1 // SPDX-License-Identifier: GPL-2.0-only
2 //
3 // Driver for Cadence QSPI Controller
4 //
5 // Copyright Altera Corporation (C) 2012-2014. All rights reserved.
6 // Copyright Intel Corporation (C) 2019-2020. All rights reserved.
7 // Copyright (C) 2020 Texas Instruments Incorporated - http://www.ti.com
8
9 #include <linux/clk.h>
10 #include <linux/completion.h>
11 #include <linux/delay.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/dmaengine.h>
14 #include <linux/err.h>
15 #include <linux/errno.h>
16 #include <linux/firmware/xlnx-zynqmp.h>
17 #include <linux/interrupt.h>
18 #include <linux/io.h>
19 #include <linux/iopoll.h>
20 #include <linux/jiffies.h>
21 #include <linux/kernel.h>
22 #include <linux/log2.h>
23 #include <linux/module.h>
24 #include <linux/of.h>
25 #include <linux/platform_device.h>
26 #include <linux/pm_runtime.h>
27 #include <linux/reset.h>
28 #include <linux/sched.h>
29 #include <linux/spi/spi.h>
30 #include <linux/spi/spi-mem.h>
31 #include <linux/timer.h>
32
33 #define CQSPI_NAME "cadence-qspi"
34 #define CQSPI_MAX_CHIPSELECT 4
35
36 static_assert(CQSPI_MAX_CHIPSELECT <= SPI_CS_CNT_MAX);
37
38 /* Quirks */
39 #define CQSPI_NEEDS_WR_DELAY BIT(0)
40 #define CQSPI_DISABLE_DAC_MODE BIT(1)
41 #define CQSPI_SUPPORT_EXTERNAL_DMA BIT(2)
42 #define CQSPI_NO_SUPPORT_WR_COMPLETION BIT(3)
43 #define CQSPI_SLOW_SRAM BIT(4)
44 #define CQSPI_NEEDS_APB_AHB_HAZARD_WAR BIT(5)
45 #define CQSPI_RD_NO_IRQ BIT(6)
46 #define CQSPI_DISABLE_STIG_MODE BIT(7)
47
48 /* Capabilities */
49 #define CQSPI_SUPPORTS_OCTAL BIT(0)
50
51 #define CQSPI_OP_WIDTH(part) ((part).nbytes ? ilog2((part).buswidth) : 0)
52
53 enum {
54 CLK_QSPI_APB = 0,
55 CLK_QSPI_AHB,
56 CLK_QSPI_NUM,
57 };
58
59 struct cqspi_st;
60
61 struct cqspi_flash_pdata {
62 struct cqspi_st *cqspi;
63 u32 clk_rate;
64 u32 read_delay;
65 u32 tshsl_ns;
66 u32 tsd2d_ns;
67 u32 tchsh_ns;
68 u32 tslch_ns;
69 u8 cs;
70 };
71
72 struct cqspi_st {
73 struct platform_device *pdev;
74 struct spi_controller *host;
75 struct clk *clk;
76 struct clk *clks[CLK_QSPI_NUM];
77 unsigned int sclk;
78
79 void __iomem *iobase;
80 void __iomem *ahb_base;
81 resource_size_t ahb_size;
82 struct completion transfer_complete;
83
84 struct dma_chan *rx_chan;
85 struct completion rx_dma_complete;
86 dma_addr_t mmap_phys_base;
87
88 int current_cs;
89 unsigned long master_ref_clk_hz;
90 bool is_decoded_cs;
91 u32 fifo_depth;
92 u32 fifo_width;
93 u32 num_chipselect;
94 bool rclk_en;
95 u32 trigger_address;
96 u32 wr_delay;
97 bool use_direct_mode;
98 bool use_direct_mode_wr;
99 struct cqspi_flash_pdata f_pdata[CQSPI_MAX_CHIPSELECT];
100 bool use_dma_read;
101 u32 pd_dev_id;
102 bool wr_completion;
103 bool slow_sram;
104 bool apb_ahb_hazard;
105
106 bool is_jh7110; /* Flag for StarFive JH7110 SoC */
107 bool disable_stig_mode;
108
109 const struct cqspi_driver_platdata *ddata;
110 };
111
112 struct cqspi_driver_platdata {
113 u32 hwcaps_mask;
114 u8 quirks;
115 int (*indirect_read_dma)(struct cqspi_flash_pdata *f_pdata,
116 u_char *rxbuf, loff_t from_addr, size_t n_rx);
117 u32 (*get_dma_status)(struct cqspi_st *cqspi);
118 int (*jh7110_clk_init)(struct platform_device *pdev,
119 struct cqspi_st *cqspi);
120 };
121
122 /* Operation timeout value */
123 #define CQSPI_TIMEOUT_MS 500
124 #define CQSPI_READ_TIMEOUT_MS 10
125 #define CQSPI_BUSYWAIT_TIMEOUT_US 500
126
127 /* Runtime_pm autosuspend delay */
128 #define CQSPI_AUTOSUSPEND_TIMEOUT 2000
129
130 #define CQSPI_DUMMY_CLKS_PER_BYTE 8
131 #define CQSPI_DUMMY_BYTES_MAX 4
132 #define CQSPI_DUMMY_CLKS_MAX 31
133
134 #define CQSPI_STIG_DATA_LEN_MAX 8
135
136 /* Register map */
137 #define CQSPI_REG_CONFIG 0x00
138 #define CQSPI_REG_CONFIG_ENABLE_MASK BIT(0)
139 #define CQSPI_REG_CONFIG_ENB_DIR_ACC_CTRL BIT(7)
140 #define CQSPI_REG_CONFIG_DECODE_MASK BIT(9)
141 #define CQSPI_REG_CONFIG_CHIPSELECT_LSB 10
142 #define CQSPI_REG_CONFIG_DMA_MASK BIT(15)
143 #define CQSPI_REG_CONFIG_BAUD_LSB 19
144 #define CQSPI_REG_CONFIG_DTR_PROTO BIT(24)
145 #define CQSPI_REG_CONFIG_DUAL_OPCODE BIT(30)
146 #define CQSPI_REG_CONFIG_IDLE_LSB 31
147 #define CQSPI_REG_CONFIG_CHIPSELECT_MASK 0xF
148 #define CQSPI_REG_CONFIG_BAUD_MASK 0xF
149
150 #define CQSPI_REG_RD_INSTR 0x04
151 #define CQSPI_REG_RD_INSTR_OPCODE_LSB 0
152 #define CQSPI_REG_RD_INSTR_TYPE_INSTR_LSB 8
153 #define CQSPI_REG_RD_INSTR_TYPE_ADDR_LSB 12
154 #define CQSPI_REG_RD_INSTR_TYPE_DATA_LSB 16
155 #define CQSPI_REG_RD_INSTR_MODE_EN_LSB 20
156 #define CQSPI_REG_RD_INSTR_DUMMY_LSB 24
157 #define CQSPI_REG_RD_INSTR_TYPE_INSTR_MASK 0x3
158 #define CQSPI_REG_RD_INSTR_TYPE_ADDR_MASK 0x3
159 #define CQSPI_REG_RD_INSTR_TYPE_DATA_MASK 0x3
160 #define CQSPI_REG_RD_INSTR_DUMMY_MASK 0x1F
161
162 #define CQSPI_REG_WR_INSTR 0x08
163 #define CQSPI_REG_WR_INSTR_OPCODE_LSB 0
164 #define CQSPI_REG_WR_INSTR_TYPE_ADDR_LSB 12
165 #define CQSPI_REG_WR_INSTR_TYPE_DATA_LSB 16
166
167 #define CQSPI_REG_DELAY 0x0C
168 #define CQSPI_REG_DELAY_TSLCH_LSB 0
169 #define CQSPI_REG_DELAY_TCHSH_LSB 8
170 #define CQSPI_REG_DELAY_TSD2D_LSB 16
171 #define CQSPI_REG_DELAY_TSHSL_LSB 24
172 #define CQSPI_REG_DELAY_TSLCH_MASK 0xFF
173 #define CQSPI_REG_DELAY_TCHSH_MASK 0xFF
174 #define CQSPI_REG_DELAY_TSD2D_MASK 0xFF
175 #define CQSPI_REG_DELAY_TSHSL_MASK 0xFF
176
177 #define CQSPI_REG_READCAPTURE 0x10
178 #define CQSPI_REG_READCAPTURE_BYPASS_LSB 0
179 #define CQSPI_REG_READCAPTURE_DELAY_LSB 1
180 #define CQSPI_REG_READCAPTURE_DELAY_MASK 0xF
181
182 #define CQSPI_REG_SIZE 0x14
183 #define CQSPI_REG_SIZE_ADDRESS_LSB 0
184 #define CQSPI_REG_SIZE_PAGE_LSB 4
185 #define CQSPI_REG_SIZE_BLOCK_LSB 16
186 #define CQSPI_REG_SIZE_ADDRESS_MASK 0xF
187 #define CQSPI_REG_SIZE_PAGE_MASK 0xFFF
188 #define CQSPI_REG_SIZE_BLOCK_MASK 0x3F
189
190 #define CQSPI_REG_SRAMPARTITION 0x18
191 #define CQSPI_REG_INDIRECTTRIGGER 0x1C
192
193 #define CQSPI_REG_DMA 0x20
194 #define CQSPI_REG_DMA_SINGLE_LSB 0
195 #define CQSPI_REG_DMA_BURST_LSB 8
196 #define CQSPI_REG_DMA_SINGLE_MASK 0xFF
197 #define CQSPI_REG_DMA_BURST_MASK 0xFF
198
199 #define CQSPI_REG_REMAP 0x24
200 #define CQSPI_REG_MODE_BIT 0x28
201
202 #define CQSPI_REG_SDRAMLEVEL 0x2C
203 #define CQSPI_REG_SDRAMLEVEL_RD_LSB 0
204 #define CQSPI_REG_SDRAMLEVEL_WR_LSB 16
205 #define CQSPI_REG_SDRAMLEVEL_RD_MASK 0xFFFF
206 #define CQSPI_REG_SDRAMLEVEL_WR_MASK 0xFFFF
207
208 #define CQSPI_REG_WR_COMPLETION_CTRL 0x38
209 #define CQSPI_REG_WR_DISABLE_AUTO_POLL BIT(14)
210
211 #define CQSPI_REG_IRQSTATUS 0x40
212 #define CQSPI_REG_IRQMASK 0x44
213
214 #define CQSPI_REG_INDIRECTRD 0x60
215 #define CQSPI_REG_INDIRECTRD_START_MASK BIT(0)
216 #define CQSPI_REG_INDIRECTRD_CANCEL_MASK BIT(1)
217 #define CQSPI_REG_INDIRECTRD_DONE_MASK BIT(5)
218
219 #define CQSPI_REG_INDIRECTRDWATERMARK 0x64
220 #define CQSPI_REG_INDIRECTRDSTARTADDR 0x68
221 #define CQSPI_REG_INDIRECTRDBYTES 0x6C
222
223 #define CQSPI_REG_CMDCTRL 0x90
224 #define CQSPI_REG_CMDCTRL_EXECUTE_MASK BIT(0)
225 #define CQSPI_REG_CMDCTRL_INPROGRESS_MASK BIT(1)
226 #define CQSPI_REG_CMDCTRL_DUMMY_LSB 7
227 #define CQSPI_REG_CMDCTRL_WR_BYTES_LSB 12
228 #define CQSPI_REG_CMDCTRL_WR_EN_LSB 15
229 #define CQSPI_REG_CMDCTRL_ADD_BYTES_LSB 16
230 #define CQSPI_REG_CMDCTRL_ADDR_EN_LSB 19
231 #define CQSPI_REG_CMDCTRL_RD_BYTES_LSB 20
232 #define CQSPI_REG_CMDCTRL_RD_EN_LSB 23
233 #define CQSPI_REG_CMDCTRL_OPCODE_LSB 24
234 #define CQSPI_REG_CMDCTRL_WR_BYTES_MASK 0x7
235 #define CQSPI_REG_CMDCTRL_ADD_BYTES_MASK 0x3
236 #define CQSPI_REG_CMDCTRL_RD_BYTES_MASK 0x7
237 #define CQSPI_REG_CMDCTRL_DUMMY_MASK 0x1F
238
239 #define CQSPI_REG_INDIRECTWR 0x70
240 #define CQSPI_REG_INDIRECTWR_START_MASK BIT(0)
241 #define CQSPI_REG_INDIRECTWR_CANCEL_MASK BIT(1)
242 #define CQSPI_REG_INDIRECTWR_DONE_MASK BIT(5)
243
244 #define CQSPI_REG_INDIRECTWRWATERMARK 0x74
245 #define CQSPI_REG_INDIRECTWRSTARTADDR 0x78
246 #define CQSPI_REG_INDIRECTWRBYTES 0x7C
247
248 #define CQSPI_REG_INDTRIG_ADDRRANGE 0x80
249
250 #define CQSPI_REG_CMDADDRESS 0x94
251 #define CQSPI_REG_CMDREADDATALOWER 0xA0
252 #define CQSPI_REG_CMDREADDATAUPPER 0xA4
253 #define CQSPI_REG_CMDWRITEDATALOWER 0xA8
254 #define CQSPI_REG_CMDWRITEDATAUPPER 0xAC
255
256 #define CQSPI_REG_POLLING_STATUS 0xB0
257 #define CQSPI_REG_POLLING_STATUS_DUMMY_LSB 16
258
259 #define CQSPI_REG_OP_EXT_LOWER 0xE0
260 #define CQSPI_REG_OP_EXT_READ_LSB 24
261 #define CQSPI_REG_OP_EXT_WRITE_LSB 16
262 #define CQSPI_REG_OP_EXT_STIG_LSB 0
263
264 #define CQSPI_REG_VERSAL_DMA_SRC_ADDR 0x1000
265
266 #define CQSPI_REG_VERSAL_DMA_DST_ADDR 0x1800
267 #define CQSPI_REG_VERSAL_DMA_DST_SIZE 0x1804
268
269 #define CQSPI_REG_VERSAL_DMA_DST_CTRL 0x180C
270
271 #define CQSPI_REG_VERSAL_DMA_DST_I_STS 0x1814
272 #define CQSPI_REG_VERSAL_DMA_DST_I_EN 0x1818
273 #define CQSPI_REG_VERSAL_DMA_DST_I_DIS 0x181C
274 #define CQSPI_REG_VERSAL_DMA_DST_DONE_MASK BIT(1)
275
276 #define CQSPI_REG_VERSAL_DMA_DST_ADDR_MSB 0x1828
277
278 #define CQSPI_REG_VERSAL_DMA_DST_CTRL_VAL 0xF43FFA00
279 #define CQSPI_REG_VERSAL_ADDRRANGE_WIDTH_VAL 0x6
280
281 /* Interrupt status bits */
282 #define CQSPI_REG_IRQ_MODE_ERR BIT(0)
283 #define CQSPI_REG_IRQ_UNDERFLOW BIT(1)
284 #define CQSPI_REG_IRQ_IND_COMP BIT(2)
285 #define CQSPI_REG_IRQ_IND_RD_REJECT BIT(3)
286 #define CQSPI_REG_IRQ_WR_PROTECTED_ERR BIT(4)
287 #define CQSPI_REG_IRQ_ILLEGAL_AHB_ERR BIT(5)
288 #define CQSPI_REG_IRQ_WATERMARK BIT(6)
289 #define CQSPI_REG_IRQ_IND_SRAM_FULL BIT(12)
290
291 #define CQSPI_IRQ_MASK_RD (CQSPI_REG_IRQ_WATERMARK | \
292 CQSPI_REG_IRQ_IND_SRAM_FULL | \
293 CQSPI_REG_IRQ_IND_COMP)
294
295 #define CQSPI_IRQ_MASK_WR (CQSPI_REG_IRQ_IND_COMP | \
296 CQSPI_REG_IRQ_WATERMARK | \
297 CQSPI_REG_IRQ_UNDERFLOW)
298
299 #define CQSPI_IRQ_STATUS_MASK 0x1FFFF
300 #define CQSPI_DMA_UNALIGN 0x3
301
302 #define CQSPI_REG_VERSAL_DMA_VAL 0x602
303
cqspi_wait_for_bit(const struct cqspi_driver_platdata * ddata,void __iomem * reg,const u32 mask,bool clr,bool busywait)304 static int cqspi_wait_for_bit(const struct cqspi_driver_platdata *ddata,
305 void __iomem *reg, const u32 mask, bool clr,
306 bool busywait)
307 {
308 u64 timeout_us = CQSPI_TIMEOUT_MS * USEC_PER_MSEC;
309 u32 val;
310
311 if (busywait) {
312 int ret = readl_relaxed_poll_timeout(reg, val,
313 (((clr ? ~val : val) & mask) == mask),
314 0, CQSPI_BUSYWAIT_TIMEOUT_US);
315
316 if (ret != -ETIMEDOUT)
317 return ret;
318
319 timeout_us -= CQSPI_BUSYWAIT_TIMEOUT_US;
320 }
321
322 return readl_relaxed_poll_timeout(reg, val,
323 (((clr ? ~val : val) & mask) == mask),
324 10, timeout_us);
325 }
326
cqspi_is_idle(struct cqspi_st * cqspi)327 static bool cqspi_is_idle(struct cqspi_st *cqspi)
328 {
329 u32 reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
330
331 return reg & (1UL << CQSPI_REG_CONFIG_IDLE_LSB);
332 }
333
cqspi_get_rd_sram_level(struct cqspi_st * cqspi)334 static u32 cqspi_get_rd_sram_level(struct cqspi_st *cqspi)
335 {
336 u32 reg = readl(cqspi->iobase + CQSPI_REG_SDRAMLEVEL);
337
338 reg >>= CQSPI_REG_SDRAMLEVEL_RD_LSB;
339 return reg & CQSPI_REG_SDRAMLEVEL_RD_MASK;
340 }
341
cqspi_get_versal_dma_status(struct cqspi_st * cqspi)342 static u32 cqspi_get_versal_dma_status(struct cqspi_st *cqspi)
343 {
344 u32 dma_status;
345
346 dma_status = readl(cqspi->iobase +
347 CQSPI_REG_VERSAL_DMA_DST_I_STS);
348 writel(dma_status, cqspi->iobase +
349 CQSPI_REG_VERSAL_DMA_DST_I_STS);
350
351 return dma_status & CQSPI_REG_VERSAL_DMA_DST_DONE_MASK;
352 }
353
cqspi_irq_handler(int this_irq,void * dev)354 static irqreturn_t cqspi_irq_handler(int this_irq, void *dev)
355 {
356 struct cqspi_st *cqspi = dev;
357 const struct cqspi_driver_platdata *ddata = cqspi->ddata;
358 unsigned int irq_status;
359
360 /* Read interrupt status */
361 irq_status = readl(cqspi->iobase + CQSPI_REG_IRQSTATUS);
362
363 /* Clear interrupt */
364 writel(irq_status, cqspi->iobase + CQSPI_REG_IRQSTATUS);
365
366 if (cqspi->use_dma_read && ddata && ddata->get_dma_status) {
367 if (ddata->get_dma_status(cqspi)) {
368 complete(&cqspi->transfer_complete);
369 return IRQ_HANDLED;
370 }
371 }
372
373 else if (!cqspi->slow_sram)
374 irq_status &= CQSPI_IRQ_MASK_RD | CQSPI_IRQ_MASK_WR;
375 else
376 irq_status &= CQSPI_REG_IRQ_WATERMARK | CQSPI_IRQ_MASK_WR;
377
378 if (irq_status)
379 complete(&cqspi->transfer_complete);
380
381 return IRQ_HANDLED;
382 }
383
cqspi_calc_rdreg(const struct spi_mem_op * op)384 static unsigned int cqspi_calc_rdreg(const struct spi_mem_op *op)
385 {
386 u32 rdreg = 0;
387
388 rdreg |= CQSPI_OP_WIDTH(op->cmd) << CQSPI_REG_RD_INSTR_TYPE_INSTR_LSB;
389 rdreg |= CQSPI_OP_WIDTH(op->addr) << CQSPI_REG_RD_INSTR_TYPE_ADDR_LSB;
390 rdreg |= CQSPI_OP_WIDTH(op->data) << CQSPI_REG_RD_INSTR_TYPE_DATA_LSB;
391
392 return rdreg;
393 }
394
cqspi_calc_dummy(const struct spi_mem_op * op)395 static unsigned int cqspi_calc_dummy(const struct spi_mem_op *op)
396 {
397 unsigned int dummy_clk;
398
399 if (!op->dummy.nbytes)
400 return 0;
401
402 dummy_clk = op->dummy.nbytes * (8 / op->dummy.buswidth);
403 if (op->cmd.dtr)
404 dummy_clk /= 2;
405
406 return dummy_clk;
407 }
408
cqspi_wait_idle(struct cqspi_st * cqspi)409 static int cqspi_wait_idle(struct cqspi_st *cqspi)
410 {
411 const unsigned int poll_idle_retry = 3;
412 unsigned int count = 0;
413 unsigned long timeout;
414
415 timeout = jiffies + msecs_to_jiffies(CQSPI_TIMEOUT_MS);
416 while (1) {
417 /*
418 * Read few times in succession to ensure the controller
419 * is indeed idle, that is, the bit does not transition
420 * low again.
421 */
422 if (cqspi_is_idle(cqspi))
423 count++;
424 else
425 count = 0;
426
427 if (count >= poll_idle_retry)
428 return 0;
429
430 if (time_after(jiffies, timeout)) {
431 /* Timeout, in busy mode. */
432 dev_err(&cqspi->pdev->dev,
433 "QSPI is still busy after %dms timeout.\n",
434 CQSPI_TIMEOUT_MS);
435 return -ETIMEDOUT;
436 }
437
438 cpu_relax();
439 }
440 }
441
cqspi_exec_flash_cmd(struct cqspi_st * cqspi,unsigned int reg)442 static int cqspi_exec_flash_cmd(struct cqspi_st *cqspi, unsigned int reg)
443 {
444 void __iomem *reg_base = cqspi->iobase;
445 int ret;
446
447 /* Write the CMDCTRL without start execution. */
448 writel(reg, reg_base + CQSPI_REG_CMDCTRL);
449 /* Start execute */
450 reg |= CQSPI_REG_CMDCTRL_EXECUTE_MASK;
451 writel(reg, reg_base + CQSPI_REG_CMDCTRL);
452
453 /* Polling for completion. */
454 ret = cqspi_wait_for_bit(cqspi->ddata, reg_base + CQSPI_REG_CMDCTRL,
455 CQSPI_REG_CMDCTRL_INPROGRESS_MASK, 1, true);
456 if (ret) {
457 dev_err(&cqspi->pdev->dev,
458 "Flash command execution timed out.\n");
459 return ret;
460 }
461
462 /* Polling QSPI idle status. */
463 return cqspi_wait_idle(cqspi);
464 }
465
cqspi_setup_opcode_ext(struct cqspi_flash_pdata * f_pdata,const struct spi_mem_op * op,unsigned int shift)466 static int cqspi_setup_opcode_ext(struct cqspi_flash_pdata *f_pdata,
467 const struct spi_mem_op *op,
468 unsigned int shift)
469 {
470 struct cqspi_st *cqspi = f_pdata->cqspi;
471 void __iomem *reg_base = cqspi->iobase;
472 unsigned int reg;
473 u8 ext;
474
475 if (op->cmd.nbytes != 2)
476 return -EINVAL;
477
478 /* Opcode extension is the LSB. */
479 ext = op->cmd.opcode & 0xff;
480
481 reg = readl(reg_base + CQSPI_REG_OP_EXT_LOWER);
482 reg &= ~(0xff << shift);
483 reg |= ext << shift;
484 writel(reg, reg_base + CQSPI_REG_OP_EXT_LOWER);
485
486 return 0;
487 }
488
cqspi_enable_dtr(struct cqspi_flash_pdata * f_pdata,const struct spi_mem_op * op,unsigned int shift)489 static int cqspi_enable_dtr(struct cqspi_flash_pdata *f_pdata,
490 const struct spi_mem_op *op, unsigned int shift)
491 {
492 struct cqspi_st *cqspi = f_pdata->cqspi;
493 void __iomem *reg_base = cqspi->iobase;
494 unsigned int reg;
495 int ret;
496
497 reg = readl(reg_base + CQSPI_REG_CONFIG);
498
499 /*
500 * We enable dual byte opcode here. The callers have to set up the
501 * extension opcode based on which type of operation it is.
502 */
503 if (op->cmd.dtr) {
504 reg |= CQSPI_REG_CONFIG_DTR_PROTO;
505 reg |= CQSPI_REG_CONFIG_DUAL_OPCODE;
506
507 /* Set up command opcode extension. */
508 ret = cqspi_setup_opcode_ext(f_pdata, op, shift);
509 if (ret)
510 return ret;
511 } else {
512 unsigned int mask = CQSPI_REG_CONFIG_DTR_PROTO | CQSPI_REG_CONFIG_DUAL_OPCODE;
513 /* Shortcut if DTR is already disabled. */
514 if ((reg & mask) == 0)
515 return 0;
516 reg &= ~mask;
517 }
518
519 writel(reg, reg_base + CQSPI_REG_CONFIG);
520
521 return cqspi_wait_idle(cqspi);
522 }
523
cqspi_command_read(struct cqspi_flash_pdata * f_pdata,const struct spi_mem_op * op)524 static int cqspi_command_read(struct cqspi_flash_pdata *f_pdata,
525 const struct spi_mem_op *op)
526 {
527 struct cqspi_st *cqspi = f_pdata->cqspi;
528 void __iomem *reg_base = cqspi->iobase;
529 u8 *rxbuf = op->data.buf.in;
530 u8 opcode;
531 size_t n_rx = op->data.nbytes;
532 unsigned int rdreg;
533 unsigned int reg;
534 unsigned int dummy_clk;
535 size_t read_len;
536 int status;
537
538 status = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_STIG_LSB);
539 if (status)
540 return status;
541
542 if (!n_rx || n_rx > CQSPI_STIG_DATA_LEN_MAX || !rxbuf) {
543 dev_err(&cqspi->pdev->dev,
544 "Invalid input argument, len %zu rxbuf 0x%p\n",
545 n_rx, rxbuf);
546 return -EINVAL;
547 }
548
549 if (op->cmd.dtr)
550 opcode = op->cmd.opcode >> 8;
551 else
552 opcode = op->cmd.opcode;
553
554 reg = opcode << CQSPI_REG_CMDCTRL_OPCODE_LSB;
555
556 rdreg = cqspi_calc_rdreg(op);
557 writel(rdreg, reg_base + CQSPI_REG_RD_INSTR);
558
559 dummy_clk = cqspi_calc_dummy(op);
560 if (dummy_clk > CQSPI_DUMMY_CLKS_MAX)
561 return -EOPNOTSUPP;
562
563 if (dummy_clk)
564 reg |= (dummy_clk & CQSPI_REG_CMDCTRL_DUMMY_MASK)
565 << CQSPI_REG_CMDCTRL_DUMMY_LSB;
566
567 reg |= (0x1 << CQSPI_REG_CMDCTRL_RD_EN_LSB);
568
569 /* 0 means 1 byte. */
570 reg |= (((n_rx - 1) & CQSPI_REG_CMDCTRL_RD_BYTES_MASK)
571 << CQSPI_REG_CMDCTRL_RD_BYTES_LSB);
572
573 /* setup ADDR BIT field */
574 if (op->addr.nbytes) {
575 reg |= (0x1 << CQSPI_REG_CMDCTRL_ADDR_EN_LSB);
576 reg |= ((op->addr.nbytes - 1) &
577 CQSPI_REG_CMDCTRL_ADD_BYTES_MASK)
578 << CQSPI_REG_CMDCTRL_ADD_BYTES_LSB;
579
580 writel(op->addr.val, reg_base + CQSPI_REG_CMDADDRESS);
581 }
582
583 status = cqspi_exec_flash_cmd(cqspi, reg);
584 if (status)
585 return status;
586
587 reg = readl(reg_base + CQSPI_REG_CMDREADDATALOWER);
588
589 /* Put the read value into rx_buf */
590 read_len = (n_rx > 4) ? 4 : n_rx;
591 memcpy(rxbuf, ®, read_len);
592 rxbuf += read_len;
593
594 if (n_rx > 4) {
595 reg = readl(reg_base + CQSPI_REG_CMDREADDATAUPPER);
596
597 read_len = n_rx - read_len;
598 memcpy(rxbuf, ®, read_len);
599 }
600
601 /* Reset CMD_CTRL Reg once command read completes */
602 writel(0, reg_base + CQSPI_REG_CMDCTRL);
603
604 return 0;
605 }
606
cqspi_command_write(struct cqspi_flash_pdata * f_pdata,const struct spi_mem_op * op)607 static int cqspi_command_write(struct cqspi_flash_pdata *f_pdata,
608 const struct spi_mem_op *op)
609 {
610 struct cqspi_st *cqspi = f_pdata->cqspi;
611 void __iomem *reg_base = cqspi->iobase;
612 u8 opcode;
613 const u8 *txbuf = op->data.buf.out;
614 size_t n_tx = op->data.nbytes;
615 unsigned int reg;
616 unsigned int data;
617 size_t write_len;
618 int ret;
619
620 ret = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_STIG_LSB);
621 if (ret)
622 return ret;
623
624 if (n_tx > CQSPI_STIG_DATA_LEN_MAX || (n_tx && !txbuf)) {
625 dev_err(&cqspi->pdev->dev,
626 "Invalid input argument, cmdlen %zu txbuf 0x%p\n",
627 n_tx, txbuf);
628 return -EINVAL;
629 }
630
631 reg = cqspi_calc_rdreg(op);
632 writel(reg, reg_base + CQSPI_REG_RD_INSTR);
633
634 if (op->cmd.dtr)
635 opcode = op->cmd.opcode >> 8;
636 else
637 opcode = op->cmd.opcode;
638
639 reg = opcode << CQSPI_REG_CMDCTRL_OPCODE_LSB;
640
641 if (op->addr.nbytes) {
642 reg |= (0x1 << CQSPI_REG_CMDCTRL_ADDR_EN_LSB);
643 reg |= ((op->addr.nbytes - 1) &
644 CQSPI_REG_CMDCTRL_ADD_BYTES_MASK)
645 << CQSPI_REG_CMDCTRL_ADD_BYTES_LSB;
646
647 writel(op->addr.val, reg_base + CQSPI_REG_CMDADDRESS);
648 }
649
650 if (n_tx) {
651 reg |= (0x1 << CQSPI_REG_CMDCTRL_WR_EN_LSB);
652 reg |= ((n_tx - 1) & CQSPI_REG_CMDCTRL_WR_BYTES_MASK)
653 << CQSPI_REG_CMDCTRL_WR_BYTES_LSB;
654 data = 0;
655 write_len = (n_tx > 4) ? 4 : n_tx;
656 memcpy(&data, txbuf, write_len);
657 txbuf += write_len;
658 writel(data, reg_base + CQSPI_REG_CMDWRITEDATALOWER);
659
660 if (n_tx > 4) {
661 data = 0;
662 write_len = n_tx - 4;
663 memcpy(&data, txbuf, write_len);
664 writel(data, reg_base + CQSPI_REG_CMDWRITEDATAUPPER);
665 }
666 }
667
668 ret = cqspi_exec_flash_cmd(cqspi, reg);
669
670 /* Reset CMD_CTRL Reg once command write completes */
671 writel(0, reg_base + CQSPI_REG_CMDCTRL);
672
673 return ret;
674 }
675
cqspi_read_setup(struct cqspi_flash_pdata * f_pdata,const struct spi_mem_op * op)676 static int cqspi_read_setup(struct cqspi_flash_pdata *f_pdata,
677 const struct spi_mem_op *op)
678 {
679 struct cqspi_st *cqspi = f_pdata->cqspi;
680 void __iomem *reg_base = cqspi->iobase;
681 unsigned int dummy_clk = 0;
682 unsigned int reg;
683 int ret;
684 u8 opcode;
685
686 ret = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_READ_LSB);
687 if (ret)
688 return ret;
689
690 if (op->cmd.dtr)
691 opcode = op->cmd.opcode >> 8;
692 else
693 opcode = op->cmd.opcode;
694
695 reg = opcode << CQSPI_REG_RD_INSTR_OPCODE_LSB;
696 reg |= cqspi_calc_rdreg(op);
697
698 /* Setup dummy clock cycles */
699 dummy_clk = cqspi_calc_dummy(op);
700
701 if (dummy_clk > CQSPI_DUMMY_CLKS_MAX)
702 return -EOPNOTSUPP;
703
704 if (dummy_clk)
705 reg |= (dummy_clk & CQSPI_REG_RD_INSTR_DUMMY_MASK)
706 << CQSPI_REG_RD_INSTR_DUMMY_LSB;
707
708 writel(reg, reg_base + CQSPI_REG_RD_INSTR);
709
710 /* Set address width */
711 reg = readl(reg_base + CQSPI_REG_SIZE);
712 reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK;
713 reg |= (op->addr.nbytes - 1);
714 writel(reg, reg_base + CQSPI_REG_SIZE);
715 return 0;
716 }
717
cqspi_indirect_read_execute(struct cqspi_flash_pdata * f_pdata,u8 * rxbuf,loff_t from_addr,const size_t n_rx)718 static int cqspi_indirect_read_execute(struct cqspi_flash_pdata *f_pdata,
719 u8 *rxbuf, loff_t from_addr,
720 const size_t n_rx)
721 {
722 struct cqspi_st *cqspi = f_pdata->cqspi;
723 bool use_irq = !(cqspi->ddata && cqspi->ddata->quirks & CQSPI_RD_NO_IRQ);
724 struct device *dev = &cqspi->pdev->dev;
725 void __iomem *reg_base = cqspi->iobase;
726 void __iomem *ahb_base = cqspi->ahb_base;
727 unsigned int remaining = n_rx;
728 unsigned int mod_bytes = n_rx % 4;
729 unsigned int bytes_to_read = 0;
730 u8 *rxbuf_end = rxbuf + n_rx;
731 int ret = 0;
732
733 writel(from_addr, reg_base + CQSPI_REG_INDIRECTRDSTARTADDR);
734 writel(remaining, reg_base + CQSPI_REG_INDIRECTRDBYTES);
735
736 /* Clear all interrupts. */
737 writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS);
738
739 /*
740 * On SoCFPGA platform reading the SRAM is slow due to
741 * hardware limitation and causing read interrupt storm to CPU,
742 * so enabling only watermark interrupt to disable all read
743 * interrupts later as we want to run "bytes to read" loop with
744 * all the read interrupts disabled for max performance.
745 */
746
747 if (use_irq && cqspi->slow_sram)
748 writel(CQSPI_REG_IRQ_WATERMARK, reg_base + CQSPI_REG_IRQMASK);
749 else if (use_irq)
750 writel(CQSPI_IRQ_MASK_RD, reg_base + CQSPI_REG_IRQMASK);
751 else
752 writel(0, reg_base + CQSPI_REG_IRQMASK);
753
754 reinit_completion(&cqspi->transfer_complete);
755 writel(CQSPI_REG_INDIRECTRD_START_MASK,
756 reg_base + CQSPI_REG_INDIRECTRD);
757
758 while (remaining > 0) {
759 if (use_irq &&
760 !wait_for_completion_timeout(&cqspi->transfer_complete,
761 msecs_to_jiffies(CQSPI_READ_TIMEOUT_MS)))
762 ret = -ETIMEDOUT;
763
764 /*
765 * Disable all read interrupts until
766 * we are out of "bytes to read"
767 */
768 if (cqspi->slow_sram)
769 writel(0x0, reg_base + CQSPI_REG_IRQMASK);
770
771 bytes_to_read = cqspi_get_rd_sram_level(cqspi);
772
773 if (ret && bytes_to_read == 0) {
774 dev_err(dev, "Indirect read timeout, no bytes\n");
775 goto failrd;
776 }
777
778 while (bytes_to_read != 0) {
779 unsigned int word_remain = round_down(remaining, 4);
780
781 bytes_to_read *= cqspi->fifo_width;
782 bytes_to_read = bytes_to_read > remaining ?
783 remaining : bytes_to_read;
784 bytes_to_read = round_down(bytes_to_read, 4);
785 /* Read 4 byte word chunks then single bytes */
786 if (bytes_to_read) {
787 ioread32_rep(ahb_base, rxbuf,
788 (bytes_to_read / 4));
789 } else if (!word_remain && mod_bytes) {
790 unsigned int temp = ioread32(ahb_base);
791
792 bytes_to_read = mod_bytes;
793 memcpy(rxbuf, &temp, min((unsigned int)
794 (rxbuf_end - rxbuf),
795 bytes_to_read));
796 }
797 rxbuf += bytes_to_read;
798 remaining -= bytes_to_read;
799 bytes_to_read = cqspi_get_rd_sram_level(cqspi);
800 }
801
802 if (use_irq && remaining > 0) {
803 reinit_completion(&cqspi->transfer_complete);
804 if (cqspi->slow_sram)
805 writel(CQSPI_REG_IRQ_WATERMARK, reg_base + CQSPI_REG_IRQMASK);
806 }
807 }
808
809 /* Check indirect done status */
810 ret = cqspi_wait_for_bit(cqspi->ddata, reg_base + CQSPI_REG_INDIRECTRD,
811 CQSPI_REG_INDIRECTRD_DONE_MASK, 0, true);
812 if (ret) {
813 dev_err(dev, "Indirect read completion error (%i)\n", ret);
814 goto failrd;
815 }
816
817 /* Disable interrupt */
818 writel(0, reg_base + CQSPI_REG_IRQMASK);
819
820 /* Clear indirect completion status */
821 writel(CQSPI_REG_INDIRECTRD_DONE_MASK, reg_base + CQSPI_REG_INDIRECTRD);
822
823 return 0;
824
825 failrd:
826 /* Disable interrupt */
827 writel(0, reg_base + CQSPI_REG_IRQMASK);
828
829 /* Cancel the indirect read */
830 writel(CQSPI_REG_INDIRECTRD_CANCEL_MASK,
831 reg_base + CQSPI_REG_INDIRECTRD);
832 return ret;
833 }
834
cqspi_controller_enable(struct cqspi_st * cqspi,bool enable)835 static void cqspi_controller_enable(struct cqspi_st *cqspi, bool enable)
836 {
837 void __iomem *reg_base = cqspi->iobase;
838 unsigned int reg;
839
840 reg = readl(reg_base + CQSPI_REG_CONFIG);
841
842 if (enable)
843 reg |= CQSPI_REG_CONFIG_ENABLE_MASK;
844 else
845 reg &= ~CQSPI_REG_CONFIG_ENABLE_MASK;
846
847 writel(reg, reg_base + CQSPI_REG_CONFIG);
848 }
849
cqspi_versal_indirect_read_dma(struct cqspi_flash_pdata * f_pdata,u_char * rxbuf,loff_t from_addr,size_t n_rx)850 static int cqspi_versal_indirect_read_dma(struct cqspi_flash_pdata *f_pdata,
851 u_char *rxbuf, loff_t from_addr,
852 size_t n_rx)
853 {
854 struct cqspi_st *cqspi = f_pdata->cqspi;
855 struct device *dev = &cqspi->pdev->dev;
856 void __iomem *reg_base = cqspi->iobase;
857 u32 reg, bytes_to_dma;
858 loff_t addr = from_addr;
859 void *buf = rxbuf;
860 dma_addr_t dma_addr;
861 u8 bytes_rem;
862 int ret = 0;
863
864 bytes_rem = n_rx % 4;
865 bytes_to_dma = (n_rx - bytes_rem);
866
867 if (!bytes_to_dma)
868 goto nondmard;
869
870 ret = zynqmp_pm_ospi_mux_select(cqspi->pd_dev_id, PM_OSPI_MUX_SEL_DMA);
871 if (ret)
872 return ret;
873
874 cqspi_controller_enable(cqspi, 0);
875
876 reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
877 reg |= CQSPI_REG_CONFIG_DMA_MASK;
878 writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
879
880 cqspi_controller_enable(cqspi, 1);
881
882 dma_addr = dma_map_single(dev, rxbuf, bytes_to_dma, DMA_FROM_DEVICE);
883 if (dma_mapping_error(dev, dma_addr)) {
884 dev_err(dev, "dma mapping failed\n");
885 return -ENOMEM;
886 }
887
888 writel(from_addr, reg_base + CQSPI_REG_INDIRECTRDSTARTADDR);
889 writel(bytes_to_dma, reg_base + CQSPI_REG_INDIRECTRDBYTES);
890 writel(CQSPI_REG_VERSAL_ADDRRANGE_WIDTH_VAL,
891 reg_base + CQSPI_REG_INDTRIG_ADDRRANGE);
892
893 /* Clear all interrupts. */
894 writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS);
895
896 /* Enable DMA done interrupt */
897 writel(CQSPI_REG_VERSAL_DMA_DST_DONE_MASK,
898 reg_base + CQSPI_REG_VERSAL_DMA_DST_I_EN);
899
900 /* Default DMA periph configuration */
901 writel(CQSPI_REG_VERSAL_DMA_VAL, reg_base + CQSPI_REG_DMA);
902
903 /* Configure DMA Dst address */
904 writel(lower_32_bits(dma_addr),
905 reg_base + CQSPI_REG_VERSAL_DMA_DST_ADDR);
906 writel(upper_32_bits(dma_addr),
907 reg_base + CQSPI_REG_VERSAL_DMA_DST_ADDR_MSB);
908
909 /* Configure DMA Src address */
910 writel(cqspi->trigger_address, reg_base +
911 CQSPI_REG_VERSAL_DMA_SRC_ADDR);
912
913 /* Set DMA destination size */
914 writel(bytes_to_dma, reg_base + CQSPI_REG_VERSAL_DMA_DST_SIZE);
915
916 /* Set DMA destination control */
917 writel(CQSPI_REG_VERSAL_DMA_DST_CTRL_VAL,
918 reg_base + CQSPI_REG_VERSAL_DMA_DST_CTRL);
919
920 writel(CQSPI_REG_INDIRECTRD_START_MASK,
921 reg_base + CQSPI_REG_INDIRECTRD);
922
923 reinit_completion(&cqspi->transfer_complete);
924
925 if (!wait_for_completion_timeout(&cqspi->transfer_complete,
926 msecs_to_jiffies(max_t(size_t, bytes_to_dma, 500)))) {
927 ret = -ETIMEDOUT;
928 goto failrd;
929 }
930
931 /* Disable DMA interrupt */
932 writel(0x0, cqspi->iobase + CQSPI_REG_VERSAL_DMA_DST_I_DIS);
933
934 /* Clear indirect completion status */
935 writel(CQSPI_REG_INDIRECTRD_DONE_MASK,
936 cqspi->iobase + CQSPI_REG_INDIRECTRD);
937 dma_unmap_single(dev, dma_addr, bytes_to_dma, DMA_FROM_DEVICE);
938
939 cqspi_controller_enable(cqspi, 0);
940
941 reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
942 reg &= ~CQSPI_REG_CONFIG_DMA_MASK;
943 writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
944
945 cqspi_controller_enable(cqspi, 1);
946
947 ret = zynqmp_pm_ospi_mux_select(cqspi->pd_dev_id,
948 PM_OSPI_MUX_SEL_LINEAR);
949 if (ret)
950 return ret;
951
952 nondmard:
953 if (bytes_rem) {
954 addr += bytes_to_dma;
955 buf += bytes_to_dma;
956 ret = cqspi_indirect_read_execute(f_pdata, buf, addr,
957 bytes_rem);
958 if (ret)
959 return ret;
960 }
961
962 return 0;
963
964 failrd:
965 /* Disable DMA interrupt */
966 writel(0x0, reg_base + CQSPI_REG_VERSAL_DMA_DST_I_DIS);
967
968 /* Cancel the indirect read */
969 writel(CQSPI_REG_INDIRECTWR_CANCEL_MASK,
970 reg_base + CQSPI_REG_INDIRECTRD);
971
972 dma_unmap_single(dev, dma_addr, bytes_to_dma, DMA_FROM_DEVICE);
973
974 reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
975 reg &= ~CQSPI_REG_CONFIG_DMA_MASK;
976 writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
977
978 zynqmp_pm_ospi_mux_select(cqspi->pd_dev_id, PM_OSPI_MUX_SEL_LINEAR);
979
980 return ret;
981 }
982
cqspi_write_setup(struct cqspi_flash_pdata * f_pdata,const struct spi_mem_op * op)983 static int cqspi_write_setup(struct cqspi_flash_pdata *f_pdata,
984 const struct spi_mem_op *op)
985 {
986 unsigned int reg;
987 int ret;
988 struct cqspi_st *cqspi = f_pdata->cqspi;
989 void __iomem *reg_base = cqspi->iobase;
990 u8 opcode;
991
992 ret = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_WRITE_LSB);
993 if (ret)
994 return ret;
995
996 if (op->cmd.dtr)
997 opcode = op->cmd.opcode >> 8;
998 else
999 opcode = op->cmd.opcode;
1000
1001 /* Set opcode. */
1002 reg = opcode << CQSPI_REG_WR_INSTR_OPCODE_LSB;
1003 reg |= CQSPI_OP_WIDTH(op->data) << CQSPI_REG_WR_INSTR_TYPE_DATA_LSB;
1004 reg |= CQSPI_OP_WIDTH(op->addr) << CQSPI_REG_WR_INSTR_TYPE_ADDR_LSB;
1005 writel(reg, reg_base + CQSPI_REG_WR_INSTR);
1006 reg = cqspi_calc_rdreg(op);
1007 writel(reg, reg_base + CQSPI_REG_RD_INSTR);
1008
1009 /*
1010 * SPI NAND flashes require the address of the status register to be
1011 * passed in the Read SR command. Also, some SPI NOR flashes like the
1012 * cypress Semper flash expect a 4-byte dummy address in the Read SR
1013 * command in DTR mode.
1014 *
1015 * But this controller does not support address phase in the Read SR
1016 * command when doing auto-HW polling. So, disable write completion
1017 * polling on the controller's side. spinand and spi-nor will take
1018 * care of polling the status register.
1019 */
1020 if (cqspi->wr_completion) {
1021 reg = readl(reg_base + CQSPI_REG_WR_COMPLETION_CTRL);
1022 reg |= CQSPI_REG_WR_DISABLE_AUTO_POLL;
1023 writel(reg, reg_base + CQSPI_REG_WR_COMPLETION_CTRL);
1024 /*
1025 * DAC mode require auto polling as flash needs to be polled
1026 * for write completion in case of bubble in SPI transaction
1027 * due to slow CPU/DMA master.
1028 */
1029 cqspi->use_direct_mode_wr = false;
1030 }
1031
1032 reg = readl(reg_base + CQSPI_REG_SIZE);
1033 reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK;
1034 reg |= (op->addr.nbytes - 1);
1035 writel(reg, reg_base + CQSPI_REG_SIZE);
1036 return 0;
1037 }
1038
cqspi_indirect_write_execute(struct cqspi_flash_pdata * f_pdata,loff_t to_addr,const u8 * txbuf,const size_t n_tx)1039 static int cqspi_indirect_write_execute(struct cqspi_flash_pdata *f_pdata,
1040 loff_t to_addr, const u8 *txbuf,
1041 const size_t n_tx)
1042 {
1043 struct cqspi_st *cqspi = f_pdata->cqspi;
1044 struct device *dev = &cqspi->pdev->dev;
1045 void __iomem *reg_base = cqspi->iobase;
1046 unsigned int remaining = n_tx;
1047 unsigned int write_bytes;
1048 int ret;
1049
1050 writel(to_addr, reg_base + CQSPI_REG_INDIRECTWRSTARTADDR);
1051 writel(remaining, reg_base + CQSPI_REG_INDIRECTWRBYTES);
1052
1053 /* Clear all interrupts. */
1054 writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS);
1055
1056 writel(CQSPI_IRQ_MASK_WR, reg_base + CQSPI_REG_IRQMASK);
1057
1058 reinit_completion(&cqspi->transfer_complete);
1059 writel(CQSPI_REG_INDIRECTWR_START_MASK,
1060 reg_base + CQSPI_REG_INDIRECTWR);
1061 /*
1062 * As per 66AK2G02 TRM SPRUHY8F section 11.15.5.3 Indirect Access
1063 * Controller programming sequence, couple of cycles of
1064 * QSPI_REF_CLK delay is required for the above bit to
1065 * be internally synchronized by the QSPI module. Provide 5
1066 * cycles of delay.
1067 */
1068 if (cqspi->wr_delay)
1069 ndelay(cqspi->wr_delay);
1070
1071 /*
1072 * If a hazard exists between the APB and AHB interfaces, perform a
1073 * dummy readback from the controller to ensure synchronization.
1074 */
1075 if (cqspi->apb_ahb_hazard)
1076 readl(reg_base + CQSPI_REG_INDIRECTWR);
1077
1078 while (remaining > 0) {
1079 size_t write_words, mod_bytes;
1080
1081 write_bytes = remaining;
1082 write_words = write_bytes / 4;
1083 mod_bytes = write_bytes % 4;
1084 /* Write 4 bytes at a time then single bytes. */
1085 if (write_words) {
1086 iowrite32_rep(cqspi->ahb_base, txbuf, write_words);
1087 txbuf += (write_words * 4);
1088 }
1089 if (mod_bytes) {
1090 unsigned int temp = 0xFFFFFFFF;
1091
1092 memcpy(&temp, txbuf, mod_bytes);
1093 iowrite32(temp, cqspi->ahb_base);
1094 txbuf += mod_bytes;
1095 }
1096
1097 if (!wait_for_completion_timeout(&cqspi->transfer_complete,
1098 msecs_to_jiffies(CQSPI_TIMEOUT_MS))) {
1099 dev_err(dev, "Indirect write timeout\n");
1100 ret = -ETIMEDOUT;
1101 goto failwr;
1102 }
1103
1104 remaining -= write_bytes;
1105
1106 if (remaining > 0)
1107 reinit_completion(&cqspi->transfer_complete);
1108 }
1109
1110 /* Check indirect done status */
1111 ret = cqspi_wait_for_bit(cqspi->ddata, reg_base + CQSPI_REG_INDIRECTWR,
1112 CQSPI_REG_INDIRECTWR_DONE_MASK, 0, false);
1113 if (ret) {
1114 dev_err(dev, "Indirect write completion error (%i)\n", ret);
1115 goto failwr;
1116 }
1117
1118 /* Disable interrupt. */
1119 writel(0, reg_base + CQSPI_REG_IRQMASK);
1120
1121 /* Clear indirect completion status */
1122 writel(CQSPI_REG_INDIRECTWR_DONE_MASK, reg_base + CQSPI_REG_INDIRECTWR);
1123
1124 cqspi_wait_idle(cqspi);
1125
1126 return 0;
1127
1128 failwr:
1129 /* Disable interrupt. */
1130 writel(0, reg_base + CQSPI_REG_IRQMASK);
1131
1132 /* Cancel the indirect write */
1133 writel(CQSPI_REG_INDIRECTWR_CANCEL_MASK,
1134 reg_base + CQSPI_REG_INDIRECTWR);
1135 return ret;
1136 }
1137
cqspi_chipselect(struct cqspi_flash_pdata * f_pdata)1138 static void cqspi_chipselect(struct cqspi_flash_pdata *f_pdata)
1139 {
1140 struct cqspi_st *cqspi = f_pdata->cqspi;
1141 void __iomem *reg_base = cqspi->iobase;
1142 unsigned int chip_select = f_pdata->cs;
1143 unsigned int reg;
1144
1145 reg = readl(reg_base + CQSPI_REG_CONFIG);
1146 if (cqspi->is_decoded_cs) {
1147 reg |= CQSPI_REG_CONFIG_DECODE_MASK;
1148 } else {
1149 reg &= ~CQSPI_REG_CONFIG_DECODE_MASK;
1150
1151 /* Convert CS if without decoder.
1152 * CS0 to 4b'1110
1153 * CS1 to 4b'1101
1154 * CS2 to 4b'1011
1155 * CS3 to 4b'0111
1156 */
1157 chip_select = 0xF & ~(1 << chip_select);
1158 }
1159
1160 reg &= ~(CQSPI_REG_CONFIG_CHIPSELECT_MASK
1161 << CQSPI_REG_CONFIG_CHIPSELECT_LSB);
1162 reg |= (chip_select & CQSPI_REG_CONFIG_CHIPSELECT_MASK)
1163 << CQSPI_REG_CONFIG_CHIPSELECT_LSB;
1164 writel(reg, reg_base + CQSPI_REG_CONFIG);
1165 }
1166
calculate_ticks_for_ns(const unsigned int ref_clk_hz,const unsigned int ns_val)1167 static unsigned int calculate_ticks_for_ns(const unsigned int ref_clk_hz,
1168 const unsigned int ns_val)
1169 {
1170 unsigned int ticks;
1171
1172 ticks = ref_clk_hz / 1000; /* kHz */
1173 ticks = DIV_ROUND_UP(ticks * ns_val, 1000000);
1174
1175 return ticks;
1176 }
1177
cqspi_delay(struct cqspi_flash_pdata * f_pdata)1178 static void cqspi_delay(struct cqspi_flash_pdata *f_pdata)
1179 {
1180 struct cqspi_st *cqspi = f_pdata->cqspi;
1181 void __iomem *iobase = cqspi->iobase;
1182 const unsigned int ref_clk_hz = cqspi->master_ref_clk_hz;
1183 unsigned int tshsl, tchsh, tslch, tsd2d;
1184 unsigned int reg;
1185 unsigned int tsclk;
1186
1187 /* calculate the number of ref ticks for one sclk tick */
1188 tsclk = DIV_ROUND_UP(ref_clk_hz, cqspi->sclk);
1189
1190 tshsl = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tshsl_ns);
1191 /* this particular value must be at least one sclk */
1192 if (tshsl < tsclk)
1193 tshsl = tsclk;
1194
1195 tchsh = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tchsh_ns);
1196 tslch = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tslch_ns);
1197 tsd2d = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tsd2d_ns);
1198
1199 reg = (tshsl & CQSPI_REG_DELAY_TSHSL_MASK)
1200 << CQSPI_REG_DELAY_TSHSL_LSB;
1201 reg |= (tchsh & CQSPI_REG_DELAY_TCHSH_MASK)
1202 << CQSPI_REG_DELAY_TCHSH_LSB;
1203 reg |= (tslch & CQSPI_REG_DELAY_TSLCH_MASK)
1204 << CQSPI_REG_DELAY_TSLCH_LSB;
1205 reg |= (tsd2d & CQSPI_REG_DELAY_TSD2D_MASK)
1206 << CQSPI_REG_DELAY_TSD2D_LSB;
1207 writel(reg, iobase + CQSPI_REG_DELAY);
1208 }
1209
cqspi_config_baudrate_div(struct cqspi_st * cqspi)1210 static void cqspi_config_baudrate_div(struct cqspi_st *cqspi)
1211 {
1212 const unsigned int ref_clk_hz = cqspi->master_ref_clk_hz;
1213 void __iomem *reg_base = cqspi->iobase;
1214 u32 reg, div;
1215
1216 /* Recalculate the baudrate divisor based on QSPI specification. */
1217 div = DIV_ROUND_UP(ref_clk_hz, 2 * cqspi->sclk) - 1;
1218
1219 /* Maximum baud divisor */
1220 if (div > CQSPI_REG_CONFIG_BAUD_MASK) {
1221 div = CQSPI_REG_CONFIG_BAUD_MASK;
1222 dev_warn(&cqspi->pdev->dev,
1223 "Unable to adjust clock <= %d hz. Reduced to %d hz\n",
1224 cqspi->sclk, ref_clk_hz/((div+1)*2));
1225 }
1226
1227 reg = readl(reg_base + CQSPI_REG_CONFIG);
1228 reg &= ~(CQSPI_REG_CONFIG_BAUD_MASK << CQSPI_REG_CONFIG_BAUD_LSB);
1229 reg |= (div & CQSPI_REG_CONFIG_BAUD_MASK) << CQSPI_REG_CONFIG_BAUD_LSB;
1230 writel(reg, reg_base + CQSPI_REG_CONFIG);
1231 }
1232
cqspi_readdata_capture(struct cqspi_st * cqspi,const bool bypass,const unsigned int delay)1233 static void cqspi_readdata_capture(struct cqspi_st *cqspi,
1234 const bool bypass,
1235 const unsigned int delay)
1236 {
1237 void __iomem *reg_base = cqspi->iobase;
1238 unsigned int reg;
1239
1240 reg = readl(reg_base + CQSPI_REG_READCAPTURE);
1241
1242 if (bypass)
1243 reg |= (1 << CQSPI_REG_READCAPTURE_BYPASS_LSB);
1244 else
1245 reg &= ~(1 << CQSPI_REG_READCAPTURE_BYPASS_LSB);
1246
1247 reg &= ~(CQSPI_REG_READCAPTURE_DELAY_MASK
1248 << CQSPI_REG_READCAPTURE_DELAY_LSB);
1249
1250 reg |= (delay & CQSPI_REG_READCAPTURE_DELAY_MASK)
1251 << CQSPI_REG_READCAPTURE_DELAY_LSB;
1252
1253 writel(reg, reg_base + CQSPI_REG_READCAPTURE);
1254 }
1255
cqspi_configure(struct cqspi_flash_pdata * f_pdata,unsigned long sclk)1256 static void cqspi_configure(struct cqspi_flash_pdata *f_pdata,
1257 unsigned long sclk)
1258 {
1259 struct cqspi_st *cqspi = f_pdata->cqspi;
1260 int switch_cs = (cqspi->current_cs != f_pdata->cs);
1261 int switch_ck = (cqspi->sclk != sclk);
1262
1263 if (switch_cs || switch_ck)
1264 cqspi_controller_enable(cqspi, 0);
1265
1266 /* Switch chip select. */
1267 if (switch_cs) {
1268 cqspi->current_cs = f_pdata->cs;
1269 cqspi_chipselect(f_pdata);
1270 }
1271
1272 /* Setup baudrate divisor and delays */
1273 if (switch_ck) {
1274 cqspi->sclk = sclk;
1275 cqspi_config_baudrate_div(cqspi);
1276 cqspi_delay(f_pdata);
1277 cqspi_readdata_capture(cqspi, !cqspi->rclk_en,
1278 f_pdata->read_delay);
1279 }
1280
1281 if (switch_cs || switch_ck)
1282 cqspi_controller_enable(cqspi, 1);
1283 }
1284
cqspi_write(struct cqspi_flash_pdata * f_pdata,const struct spi_mem_op * op)1285 static ssize_t cqspi_write(struct cqspi_flash_pdata *f_pdata,
1286 const struct spi_mem_op *op)
1287 {
1288 struct cqspi_st *cqspi = f_pdata->cqspi;
1289 loff_t to = op->addr.val;
1290 size_t len = op->data.nbytes;
1291 const u_char *buf = op->data.buf.out;
1292 int ret;
1293
1294 ret = cqspi_write_setup(f_pdata, op);
1295 if (ret)
1296 return ret;
1297
1298 /*
1299 * Some flashes like the Cypress Semper flash expect a dummy 4-byte
1300 * address (all 0s) with the read status register command in DTR mode.
1301 * But this controller does not support sending dummy address bytes to
1302 * the flash when it is polling the write completion register in DTR
1303 * mode. So, we can not use direct mode when in DTR mode for writing
1304 * data.
1305 */
1306 if (!op->cmd.dtr && cqspi->use_direct_mode &&
1307 cqspi->use_direct_mode_wr && ((to + len) <= cqspi->ahb_size)) {
1308 memcpy_toio(cqspi->ahb_base + to, buf, len);
1309 return cqspi_wait_idle(cqspi);
1310 }
1311
1312 return cqspi_indirect_write_execute(f_pdata, to, buf, len);
1313 }
1314
cqspi_rx_dma_callback(void * param)1315 static void cqspi_rx_dma_callback(void *param)
1316 {
1317 struct cqspi_st *cqspi = param;
1318
1319 complete(&cqspi->rx_dma_complete);
1320 }
1321
cqspi_direct_read_execute(struct cqspi_flash_pdata * f_pdata,u_char * buf,loff_t from,size_t len)1322 static int cqspi_direct_read_execute(struct cqspi_flash_pdata *f_pdata,
1323 u_char *buf, loff_t from, size_t len)
1324 {
1325 struct cqspi_st *cqspi = f_pdata->cqspi;
1326 struct device *dev = &cqspi->pdev->dev;
1327 enum dma_ctrl_flags flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
1328 dma_addr_t dma_src = (dma_addr_t)cqspi->mmap_phys_base + from;
1329 int ret = 0;
1330 struct dma_async_tx_descriptor *tx;
1331 dma_cookie_t cookie;
1332 dma_addr_t dma_dst;
1333 struct device *ddev;
1334
1335 if (!cqspi->rx_chan || !virt_addr_valid(buf)) {
1336 memcpy_fromio(buf, cqspi->ahb_base + from, len);
1337 return 0;
1338 }
1339
1340 ddev = cqspi->rx_chan->device->dev;
1341 dma_dst = dma_map_single(ddev, buf, len, DMA_FROM_DEVICE);
1342 if (dma_mapping_error(ddev, dma_dst)) {
1343 dev_err(dev, "dma mapping failed\n");
1344 return -ENOMEM;
1345 }
1346 tx = dmaengine_prep_dma_memcpy(cqspi->rx_chan, dma_dst, dma_src,
1347 len, flags);
1348 if (!tx) {
1349 dev_err(dev, "device_prep_dma_memcpy error\n");
1350 ret = -EIO;
1351 goto err_unmap;
1352 }
1353
1354 tx->callback = cqspi_rx_dma_callback;
1355 tx->callback_param = cqspi;
1356 cookie = tx->tx_submit(tx);
1357 reinit_completion(&cqspi->rx_dma_complete);
1358
1359 ret = dma_submit_error(cookie);
1360 if (ret) {
1361 dev_err(dev, "dma_submit_error %d\n", cookie);
1362 ret = -EIO;
1363 goto err_unmap;
1364 }
1365
1366 dma_async_issue_pending(cqspi->rx_chan);
1367 if (!wait_for_completion_timeout(&cqspi->rx_dma_complete,
1368 msecs_to_jiffies(max_t(size_t, len, 500)))) {
1369 dmaengine_terminate_sync(cqspi->rx_chan);
1370 dev_err(dev, "DMA wait_for_completion_timeout\n");
1371 ret = -ETIMEDOUT;
1372 goto err_unmap;
1373 }
1374
1375 err_unmap:
1376 dma_unmap_single(ddev, dma_dst, len, DMA_FROM_DEVICE);
1377
1378 return ret;
1379 }
1380
cqspi_read(struct cqspi_flash_pdata * f_pdata,const struct spi_mem_op * op)1381 static ssize_t cqspi_read(struct cqspi_flash_pdata *f_pdata,
1382 const struct spi_mem_op *op)
1383 {
1384 struct cqspi_st *cqspi = f_pdata->cqspi;
1385 const struct cqspi_driver_platdata *ddata = cqspi->ddata;
1386 loff_t from = op->addr.val;
1387 size_t len = op->data.nbytes;
1388 u_char *buf = op->data.buf.in;
1389 u64 dma_align = (u64)(uintptr_t)buf;
1390 int ret;
1391
1392 ret = cqspi_read_setup(f_pdata, op);
1393 if (ret)
1394 return ret;
1395
1396 if (cqspi->use_direct_mode && ((from + len) <= cqspi->ahb_size))
1397 return cqspi_direct_read_execute(f_pdata, buf, from, len);
1398
1399 if (cqspi->use_dma_read && ddata && ddata->indirect_read_dma &&
1400 virt_addr_valid(buf) && ((dma_align & CQSPI_DMA_UNALIGN) == 0))
1401 return ddata->indirect_read_dma(f_pdata, buf, from, len);
1402
1403 return cqspi_indirect_read_execute(f_pdata, buf, from, len);
1404 }
1405
cqspi_mem_process(struct spi_mem * mem,const struct spi_mem_op * op)1406 static int cqspi_mem_process(struct spi_mem *mem, const struct spi_mem_op *op)
1407 {
1408 struct cqspi_st *cqspi = spi_controller_get_devdata(mem->spi->controller);
1409 struct cqspi_flash_pdata *f_pdata;
1410
1411 f_pdata = &cqspi->f_pdata[spi_get_chipselect(mem->spi, 0)];
1412 cqspi_configure(f_pdata, mem->spi->max_speed_hz);
1413
1414 if (op->data.dir == SPI_MEM_DATA_IN && op->data.buf.in) {
1415 /*
1416 * Performing reads in DAC mode forces to read minimum 4 bytes
1417 * which is unsupported on some flash devices during register
1418 * reads, prefer STIG mode for such small reads.
1419 */
1420 if (!op->addr.nbytes ||
1421 (op->data.nbytes <= CQSPI_STIG_DATA_LEN_MAX &&
1422 !cqspi->disable_stig_mode))
1423 return cqspi_command_read(f_pdata, op);
1424
1425 return cqspi_read(f_pdata, op);
1426 }
1427
1428 if (!op->addr.nbytes || !op->data.buf.out)
1429 return cqspi_command_write(f_pdata, op);
1430
1431 return cqspi_write(f_pdata, op);
1432 }
1433
cqspi_exec_mem_op(struct spi_mem * mem,const struct spi_mem_op * op)1434 static int cqspi_exec_mem_op(struct spi_mem *mem, const struct spi_mem_op *op)
1435 {
1436 int ret;
1437 struct cqspi_st *cqspi = spi_controller_get_devdata(mem->spi->controller);
1438 struct device *dev = &cqspi->pdev->dev;
1439
1440 ret = pm_runtime_resume_and_get(dev);
1441 if (ret) {
1442 dev_err(&mem->spi->dev, "resume failed with %d\n", ret);
1443 return ret;
1444 }
1445
1446 ret = cqspi_mem_process(mem, op);
1447
1448 pm_runtime_mark_last_busy(dev);
1449 pm_runtime_put_autosuspend(dev);
1450
1451 if (ret)
1452 dev_err(&mem->spi->dev, "operation failed with %d\n", ret);
1453
1454 return ret;
1455 }
1456
cqspi_supports_mem_op(struct spi_mem * mem,const struct spi_mem_op * op)1457 static bool cqspi_supports_mem_op(struct spi_mem *mem,
1458 const struct spi_mem_op *op)
1459 {
1460 bool all_true, all_false;
1461
1462 /*
1463 * op->dummy.dtr is required for converting nbytes into ncycles.
1464 * Also, don't check the dtr field of the op phase having zero nbytes.
1465 */
1466 all_true = op->cmd.dtr &&
1467 (!op->addr.nbytes || op->addr.dtr) &&
1468 (!op->dummy.nbytes || op->dummy.dtr) &&
1469 (!op->data.nbytes || op->data.dtr);
1470
1471 all_false = !op->cmd.dtr && !op->addr.dtr && !op->dummy.dtr &&
1472 !op->data.dtr;
1473
1474 if (all_true) {
1475 /* Right now we only support 8-8-8 DTR mode. */
1476 if (op->cmd.nbytes && op->cmd.buswidth != 8)
1477 return false;
1478 if (op->addr.nbytes && op->addr.buswidth != 8)
1479 return false;
1480 if (op->data.nbytes && op->data.buswidth != 8)
1481 return false;
1482 } else if (!all_false) {
1483 /* Mixed DTR modes are not supported. */
1484 return false;
1485 }
1486
1487 return spi_mem_default_supports_op(mem, op);
1488 }
1489
cqspi_of_get_flash_pdata(struct platform_device * pdev,struct cqspi_flash_pdata * f_pdata,struct device_node * np)1490 static int cqspi_of_get_flash_pdata(struct platform_device *pdev,
1491 struct cqspi_flash_pdata *f_pdata,
1492 struct device_node *np)
1493 {
1494 if (of_property_read_u32(np, "cdns,read-delay", &f_pdata->read_delay)) {
1495 dev_err(&pdev->dev, "couldn't determine read-delay\n");
1496 return -ENXIO;
1497 }
1498
1499 if (of_property_read_u32(np, "cdns,tshsl-ns", &f_pdata->tshsl_ns)) {
1500 dev_err(&pdev->dev, "couldn't determine tshsl-ns\n");
1501 return -ENXIO;
1502 }
1503
1504 if (of_property_read_u32(np, "cdns,tsd2d-ns", &f_pdata->tsd2d_ns)) {
1505 dev_err(&pdev->dev, "couldn't determine tsd2d-ns\n");
1506 return -ENXIO;
1507 }
1508
1509 if (of_property_read_u32(np, "cdns,tchsh-ns", &f_pdata->tchsh_ns)) {
1510 dev_err(&pdev->dev, "couldn't determine tchsh-ns\n");
1511 return -ENXIO;
1512 }
1513
1514 if (of_property_read_u32(np, "cdns,tslch-ns", &f_pdata->tslch_ns)) {
1515 dev_err(&pdev->dev, "couldn't determine tslch-ns\n");
1516 return -ENXIO;
1517 }
1518
1519 if (of_property_read_u32(np, "spi-max-frequency", &f_pdata->clk_rate)) {
1520 dev_err(&pdev->dev, "couldn't determine spi-max-frequency\n");
1521 return -ENXIO;
1522 }
1523
1524 return 0;
1525 }
1526
cqspi_of_get_pdata(struct cqspi_st * cqspi)1527 static int cqspi_of_get_pdata(struct cqspi_st *cqspi)
1528 {
1529 struct device *dev = &cqspi->pdev->dev;
1530 struct device_node *np = dev->of_node;
1531 u32 id[2];
1532
1533 cqspi->is_decoded_cs = of_property_read_bool(np, "cdns,is-decoded-cs");
1534
1535 if (of_property_read_u32(np, "cdns,fifo-depth", &cqspi->fifo_depth)) {
1536 /* Zero signals FIFO depth should be runtime detected. */
1537 cqspi->fifo_depth = 0;
1538 }
1539
1540 if (of_property_read_u32(np, "cdns,fifo-width", &cqspi->fifo_width)) {
1541 dev_err(dev, "couldn't determine fifo-width\n");
1542 return -ENXIO;
1543 }
1544
1545 if (of_property_read_u32(np, "cdns,trigger-address",
1546 &cqspi->trigger_address)) {
1547 dev_err(dev, "couldn't determine trigger-address\n");
1548 return -ENXIO;
1549 }
1550
1551 if (of_property_read_u32(np, "num-cs", &cqspi->num_chipselect))
1552 cqspi->num_chipselect = CQSPI_MAX_CHIPSELECT;
1553
1554 cqspi->rclk_en = of_property_read_bool(np, "cdns,rclk-en");
1555
1556 if (!of_property_read_u32_array(np, "power-domains", id,
1557 ARRAY_SIZE(id)))
1558 cqspi->pd_dev_id = id[1];
1559
1560 return 0;
1561 }
1562
cqspi_controller_init(struct cqspi_st * cqspi)1563 static void cqspi_controller_init(struct cqspi_st *cqspi)
1564 {
1565 u32 reg;
1566
1567 /* Configure the remap address register, no remap */
1568 writel(0, cqspi->iobase + CQSPI_REG_REMAP);
1569
1570 /* Disable all interrupts. */
1571 writel(0, cqspi->iobase + CQSPI_REG_IRQMASK);
1572
1573 /* Configure the SRAM split to 1:1 . */
1574 writel(cqspi->fifo_depth / 2, cqspi->iobase + CQSPI_REG_SRAMPARTITION);
1575
1576 /* Load indirect trigger address. */
1577 writel(cqspi->trigger_address,
1578 cqspi->iobase + CQSPI_REG_INDIRECTTRIGGER);
1579
1580 /* Program read watermark -- 1/2 of the FIFO. */
1581 writel(cqspi->fifo_depth * cqspi->fifo_width / 2,
1582 cqspi->iobase + CQSPI_REG_INDIRECTRDWATERMARK);
1583 /* Program write watermark -- 1/8 of the FIFO. */
1584 writel(cqspi->fifo_depth * cqspi->fifo_width / 8,
1585 cqspi->iobase + CQSPI_REG_INDIRECTWRWATERMARK);
1586
1587 /* Disable direct access controller */
1588 if (!cqspi->use_direct_mode) {
1589 reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
1590 reg &= ~CQSPI_REG_CONFIG_ENB_DIR_ACC_CTRL;
1591 writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
1592 }
1593
1594 /* Enable DMA interface */
1595 if (cqspi->use_dma_read) {
1596 reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
1597 reg |= CQSPI_REG_CONFIG_DMA_MASK;
1598 writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
1599 }
1600 }
1601
cqspi_controller_detect_fifo_depth(struct cqspi_st * cqspi)1602 static void cqspi_controller_detect_fifo_depth(struct cqspi_st *cqspi)
1603 {
1604 struct device *dev = &cqspi->pdev->dev;
1605 u32 reg, fifo_depth;
1606
1607 /*
1608 * Bits N-1:0 are writable while bits 31:N are read as zero, with 2^N
1609 * the FIFO depth.
1610 */
1611 writel(U32_MAX, cqspi->iobase + CQSPI_REG_SRAMPARTITION);
1612 reg = readl(cqspi->iobase + CQSPI_REG_SRAMPARTITION);
1613 fifo_depth = reg + 1;
1614
1615 /* FIFO depth of zero means no value from devicetree was provided. */
1616 if (cqspi->fifo_depth == 0) {
1617 cqspi->fifo_depth = fifo_depth;
1618 dev_dbg(dev, "using FIFO depth of %u\n", fifo_depth);
1619 } else if (fifo_depth != cqspi->fifo_depth) {
1620 dev_warn(dev, "detected FIFO depth (%u) different from config (%u)\n",
1621 fifo_depth, cqspi->fifo_depth);
1622 }
1623 }
1624
cqspi_request_mmap_dma(struct cqspi_st * cqspi)1625 static int cqspi_request_mmap_dma(struct cqspi_st *cqspi)
1626 {
1627 dma_cap_mask_t mask;
1628
1629 dma_cap_zero(mask);
1630 dma_cap_set(DMA_MEMCPY, mask);
1631
1632 cqspi->rx_chan = dma_request_chan_by_mask(&mask);
1633 if (IS_ERR(cqspi->rx_chan)) {
1634 int ret = PTR_ERR(cqspi->rx_chan);
1635
1636 cqspi->rx_chan = NULL;
1637 return dev_err_probe(&cqspi->pdev->dev, ret, "No Rx DMA available\n");
1638 }
1639 init_completion(&cqspi->rx_dma_complete);
1640
1641 return 0;
1642 }
1643
cqspi_get_name(struct spi_mem * mem)1644 static const char *cqspi_get_name(struct spi_mem *mem)
1645 {
1646 struct cqspi_st *cqspi = spi_controller_get_devdata(mem->spi->controller);
1647 struct device *dev = &cqspi->pdev->dev;
1648
1649 return devm_kasprintf(dev, GFP_KERNEL, "%s.%d", dev_name(dev),
1650 spi_get_chipselect(mem->spi, 0));
1651 }
1652
1653 static const struct spi_controller_mem_ops cqspi_mem_ops = {
1654 .exec_op = cqspi_exec_mem_op,
1655 .get_name = cqspi_get_name,
1656 .supports_op = cqspi_supports_mem_op,
1657 };
1658
1659 static const struct spi_controller_mem_caps cqspi_mem_caps = {
1660 .dtr = true,
1661 };
1662
cqspi_setup_flash(struct cqspi_st * cqspi)1663 static int cqspi_setup_flash(struct cqspi_st *cqspi)
1664 {
1665 unsigned int max_cs = cqspi->num_chipselect - 1;
1666 struct platform_device *pdev = cqspi->pdev;
1667 struct device *dev = &pdev->dev;
1668 struct cqspi_flash_pdata *f_pdata;
1669 unsigned int cs;
1670 int ret;
1671
1672 /* Get flash device data */
1673 for_each_available_child_of_node_scoped(dev->of_node, np) {
1674 ret = of_property_read_u32(np, "reg", &cs);
1675 if (ret) {
1676 dev_err(dev, "Couldn't determine chip select.\n");
1677 return ret;
1678 }
1679
1680 if (cs >= cqspi->num_chipselect) {
1681 dev_err(dev, "Chip select %d out of range.\n", cs);
1682 return -EINVAL;
1683 } else if (cs < max_cs) {
1684 max_cs = cs;
1685 }
1686
1687 f_pdata = &cqspi->f_pdata[cs];
1688 f_pdata->cqspi = cqspi;
1689 f_pdata->cs = cs;
1690
1691 ret = cqspi_of_get_flash_pdata(pdev, f_pdata, np);
1692 if (ret)
1693 return ret;
1694 }
1695
1696 cqspi->num_chipselect = max_cs + 1;
1697 return 0;
1698 }
1699
cqspi_jh7110_clk_init(struct platform_device * pdev,struct cqspi_st * cqspi)1700 static int cqspi_jh7110_clk_init(struct platform_device *pdev, struct cqspi_st *cqspi)
1701 {
1702 static struct clk_bulk_data qspiclk[] = {
1703 { .id = "apb" },
1704 { .id = "ahb" },
1705 };
1706
1707 int ret = 0;
1708
1709 ret = devm_clk_bulk_get(&pdev->dev, ARRAY_SIZE(qspiclk), qspiclk);
1710 if (ret) {
1711 dev_err(&pdev->dev, "%s: failed to get qspi clocks\n", __func__);
1712 return ret;
1713 }
1714
1715 cqspi->clks[CLK_QSPI_APB] = qspiclk[0].clk;
1716 cqspi->clks[CLK_QSPI_AHB] = qspiclk[1].clk;
1717
1718 ret = clk_prepare_enable(cqspi->clks[CLK_QSPI_APB]);
1719 if (ret) {
1720 dev_err(&pdev->dev, "%s: failed to enable CLK_QSPI_APB\n", __func__);
1721 return ret;
1722 }
1723
1724 ret = clk_prepare_enable(cqspi->clks[CLK_QSPI_AHB]);
1725 if (ret) {
1726 dev_err(&pdev->dev, "%s: failed to enable CLK_QSPI_AHB\n", __func__);
1727 goto disable_apb_clk;
1728 }
1729
1730 cqspi->is_jh7110 = true;
1731
1732 return 0;
1733
1734 disable_apb_clk:
1735 clk_disable_unprepare(cqspi->clks[CLK_QSPI_APB]);
1736
1737 return ret;
1738 }
1739
cqspi_jh7110_disable_clk(struct platform_device * pdev,struct cqspi_st * cqspi)1740 static void cqspi_jh7110_disable_clk(struct platform_device *pdev, struct cqspi_st *cqspi)
1741 {
1742 clk_disable_unprepare(cqspi->clks[CLK_QSPI_AHB]);
1743 clk_disable_unprepare(cqspi->clks[CLK_QSPI_APB]);
1744 }
cqspi_probe(struct platform_device * pdev)1745 static int cqspi_probe(struct platform_device *pdev)
1746 {
1747 const struct cqspi_driver_platdata *ddata;
1748 struct reset_control *rstc, *rstc_ocp, *rstc_ref;
1749 struct device *dev = &pdev->dev;
1750 struct spi_controller *host;
1751 struct resource *res_ahb;
1752 struct cqspi_st *cqspi;
1753 int ret;
1754 int irq;
1755
1756 host = devm_spi_alloc_host(&pdev->dev, sizeof(*cqspi));
1757 if (!host)
1758 return -ENOMEM;
1759
1760 host->mode_bits = SPI_RX_QUAD | SPI_RX_DUAL;
1761 host->mem_ops = &cqspi_mem_ops;
1762 host->mem_caps = &cqspi_mem_caps;
1763 host->dev.of_node = pdev->dev.of_node;
1764
1765 cqspi = spi_controller_get_devdata(host);
1766
1767 cqspi->pdev = pdev;
1768 cqspi->host = host;
1769 cqspi->is_jh7110 = false;
1770 cqspi->ddata = ddata = of_device_get_match_data(dev);
1771 platform_set_drvdata(pdev, cqspi);
1772
1773 /* Obtain configuration from OF. */
1774 ret = cqspi_of_get_pdata(cqspi);
1775 if (ret) {
1776 dev_err(dev, "Cannot get mandatory OF data.\n");
1777 return -ENODEV;
1778 }
1779
1780 /* Obtain QSPI clock. */
1781 cqspi->clk = devm_clk_get(dev, NULL);
1782 if (IS_ERR(cqspi->clk)) {
1783 dev_err(dev, "Cannot claim QSPI clock.\n");
1784 ret = PTR_ERR(cqspi->clk);
1785 return ret;
1786 }
1787
1788 /* Obtain and remap controller address. */
1789 cqspi->iobase = devm_platform_ioremap_resource(pdev, 0);
1790 if (IS_ERR(cqspi->iobase)) {
1791 dev_err(dev, "Cannot remap controller address.\n");
1792 ret = PTR_ERR(cqspi->iobase);
1793 return ret;
1794 }
1795
1796 /* Obtain and remap AHB address. */
1797 cqspi->ahb_base = devm_platform_get_and_ioremap_resource(pdev, 1, &res_ahb);
1798 if (IS_ERR(cqspi->ahb_base)) {
1799 dev_err(dev, "Cannot remap AHB address.\n");
1800 ret = PTR_ERR(cqspi->ahb_base);
1801 return ret;
1802 }
1803 cqspi->mmap_phys_base = (dma_addr_t)res_ahb->start;
1804 cqspi->ahb_size = resource_size(res_ahb);
1805
1806 init_completion(&cqspi->transfer_complete);
1807
1808 /* Obtain IRQ line. */
1809 irq = platform_get_irq(pdev, 0);
1810 if (irq < 0)
1811 return -ENXIO;
1812
1813 ret = pm_runtime_set_active(dev);
1814 if (ret)
1815 return ret;
1816
1817
1818 ret = clk_prepare_enable(cqspi->clk);
1819 if (ret) {
1820 dev_err(dev, "Cannot enable QSPI clock.\n");
1821 goto probe_clk_failed;
1822 }
1823
1824 /* Obtain QSPI reset control */
1825 rstc = devm_reset_control_get_optional_exclusive(dev, "qspi");
1826 if (IS_ERR(rstc)) {
1827 ret = PTR_ERR(rstc);
1828 dev_err(dev, "Cannot get QSPI reset.\n");
1829 goto probe_reset_failed;
1830 }
1831
1832 rstc_ocp = devm_reset_control_get_optional_exclusive(dev, "qspi-ocp");
1833 if (IS_ERR(rstc_ocp)) {
1834 ret = PTR_ERR(rstc_ocp);
1835 dev_err(dev, "Cannot get QSPI OCP reset.\n");
1836 goto probe_reset_failed;
1837 }
1838
1839 if (of_device_is_compatible(pdev->dev.of_node, "starfive,jh7110-qspi")) {
1840 rstc_ref = devm_reset_control_get_optional_exclusive(dev, "rstc_ref");
1841 if (IS_ERR(rstc_ref)) {
1842 ret = PTR_ERR(rstc_ref);
1843 dev_err(dev, "Cannot get QSPI REF reset.\n");
1844 goto probe_reset_failed;
1845 }
1846 reset_control_assert(rstc_ref);
1847 reset_control_deassert(rstc_ref);
1848 }
1849
1850 reset_control_assert(rstc);
1851 reset_control_deassert(rstc);
1852
1853 reset_control_assert(rstc_ocp);
1854 reset_control_deassert(rstc_ocp);
1855
1856 cqspi->master_ref_clk_hz = clk_get_rate(cqspi->clk);
1857 host->max_speed_hz = cqspi->master_ref_clk_hz;
1858
1859 /* write completion is supported by default */
1860 cqspi->wr_completion = true;
1861
1862 if (ddata) {
1863 if (ddata->quirks & CQSPI_NEEDS_WR_DELAY)
1864 cqspi->wr_delay = 50 * DIV_ROUND_UP(NSEC_PER_SEC,
1865 cqspi->master_ref_clk_hz);
1866 if (ddata->hwcaps_mask & CQSPI_SUPPORTS_OCTAL)
1867 host->mode_bits |= SPI_RX_OCTAL | SPI_TX_OCTAL;
1868 if (!(ddata->quirks & CQSPI_DISABLE_DAC_MODE)) {
1869 cqspi->use_direct_mode = true;
1870 cqspi->use_direct_mode_wr = true;
1871 }
1872 if (ddata->quirks & CQSPI_SUPPORT_EXTERNAL_DMA)
1873 cqspi->use_dma_read = true;
1874 if (ddata->quirks & CQSPI_NO_SUPPORT_WR_COMPLETION)
1875 cqspi->wr_completion = false;
1876 if (ddata->quirks & CQSPI_SLOW_SRAM)
1877 cqspi->slow_sram = true;
1878 if (ddata->quirks & CQSPI_NEEDS_APB_AHB_HAZARD_WAR)
1879 cqspi->apb_ahb_hazard = true;
1880
1881 if (ddata->jh7110_clk_init) {
1882 ret = cqspi_jh7110_clk_init(pdev, cqspi);
1883 if (ret)
1884 goto probe_reset_failed;
1885 }
1886 if (ddata->quirks & CQSPI_DISABLE_STIG_MODE)
1887 cqspi->disable_stig_mode = true;
1888
1889 if (of_device_is_compatible(pdev->dev.of_node,
1890 "xlnx,versal-ospi-1.0")) {
1891 ret = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
1892 if (ret)
1893 goto probe_reset_failed;
1894 }
1895 }
1896
1897 ret = devm_request_irq(dev, irq, cqspi_irq_handler, 0,
1898 pdev->name, cqspi);
1899 if (ret) {
1900 dev_err(dev, "Cannot request IRQ.\n");
1901 goto probe_reset_failed;
1902 }
1903
1904 cqspi_wait_idle(cqspi);
1905 cqspi_controller_enable(cqspi, 0);
1906 cqspi_controller_detect_fifo_depth(cqspi);
1907 cqspi_controller_init(cqspi);
1908 cqspi_controller_enable(cqspi, 1);
1909 cqspi->current_cs = -1;
1910 cqspi->sclk = 0;
1911
1912 ret = cqspi_setup_flash(cqspi);
1913 if (ret) {
1914 dev_err(dev, "failed to setup flash parameters %d\n", ret);
1915 goto probe_setup_failed;
1916 }
1917
1918 host->num_chipselect = cqspi->num_chipselect;
1919
1920 if (cqspi->use_direct_mode) {
1921 ret = cqspi_request_mmap_dma(cqspi);
1922 if (ret == -EPROBE_DEFER)
1923 goto probe_setup_failed;
1924 }
1925
1926 ret = devm_pm_runtime_enable(dev);
1927 if (ret) {
1928 if (cqspi->rx_chan)
1929 dma_release_channel(cqspi->rx_chan);
1930 goto probe_setup_failed;
1931 }
1932
1933 pm_runtime_set_autosuspend_delay(dev, CQSPI_AUTOSUSPEND_TIMEOUT);
1934 pm_runtime_use_autosuspend(dev);
1935 pm_runtime_get_noresume(dev);
1936
1937 ret = spi_register_controller(host);
1938 if (ret) {
1939 dev_err(&pdev->dev, "failed to register SPI ctlr %d\n", ret);
1940 goto probe_setup_failed;
1941 }
1942
1943 pm_runtime_mark_last_busy(dev);
1944 pm_runtime_put_autosuspend(dev);
1945
1946 return 0;
1947 probe_setup_failed:
1948 cqspi_controller_enable(cqspi, 0);
1949 probe_reset_failed:
1950 if (cqspi->is_jh7110)
1951 cqspi_jh7110_disable_clk(pdev, cqspi);
1952 clk_disable_unprepare(cqspi->clk);
1953 probe_clk_failed:
1954 return ret;
1955 }
1956
cqspi_remove(struct platform_device * pdev)1957 static void cqspi_remove(struct platform_device *pdev)
1958 {
1959 struct cqspi_st *cqspi = platform_get_drvdata(pdev);
1960
1961 spi_unregister_controller(cqspi->host);
1962 cqspi_controller_enable(cqspi, 0);
1963
1964 if (cqspi->rx_chan)
1965 dma_release_channel(cqspi->rx_chan);
1966
1967 clk_disable_unprepare(cqspi->clk);
1968
1969 if (cqspi->is_jh7110)
1970 cqspi_jh7110_disable_clk(pdev, cqspi);
1971
1972 pm_runtime_put_sync(&pdev->dev);
1973 pm_runtime_disable(&pdev->dev);
1974 }
1975
cqspi_runtime_suspend(struct device * dev)1976 static int cqspi_runtime_suspend(struct device *dev)
1977 {
1978 struct cqspi_st *cqspi = dev_get_drvdata(dev);
1979
1980 cqspi_controller_enable(cqspi, 0);
1981 clk_disable_unprepare(cqspi->clk);
1982 return 0;
1983 }
1984
cqspi_runtime_resume(struct device * dev)1985 static int cqspi_runtime_resume(struct device *dev)
1986 {
1987 struct cqspi_st *cqspi = dev_get_drvdata(dev);
1988
1989 clk_prepare_enable(cqspi->clk);
1990 cqspi_wait_idle(cqspi);
1991 cqspi_controller_enable(cqspi, 0);
1992 cqspi_controller_init(cqspi);
1993 cqspi_controller_enable(cqspi, 1);
1994
1995 cqspi->current_cs = -1;
1996 cqspi->sclk = 0;
1997 return 0;
1998 }
1999
cqspi_suspend(struct device * dev)2000 static int cqspi_suspend(struct device *dev)
2001 {
2002 struct cqspi_st *cqspi = dev_get_drvdata(dev);
2003 int ret;
2004
2005 ret = spi_controller_suspend(cqspi->host);
2006 if (ret)
2007 return ret;
2008
2009 return pm_runtime_force_suspend(dev);
2010 }
2011
cqspi_resume(struct device * dev)2012 static int cqspi_resume(struct device *dev)
2013 {
2014 struct cqspi_st *cqspi = dev_get_drvdata(dev);
2015 int ret;
2016
2017 ret = pm_runtime_force_resume(dev);
2018 if (ret) {
2019 dev_err(dev, "pm_runtime_force_resume failed on resume\n");
2020 return ret;
2021 }
2022
2023 return spi_controller_resume(cqspi->host);
2024 }
2025
2026 static const struct dev_pm_ops cqspi_dev_pm_ops = {
2027 RUNTIME_PM_OPS(cqspi_runtime_suspend, cqspi_runtime_resume, NULL)
2028 SYSTEM_SLEEP_PM_OPS(cqspi_suspend, cqspi_resume)
2029 };
2030
2031 static const struct cqspi_driver_platdata cdns_qspi = {
2032 .quirks = CQSPI_DISABLE_DAC_MODE,
2033 };
2034
2035 static const struct cqspi_driver_platdata k2g_qspi = {
2036 .quirks = CQSPI_NEEDS_WR_DELAY,
2037 };
2038
2039 static const struct cqspi_driver_platdata am654_ospi = {
2040 .hwcaps_mask = CQSPI_SUPPORTS_OCTAL,
2041 .quirks = CQSPI_NEEDS_WR_DELAY,
2042 };
2043
2044 static const struct cqspi_driver_platdata intel_lgm_qspi = {
2045 .quirks = CQSPI_DISABLE_DAC_MODE,
2046 };
2047
2048 static const struct cqspi_driver_platdata socfpga_qspi = {
2049 .quirks = CQSPI_DISABLE_DAC_MODE
2050 | CQSPI_NO_SUPPORT_WR_COMPLETION
2051 | CQSPI_SLOW_SRAM
2052 | CQSPI_DISABLE_STIG_MODE,
2053 };
2054
2055 static const struct cqspi_driver_platdata versal_ospi = {
2056 .hwcaps_mask = CQSPI_SUPPORTS_OCTAL,
2057 .quirks = CQSPI_DISABLE_DAC_MODE | CQSPI_SUPPORT_EXTERNAL_DMA,
2058 .indirect_read_dma = cqspi_versal_indirect_read_dma,
2059 .get_dma_status = cqspi_get_versal_dma_status,
2060 };
2061
2062 static const struct cqspi_driver_platdata jh7110_qspi = {
2063 .quirks = CQSPI_DISABLE_DAC_MODE,
2064 .jh7110_clk_init = cqspi_jh7110_clk_init,
2065 };
2066
2067 static const struct cqspi_driver_platdata pensando_cdns_qspi = {
2068 .quirks = CQSPI_NEEDS_APB_AHB_HAZARD_WAR | CQSPI_DISABLE_DAC_MODE,
2069 };
2070
2071 static const struct cqspi_driver_platdata mobileye_eyeq5_ospi = {
2072 .hwcaps_mask = CQSPI_SUPPORTS_OCTAL,
2073 .quirks = CQSPI_DISABLE_DAC_MODE | CQSPI_NO_SUPPORT_WR_COMPLETION |
2074 CQSPI_RD_NO_IRQ,
2075 };
2076
2077 static const struct of_device_id cqspi_dt_ids[] = {
2078 {
2079 .compatible = "cdns,qspi-nor",
2080 .data = &cdns_qspi,
2081 },
2082 {
2083 .compatible = "ti,k2g-qspi",
2084 .data = &k2g_qspi,
2085 },
2086 {
2087 .compatible = "ti,am654-ospi",
2088 .data = &am654_ospi,
2089 },
2090 {
2091 .compatible = "intel,lgm-qspi",
2092 .data = &intel_lgm_qspi,
2093 },
2094 {
2095 .compatible = "xlnx,versal-ospi-1.0",
2096 .data = &versal_ospi,
2097 },
2098 {
2099 .compatible = "intel,socfpga-qspi",
2100 .data = &socfpga_qspi,
2101 },
2102 {
2103 .compatible = "starfive,jh7110-qspi",
2104 .data = &jh7110_qspi,
2105 },
2106 {
2107 .compatible = "amd,pensando-elba-qspi",
2108 .data = &pensando_cdns_qspi,
2109 },
2110 {
2111 .compatible = "mobileye,eyeq5-ospi",
2112 .data = &mobileye_eyeq5_ospi,
2113 },
2114 { /* end of table */ }
2115 };
2116
2117 MODULE_DEVICE_TABLE(of, cqspi_dt_ids);
2118
2119 static struct platform_driver cqspi_platform_driver = {
2120 .probe = cqspi_probe,
2121 .remove = cqspi_remove,
2122 .driver = {
2123 .name = CQSPI_NAME,
2124 .pm = pm_ptr(&cqspi_dev_pm_ops),
2125 .of_match_table = cqspi_dt_ids,
2126 },
2127 };
2128
2129 module_platform_driver(cqspi_platform_driver);
2130
2131 MODULE_DESCRIPTION("Cadence QSPI Controller Driver");
2132 MODULE_LICENSE("GPL v2");
2133 MODULE_ALIAS("platform:" CQSPI_NAME);
2134 MODULE_AUTHOR("Ley Foon Tan <lftan@altera.com>");
2135 MODULE_AUTHOR("Graham Moore <grmoore@opensource.altera.com>");
2136 MODULE_AUTHOR("Vadivel Murugan R <vadivel.muruganx.ramuthevar@intel.com>");
2137 MODULE_AUTHOR("Vignesh Raghavendra <vigneshr@ti.com>");
2138 MODULE_AUTHOR("Pratyush Yadav <p.yadav@ti.com>");
2139