REGS_INITIALIZED, &kvm->arch.flags) &&
4597  	    *iter == (u8)~0) {
4598  		*iter = *pos;
4599  		if (!idregs_debug_find(kvm, *iter))
4600  			iter = NULL;
4601  	} else {
4602  		iter = ERR_PTR(-EBUSY);
4603  	}
4604  
4605  	mutex_unlock(&kvm->arch.config_lock);
4606  
4607  	return iter;
4608  }
4609  
idregs_debug_next(struct seq_file * s,void * v,loff_t * pos)4610  static void *idregs_debug_next(struct seq_file *s, void *v, loff_t *pos)
4611  {
4612  	struct kvm *kvm = s->private;
4613  
4614  	(*pos)++;
4615  
4616  	if (idregs_debug_find(kvm, kvm->arch.idreg_debugfs_iter + 1)) {
4617  		kvm->arch.idreg_debugfs_iter++;
4618  
4619  		return &kvm->arch.idreg_debugfs_iter;
4620  	}
4621  
4622  	return NULL;
4623  }
4624  
idregs_debug_stop(struct seq_file * s,void * v)4625  static void idregs_debug_stop(struct seq_file *s, void *v)
4626  {
4627  	struct kvm *kvm = s->private;
4628  
4629  	if (IS_ERR(v))
4630  		return;
4631  
4632  	mutex_lock(&kvm->arch.config_lock);
4633  
4634  	kvm->arch.idreg_debugfs_iter = ~0;
4635  
4636  	mutex_unlock(&kvm->arch.config_lock);
4637  }
4638  
idregs_debug_show(struct seq_file * s,void * v)4639  static int idregs_debug_show(struct seq_file *s, void *v)
4640  {
4641  	const struct sys_reg_desc *desc;
4642  	struct kvm *kvm = s->private;
4643  
4644  	desc = idregs_debug_find(kvm, kvm->arch.idreg_debugfs_iter);
4645  
4646  	if (!desc->name)
4647  		return 0;
4648  
4649  	seq_printf(s, "%20s:\t%016llx\n",
4650  		   desc->name, kvm_read_vm_id_reg(kvm, reg_to_encoding(desc)));
4651  
4652  	return 0;
4653  }
4654  
4655  static const struct seq_operations idregs_debug_sops = {
4656  	.start	= idregs_debug_start,
4657  	.next	= idregs_debug_next,
4658  	.stop	= idregs_debug_stop,
4659  	.show	= idregs_debug_show,
4660  };
4661  
4662  DEFINE_SEQ_ATTRIBUTE(idregs_debug);
4663  
kvm_sys_regs_create_debugfs(struct kvm * kvm)4664  void kvm_sys_regs_create_debugfs(struct kvm *kvm)
4665  {
4666  	kvm->arch.idreg_debugfs_iter = ~0;
4667  
4668  	debugfs_create_file("idregs", 0444, kvm->debugfs_dentry, kvm,
4669  			    &idregs_debug_fops);
4670  }
4671  
reset_vm_ftr_id_reg(struct kvm_vcpu * vcpu,const struct sys_reg_desc * reg)4672  static void reset_vm_ftr_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *reg)
4673  {
4674  	u32 id = reg_to_encoding(reg);
4675  	struct kvm *kvm = vcpu->kvm;
4676  
4677  	if (test_bit(KVM_ARCH_FLAG_ID_REGS_INITIALIZED, &kvm->arch.flags))
4678  		return;
4679  
4680  	kvm_set_vm_id_reg(kvm, id, reg->reset(vcpu, reg));
4681  }
4682  
reset_vcpu_ftr_id_reg(struct kvm_vcpu * vcpu,const struct sys_reg_desc * reg)4683  static void reset_vcpu_ftr_id_reg(struct kvm_vcpu *vcpu,
4684  				  const struct sys_reg_desc *reg)
4685  {
4686  	if (kvm_vcpu_initialized(vcpu))
4687  		return;
4688  
4689  	reg->reset(vcpu, reg);
4690  }
4691  
4692  /**
4693   * kvm_reset_sys_regs - sets system registers to reset value
4694   * @vcpu: The VCPU pointer
4695   *
4696   * This function finds the right table above and sets the registers on the
4697   * virtual CPU struct to their architecturally defined reset values.
4698   */
kvm_reset_sys_regs(struct kvm_vcpu * vcpu)4699  void kvm_reset_sys_regs(struct kvm_vcpu *vcpu)
4700  {
4701  	struct kvm *kvm = vcpu->kvm;
4702  	unsigned long i;
4703  
4704  	for (i = 0; i < ARRAY_SIZE(sys_reg_descs); i++) {
4705  		const struct sys_reg_desc *r = &sys_reg_descs[i];
4706  
4707  		if (!r->reset)
4708  			continue;
4709  
4710  		if (is_vm_ftr_id_reg(reg_to_encoding(r)))
4711  			reset_vm_ftr_id_reg(vcpu, r);
4712  		else if (is_vcpu_ftr_id_reg(reg_to_encoding(r)))
4713  			reset_vcpu_ftr_id_reg(vcpu, r);
4714  		else
4715  			r->reset(vcpu, r);
4716  
4717  		if (r->reg >= __SANITISED_REG_START__ && r->reg < NR_SYS_REGS)
4718  			(void)__vcpu_sys_reg(vcpu, r->reg);
4719  	}
4720  
4721  	set_bit(KVM_ARCH_FLAG_ID_REGS_INITIALIZED, &kvm->arch.flags);
4722  
4723  	if (kvm_vcpu_has_pmu(vcpu))
4724  		kvm_make_request(KVM_REQ_RELOAD_PMU, vcpu);
4725  }
4726  
4727  /**
4728   * kvm_handle_sys_reg -- handles a system instruction or mrs/msr instruction
4729   *			 trap on a guest execution
4730   * @vcpu: The VCPU pointer
4731   */
kvm_handle_sys_reg(struct kvm_vcpu * vcpu)4732  int kvm_handle_sys_reg(struct kvm_vcpu *vcpu)
4733  {
4734  	const struct sys_reg_desc *desc = NULL;
4735  	struct sys_reg_params params;
4736  	unsigned long esr = kvm_vcpu_get_esr(vcpu);
4737  	int Rt = kvm_vcpu_sys_get_rt(vcpu);
4738  	int sr_idx;
4739  
4740  	trace_kvm_handle_sys_reg(esr);
4741  
4742  	if (triage_sysreg_trap(vcpu, &sr_idx))
4743  		return 1;
4744  
4745  	params = esr_sys64_to_params(esr);
4746  	params.regval = vcpu_get_reg(vcpu, Rt);
4747  
4748  	/* System registers have Op0=={2,3}, as per DDI487 J.a C5.1.2 */
4749  	if (params.Op0 == 2 || params.Op0 == 3)
4750  		desc = &sys_reg_descs[sr_idx];
4751  	else
4752  		desc = &sys_insn_descs[sr_idx];
4753  
4754  	perform_access(vcpu, &params, desc);
4755  
4756  	/* Read from system register? */
4757  	if (!params.is_write &&
4758  	    (params.Op0 == 2 || params.Op0 == 3))
4759  		vcpu_set_reg(vcpu, Rt, params.regval);
4760  
4761  	return 1;
4762  }
4763  
4764  /******************************************************************************
4765   * Userspace API
4766   *****************************************************************************/
4767  
index_to_params(u64 id,struct sys_reg_params * params)4768  static bool index_to_params(u64 id, struct sys_reg_params *params)
4769  {
4770  	switch (id & KVM_REG_SIZE_MASK) {
4771  	case KVM_REG_SIZE_U64:
4772  		/* Any unused index bits means it's not valid. */
4773  		if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
4774  			      | KVM_REG_ARM_COPROC_MASK
4775  			      | KVM_REG_ARM64_SYSREG_OP0_MASK
4776  			      | KVM_REG_ARM64_SYSREG_OP1_MASK
4777  			      | KVM_REG_ARM64_SYSREG_CRN_MASK
4778  			      | KVM_REG_ARM64_SYSREG_CRM_MASK
4779  			      | KVM_REG_ARM64_SYSREG_OP2_MASK))
4780  			return false;
4781  		params->Op0 = ((id & KVM_REG_ARM64_SYSREG_OP0_MASK)
4782  			       >> KVM_REG_ARM64_SYSREG_OP0_SHIFT);
4783  		params->Op1 = ((id & KVM_REG_ARM64_SYSREG_OP1_MASK)
4784  			       >> KVM_REG_ARM64_SYSREG_OP1_SHIFT);
4785  		params->CRn = ((id & KVM_REG_ARM64_SYSREG_CRN_MASK)
4786  			       >> KVM_REG_ARM64_SYSREG_CRN_SHIFT);
4787  		params->CRm = ((id & KVM_REG_ARM64_SYSREG_CRM_MASK)
4788  			       >> KVM_REG_ARM64_SYSREG_CRM_SHIFT);
4789  		params->Op2 = ((id & KVM_REG_ARM64_SYSREG_OP2_MASK)
4790  			       >> KVM_REG_ARM64_SYSREG_OP2_SHIFT);
4791  		return true;
4792  	default:
4793  		return false;
4794  	}
4795  }
4796  
get_reg_by_id(u64 id,const struct sys_reg_desc table[],unsigned int num)4797  const struct sys_reg_desc *get_reg_by_id(u64 id,
4798  					 const struct sys_reg_desc table[],
4799  					 unsigned int num)
4800  {
4801  	struct sys_reg_params params;
4802  
4803  	if (!index_to_params(id, &params))
4804  		return NULL;
4805  
4806  	return find_reg(&params, table, num);
4807  }
4808  
4809  /* Decode an index value, and find the sys_reg_desc entry. */
4810  static const struct sys_reg_desc *
id_to_sys_reg_desc(struct kvm_vcpu * vcpu,u64 id,const struct sys_reg_desc table[],unsigned int num)4811  id_to_sys_reg_desc(struct kvm_vcpu *vcpu, u64 id,
4812  		   const struct sys_reg_desc table[], unsigned int num)
4813  
4814  {
4815  	const struct sys_reg_desc *r;
4816  
4817  	/* We only do sys_reg for now. */
4818  	if ((id & KVM_REG_ARM_COPROC_MASK) != KVM_REG_ARM64_SYSREG)
4819  		return NULL;
4820  
4821  	r = get_reg_by_id(id, table, num);
4822  
4823  	/* Not saved in the sys_reg array and not otherwise accessible? */
4824  	if (r && (!(r->reg || r->get_user) || sysreg_hidden(vcpu, r)))
4825  		r = NULL;
4826  
4827  	return r;
4828  }
4829  
demux_c15_get(struct kvm_vcpu * vcpu,u64 id,void __user * uaddr)4830  static int demux_c15_get(struct kvm_vcpu *vcpu, u64 id, void __user *uaddr)
4831  {
4832  	u32 val;
4833  	u32 __user *uval = uaddr;
4834  
4835  	/* Fail if we have unknown bits set. */
4836  	if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
4837  		   | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
4838  		return -ENOENT;
4839  
4840  	switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
4841  	case KVM_REG_ARM_DEMUX_ID_CCSIDR:
4842  		if (KVM_REG_SIZE(id) != 4)
4843  			return -ENOENT;
4844  		val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
4845  			>> KVM_REG_ARM_DEMUX_VAL_SHIFT;
4846  		if (val >= CSSELR_MAX)
4847  			return -ENOENT;
4848  
4849  		return put_user(get_ccsidr(vcpu, val), uval);
4850  	default:
4851  		return -ENOENT;
4852  	}
4853  }
4854  
demux_c15_set(struct kvm_vcpu * vcpu,u64 id,void __user * uaddr)4855  static int demux_c15_set(struct kvm_vcpu *vcpu, u64 id, void __user *uaddr)
4856  {
4857  	u32 val, newval;
4858  	u32 __user *uval = uaddr;
4859  
4860  	/* Fail if we have unknown bits set. */
4861  	if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
4862  		   | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
4863  		return -ENOENT;
4864  
4865  	switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
4866  	case KVM_REG_ARM_DEMUX_ID_CCSIDR:
4867  		if (KVM_REG_SIZE(id) != 4)
4868  			return -ENOENT;
4869  		val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
4870  			>> KVM_REG_ARM_DEMUX_VAL_SHIFT;
4871  		if (val >= CSSELR_MAX)
4872  			return -ENOENT;
4873  
4874  		if (get_user(newval, uval))
4875  			return -EFAULT;
4876  
4877  		return set_ccsidr(vcpu, val, newval);
4878  	default:
4879  		return -ENOENT;
4880  	}
4881  }
4882  
kvm_sys_reg_get_user(struct kvm_vcpu * vcpu,const struct kvm_one_reg * reg,const struct sys_reg_desc table[],unsigned int num)4883  int kvm_sys_reg_get_user(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg,
4884  			 const struct sys_reg_desc table[], unsigned int num)
4885  {
4886  	u64 __user *uaddr = (u64 __user *)(unsigned long)reg->addr;
4887  	const struct sys_reg_desc *r;
4888  	u64 val;
4889  	int ret;
4890  
4891  	r = id_to_sys_reg_desc(vcpu, reg->id, table, num);
4892  	if (!r || sysreg_hidden(vcpu, r))
4893  		return -ENOENT;
4894  
4895  	if (r->get_user) {
4896  		ret = (r->get_user)(vcpu, r, &val);
4897  	} else {
4898  		val = __vcpu_sys_reg(vcpu, r->reg);
4899  		ret = 0;
4900  	}
4901  
4902  	if (!ret)
4903  		ret = put_user(val, uaddr);
4904  
4905  	return ret;
4906  }
4907  
kvm_arm_sys_reg_get_reg(struct kvm_vcpu * vcpu,const struct kvm_one_reg * reg)4908  int kvm_arm_sys_reg_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
4909  {
4910  	void __user *uaddr = (void __user *)(unsigned long)reg->addr;
4911  
4912  	if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
4913  		return demux_c15_get(vcpu, reg->id, uaddr);
4914  
4915  	return kvm_sys_reg_get_user(vcpu, reg,
4916  				    sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
4917  }
4918  
kvm_sys_reg_set_user(struct kvm_vcpu * vcpu,const struct kvm_one_reg * reg,const struct sys_reg_desc table[],unsigned int num)4919  int kvm_sys_reg_set_user(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg,
4920  			 const struct sys_reg_desc table[], unsigned int num)
4921  {
4922  	u64 __user *uaddr = (u64 __user *)(unsigned long)reg->addr;
4923  	const struct sys_reg_desc *r;
4924  	u64 val;
4925  	int ret;
4926  
4927  	if (get_user(val, uaddr))
4928  		return -EFAULT;
4929  
4930  	r = id_to_sys_reg_desc(vcpu, reg->id, table, num);
4931  	if (!r || sysreg_hidden(vcpu, r))
4932  		return -ENOENT;
4933  
4934  	if (sysreg_user_write_ignore(vcpu, r))
4935  		return 0;
4936  
4937  	if (r->set_user) {
4938  		ret = (r->set_user)(vcpu, r, val);
4939  	} else {
4940  		__vcpu_sys_reg(vcpu, r->reg) = val;
4941  		ret = 0;
4942  	}
4943  
4944  	return ret;
4945  }
4946  
kvm_arm_sys_reg_set_reg(struct kvm_vcpu * vcpu,const struct kvm_one_reg * reg)4947  int kvm_arm_sys_reg_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
4948  {
4949  	void __user *uaddr = (void __user *)(unsigned long)reg->addr;
4950  
4951  	if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
4952  		return demux_c15_set(vcpu, reg->id, uaddr);
4953  
4954  	return kvm_sys_reg_set_user(vcpu, reg,
4955  				    sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
4956  }
4957  
num_demux_regs(void)4958  static unsigned int num_demux_regs(void)
4959  {
4960  	return CSSELR_MAX;
4961  }
4962  
write_demux_regids(u64 __user * uindices)4963  static int write_demux_regids(u64 __user *uindices)
4964  {
4965  	u64 val = KVM_REG_ARM64 | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
4966  	unsigned int i;
4967  
4968  	val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
4969  	for (i = 0; i < CSSELR_MAX; i++) {
4970  		if (put_user(val | i, uindices))
4971  			return -EFAULT;
4972  		uindices++;
4973  	}
4974  	return 0;
4975  }
4976  
sys_reg_to_index(const struct sys_reg_desc * reg)4977  static u64 sys_reg_to_index(const struct sys_reg_desc *reg)
4978  {
4979  	return (KVM_REG_ARM64 | KVM_REG_SIZE_U64 |
4980  		KVM_REG_ARM64_SYSREG |
4981  		(reg->Op0 << KVM_REG_ARM64_SYSREG_OP0_SHIFT) |
4982  		(reg->Op1 << KVM_REG_ARM64_SYSREG_OP1_SHIFT) |
4983  		(reg->CRn << KVM_REG_ARM64_SYSREG_CRN_SHIFT) |
4984  		(reg->CRm << KVM_REG_ARM64_SYSREG_CRM_SHIFT) |
4985  		(reg->Op2 << KVM_REG_ARM64_SYSREG_OP2_SHIFT));
4986  }
4987  
copy_reg_to_user(const struct sys_reg_desc * reg,u64 __user ** uind)4988  static bool copy_reg_to_user(const struct sys_reg_desc *reg, u64 __user **uind)
4989  {
4990  	if (!*uind)
4991  		return true;
4992  
4993  	if (put_user(sys_reg_to_index(reg), *uind))
4994  		return false;
4995  
4996  	(*uind)++;
4997  	return true;
4998  }
4999  
walk_one_sys_reg(const struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,u64 __user ** uind,unsigned int * total)5000  static int walk_one_sys_reg(const struct kvm_vcpu *vcpu,
5001  			    const struct sys_reg_desc *rd,
5002  			    u64 __user **uind,
5003  			    unsigned int *total)
5004  {
5005  	/*
5006  	 * Ignore registers we trap but don't save,
5007  	 * and for which no custom user accessor is provided.
5008  	 */
5009  	if (!(rd->reg || rd->get_user))
5010  		return 0;
5011  
5012  	if (sysreg_hidden(vcpu, rd))
5013  		return 0;
5014  
5015  	if (!copy_reg_to_user(rd, uind))
5016  		return -EFAULT;
5017  
5018  	(*total)++;
5019  	return 0;
5020  }
5021  
5022  /* Assumed ordered tables, see kvm_sys_reg_table_init. */
walk_sys_regs(struct kvm_vcpu * vcpu,u64 __user * uind)5023  static int walk_sys_regs(struct kvm_vcpu *vcpu, u64 __user *uind)
5024  {
5025  	const struct sys_reg_desc *i2, *end2;
5026  	unsigned int total = 0;
5027  	int err;
5028  
5029  	i2 = sys_reg_descs;
5030  	end2 = sys_reg_descs + ARRAY_SIZE(sys_reg_descs);
5031  
5032  	while (i2 != end2) {
5033  		err = walk_one_sys_reg(vcpu, i2++, &uind, &total);
5034  		if (err)
5035  			return err;
5036  	}
5037  	return total;
5038  }
5039  
kvm_arm_num_sys_reg_descs(struct kvm_vcpu * vcpu)5040  unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu)
5041  {
5042  	return num_demux_regs()
5043  		+ walk_sys_regs(vcpu, (u64 __user *)NULL);
5044  }
5045  
kvm_arm_copy_sys_reg_indices(struct kvm_vcpu * vcpu,u64 __user * uindices)5046  int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
5047  {
5048  	int err;
5049  
5050  	err = walk_sys_regs(vcpu, uindices);
5051  	if (err < 0)
5052  		return err;
5053  	uindices += err;
5054  
5055  	return write_demux_regids(uindices);
5056  }
5057  
5058  #define KVM_ARM_FEATURE_ID_RANGE_INDEX(r)			\
5059  	KVM_ARM_FEATURE_ID_RANGE_IDX(sys_reg_Op0(r),		\
5060  		sys_reg_Op1(r),					\
5061  		sys_reg_CRn(r),					\
5062  		sys_reg_CRm(r),					\
5063  		sys_reg_Op2(r))
5064  
kvm_vm_ioctl_get_reg_writable_masks(struct kvm * kvm,struct reg_mask_range * range)5065  int kvm_vm_ioctl_get_reg_writable_masks(struct kvm *kvm, struct reg_mask_range *range)
5066  {
5067  	const void *zero_page = page_to_virt(ZERO_PAGE(0));
5068  	u64 __user *masks = (u64 __user *)range->addr;
5069  
5070  	/* Only feature id range is supported, reserved[13] must be zero. */
5071  	if (range->range ||
5072  	    memcmp(range->reserved, zero_page, sizeof(range->reserved)))
5073  		return -EINVAL;
5074  
5075  	/* Wipe the whole thing first */
5076  	if (clear_user(masks, KVM_ARM_FEATURE_ID_RANGE_SIZE * sizeof(__u64)))
5077  		return -EFAULT;
5078  
5079  	for (int i = 0; i < ARRAY_SIZE(sys_reg_descs); i++) {
5080  		const struct sys_reg_desc *reg = &sys_reg_descs[i];
5081  		u32 encoding = reg_to_encoding(reg);
5082  		u64 val;
5083  
5084  		if (!is_feature_id_reg(encoding) || !reg->set_user)
5085  			continue;
5086  
5087  		if (!reg->val ||
5088  		    (is_aa32_id_reg(encoding) && !kvm_supports_32bit_el0())) {
5089  			continue;
5090  		}
5091  		val = reg->val;
5092  
5093  		if (put_user(val, (masks + KVM_ARM_FEATURE_ID_RANGE_INDEX(encoding))))
5094  			return -EFAULT;
5095  	}
5096  
5097  	return 0;
5098  }
5099  
vcpu_set_hcr(struct kvm_vcpu * vcpu)5100  static void vcpu_set_hcr(struct kvm_vcpu *vcpu)
5101  {
5102  	struct kvm *kvm = vcpu->kvm;
5103  
5104  	if (has_vhe() || has_hvhe())
5105  		vcpu->arch.hcr_el2 |= HCR_E2H;
5106  	if (cpus_have_final_cap(ARM64_HAS_RAS_EXTN)) {
5107  		/* route synchronous external abort exceptions to EL2 */
5108  		vcpu->arch.hcr_el2 |= HCR_TEA;
5109  		/* trap error record accesses */
5110  		vcpu->arch.hcr_el2 |= HCR_TERR;
5111  	}
5112  
5113  	if (cpus_have_final_cap(ARM64_HAS_STAGE2_FWB))
5114  		vcpu->arch.hcr_el2 |= HCR_FWB;
5115  
5116  	if (cpus_have_final_cap(ARM64_HAS_EVT) &&
5117  	    !cpus_have_final_cap(ARM64_MISMATCHED_CACHE_TYPE) &&
5118  	    kvm_read_vm_id_reg(kvm, SYS_CTR_EL0) == read_sanitised_ftr_reg(SYS_CTR_EL0))
5119  		vcpu->arch.hcr_el2 |= HCR_TID4;
5120  	else
5121  		vcpu->arch.hcr_el2 |= HCR_TID2;
5122  
5123  	if (vcpu_el1_is_32bit(vcpu))
5124  		vcpu->arch.hcr_el2 &= ~HCR_RW;
5125  
5126  	if (kvm_has_mte(vcpu->kvm))
5127  		vcpu->arch.hcr_el2 |= HCR_ATA;
5128  
5129  	/*
5130  	 * In the absence of FGT, we cannot independently trap TLBI
5131  	 * Range instructions. This isn't great, but trapping all
5132  	 * TLBIs would be far worse. Live with it...
5133  	 */
5134  	if (!kvm_has_feat(kvm, ID_AA64ISAR0_EL1, TLB, OS))
5135  		vcpu->arch.hcr_el2 |= HCR_TTLBOS;
5136  }
5137  
kvm_calculate_traps(struct kvm_vcpu * vcpu)5138  void kvm_calculate_traps(struct kvm_vcpu *vcpu)
5139  {
5140  	struct kvm *kvm = vcpu->kvm;
5141  
5142  	mutex_lock(&kvm->arch.config_lock);
5143  	vcpu_set_hcr(vcpu);
5144  	vcpu_set_ich_hcr(vcpu);
5145  	vcpu_set_hcrx(vcpu);
5146  
5147  	if (test_bit(KVM_ARCH_FLAG_FGU_INITIALIZED, &kvm->arch.flags))
5148  		goto out;
5149  
5150  	kvm->arch.fgu[HFGxTR_GROUP] = (HFGxTR_EL2_nAMAIR2_EL1		|
5151  				       HFGxTR_EL2_nMAIR2_EL1		|
5152  				       HFGxTR_EL2_nS2POR_EL1		|
5153  				       HFGxTR_EL2_nACCDATA_EL1		|
5154  				       HFGxTR_EL2_nSMPRI_EL1_MASK	|
5155  				       HFGxTR_EL2_nTPIDR2_EL0_MASK);
5156  
5157  	if (!kvm_has_feat(kvm, ID_AA64ISAR0_EL1, TLB, OS))
5158  		kvm->arch.fgu[HFGITR_GROUP] |= (HFGITR_EL2_TLBIRVAALE1OS|
5159  						HFGITR_EL2_TLBIRVALE1OS	|
5160  						HFGITR_EL2_TLBIRVAAE1OS	|
5161  						HFGITR_EL2_TLBIRVAE1OS	|
5162  						HFGITR_EL2_TLBIVAALE1OS	|
5163  						HFGITR_EL2_TLBIVALE1OS	|
5164  						HFGITR_EL2_TLBIVAAE1OS	|
5165  						HFGITR_EL2_TLBIASIDE1OS	|
5166  						HFGITR_EL2_TLBIVAE1OS	|
5167  						HFGITR_EL2_TLBIVMALLE1OS);
5168  
5169  	if (!kvm_has_feat(kvm, ID_AA64ISAR0_EL1, TLB, RANGE))
5170  		kvm->arch.fgu[HFGITR_GROUP] |= (HFGITR_EL2_TLBIRVAALE1	|
5171  						HFGITR_EL2_TLBIRVALE1	|
5172  						HFGITR_EL2_TLBIRVAAE1	|
5173  						HFGITR_EL2_TLBIRVAE1	|
5174  						HFGITR_EL2_TLBIRVAALE1IS|
5175  						HFGITR_EL2_TLBIRVALE1IS	|
5176  						HFGITR_EL2_TLBIRVAAE1IS	|
5177  						HFGITR_EL2_TLBIRVAE1IS	|
5178  						HFGITR_EL2_TLBIRVAALE1OS|
5179  						HFGITR_EL2_TLBIRVALE1OS	|
5180  						HFGITR_EL2_TLBIRVAAE1OS	|
5181  						HFGITR_EL2_TLBIRVAE1OS);
5182  
5183  	if (!kvm_has_feat(kvm, ID_AA64ISAR2_EL1, ATS1A, IMP))
5184  		kvm->arch.fgu[HFGITR_GROUP] |= HFGITR_EL2_ATS1E1A;
5185  
5186  	if (!kvm_has_feat(kvm, ID_AA64MMFR1_EL1, PAN, PAN2))
5187  		kvm->arch.fgu[HFGITR_GROUP] |= (HFGITR_EL2_ATS1E1RP |
5188  						HFGITR_EL2_ATS1E1WP);
5189  
5190  	if (!kvm_has_s1pie(kvm))
5191  		kvm->arch.fgu[HFGxTR_GROUP] |= (HFGxTR_EL2_nPIRE0_EL1 |
5192  						HFGxTR_EL2_nPIR_EL1);
5193  
5194  	if (!kvm_has_s1poe(kvm))
5195  		kvm->arch.fgu[HFGxTR_GROUP] |= (HFGxTR_EL2_nPOR_EL1 |
5196  						HFGxTR_EL2_nPOR_EL0);
5197  
5198  	if (!kvm_has_feat(kvm, ID_AA64PFR0_EL1, AMU, IMP))
5199  		kvm->arch.fgu[HAFGRTR_GROUP] |= ~(HAFGRTR_EL2_RES0 |
5200  						  HAFGRTR_EL2_RES1);
5201  
5202  	if (!kvm_has_feat(kvm, ID_AA64DFR0_EL1, BRBE, IMP)) {
5203  		kvm->arch.fgu[HDFGRTR_GROUP] |= (HDFGRTR_EL2_nBRBDATA  |
5204  						 HDFGRTR_EL2_nBRBCTL   |
5205  						 HDFGRTR_EL2_nBRBIDR);
5206  		kvm->arch.fgu[HFGITR_GROUP] |= (HFGITR_EL2_nBRBINJ |
5207  						HFGITR_EL2_nBRBIALL);
5208  	}
5209  
5210  	set_bit(KVM_ARCH_FLAG_FGU_INITIALIZED, &kvm->arch.flags);
5211  out:
5212  	mutex_unlock(&kvm->arch.config_lock);
5213  }
5214  
5215  /*
5216   * Perform last adjustments to the ID registers that are implied by the
5217   * configuration outside of the ID regs themselves, as well as any
5218   * initialisation that directly depend on these ID registers (such as
5219   * RES0/RES1 behaviours). This is not the place to configure traps though.
5220   *
5221   * Because this can be called once per CPU, changes must be idempotent.
5222   */
kvm_finalize_sys_regs(struct kvm_vcpu * vcpu)5223  int kvm_finalize_sys_regs(struct kvm_vcpu *vcpu)
5224  {
5225  	struct kvm *kvm = vcpu->kvm;
5226  
5227  	guard(mutex)(&kvm->arch.config_lock);
5228  
5229  	if (!(static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif) &&
5230  	      irqchip_in_kernel(kvm) &&
5231  	      kvm->arch.vgic.vgic_model == KVM_DEV_TYPE_ARM_VGIC_V3)) {
5232  		kvm->arch.id_regs[IDREG_IDX(SYS_ID_AA64PFR0_EL1)] &= ~ID_AA64PFR0_EL1_GIC_MASK;
5233  		kvm->arch.id_regs[IDREG_IDX(SYS_ID_PFR1_EL1)] &= ~ID_PFR1_EL1_GIC_MASK;
5234  	}
5235  
5236  	if (vcpu_has_nv(vcpu)) {
5237  		int ret = kvm_init_nv_sysregs(vcpu);
5238  		if (ret)
5239  			return ret;
5240  	}
5241  
5242  	return 0;
5243  }
5244  
kvm_sys_reg_table_init(void)5245  int __init kvm_sys_reg_table_init(void)
5246  {
5247  	bool valid = true;
5248  	unsigned int i;
5249  	int ret = 0;
5250  
5251  	/* Make sure tables are unique and in order. */
5252  	valid &= check_sysreg_table(sys_reg_descs, ARRAY_SIZE(sys_reg_descs), false);
5253  	valid &= check_sysreg_table(cp14_regs, ARRAY_SIZE(cp14_regs), true);
5254  	valid &= check_sysreg_table(cp14_64_regs, ARRAY_SIZE(cp14_64_regs), true);
5255  	valid &= check_sysreg_table(cp15_regs, ARRAY_SIZE(cp15_regs), true);
5256  	valid &= check_sysreg_table(cp15_64_regs, ARRAY_SIZE(cp15_64_regs), true);
5257  	valid &= check_sysreg_table(sys_insn_descs, ARRAY_SIZE(sys_insn_descs), false);
5258  
5259  	if (!valid)
5260  		return -EINVAL;
5261  
5262  	init_imp_id_regs();
5263  
5264  	ret = populate_nv_trap_config();
5265  
5266  	for (i = 0; !ret && i < ARRAY_SIZE(sys_reg_descs); i++)
5267  		ret = populate_sysreg_config(sys_reg_descs + i, i);
5268  
5269  	for (i = 0; !ret && i < ARRAY_SIZE(sys_insn_descs); i++)
5270  		ret = populate_sysreg_config(sys_insn_descs + i, i);
5271  
5272  	return ret;
5273  }
5274