1 // SPDX-License-Identifier: GPL-2.0-only 2 /* bpf/cpumap.c 3 * 4 * Copyright (c) 2017 Jesper Dangaard Brouer, Red Hat Inc. 5 */ 6 7 /** 8 * DOC: cpu map 9 * The 'cpumap' is primarily used as a backend map for XDP BPF helper 10 * call bpf_redirect_map() and XDP_REDIRECT action, like 'devmap'. 11 * 12 * Unlike devmap which redirects XDP frames out to another NIC device, 13 * this map type redirects raw XDP frames to another CPU. The remote 14 * CPU will do SKB-allocation and call the normal network stack. 15 */ 16 /* 17 * This is a scalability and isolation mechanism, that allow 18 * separating the early driver network XDP layer, from the rest of the 19 * netstack, and assigning dedicated CPUs for this stage. This 20 * basically allows for 10G wirespeed pre-filtering via bpf. 21 */ 22 #include <linux/bitops.h> 23 #include <linux/bpf.h> 24 #include <linux/filter.h> 25 #include <linux/ptr_ring.h> 26 #include <net/xdp.h> 27 #include <net/hotdata.h> 28 29 #include <linux/sched.h> 30 #include <linux/workqueue.h> 31 #include <linux/kthread.h> 32 #include <linux/completion.h> 33 #include <trace/events/xdp.h> 34 #include <linux/btf_ids.h> 35 36 #include <linux/netdevice.h> 37 #include <net/gro.h> 38 39 /* General idea: XDP packets getting XDP redirected to another CPU, 40 * will maximum be stored/queued for one driver ->poll() call. It is 41 * guaranteed that queueing the frame and the flush operation happen on 42 * same CPU. Thus, cpu_map_flush operation can deduct via this_cpu_ptr() 43 * which queue in bpf_cpu_map_entry contains packets. 44 */ 45 46 #define CPU_MAP_BULK_SIZE 8 /* 8 == one cacheline on 64-bit archs */ 47 struct bpf_cpu_map_entry; 48 struct bpf_cpu_map; 49 50 struct xdp_bulk_queue { 51 void *q[CPU_MAP_BULK_SIZE]; 52 struct list_head flush_node; 53 struct bpf_cpu_map_entry *obj; 54 unsigned int count; 55 }; 56 57 /* Struct for every remote "destination" CPU in map */ 58 struct bpf_cpu_map_entry { 59 u32 cpu; /* kthread CPU and map index */ 60 int map_id; /* Back reference to map */ 61 62 /* XDP can run multiple RX-ring queues, need __percpu enqueue store */ 63 struct xdp_bulk_queue __percpu *bulkq; 64 65 /* Queue with potential multi-producers, and single-consumer kthread */ 66 struct ptr_ring *queue; 67 struct task_struct *kthread; 68 69 struct bpf_cpumap_val value; 70 struct bpf_prog *prog; 71 struct gro_node gro; 72 73 struct completion kthread_running; 74 struct rcu_work free_work; 75 }; 76 77 struct bpf_cpu_map { 78 struct bpf_map map; 79 /* Below members specific for map type */ 80 struct bpf_cpu_map_entry __rcu **cpu_map; 81 }; 82 83 static struct bpf_map *cpu_map_alloc(union bpf_attr *attr) 84 { 85 u32 value_size = attr->value_size; 86 struct bpf_cpu_map *cmap; 87 88 /* check sanity of attributes */ 89 if (attr->max_entries == 0 || attr->key_size != 4 || 90 (value_size != offsetofend(struct bpf_cpumap_val, qsize) && 91 value_size != offsetofend(struct bpf_cpumap_val, bpf_prog.fd)) || 92 attr->map_flags & ~BPF_F_NUMA_NODE) 93 return ERR_PTR(-EINVAL); 94 95 /* Pre-limit array size based on NR_CPUS, not final CPU check */ 96 if (attr->max_entries > NR_CPUS) 97 return ERR_PTR(-E2BIG); 98 99 cmap = bpf_map_area_alloc(sizeof(*cmap), NUMA_NO_NODE); 100 if (!cmap) 101 return ERR_PTR(-ENOMEM); 102 103 bpf_map_init_from_attr(&cmap->map, attr); 104 105 /* Alloc array for possible remote "destination" CPUs */ 106 cmap->cpu_map = bpf_map_area_alloc(cmap->map.max_entries * 107 sizeof(struct bpf_cpu_map_entry *), 108 cmap->map.numa_node); 109 if (!cmap->cpu_map) { 110 bpf_map_area_free(cmap); 111 return ERR_PTR(-ENOMEM); 112 } 113 114 return &cmap->map; 115 } 116 117 static void __cpu_map_ring_cleanup(struct ptr_ring *ring) 118 { 119 /* The tear-down procedure should have made sure that queue is 120 * empty. See __cpu_map_entry_replace() and work-queue 121 * invoked cpu_map_kthread_stop(). Catch any broken behaviour 122 * gracefully and warn once. 123 */ 124 void *ptr; 125 126 while ((ptr = ptr_ring_consume(ring))) { 127 WARN_ON_ONCE(1); 128 if (unlikely(__ptr_test_bit(0, &ptr))) { 129 __ptr_clear_bit(0, &ptr); 130 kfree_skb(ptr); 131 continue; 132 } 133 xdp_return_frame(ptr); 134 } 135 } 136 137 static u32 cpu_map_bpf_prog_run_skb(struct bpf_cpu_map_entry *rcpu, 138 void **skbs, u32 skb_n, 139 struct xdp_cpumap_stats *stats) 140 { 141 struct xdp_buff xdp; 142 u32 act, pass = 0; 143 int err; 144 145 for (u32 i = 0; i < skb_n; i++) { 146 struct sk_buff *skb = skbs[i]; 147 148 act = bpf_prog_run_generic_xdp(skb, &xdp, rcpu->prog); 149 switch (act) { 150 case XDP_PASS: 151 skbs[pass++] = skb; 152 break; 153 case XDP_REDIRECT: 154 err = xdp_do_generic_redirect(skb->dev, skb, &xdp, 155 rcpu->prog); 156 if (unlikely(err)) { 157 kfree_skb(skb); 158 stats->drop++; 159 } else { 160 stats->redirect++; 161 } 162 break; 163 default: 164 bpf_warn_invalid_xdp_action(NULL, rcpu->prog, act); 165 fallthrough; 166 case XDP_ABORTED: 167 trace_xdp_exception(skb->dev, rcpu->prog, act); 168 fallthrough; 169 case XDP_DROP: 170 napi_consume_skb(skb, true); 171 stats->drop++; 172 break; 173 } 174 } 175 176 stats->pass += pass; 177 178 return pass; 179 } 180 181 static int cpu_map_bpf_prog_run_xdp(struct bpf_cpu_map_entry *rcpu, 182 void **frames, int n, 183 struct xdp_cpumap_stats *stats) 184 { 185 struct xdp_rxq_info rxq = {}; 186 struct xdp_buff xdp; 187 int i, nframes = 0; 188 189 xdp.rxq = &rxq; 190 191 for (i = 0; i < n; i++) { 192 struct xdp_frame *xdpf = frames[i]; 193 u32 act; 194 int err; 195 196 rxq.dev = xdpf->dev_rx; 197 rxq.mem.type = xdpf->mem_type; 198 /* TODO: report queue_index to xdp_rxq_info */ 199 200 xdp_convert_frame_to_buff(xdpf, &xdp); 201 202 act = bpf_prog_run_xdp(rcpu->prog, &xdp); 203 switch (act) { 204 case XDP_PASS: 205 err = xdp_update_frame_from_buff(&xdp, xdpf); 206 if (err < 0) { 207 xdp_return_frame(xdpf); 208 stats->drop++; 209 } else { 210 frames[nframes++] = xdpf; 211 } 212 break; 213 case XDP_REDIRECT: 214 err = xdp_do_redirect(xdpf->dev_rx, &xdp, 215 rcpu->prog); 216 if (unlikely(err)) { 217 xdp_return_frame(xdpf); 218 stats->drop++; 219 } else { 220 stats->redirect++; 221 } 222 break; 223 default: 224 bpf_warn_invalid_xdp_action(NULL, rcpu->prog, act); 225 fallthrough; 226 case XDP_DROP: 227 xdp_return_frame(xdpf); 228 stats->drop++; 229 break; 230 } 231 } 232 233 stats->pass += nframes; 234 235 return nframes; 236 } 237 238 #define CPUMAP_BATCH 8 239 240 struct cpu_map_ret { 241 u32 xdp_n; 242 u32 skb_n; 243 }; 244 245 static void cpu_map_bpf_prog_run(struct bpf_cpu_map_entry *rcpu, void **frames, 246 void **skbs, struct cpu_map_ret *ret, 247 struct xdp_cpumap_stats *stats) 248 { 249 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx; 250 251 if (!rcpu->prog) 252 goto out; 253 254 rcu_read_lock(); 255 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx); 256 xdp_set_return_frame_no_direct(); 257 258 ret->xdp_n = cpu_map_bpf_prog_run_xdp(rcpu, frames, ret->xdp_n, stats); 259 if (unlikely(ret->skb_n)) 260 ret->skb_n = cpu_map_bpf_prog_run_skb(rcpu, skbs, ret->skb_n, 261 stats); 262 263 if (stats->redirect) 264 xdp_do_flush(); 265 266 xdp_clear_return_frame_no_direct(); 267 bpf_net_ctx_clear(bpf_net_ctx); 268 rcu_read_unlock(); 269 270 out: 271 if (unlikely(ret->skb_n) && ret->xdp_n) 272 memmove(&skbs[ret->xdp_n], skbs, ret->skb_n * sizeof(*skbs)); 273 } 274 275 static void cpu_map_gro_flush(struct bpf_cpu_map_entry *rcpu, bool empty) 276 { 277 /* 278 * If the ring is not empty, there'll be a new iteration soon, and we 279 * only need to do a full flush if a tick is long (> 1 ms). 280 * If the ring is empty, to not hold GRO packets in the stack for too 281 * long, do a full flush. 282 * This is equivalent to how NAPI decides whether to perform a full 283 * flush. 284 */ 285 gro_flush_normal(&rcpu->gro, !empty && HZ >= 1000); 286 } 287 288 static int cpu_map_kthread_run(void *data) 289 { 290 struct bpf_cpu_map_entry *rcpu = data; 291 unsigned long last_qs = jiffies; 292 u32 packets = 0; 293 294 complete(&rcpu->kthread_running); 295 set_current_state(TASK_INTERRUPTIBLE); 296 297 /* When kthread gives stop order, then rcpu have been disconnected 298 * from map, thus no new packets can enter. Remaining in-flight 299 * per CPU stored packets are flushed to this queue. Wait honoring 300 * kthread_stop signal until queue is empty. 301 */ 302 while (!kthread_should_stop() || !__ptr_ring_empty(rcpu->queue)) { 303 struct xdp_cpumap_stats stats = {}; /* zero stats */ 304 unsigned int kmem_alloc_drops = 0, sched = 0; 305 struct cpu_map_ret ret = { }; 306 void *frames[CPUMAP_BATCH]; 307 void *skbs[CPUMAP_BATCH]; 308 u32 i, n, m; 309 bool empty; 310 311 /* Release CPU reschedule checks */ 312 if (__ptr_ring_empty(rcpu->queue)) { 313 set_current_state(TASK_INTERRUPTIBLE); 314 /* Recheck to avoid lost wake-up */ 315 if (__ptr_ring_empty(rcpu->queue)) { 316 schedule(); 317 sched = 1; 318 last_qs = jiffies; 319 } else { 320 __set_current_state(TASK_RUNNING); 321 } 322 } else { 323 rcu_softirq_qs_periodic(last_qs); 324 sched = cond_resched(); 325 } 326 327 /* 328 * The bpf_cpu_map_entry is single consumer, with this 329 * kthread CPU pinned. Lockless access to ptr_ring 330 * consume side valid as no-resize allowed of queue. 331 */ 332 n = __ptr_ring_consume_batched(rcpu->queue, frames, 333 CPUMAP_BATCH); 334 for (i = 0; i < n; i++) { 335 void *f = frames[i]; 336 struct page *page; 337 338 if (unlikely(__ptr_test_bit(0, &f))) { 339 struct sk_buff *skb = f; 340 341 __ptr_clear_bit(0, &skb); 342 skbs[ret.skb_n++] = skb; 343 continue; 344 } 345 346 frames[ret.xdp_n++] = f; 347 page = virt_to_page(f); 348 349 /* Bring struct page memory area to curr CPU. Read by 350 * build_skb_around via page_is_pfmemalloc(), and when 351 * freed written by page_frag_free call. 352 */ 353 prefetchw(page); 354 } 355 356 local_bh_disable(); 357 358 /* Support running another XDP prog on this CPU */ 359 cpu_map_bpf_prog_run(rcpu, frames, skbs, &ret, &stats); 360 if (!ret.xdp_n) 361 goto stats; 362 363 m = napi_skb_cache_get_bulk(skbs, ret.xdp_n); 364 if (unlikely(m < ret.xdp_n)) { 365 for (i = m; i < ret.xdp_n; i++) 366 xdp_return_frame(frames[i]); 367 368 if (ret.skb_n) 369 memmove(&skbs[m], &skbs[ret.xdp_n], 370 ret.skb_n * sizeof(*skbs)); 371 372 kmem_alloc_drops += ret.xdp_n - m; 373 ret.xdp_n = m; 374 } 375 376 for (i = 0; i < ret.xdp_n; i++) { 377 struct xdp_frame *xdpf = frames[i]; 378 379 /* Can fail only when !skb -- already handled above */ 380 __xdp_build_skb_from_frame(xdpf, skbs[i], xdpf->dev_rx); 381 } 382 383 stats: 384 /* Feedback loop via tracepoint. 385 * NB: keep before recv to allow measuring enqueue/dequeue latency. 386 */ 387 trace_xdp_cpumap_kthread(rcpu->map_id, n, kmem_alloc_drops, 388 sched, &stats); 389 390 for (i = 0; i < ret.xdp_n + ret.skb_n; i++) 391 gro_receive_skb(&rcpu->gro, skbs[i]); 392 393 /* Flush either every 64 packets or in case of empty ring */ 394 packets += n; 395 empty = __ptr_ring_empty(rcpu->queue); 396 if (packets >= NAPI_POLL_WEIGHT || empty) { 397 cpu_map_gro_flush(rcpu, empty); 398 packets = 0; 399 } 400 401 local_bh_enable(); /* resched point, may call do_softirq() */ 402 } 403 __set_current_state(TASK_RUNNING); 404 405 return 0; 406 } 407 408 static int __cpu_map_load_bpf_program(struct bpf_cpu_map_entry *rcpu, 409 struct bpf_map *map, int fd) 410 { 411 struct bpf_prog *prog; 412 413 prog = bpf_prog_get_type(fd, BPF_PROG_TYPE_XDP); 414 if (IS_ERR(prog)) 415 return PTR_ERR(prog); 416 417 if (prog->expected_attach_type != BPF_XDP_CPUMAP || 418 !bpf_prog_map_compatible(map, prog)) { 419 bpf_prog_put(prog); 420 return -EINVAL; 421 } 422 423 rcpu->value.bpf_prog.id = prog->aux->id; 424 rcpu->prog = prog; 425 426 return 0; 427 } 428 429 static struct bpf_cpu_map_entry * 430 __cpu_map_entry_alloc(struct bpf_map *map, struct bpf_cpumap_val *value, 431 u32 cpu) 432 { 433 int numa, err = -ENOMEM, i, fd = value->bpf_prog.fd; 434 gfp_t gfp = GFP_KERNEL | __GFP_NOWARN; 435 struct bpf_cpu_map_entry *rcpu; 436 struct xdp_bulk_queue *bq; 437 438 /* Have map->numa_node, but choose node of redirect target CPU */ 439 numa = cpu_to_node(cpu); 440 441 rcpu = bpf_map_kmalloc_node(map, sizeof(*rcpu), gfp | __GFP_ZERO, numa); 442 if (!rcpu) 443 return ERR_PTR(err); 444 445 /* Alloc percpu bulkq */ 446 rcpu->bulkq = bpf_map_alloc_percpu(map, sizeof(*rcpu->bulkq), 447 sizeof(void *), gfp); 448 if (!rcpu->bulkq) 449 goto free_rcu; 450 451 for_each_possible_cpu(i) { 452 bq = per_cpu_ptr(rcpu->bulkq, i); 453 bq->obj = rcpu; 454 } 455 456 /* Alloc queue */ 457 rcpu->queue = bpf_map_kmalloc_node(map, sizeof(*rcpu->queue), gfp, 458 numa); 459 if (!rcpu->queue) 460 goto free_bulkq; 461 462 err = ptr_ring_init(rcpu->queue, value->qsize, gfp); 463 if (err) 464 goto free_queue; 465 466 rcpu->cpu = cpu; 467 rcpu->map_id = map->id; 468 rcpu->value.qsize = value->qsize; 469 gro_init(&rcpu->gro); 470 471 if (fd > 0) { 472 err = __cpu_map_load_bpf_program(rcpu, map, fd); 473 if (err) 474 goto free_ptr_ring; 475 } 476 477 /* Setup kthread */ 478 init_completion(&rcpu->kthread_running); 479 rcpu->kthread = kthread_create_on_node(cpu_map_kthread_run, rcpu, numa, 480 "cpumap/%d/map:%d", cpu, 481 map->id); 482 if (IS_ERR(rcpu->kthread)) { 483 err = PTR_ERR(rcpu->kthread); 484 goto free_prog; 485 } 486 487 /* Make sure kthread runs on a single CPU */ 488 kthread_bind(rcpu->kthread, cpu); 489 wake_up_process(rcpu->kthread); 490 491 /* Make sure kthread has been running, so kthread_stop() will not 492 * stop the kthread prematurely and all pending frames or skbs 493 * will be handled by the kthread before kthread_stop() returns. 494 */ 495 wait_for_completion(&rcpu->kthread_running); 496 497 return rcpu; 498 499 free_prog: 500 if (rcpu->prog) 501 bpf_prog_put(rcpu->prog); 502 free_ptr_ring: 503 gro_cleanup(&rcpu->gro); 504 ptr_ring_cleanup(rcpu->queue, NULL); 505 free_queue: 506 kfree(rcpu->queue); 507 free_bulkq: 508 free_percpu(rcpu->bulkq); 509 free_rcu: 510 kfree(rcpu); 511 return ERR_PTR(err); 512 } 513 514 static void __cpu_map_entry_free(struct work_struct *work) 515 { 516 struct bpf_cpu_map_entry *rcpu; 517 518 /* This cpu_map_entry have been disconnected from map and one 519 * RCU grace-period have elapsed. Thus, XDP cannot queue any 520 * new packets and cannot change/set flush_needed that can 521 * find this entry. 522 */ 523 rcpu = container_of(to_rcu_work(work), struct bpf_cpu_map_entry, free_work); 524 525 /* kthread_stop will wake_up_process and wait for it to complete. 526 * cpu_map_kthread_run() makes sure the pointer ring is empty 527 * before exiting. 528 */ 529 kthread_stop(rcpu->kthread); 530 531 if (rcpu->prog) 532 bpf_prog_put(rcpu->prog); 533 gro_cleanup(&rcpu->gro); 534 /* The queue should be empty at this point */ 535 __cpu_map_ring_cleanup(rcpu->queue); 536 ptr_ring_cleanup(rcpu->queue, NULL); 537 kfree(rcpu->queue); 538 free_percpu(rcpu->bulkq); 539 kfree(rcpu); 540 } 541 542 /* After the xchg of the bpf_cpu_map_entry pointer, we need to make sure the old 543 * entry is no longer in use before freeing. We use queue_rcu_work() to call 544 * __cpu_map_entry_free() in a separate workqueue after waiting for an RCU grace 545 * period. This means that (a) all pending enqueue and flush operations have 546 * completed (because of the RCU callback), and (b) we are in a workqueue 547 * context where we can stop the kthread and wait for it to exit before freeing 548 * everything. 549 */ 550 static void __cpu_map_entry_replace(struct bpf_cpu_map *cmap, 551 u32 key_cpu, struct bpf_cpu_map_entry *rcpu) 552 { 553 struct bpf_cpu_map_entry *old_rcpu; 554 555 old_rcpu = unrcu_pointer(xchg(&cmap->cpu_map[key_cpu], RCU_INITIALIZER(rcpu))); 556 if (old_rcpu) { 557 INIT_RCU_WORK(&old_rcpu->free_work, __cpu_map_entry_free); 558 queue_rcu_work(system_percpu_wq, &old_rcpu->free_work); 559 } 560 } 561 562 static long cpu_map_delete_elem(struct bpf_map *map, void *key) 563 { 564 struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map); 565 u32 key_cpu = *(u32 *)key; 566 567 if (key_cpu >= map->max_entries) 568 return -EINVAL; 569 570 /* notice caller map_delete_elem() uses rcu_read_lock() */ 571 __cpu_map_entry_replace(cmap, key_cpu, NULL); 572 return 0; 573 } 574 575 static long cpu_map_update_elem(struct bpf_map *map, void *key, void *value, 576 u64 map_flags) 577 { 578 struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map); 579 struct bpf_cpumap_val cpumap_value = {}; 580 struct bpf_cpu_map_entry *rcpu; 581 /* Array index key correspond to CPU number */ 582 u32 key_cpu = *(u32 *)key; 583 584 memcpy(&cpumap_value, value, map->value_size); 585 586 if (unlikely(map_flags > BPF_EXIST)) 587 return -EINVAL; 588 if (unlikely(key_cpu >= cmap->map.max_entries)) 589 return -E2BIG; 590 if (unlikely(map_flags == BPF_NOEXIST)) 591 return -EEXIST; 592 if (unlikely(cpumap_value.qsize > 16384)) /* sanity limit on qsize */ 593 return -EOVERFLOW; 594 595 /* Make sure CPU is a valid possible cpu */ 596 if (key_cpu >= nr_cpumask_bits || !cpu_possible(key_cpu)) 597 return -ENODEV; 598 599 if (cpumap_value.qsize == 0) { 600 rcpu = NULL; /* Same as deleting */ 601 } else { 602 /* Updating qsize cause re-allocation of bpf_cpu_map_entry */ 603 rcpu = __cpu_map_entry_alloc(map, &cpumap_value, key_cpu); 604 if (IS_ERR(rcpu)) 605 return PTR_ERR(rcpu); 606 } 607 rcu_read_lock(); 608 __cpu_map_entry_replace(cmap, key_cpu, rcpu); 609 rcu_read_unlock(); 610 return 0; 611 } 612 613 static void cpu_map_free(struct bpf_map *map) 614 { 615 struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map); 616 u32 i; 617 618 /* At this point bpf_prog->aux->refcnt == 0 and this map->refcnt == 0, 619 * so the bpf programs (can be more than one that used this map) were 620 * disconnected from events. Wait for outstanding critical sections in 621 * these programs to complete. synchronize_rcu() below not only 622 * guarantees no further "XDP/bpf-side" reads against 623 * bpf_cpu_map->cpu_map, but also ensure pending flush operations 624 * (if any) are completed. 625 */ 626 synchronize_rcu(); 627 628 /* The only possible user of bpf_cpu_map_entry is 629 * cpu_map_kthread_run(). 630 */ 631 for (i = 0; i < cmap->map.max_entries; i++) { 632 struct bpf_cpu_map_entry *rcpu; 633 634 rcpu = rcu_dereference_raw(cmap->cpu_map[i]); 635 if (!rcpu) 636 continue; 637 638 /* Stop kthread and cleanup entry directly */ 639 __cpu_map_entry_free(&rcpu->free_work.work); 640 } 641 bpf_map_area_free(cmap->cpu_map); 642 bpf_map_area_free(cmap); 643 } 644 645 /* Elements are kept alive by RCU; either by rcu_read_lock() (from syscall) or 646 * by local_bh_disable() (from XDP calls inside NAPI). The 647 * rcu_read_lock_bh_held() below makes lockdep accept both. 648 */ 649 static void *__cpu_map_lookup_elem(struct bpf_map *map, u32 key) 650 { 651 struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map); 652 struct bpf_cpu_map_entry *rcpu; 653 654 if (key >= map->max_entries) 655 return NULL; 656 657 rcpu = rcu_dereference_check(cmap->cpu_map[key], 658 rcu_read_lock_bh_held()); 659 return rcpu; 660 } 661 662 static void *cpu_map_lookup_elem(struct bpf_map *map, void *key) 663 { 664 struct bpf_cpu_map_entry *rcpu = 665 __cpu_map_lookup_elem(map, *(u32 *)key); 666 667 return rcpu ? &rcpu->value : NULL; 668 } 669 670 static int cpu_map_get_next_key(struct bpf_map *map, void *key, void *next_key) 671 { 672 struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map); 673 u32 index = key ? *(u32 *)key : U32_MAX; 674 u32 *next = next_key; 675 676 if (index >= cmap->map.max_entries) { 677 *next = 0; 678 return 0; 679 } 680 681 if (index == cmap->map.max_entries - 1) 682 return -ENOENT; 683 *next = index + 1; 684 return 0; 685 } 686 687 static long cpu_map_redirect(struct bpf_map *map, u64 index, u64 flags) 688 { 689 return __bpf_xdp_redirect_map(map, index, flags, 0, 690 __cpu_map_lookup_elem); 691 } 692 693 static u64 cpu_map_mem_usage(const struct bpf_map *map) 694 { 695 u64 usage = sizeof(struct bpf_cpu_map); 696 697 /* Currently the dynamically allocated elements are not counted */ 698 usage += (u64)map->max_entries * sizeof(struct bpf_cpu_map_entry *); 699 return usage; 700 } 701 702 BTF_ID_LIST_SINGLE(cpu_map_btf_ids, struct, bpf_cpu_map) 703 const struct bpf_map_ops cpu_map_ops = { 704 .map_meta_equal = bpf_map_meta_equal, 705 .map_alloc = cpu_map_alloc, 706 .map_free = cpu_map_free, 707 .map_delete_elem = cpu_map_delete_elem, 708 .map_update_elem = cpu_map_update_elem, 709 .map_lookup_elem = cpu_map_lookup_elem, 710 .map_get_next_key = cpu_map_get_next_key, 711 .map_check_btf = map_check_no_btf, 712 .map_mem_usage = cpu_map_mem_usage, 713 .map_btf_id = &cpu_map_btf_ids[0], 714 .map_redirect = cpu_map_redirect, 715 }; 716 717 static void bq_flush_to_queue(struct xdp_bulk_queue *bq) 718 { 719 struct bpf_cpu_map_entry *rcpu = bq->obj; 720 unsigned int processed = 0, drops = 0; 721 const int to_cpu = rcpu->cpu; 722 struct ptr_ring *q; 723 int i; 724 725 if (unlikely(!bq->count)) 726 return; 727 728 q = rcpu->queue; 729 spin_lock(&q->producer_lock); 730 731 for (i = 0; i < bq->count; i++) { 732 struct xdp_frame *xdpf = bq->q[i]; 733 int err; 734 735 err = __ptr_ring_produce(q, xdpf); 736 if (err) { 737 drops++; 738 xdp_return_frame_rx_napi(xdpf); 739 } 740 processed++; 741 } 742 bq->count = 0; 743 spin_unlock(&q->producer_lock); 744 745 __list_del_clearprev(&bq->flush_node); 746 747 /* Feedback loop via tracepoints */ 748 trace_xdp_cpumap_enqueue(rcpu->map_id, processed, drops, to_cpu); 749 } 750 751 /* Runs under RCU-read-side, plus in softirq under NAPI protection. 752 * Thus, safe percpu variable access. 753 */ 754 static void bq_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_frame *xdpf) 755 { 756 struct xdp_bulk_queue *bq = this_cpu_ptr(rcpu->bulkq); 757 758 if (unlikely(bq->count == CPU_MAP_BULK_SIZE)) 759 bq_flush_to_queue(bq); 760 761 /* Notice, xdp_buff/page MUST be queued here, long enough for 762 * driver to code invoking us to finished, due to driver 763 * (e.g. ixgbe) recycle tricks based on page-refcnt. 764 * 765 * Thus, incoming xdp_frame is always queued here (else we race 766 * with another CPU on page-refcnt and remaining driver code). 767 * Queue time is very short, as driver will invoke flush 768 * operation, when completing napi->poll call. 769 */ 770 bq->q[bq->count++] = xdpf; 771 772 if (!bq->flush_node.prev) { 773 struct list_head *flush_list = bpf_net_ctx_get_cpu_map_flush_list(); 774 775 list_add(&bq->flush_node, flush_list); 776 } 777 } 778 779 int cpu_map_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_frame *xdpf, 780 struct net_device *dev_rx) 781 { 782 /* Info needed when constructing SKB on remote CPU */ 783 xdpf->dev_rx = dev_rx; 784 785 bq_enqueue(rcpu, xdpf); 786 return 0; 787 } 788 789 int cpu_map_generic_redirect(struct bpf_cpu_map_entry *rcpu, 790 struct sk_buff *skb) 791 { 792 int ret; 793 794 __skb_pull(skb, skb->mac_len); 795 skb_set_redirected(skb, false); 796 __ptr_set_bit(0, &skb); 797 798 ret = ptr_ring_produce(rcpu->queue, skb); 799 if (ret < 0) 800 goto trace; 801 802 wake_up_process(rcpu->kthread); 803 trace: 804 trace_xdp_cpumap_enqueue(rcpu->map_id, !ret, !!ret, rcpu->cpu); 805 return ret; 806 } 807 808 void __cpu_map_flush(struct list_head *flush_list) 809 { 810 struct xdp_bulk_queue *bq, *tmp; 811 812 list_for_each_entry_safe(bq, tmp, flush_list, flush_node) { 813 bq_flush_to_queue(bq); 814 815 /* If already running, costs spin_lock_irqsave + smb_mb */ 816 wake_up_process(bq->obj->kthread); 817 } 818 } 819