1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3 * Kernel-based Virtual Machine driver for Linux
4 *
5 * This header defines architecture specific interfaces, x86 version
6 */
7
8 #ifndef _ASM_X86_KVM_HOST_H
9 #define _ASM_X86_KVM_HOST_H
10
11 #include <linux/types.h>
12 #include <linux/mm.h>
13 #include <linux/mmu_notifier.h>
14 #include <linux/tracepoint.h>
15 #include <linux/cpumask.h>
16 #include <linux/irq_work.h>
17 #include <linux/irq.h>
18 #include <linux/workqueue.h>
19
20 #include <linux/kvm.h>
21 #include <linux/kvm_para.h>
22 #include <linux/kvm_types.h>
23 #include <linux/perf_event.h>
24 #include <linux/pvclock_gtod.h>
25 #include <linux/clocksource.h>
26 #include <linux/irqbypass.h>
27 #include <linux/kfifo.h>
28 #include <linux/sched/vhost_task.h>
29 #include <linux/call_once.h>
30 #include <linux/atomic.h>
31
32 #include <asm/apic.h>
33 #include <asm/pvclock-abi.h>
34 #include <asm/debugreg.h>
35 #include <asm/desc.h>
36 #include <asm/mtrr.h>
37 #include <asm/msr-index.h>
38 #include <asm/msr.h>
39 #include <asm/asm.h>
40 #include <asm/irq_remapping.h>
41 #include <asm/kvm_page_track.h>
42 #include <asm/kvm_vcpu_regs.h>
43 #include <asm/reboot.h>
44 #include <hyperv/hvhdk.h>
45
46 #define __KVM_HAVE_ARCH_VCPU_DEBUGFS
47
48 /*
49 * CONFIG_KVM_MAX_NR_VCPUS is defined iff CONFIG_KVM!=n, provide a dummy max if
50 * KVM is disabled (arbitrarily use the default from CONFIG_KVM_MAX_NR_VCPUS).
51 */
52 #ifdef CONFIG_KVM_MAX_NR_VCPUS
53 #define KVM_MAX_VCPUS CONFIG_KVM_MAX_NR_VCPUS
54 #else
55 #define KVM_MAX_VCPUS 1024
56 #endif
57
58 /*
59 * In x86, the VCPU ID corresponds to the APIC ID, and APIC IDs
60 * might be larger than the actual number of VCPUs because the
61 * APIC ID encodes CPU topology information.
62 *
63 * In the worst case, we'll need less than one extra bit for the
64 * Core ID, and less than one extra bit for the Package (Die) ID,
65 * so ratio of 4 should be enough.
66 */
67 #define KVM_VCPU_ID_RATIO 4
68 #define KVM_MAX_VCPU_IDS (KVM_MAX_VCPUS * KVM_VCPU_ID_RATIO)
69
70 /* memory slots that are not exposed to userspace */
71 #define KVM_INTERNAL_MEM_SLOTS 3
72
73 #define KVM_HALT_POLL_NS_DEFAULT 200000
74
75 #define KVM_IRQCHIP_NUM_PINS KVM_IOAPIC_NUM_PINS
76
77 #define KVM_DIRTY_LOG_MANUAL_CAPS (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE | \
78 KVM_DIRTY_LOG_INITIALLY_SET)
79
80 #define KVM_BUS_LOCK_DETECTION_VALID_MODE (KVM_BUS_LOCK_DETECTION_OFF | \
81 KVM_BUS_LOCK_DETECTION_EXIT)
82
83 #define KVM_X86_NOTIFY_VMEXIT_VALID_BITS (KVM_X86_NOTIFY_VMEXIT_ENABLED | \
84 KVM_X86_NOTIFY_VMEXIT_USER)
85
86 /* x86-specific vcpu->requests bit members */
87 #define KVM_REQ_MIGRATE_TIMER KVM_ARCH_REQ(0)
88 #define KVM_REQ_REPORT_TPR_ACCESS KVM_ARCH_REQ(1)
89 #define KVM_REQ_TRIPLE_FAULT KVM_ARCH_REQ(2)
90 #define KVM_REQ_MMU_SYNC KVM_ARCH_REQ(3)
91 #define KVM_REQ_CLOCK_UPDATE KVM_ARCH_REQ(4)
92 #define KVM_REQ_LOAD_MMU_PGD KVM_ARCH_REQ(5)
93 #define KVM_REQ_EVENT KVM_ARCH_REQ(6)
94 #define KVM_REQ_APF_HALT KVM_ARCH_REQ(7)
95 #define KVM_REQ_STEAL_UPDATE KVM_ARCH_REQ(8)
96 #define KVM_REQ_NMI KVM_ARCH_REQ(9)
97 #define KVM_REQ_PMU KVM_ARCH_REQ(10)
98 #define KVM_REQ_PMI KVM_ARCH_REQ(11)
99 #ifdef CONFIG_KVM_SMM
100 #define KVM_REQ_SMI KVM_ARCH_REQ(12)
101 #endif
102 #define KVM_REQ_MASTERCLOCK_UPDATE KVM_ARCH_REQ(13)
103 #define KVM_REQ_MCLOCK_INPROGRESS \
104 KVM_ARCH_REQ_FLAGS(14, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
105 #define KVM_REQ_SCAN_IOAPIC \
106 KVM_ARCH_REQ_FLAGS(15, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
107 #define KVM_REQ_GLOBAL_CLOCK_UPDATE KVM_ARCH_REQ(16)
108 #define KVM_REQ_APIC_PAGE_RELOAD \
109 KVM_ARCH_REQ_FLAGS(17, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
110 #define KVM_REQ_HV_CRASH KVM_ARCH_REQ(18)
111 #define KVM_REQ_IOAPIC_EOI_EXIT KVM_ARCH_REQ(19)
112 #define KVM_REQ_HV_RESET KVM_ARCH_REQ(20)
113 #define KVM_REQ_HV_EXIT KVM_ARCH_REQ(21)
114 #define KVM_REQ_HV_STIMER KVM_ARCH_REQ(22)
115 #define KVM_REQ_LOAD_EOI_EXITMAP KVM_ARCH_REQ(23)
116 #define KVM_REQ_GET_NESTED_STATE_PAGES KVM_ARCH_REQ(24)
117 #define KVM_REQ_APICV_UPDATE \
118 KVM_ARCH_REQ_FLAGS(25, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
119 #define KVM_REQ_TLB_FLUSH_CURRENT KVM_ARCH_REQ(26)
120 #define KVM_REQ_TLB_FLUSH_GUEST \
121 KVM_ARCH_REQ_FLAGS(27, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
122 #define KVM_REQ_APF_READY KVM_ARCH_REQ(28)
123 #define KVM_REQ_MSR_FILTER_CHANGED KVM_ARCH_REQ(29)
124 #define KVM_REQ_UPDATE_CPU_DIRTY_LOGGING \
125 KVM_ARCH_REQ_FLAGS(30, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
126 #define KVM_REQ_MMU_FREE_OBSOLETE_ROOTS \
127 KVM_ARCH_REQ_FLAGS(31, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
128 #define KVM_REQ_HV_TLB_FLUSH \
129 KVM_ARCH_REQ_FLAGS(32, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
130 #define KVM_REQ_UPDATE_PROTECTED_GUEST_STATE \
131 KVM_ARCH_REQ_FLAGS(34, KVM_REQUEST_WAIT)
132
133 #define CR0_RESERVED_BITS \
134 (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
135 | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
136 | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
137
138 #define CR4_RESERVED_BITS \
139 (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
140 | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
141 | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR | X86_CR4_PCIDE \
142 | X86_CR4_OSXSAVE | X86_CR4_SMEP | X86_CR4_FSGSBASE \
143 | X86_CR4_OSXMMEXCPT | X86_CR4_LA57 | X86_CR4_VMXE \
144 | X86_CR4_SMAP | X86_CR4_PKE | X86_CR4_UMIP \
145 | X86_CR4_LAM_SUP))
146
147 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
148
149
150
151 #define INVALID_PAGE (~(hpa_t)0)
152 #define VALID_PAGE(x) ((x) != INVALID_PAGE)
153
154 /* KVM Hugepage definitions for x86 */
155 #define KVM_MAX_HUGEPAGE_LEVEL PG_LEVEL_1G
156 #define KVM_NR_PAGE_SIZES (KVM_MAX_HUGEPAGE_LEVEL - PG_LEVEL_4K + 1)
157 #define KVM_HPAGE_GFN_SHIFT(x) (((x) - 1) * 9)
158 #define KVM_HPAGE_SHIFT(x) (PAGE_SHIFT + KVM_HPAGE_GFN_SHIFT(x))
159 #define KVM_HPAGE_SIZE(x) (1UL << KVM_HPAGE_SHIFT(x))
160 #define KVM_HPAGE_MASK(x) (~(KVM_HPAGE_SIZE(x) - 1))
161 #define KVM_PAGES_PER_HPAGE(x) (KVM_HPAGE_SIZE(x) / PAGE_SIZE)
162
163 #define KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO 50
164 #define KVM_MIN_ALLOC_MMU_PAGES 64UL
165 #define KVM_MMU_HASH_SHIFT 12
166 #define KVM_NUM_MMU_PAGES (1 << KVM_MMU_HASH_SHIFT)
167 #define KVM_MIN_FREE_MMU_PAGES 5
168 #define KVM_REFILL_PAGES 25
169 #define KVM_MAX_CPUID_ENTRIES 256
170 #define KVM_NR_VAR_MTRR 8
171
172 #define ASYNC_PF_PER_VCPU 64
173
174 enum kvm_reg {
175 VCPU_REGS_RAX = __VCPU_REGS_RAX,
176 VCPU_REGS_RCX = __VCPU_REGS_RCX,
177 VCPU_REGS_RDX = __VCPU_REGS_RDX,
178 VCPU_REGS_RBX = __VCPU_REGS_RBX,
179 VCPU_REGS_RSP = __VCPU_REGS_RSP,
180 VCPU_REGS_RBP = __VCPU_REGS_RBP,
181 VCPU_REGS_RSI = __VCPU_REGS_RSI,
182 VCPU_REGS_RDI = __VCPU_REGS_RDI,
183 #ifdef CONFIG_X86_64
184 VCPU_REGS_R8 = __VCPU_REGS_R8,
185 VCPU_REGS_R9 = __VCPU_REGS_R9,
186 VCPU_REGS_R10 = __VCPU_REGS_R10,
187 VCPU_REGS_R11 = __VCPU_REGS_R11,
188 VCPU_REGS_R12 = __VCPU_REGS_R12,
189 VCPU_REGS_R13 = __VCPU_REGS_R13,
190 VCPU_REGS_R14 = __VCPU_REGS_R14,
191 VCPU_REGS_R15 = __VCPU_REGS_R15,
192 #endif
193 VCPU_REGS_RIP,
194 NR_VCPU_REGS,
195
196 VCPU_EXREG_PDPTR = NR_VCPU_REGS,
197 VCPU_EXREG_CR0,
198 VCPU_EXREG_CR3,
199 VCPU_EXREG_CR4,
200 VCPU_EXREG_RFLAGS,
201 VCPU_EXREG_SEGMENTS,
202 VCPU_EXREG_EXIT_INFO_1,
203 VCPU_EXREG_EXIT_INFO_2,
204 };
205
206 enum {
207 VCPU_SREG_ES,
208 VCPU_SREG_CS,
209 VCPU_SREG_SS,
210 VCPU_SREG_DS,
211 VCPU_SREG_FS,
212 VCPU_SREG_GS,
213 VCPU_SREG_TR,
214 VCPU_SREG_LDTR,
215 };
216
217 enum exit_fastpath_completion {
218 EXIT_FASTPATH_NONE,
219 EXIT_FASTPATH_REENTER_GUEST,
220 EXIT_FASTPATH_EXIT_HANDLED,
221 EXIT_FASTPATH_EXIT_USERSPACE,
222 };
223 typedef enum exit_fastpath_completion fastpath_t;
224
225 struct x86_emulate_ctxt;
226 struct x86_exception;
227 union kvm_smram;
228 enum x86_intercept;
229 enum x86_intercept_stage;
230
231 #define KVM_NR_DB_REGS 4
232
233 #define DR6_BUS_LOCK (1 << 11)
234 #define DR6_BD (1 << 13)
235 #define DR6_BS (1 << 14)
236 #define DR6_BT (1 << 15)
237 #define DR6_RTM (1 << 16)
238 /*
239 * DR6_ACTIVE_LOW combines fixed-1 and active-low bits.
240 * We can regard all the bits in DR6_FIXED_1 as active_low bits;
241 * they will never be 0 for now, but when they are defined
242 * in the future it will require no code change.
243 *
244 * DR6_ACTIVE_LOW is also used as the init/reset value for DR6.
245 */
246 #define DR6_ACTIVE_LOW 0xffff0ff0
247 #define DR6_VOLATILE 0x0001e80f
248 #define DR6_FIXED_1 (DR6_ACTIVE_LOW & ~DR6_VOLATILE)
249
250 #define DR7_BP_EN_MASK 0x000000ff
251 #define DR7_GE (1 << 9)
252 #define DR7_GD (1 << 13)
253 #define DR7_VOLATILE 0xffff2bff
254
255 #define KVM_GUESTDBG_VALID_MASK \
256 (KVM_GUESTDBG_ENABLE | \
257 KVM_GUESTDBG_SINGLESTEP | \
258 KVM_GUESTDBG_USE_HW_BP | \
259 KVM_GUESTDBG_USE_SW_BP | \
260 KVM_GUESTDBG_INJECT_BP | \
261 KVM_GUESTDBG_INJECT_DB | \
262 KVM_GUESTDBG_BLOCKIRQ)
263
264 #define PFERR_PRESENT_MASK BIT(0)
265 #define PFERR_WRITE_MASK BIT(1)
266 #define PFERR_USER_MASK BIT(2)
267 #define PFERR_RSVD_MASK BIT(3)
268 #define PFERR_FETCH_MASK BIT(4)
269 #define PFERR_PK_MASK BIT(5)
270 #define PFERR_SGX_MASK BIT(15)
271 #define PFERR_GUEST_RMP_MASK BIT_ULL(31)
272 #define PFERR_GUEST_FINAL_MASK BIT_ULL(32)
273 #define PFERR_GUEST_PAGE_MASK BIT_ULL(33)
274 #define PFERR_GUEST_ENC_MASK BIT_ULL(34)
275 #define PFERR_GUEST_SIZEM_MASK BIT_ULL(35)
276 #define PFERR_GUEST_VMPL_MASK BIT_ULL(36)
277
278 /*
279 * IMPLICIT_ACCESS is a KVM-defined flag used to correctly perform SMAP checks
280 * when emulating instructions that triggers implicit access.
281 */
282 #define PFERR_IMPLICIT_ACCESS BIT_ULL(48)
283 /*
284 * PRIVATE_ACCESS is a KVM-defined flag us to indicate that a fault occurred
285 * when the guest was accessing private memory.
286 */
287 #define PFERR_PRIVATE_ACCESS BIT_ULL(49)
288 #define PFERR_SYNTHETIC_MASK (PFERR_IMPLICIT_ACCESS | PFERR_PRIVATE_ACCESS)
289
290 /* apic attention bits */
291 #define KVM_APIC_CHECK_VAPIC 0
292 /*
293 * The following bit is set with PV-EOI, unset on EOI.
294 * We detect PV-EOI changes by guest by comparing
295 * this bit with PV-EOI in guest memory.
296 * See the implementation in apic_update_pv_eoi.
297 */
298 #define KVM_APIC_PV_EOI_PENDING 1
299
300 struct kvm_kernel_irqfd;
301 struct kvm_kernel_irq_routing_entry;
302
303 /*
304 * kvm_mmu_page_role tracks the properties of a shadow page (where shadow page
305 * also includes TDP pages) to determine whether or not a page can be used in
306 * the given MMU context. This is a subset of the overall kvm_cpu_role to
307 * minimize the size of kvm_memory_slot.arch.gfn_write_track, i.e. allows
308 * allocating 2 bytes per gfn instead of 4 bytes per gfn.
309 *
310 * Upper-level shadow pages having gptes are tracked for write-protection via
311 * gfn_write_track. As above, gfn_write_track is a 16 bit counter, so KVM must
312 * not create more than 2^16-1 upper-level shadow pages at a single gfn,
313 * otherwise gfn_write_track will overflow and explosions will ensue.
314 *
315 * A unique shadow page (SP) for a gfn is created if and only if an existing SP
316 * cannot be reused. The ability to reuse a SP is tracked by its role, which
317 * incorporates various mode bits and properties of the SP. Roughly speaking,
318 * the number of unique SPs that can theoretically be created is 2^n, where n
319 * is the number of bits that are used to compute the role.
320 *
321 * But, even though there are 20 bits in the mask below, not all combinations
322 * of modes and flags are possible:
323 *
324 * - invalid shadow pages are not accounted, mirror pages are not shadowed,
325 * so the bits are effectively 18.
326 *
327 * - quadrant will only be used if has_4_byte_gpte=1 (non-PAE paging);
328 * execonly and ad_disabled are only used for nested EPT which has
329 * has_4_byte_gpte=0. Therefore, 2 bits are always unused.
330 *
331 * - the 4 bits of level are effectively limited to the values 2/3/4/5,
332 * as 4k SPs are not tracked (allowed to go unsync). In addition non-PAE
333 * paging has exactly one upper level, making level completely redundant
334 * when has_4_byte_gpte=1.
335 *
336 * - on top of this, smep_andnot_wp and smap_andnot_wp are only set if
337 * cr0_wp=0, therefore these three bits only give rise to 5 possibilities.
338 *
339 * Therefore, the maximum number of possible upper-level shadow pages for a
340 * single gfn is a bit less than 2^13.
341 */
342 union kvm_mmu_page_role {
343 u32 word;
344 struct {
345 unsigned level:4;
346 unsigned has_4_byte_gpte:1;
347 unsigned quadrant:2;
348 unsigned direct:1;
349 unsigned access:3;
350 unsigned invalid:1;
351 unsigned efer_nx:1;
352 unsigned cr0_wp:1;
353 unsigned smep_andnot_wp:1;
354 unsigned smap_andnot_wp:1;
355 unsigned ad_disabled:1;
356 unsigned guest_mode:1;
357 unsigned passthrough:1;
358 unsigned is_mirror:1;
359 unsigned :4;
360
361 /*
362 * This is left at the top of the word so that
363 * kvm_memslots_for_spte_role can extract it with a
364 * simple shift. While there is room, give it a whole
365 * byte so it is also faster to load it from memory.
366 */
367 unsigned smm:8;
368 };
369 };
370
371 /*
372 * kvm_mmu_extended_role complements kvm_mmu_page_role, tracking properties
373 * relevant to the current MMU configuration. When loading CR0, CR4, or EFER,
374 * including on nested transitions, if nothing in the full role changes then
375 * MMU re-configuration can be skipped. @valid bit is set on first usage so we
376 * don't treat all-zero structure as valid data.
377 *
378 * The properties that are tracked in the extended role but not the page role
379 * are for things that either (a) do not affect the validity of the shadow page
380 * or (b) are indirectly reflected in the shadow page's role. For example,
381 * CR4.PKE only affects permission checks for software walks of the guest page
382 * tables (because KVM doesn't support Protection Keys with shadow paging), and
383 * CR0.PG, CR4.PAE, and CR4.PSE are indirectly reflected in role.level.
384 *
385 * Note, SMEP and SMAP are not redundant with sm*p_andnot_wp in the page role.
386 * If CR0.WP=1, KVM can reuse shadow pages for the guest regardless of SMEP and
387 * SMAP, but the MMU's permission checks for software walks need to be SMEP and
388 * SMAP aware regardless of CR0.WP.
389 */
390 union kvm_mmu_extended_role {
391 u32 word;
392 struct {
393 unsigned int valid:1;
394 unsigned int execonly:1;
395 unsigned int cr4_pse:1;
396 unsigned int cr4_pke:1;
397 unsigned int cr4_smap:1;
398 unsigned int cr4_smep:1;
399 unsigned int cr4_la57:1;
400 unsigned int efer_lma:1;
401 };
402 };
403
404 union kvm_cpu_role {
405 u64 as_u64;
406 struct {
407 union kvm_mmu_page_role base;
408 union kvm_mmu_extended_role ext;
409 };
410 };
411
412 struct kvm_rmap_head {
413 atomic_long_t val;
414 };
415
416 struct kvm_pio_request {
417 unsigned long count;
418 int in;
419 int port;
420 int size;
421 };
422
423 #define PT64_ROOT_MAX_LEVEL 5
424
425 struct rsvd_bits_validate {
426 u64 rsvd_bits_mask[2][PT64_ROOT_MAX_LEVEL];
427 u64 bad_mt_xwr;
428 };
429
430 struct kvm_mmu_root_info {
431 gpa_t pgd;
432 hpa_t hpa;
433 };
434
435 #define KVM_MMU_ROOT_INFO_INVALID \
436 ((struct kvm_mmu_root_info) { .pgd = INVALID_PAGE, .hpa = INVALID_PAGE })
437
438 #define KVM_MMU_NUM_PREV_ROOTS 3
439
440 #define KVM_MMU_ROOT_CURRENT BIT(0)
441 #define KVM_MMU_ROOT_PREVIOUS(i) BIT(1+i)
442 #define KVM_MMU_ROOTS_ALL (BIT(1 + KVM_MMU_NUM_PREV_ROOTS) - 1)
443
444 #define KVM_HAVE_MMU_RWLOCK
445
446 struct kvm_mmu_page;
447 struct kvm_page_fault;
448
449 /*
450 * x86 supports 4 paging modes (5-level 64-bit, 4-level 64-bit, 3-level 32-bit,
451 * and 2-level 32-bit). The kvm_mmu structure abstracts the details of the
452 * current mmu mode.
453 */
454 struct kvm_mmu {
455 unsigned long (*get_guest_pgd)(struct kvm_vcpu *vcpu);
456 u64 (*get_pdptr)(struct kvm_vcpu *vcpu, int index);
457 int (*page_fault)(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault);
458 void (*inject_page_fault)(struct kvm_vcpu *vcpu,
459 struct x86_exception *fault);
460 gpa_t (*gva_to_gpa)(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
461 gpa_t gva_or_gpa, u64 access,
462 struct x86_exception *exception);
463 int (*sync_spte)(struct kvm_vcpu *vcpu,
464 struct kvm_mmu_page *sp, int i);
465 struct kvm_mmu_root_info root;
466 hpa_t mirror_root_hpa;
467 union kvm_cpu_role cpu_role;
468 union kvm_mmu_page_role root_role;
469
470 /*
471 * The pkru_mask indicates if protection key checks are needed. It
472 * consists of 16 domains indexed by page fault error code bits [4:1],
473 * with PFEC.RSVD replaced by ACC_USER_MASK from the page tables.
474 * Each domain has 2 bits which are ANDed with AD and WD from PKRU.
475 */
476 u32 pkru_mask;
477
478 struct kvm_mmu_root_info prev_roots[KVM_MMU_NUM_PREV_ROOTS];
479
480 /*
481 * Bitmap; bit set = permission fault
482 * Byte index: page fault error code [4:1]
483 * Bit index: pte permissions in ACC_* format
484 */
485 u8 permissions[16];
486
487 u64 *pae_root;
488 u64 *pml4_root;
489 u64 *pml5_root;
490
491 /*
492 * check zero bits on shadow page table entries, these
493 * bits include not only hardware reserved bits but also
494 * the bits spte never used.
495 */
496 struct rsvd_bits_validate shadow_zero_check;
497
498 struct rsvd_bits_validate guest_rsvd_check;
499
500 u64 pdptrs[4]; /* pae */
501 };
502
503 enum pmc_type {
504 KVM_PMC_GP = 0,
505 KVM_PMC_FIXED,
506 };
507
508 struct kvm_pmc {
509 enum pmc_type type;
510 u8 idx;
511 bool is_paused;
512 bool intr;
513 /*
514 * Base value of the PMC counter, relative to the *consumed* count in
515 * the associated perf_event. This value includes counter updates from
516 * the perf_event and emulated_count since the last time the counter
517 * was reprogrammed, but it is *not* the current value as seen by the
518 * guest or userspace.
519 *
520 * The count is relative to the associated perf_event so that KVM
521 * doesn't need to reprogram the perf_event every time the guest writes
522 * to the counter.
523 */
524 u64 counter;
525 /*
526 * PMC events triggered by KVM emulation that haven't been fully
527 * processed, i.e. haven't undergone overflow detection.
528 */
529 u64 emulated_counter;
530 u64 eventsel;
531 struct perf_event *perf_event;
532 struct kvm_vcpu *vcpu;
533 /*
534 * only for creating or reusing perf_event,
535 * eventsel value for general purpose counters,
536 * ctrl value for fixed counters.
537 */
538 u64 current_config;
539 };
540
541 /* More counters may conflict with other existing Architectural MSRs */
542 #define KVM_MAX(a, b) ((a) >= (b) ? (a) : (b))
543 #define KVM_MAX_NR_INTEL_GP_COUNTERS 8
544 #define KVM_MAX_NR_AMD_GP_COUNTERS 6
545 #define KVM_MAX_NR_GP_COUNTERS KVM_MAX(KVM_MAX_NR_INTEL_GP_COUNTERS, \
546 KVM_MAX_NR_AMD_GP_COUNTERS)
547
548 #define KVM_MAX_NR_INTEL_FIXED_COUTNERS 3
549 #define KVM_MAX_NR_AMD_FIXED_COUTNERS 0
550 #define KVM_MAX_NR_FIXED_COUNTERS KVM_MAX(KVM_MAX_NR_INTEL_FIXED_COUTNERS, \
551 KVM_MAX_NR_AMD_FIXED_COUTNERS)
552
553 struct kvm_pmu {
554 u8 version;
555 unsigned nr_arch_gp_counters;
556 unsigned nr_arch_fixed_counters;
557 unsigned available_event_types;
558 u64 fixed_ctr_ctrl;
559 u64 fixed_ctr_ctrl_rsvd;
560 u64 global_ctrl;
561 u64 global_status;
562 u64 counter_bitmask[2];
563 u64 global_ctrl_rsvd;
564 u64 global_status_rsvd;
565 u64 reserved_bits;
566 u64 raw_event_mask;
567 struct kvm_pmc gp_counters[KVM_MAX_NR_GP_COUNTERS];
568 struct kvm_pmc fixed_counters[KVM_MAX_NR_FIXED_COUNTERS];
569
570 /*
571 * Overlay the bitmap with a 64-bit atomic so that all bits can be
572 * set in a single access, e.g. to reprogram all counters when the PMU
573 * filter changes.
574 */
575 union {
576 DECLARE_BITMAP(reprogram_pmi, X86_PMC_IDX_MAX);
577 atomic64_t __reprogram_pmi;
578 };
579 DECLARE_BITMAP(all_valid_pmc_idx, X86_PMC_IDX_MAX);
580 DECLARE_BITMAP(pmc_in_use, X86_PMC_IDX_MAX);
581
582 u64 ds_area;
583 u64 pebs_enable;
584 u64 pebs_enable_rsvd;
585 u64 pebs_data_cfg;
586 u64 pebs_data_cfg_rsvd;
587
588 /*
589 * If a guest counter is cross-mapped to host counter with different
590 * index, its PEBS capability will be temporarily disabled.
591 *
592 * The user should make sure that this mask is updated
593 * after disabling interrupts and before perf_guest_get_msrs();
594 */
595 u64 host_cross_mapped_mask;
596
597 /*
598 * The gate to release perf_events not marked in
599 * pmc_in_use only once in a vcpu time slice.
600 */
601 bool need_cleanup;
602
603 /*
604 * The total number of programmed perf_events and it helps to avoid
605 * redundant check before cleanup if guest don't use vPMU at all.
606 */
607 u8 event_count;
608 };
609
610 struct kvm_pmu_ops;
611
612 enum {
613 KVM_DEBUGREG_BP_ENABLED = BIT(0),
614 KVM_DEBUGREG_WONT_EXIT = BIT(1),
615 /*
616 * Guest debug registers (DR0-3, DR6 and DR7) are saved/restored by
617 * hardware on exit from or enter to guest. KVM needn't switch them.
618 * DR0-3, DR6 and DR7 are set to their architectural INIT value on VM
619 * exit, host values need to be restored.
620 */
621 KVM_DEBUGREG_AUTO_SWITCH = BIT(2),
622 };
623
624 struct kvm_mtrr {
625 u64 var[KVM_NR_VAR_MTRR * 2];
626 u64 fixed_64k;
627 u64 fixed_16k[2];
628 u64 fixed_4k[8];
629 u64 deftype;
630 };
631
632 /* Hyper-V SynIC timer */
633 struct kvm_vcpu_hv_stimer {
634 struct hrtimer timer;
635 int index;
636 union hv_stimer_config config;
637 u64 count;
638 u64 exp_time;
639 struct hv_message msg;
640 bool msg_pending;
641 };
642
643 /* Hyper-V synthetic interrupt controller (SynIC)*/
644 struct kvm_vcpu_hv_synic {
645 u64 version;
646 u64 control;
647 u64 msg_page;
648 u64 evt_page;
649 atomic64_t sint[HV_SYNIC_SINT_COUNT];
650 atomic_t sint_to_gsi[HV_SYNIC_SINT_COUNT];
651 DECLARE_BITMAP(auto_eoi_bitmap, 256);
652 DECLARE_BITMAP(vec_bitmap, 256);
653 bool active;
654 bool dont_zero_synic_pages;
655 };
656
657 /* The maximum number of entries on the TLB flush fifo. */
658 #define KVM_HV_TLB_FLUSH_FIFO_SIZE (16)
659 /*
660 * Note: the following 'magic' entry is made up by KVM to avoid putting
661 * anything besides GVA on the TLB flush fifo. It is theoretically possible
662 * to observe a request to flush 4095 PFNs starting from 0xfffffffffffff000
663 * which will look identical. KVM's action to 'flush everything' instead of
664 * flushing these particular addresses is, however, fully legitimate as
665 * flushing more than requested is always OK.
666 */
667 #define KVM_HV_TLB_FLUSHALL_ENTRY ((u64)-1)
668
669 enum hv_tlb_flush_fifos {
670 HV_L1_TLB_FLUSH_FIFO,
671 HV_L2_TLB_FLUSH_FIFO,
672 HV_NR_TLB_FLUSH_FIFOS,
673 };
674
675 struct kvm_vcpu_hv_tlb_flush_fifo {
676 spinlock_t write_lock;
677 DECLARE_KFIFO(entries, u64, KVM_HV_TLB_FLUSH_FIFO_SIZE);
678 };
679
680 /* Hyper-V per vcpu emulation context */
681 struct kvm_vcpu_hv {
682 struct kvm_vcpu *vcpu;
683 u32 vp_index;
684 u64 hv_vapic;
685 s64 runtime_offset;
686 struct kvm_vcpu_hv_synic synic;
687 struct kvm_hyperv_exit exit;
688 struct kvm_vcpu_hv_stimer stimer[HV_SYNIC_STIMER_COUNT];
689 DECLARE_BITMAP(stimer_pending_bitmap, HV_SYNIC_STIMER_COUNT);
690 bool enforce_cpuid;
691 struct {
692 u32 features_eax; /* HYPERV_CPUID_FEATURES.EAX */
693 u32 features_ebx; /* HYPERV_CPUID_FEATURES.EBX */
694 u32 features_edx; /* HYPERV_CPUID_FEATURES.EDX */
695 u32 enlightenments_eax; /* HYPERV_CPUID_ENLIGHTMENT_INFO.EAX */
696 u32 enlightenments_ebx; /* HYPERV_CPUID_ENLIGHTMENT_INFO.EBX */
697 u32 syndbg_cap_eax; /* HYPERV_CPUID_SYNDBG_PLATFORM_CAPABILITIES.EAX */
698 u32 nested_eax; /* HYPERV_CPUID_NESTED_FEATURES.EAX */
699 u32 nested_ebx; /* HYPERV_CPUID_NESTED_FEATURES.EBX */
700 } cpuid_cache;
701
702 struct kvm_vcpu_hv_tlb_flush_fifo tlb_flush_fifo[HV_NR_TLB_FLUSH_FIFOS];
703
704 /*
705 * Preallocated buffers for handling hypercalls that pass sparse vCPU
706 * sets (for high vCPU counts, they're too large to comfortably fit on
707 * the stack).
708 */
709 u64 sparse_banks[HV_MAX_SPARSE_VCPU_BANKS];
710 DECLARE_BITMAP(vcpu_mask, KVM_MAX_VCPUS);
711
712 struct hv_vp_assist_page vp_assist_page;
713
714 struct {
715 u64 pa_page_gpa;
716 u64 vm_id;
717 u32 vp_id;
718 } nested;
719 };
720
721 struct kvm_hypervisor_cpuid {
722 u32 base;
723 u32 limit;
724 };
725
726 #ifdef CONFIG_KVM_XEN
727 /* Xen HVM per vcpu emulation context */
728 struct kvm_vcpu_xen {
729 u64 hypercall_rip;
730 u32 current_runstate;
731 u8 upcall_vector;
732 struct gfn_to_pfn_cache vcpu_info_cache;
733 struct gfn_to_pfn_cache vcpu_time_info_cache;
734 struct gfn_to_pfn_cache runstate_cache;
735 struct gfn_to_pfn_cache runstate2_cache;
736 u64 last_steal;
737 u64 runstate_entry_time;
738 u64 runstate_times[4];
739 unsigned long evtchn_pending_sel;
740 u32 vcpu_id; /* The Xen / ACPI vCPU ID */
741 u32 timer_virq;
742 u64 timer_expires; /* In guest epoch */
743 atomic_t timer_pending;
744 struct hrtimer timer;
745 int poll_evtchn;
746 struct timer_list poll_timer;
747 struct kvm_hypervisor_cpuid cpuid;
748 };
749 #endif
750
751 struct kvm_queued_exception {
752 bool pending;
753 bool injected;
754 bool has_error_code;
755 u8 vector;
756 u32 error_code;
757 unsigned long payload;
758 bool has_payload;
759 };
760
761 /*
762 * Hardware-defined CPUID leafs that are either scattered by the kernel or are
763 * unknown to the kernel, but need to be directly used by KVM. Note, these
764 * word values conflict with the kernel's "bug" caps, but KVM doesn't use those.
765 */
766 enum kvm_only_cpuid_leafs {
767 CPUID_12_EAX = NCAPINTS,
768 CPUID_7_1_EDX,
769 CPUID_8000_0007_EDX,
770 CPUID_8000_0022_EAX,
771 CPUID_7_2_EDX,
772 CPUID_24_0_EBX,
773 CPUID_8000_0021_ECX,
774 NR_KVM_CPU_CAPS,
775
776 NKVMCAPINTS = NR_KVM_CPU_CAPS - NCAPINTS,
777 };
778
779 struct kvm_vcpu_arch {
780 /*
781 * rip and regs accesses must go through
782 * kvm_{register,rip}_{read,write} functions.
783 */
784 unsigned long regs[NR_VCPU_REGS];
785 u32 regs_avail;
786 u32 regs_dirty;
787
788 unsigned long cr0;
789 unsigned long cr0_guest_owned_bits;
790 unsigned long cr2;
791 unsigned long cr3;
792 unsigned long cr4;
793 unsigned long cr4_guest_owned_bits;
794 unsigned long cr4_guest_rsvd_bits;
795 unsigned long cr8;
796 u32 host_pkru;
797 u32 pkru;
798 u32 hflags;
799 u64 efer;
800 u64 host_debugctl;
801 u64 apic_base;
802 struct kvm_lapic *apic; /* kernel irqchip context */
803 bool load_eoi_exitmap_pending;
804 DECLARE_BITMAP(ioapic_handled_vectors, 256);
805 unsigned long apic_attention;
806 int32_t apic_arb_prio;
807 int mp_state;
808 u64 ia32_misc_enable_msr;
809 u64 smbase;
810 u64 smi_count;
811 bool at_instruction_boundary;
812 bool tpr_access_reporting;
813 bool xfd_no_write_intercept;
814 u64 ia32_xss;
815 u64 microcode_version;
816 u64 arch_capabilities;
817 u64 perf_capabilities;
818
819 /*
820 * Paging state of the vcpu
821 *
822 * If the vcpu runs in guest mode with two level paging this still saves
823 * the paging mode of the l1 guest. This context is always used to
824 * handle faults.
825 */
826 struct kvm_mmu *mmu;
827
828 /* Non-nested MMU for L1 */
829 struct kvm_mmu root_mmu;
830
831 /* L1 MMU when running nested */
832 struct kvm_mmu guest_mmu;
833
834 /*
835 * Paging state of an L2 guest (used for nested npt)
836 *
837 * This context will save all necessary information to walk page tables
838 * of an L2 guest. This context is only initialized for page table
839 * walking and not for faulting since we never handle l2 page faults on
840 * the host.
841 */
842 struct kvm_mmu nested_mmu;
843
844 /*
845 * Pointer to the mmu context currently used for
846 * gva_to_gpa translations.
847 */
848 struct kvm_mmu *walk_mmu;
849
850 struct kvm_mmu_memory_cache mmu_pte_list_desc_cache;
851 struct kvm_mmu_memory_cache mmu_shadow_page_cache;
852 struct kvm_mmu_memory_cache mmu_shadowed_info_cache;
853 struct kvm_mmu_memory_cache mmu_page_header_cache;
854 /*
855 * This cache is to allocate external page table. E.g. private EPT used
856 * by the TDX module.
857 */
858 struct kvm_mmu_memory_cache mmu_external_spt_cache;
859
860 /*
861 * QEMU userspace and the guest each have their own FPU state.
862 * In vcpu_run, we switch between the user and guest FPU contexts.
863 * While running a VCPU, the VCPU thread will have the guest FPU
864 * context.
865 *
866 * Note that while the PKRU state lives inside the fpu registers,
867 * it is switched out separately at VMENTER and VMEXIT time. The
868 * "guest_fpstate" state here contains the guest FPU context, with the
869 * host PRKU bits.
870 */
871 struct fpu_guest guest_fpu;
872
873 u64 xcr0;
874 u64 guest_supported_xcr0;
875
876 struct kvm_pio_request pio;
877 void *pio_data;
878 void *sev_pio_data;
879 unsigned sev_pio_count;
880
881 u8 event_exit_inst_len;
882
883 bool exception_from_userspace;
884
885 /* Exceptions to be injected to the guest. */
886 struct kvm_queued_exception exception;
887 /* Exception VM-Exits to be synthesized to L1. */
888 struct kvm_queued_exception exception_vmexit;
889
890 struct kvm_queued_interrupt {
891 bool injected;
892 bool soft;
893 u8 nr;
894 } interrupt;
895
896 int halt_request; /* real mode on Intel only */
897
898 int cpuid_nent;
899 struct kvm_cpuid_entry2 *cpuid_entries;
900 bool cpuid_dynamic_bits_dirty;
901 bool is_amd_compatible;
902
903 /*
904 * cpu_caps holds the effective guest capabilities, i.e. the features
905 * the vCPU is allowed to use. Typically, but not always, features can
906 * be used by the guest if and only if both KVM and userspace want to
907 * expose the feature to the guest.
908 *
909 * A common exception is for virtualization holes, i.e. when KVM can't
910 * prevent the guest from using a feature, in which case the vCPU "has"
911 * the feature regardless of what KVM or userspace desires.
912 *
913 * Note, features that don't require KVM involvement in any way are
914 * NOT enforced/sanitized by KVM, i.e. are taken verbatim from the
915 * guest CPUID provided by userspace.
916 */
917 u32 cpu_caps[NR_KVM_CPU_CAPS];
918
919 u64 reserved_gpa_bits;
920 int maxphyaddr;
921
922 /* emulate context */
923
924 struct x86_emulate_ctxt *emulate_ctxt;
925 bool emulate_regs_need_sync_to_vcpu;
926 bool emulate_regs_need_sync_from_vcpu;
927 int (*complete_userspace_io)(struct kvm_vcpu *vcpu);
928 unsigned long cui_linear_rip;
929
930 gpa_t time;
931 s8 pvclock_tsc_shift;
932 u32 pvclock_tsc_mul;
933 unsigned int hw_tsc_khz;
934 struct gfn_to_pfn_cache pv_time;
935 /* set guest stopped flag in pvclock flags field */
936 bool pvclock_set_guest_stopped_request;
937
938 struct {
939 u8 preempted;
940 u64 msr_val;
941 u64 last_steal;
942 struct gfn_to_hva_cache cache;
943 } st;
944
945 u64 l1_tsc_offset;
946 u64 tsc_offset; /* current tsc offset */
947 u64 last_guest_tsc;
948 u64 last_host_tsc;
949 u64 tsc_offset_adjustment;
950 u64 this_tsc_nsec;
951 u64 this_tsc_write;
952 u64 this_tsc_generation;
953 bool tsc_catchup;
954 bool tsc_always_catchup;
955 s8 virtual_tsc_shift;
956 u32 virtual_tsc_mult;
957 u32 virtual_tsc_khz;
958 s64 ia32_tsc_adjust_msr;
959 u64 msr_ia32_power_ctl;
960 u64 l1_tsc_scaling_ratio;
961 u64 tsc_scaling_ratio; /* current scaling ratio */
962
963 atomic_t nmi_queued; /* unprocessed asynchronous NMIs */
964 /* Number of NMIs pending injection, not including hardware vNMIs. */
965 unsigned int nmi_pending;
966 bool nmi_injected; /* Trying to inject an NMI this entry */
967 bool smi_pending; /* SMI queued after currently running handler */
968 u8 handling_intr_from_guest;
969
970 struct kvm_mtrr mtrr_state;
971 u64 pat;
972
973 unsigned switch_db_regs;
974 unsigned long db[KVM_NR_DB_REGS];
975 unsigned long dr6;
976 unsigned long dr7;
977 unsigned long eff_db[KVM_NR_DB_REGS];
978 unsigned long guest_debug_dr7;
979 u64 msr_platform_info;
980 u64 msr_misc_features_enables;
981
982 u64 mcg_cap;
983 u64 mcg_status;
984 u64 mcg_ctl;
985 u64 mcg_ext_ctl;
986 u64 *mce_banks;
987 u64 *mci_ctl2_banks;
988
989 /* Cache MMIO info */
990 u64 mmio_gva;
991 unsigned mmio_access;
992 gfn_t mmio_gfn;
993 u64 mmio_gen;
994
995 struct kvm_pmu pmu;
996
997 /* used for guest single stepping over the given code position */
998 unsigned long singlestep_rip;
999
1000 #ifdef CONFIG_KVM_HYPERV
1001 bool hyperv_enabled;
1002 struct kvm_vcpu_hv *hyperv;
1003 #endif
1004 #ifdef CONFIG_KVM_XEN
1005 struct kvm_vcpu_xen xen;
1006 #endif
1007 cpumask_var_t wbinvd_dirty_mask;
1008
1009 unsigned long last_retry_eip;
1010 unsigned long last_retry_addr;
1011
1012 struct {
1013 bool halted;
1014 gfn_t gfns[ASYNC_PF_PER_VCPU];
1015 struct gfn_to_hva_cache data;
1016 u64 msr_en_val; /* MSR_KVM_ASYNC_PF_EN */
1017 u64 msr_int_val; /* MSR_KVM_ASYNC_PF_INT */
1018 u16 vec;
1019 u32 id;
1020 u32 host_apf_flags;
1021 bool send_always;
1022 bool delivery_as_pf_vmexit;
1023 bool pageready_pending;
1024 } apf;
1025
1026 /* OSVW MSRs (AMD only) */
1027 struct {
1028 u64 length;
1029 u64 status;
1030 } osvw;
1031
1032 struct {
1033 u64 msr_val;
1034 struct gfn_to_hva_cache data;
1035 } pv_eoi;
1036
1037 u64 msr_kvm_poll_control;
1038
1039 /* pv related host specific info */
1040 struct {
1041 bool pv_unhalted;
1042 } pv;
1043
1044 int pending_ioapic_eoi;
1045 int pending_external_vector;
1046 int highest_stale_pending_ioapic_eoi;
1047
1048 /* be preempted when it's in kernel-mode(cpl=0) */
1049 bool preempted_in_kernel;
1050
1051 /* Flush the L1 Data cache for L1TF mitigation on VMENTER */
1052 bool l1tf_flush_l1d;
1053
1054 /* Host CPU on which VM-entry was most recently attempted */
1055 int last_vmentry_cpu;
1056
1057 /* AMD MSRC001_0015 Hardware Configuration */
1058 u64 msr_hwcr;
1059
1060 /* pv related cpuid info */
1061 struct {
1062 /*
1063 * value of the eax register in the KVM_CPUID_FEATURES CPUID
1064 * leaf.
1065 */
1066 u32 features;
1067
1068 /*
1069 * indicates whether pv emulation should be disabled if features
1070 * are not present in the guest's cpuid
1071 */
1072 bool enforce;
1073 } pv_cpuid;
1074
1075 /* Protected Guests */
1076 bool guest_state_protected;
1077 bool guest_tsc_protected;
1078
1079 /*
1080 * Set when PDPTS were loaded directly by the userspace without
1081 * reading the guest memory
1082 */
1083 bool pdptrs_from_userspace;
1084
1085 #if IS_ENABLED(CONFIG_HYPERV)
1086 hpa_t hv_root_tdp;
1087 #endif
1088 };
1089
1090 struct kvm_lpage_info {
1091 int disallow_lpage;
1092 };
1093
1094 struct kvm_arch_memory_slot {
1095 struct kvm_rmap_head *rmap[KVM_NR_PAGE_SIZES];
1096 struct kvm_lpage_info *lpage_info[KVM_NR_PAGE_SIZES - 1];
1097 unsigned short *gfn_write_track;
1098 };
1099
1100 /*
1101 * Track the mode of the optimized logical map, as the rules for decoding the
1102 * destination vary per mode. Enabling the optimized logical map requires all
1103 * software-enabled local APIs to be in the same mode, each addressable APIC to
1104 * be mapped to only one MDA, and each MDA to map to at most one APIC.
1105 */
1106 enum kvm_apic_logical_mode {
1107 /* All local APICs are software disabled. */
1108 KVM_APIC_MODE_SW_DISABLED,
1109 /* All software enabled local APICs in xAPIC cluster addressing mode. */
1110 KVM_APIC_MODE_XAPIC_CLUSTER,
1111 /* All software enabled local APICs in xAPIC flat addressing mode. */
1112 KVM_APIC_MODE_XAPIC_FLAT,
1113 /* All software enabled local APICs in x2APIC mode. */
1114 KVM_APIC_MODE_X2APIC,
1115 /*
1116 * Optimized map disabled, e.g. not all local APICs in the same logical
1117 * mode, same logical ID assigned to multiple APICs, etc.
1118 */
1119 KVM_APIC_MODE_MAP_DISABLED,
1120 };
1121
1122 struct kvm_apic_map {
1123 struct rcu_head rcu;
1124 enum kvm_apic_logical_mode logical_mode;
1125 u32 max_apic_id;
1126 union {
1127 struct kvm_lapic *xapic_flat_map[8];
1128 struct kvm_lapic *xapic_cluster_map[16][4];
1129 };
1130 struct kvm_lapic *phys_map[];
1131 };
1132
1133 /* Hyper-V synthetic debugger (SynDbg)*/
1134 struct kvm_hv_syndbg {
1135 struct {
1136 u64 control;
1137 u64 status;
1138 u64 send_page;
1139 u64 recv_page;
1140 u64 pending_page;
1141 } control;
1142 u64 options;
1143 };
1144
1145 /* Current state of Hyper-V TSC page clocksource */
1146 enum hv_tsc_page_status {
1147 /* TSC page was not set up or disabled */
1148 HV_TSC_PAGE_UNSET = 0,
1149 /* TSC page MSR was written by the guest, update pending */
1150 HV_TSC_PAGE_GUEST_CHANGED,
1151 /* TSC page update was triggered from the host side */
1152 HV_TSC_PAGE_HOST_CHANGED,
1153 /* TSC page was properly set up and is currently active */
1154 HV_TSC_PAGE_SET,
1155 /* TSC page was set up with an inaccessible GPA */
1156 HV_TSC_PAGE_BROKEN,
1157 };
1158
1159 #ifdef CONFIG_KVM_HYPERV
1160 /* Hyper-V emulation context */
1161 struct kvm_hv {
1162 struct mutex hv_lock;
1163 u64 hv_guest_os_id;
1164 u64 hv_hypercall;
1165 u64 hv_tsc_page;
1166 enum hv_tsc_page_status hv_tsc_page_status;
1167
1168 /* Hyper-v based guest crash (NT kernel bugcheck) parameters */
1169 u64 hv_crash_param[HV_X64_MSR_CRASH_PARAMS];
1170 u64 hv_crash_ctl;
1171
1172 struct ms_hyperv_tsc_page tsc_ref;
1173
1174 struct idr conn_to_evt;
1175
1176 u64 hv_reenlightenment_control;
1177 u64 hv_tsc_emulation_control;
1178 u64 hv_tsc_emulation_status;
1179 u64 hv_invtsc_control;
1180
1181 /* How many vCPUs have VP index != vCPU index */
1182 atomic_t num_mismatched_vp_indexes;
1183
1184 /*
1185 * How many SynICs use 'AutoEOI' feature
1186 * (protected by arch.apicv_update_lock)
1187 */
1188 unsigned int synic_auto_eoi_used;
1189
1190 struct kvm_hv_syndbg hv_syndbg;
1191
1192 bool xsaves_xsavec_checked;
1193 };
1194 #endif
1195
1196 struct msr_bitmap_range {
1197 u32 flags;
1198 u32 nmsrs;
1199 u32 base;
1200 unsigned long *bitmap;
1201 };
1202
1203 #ifdef CONFIG_KVM_XEN
1204 /* Xen emulation context */
1205 struct kvm_xen {
1206 struct mutex xen_lock;
1207 u32 xen_version;
1208 bool long_mode;
1209 bool runstate_update_flag;
1210 u8 upcall_vector;
1211 struct gfn_to_pfn_cache shinfo_cache;
1212 struct idr evtchn_ports;
1213 unsigned long poll_mask[BITS_TO_LONGS(KVM_MAX_VCPUS)];
1214
1215 struct kvm_xen_hvm_config hvm_config;
1216 };
1217 #endif
1218
1219 enum kvm_irqchip_mode {
1220 KVM_IRQCHIP_NONE,
1221 KVM_IRQCHIP_KERNEL, /* created with KVM_CREATE_IRQCHIP */
1222 KVM_IRQCHIP_SPLIT, /* created with KVM_CAP_SPLIT_IRQCHIP */
1223 };
1224
1225 struct kvm_x86_msr_filter {
1226 u8 count;
1227 bool default_allow:1;
1228 struct msr_bitmap_range ranges[16];
1229 };
1230
1231 struct kvm_x86_pmu_event_filter {
1232 __u32 action;
1233 __u32 nevents;
1234 __u32 fixed_counter_bitmap;
1235 __u32 flags;
1236 __u32 nr_includes;
1237 __u32 nr_excludes;
1238 __u64 *includes;
1239 __u64 *excludes;
1240 __u64 events[];
1241 };
1242
1243 enum kvm_apicv_inhibit {
1244
1245 /********************************************************************/
1246 /* INHIBITs that are relevant to both Intel's APICv and AMD's AVIC. */
1247 /********************************************************************/
1248
1249 /*
1250 * APIC acceleration is disabled by a module parameter
1251 * and/or not supported in hardware.
1252 */
1253 APICV_INHIBIT_REASON_DISABLED,
1254
1255 /*
1256 * APIC acceleration is inhibited because AutoEOI feature is
1257 * being used by a HyperV guest.
1258 */
1259 APICV_INHIBIT_REASON_HYPERV,
1260
1261 /*
1262 * APIC acceleration is inhibited because the userspace didn't yet
1263 * enable the kernel/split irqchip.
1264 */
1265 APICV_INHIBIT_REASON_ABSENT,
1266
1267 /* APIC acceleration is inhibited because KVM_GUESTDBG_BLOCKIRQ
1268 * (out of band, debug measure of blocking all interrupts on this vCPU)
1269 * was enabled, to avoid AVIC/APICv bypassing it.
1270 */
1271 APICV_INHIBIT_REASON_BLOCKIRQ,
1272
1273 /*
1274 * APICv is disabled because not all vCPUs have a 1:1 mapping between
1275 * APIC ID and vCPU, _and_ KVM is not applying its x2APIC hotplug hack.
1276 */
1277 APICV_INHIBIT_REASON_PHYSICAL_ID_ALIASED,
1278
1279 /*
1280 * For simplicity, the APIC acceleration is inhibited
1281 * first time either APIC ID or APIC base are changed by the guest
1282 * from their reset values.
1283 */
1284 APICV_INHIBIT_REASON_APIC_ID_MODIFIED,
1285 APICV_INHIBIT_REASON_APIC_BASE_MODIFIED,
1286
1287 /******************************************************/
1288 /* INHIBITs that are relevant only to the AMD's AVIC. */
1289 /******************************************************/
1290
1291 /*
1292 * AVIC is inhibited on a vCPU because it runs a nested guest.
1293 *
1294 * This is needed because unlike APICv, the peers of this vCPU
1295 * cannot use the doorbell mechanism to signal interrupts via AVIC when
1296 * a vCPU runs nested.
1297 */
1298 APICV_INHIBIT_REASON_NESTED,
1299
1300 /*
1301 * On SVM, the wait for the IRQ window is implemented with pending vIRQ,
1302 * which cannot be injected when the AVIC is enabled, thus AVIC
1303 * is inhibited while KVM waits for IRQ window.
1304 */
1305 APICV_INHIBIT_REASON_IRQWIN,
1306
1307 /*
1308 * PIT (i8254) 're-inject' mode, relies on EOI intercept,
1309 * which AVIC doesn't support for edge triggered interrupts.
1310 */
1311 APICV_INHIBIT_REASON_PIT_REINJ,
1312
1313 /*
1314 * AVIC is disabled because SEV doesn't support it.
1315 */
1316 APICV_INHIBIT_REASON_SEV,
1317
1318 /*
1319 * AVIC is disabled because not all vCPUs with a valid LDR have a 1:1
1320 * mapping between logical ID and vCPU.
1321 */
1322 APICV_INHIBIT_REASON_LOGICAL_ID_ALIASED,
1323
1324 /*
1325 * AVIC is disabled because the vCPU's APIC ID is beyond the max
1326 * supported by AVIC/x2AVIC, i.e. the vCPU is unaddressable.
1327 */
1328 APICV_INHIBIT_REASON_PHYSICAL_ID_TOO_BIG,
1329
1330 NR_APICV_INHIBIT_REASONS,
1331 };
1332
1333 #define __APICV_INHIBIT_REASON(reason) \
1334 { BIT(APICV_INHIBIT_REASON_##reason), #reason }
1335
1336 #define APICV_INHIBIT_REASONS \
1337 __APICV_INHIBIT_REASON(DISABLED), \
1338 __APICV_INHIBIT_REASON(HYPERV), \
1339 __APICV_INHIBIT_REASON(ABSENT), \
1340 __APICV_INHIBIT_REASON(BLOCKIRQ), \
1341 __APICV_INHIBIT_REASON(PHYSICAL_ID_ALIASED), \
1342 __APICV_INHIBIT_REASON(APIC_ID_MODIFIED), \
1343 __APICV_INHIBIT_REASON(APIC_BASE_MODIFIED), \
1344 __APICV_INHIBIT_REASON(NESTED), \
1345 __APICV_INHIBIT_REASON(IRQWIN), \
1346 __APICV_INHIBIT_REASON(PIT_REINJ), \
1347 __APICV_INHIBIT_REASON(SEV), \
1348 __APICV_INHIBIT_REASON(LOGICAL_ID_ALIASED), \
1349 __APICV_INHIBIT_REASON(PHYSICAL_ID_TOO_BIG)
1350
1351 struct kvm_arch {
1352 unsigned long n_used_mmu_pages;
1353 unsigned long n_requested_mmu_pages;
1354 unsigned long n_max_mmu_pages;
1355 unsigned int indirect_shadow_pages;
1356 u8 mmu_valid_gen;
1357 u8 vm_type;
1358 bool has_private_mem;
1359 bool has_protected_state;
1360 bool pre_fault_allowed;
1361 struct hlist_head *mmu_page_hash;
1362 struct list_head active_mmu_pages;
1363 /*
1364 * A list of kvm_mmu_page structs that, if zapped, could possibly be
1365 * replaced by an NX huge page. A shadow page is on this list if its
1366 * existence disallows an NX huge page (nx_huge_page_disallowed is set)
1367 * and there are no other conditions that prevent a huge page, e.g.
1368 * the backing host page is huge, dirtly logging is not enabled for its
1369 * memslot, etc... Note, zapping shadow pages on this list doesn't
1370 * guarantee an NX huge page will be created in its stead, e.g. if the
1371 * guest attempts to execute from the region then KVM obviously can't
1372 * create an NX huge page (without hanging the guest).
1373 */
1374 struct list_head possible_nx_huge_pages;
1375 #ifdef CONFIG_KVM_EXTERNAL_WRITE_TRACKING
1376 struct kvm_page_track_notifier_head track_notifier_head;
1377 #endif
1378 /*
1379 * Protects marking pages unsync during page faults, as TDP MMU page
1380 * faults only take mmu_lock for read. For simplicity, the unsync
1381 * pages lock is always taken when marking pages unsync regardless of
1382 * whether mmu_lock is held for read or write.
1383 */
1384 spinlock_t mmu_unsync_pages_lock;
1385
1386 u64 shadow_mmio_value;
1387
1388 #define __KVM_HAVE_ARCH_NONCOHERENT_DMA
1389 atomic_t noncoherent_dma_count;
1390 unsigned long nr_possible_bypass_irqs;
1391
1392 #ifdef CONFIG_KVM_IOAPIC
1393 struct kvm_pic *vpic;
1394 struct kvm_ioapic *vioapic;
1395 struct kvm_pit *vpit;
1396 #endif
1397 atomic_t vapics_in_nmi_mode;
1398 struct mutex apic_map_lock;
1399 struct kvm_apic_map __rcu *apic_map;
1400 atomic_t apic_map_dirty;
1401
1402 bool apic_access_memslot_enabled;
1403 bool apic_access_memslot_inhibited;
1404
1405 /* Protects apicv_inhibit_reasons */
1406 struct rw_semaphore apicv_update_lock;
1407 unsigned long apicv_inhibit_reasons;
1408
1409 gpa_t wall_clock;
1410
1411 u64 disabled_exits;
1412
1413 s64 kvmclock_offset;
1414
1415 /*
1416 * This also protects nr_vcpus_matched_tsc which is read from a
1417 * preemption-disabled region, so it must be a raw spinlock.
1418 */
1419 raw_spinlock_t tsc_write_lock;
1420 u64 last_tsc_nsec;
1421 u64 last_tsc_write;
1422 u32 last_tsc_khz;
1423 u64 last_tsc_offset;
1424 u64 cur_tsc_nsec;
1425 u64 cur_tsc_write;
1426 u64 cur_tsc_offset;
1427 u64 cur_tsc_generation;
1428 int nr_vcpus_matched_tsc;
1429
1430 u32 default_tsc_khz;
1431 bool user_set_tsc;
1432 u64 apic_bus_cycle_ns;
1433
1434 seqcount_raw_spinlock_t pvclock_sc;
1435 bool use_master_clock;
1436 u64 master_kernel_ns;
1437 u64 master_cycle_now;
1438 struct delayed_work kvmclock_update_work;
1439 struct delayed_work kvmclock_sync_work;
1440
1441 #ifdef CONFIG_KVM_HYPERV
1442 struct kvm_hv hyperv;
1443 #endif
1444
1445 #ifdef CONFIG_KVM_XEN
1446 struct kvm_xen xen;
1447 #endif
1448
1449 bool backwards_tsc_observed;
1450 bool boot_vcpu_runs_old_kvmclock;
1451 u32 bsp_vcpu_id;
1452
1453 u64 disabled_quirks;
1454
1455 enum kvm_irqchip_mode irqchip_mode;
1456 u8 nr_reserved_ioapic_pins;
1457
1458 bool disabled_lapic_found;
1459
1460 bool x2apic_format;
1461 bool x2apic_broadcast_quirk_disabled;
1462
1463 bool has_mapped_host_mmio;
1464 bool guest_can_read_msr_platform_info;
1465 bool exception_payload_enabled;
1466
1467 bool triple_fault_event;
1468
1469 bool bus_lock_detection_enabled;
1470 bool enable_pmu;
1471
1472 u32 notify_window;
1473 u32 notify_vmexit_flags;
1474 /*
1475 * If exit_on_emulation_error is set, and the in-kernel instruction
1476 * emulator fails to emulate an instruction, allow userspace
1477 * the opportunity to look at it.
1478 */
1479 bool exit_on_emulation_error;
1480
1481 /* Deflect RDMSR and WRMSR to user space when they trigger a #GP */
1482 u32 user_space_msr_mask;
1483 struct kvm_x86_msr_filter __rcu *msr_filter;
1484
1485 u32 hypercall_exit_enabled;
1486
1487 /* Guest can access the SGX PROVISIONKEY. */
1488 bool sgx_provisioning_allowed;
1489
1490 struct kvm_x86_pmu_event_filter __rcu *pmu_event_filter;
1491 struct vhost_task *nx_huge_page_recovery_thread;
1492 u64 nx_huge_page_last;
1493 struct once nx_once;
1494
1495 #ifdef CONFIG_X86_64
1496 #ifdef CONFIG_KVM_PROVE_MMU
1497 /*
1498 * The number of TDP MMU pages across all roots. Used only to sanity
1499 * check that KVM isn't leaking TDP MMU pages.
1500 */
1501 atomic64_t tdp_mmu_pages;
1502 #endif
1503
1504 /*
1505 * List of struct kvm_mmu_pages being used as roots.
1506 * All struct kvm_mmu_pages in the list should have
1507 * tdp_mmu_page set.
1508 *
1509 * For reads, this list is protected by:
1510 * RCU alone or
1511 * the MMU lock in read mode + RCU or
1512 * the MMU lock in write mode
1513 *
1514 * For writes, this list is protected by tdp_mmu_pages_lock; see
1515 * below for the details.
1516 *
1517 * Roots will remain in the list until their tdp_mmu_root_count
1518 * drops to zero, at which point the thread that decremented the
1519 * count to zero should removed the root from the list and clean
1520 * it up, freeing the root after an RCU grace period.
1521 */
1522 struct list_head tdp_mmu_roots;
1523
1524 /*
1525 * Protects accesses to the following fields when the MMU lock
1526 * is held in read mode:
1527 * - tdp_mmu_roots (above)
1528 * - the link field of kvm_mmu_page structs used by the TDP MMU
1529 * - possible_nx_huge_pages;
1530 * - the possible_nx_huge_page_link field of kvm_mmu_page structs used
1531 * by the TDP MMU
1532 * Because the lock is only taken within the MMU lock, strictly
1533 * speaking it is redundant to acquire this lock when the thread
1534 * holds the MMU lock in write mode. However it often simplifies
1535 * the code to do so.
1536 */
1537 spinlock_t tdp_mmu_pages_lock;
1538 #endif /* CONFIG_X86_64 */
1539
1540 /*
1541 * If set, at least one shadow root has been allocated. This flag
1542 * is used as one input when determining whether certain memslot
1543 * related allocations are necessary.
1544 */
1545 bool shadow_root_allocated;
1546
1547 #ifdef CONFIG_KVM_EXTERNAL_WRITE_TRACKING
1548 /*
1549 * If set, the VM has (or had) an external write tracking user, and
1550 * thus all write tracking metadata has been allocated, even if KVM
1551 * itself isn't using write tracking.
1552 */
1553 bool external_write_tracking_enabled;
1554 #endif
1555
1556 #if IS_ENABLED(CONFIG_HYPERV)
1557 hpa_t hv_root_tdp;
1558 spinlock_t hv_root_tdp_lock;
1559 struct hv_partition_assist_pg *hv_pa_pg;
1560 #endif
1561 /*
1562 * VM-scope maximum vCPU ID. Used to determine the size of structures
1563 * that increase along with the maximum vCPU ID, in which case, using
1564 * the global KVM_MAX_VCPU_IDS may lead to significant memory waste.
1565 */
1566 u32 max_vcpu_ids;
1567
1568 bool disable_nx_huge_pages;
1569
1570 /*
1571 * Memory caches used to allocate shadow pages when performing eager
1572 * page splitting. No need for a shadowed_info_cache since eager page
1573 * splitting only allocates direct shadow pages.
1574 *
1575 * Protected by kvm->slots_lock.
1576 */
1577 struct kvm_mmu_memory_cache split_shadow_page_cache;
1578 struct kvm_mmu_memory_cache split_page_header_cache;
1579
1580 /*
1581 * Memory cache used to allocate pte_list_desc structs while splitting
1582 * huge pages. In the worst case, to split one huge page, 512
1583 * pte_list_desc structs are needed to add each lower level leaf sptep
1584 * to the rmap plus 1 to extend the parent_ptes rmap of the lower level
1585 * page table.
1586 *
1587 * Protected by kvm->slots_lock.
1588 */
1589 #define SPLIT_DESC_CACHE_MIN_NR_OBJECTS (SPTE_ENT_PER_PAGE + 1)
1590 struct kvm_mmu_memory_cache split_desc_cache;
1591
1592 gfn_t gfn_direct_bits;
1593
1594 /*
1595 * Size of the CPU's dirty log buffer, i.e. VMX's PML buffer. A Zero
1596 * value indicates CPU dirty logging is unsupported or disabled in
1597 * current VM.
1598 */
1599 int cpu_dirty_log_size;
1600 };
1601
1602 struct kvm_vm_stat {
1603 struct kvm_vm_stat_generic generic;
1604 u64 mmu_shadow_zapped;
1605 u64 mmu_pte_write;
1606 u64 mmu_pde_zapped;
1607 u64 mmu_flooded;
1608 u64 mmu_recycled;
1609 u64 mmu_cache_miss;
1610 u64 mmu_unsync;
1611 union {
1612 struct {
1613 atomic64_t pages_4k;
1614 atomic64_t pages_2m;
1615 atomic64_t pages_1g;
1616 };
1617 atomic64_t pages[KVM_NR_PAGE_SIZES];
1618 };
1619 u64 nx_lpage_splits;
1620 u64 max_mmu_page_hash_collisions;
1621 u64 max_mmu_rmap_size;
1622 };
1623
1624 struct kvm_vcpu_stat {
1625 struct kvm_vcpu_stat_generic generic;
1626 u64 pf_taken;
1627 u64 pf_fixed;
1628 u64 pf_emulate;
1629 u64 pf_spurious;
1630 u64 pf_fast;
1631 u64 pf_mmio_spte_created;
1632 u64 pf_guest;
1633 u64 tlb_flush;
1634 u64 invlpg;
1635
1636 u64 exits;
1637 u64 io_exits;
1638 u64 mmio_exits;
1639 u64 signal_exits;
1640 u64 irq_window_exits;
1641 u64 nmi_window_exits;
1642 u64 l1d_flush;
1643 u64 halt_exits;
1644 u64 request_irq_exits;
1645 u64 irq_exits;
1646 u64 host_state_reload;
1647 u64 fpu_reload;
1648 u64 insn_emulation;
1649 u64 insn_emulation_fail;
1650 u64 hypercalls;
1651 u64 irq_injections;
1652 u64 nmi_injections;
1653 u64 req_event;
1654 u64 nested_run;
1655 u64 directed_yield_attempted;
1656 u64 directed_yield_successful;
1657 u64 preemption_reported;
1658 u64 preemption_other;
1659 u64 guest_mode;
1660 u64 notify_window_exits;
1661 };
1662
1663 struct x86_instruction_info;
1664
1665 struct msr_data {
1666 bool host_initiated;
1667 u32 index;
1668 u64 data;
1669 };
1670
1671 struct kvm_lapic_irq {
1672 u32 vector;
1673 u16 delivery_mode;
1674 u16 dest_mode;
1675 bool level;
1676 u16 trig_mode;
1677 u32 shorthand;
1678 u32 dest_id;
1679 bool msi_redir_hint;
1680 };
1681
kvm_lapic_irq_dest_mode(bool dest_mode_logical)1682 static inline u16 kvm_lapic_irq_dest_mode(bool dest_mode_logical)
1683 {
1684 return dest_mode_logical ? APIC_DEST_LOGICAL : APIC_DEST_PHYSICAL;
1685 }
1686
1687 enum kvm_x86_run_flags {
1688 KVM_RUN_FORCE_IMMEDIATE_EXIT = BIT(0),
1689 KVM_RUN_LOAD_GUEST_DR6 = BIT(1),
1690 KVM_RUN_LOAD_DEBUGCTL = BIT(2),
1691 };
1692
1693 struct kvm_x86_ops {
1694 const char *name;
1695
1696 int (*check_processor_compatibility)(void);
1697
1698 int (*enable_virtualization_cpu)(void);
1699 void (*disable_virtualization_cpu)(void);
1700 cpu_emergency_virt_cb *emergency_disable_virtualization_cpu;
1701
1702 void (*hardware_unsetup)(void);
1703 bool (*has_emulated_msr)(struct kvm *kvm, u32 index);
1704 void (*vcpu_after_set_cpuid)(struct kvm_vcpu *vcpu);
1705
1706 unsigned int vm_size;
1707 int (*vm_init)(struct kvm *kvm);
1708 void (*vm_destroy)(struct kvm *kvm);
1709 void (*vm_pre_destroy)(struct kvm *kvm);
1710
1711 /* Create, but do not attach this VCPU */
1712 int (*vcpu_precreate)(struct kvm *kvm);
1713 int (*vcpu_create)(struct kvm_vcpu *vcpu);
1714 void (*vcpu_free)(struct kvm_vcpu *vcpu);
1715 void (*vcpu_reset)(struct kvm_vcpu *vcpu, bool init_event);
1716
1717 void (*prepare_switch_to_guest)(struct kvm_vcpu *vcpu);
1718 void (*vcpu_load)(struct kvm_vcpu *vcpu, int cpu);
1719 void (*vcpu_put)(struct kvm_vcpu *vcpu);
1720
1721 /*
1722 * Mask of DEBUGCTL bits that are owned by the host, i.e. that need to
1723 * match the host's value even while the guest is active.
1724 */
1725 const u64 HOST_OWNED_DEBUGCTL;
1726
1727 void (*update_exception_bitmap)(struct kvm_vcpu *vcpu);
1728 int (*get_msr)(struct kvm_vcpu *vcpu, struct msr_data *msr);
1729 int (*set_msr)(struct kvm_vcpu *vcpu, struct msr_data *msr);
1730 u64 (*get_segment_base)(struct kvm_vcpu *vcpu, int seg);
1731 void (*get_segment)(struct kvm_vcpu *vcpu,
1732 struct kvm_segment *var, int seg);
1733 int (*get_cpl)(struct kvm_vcpu *vcpu);
1734 int (*get_cpl_no_cache)(struct kvm_vcpu *vcpu);
1735 void (*set_segment)(struct kvm_vcpu *vcpu,
1736 struct kvm_segment *var, int seg);
1737 void (*get_cs_db_l_bits)(struct kvm_vcpu *vcpu, int *db, int *l);
1738 bool (*is_valid_cr0)(struct kvm_vcpu *vcpu, unsigned long cr0);
1739 void (*set_cr0)(struct kvm_vcpu *vcpu, unsigned long cr0);
1740 void (*post_set_cr3)(struct kvm_vcpu *vcpu, unsigned long cr3);
1741 bool (*is_valid_cr4)(struct kvm_vcpu *vcpu, unsigned long cr4);
1742 void (*set_cr4)(struct kvm_vcpu *vcpu, unsigned long cr4);
1743 int (*set_efer)(struct kvm_vcpu *vcpu, u64 efer);
1744 void (*get_idt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
1745 void (*set_idt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
1746 void (*get_gdt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
1747 void (*set_gdt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
1748 void (*sync_dirty_debug_regs)(struct kvm_vcpu *vcpu);
1749 void (*set_dr7)(struct kvm_vcpu *vcpu, unsigned long value);
1750 void (*cache_reg)(struct kvm_vcpu *vcpu, enum kvm_reg reg);
1751 unsigned long (*get_rflags)(struct kvm_vcpu *vcpu);
1752 void (*set_rflags)(struct kvm_vcpu *vcpu, unsigned long rflags);
1753 bool (*get_if_flag)(struct kvm_vcpu *vcpu);
1754
1755 void (*flush_tlb_all)(struct kvm_vcpu *vcpu);
1756 void (*flush_tlb_current)(struct kvm_vcpu *vcpu);
1757 #if IS_ENABLED(CONFIG_HYPERV)
1758 int (*flush_remote_tlbs)(struct kvm *kvm);
1759 int (*flush_remote_tlbs_range)(struct kvm *kvm, gfn_t gfn,
1760 gfn_t nr_pages);
1761 #endif
1762
1763 /*
1764 * Flush any TLB entries associated with the given GVA.
1765 * Does not need to flush GPA->HPA mappings.
1766 * Can potentially get non-canonical addresses through INVLPGs, which
1767 * the implementation may choose to ignore if appropriate.
1768 */
1769 void (*flush_tlb_gva)(struct kvm_vcpu *vcpu, gva_t addr);
1770
1771 /*
1772 * Flush any TLB entries created by the guest. Like tlb_flush_gva(),
1773 * does not need to flush GPA->HPA mappings.
1774 */
1775 void (*flush_tlb_guest)(struct kvm_vcpu *vcpu);
1776
1777 int (*vcpu_pre_run)(struct kvm_vcpu *vcpu);
1778 enum exit_fastpath_completion (*vcpu_run)(struct kvm_vcpu *vcpu,
1779 u64 run_flags);
1780 int (*handle_exit)(struct kvm_vcpu *vcpu,
1781 enum exit_fastpath_completion exit_fastpath);
1782 int (*skip_emulated_instruction)(struct kvm_vcpu *vcpu);
1783 void (*update_emulated_instruction)(struct kvm_vcpu *vcpu);
1784 void (*set_interrupt_shadow)(struct kvm_vcpu *vcpu, int mask);
1785 u32 (*get_interrupt_shadow)(struct kvm_vcpu *vcpu);
1786 void (*patch_hypercall)(struct kvm_vcpu *vcpu,
1787 unsigned char *hypercall_addr);
1788 void (*inject_irq)(struct kvm_vcpu *vcpu, bool reinjected);
1789 void (*inject_nmi)(struct kvm_vcpu *vcpu);
1790 void (*inject_exception)(struct kvm_vcpu *vcpu);
1791 void (*cancel_injection)(struct kvm_vcpu *vcpu);
1792 int (*interrupt_allowed)(struct kvm_vcpu *vcpu, bool for_injection);
1793 int (*nmi_allowed)(struct kvm_vcpu *vcpu, bool for_injection);
1794 bool (*get_nmi_mask)(struct kvm_vcpu *vcpu);
1795 void (*set_nmi_mask)(struct kvm_vcpu *vcpu, bool masked);
1796 /* Whether or not a virtual NMI is pending in hardware. */
1797 bool (*is_vnmi_pending)(struct kvm_vcpu *vcpu);
1798 /*
1799 * Attempt to pend a virtual NMI in hardware. Returns %true on success
1800 * to allow using static_call_ret0 as the fallback.
1801 */
1802 bool (*set_vnmi_pending)(struct kvm_vcpu *vcpu);
1803 void (*enable_nmi_window)(struct kvm_vcpu *vcpu);
1804 void (*enable_irq_window)(struct kvm_vcpu *vcpu);
1805 void (*update_cr8_intercept)(struct kvm_vcpu *vcpu, int tpr, int irr);
1806
1807 const bool x2apic_icr_is_split;
1808 const unsigned long required_apicv_inhibits;
1809 bool allow_apicv_in_x2apic_without_x2apic_virtualization;
1810 void (*refresh_apicv_exec_ctrl)(struct kvm_vcpu *vcpu);
1811 void (*hwapic_isr_update)(struct kvm_vcpu *vcpu, int isr);
1812 void (*load_eoi_exitmap)(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap);
1813 void (*set_virtual_apic_mode)(struct kvm_vcpu *vcpu);
1814 void (*set_apic_access_page_addr)(struct kvm_vcpu *vcpu);
1815 void (*deliver_interrupt)(struct kvm_lapic *apic, int delivery_mode,
1816 int trig_mode, int vector);
1817 int (*sync_pir_to_irr)(struct kvm_vcpu *vcpu);
1818 int (*set_tss_addr)(struct kvm *kvm, unsigned int addr);
1819 int (*set_identity_map_addr)(struct kvm *kvm, u64 ident_addr);
1820 u8 (*get_mt_mask)(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio);
1821
1822 void (*load_mmu_pgd)(struct kvm_vcpu *vcpu, hpa_t root_hpa,
1823 int root_level);
1824
1825 /* Update external mapping with page table link. */
1826 int (*link_external_spt)(struct kvm *kvm, gfn_t gfn, enum pg_level level,
1827 void *external_spt);
1828 /* Update the external page table from spte getting set. */
1829 int (*set_external_spte)(struct kvm *kvm, gfn_t gfn, enum pg_level level,
1830 kvm_pfn_t pfn_for_gfn);
1831
1832 /* Update external page tables for page table about to be freed. */
1833 int (*free_external_spt)(struct kvm *kvm, gfn_t gfn, enum pg_level level,
1834 void *external_spt);
1835
1836 /* Update external page table from spte getting removed, and flush TLB. */
1837 int (*remove_external_spte)(struct kvm *kvm, gfn_t gfn, enum pg_level level,
1838 kvm_pfn_t pfn_for_gfn);
1839
1840 bool (*has_wbinvd_exit)(void);
1841
1842 u64 (*get_l2_tsc_offset)(struct kvm_vcpu *vcpu);
1843 u64 (*get_l2_tsc_multiplier)(struct kvm_vcpu *vcpu);
1844 void (*write_tsc_offset)(struct kvm_vcpu *vcpu);
1845 void (*write_tsc_multiplier)(struct kvm_vcpu *vcpu);
1846
1847 /*
1848 * Retrieve somewhat arbitrary exit/entry information. Intended to
1849 * be used only from within tracepoints or error paths.
1850 */
1851 void (*get_exit_info)(struct kvm_vcpu *vcpu, u32 *reason,
1852 u64 *info1, u64 *info2,
1853 u32 *intr_info, u32 *error_code);
1854
1855 void (*get_entry_info)(struct kvm_vcpu *vcpu,
1856 u32 *intr_info, u32 *error_code);
1857
1858 int (*check_intercept)(struct kvm_vcpu *vcpu,
1859 struct x86_instruction_info *info,
1860 enum x86_intercept_stage stage,
1861 struct x86_exception *exception);
1862 void (*handle_exit_irqoff)(struct kvm_vcpu *vcpu);
1863
1864 void (*update_cpu_dirty_logging)(struct kvm_vcpu *vcpu);
1865
1866 const struct kvm_x86_nested_ops *nested_ops;
1867
1868 void (*vcpu_blocking)(struct kvm_vcpu *vcpu);
1869 void (*vcpu_unblocking)(struct kvm_vcpu *vcpu);
1870
1871 int (*pi_update_irte)(struct kvm_kernel_irqfd *irqfd, struct kvm *kvm,
1872 unsigned int host_irq, uint32_t guest_irq,
1873 struct kvm_vcpu *vcpu, u32 vector);
1874 void (*pi_start_bypass)(struct kvm *kvm);
1875 void (*apicv_pre_state_restore)(struct kvm_vcpu *vcpu);
1876 void (*apicv_post_state_restore)(struct kvm_vcpu *vcpu);
1877 bool (*dy_apicv_has_pending_interrupt)(struct kvm_vcpu *vcpu);
1878 bool (*protected_apic_has_interrupt)(struct kvm_vcpu *vcpu);
1879
1880 int (*set_hv_timer)(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc,
1881 bool *expired);
1882 void (*cancel_hv_timer)(struct kvm_vcpu *vcpu);
1883
1884 void (*setup_mce)(struct kvm_vcpu *vcpu);
1885
1886 #ifdef CONFIG_KVM_SMM
1887 int (*smi_allowed)(struct kvm_vcpu *vcpu, bool for_injection);
1888 int (*enter_smm)(struct kvm_vcpu *vcpu, union kvm_smram *smram);
1889 int (*leave_smm)(struct kvm_vcpu *vcpu, const union kvm_smram *smram);
1890 void (*enable_smi_window)(struct kvm_vcpu *vcpu);
1891 #endif
1892
1893 int (*dev_get_attr)(u32 group, u64 attr, u64 *val);
1894 int (*mem_enc_ioctl)(struct kvm *kvm, void __user *argp);
1895 int (*vcpu_mem_enc_ioctl)(struct kvm_vcpu *vcpu, void __user *argp);
1896 int (*mem_enc_register_region)(struct kvm *kvm, struct kvm_enc_region *argp);
1897 int (*mem_enc_unregister_region)(struct kvm *kvm, struct kvm_enc_region *argp);
1898 int (*vm_copy_enc_context_from)(struct kvm *kvm, unsigned int source_fd);
1899 int (*vm_move_enc_context_from)(struct kvm *kvm, unsigned int source_fd);
1900 void (*guest_memory_reclaimed)(struct kvm *kvm);
1901
1902 int (*get_feature_msr)(u32 msr, u64 *data);
1903
1904 int (*check_emulate_instruction)(struct kvm_vcpu *vcpu, int emul_type,
1905 void *insn, int insn_len);
1906
1907 bool (*apic_init_signal_blocked)(struct kvm_vcpu *vcpu);
1908 int (*enable_l2_tlb_flush)(struct kvm_vcpu *vcpu);
1909
1910 void (*migrate_timers)(struct kvm_vcpu *vcpu);
1911 void (*recalc_msr_intercepts)(struct kvm_vcpu *vcpu);
1912 int (*complete_emulated_msr)(struct kvm_vcpu *vcpu, int err);
1913
1914 void (*vcpu_deliver_sipi_vector)(struct kvm_vcpu *vcpu, u8 vector);
1915
1916 /*
1917 * Returns vCPU specific APICv inhibit reasons
1918 */
1919 unsigned long (*vcpu_get_apicv_inhibit_reasons)(struct kvm_vcpu *vcpu);
1920
1921 gva_t (*get_untagged_addr)(struct kvm_vcpu *vcpu, gva_t gva, unsigned int flags);
1922 void *(*alloc_apic_backing_page)(struct kvm_vcpu *vcpu);
1923 int (*gmem_prepare)(struct kvm *kvm, kvm_pfn_t pfn, gfn_t gfn, int max_order);
1924 void (*gmem_invalidate)(kvm_pfn_t start, kvm_pfn_t end);
1925 int (*private_max_mapping_level)(struct kvm *kvm, kvm_pfn_t pfn);
1926 };
1927
1928 struct kvm_x86_nested_ops {
1929 void (*leave_nested)(struct kvm_vcpu *vcpu);
1930 bool (*is_exception_vmexit)(struct kvm_vcpu *vcpu, u8 vector,
1931 u32 error_code);
1932 int (*check_events)(struct kvm_vcpu *vcpu);
1933 bool (*has_events)(struct kvm_vcpu *vcpu, bool for_injection);
1934 void (*triple_fault)(struct kvm_vcpu *vcpu);
1935 int (*get_state)(struct kvm_vcpu *vcpu,
1936 struct kvm_nested_state __user *user_kvm_nested_state,
1937 unsigned user_data_size);
1938 int (*set_state)(struct kvm_vcpu *vcpu,
1939 struct kvm_nested_state __user *user_kvm_nested_state,
1940 struct kvm_nested_state *kvm_state);
1941 bool (*get_nested_state_pages)(struct kvm_vcpu *vcpu);
1942 int (*write_log_dirty)(struct kvm_vcpu *vcpu, gpa_t l2_gpa);
1943
1944 int (*enable_evmcs)(struct kvm_vcpu *vcpu,
1945 uint16_t *vmcs_version);
1946 uint16_t (*get_evmcs_version)(struct kvm_vcpu *vcpu);
1947 void (*hv_inject_synthetic_vmexit_post_tlb_flush)(struct kvm_vcpu *vcpu);
1948 };
1949
1950 struct kvm_x86_init_ops {
1951 int (*hardware_setup)(void);
1952 unsigned int (*handle_intel_pt_intr)(void);
1953
1954 struct kvm_x86_ops *runtime_ops;
1955 struct kvm_pmu_ops *pmu_ops;
1956 };
1957
1958 struct kvm_arch_async_pf {
1959 u32 token;
1960 gfn_t gfn;
1961 unsigned long cr3;
1962 bool direct_map;
1963 u64 error_code;
1964 };
1965
1966 extern u32 __read_mostly kvm_nr_uret_msrs;
1967 extern bool __read_mostly allow_smaller_maxphyaddr;
1968 extern bool __read_mostly enable_apicv;
1969 extern bool __read_mostly enable_ipiv;
1970 extern bool __read_mostly enable_device_posted_irqs;
1971 extern struct kvm_x86_ops kvm_x86_ops;
1972
1973 #define kvm_x86_call(func) static_call(kvm_x86_##func)
1974 #define kvm_pmu_call(func) static_call(kvm_x86_pmu_##func)
1975
1976 #define KVM_X86_OP(func) \
1977 DECLARE_STATIC_CALL(kvm_x86_##func, *(((struct kvm_x86_ops *)0)->func));
1978 #define KVM_X86_OP_OPTIONAL KVM_X86_OP
1979 #define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP
1980 #include <asm/kvm-x86-ops.h>
1981
1982 int kvm_x86_vendor_init(struct kvm_x86_init_ops *ops);
1983 void kvm_x86_vendor_exit(void);
1984
1985 #define __KVM_HAVE_ARCH_VM_ALLOC
kvm_arch_alloc_vm(void)1986 static inline struct kvm *kvm_arch_alloc_vm(void)
1987 {
1988 return kvzalloc(kvm_x86_ops.vm_size, GFP_KERNEL_ACCOUNT);
1989 }
1990
1991 #define __KVM_HAVE_ARCH_VM_FREE
1992 void kvm_arch_free_vm(struct kvm *kvm);
1993
1994 #if IS_ENABLED(CONFIG_HYPERV)
1995 #define __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS
kvm_arch_flush_remote_tlbs(struct kvm * kvm)1996 static inline int kvm_arch_flush_remote_tlbs(struct kvm *kvm)
1997 {
1998 if (kvm_x86_ops.flush_remote_tlbs &&
1999 !kvm_x86_call(flush_remote_tlbs)(kvm))
2000 return 0;
2001 else
2002 return -ENOTSUPP;
2003 }
2004
2005 #define __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS_RANGE
kvm_arch_flush_remote_tlbs_range(struct kvm * kvm,gfn_t gfn,u64 nr_pages)2006 static inline int kvm_arch_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn,
2007 u64 nr_pages)
2008 {
2009 if (!kvm_x86_ops.flush_remote_tlbs_range)
2010 return -EOPNOTSUPP;
2011
2012 return kvm_x86_call(flush_remote_tlbs_range)(kvm, gfn, nr_pages);
2013 }
2014 #endif /* CONFIG_HYPERV */
2015
2016 enum kvm_intr_type {
2017 /* Values are arbitrary, but must be non-zero. */
2018 KVM_HANDLING_IRQ = 1,
2019 KVM_HANDLING_NMI,
2020 };
2021
2022 /* Enable perf NMI and timer modes to work, and minimise false positives. */
2023 #define kvm_arch_pmi_in_guest(vcpu) \
2024 ((vcpu) && (vcpu)->arch.handling_intr_from_guest && \
2025 (!!in_nmi() == ((vcpu)->arch.handling_intr_from_guest == KVM_HANDLING_NMI)))
2026
2027 void __init kvm_mmu_x86_module_init(void);
2028 int kvm_mmu_vendor_module_init(void);
2029 void kvm_mmu_vendor_module_exit(void);
2030
2031 void kvm_mmu_destroy(struct kvm_vcpu *vcpu);
2032 int kvm_mmu_create(struct kvm_vcpu *vcpu);
2033 int kvm_mmu_init_vm(struct kvm *kvm);
2034 void kvm_mmu_uninit_vm(struct kvm *kvm);
2035
2036 void kvm_mmu_init_memslot_memory_attributes(struct kvm *kvm,
2037 struct kvm_memory_slot *slot);
2038
2039 void kvm_mmu_after_set_cpuid(struct kvm_vcpu *vcpu);
2040 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu);
2041 void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
2042 const struct kvm_memory_slot *memslot,
2043 int start_level);
2044 void kvm_mmu_slot_try_split_huge_pages(struct kvm *kvm,
2045 const struct kvm_memory_slot *memslot,
2046 int target_level);
2047 void kvm_mmu_try_split_huge_pages(struct kvm *kvm,
2048 const struct kvm_memory_slot *memslot,
2049 u64 start, u64 end,
2050 int target_level);
2051 void kvm_mmu_recover_huge_pages(struct kvm *kvm,
2052 const struct kvm_memory_slot *memslot);
2053 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
2054 const struct kvm_memory_slot *memslot);
2055 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen);
2056 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long kvm_nr_mmu_pages);
2057 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end);
2058
2059 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3);
2060
2061 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
2062 const void *val, int bytes);
2063
2064 extern bool tdp_enabled;
2065
2066 u64 vcpu_tsc_khz(struct kvm_vcpu *vcpu);
2067
2068 /*
2069 * EMULTYPE_NO_DECODE - Set when re-emulating an instruction (after completing
2070 * userspace I/O) to indicate that the emulation context
2071 * should be reused as is, i.e. skip initialization of
2072 * emulation context, instruction fetch and decode.
2073 *
2074 * EMULTYPE_TRAP_UD - Set when emulating an intercepted #UD from hardware.
2075 * Indicates that only select instructions (tagged with
2076 * EmulateOnUD) should be emulated (to minimize the emulator
2077 * attack surface). See also EMULTYPE_TRAP_UD_FORCED.
2078 *
2079 * EMULTYPE_SKIP - Set when emulating solely to skip an instruction, i.e. to
2080 * decode the instruction length. For use *only* by
2081 * kvm_x86_ops.skip_emulated_instruction() implementations if
2082 * EMULTYPE_COMPLETE_USER_EXIT is not set.
2083 *
2084 * EMULTYPE_ALLOW_RETRY_PF - Set when the emulator should resume the guest to
2085 * retry native execution under certain conditions,
2086 * Can only be set in conjunction with EMULTYPE_PF.
2087 *
2088 * EMULTYPE_TRAP_UD_FORCED - Set when emulating an intercepted #UD that was
2089 * triggered by KVM's magic "force emulation" prefix,
2090 * which is opt in via module param (off by default).
2091 * Bypasses EmulateOnUD restriction despite emulating
2092 * due to an intercepted #UD (see EMULTYPE_TRAP_UD).
2093 * Used to test the full emulator from userspace.
2094 *
2095 * EMULTYPE_VMWARE_GP - Set when emulating an intercepted #GP for VMware
2096 * backdoor emulation, which is opt in via module param.
2097 * VMware backdoor emulation handles select instructions
2098 * and reinjects the #GP for all other cases.
2099 *
2100 * EMULTYPE_PF - Set when an intercepted #PF triggers the emulation, in which case
2101 * the CR2/GPA value pass on the stack is valid.
2102 *
2103 * EMULTYPE_COMPLETE_USER_EXIT - Set when the emulator should update interruptibility
2104 * state and inject single-step #DBs after skipping
2105 * an instruction (after completing userspace I/O).
2106 *
2107 * EMULTYPE_WRITE_PF_TO_SP - Set when emulating an intercepted page fault that
2108 * is attempting to write a gfn that contains one or
2109 * more of the PTEs used to translate the write itself,
2110 * and the owning page table is being shadowed by KVM.
2111 * If emulation of the faulting instruction fails and
2112 * this flag is set, KVM will exit to userspace instead
2113 * of retrying emulation as KVM cannot make forward
2114 * progress.
2115 *
2116 * If emulation fails for a write to guest page tables,
2117 * KVM unprotects (zaps) the shadow page for the target
2118 * gfn and resumes the guest to retry the non-emulatable
2119 * instruction (on hardware). Unprotecting the gfn
2120 * doesn't allow forward progress for a self-changing
2121 * access because doing so also zaps the translation for
2122 * the gfn, i.e. retrying the instruction will hit a
2123 * !PRESENT fault, which results in a new shadow page
2124 * and sends KVM back to square one.
2125 */
2126 #define EMULTYPE_NO_DECODE (1 << 0)
2127 #define EMULTYPE_TRAP_UD (1 << 1)
2128 #define EMULTYPE_SKIP (1 << 2)
2129 #define EMULTYPE_ALLOW_RETRY_PF (1 << 3)
2130 #define EMULTYPE_TRAP_UD_FORCED (1 << 4)
2131 #define EMULTYPE_VMWARE_GP (1 << 5)
2132 #define EMULTYPE_PF (1 << 6)
2133 #define EMULTYPE_COMPLETE_USER_EXIT (1 << 7)
2134 #define EMULTYPE_WRITE_PF_TO_SP (1 << 8)
2135
kvm_can_emulate_event_vectoring(int emul_type)2136 static inline bool kvm_can_emulate_event_vectoring(int emul_type)
2137 {
2138 return !(emul_type & EMULTYPE_PF);
2139 }
2140
2141 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type);
2142 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
2143 void *insn, int insn_len);
2144 void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu,
2145 u64 *data, u8 ndata);
2146 void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu);
2147
2148 void kvm_prepare_event_vectoring_exit(struct kvm_vcpu *vcpu, gpa_t gpa);
2149
2150 void kvm_enable_efer_bits(u64);
2151 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer);
2152 int kvm_get_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 *data);
2153 int kvm_set_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 data);
2154 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data, bool host_initiated);
2155 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data);
2156 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data);
2157 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu);
2158 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu);
2159 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu);
2160 int kvm_emulate_invd(struct kvm_vcpu *vcpu);
2161 int kvm_emulate_mwait(struct kvm_vcpu *vcpu);
2162 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu);
2163 int kvm_emulate_monitor(struct kvm_vcpu *vcpu);
2164
2165 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in);
2166 int kvm_emulate_cpuid(struct kvm_vcpu *vcpu);
2167 int kvm_emulate_halt(struct kvm_vcpu *vcpu);
2168 int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu);
2169 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu);
2170 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu);
2171
2172 void kvm_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg);
2173 void kvm_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg);
2174 int kvm_load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector, int seg);
2175 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector);
2176
2177 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
2178 int reason, bool has_error_code, u32 error_code);
2179
2180 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0);
2181 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4);
2182 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0);
2183 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3);
2184 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
2185 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8);
2186 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val);
2187 unsigned long kvm_get_dr(struct kvm_vcpu *vcpu, int dr);
2188 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu);
2189 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw);
2190 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu);
2191
2192 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr);
2193 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr);
2194
2195 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu);
2196 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
2197 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu);
2198
2199 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr);
2200 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code);
2201 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr, unsigned long payload);
2202 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned int nr,
2203 bool has_error_code, u32 error_code);
2204 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault);
2205 void kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
2206 struct x86_exception *fault);
2207 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl);
2208 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr);
2209
__kvm_irq_line_state(unsigned long * irq_state,int irq_source_id,int level)2210 static inline int __kvm_irq_line_state(unsigned long *irq_state,
2211 int irq_source_id, int level)
2212 {
2213 /* Logical OR for level trig interrupt */
2214 if (level)
2215 __set_bit(irq_source_id, irq_state);
2216 else
2217 __clear_bit(irq_source_id, irq_state);
2218
2219 return !!(*irq_state);
2220 }
2221
2222 void kvm_inject_nmi(struct kvm_vcpu *vcpu);
2223 int kvm_get_nr_pending_nmis(struct kvm_vcpu *vcpu);
2224
2225 void kvm_update_dr7(struct kvm_vcpu *vcpu);
2226
2227 bool __kvm_mmu_unprotect_gfn_and_retry(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
2228 bool always_retry);
2229
kvm_mmu_unprotect_gfn_and_retry(struct kvm_vcpu * vcpu,gpa_t cr2_or_gpa)2230 static inline bool kvm_mmu_unprotect_gfn_and_retry(struct kvm_vcpu *vcpu,
2231 gpa_t cr2_or_gpa)
2232 {
2233 return __kvm_mmu_unprotect_gfn_and_retry(vcpu, cr2_or_gpa, false);
2234 }
2235
2236 void kvm_mmu_free_roots(struct kvm *kvm, struct kvm_mmu *mmu,
2237 ulong roots_to_free);
2238 void kvm_mmu_free_guest_mode_roots(struct kvm *kvm, struct kvm_mmu *mmu);
2239 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
2240 struct x86_exception *exception);
2241 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
2242 struct x86_exception *exception);
2243 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
2244 struct x86_exception *exception);
2245
2246 bool kvm_apicv_activated(struct kvm *kvm);
2247 bool kvm_vcpu_apicv_activated(struct kvm_vcpu *vcpu);
2248 void __kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu);
2249 void __kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
2250 enum kvm_apicv_inhibit reason, bool set);
2251 void kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
2252 enum kvm_apicv_inhibit reason, bool set);
2253
kvm_set_apicv_inhibit(struct kvm * kvm,enum kvm_apicv_inhibit reason)2254 static inline void kvm_set_apicv_inhibit(struct kvm *kvm,
2255 enum kvm_apicv_inhibit reason)
2256 {
2257 kvm_set_or_clear_apicv_inhibit(kvm, reason, true);
2258 }
2259
kvm_clear_apicv_inhibit(struct kvm * kvm,enum kvm_apicv_inhibit reason)2260 static inline void kvm_clear_apicv_inhibit(struct kvm *kvm,
2261 enum kvm_apicv_inhibit reason)
2262 {
2263 kvm_set_or_clear_apicv_inhibit(kvm, reason, false);
2264 }
2265
2266 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code,
2267 void *insn, int insn_len);
2268 void kvm_mmu_print_sptes(struct kvm_vcpu *vcpu, gpa_t gpa, const char *msg);
2269 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva);
2270 void kvm_mmu_invalidate_addr(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
2271 u64 addr, unsigned long roots);
2272 void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid);
2273 void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd);
2274
2275 void kvm_configure_mmu(bool enable_tdp, int tdp_forced_root_level,
2276 int tdp_max_root_level, int tdp_huge_page_level);
2277
2278
2279 #ifdef CONFIG_KVM_PRIVATE_MEM
2280 #define kvm_arch_has_private_mem(kvm) ((kvm)->arch.has_private_mem)
2281 #else
2282 #define kvm_arch_has_private_mem(kvm) false
2283 #endif
2284
2285 #define kvm_arch_has_readonly_mem(kvm) (!(kvm)->arch.has_protected_state)
2286
kvm_read_ldt(void)2287 static inline u16 kvm_read_ldt(void)
2288 {
2289 u16 ldt;
2290 asm("sldt %0" : "=g"(ldt));
2291 return ldt;
2292 }
2293
kvm_load_ldt(u16 sel)2294 static inline void kvm_load_ldt(u16 sel)
2295 {
2296 asm("lldt %0" : : "rm"(sel));
2297 }
2298
2299 #ifdef CONFIG_X86_64
read_msr(unsigned long msr)2300 static inline unsigned long read_msr(unsigned long msr)
2301 {
2302 u64 value;
2303
2304 rdmsrq(msr, value);
2305 return value;
2306 }
2307 #endif
2308
kvm_inject_gp(struct kvm_vcpu * vcpu,u32 error_code)2309 static inline void kvm_inject_gp(struct kvm_vcpu *vcpu, u32 error_code)
2310 {
2311 kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
2312 }
2313
2314 #define TSS_IOPB_BASE_OFFSET 0x66
2315 #define TSS_BASE_SIZE 0x68
2316 #define TSS_IOPB_SIZE (65536 / 8)
2317 #define TSS_REDIRECTION_SIZE (256 / 8)
2318 #define RMODE_TSS_SIZE \
2319 (TSS_BASE_SIZE + TSS_REDIRECTION_SIZE + TSS_IOPB_SIZE + 1)
2320
2321 enum {
2322 TASK_SWITCH_CALL = 0,
2323 TASK_SWITCH_IRET = 1,
2324 TASK_SWITCH_JMP = 2,
2325 TASK_SWITCH_GATE = 3,
2326 };
2327
2328 #define HF_GUEST_MASK (1 << 0) /* VCPU is in guest-mode */
2329
2330 #ifdef CONFIG_KVM_SMM
2331 #define HF_SMM_MASK (1 << 1)
2332 #define HF_SMM_INSIDE_NMI_MASK (1 << 2)
2333
2334 # define KVM_MAX_NR_ADDRESS_SPACES 2
2335 /* SMM is currently unsupported for guests with private memory. */
2336 # define kvm_arch_nr_memslot_as_ids(kvm) (kvm_arch_has_private_mem(kvm) ? 1 : 2)
2337 # define kvm_arch_vcpu_memslots_id(vcpu) ((vcpu)->arch.hflags & HF_SMM_MASK ? 1 : 0)
2338 # define kvm_memslots_for_spte_role(kvm, role) __kvm_memslots(kvm, (role).smm)
2339 #else
2340 # define kvm_memslots_for_spte_role(kvm, role) __kvm_memslots(kvm, 0)
2341 #endif
2342
2343 int kvm_cpu_has_injectable_intr(struct kvm_vcpu *v);
2344 int kvm_cpu_has_interrupt(struct kvm_vcpu *vcpu);
2345 int kvm_cpu_has_extint(struct kvm_vcpu *v);
2346 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu);
2347 int kvm_cpu_get_extint(struct kvm_vcpu *v);
2348 int kvm_cpu_get_interrupt(struct kvm_vcpu *v);
2349 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event);
2350
2351 int kvm_pv_send_ipi(struct kvm *kvm, unsigned long ipi_bitmap_low,
2352 unsigned long ipi_bitmap_high, u32 min,
2353 unsigned long icr, int op_64_bit);
2354
2355 int kvm_add_user_return_msr(u32 msr);
2356 int kvm_find_user_return_msr(u32 msr);
2357 int kvm_set_user_return_msr(unsigned index, u64 val, u64 mask);
2358 void kvm_user_return_msr_update_cache(unsigned int index, u64 val);
2359
kvm_is_supported_user_return_msr(u32 msr)2360 static inline bool kvm_is_supported_user_return_msr(u32 msr)
2361 {
2362 return kvm_find_user_return_msr(msr) >= 0;
2363 }
2364
2365 u64 kvm_scale_tsc(u64 tsc, u64 ratio);
2366 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc);
2367 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier);
2368 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier);
2369
2370 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu);
2371 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip);
2372
2373 void kvm_make_scan_ioapic_request(struct kvm *kvm);
2374 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
2375 unsigned long *vcpu_bitmap);
2376
2377 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
2378 struct kvm_async_pf *work);
2379 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
2380 struct kvm_async_pf *work);
2381 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu,
2382 struct kvm_async_pf *work);
2383 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu);
2384 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu);
2385 extern bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn);
2386
2387 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu);
2388 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err);
2389
2390 void __user *__x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa,
2391 u32 size);
2392 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu);
2393 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu);
2394
2395 bool kvm_intr_is_single_vcpu(struct kvm *kvm, struct kvm_lapic_irq *irq,
2396 struct kvm_vcpu **dest_vcpu);
2397
kvm_irq_is_postable(struct kvm_lapic_irq * irq)2398 static inline bool kvm_irq_is_postable(struct kvm_lapic_irq *irq)
2399 {
2400 /* We can only post Fixed and LowPrio IRQs */
2401 return (irq->delivery_mode == APIC_DM_FIXED ||
2402 irq->delivery_mode == APIC_DM_LOWEST);
2403 }
2404
kvm_arch_vcpu_blocking(struct kvm_vcpu * vcpu)2405 static inline void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
2406 {
2407 kvm_x86_call(vcpu_blocking)(vcpu);
2408 }
2409
kvm_arch_vcpu_unblocking(struct kvm_vcpu * vcpu)2410 static inline void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
2411 {
2412 kvm_x86_call(vcpu_unblocking)(vcpu);
2413 }
2414
kvm_cpu_get_apicid(int mps_cpu)2415 static inline int kvm_cpu_get_apicid(int mps_cpu)
2416 {
2417 #ifdef CONFIG_X86_LOCAL_APIC
2418 return default_cpu_present_to_apicid(mps_cpu);
2419 #else
2420 WARN_ON_ONCE(1);
2421 return BAD_APICID;
2422 #endif
2423 }
2424
2425 int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages);
2426
2427 #define KVM_CLOCK_VALID_FLAGS \
2428 (KVM_CLOCK_TSC_STABLE | KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC)
2429
2430 #define KVM_X86_VALID_QUIRKS \
2431 (KVM_X86_QUIRK_LINT0_REENABLED | \
2432 KVM_X86_QUIRK_CD_NW_CLEARED | \
2433 KVM_X86_QUIRK_LAPIC_MMIO_HOLE | \
2434 KVM_X86_QUIRK_OUT_7E_INC_RIP | \
2435 KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT | \
2436 KVM_X86_QUIRK_FIX_HYPERCALL_INSN | \
2437 KVM_X86_QUIRK_MWAIT_NEVER_UD_FAULTS | \
2438 KVM_X86_QUIRK_SLOT_ZAP_ALL | \
2439 KVM_X86_QUIRK_STUFF_FEATURE_MSRS | \
2440 KVM_X86_QUIRK_IGNORE_GUEST_PAT)
2441
2442 #define KVM_X86_CONDITIONAL_QUIRKS \
2443 (KVM_X86_QUIRK_CD_NW_CLEARED | \
2444 KVM_X86_QUIRK_IGNORE_GUEST_PAT)
2445
2446 /*
2447 * KVM previously used a u32 field in kvm_run to indicate the hypercall was
2448 * initiated from long mode. KVM now sets bit 0 to indicate long mode, but the
2449 * remaining 31 lower bits must be 0 to preserve ABI.
2450 */
2451 #define KVM_EXIT_HYPERCALL_MBZ GENMASK_ULL(31, 1)
2452
kvm_arch_has_irq_bypass(void)2453 static inline bool kvm_arch_has_irq_bypass(void)
2454 {
2455 return enable_device_posted_irqs;
2456 }
2457
2458 #endif /* _ASM_X86_KVM_HOST_H */
2459