xref: /linux/drivers/spi/spi-cadence-quadspi.c (revision 0262163136de813894cb172aa8ccf762b92e5fd7)
1 // SPDX-License-Identifier: GPL-2.0-only
2 //
3 // Driver for Cadence QSPI Controller
4 //
5 // Copyright Altera Corporation (C) 2012-2014. All rights reserved.
6 // Copyright Intel Corporation (C) 2019-2020. All rights reserved.
7 // Copyright (C) 2020 Texas Instruments Incorporated - http://www.ti.com
8 
9 #include <linux/clk.h>
10 #include <linux/completion.h>
11 #include <linux/delay.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/dmaengine.h>
14 #include <linux/err.h>
15 #include <linux/errno.h>
16 #include <linux/firmware/xlnx-zynqmp.h>
17 #include <linux/interrupt.h>
18 #include <linux/io.h>
19 #include <linux/iopoll.h>
20 #include <linux/jiffies.h>
21 #include <linux/kernel.h>
22 #include <linux/log2.h>
23 #include <linux/module.h>
24 #include <linux/of.h>
25 #include <linux/platform_device.h>
26 #include <linux/pm_runtime.h>
27 #include <linux/reset.h>
28 #include <linux/sched.h>
29 #include <linux/spi/spi.h>
30 #include <linux/spi/spi-mem.h>
31 #include <linux/timer.h>
32 
33 #define CQSPI_NAME			"cadence-qspi"
34 #define CQSPI_MAX_CHIPSELECT		4
35 
36 static_assert(CQSPI_MAX_CHIPSELECT <= SPI_CS_CNT_MAX);
37 
38 /* Quirks */
39 #define CQSPI_NEEDS_WR_DELAY		BIT(0)
40 #define CQSPI_DISABLE_DAC_MODE		BIT(1)
41 #define CQSPI_SUPPORT_EXTERNAL_DMA	BIT(2)
42 #define CQSPI_NO_SUPPORT_WR_COMPLETION	BIT(3)
43 #define CQSPI_SLOW_SRAM		BIT(4)
44 #define CQSPI_NEEDS_APB_AHB_HAZARD_WAR	BIT(5)
45 #define CQSPI_RD_NO_IRQ			BIT(6)
46 #define CQSPI_DMA_SET_MASK		BIT(7)
47 #define CQSPI_SUPPORT_DEVICE_RESET	BIT(8)
48 #define CQSPI_DISABLE_STIG_MODE		BIT(9)
49 
50 /* Capabilities */
51 #define CQSPI_SUPPORTS_OCTAL		BIT(0)
52 #define CQSPI_SUPPORTS_QUAD		BIT(1)
53 
54 #define CQSPI_OP_WIDTH(part) ((part).nbytes ? ilog2((part).buswidth) : 0)
55 
56 enum {
57 	CLK_QSPI_APB = 0,
58 	CLK_QSPI_AHB,
59 	CLK_QSPI_NUM,
60 };
61 
62 struct cqspi_st;
63 
64 struct cqspi_flash_pdata {
65 	struct cqspi_st	*cqspi;
66 	u32		clk_rate;
67 	u32		read_delay;
68 	u32		tshsl_ns;
69 	u32		tsd2d_ns;
70 	u32		tchsh_ns;
71 	u32		tslch_ns;
72 	u8		cs;
73 };
74 
75 struct cqspi_st {
76 	struct platform_device	*pdev;
77 	struct spi_controller	*host;
78 	struct clk		*clk;
79 	struct clk		*clks[CLK_QSPI_NUM];
80 	unsigned int		sclk;
81 
82 	void __iomem		*iobase;
83 	void __iomem		*ahb_base;
84 	resource_size_t		ahb_size;
85 	struct completion	transfer_complete;
86 
87 	struct dma_chan		*rx_chan;
88 	struct completion	rx_dma_complete;
89 	dma_addr_t		mmap_phys_base;
90 
91 	int			current_cs;
92 	unsigned long		master_ref_clk_hz;
93 	bool			is_decoded_cs;
94 	u32			fifo_depth;
95 	u32			fifo_width;
96 	u32			num_chipselect;
97 	bool			rclk_en;
98 	u32			trigger_address;
99 	u32			wr_delay;
100 	bool			use_direct_mode;
101 	bool			use_direct_mode_wr;
102 	struct cqspi_flash_pdata f_pdata[CQSPI_MAX_CHIPSELECT];
103 	bool			use_dma_read;
104 	u32			pd_dev_id;
105 	bool			wr_completion;
106 	bool			slow_sram;
107 	bool			apb_ahb_hazard;
108 
109 	bool			is_jh7110; /* Flag for StarFive JH7110 SoC */
110 	bool			disable_stig_mode;
111 
112 	const struct cqspi_driver_platdata *ddata;
113 };
114 
115 struct cqspi_driver_platdata {
116 	u32 hwcaps_mask;
117 	u16 quirks;
118 	int (*indirect_read_dma)(struct cqspi_flash_pdata *f_pdata,
119 				 u_char *rxbuf, loff_t from_addr, size_t n_rx);
120 	u32 (*get_dma_status)(struct cqspi_st *cqspi);
121 	int (*jh7110_clk_init)(struct platform_device *pdev,
122 			       struct cqspi_st *cqspi);
123 };
124 
125 /* Operation timeout value */
126 #define CQSPI_TIMEOUT_MS			500
127 #define CQSPI_READ_TIMEOUT_MS			10
128 #define CQSPI_BUSYWAIT_TIMEOUT_US		500
129 
130 /* Runtime_pm autosuspend delay */
131 #define CQSPI_AUTOSUSPEND_TIMEOUT		2000
132 
133 #define CQSPI_DUMMY_CLKS_PER_BYTE		8
134 #define CQSPI_DUMMY_BYTES_MAX			4
135 #define CQSPI_DUMMY_CLKS_MAX			31
136 
137 #define CQSPI_STIG_DATA_LEN_MAX			8
138 
139 /* Register map */
140 #define CQSPI_REG_CONFIG			0x00
141 #define CQSPI_REG_CONFIG_ENABLE_MASK		BIT(0)
142 #define CQSPI_REG_CONFIG_ENB_DIR_ACC_CTRL	BIT(7)
143 #define CQSPI_REG_CONFIG_DECODE_MASK		BIT(9)
144 #define CQSPI_REG_CONFIG_CHIPSELECT_LSB		10
145 #define CQSPI_REG_CONFIG_DMA_MASK		BIT(15)
146 #define CQSPI_REG_CONFIG_BAUD_LSB		19
147 #define CQSPI_REG_CONFIG_DTR_PROTO		BIT(24)
148 #define CQSPI_REG_CONFIG_DUAL_OPCODE		BIT(30)
149 #define CQSPI_REG_CONFIG_IDLE_LSB		31
150 #define CQSPI_REG_CONFIG_CHIPSELECT_MASK	0xF
151 #define CQSPI_REG_CONFIG_BAUD_MASK		0xF
152 #define CQSPI_REG_CONFIG_RESET_PIN_FLD_MASK    BIT(5)
153 #define CQSPI_REG_CONFIG_RESET_CFG_FLD_MASK    BIT(6)
154 
155 #define CQSPI_REG_RD_INSTR			0x04
156 #define CQSPI_REG_RD_INSTR_OPCODE_LSB		0
157 #define CQSPI_REG_RD_INSTR_TYPE_INSTR_LSB	8
158 #define CQSPI_REG_RD_INSTR_TYPE_ADDR_LSB	12
159 #define CQSPI_REG_RD_INSTR_TYPE_DATA_LSB	16
160 #define CQSPI_REG_RD_INSTR_MODE_EN_LSB		20
161 #define CQSPI_REG_RD_INSTR_DUMMY_LSB		24
162 #define CQSPI_REG_RD_INSTR_TYPE_INSTR_MASK	0x3
163 #define CQSPI_REG_RD_INSTR_TYPE_ADDR_MASK	0x3
164 #define CQSPI_REG_RD_INSTR_TYPE_DATA_MASK	0x3
165 #define CQSPI_REG_RD_INSTR_DUMMY_MASK		0x1F
166 
167 #define CQSPI_REG_WR_INSTR			0x08
168 #define CQSPI_REG_WR_INSTR_OPCODE_LSB		0
169 #define CQSPI_REG_WR_INSTR_TYPE_ADDR_LSB	12
170 #define CQSPI_REG_WR_INSTR_TYPE_DATA_LSB	16
171 
172 #define CQSPI_REG_DELAY				0x0C
173 #define CQSPI_REG_DELAY_TSLCH_LSB		0
174 #define CQSPI_REG_DELAY_TCHSH_LSB		8
175 #define CQSPI_REG_DELAY_TSD2D_LSB		16
176 #define CQSPI_REG_DELAY_TSHSL_LSB		24
177 #define CQSPI_REG_DELAY_TSLCH_MASK		0xFF
178 #define CQSPI_REG_DELAY_TCHSH_MASK		0xFF
179 #define CQSPI_REG_DELAY_TSD2D_MASK		0xFF
180 #define CQSPI_REG_DELAY_TSHSL_MASK		0xFF
181 
182 #define CQSPI_REG_READCAPTURE			0x10
183 #define CQSPI_REG_READCAPTURE_BYPASS_LSB	0
184 #define CQSPI_REG_READCAPTURE_DELAY_LSB		1
185 #define CQSPI_REG_READCAPTURE_DELAY_MASK	0xF
186 
187 #define CQSPI_REG_SIZE				0x14
188 #define CQSPI_REG_SIZE_ADDRESS_LSB		0
189 #define CQSPI_REG_SIZE_PAGE_LSB			4
190 #define CQSPI_REG_SIZE_BLOCK_LSB		16
191 #define CQSPI_REG_SIZE_ADDRESS_MASK		0xF
192 #define CQSPI_REG_SIZE_PAGE_MASK		0xFFF
193 #define CQSPI_REG_SIZE_BLOCK_MASK		0x3F
194 
195 #define CQSPI_REG_SRAMPARTITION			0x18
196 #define CQSPI_REG_INDIRECTTRIGGER		0x1C
197 
198 #define CQSPI_REG_DMA				0x20
199 #define CQSPI_REG_DMA_SINGLE_LSB		0
200 #define CQSPI_REG_DMA_BURST_LSB			8
201 #define CQSPI_REG_DMA_SINGLE_MASK		0xFF
202 #define CQSPI_REG_DMA_BURST_MASK		0xFF
203 
204 #define CQSPI_REG_REMAP				0x24
205 #define CQSPI_REG_MODE_BIT			0x28
206 
207 #define CQSPI_REG_SDRAMLEVEL			0x2C
208 #define CQSPI_REG_SDRAMLEVEL_RD_LSB		0
209 #define CQSPI_REG_SDRAMLEVEL_WR_LSB		16
210 #define CQSPI_REG_SDRAMLEVEL_RD_MASK		0xFFFF
211 #define CQSPI_REG_SDRAMLEVEL_WR_MASK		0xFFFF
212 
213 #define CQSPI_REG_WR_COMPLETION_CTRL		0x38
214 #define CQSPI_REG_WR_DISABLE_AUTO_POLL		BIT(14)
215 
216 #define CQSPI_REG_IRQSTATUS			0x40
217 #define CQSPI_REG_IRQMASK			0x44
218 
219 #define CQSPI_REG_INDIRECTRD			0x60
220 #define CQSPI_REG_INDIRECTRD_START_MASK		BIT(0)
221 #define CQSPI_REG_INDIRECTRD_CANCEL_MASK	BIT(1)
222 #define CQSPI_REG_INDIRECTRD_DONE_MASK		BIT(5)
223 
224 #define CQSPI_REG_INDIRECTRDWATERMARK		0x64
225 #define CQSPI_REG_INDIRECTRDSTARTADDR		0x68
226 #define CQSPI_REG_INDIRECTRDBYTES		0x6C
227 
228 #define CQSPI_REG_CMDCTRL			0x90
229 #define CQSPI_REG_CMDCTRL_EXECUTE_MASK		BIT(0)
230 #define CQSPI_REG_CMDCTRL_INPROGRESS_MASK	BIT(1)
231 #define CQSPI_REG_CMDCTRL_DUMMY_LSB		7
232 #define CQSPI_REG_CMDCTRL_WR_BYTES_LSB		12
233 #define CQSPI_REG_CMDCTRL_WR_EN_LSB		15
234 #define CQSPI_REG_CMDCTRL_ADD_BYTES_LSB		16
235 #define CQSPI_REG_CMDCTRL_ADDR_EN_LSB		19
236 #define CQSPI_REG_CMDCTRL_RD_BYTES_LSB		20
237 #define CQSPI_REG_CMDCTRL_RD_EN_LSB		23
238 #define CQSPI_REG_CMDCTRL_OPCODE_LSB		24
239 #define CQSPI_REG_CMDCTRL_WR_BYTES_MASK		0x7
240 #define CQSPI_REG_CMDCTRL_ADD_BYTES_MASK	0x3
241 #define CQSPI_REG_CMDCTRL_RD_BYTES_MASK		0x7
242 #define CQSPI_REG_CMDCTRL_DUMMY_MASK		0x1F
243 
244 #define CQSPI_REG_INDIRECTWR			0x70
245 #define CQSPI_REG_INDIRECTWR_START_MASK		BIT(0)
246 #define CQSPI_REG_INDIRECTWR_CANCEL_MASK	BIT(1)
247 #define CQSPI_REG_INDIRECTWR_DONE_MASK		BIT(5)
248 
249 #define CQSPI_REG_INDIRECTWRWATERMARK		0x74
250 #define CQSPI_REG_INDIRECTWRSTARTADDR		0x78
251 #define CQSPI_REG_INDIRECTWRBYTES		0x7C
252 
253 #define CQSPI_REG_INDTRIG_ADDRRANGE		0x80
254 
255 #define CQSPI_REG_CMDADDRESS			0x94
256 #define CQSPI_REG_CMDREADDATALOWER		0xA0
257 #define CQSPI_REG_CMDREADDATAUPPER		0xA4
258 #define CQSPI_REG_CMDWRITEDATALOWER		0xA8
259 #define CQSPI_REG_CMDWRITEDATAUPPER		0xAC
260 
261 #define CQSPI_REG_POLLING_STATUS		0xB0
262 #define CQSPI_REG_POLLING_STATUS_DUMMY_LSB	16
263 
264 #define CQSPI_REG_OP_EXT_LOWER			0xE0
265 #define CQSPI_REG_OP_EXT_READ_LSB		24
266 #define CQSPI_REG_OP_EXT_WRITE_LSB		16
267 #define CQSPI_REG_OP_EXT_STIG_LSB		0
268 
269 #define CQSPI_REG_VERSAL_DMA_SRC_ADDR		0x1000
270 
271 #define CQSPI_REG_VERSAL_DMA_DST_ADDR		0x1800
272 #define CQSPI_REG_VERSAL_DMA_DST_SIZE		0x1804
273 
274 #define CQSPI_REG_VERSAL_DMA_DST_CTRL		0x180C
275 
276 #define CQSPI_REG_VERSAL_DMA_DST_I_STS		0x1814
277 #define CQSPI_REG_VERSAL_DMA_DST_I_EN		0x1818
278 #define CQSPI_REG_VERSAL_DMA_DST_I_DIS		0x181C
279 #define CQSPI_REG_VERSAL_DMA_DST_DONE_MASK	BIT(1)
280 
281 #define CQSPI_REG_VERSAL_DMA_DST_ADDR_MSB	0x1828
282 
283 #define CQSPI_REG_VERSAL_DMA_DST_CTRL_VAL	0xF43FFA00
284 #define CQSPI_REG_VERSAL_ADDRRANGE_WIDTH_VAL	0x6
285 
286 /* Interrupt status bits */
287 #define CQSPI_REG_IRQ_MODE_ERR			BIT(0)
288 #define CQSPI_REG_IRQ_UNDERFLOW			BIT(1)
289 #define CQSPI_REG_IRQ_IND_COMP			BIT(2)
290 #define CQSPI_REG_IRQ_IND_RD_REJECT		BIT(3)
291 #define CQSPI_REG_IRQ_WR_PROTECTED_ERR		BIT(4)
292 #define CQSPI_REG_IRQ_ILLEGAL_AHB_ERR		BIT(5)
293 #define CQSPI_REG_IRQ_WATERMARK			BIT(6)
294 #define CQSPI_REG_IRQ_IND_SRAM_FULL		BIT(12)
295 
296 #define CQSPI_IRQ_MASK_RD		(CQSPI_REG_IRQ_WATERMARK	| \
297 					 CQSPI_REG_IRQ_IND_SRAM_FULL	| \
298 					 CQSPI_REG_IRQ_IND_COMP)
299 
300 #define CQSPI_IRQ_MASK_WR		(CQSPI_REG_IRQ_IND_COMP		| \
301 					 CQSPI_REG_IRQ_WATERMARK	| \
302 					 CQSPI_REG_IRQ_UNDERFLOW)
303 
304 #define CQSPI_IRQ_STATUS_MASK		0x1FFFF
305 #define CQSPI_DMA_UNALIGN		0x3
306 
307 #define CQSPI_REG_VERSAL_DMA_VAL		0x602
308 
cqspi_wait_for_bit(const struct cqspi_driver_platdata * ddata,void __iomem * reg,const u32 mask,bool clr,bool busywait)309 static int cqspi_wait_for_bit(const struct cqspi_driver_platdata *ddata,
310 			      void __iomem *reg, const u32 mask, bool clr,
311 			      bool busywait)
312 {
313 	u64 timeout_us = CQSPI_TIMEOUT_MS * USEC_PER_MSEC;
314 	u32 val;
315 
316 	if (busywait) {
317 		int ret = readl_relaxed_poll_timeout(reg, val,
318 						     (((clr ? ~val : val) & mask) == mask),
319 						     0, CQSPI_BUSYWAIT_TIMEOUT_US);
320 
321 		if (ret != -ETIMEDOUT)
322 			return ret;
323 
324 		timeout_us -= CQSPI_BUSYWAIT_TIMEOUT_US;
325 	}
326 
327 	return readl_relaxed_poll_timeout(reg, val,
328 					  (((clr ? ~val : val) & mask) == mask),
329 					  10, timeout_us);
330 }
331 
cqspi_is_idle(struct cqspi_st * cqspi)332 static bool cqspi_is_idle(struct cqspi_st *cqspi)
333 {
334 	u32 reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
335 
336 	return reg & (1UL << CQSPI_REG_CONFIG_IDLE_LSB);
337 }
338 
cqspi_get_rd_sram_level(struct cqspi_st * cqspi)339 static u32 cqspi_get_rd_sram_level(struct cqspi_st *cqspi)
340 {
341 	u32 reg = readl(cqspi->iobase + CQSPI_REG_SDRAMLEVEL);
342 
343 	reg >>= CQSPI_REG_SDRAMLEVEL_RD_LSB;
344 	return reg & CQSPI_REG_SDRAMLEVEL_RD_MASK;
345 }
346 
cqspi_get_versal_dma_status(struct cqspi_st * cqspi)347 static u32 cqspi_get_versal_dma_status(struct cqspi_st *cqspi)
348 {
349 	u32 dma_status;
350 
351 	dma_status = readl(cqspi->iobase +
352 					   CQSPI_REG_VERSAL_DMA_DST_I_STS);
353 	writel(dma_status, cqspi->iobase +
354 		   CQSPI_REG_VERSAL_DMA_DST_I_STS);
355 
356 	return dma_status & CQSPI_REG_VERSAL_DMA_DST_DONE_MASK;
357 }
358 
cqspi_irq_handler(int this_irq,void * dev)359 static irqreturn_t cqspi_irq_handler(int this_irq, void *dev)
360 {
361 	struct cqspi_st *cqspi = dev;
362 	const struct cqspi_driver_platdata *ddata = cqspi->ddata;
363 	unsigned int irq_status;
364 
365 	/* Read interrupt status */
366 	irq_status = readl(cqspi->iobase + CQSPI_REG_IRQSTATUS);
367 
368 	/* Clear interrupt */
369 	writel(irq_status, cqspi->iobase + CQSPI_REG_IRQSTATUS);
370 
371 	if (cqspi->use_dma_read && ddata && ddata->get_dma_status) {
372 		if (ddata->get_dma_status(cqspi)) {
373 			complete(&cqspi->transfer_complete);
374 			return IRQ_HANDLED;
375 		}
376 	}
377 
378 	else if (!cqspi->slow_sram)
379 		irq_status &= CQSPI_IRQ_MASK_RD | CQSPI_IRQ_MASK_WR;
380 	else
381 		irq_status &= CQSPI_REG_IRQ_WATERMARK | CQSPI_IRQ_MASK_WR;
382 
383 	if (irq_status)
384 		complete(&cqspi->transfer_complete);
385 
386 	return IRQ_HANDLED;
387 }
388 
cqspi_calc_rdreg(const struct spi_mem_op * op)389 static unsigned int cqspi_calc_rdreg(const struct spi_mem_op *op)
390 {
391 	u32 rdreg = 0;
392 
393 	rdreg |= CQSPI_OP_WIDTH(op->cmd) << CQSPI_REG_RD_INSTR_TYPE_INSTR_LSB;
394 	rdreg |= CQSPI_OP_WIDTH(op->addr) << CQSPI_REG_RD_INSTR_TYPE_ADDR_LSB;
395 	rdreg |= CQSPI_OP_WIDTH(op->data) << CQSPI_REG_RD_INSTR_TYPE_DATA_LSB;
396 
397 	return rdreg;
398 }
399 
cqspi_calc_dummy(const struct spi_mem_op * op)400 static unsigned int cqspi_calc_dummy(const struct spi_mem_op *op)
401 {
402 	unsigned int dummy_clk;
403 
404 	if (!op->dummy.nbytes)
405 		return 0;
406 
407 	dummy_clk = op->dummy.nbytes * (8 / op->dummy.buswidth);
408 	if (op->cmd.dtr)
409 		dummy_clk /= 2;
410 
411 	return dummy_clk;
412 }
413 
cqspi_wait_idle(struct cqspi_st * cqspi)414 static int cqspi_wait_idle(struct cqspi_st *cqspi)
415 {
416 	const unsigned int poll_idle_retry = 3;
417 	unsigned int count = 0;
418 	unsigned long timeout;
419 
420 	timeout = jiffies + msecs_to_jiffies(CQSPI_TIMEOUT_MS);
421 	while (1) {
422 		/*
423 		 * Read few times in succession to ensure the controller
424 		 * is indeed idle, that is, the bit does not transition
425 		 * low again.
426 		 */
427 		if (cqspi_is_idle(cqspi))
428 			count++;
429 		else
430 			count = 0;
431 
432 		if (count >= poll_idle_retry)
433 			return 0;
434 
435 		if (time_after(jiffies, timeout)) {
436 			/* Timeout, in busy mode. */
437 			dev_err(&cqspi->pdev->dev,
438 				"QSPI is still busy after %dms timeout.\n",
439 				CQSPI_TIMEOUT_MS);
440 			return -ETIMEDOUT;
441 		}
442 
443 		cpu_relax();
444 	}
445 }
446 
cqspi_exec_flash_cmd(struct cqspi_st * cqspi,unsigned int reg)447 static int cqspi_exec_flash_cmd(struct cqspi_st *cqspi, unsigned int reg)
448 {
449 	void __iomem *reg_base = cqspi->iobase;
450 	int ret;
451 
452 	/* Write the CMDCTRL without start execution. */
453 	writel(reg, reg_base + CQSPI_REG_CMDCTRL);
454 	/* Start execute */
455 	reg |= CQSPI_REG_CMDCTRL_EXECUTE_MASK;
456 	writel(reg, reg_base + CQSPI_REG_CMDCTRL);
457 
458 	/* Polling for completion. */
459 	ret = cqspi_wait_for_bit(cqspi->ddata, reg_base + CQSPI_REG_CMDCTRL,
460 				 CQSPI_REG_CMDCTRL_INPROGRESS_MASK, 1, true);
461 	if (ret) {
462 		dev_err(&cqspi->pdev->dev,
463 			"Flash command execution timed out.\n");
464 		return ret;
465 	}
466 
467 	/* Polling QSPI idle status. */
468 	return cqspi_wait_idle(cqspi);
469 }
470 
cqspi_setup_opcode_ext(struct cqspi_flash_pdata * f_pdata,const struct spi_mem_op * op,unsigned int shift)471 static int cqspi_setup_opcode_ext(struct cqspi_flash_pdata *f_pdata,
472 				  const struct spi_mem_op *op,
473 				  unsigned int shift)
474 {
475 	struct cqspi_st *cqspi = f_pdata->cqspi;
476 	void __iomem *reg_base = cqspi->iobase;
477 	unsigned int reg;
478 	u8 ext;
479 
480 	if (op->cmd.nbytes != 2)
481 		return -EINVAL;
482 
483 	/* Opcode extension is the LSB. */
484 	ext = op->cmd.opcode & 0xff;
485 
486 	reg = readl(reg_base + CQSPI_REG_OP_EXT_LOWER);
487 	reg &= ~(0xff << shift);
488 	reg |= ext << shift;
489 	writel(reg, reg_base + CQSPI_REG_OP_EXT_LOWER);
490 
491 	return 0;
492 }
493 
cqspi_enable_dtr(struct cqspi_flash_pdata * f_pdata,const struct spi_mem_op * op,unsigned int shift)494 static int cqspi_enable_dtr(struct cqspi_flash_pdata *f_pdata,
495 			    const struct spi_mem_op *op, unsigned int shift)
496 {
497 	struct cqspi_st *cqspi = f_pdata->cqspi;
498 	void __iomem *reg_base = cqspi->iobase;
499 	unsigned int reg;
500 	int ret;
501 
502 	reg = readl(reg_base + CQSPI_REG_CONFIG);
503 
504 	/*
505 	 * We enable dual byte opcode here. The callers have to set up the
506 	 * extension opcode based on which type of operation it is.
507 	 */
508 	if (op->cmd.dtr) {
509 		reg |= CQSPI_REG_CONFIG_DTR_PROTO;
510 		reg |= CQSPI_REG_CONFIG_DUAL_OPCODE;
511 
512 		/* Set up command opcode extension. */
513 		ret = cqspi_setup_opcode_ext(f_pdata, op, shift);
514 		if (ret)
515 			return ret;
516 	} else {
517 		unsigned int mask = CQSPI_REG_CONFIG_DTR_PROTO | CQSPI_REG_CONFIG_DUAL_OPCODE;
518 		/* Shortcut if DTR is already disabled. */
519 		if ((reg & mask) == 0)
520 			return 0;
521 		reg &= ~mask;
522 	}
523 
524 	writel(reg, reg_base + CQSPI_REG_CONFIG);
525 
526 	return cqspi_wait_idle(cqspi);
527 }
528 
cqspi_command_read(struct cqspi_flash_pdata * f_pdata,const struct spi_mem_op * op)529 static int cqspi_command_read(struct cqspi_flash_pdata *f_pdata,
530 			      const struct spi_mem_op *op)
531 {
532 	struct cqspi_st *cqspi = f_pdata->cqspi;
533 	void __iomem *reg_base = cqspi->iobase;
534 	u8 *rxbuf = op->data.buf.in;
535 	u8 opcode;
536 	size_t n_rx = op->data.nbytes;
537 	unsigned int rdreg;
538 	unsigned int reg;
539 	unsigned int dummy_clk;
540 	size_t read_len;
541 	int status;
542 
543 	status = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_STIG_LSB);
544 	if (status)
545 		return status;
546 
547 	if (!n_rx || n_rx > CQSPI_STIG_DATA_LEN_MAX || !rxbuf) {
548 		dev_err(&cqspi->pdev->dev,
549 			"Invalid input argument, len %zu rxbuf 0x%p\n",
550 			n_rx, rxbuf);
551 		return -EINVAL;
552 	}
553 
554 	if (op->cmd.dtr)
555 		opcode = op->cmd.opcode >> 8;
556 	else
557 		opcode = op->cmd.opcode;
558 
559 	reg = opcode << CQSPI_REG_CMDCTRL_OPCODE_LSB;
560 
561 	rdreg = cqspi_calc_rdreg(op);
562 	writel(rdreg, reg_base + CQSPI_REG_RD_INSTR);
563 
564 	dummy_clk = cqspi_calc_dummy(op);
565 	if (dummy_clk > CQSPI_DUMMY_CLKS_MAX)
566 		return -EOPNOTSUPP;
567 
568 	if (dummy_clk)
569 		reg |= (dummy_clk & CQSPI_REG_CMDCTRL_DUMMY_MASK)
570 		     << CQSPI_REG_CMDCTRL_DUMMY_LSB;
571 
572 	reg |= (0x1 << CQSPI_REG_CMDCTRL_RD_EN_LSB);
573 
574 	/* 0 means 1 byte. */
575 	reg |= (((n_rx - 1) & CQSPI_REG_CMDCTRL_RD_BYTES_MASK)
576 		<< CQSPI_REG_CMDCTRL_RD_BYTES_LSB);
577 
578 	/* setup ADDR BIT field */
579 	if (op->addr.nbytes) {
580 		reg |= (0x1 << CQSPI_REG_CMDCTRL_ADDR_EN_LSB);
581 		reg |= ((op->addr.nbytes - 1) &
582 			CQSPI_REG_CMDCTRL_ADD_BYTES_MASK)
583 			<< CQSPI_REG_CMDCTRL_ADD_BYTES_LSB;
584 
585 		writel(op->addr.val, reg_base + CQSPI_REG_CMDADDRESS);
586 	}
587 
588 	status = cqspi_exec_flash_cmd(cqspi, reg);
589 	if (status)
590 		return status;
591 
592 	reg = readl(reg_base + CQSPI_REG_CMDREADDATALOWER);
593 
594 	/* Put the read value into rx_buf */
595 	read_len = (n_rx > 4) ? 4 : n_rx;
596 	memcpy(rxbuf, &reg, read_len);
597 	rxbuf += read_len;
598 
599 	if (n_rx > 4) {
600 		reg = readl(reg_base + CQSPI_REG_CMDREADDATAUPPER);
601 
602 		read_len = n_rx - read_len;
603 		memcpy(rxbuf, &reg, read_len);
604 	}
605 
606 	/* Reset CMD_CTRL Reg once command read completes */
607 	writel(0, reg_base + CQSPI_REG_CMDCTRL);
608 
609 	return 0;
610 }
611 
cqspi_command_write(struct cqspi_flash_pdata * f_pdata,const struct spi_mem_op * op)612 static int cqspi_command_write(struct cqspi_flash_pdata *f_pdata,
613 			       const struct spi_mem_op *op)
614 {
615 	struct cqspi_st *cqspi = f_pdata->cqspi;
616 	void __iomem *reg_base = cqspi->iobase;
617 	u8 opcode;
618 	const u8 *txbuf = op->data.buf.out;
619 	size_t n_tx = op->data.nbytes;
620 	unsigned int reg;
621 	unsigned int data;
622 	size_t write_len;
623 	int ret;
624 
625 	ret = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_STIG_LSB);
626 	if (ret)
627 		return ret;
628 
629 	if (n_tx > CQSPI_STIG_DATA_LEN_MAX || (n_tx && !txbuf)) {
630 		dev_err(&cqspi->pdev->dev,
631 			"Invalid input argument, cmdlen %zu txbuf 0x%p\n",
632 			n_tx, txbuf);
633 		return -EINVAL;
634 	}
635 
636 	reg = cqspi_calc_rdreg(op);
637 	writel(reg, reg_base + CQSPI_REG_RD_INSTR);
638 
639 	if (op->cmd.dtr)
640 		opcode = op->cmd.opcode >> 8;
641 	else
642 		opcode = op->cmd.opcode;
643 
644 	reg = opcode << CQSPI_REG_CMDCTRL_OPCODE_LSB;
645 
646 	if (op->addr.nbytes) {
647 		reg |= (0x1 << CQSPI_REG_CMDCTRL_ADDR_EN_LSB);
648 		reg |= ((op->addr.nbytes - 1) &
649 			CQSPI_REG_CMDCTRL_ADD_BYTES_MASK)
650 			<< CQSPI_REG_CMDCTRL_ADD_BYTES_LSB;
651 
652 		writel(op->addr.val, reg_base + CQSPI_REG_CMDADDRESS);
653 	}
654 
655 	if (n_tx) {
656 		reg |= (0x1 << CQSPI_REG_CMDCTRL_WR_EN_LSB);
657 		reg |= ((n_tx - 1) & CQSPI_REG_CMDCTRL_WR_BYTES_MASK)
658 			<< CQSPI_REG_CMDCTRL_WR_BYTES_LSB;
659 		data = 0;
660 		write_len = (n_tx > 4) ? 4 : n_tx;
661 		memcpy(&data, txbuf, write_len);
662 		txbuf += write_len;
663 		writel(data, reg_base + CQSPI_REG_CMDWRITEDATALOWER);
664 
665 		if (n_tx > 4) {
666 			data = 0;
667 			write_len = n_tx - 4;
668 			memcpy(&data, txbuf, write_len);
669 			writel(data, reg_base + CQSPI_REG_CMDWRITEDATAUPPER);
670 		}
671 	}
672 
673 	ret = cqspi_exec_flash_cmd(cqspi, reg);
674 
675 	/* Reset CMD_CTRL Reg once command write completes */
676 	writel(0, reg_base + CQSPI_REG_CMDCTRL);
677 
678 	return ret;
679 }
680 
cqspi_read_setup(struct cqspi_flash_pdata * f_pdata,const struct spi_mem_op * op)681 static int cqspi_read_setup(struct cqspi_flash_pdata *f_pdata,
682 			    const struct spi_mem_op *op)
683 {
684 	struct cqspi_st *cqspi = f_pdata->cqspi;
685 	void __iomem *reg_base = cqspi->iobase;
686 	unsigned int dummy_clk = 0;
687 	unsigned int reg;
688 	int ret;
689 	u8 opcode;
690 
691 	ret = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_READ_LSB);
692 	if (ret)
693 		return ret;
694 
695 	if (op->cmd.dtr)
696 		opcode = op->cmd.opcode >> 8;
697 	else
698 		opcode = op->cmd.opcode;
699 
700 	reg = opcode << CQSPI_REG_RD_INSTR_OPCODE_LSB;
701 	reg |= cqspi_calc_rdreg(op);
702 
703 	/* Setup dummy clock cycles */
704 	dummy_clk = cqspi_calc_dummy(op);
705 
706 	if (dummy_clk > CQSPI_DUMMY_CLKS_MAX)
707 		return -EOPNOTSUPP;
708 
709 	if (dummy_clk)
710 		reg |= (dummy_clk & CQSPI_REG_RD_INSTR_DUMMY_MASK)
711 		       << CQSPI_REG_RD_INSTR_DUMMY_LSB;
712 
713 	writel(reg, reg_base + CQSPI_REG_RD_INSTR);
714 
715 	/* Set address width */
716 	reg = readl(reg_base + CQSPI_REG_SIZE);
717 	reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK;
718 	reg |= (op->addr.nbytes - 1);
719 	writel(reg, reg_base + CQSPI_REG_SIZE);
720 	return 0;
721 }
722 
cqspi_indirect_read_execute(struct cqspi_flash_pdata * f_pdata,u8 * rxbuf,loff_t from_addr,const size_t n_rx)723 static int cqspi_indirect_read_execute(struct cqspi_flash_pdata *f_pdata,
724 				       u8 *rxbuf, loff_t from_addr,
725 				       const size_t n_rx)
726 {
727 	struct cqspi_st *cqspi = f_pdata->cqspi;
728 	bool use_irq = !(cqspi->ddata && cqspi->ddata->quirks & CQSPI_RD_NO_IRQ);
729 	struct device *dev = &cqspi->pdev->dev;
730 	void __iomem *reg_base = cqspi->iobase;
731 	void __iomem *ahb_base = cqspi->ahb_base;
732 	unsigned int remaining = n_rx;
733 	unsigned int mod_bytes = n_rx % 4;
734 	unsigned int bytes_to_read = 0;
735 	u8 *rxbuf_end = rxbuf + n_rx;
736 	int ret = 0;
737 
738 	writel(from_addr, reg_base + CQSPI_REG_INDIRECTRDSTARTADDR);
739 	writel(remaining, reg_base + CQSPI_REG_INDIRECTRDBYTES);
740 
741 	/* Clear all interrupts. */
742 	writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS);
743 
744 	/*
745 	 * On SoCFPGA platform reading the SRAM is slow due to
746 	 * hardware limitation and causing read interrupt storm to CPU,
747 	 * so enabling only watermark interrupt to disable all read
748 	 * interrupts later as we want to run "bytes to read" loop with
749 	 * all the read interrupts disabled for max performance.
750 	 */
751 
752 	if (use_irq && cqspi->slow_sram)
753 		writel(CQSPI_REG_IRQ_WATERMARK, reg_base + CQSPI_REG_IRQMASK);
754 	else if (use_irq)
755 		writel(CQSPI_IRQ_MASK_RD, reg_base + CQSPI_REG_IRQMASK);
756 	else
757 		writel(0, reg_base + CQSPI_REG_IRQMASK);
758 
759 	reinit_completion(&cqspi->transfer_complete);
760 	writel(CQSPI_REG_INDIRECTRD_START_MASK,
761 	       reg_base + CQSPI_REG_INDIRECTRD);
762 
763 	while (remaining > 0) {
764 		if (use_irq &&
765 		    !wait_for_completion_timeout(&cqspi->transfer_complete,
766 						 msecs_to_jiffies(CQSPI_READ_TIMEOUT_MS)))
767 			ret = -ETIMEDOUT;
768 
769 		/*
770 		 * Disable all read interrupts until
771 		 * we are out of "bytes to read"
772 		 */
773 		if (cqspi->slow_sram)
774 			writel(0x0, reg_base + CQSPI_REG_IRQMASK);
775 
776 		bytes_to_read = cqspi_get_rd_sram_level(cqspi);
777 
778 		if (ret && bytes_to_read == 0) {
779 			dev_err(dev, "Indirect read timeout, no bytes\n");
780 			goto failrd;
781 		}
782 
783 		while (bytes_to_read != 0) {
784 			unsigned int word_remain = round_down(remaining, 4);
785 
786 			bytes_to_read *= cqspi->fifo_width;
787 			bytes_to_read = bytes_to_read > remaining ?
788 					remaining : bytes_to_read;
789 			bytes_to_read = round_down(bytes_to_read, 4);
790 			/* Read 4 byte word chunks then single bytes */
791 			if (bytes_to_read) {
792 				ioread32_rep(ahb_base, rxbuf,
793 					     (bytes_to_read / 4));
794 			} else if (!word_remain && mod_bytes) {
795 				unsigned int temp = ioread32(ahb_base);
796 
797 				bytes_to_read = mod_bytes;
798 				memcpy(rxbuf, &temp, min((unsigned int)
799 							 (rxbuf_end - rxbuf),
800 							 bytes_to_read));
801 			}
802 			rxbuf += bytes_to_read;
803 			remaining -= bytes_to_read;
804 			bytes_to_read = cqspi_get_rd_sram_level(cqspi);
805 		}
806 
807 		if (use_irq && remaining > 0) {
808 			reinit_completion(&cqspi->transfer_complete);
809 			if (cqspi->slow_sram)
810 				writel(CQSPI_REG_IRQ_WATERMARK, reg_base + CQSPI_REG_IRQMASK);
811 		}
812 	}
813 
814 	/* Check indirect done status */
815 	ret = cqspi_wait_for_bit(cqspi->ddata, reg_base + CQSPI_REG_INDIRECTRD,
816 				 CQSPI_REG_INDIRECTRD_DONE_MASK, 0, true);
817 	if (ret) {
818 		dev_err(dev, "Indirect read completion error (%i)\n", ret);
819 		goto failrd;
820 	}
821 
822 	/* Disable interrupt */
823 	writel(0, reg_base + CQSPI_REG_IRQMASK);
824 
825 	/* Clear indirect completion status */
826 	writel(CQSPI_REG_INDIRECTRD_DONE_MASK, reg_base + CQSPI_REG_INDIRECTRD);
827 
828 	return 0;
829 
830 failrd:
831 	/* Disable interrupt */
832 	writel(0, reg_base + CQSPI_REG_IRQMASK);
833 
834 	/* Cancel the indirect read */
835 	writel(CQSPI_REG_INDIRECTRD_CANCEL_MASK,
836 	       reg_base + CQSPI_REG_INDIRECTRD);
837 	return ret;
838 }
839 
cqspi_device_reset(struct cqspi_st * cqspi)840 static void cqspi_device_reset(struct cqspi_st *cqspi)
841 {
842 	u32 reg;
843 
844 	reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
845 	reg |= CQSPI_REG_CONFIG_RESET_CFG_FLD_MASK;
846 	writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
847 	/*
848 	 * NOTE: Delay timing implementation is derived from
849 	 * spi_nor_hw_reset()
850 	 */
851 	writel(reg & ~CQSPI_REG_CONFIG_RESET_PIN_FLD_MASK, cqspi->iobase + CQSPI_REG_CONFIG);
852 	usleep_range(1, 5);
853 	writel(reg | CQSPI_REG_CONFIG_RESET_PIN_FLD_MASK, cqspi->iobase + CQSPI_REG_CONFIG);
854 	usleep_range(100, 150);
855 	writel(reg & ~CQSPI_REG_CONFIG_RESET_PIN_FLD_MASK, cqspi->iobase + CQSPI_REG_CONFIG);
856 	usleep_range(1000, 1200);
857 }
858 
cqspi_controller_enable(struct cqspi_st * cqspi,bool enable)859 static void cqspi_controller_enable(struct cqspi_st *cqspi, bool enable)
860 {
861 	void __iomem *reg_base = cqspi->iobase;
862 	unsigned int reg;
863 
864 	reg = readl(reg_base + CQSPI_REG_CONFIG);
865 
866 	if (enable)
867 		reg |= CQSPI_REG_CONFIG_ENABLE_MASK;
868 	else
869 		reg &= ~CQSPI_REG_CONFIG_ENABLE_MASK;
870 
871 	writel(reg, reg_base + CQSPI_REG_CONFIG);
872 }
873 
cqspi_versal_indirect_read_dma(struct cqspi_flash_pdata * f_pdata,u_char * rxbuf,loff_t from_addr,size_t n_rx)874 static int cqspi_versal_indirect_read_dma(struct cqspi_flash_pdata *f_pdata,
875 					  u_char *rxbuf, loff_t from_addr,
876 					  size_t n_rx)
877 {
878 	struct cqspi_st *cqspi = f_pdata->cqspi;
879 	struct device *dev = &cqspi->pdev->dev;
880 	void __iomem *reg_base = cqspi->iobase;
881 	u32 reg, bytes_to_dma;
882 	loff_t addr = from_addr;
883 	void *buf = rxbuf;
884 	dma_addr_t dma_addr;
885 	u8 bytes_rem;
886 	int ret = 0;
887 
888 	bytes_rem = n_rx % 4;
889 	bytes_to_dma = (n_rx - bytes_rem);
890 
891 	if (!bytes_to_dma)
892 		goto nondmard;
893 
894 	ret = zynqmp_pm_ospi_mux_select(cqspi->pd_dev_id, PM_OSPI_MUX_SEL_DMA);
895 	if (ret)
896 		return ret;
897 
898 	cqspi_controller_enable(cqspi, 0);
899 
900 	reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
901 	reg |= CQSPI_REG_CONFIG_DMA_MASK;
902 	writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
903 
904 	cqspi_controller_enable(cqspi, 1);
905 
906 	dma_addr = dma_map_single(dev, rxbuf, bytes_to_dma, DMA_FROM_DEVICE);
907 	if (dma_mapping_error(dev, dma_addr)) {
908 		dev_err(dev, "dma mapping failed\n");
909 		return -ENOMEM;
910 	}
911 
912 	writel(from_addr, reg_base + CQSPI_REG_INDIRECTRDSTARTADDR);
913 	writel(bytes_to_dma, reg_base + CQSPI_REG_INDIRECTRDBYTES);
914 	writel(CQSPI_REG_VERSAL_ADDRRANGE_WIDTH_VAL,
915 	       reg_base + CQSPI_REG_INDTRIG_ADDRRANGE);
916 
917 	/* Clear all interrupts. */
918 	writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS);
919 
920 	/* Enable DMA done interrupt */
921 	writel(CQSPI_REG_VERSAL_DMA_DST_DONE_MASK,
922 	       reg_base + CQSPI_REG_VERSAL_DMA_DST_I_EN);
923 
924 	/* Default DMA periph configuration */
925 	writel(CQSPI_REG_VERSAL_DMA_VAL, reg_base + CQSPI_REG_DMA);
926 
927 	/* Configure DMA Dst address */
928 	writel(lower_32_bits(dma_addr),
929 	       reg_base + CQSPI_REG_VERSAL_DMA_DST_ADDR);
930 	writel(upper_32_bits(dma_addr),
931 	       reg_base + CQSPI_REG_VERSAL_DMA_DST_ADDR_MSB);
932 
933 	/* Configure DMA Src address */
934 	writel(cqspi->trigger_address, reg_base +
935 	       CQSPI_REG_VERSAL_DMA_SRC_ADDR);
936 
937 	/* Set DMA destination size */
938 	writel(bytes_to_dma, reg_base + CQSPI_REG_VERSAL_DMA_DST_SIZE);
939 
940 	/* Set DMA destination control */
941 	writel(CQSPI_REG_VERSAL_DMA_DST_CTRL_VAL,
942 	       reg_base + CQSPI_REG_VERSAL_DMA_DST_CTRL);
943 
944 	writel(CQSPI_REG_INDIRECTRD_START_MASK,
945 	       reg_base + CQSPI_REG_INDIRECTRD);
946 
947 	reinit_completion(&cqspi->transfer_complete);
948 
949 	if (!wait_for_completion_timeout(&cqspi->transfer_complete,
950 					 msecs_to_jiffies(max_t(size_t, bytes_to_dma, 500)))) {
951 		ret = -ETIMEDOUT;
952 		goto failrd;
953 	}
954 
955 	/* Disable DMA interrupt */
956 	writel(0x0, cqspi->iobase + CQSPI_REG_VERSAL_DMA_DST_I_DIS);
957 
958 	/* Clear indirect completion status */
959 	writel(CQSPI_REG_INDIRECTRD_DONE_MASK,
960 	       cqspi->iobase + CQSPI_REG_INDIRECTRD);
961 	dma_unmap_single(dev, dma_addr, bytes_to_dma, DMA_FROM_DEVICE);
962 
963 	cqspi_controller_enable(cqspi, 0);
964 
965 	reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
966 	reg &= ~CQSPI_REG_CONFIG_DMA_MASK;
967 	writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
968 
969 	cqspi_controller_enable(cqspi, 1);
970 
971 	ret = zynqmp_pm_ospi_mux_select(cqspi->pd_dev_id,
972 					PM_OSPI_MUX_SEL_LINEAR);
973 	if (ret)
974 		return ret;
975 
976 nondmard:
977 	if (bytes_rem) {
978 		addr += bytes_to_dma;
979 		buf += bytes_to_dma;
980 		ret = cqspi_indirect_read_execute(f_pdata, buf, addr,
981 						  bytes_rem);
982 		if (ret)
983 			return ret;
984 	}
985 
986 	return 0;
987 
988 failrd:
989 	/* Disable DMA interrupt */
990 	writel(0x0, reg_base + CQSPI_REG_VERSAL_DMA_DST_I_DIS);
991 
992 	/* Cancel the indirect read */
993 	writel(CQSPI_REG_INDIRECTWR_CANCEL_MASK,
994 	       reg_base + CQSPI_REG_INDIRECTRD);
995 
996 	dma_unmap_single(dev, dma_addr, bytes_to_dma, DMA_FROM_DEVICE);
997 
998 	reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
999 	reg &= ~CQSPI_REG_CONFIG_DMA_MASK;
1000 	writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
1001 
1002 	zynqmp_pm_ospi_mux_select(cqspi->pd_dev_id, PM_OSPI_MUX_SEL_LINEAR);
1003 
1004 	return ret;
1005 }
1006 
cqspi_write_setup(struct cqspi_flash_pdata * f_pdata,const struct spi_mem_op * op)1007 static int cqspi_write_setup(struct cqspi_flash_pdata *f_pdata,
1008 			     const struct spi_mem_op *op)
1009 {
1010 	unsigned int reg;
1011 	int ret;
1012 	struct cqspi_st *cqspi = f_pdata->cqspi;
1013 	void __iomem *reg_base = cqspi->iobase;
1014 	u8 opcode;
1015 
1016 	ret = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_WRITE_LSB);
1017 	if (ret)
1018 		return ret;
1019 
1020 	if (op->cmd.dtr)
1021 		opcode = op->cmd.opcode >> 8;
1022 	else
1023 		opcode = op->cmd.opcode;
1024 
1025 	/* Set opcode. */
1026 	reg = opcode << CQSPI_REG_WR_INSTR_OPCODE_LSB;
1027 	reg |= CQSPI_OP_WIDTH(op->data) << CQSPI_REG_WR_INSTR_TYPE_DATA_LSB;
1028 	reg |= CQSPI_OP_WIDTH(op->addr) << CQSPI_REG_WR_INSTR_TYPE_ADDR_LSB;
1029 	writel(reg, reg_base + CQSPI_REG_WR_INSTR);
1030 	reg = cqspi_calc_rdreg(op);
1031 	writel(reg, reg_base + CQSPI_REG_RD_INSTR);
1032 
1033 	/*
1034 	 * SPI NAND flashes require the address of the status register to be
1035 	 * passed in the Read SR command. Also, some SPI NOR flashes like the
1036 	 * cypress Semper flash expect a 4-byte dummy address in the Read SR
1037 	 * command in DTR mode.
1038 	 *
1039 	 * But this controller does not support address phase in the Read SR
1040 	 * command when doing auto-HW polling. So, disable write completion
1041 	 * polling on the controller's side. spinand and spi-nor will take
1042 	 * care of polling the status register.
1043 	 */
1044 	if (cqspi->wr_completion) {
1045 		reg = readl(reg_base + CQSPI_REG_WR_COMPLETION_CTRL);
1046 		reg |= CQSPI_REG_WR_DISABLE_AUTO_POLL;
1047 		writel(reg, reg_base + CQSPI_REG_WR_COMPLETION_CTRL);
1048 		/*
1049 		 * DAC mode require auto polling as flash needs to be polled
1050 		 * for write completion in case of bubble in SPI transaction
1051 		 * due to slow CPU/DMA master.
1052 		 */
1053 		cqspi->use_direct_mode_wr = false;
1054 	}
1055 
1056 	reg = readl(reg_base + CQSPI_REG_SIZE);
1057 	reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK;
1058 	reg |= (op->addr.nbytes - 1);
1059 	writel(reg, reg_base + CQSPI_REG_SIZE);
1060 	return 0;
1061 }
1062 
cqspi_indirect_write_execute(struct cqspi_flash_pdata * f_pdata,loff_t to_addr,const u8 * txbuf,const size_t n_tx)1063 static int cqspi_indirect_write_execute(struct cqspi_flash_pdata *f_pdata,
1064 					loff_t to_addr, const u8 *txbuf,
1065 					const size_t n_tx)
1066 {
1067 	struct cqspi_st *cqspi = f_pdata->cqspi;
1068 	struct device *dev = &cqspi->pdev->dev;
1069 	void __iomem *reg_base = cqspi->iobase;
1070 	unsigned int remaining = n_tx;
1071 	unsigned int write_bytes;
1072 	int ret;
1073 
1074 	writel(to_addr, reg_base + CQSPI_REG_INDIRECTWRSTARTADDR);
1075 	writel(remaining, reg_base + CQSPI_REG_INDIRECTWRBYTES);
1076 
1077 	/* Clear all interrupts. */
1078 	writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS);
1079 
1080 	writel(CQSPI_IRQ_MASK_WR, reg_base + CQSPI_REG_IRQMASK);
1081 
1082 	reinit_completion(&cqspi->transfer_complete);
1083 	writel(CQSPI_REG_INDIRECTWR_START_MASK,
1084 	       reg_base + CQSPI_REG_INDIRECTWR);
1085 	/*
1086 	 * As per 66AK2G02 TRM SPRUHY8F section 11.15.5.3 Indirect Access
1087 	 * Controller programming sequence, couple of cycles of
1088 	 * QSPI_REF_CLK delay is required for the above bit to
1089 	 * be internally synchronized by the QSPI module. Provide 5
1090 	 * cycles of delay.
1091 	 */
1092 	if (cqspi->wr_delay)
1093 		ndelay(cqspi->wr_delay);
1094 
1095 	/*
1096 	 * If a hazard exists between the APB and AHB interfaces, perform a
1097 	 * dummy readback from the controller to ensure synchronization.
1098 	 */
1099 	if (cqspi->apb_ahb_hazard)
1100 		readl(reg_base + CQSPI_REG_INDIRECTWR);
1101 
1102 	while (remaining > 0) {
1103 		size_t write_words, mod_bytes;
1104 
1105 		write_bytes = remaining;
1106 		write_words = write_bytes / 4;
1107 		mod_bytes = write_bytes % 4;
1108 		/* Write 4 bytes at a time then single bytes. */
1109 		if (write_words) {
1110 			iowrite32_rep(cqspi->ahb_base, txbuf, write_words);
1111 			txbuf += (write_words * 4);
1112 		}
1113 		if (mod_bytes) {
1114 			unsigned int temp = 0xFFFFFFFF;
1115 
1116 			memcpy(&temp, txbuf, mod_bytes);
1117 			iowrite32(temp, cqspi->ahb_base);
1118 			txbuf += mod_bytes;
1119 		}
1120 
1121 		if (!wait_for_completion_timeout(&cqspi->transfer_complete,
1122 						 msecs_to_jiffies(CQSPI_TIMEOUT_MS))) {
1123 			dev_err(dev, "Indirect write timeout\n");
1124 			ret = -ETIMEDOUT;
1125 			goto failwr;
1126 		}
1127 
1128 		remaining -= write_bytes;
1129 
1130 		if (remaining > 0)
1131 			reinit_completion(&cqspi->transfer_complete);
1132 	}
1133 
1134 	/* Check indirect done status */
1135 	ret = cqspi_wait_for_bit(cqspi->ddata, reg_base + CQSPI_REG_INDIRECTWR,
1136 				 CQSPI_REG_INDIRECTWR_DONE_MASK, 0, false);
1137 	if (ret) {
1138 		dev_err(dev, "Indirect write completion error (%i)\n", ret);
1139 		goto failwr;
1140 	}
1141 
1142 	/* Disable interrupt. */
1143 	writel(0, reg_base + CQSPI_REG_IRQMASK);
1144 
1145 	/* Clear indirect completion status */
1146 	writel(CQSPI_REG_INDIRECTWR_DONE_MASK, reg_base + CQSPI_REG_INDIRECTWR);
1147 
1148 	cqspi_wait_idle(cqspi);
1149 
1150 	return 0;
1151 
1152 failwr:
1153 	/* Disable interrupt. */
1154 	writel(0, reg_base + CQSPI_REG_IRQMASK);
1155 
1156 	/* Cancel the indirect write */
1157 	writel(CQSPI_REG_INDIRECTWR_CANCEL_MASK,
1158 	       reg_base + CQSPI_REG_INDIRECTWR);
1159 	return ret;
1160 }
1161 
cqspi_chipselect(struct cqspi_flash_pdata * f_pdata)1162 static void cqspi_chipselect(struct cqspi_flash_pdata *f_pdata)
1163 {
1164 	struct cqspi_st *cqspi = f_pdata->cqspi;
1165 	void __iomem *reg_base = cqspi->iobase;
1166 	unsigned int chip_select = f_pdata->cs;
1167 	unsigned int reg;
1168 
1169 	reg = readl(reg_base + CQSPI_REG_CONFIG);
1170 	if (cqspi->is_decoded_cs) {
1171 		reg |= CQSPI_REG_CONFIG_DECODE_MASK;
1172 	} else {
1173 		reg &= ~CQSPI_REG_CONFIG_DECODE_MASK;
1174 
1175 		/* Convert CS if without decoder.
1176 		 * CS0 to 4b'1110
1177 		 * CS1 to 4b'1101
1178 		 * CS2 to 4b'1011
1179 		 * CS3 to 4b'0111
1180 		 */
1181 		chip_select = 0xF & ~(1 << chip_select);
1182 	}
1183 
1184 	reg &= ~(CQSPI_REG_CONFIG_CHIPSELECT_MASK
1185 		 << CQSPI_REG_CONFIG_CHIPSELECT_LSB);
1186 	reg |= (chip_select & CQSPI_REG_CONFIG_CHIPSELECT_MASK)
1187 	    << CQSPI_REG_CONFIG_CHIPSELECT_LSB;
1188 	writel(reg, reg_base + CQSPI_REG_CONFIG);
1189 }
1190 
calculate_ticks_for_ns(const unsigned int ref_clk_hz,const unsigned int ns_val)1191 static unsigned int calculate_ticks_for_ns(const unsigned int ref_clk_hz,
1192 					   const unsigned int ns_val)
1193 {
1194 	unsigned int ticks;
1195 
1196 	ticks = ref_clk_hz / 1000;	/* kHz */
1197 	ticks = DIV_ROUND_UP(ticks * ns_val, 1000000);
1198 
1199 	return ticks;
1200 }
1201 
cqspi_delay(struct cqspi_flash_pdata * f_pdata)1202 static void cqspi_delay(struct cqspi_flash_pdata *f_pdata)
1203 {
1204 	struct cqspi_st *cqspi = f_pdata->cqspi;
1205 	void __iomem *iobase = cqspi->iobase;
1206 	const unsigned int ref_clk_hz = cqspi->master_ref_clk_hz;
1207 	unsigned int tshsl, tchsh, tslch, tsd2d;
1208 	unsigned int reg;
1209 	unsigned int tsclk;
1210 
1211 	/* calculate the number of ref ticks for one sclk tick */
1212 	tsclk = DIV_ROUND_UP(ref_clk_hz, cqspi->sclk);
1213 
1214 	tshsl = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tshsl_ns);
1215 	/* this particular value must be at least one sclk */
1216 	if (tshsl < tsclk)
1217 		tshsl = tsclk;
1218 
1219 	tchsh = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tchsh_ns);
1220 	tslch = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tslch_ns);
1221 	tsd2d = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tsd2d_ns);
1222 
1223 	reg = (tshsl & CQSPI_REG_DELAY_TSHSL_MASK)
1224 	       << CQSPI_REG_DELAY_TSHSL_LSB;
1225 	reg |= (tchsh & CQSPI_REG_DELAY_TCHSH_MASK)
1226 		<< CQSPI_REG_DELAY_TCHSH_LSB;
1227 	reg |= (tslch & CQSPI_REG_DELAY_TSLCH_MASK)
1228 		<< CQSPI_REG_DELAY_TSLCH_LSB;
1229 	reg |= (tsd2d & CQSPI_REG_DELAY_TSD2D_MASK)
1230 		<< CQSPI_REG_DELAY_TSD2D_LSB;
1231 	writel(reg, iobase + CQSPI_REG_DELAY);
1232 }
1233 
cqspi_config_baudrate_div(struct cqspi_st * cqspi)1234 static void cqspi_config_baudrate_div(struct cqspi_st *cqspi)
1235 {
1236 	const unsigned int ref_clk_hz = cqspi->master_ref_clk_hz;
1237 	void __iomem *reg_base = cqspi->iobase;
1238 	u32 reg, div;
1239 
1240 	/* Recalculate the baudrate divisor based on QSPI specification. */
1241 	div = DIV_ROUND_UP(ref_clk_hz, 2 * cqspi->sclk) - 1;
1242 
1243 	/* Maximum baud divisor */
1244 	if (div > CQSPI_REG_CONFIG_BAUD_MASK) {
1245 		div = CQSPI_REG_CONFIG_BAUD_MASK;
1246 		dev_warn(&cqspi->pdev->dev,
1247 			"Unable to adjust clock <= %d hz. Reduced to %d hz\n",
1248 			cqspi->sclk, ref_clk_hz/((div+1)*2));
1249 	}
1250 
1251 	reg = readl(reg_base + CQSPI_REG_CONFIG);
1252 	reg &= ~(CQSPI_REG_CONFIG_BAUD_MASK << CQSPI_REG_CONFIG_BAUD_LSB);
1253 	reg |= (div & CQSPI_REG_CONFIG_BAUD_MASK) << CQSPI_REG_CONFIG_BAUD_LSB;
1254 	writel(reg, reg_base + CQSPI_REG_CONFIG);
1255 }
1256 
cqspi_readdata_capture(struct cqspi_st * cqspi,const bool bypass,const unsigned int delay)1257 static void cqspi_readdata_capture(struct cqspi_st *cqspi,
1258 				   const bool bypass,
1259 				   const unsigned int delay)
1260 {
1261 	void __iomem *reg_base = cqspi->iobase;
1262 	unsigned int reg;
1263 
1264 	reg = readl(reg_base + CQSPI_REG_READCAPTURE);
1265 
1266 	if (bypass)
1267 		reg |= (1 << CQSPI_REG_READCAPTURE_BYPASS_LSB);
1268 	else
1269 		reg &= ~(1 << CQSPI_REG_READCAPTURE_BYPASS_LSB);
1270 
1271 	reg &= ~(CQSPI_REG_READCAPTURE_DELAY_MASK
1272 		 << CQSPI_REG_READCAPTURE_DELAY_LSB);
1273 
1274 	reg |= (delay & CQSPI_REG_READCAPTURE_DELAY_MASK)
1275 		<< CQSPI_REG_READCAPTURE_DELAY_LSB;
1276 
1277 	writel(reg, reg_base + CQSPI_REG_READCAPTURE);
1278 }
1279 
cqspi_configure(struct cqspi_flash_pdata * f_pdata,unsigned long sclk)1280 static void cqspi_configure(struct cqspi_flash_pdata *f_pdata,
1281 			    unsigned long sclk)
1282 {
1283 	struct cqspi_st *cqspi = f_pdata->cqspi;
1284 	int switch_cs = (cqspi->current_cs != f_pdata->cs);
1285 	int switch_ck = (cqspi->sclk != sclk);
1286 
1287 	if (switch_cs || switch_ck)
1288 		cqspi_controller_enable(cqspi, 0);
1289 
1290 	/* Switch chip select. */
1291 	if (switch_cs) {
1292 		cqspi->current_cs = f_pdata->cs;
1293 		cqspi_chipselect(f_pdata);
1294 	}
1295 
1296 	/* Setup baudrate divisor and delays */
1297 	if (switch_ck) {
1298 		cqspi->sclk = sclk;
1299 		cqspi_config_baudrate_div(cqspi);
1300 		cqspi_delay(f_pdata);
1301 		cqspi_readdata_capture(cqspi, !cqspi->rclk_en,
1302 				       f_pdata->read_delay);
1303 	}
1304 
1305 	if (switch_cs || switch_ck)
1306 		cqspi_controller_enable(cqspi, 1);
1307 }
1308 
cqspi_write(struct cqspi_flash_pdata * f_pdata,const struct spi_mem_op * op)1309 static ssize_t cqspi_write(struct cqspi_flash_pdata *f_pdata,
1310 			   const struct spi_mem_op *op)
1311 {
1312 	struct cqspi_st *cqspi = f_pdata->cqspi;
1313 	loff_t to = op->addr.val;
1314 	size_t len = op->data.nbytes;
1315 	const u_char *buf = op->data.buf.out;
1316 	int ret;
1317 
1318 	ret = cqspi_write_setup(f_pdata, op);
1319 	if (ret)
1320 		return ret;
1321 
1322 	/*
1323 	 * Some flashes like the Cypress Semper flash expect a dummy 4-byte
1324 	 * address (all 0s) with the read status register command in DTR mode.
1325 	 * But this controller does not support sending dummy address bytes to
1326 	 * the flash when it is polling the write completion register in DTR
1327 	 * mode. So, we can not use direct mode when in DTR mode for writing
1328 	 * data.
1329 	 */
1330 	if (!op->cmd.dtr && cqspi->use_direct_mode &&
1331 	    cqspi->use_direct_mode_wr && ((to + len) <= cqspi->ahb_size)) {
1332 		memcpy_toio(cqspi->ahb_base + to, buf, len);
1333 		return cqspi_wait_idle(cqspi);
1334 	}
1335 
1336 	return cqspi_indirect_write_execute(f_pdata, to, buf, len);
1337 }
1338 
cqspi_rx_dma_callback(void * param)1339 static void cqspi_rx_dma_callback(void *param)
1340 {
1341 	struct cqspi_st *cqspi = param;
1342 
1343 	complete(&cqspi->rx_dma_complete);
1344 }
1345 
cqspi_direct_read_execute(struct cqspi_flash_pdata * f_pdata,u_char * buf,loff_t from,size_t len)1346 static int cqspi_direct_read_execute(struct cqspi_flash_pdata *f_pdata,
1347 				     u_char *buf, loff_t from, size_t len)
1348 {
1349 	struct cqspi_st *cqspi = f_pdata->cqspi;
1350 	struct device *dev = &cqspi->pdev->dev;
1351 	enum dma_ctrl_flags flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
1352 	dma_addr_t dma_src = (dma_addr_t)cqspi->mmap_phys_base + from;
1353 	int ret = 0;
1354 	struct dma_async_tx_descriptor *tx;
1355 	dma_cookie_t cookie;
1356 	dma_addr_t dma_dst;
1357 	struct device *ddev;
1358 
1359 	if (!cqspi->rx_chan || !virt_addr_valid(buf)) {
1360 		memcpy_fromio(buf, cqspi->ahb_base + from, len);
1361 		return 0;
1362 	}
1363 
1364 	ddev = cqspi->rx_chan->device->dev;
1365 	dma_dst = dma_map_single(ddev, buf, len, DMA_FROM_DEVICE);
1366 	if (dma_mapping_error(ddev, dma_dst)) {
1367 		dev_err(dev, "dma mapping failed\n");
1368 		return -ENOMEM;
1369 	}
1370 	tx = dmaengine_prep_dma_memcpy(cqspi->rx_chan, dma_dst, dma_src,
1371 				       len, flags);
1372 	if (!tx) {
1373 		dev_err(dev, "device_prep_dma_memcpy error\n");
1374 		ret = -EIO;
1375 		goto err_unmap;
1376 	}
1377 
1378 	tx->callback = cqspi_rx_dma_callback;
1379 	tx->callback_param = cqspi;
1380 	cookie = tx->tx_submit(tx);
1381 	reinit_completion(&cqspi->rx_dma_complete);
1382 
1383 	ret = dma_submit_error(cookie);
1384 	if (ret) {
1385 		dev_err(dev, "dma_submit_error %d\n", cookie);
1386 		ret = -EIO;
1387 		goto err_unmap;
1388 	}
1389 
1390 	dma_async_issue_pending(cqspi->rx_chan);
1391 	if (!wait_for_completion_timeout(&cqspi->rx_dma_complete,
1392 					 msecs_to_jiffies(max_t(size_t, len, 500)))) {
1393 		dmaengine_terminate_sync(cqspi->rx_chan);
1394 		dev_err(dev, "DMA wait_for_completion_timeout\n");
1395 		ret = -ETIMEDOUT;
1396 		goto err_unmap;
1397 	}
1398 
1399 err_unmap:
1400 	dma_unmap_single(ddev, dma_dst, len, DMA_FROM_DEVICE);
1401 
1402 	return ret;
1403 }
1404 
cqspi_read(struct cqspi_flash_pdata * f_pdata,const struct spi_mem_op * op)1405 static ssize_t cqspi_read(struct cqspi_flash_pdata *f_pdata,
1406 			  const struct spi_mem_op *op)
1407 {
1408 	struct cqspi_st *cqspi = f_pdata->cqspi;
1409 	const struct cqspi_driver_platdata *ddata = cqspi->ddata;
1410 	loff_t from = op->addr.val;
1411 	size_t len = op->data.nbytes;
1412 	u_char *buf = op->data.buf.in;
1413 	u64 dma_align = (u64)(uintptr_t)buf;
1414 	int ret;
1415 
1416 	ret = cqspi_read_setup(f_pdata, op);
1417 	if (ret)
1418 		return ret;
1419 
1420 	if (cqspi->use_direct_mode && ((from + len) <= cqspi->ahb_size))
1421 		return cqspi_direct_read_execute(f_pdata, buf, from, len);
1422 
1423 	if (cqspi->use_dma_read && ddata && ddata->indirect_read_dma &&
1424 	    virt_addr_valid(buf) && ((dma_align & CQSPI_DMA_UNALIGN) == 0))
1425 		return ddata->indirect_read_dma(f_pdata, buf, from, len);
1426 
1427 	return cqspi_indirect_read_execute(f_pdata, buf, from, len);
1428 }
1429 
cqspi_mem_process(struct spi_mem * mem,const struct spi_mem_op * op)1430 static int cqspi_mem_process(struct spi_mem *mem, const struct spi_mem_op *op)
1431 {
1432 	struct cqspi_st *cqspi = spi_controller_get_devdata(mem->spi->controller);
1433 	struct cqspi_flash_pdata *f_pdata;
1434 
1435 	f_pdata = &cqspi->f_pdata[spi_get_chipselect(mem->spi, 0)];
1436 	cqspi_configure(f_pdata, op->max_freq);
1437 
1438 	if (op->data.dir == SPI_MEM_DATA_IN && op->data.buf.in) {
1439 	/*
1440 	 * Performing reads in DAC mode forces to read minimum 4 bytes
1441 	 * which is unsupported on some flash devices during register
1442 	 * reads, prefer STIG mode for such small reads.
1443 	 */
1444 		if (!op->addr.nbytes ||
1445 		    (op->data.nbytes <= CQSPI_STIG_DATA_LEN_MAX &&
1446 		     !cqspi->disable_stig_mode))
1447 			return cqspi_command_read(f_pdata, op);
1448 
1449 		return cqspi_read(f_pdata, op);
1450 	}
1451 
1452 	if (!op->addr.nbytes || !op->data.buf.out)
1453 		return cqspi_command_write(f_pdata, op);
1454 
1455 	return cqspi_write(f_pdata, op);
1456 }
1457 
cqspi_exec_mem_op(struct spi_mem * mem,const struct spi_mem_op * op)1458 static int cqspi_exec_mem_op(struct spi_mem *mem, const struct spi_mem_op *op)
1459 {
1460 	int ret;
1461 	struct cqspi_st *cqspi = spi_controller_get_devdata(mem->spi->controller);
1462 	struct device *dev = &cqspi->pdev->dev;
1463 
1464 	ret = pm_runtime_resume_and_get(dev);
1465 	if (ret) {
1466 		dev_err(&mem->spi->dev, "resume failed with %d\n", ret);
1467 		return ret;
1468 	}
1469 
1470 	ret = cqspi_mem_process(mem, op);
1471 
1472 	pm_runtime_put_autosuspend(dev);
1473 
1474 	if (ret)
1475 		dev_err(&mem->spi->dev, "operation failed with %d\n", ret);
1476 
1477 	return ret;
1478 }
1479 
cqspi_supports_mem_op(struct spi_mem * mem,const struct spi_mem_op * op)1480 static bool cqspi_supports_mem_op(struct spi_mem *mem,
1481 				  const struct spi_mem_op *op)
1482 {
1483 	bool all_true, all_false;
1484 
1485 	/*
1486 	 * op->dummy.dtr is required for converting nbytes into ncycles.
1487 	 * Also, don't check the dtr field of the op phase having zero nbytes.
1488 	 */
1489 	all_true = op->cmd.dtr &&
1490 		   (!op->addr.nbytes || op->addr.dtr) &&
1491 		   (!op->dummy.nbytes || op->dummy.dtr) &&
1492 		   (!op->data.nbytes || op->data.dtr);
1493 
1494 	all_false = !op->cmd.dtr && !op->addr.dtr && !op->dummy.dtr &&
1495 		    !op->data.dtr;
1496 
1497 	if (all_true) {
1498 		/* Right now we only support 8-8-8 DTR mode. */
1499 		if (op->cmd.nbytes && op->cmd.buswidth != 8)
1500 			return false;
1501 		if (op->addr.nbytes && op->addr.buswidth != 8)
1502 			return false;
1503 		if (op->data.nbytes && op->data.buswidth != 8)
1504 			return false;
1505 	} else if (!all_false) {
1506 		/* Mixed DTR modes are not supported. */
1507 		return false;
1508 	}
1509 
1510 	return spi_mem_default_supports_op(mem, op);
1511 }
1512 
cqspi_of_get_flash_pdata(struct platform_device * pdev,struct cqspi_flash_pdata * f_pdata,struct device_node * np)1513 static int cqspi_of_get_flash_pdata(struct platform_device *pdev,
1514 				    struct cqspi_flash_pdata *f_pdata,
1515 				    struct device_node *np)
1516 {
1517 	if (of_property_read_u32(np, "cdns,read-delay", &f_pdata->read_delay)) {
1518 		dev_err(&pdev->dev, "couldn't determine read-delay\n");
1519 		return -ENXIO;
1520 	}
1521 
1522 	if (of_property_read_u32(np, "cdns,tshsl-ns", &f_pdata->tshsl_ns)) {
1523 		dev_err(&pdev->dev, "couldn't determine tshsl-ns\n");
1524 		return -ENXIO;
1525 	}
1526 
1527 	if (of_property_read_u32(np, "cdns,tsd2d-ns", &f_pdata->tsd2d_ns)) {
1528 		dev_err(&pdev->dev, "couldn't determine tsd2d-ns\n");
1529 		return -ENXIO;
1530 	}
1531 
1532 	if (of_property_read_u32(np, "cdns,tchsh-ns", &f_pdata->tchsh_ns)) {
1533 		dev_err(&pdev->dev, "couldn't determine tchsh-ns\n");
1534 		return -ENXIO;
1535 	}
1536 
1537 	if (of_property_read_u32(np, "cdns,tslch-ns", &f_pdata->tslch_ns)) {
1538 		dev_err(&pdev->dev, "couldn't determine tslch-ns\n");
1539 		return -ENXIO;
1540 	}
1541 
1542 	if (of_property_read_u32(np, "spi-max-frequency", &f_pdata->clk_rate)) {
1543 		dev_err(&pdev->dev, "couldn't determine spi-max-frequency\n");
1544 		return -ENXIO;
1545 	}
1546 
1547 	return 0;
1548 }
1549 
cqspi_of_get_pdata(struct cqspi_st * cqspi)1550 static int cqspi_of_get_pdata(struct cqspi_st *cqspi)
1551 {
1552 	struct device *dev = &cqspi->pdev->dev;
1553 	struct device_node *np = dev->of_node;
1554 	u32 id[2];
1555 
1556 	cqspi->is_decoded_cs = of_property_read_bool(np, "cdns,is-decoded-cs");
1557 
1558 	if (of_property_read_u32(np, "cdns,fifo-depth", &cqspi->fifo_depth)) {
1559 		/* Zero signals FIFO depth should be runtime detected. */
1560 		cqspi->fifo_depth = 0;
1561 	}
1562 
1563 	if (of_property_read_u32(np, "cdns,fifo-width", &cqspi->fifo_width)) {
1564 		dev_err(dev, "couldn't determine fifo-width\n");
1565 		return -ENXIO;
1566 	}
1567 
1568 	if (of_property_read_u32(np, "cdns,trigger-address",
1569 				 &cqspi->trigger_address)) {
1570 		dev_err(dev, "couldn't determine trigger-address\n");
1571 		return -ENXIO;
1572 	}
1573 
1574 	if (of_property_read_u32(np, "num-cs", &cqspi->num_chipselect))
1575 		cqspi->num_chipselect = CQSPI_MAX_CHIPSELECT;
1576 
1577 	cqspi->rclk_en = of_property_read_bool(np, "cdns,rclk-en");
1578 
1579 	if (!of_property_read_u32_array(np, "power-domains", id,
1580 					ARRAY_SIZE(id)))
1581 		cqspi->pd_dev_id = id[1];
1582 
1583 	return 0;
1584 }
1585 
cqspi_controller_init(struct cqspi_st * cqspi)1586 static void cqspi_controller_init(struct cqspi_st *cqspi)
1587 {
1588 	u32 reg;
1589 
1590 	/* Configure the remap address register, no remap */
1591 	writel(0, cqspi->iobase + CQSPI_REG_REMAP);
1592 
1593 	/* Disable all interrupts. */
1594 	writel(0, cqspi->iobase + CQSPI_REG_IRQMASK);
1595 
1596 	/* Configure the SRAM split to 1:1 . */
1597 	writel(cqspi->fifo_depth / 2, cqspi->iobase + CQSPI_REG_SRAMPARTITION);
1598 
1599 	/* Load indirect trigger address. */
1600 	writel(cqspi->trigger_address,
1601 	       cqspi->iobase + CQSPI_REG_INDIRECTTRIGGER);
1602 
1603 	/* Program read watermark -- 1/2 of the FIFO. */
1604 	writel(cqspi->fifo_depth * cqspi->fifo_width / 2,
1605 	       cqspi->iobase + CQSPI_REG_INDIRECTRDWATERMARK);
1606 	/* Program write watermark -- 1/8 of the FIFO. */
1607 	writel(cqspi->fifo_depth * cqspi->fifo_width / 8,
1608 	       cqspi->iobase + CQSPI_REG_INDIRECTWRWATERMARK);
1609 
1610 	/* Disable direct access controller */
1611 	if (!cqspi->use_direct_mode) {
1612 		reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
1613 		reg &= ~CQSPI_REG_CONFIG_ENB_DIR_ACC_CTRL;
1614 		writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
1615 	}
1616 
1617 	/* Enable DMA interface */
1618 	if (cqspi->use_dma_read) {
1619 		reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
1620 		reg |= CQSPI_REG_CONFIG_DMA_MASK;
1621 		writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
1622 	}
1623 }
1624 
cqspi_controller_detect_fifo_depth(struct cqspi_st * cqspi)1625 static void cqspi_controller_detect_fifo_depth(struct cqspi_st *cqspi)
1626 {
1627 	struct device *dev = &cqspi->pdev->dev;
1628 	u32 reg, fifo_depth;
1629 
1630 	/*
1631 	 * Bits N-1:0 are writable while bits 31:N are read as zero, with 2^N
1632 	 * the FIFO depth.
1633 	 */
1634 	writel(U32_MAX, cqspi->iobase + CQSPI_REG_SRAMPARTITION);
1635 	reg = readl(cqspi->iobase + CQSPI_REG_SRAMPARTITION);
1636 	fifo_depth = reg + 1;
1637 
1638 	/* FIFO depth of zero means no value from devicetree was provided. */
1639 	if (cqspi->fifo_depth == 0) {
1640 		cqspi->fifo_depth = fifo_depth;
1641 		dev_dbg(dev, "using FIFO depth of %u\n", fifo_depth);
1642 	} else if (fifo_depth != cqspi->fifo_depth) {
1643 		dev_warn(dev, "detected FIFO depth (%u) different from config (%u)\n",
1644 			 fifo_depth, cqspi->fifo_depth);
1645 	}
1646 }
1647 
cqspi_request_mmap_dma(struct cqspi_st * cqspi)1648 static int cqspi_request_mmap_dma(struct cqspi_st *cqspi)
1649 {
1650 	dma_cap_mask_t mask;
1651 
1652 	dma_cap_zero(mask);
1653 	dma_cap_set(DMA_MEMCPY, mask);
1654 
1655 	cqspi->rx_chan = dma_request_chan_by_mask(&mask);
1656 	if (IS_ERR(cqspi->rx_chan)) {
1657 		int ret = PTR_ERR(cqspi->rx_chan);
1658 
1659 		cqspi->rx_chan = NULL;
1660 		if (ret == -ENODEV) {
1661 			/* DMA support is not mandatory */
1662 			dev_info(&cqspi->pdev->dev, "No Rx DMA available\n");
1663 			return 0;
1664 		}
1665 
1666 		return dev_err_probe(&cqspi->pdev->dev, ret, "No Rx DMA available\n");
1667 	}
1668 	init_completion(&cqspi->rx_dma_complete);
1669 
1670 	return 0;
1671 }
1672 
cqspi_get_name(struct spi_mem * mem)1673 static const char *cqspi_get_name(struct spi_mem *mem)
1674 {
1675 	struct cqspi_st *cqspi = spi_controller_get_devdata(mem->spi->controller);
1676 	struct device *dev = &cqspi->pdev->dev;
1677 
1678 	return devm_kasprintf(dev, GFP_KERNEL, "%s.%d", dev_name(dev),
1679 			      spi_get_chipselect(mem->spi, 0));
1680 }
1681 
1682 static const struct spi_controller_mem_ops cqspi_mem_ops = {
1683 	.exec_op = cqspi_exec_mem_op,
1684 	.get_name = cqspi_get_name,
1685 	.supports_op = cqspi_supports_mem_op,
1686 };
1687 
1688 static const struct spi_controller_mem_caps cqspi_mem_caps = {
1689 	.dtr = true,
1690 	.per_op_freq = true,
1691 };
1692 
cqspi_setup_flash(struct cqspi_st * cqspi)1693 static int cqspi_setup_flash(struct cqspi_st *cqspi)
1694 {
1695 	unsigned int max_cs = cqspi->num_chipselect - 1;
1696 	struct platform_device *pdev = cqspi->pdev;
1697 	struct device *dev = &pdev->dev;
1698 	struct cqspi_flash_pdata *f_pdata;
1699 	unsigned int cs;
1700 	int ret;
1701 
1702 	/* Get flash device data */
1703 	for_each_available_child_of_node_scoped(dev->of_node, np) {
1704 		ret = of_property_read_u32(np, "reg", &cs);
1705 		if (ret) {
1706 			dev_err(dev, "Couldn't determine chip select.\n");
1707 			return ret;
1708 		}
1709 
1710 		if (cs >= cqspi->num_chipselect) {
1711 			dev_err(dev, "Chip select %d out of range.\n", cs);
1712 			return -EINVAL;
1713 		} else if (cs < max_cs) {
1714 			max_cs = cs;
1715 		}
1716 
1717 		f_pdata = &cqspi->f_pdata[cs];
1718 		f_pdata->cqspi = cqspi;
1719 		f_pdata->cs = cs;
1720 
1721 		ret = cqspi_of_get_flash_pdata(pdev, f_pdata, np);
1722 		if (ret)
1723 			return ret;
1724 	}
1725 
1726 	cqspi->num_chipselect = max_cs + 1;
1727 	return 0;
1728 }
1729 
cqspi_jh7110_clk_init(struct platform_device * pdev,struct cqspi_st * cqspi)1730 static int cqspi_jh7110_clk_init(struct platform_device *pdev, struct cqspi_st *cqspi)
1731 {
1732 	static struct clk_bulk_data qspiclk[] = {
1733 		{ .id = "apb" },
1734 		{ .id = "ahb" },
1735 	};
1736 
1737 	int ret = 0;
1738 
1739 	ret = devm_clk_bulk_get(&pdev->dev, ARRAY_SIZE(qspiclk), qspiclk);
1740 	if (ret) {
1741 		dev_err(&pdev->dev, "%s: failed to get qspi clocks\n", __func__);
1742 		return ret;
1743 	}
1744 
1745 	cqspi->clks[CLK_QSPI_APB] = qspiclk[0].clk;
1746 	cqspi->clks[CLK_QSPI_AHB] = qspiclk[1].clk;
1747 
1748 	ret = clk_prepare_enable(cqspi->clks[CLK_QSPI_APB]);
1749 	if (ret) {
1750 		dev_err(&pdev->dev, "%s: failed to enable CLK_QSPI_APB\n", __func__);
1751 		return ret;
1752 	}
1753 
1754 	ret = clk_prepare_enable(cqspi->clks[CLK_QSPI_AHB]);
1755 	if (ret) {
1756 		dev_err(&pdev->dev, "%s: failed to enable CLK_QSPI_AHB\n", __func__);
1757 		goto disable_apb_clk;
1758 	}
1759 
1760 	cqspi->is_jh7110 = true;
1761 
1762 	return 0;
1763 
1764 disable_apb_clk:
1765 	clk_disable_unprepare(cqspi->clks[CLK_QSPI_APB]);
1766 
1767 	return ret;
1768 }
1769 
cqspi_jh7110_disable_clk(struct platform_device * pdev,struct cqspi_st * cqspi)1770 static void cqspi_jh7110_disable_clk(struct platform_device *pdev, struct cqspi_st *cqspi)
1771 {
1772 	clk_disable_unprepare(cqspi->clks[CLK_QSPI_AHB]);
1773 	clk_disable_unprepare(cqspi->clks[CLK_QSPI_APB]);
1774 }
cqspi_probe(struct platform_device * pdev)1775 static int cqspi_probe(struct platform_device *pdev)
1776 {
1777 	const struct cqspi_driver_platdata *ddata;
1778 	struct reset_control *rstc, *rstc_ocp, *rstc_ref;
1779 	struct device *dev = &pdev->dev;
1780 	struct spi_controller *host;
1781 	struct resource *res_ahb;
1782 	struct cqspi_st *cqspi;
1783 	int ret;
1784 	int irq;
1785 
1786 	host = devm_spi_alloc_host(&pdev->dev, sizeof(*cqspi));
1787 	if (!host)
1788 		return -ENOMEM;
1789 
1790 	host->mode_bits = SPI_RX_QUAD | SPI_RX_DUAL;
1791 	host->mem_ops = &cqspi_mem_ops;
1792 	host->mem_caps = &cqspi_mem_caps;
1793 	host->dev.of_node = pdev->dev.of_node;
1794 
1795 	cqspi = spi_controller_get_devdata(host);
1796 
1797 	cqspi->pdev = pdev;
1798 	cqspi->host = host;
1799 	cqspi->is_jh7110 = false;
1800 	cqspi->ddata = ddata = of_device_get_match_data(dev);
1801 	platform_set_drvdata(pdev, cqspi);
1802 
1803 	/* Obtain configuration from OF. */
1804 	ret = cqspi_of_get_pdata(cqspi);
1805 	if (ret) {
1806 		dev_err(dev, "Cannot get mandatory OF data.\n");
1807 		return -ENODEV;
1808 	}
1809 
1810 	/* Obtain QSPI clock. */
1811 	cqspi->clk = devm_clk_get(dev, NULL);
1812 	if (IS_ERR(cqspi->clk)) {
1813 		dev_err(dev, "Cannot claim QSPI clock.\n");
1814 		ret = PTR_ERR(cqspi->clk);
1815 		return ret;
1816 	}
1817 
1818 	/* Obtain and remap controller address. */
1819 	cqspi->iobase = devm_platform_ioremap_resource(pdev, 0);
1820 	if (IS_ERR(cqspi->iobase)) {
1821 		dev_err(dev, "Cannot remap controller address.\n");
1822 		ret = PTR_ERR(cqspi->iobase);
1823 		return ret;
1824 	}
1825 
1826 	/* Obtain and remap AHB address. */
1827 	cqspi->ahb_base = devm_platform_get_and_ioremap_resource(pdev, 1, &res_ahb);
1828 	if (IS_ERR(cqspi->ahb_base)) {
1829 		dev_err(dev, "Cannot remap AHB address.\n");
1830 		ret = PTR_ERR(cqspi->ahb_base);
1831 		return ret;
1832 	}
1833 	cqspi->mmap_phys_base = (dma_addr_t)res_ahb->start;
1834 	cqspi->ahb_size = resource_size(res_ahb);
1835 
1836 	init_completion(&cqspi->transfer_complete);
1837 
1838 	/* Obtain IRQ line. */
1839 	irq = platform_get_irq(pdev, 0);
1840 	if (irq < 0)
1841 		return -ENXIO;
1842 
1843 	ret = pm_runtime_set_active(dev);
1844 	if (ret)
1845 		return ret;
1846 
1847 
1848 	ret = clk_prepare_enable(cqspi->clk);
1849 	if (ret) {
1850 		dev_err(dev, "Cannot enable QSPI clock.\n");
1851 		goto probe_clk_failed;
1852 	}
1853 
1854 	/* Obtain QSPI reset control */
1855 	rstc = devm_reset_control_get_optional_exclusive(dev, "qspi");
1856 	if (IS_ERR(rstc)) {
1857 		ret = PTR_ERR(rstc);
1858 		dev_err(dev, "Cannot get QSPI reset.\n");
1859 		goto probe_reset_failed;
1860 	}
1861 
1862 	rstc_ocp = devm_reset_control_get_optional_exclusive(dev, "qspi-ocp");
1863 	if (IS_ERR(rstc_ocp)) {
1864 		ret = PTR_ERR(rstc_ocp);
1865 		dev_err(dev, "Cannot get QSPI OCP reset.\n");
1866 		goto probe_reset_failed;
1867 	}
1868 
1869 	if (of_device_is_compatible(pdev->dev.of_node, "starfive,jh7110-qspi")) {
1870 		rstc_ref = devm_reset_control_get_optional_exclusive(dev, "rstc_ref");
1871 		if (IS_ERR(rstc_ref)) {
1872 			ret = PTR_ERR(rstc_ref);
1873 			dev_err(dev, "Cannot get QSPI REF reset.\n");
1874 			goto probe_reset_failed;
1875 		}
1876 		reset_control_assert(rstc_ref);
1877 		reset_control_deassert(rstc_ref);
1878 	}
1879 
1880 	reset_control_assert(rstc);
1881 	reset_control_deassert(rstc);
1882 
1883 	reset_control_assert(rstc_ocp);
1884 	reset_control_deassert(rstc_ocp);
1885 
1886 	cqspi->master_ref_clk_hz = clk_get_rate(cqspi->clk);
1887 	host->max_speed_hz = cqspi->master_ref_clk_hz;
1888 
1889 	/* write completion is supported by default */
1890 	cqspi->wr_completion = true;
1891 
1892 	if (ddata) {
1893 		if (ddata->quirks & CQSPI_NEEDS_WR_DELAY)
1894 			cqspi->wr_delay = 50 * DIV_ROUND_UP(NSEC_PER_SEC,
1895 						cqspi->master_ref_clk_hz);
1896 		if (ddata->hwcaps_mask & CQSPI_SUPPORTS_OCTAL)
1897 			host->mode_bits |= SPI_RX_OCTAL | SPI_TX_OCTAL;
1898 		if (ddata->hwcaps_mask & CQSPI_SUPPORTS_QUAD)
1899 			host->mode_bits |= SPI_TX_QUAD;
1900 		if (!(ddata->quirks & CQSPI_DISABLE_DAC_MODE)) {
1901 			cqspi->use_direct_mode = true;
1902 			cqspi->use_direct_mode_wr = true;
1903 		}
1904 		if (ddata->quirks & CQSPI_SUPPORT_EXTERNAL_DMA)
1905 			cqspi->use_dma_read = true;
1906 		if (ddata->quirks & CQSPI_NO_SUPPORT_WR_COMPLETION)
1907 			cqspi->wr_completion = false;
1908 		if (ddata->quirks & CQSPI_SLOW_SRAM)
1909 			cqspi->slow_sram = true;
1910 		if (ddata->quirks & CQSPI_NEEDS_APB_AHB_HAZARD_WAR)
1911 			cqspi->apb_ahb_hazard = true;
1912 
1913 		if (ddata->jh7110_clk_init) {
1914 			ret = cqspi_jh7110_clk_init(pdev, cqspi);
1915 			if (ret)
1916 				goto probe_reset_failed;
1917 		}
1918 		if (ddata->quirks & CQSPI_DISABLE_STIG_MODE)
1919 			cqspi->disable_stig_mode = true;
1920 
1921 		if (ddata->quirks & CQSPI_DMA_SET_MASK) {
1922 			ret = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
1923 			if (ret)
1924 				goto probe_reset_failed;
1925 		}
1926 	}
1927 
1928 	ret = devm_request_irq(dev, irq, cqspi_irq_handler, 0,
1929 			       pdev->name, cqspi);
1930 	if (ret) {
1931 		dev_err(dev, "Cannot request IRQ.\n");
1932 		goto probe_reset_failed;
1933 	}
1934 
1935 	cqspi_wait_idle(cqspi);
1936 	cqspi_controller_enable(cqspi, 0);
1937 	cqspi_controller_detect_fifo_depth(cqspi);
1938 	cqspi_controller_init(cqspi);
1939 	cqspi_controller_enable(cqspi, 1);
1940 	cqspi->current_cs = -1;
1941 	cqspi->sclk = 0;
1942 
1943 	ret = cqspi_setup_flash(cqspi);
1944 	if (ret) {
1945 		dev_err(dev, "failed to setup flash parameters %d\n", ret);
1946 		goto probe_setup_failed;
1947 	}
1948 
1949 	host->num_chipselect = cqspi->num_chipselect;
1950 
1951 	if (ddata && (ddata->quirks & CQSPI_SUPPORT_DEVICE_RESET))
1952 		cqspi_device_reset(cqspi);
1953 
1954 	if (cqspi->use_direct_mode) {
1955 		ret = cqspi_request_mmap_dma(cqspi);
1956 		if (ret == -EPROBE_DEFER)
1957 			goto probe_setup_failed;
1958 	}
1959 
1960 	pm_runtime_enable(dev);
1961 
1962 	pm_runtime_set_autosuspend_delay(dev, CQSPI_AUTOSUSPEND_TIMEOUT);
1963 	pm_runtime_use_autosuspend(dev);
1964 	pm_runtime_get_noresume(dev);
1965 
1966 	ret = spi_register_controller(host);
1967 	if (ret) {
1968 		dev_err(&pdev->dev, "failed to register SPI ctlr %d\n", ret);
1969 		goto probe_setup_failed;
1970 	}
1971 
1972 	pm_runtime_put_autosuspend(dev);
1973 
1974 	return 0;
1975 probe_setup_failed:
1976 	cqspi_controller_enable(cqspi, 0);
1977 	pm_runtime_disable(dev);
1978 probe_reset_failed:
1979 	if (cqspi->is_jh7110)
1980 		cqspi_jh7110_disable_clk(pdev, cqspi);
1981 	clk_disable_unprepare(cqspi->clk);
1982 probe_clk_failed:
1983 	return ret;
1984 }
1985 
cqspi_remove(struct platform_device * pdev)1986 static void cqspi_remove(struct platform_device *pdev)
1987 {
1988 	struct cqspi_st *cqspi = platform_get_drvdata(pdev);
1989 
1990 	spi_unregister_controller(cqspi->host);
1991 	cqspi_controller_enable(cqspi, 0);
1992 
1993 	if (cqspi->rx_chan)
1994 		dma_release_channel(cqspi->rx_chan);
1995 
1996 	if (pm_runtime_get_sync(&pdev->dev) >= 0)
1997 		clk_disable(cqspi->clk);
1998 
1999 	if (cqspi->is_jh7110)
2000 		cqspi_jh7110_disable_clk(pdev, cqspi);
2001 
2002 	pm_runtime_put_sync(&pdev->dev);
2003 	pm_runtime_disable(&pdev->dev);
2004 }
2005 
cqspi_runtime_suspend(struct device * dev)2006 static int cqspi_runtime_suspend(struct device *dev)
2007 {
2008 	struct cqspi_st *cqspi = dev_get_drvdata(dev);
2009 
2010 	cqspi_controller_enable(cqspi, 0);
2011 	clk_disable_unprepare(cqspi->clk);
2012 	return 0;
2013 }
2014 
cqspi_runtime_resume(struct device * dev)2015 static int cqspi_runtime_resume(struct device *dev)
2016 {
2017 	struct cqspi_st *cqspi = dev_get_drvdata(dev);
2018 
2019 	clk_prepare_enable(cqspi->clk);
2020 	cqspi_wait_idle(cqspi);
2021 	cqspi_controller_enable(cqspi, 0);
2022 	cqspi_controller_init(cqspi);
2023 	cqspi_controller_enable(cqspi, 1);
2024 
2025 	cqspi->current_cs = -1;
2026 	cqspi->sclk = 0;
2027 	return 0;
2028 }
2029 
cqspi_suspend(struct device * dev)2030 static int cqspi_suspend(struct device *dev)
2031 {
2032 	struct cqspi_st *cqspi = dev_get_drvdata(dev);
2033 	int ret;
2034 
2035 	ret = spi_controller_suspend(cqspi->host);
2036 	if (ret)
2037 		return ret;
2038 
2039 	return pm_runtime_force_suspend(dev);
2040 }
2041 
cqspi_resume(struct device * dev)2042 static int cqspi_resume(struct device *dev)
2043 {
2044 	struct cqspi_st *cqspi = dev_get_drvdata(dev);
2045 	int ret;
2046 
2047 	ret = pm_runtime_force_resume(dev);
2048 	if (ret) {
2049 		dev_err(dev, "pm_runtime_force_resume failed on resume\n");
2050 		return ret;
2051 	}
2052 
2053 	return spi_controller_resume(cqspi->host);
2054 }
2055 
2056 static const struct dev_pm_ops cqspi_dev_pm_ops = {
2057 	RUNTIME_PM_OPS(cqspi_runtime_suspend, cqspi_runtime_resume, NULL)
2058 	SYSTEM_SLEEP_PM_OPS(cqspi_suspend, cqspi_resume)
2059 };
2060 
2061 static const struct cqspi_driver_platdata cdns_qspi = {
2062 	.quirks = CQSPI_DISABLE_DAC_MODE,
2063 };
2064 
2065 static const struct cqspi_driver_platdata k2g_qspi = {
2066 	.quirks = CQSPI_NEEDS_WR_DELAY,
2067 };
2068 
2069 static const struct cqspi_driver_platdata am654_ospi = {
2070 	.hwcaps_mask = CQSPI_SUPPORTS_OCTAL | CQSPI_SUPPORTS_QUAD,
2071 	.quirks = CQSPI_NEEDS_WR_DELAY,
2072 };
2073 
2074 static const struct cqspi_driver_platdata intel_lgm_qspi = {
2075 	.quirks = CQSPI_DISABLE_DAC_MODE,
2076 };
2077 
2078 static const struct cqspi_driver_platdata socfpga_qspi = {
2079 	.quirks = CQSPI_DISABLE_DAC_MODE
2080 			| CQSPI_NO_SUPPORT_WR_COMPLETION
2081 			| CQSPI_SLOW_SRAM
2082 			| CQSPI_DISABLE_STIG_MODE,
2083 };
2084 
2085 static const struct cqspi_driver_platdata versal_ospi = {
2086 	.hwcaps_mask = CQSPI_SUPPORTS_OCTAL,
2087 	.quirks = CQSPI_DISABLE_DAC_MODE | CQSPI_SUPPORT_EXTERNAL_DMA
2088 			| CQSPI_DMA_SET_MASK,
2089 	.indirect_read_dma = cqspi_versal_indirect_read_dma,
2090 	.get_dma_status = cqspi_get_versal_dma_status,
2091 };
2092 
2093 static const struct cqspi_driver_platdata versal2_ospi = {
2094 	.hwcaps_mask = CQSPI_SUPPORTS_OCTAL,
2095 	.quirks = CQSPI_DISABLE_DAC_MODE | CQSPI_SUPPORT_EXTERNAL_DMA
2096 			| CQSPI_DMA_SET_MASK
2097 			| CQSPI_SUPPORT_DEVICE_RESET,
2098 	.indirect_read_dma = cqspi_versal_indirect_read_dma,
2099 	.get_dma_status = cqspi_get_versal_dma_status,
2100 };
2101 
2102 static const struct cqspi_driver_platdata jh7110_qspi = {
2103 	.quirks = CQSPI_DISABLE_DAC_MODE,
2104 	.jh7110_clk_init = cqspi_jh7110_clk_init,
2105 };
2106 
2107 static const struct cqspi_driver_platdata pensando_cdns_qspi = {
2108 	.quirks = CQSPI_NEEDS_APB_AHB_HAZARD_WAR | CQSPI_DISABLE_DAC_MODE,
2109 };
2110 
2111 static const struct cqspi_driver_platdata mobileye_eyeq5_ospi = {
2112 	.hwcaps_mask = CQSPI_SUPPORTS_OCTAL,
2113 	.quirks = CQSPI_DISABLE_DAC_MODE | CQSPI_NO_SUPPORT_WR_COMPLETION |
2114 			CQSPI_RD_NO_IRQ,
2115 };
2116 
2117 static const struct of_device_id cqspi_dt_ids[] = {
2118 	{
2119 		.compatible = "cdns,qspi-nor",
2120 		.data = &cdns_qspi,
2121 	},
2122 	{
2123 		.compatible = "ti,k2g-qspi",
2124 		.data = &k2g_qspi,
2125 	},
2126 	{
2127 		.compatible = "ti,am654-ospi",
2128 		.data = &am654_ospi,
2129 	},
2130 	{
2131 		.compatible = "intel,lgm-qspi",
2132 		.data = &intel_lgm_qspi,
2133 	},
2134 	{
2135 		.compatible = "xlnx,versal-ospi-1.0",
2136 		.data = &versal_ospi,
2137 	},
2138 	{
2139 		.compatible = "intel,socfpga-qspi",
2140 		.data = &socfpga_qspi,
2141 	},
2142 	{
2143 		.compatible = "starfive,jh7110-qspi",
2144 		.data = &jh7110_qspi,
2145 	},
2146 	{
2147 		.compatible = "amd,pensando-elba-qspi",
2148 		.data = &pensando_cdns_qspi,
2149 	},
2150 	{
2151 		.compatible = "mobileye,eyeq5-ospi",
2152 		.data = &mobileye_eyeq5_ospi,
2153 	},
2154 	{
2155 		.compatible = "amd,versal2-ospi",
2156 		.data = &versal2_ospi,
2157 	},
2158 	{ /* end of table */ }
2159 };
2160 
2161 MODULE_DEVICE_TABLE(of, cqspi_dt_ids);
2162 
2163 static struct platform_driver cqspi_platform_driver = {
2164 	.probe = cqspi_probe,
2165 	.remove = cqspi_remove,
2166 	.driver = {
2167 		.name = CQSPI_NAME,
2168 		.pm = pm_ptr(&cqspi_dev_pm_ops),
2169 		.of_match_table = cqspi_dt_ids,
2170 	},
2171 };
2172 
2173 module_platform_driver(cqspi_platform_driver);
2174 
2175 MODULE_DESCRIPTION("Cadence QSPI Controller Driver");
2176 MODULE_LICENSE("GPL v2");
2177 MODULE_ALIAS("platform:" CQSPI_NAME);
2178 MODULE_AUTHOR("Ley Foon Tan <lftan@altera.com>");
2179 MODULE_AUTHOR("Graham Moore <grmoore@opensource.altera.com>");
2180 MODULE_AUTHOR("Vadivel Murugan R <vadivel.muruganx.ramuthevar@intel.com>");
2181 MODULE_AUTHOR("Vignesh Raghavendra <vigneshr@ti.com>");
2182 MODULE_AUTHOR("Pratyush Yadav <p.yadav@ti.com>");
2183