xref: /linux/drivers/cpufreq/cppc_cpufreq.c (revision 53edfecef66bfa65882ae065ed1a52f466c88979)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * CPPC (Collaborative Processor Performance Control) driver for
4  * interfacing with the CPUfreq layer and governors. See
5  * cppc_acpi.c for CPPC specific methods.
6  *
7  * (C) Copyright 2014, 2015 Linaro Ltd.
8  * Author: Ashwin Chaugule <ashwin.chaugule@linaro.org>
9  */
10 
11 #define pr_fmt(fmt)	"CPPC Cpufreq:"	fmt
12 
13 #include <linux/arch_topology.h>
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/delay.h>
17 #include <linux/cpu.h>
18 #include <linux/cpufreq.h>
19 #include <linux/irq_work.h>
20 #include <linux/kthread.h>
21 #include <linux/time.h>
22 #include <linux/vmalloc.h>
23 #include <uapi/linux/sched/types.h>
24 
25 #include <linux/unaligned.h>
26 
27 #include <acpi/cppc_acpi.h>
28 
29 static struct cpufreq_driver cppc_cpufreq_driver;
30 
31 #ifdef CONFIG_ACPI_CPPC_CPUFREQ_FIE
32 static enum {
33 	FIE_UNSET = -1,
34 	FIE_ENABLED,
35 	FIE_DISABLED
36 } fie_disabled = FIE_UNSET;
37 
38 module_param(fie_disabled, int, 0444);
39 MODULE_PARM_DESC(fie_disabled, "Disable Frequency Invariance Engine (FIE)");
40 
41 /* Frequency invariance support */
42 struct cppc_freq_invariance {
43 	int cpu;
44 	struct irq_work irq_work;
45 	struct kthread_work work;
46 	struct cppc_perf_fb_ctrs prev_perf_fb_ctrs;
47 	struct cppc_cpudata *cpu_data;
48 };
49 
50 static DEFINE_PER_CPU(struct cppc_freq_invariance, cppc_freq_inv);
51 static struct kthread_worker *kworker_fie;
52 
53 static int cppc_perf_from_fbctrs(struct cppc_cpudata *cpu_data,
54 				 struct cppc_perf_fb_ctrs *fb_ctrs_t0,
55 				 struct cppc_perf_fb_ctrs *fb_ctrs_t1);
56 
57 /**
58  * cppc_scale_freq_workfn - CPPC arch_freq_scale updater for frequency invariance
59  * @work: The work item.
60  *
61  * The CPPC driver register itself with the topology core to provide its own
62  * implementation (cppc_scale_freq_tick()) of topology_scale_freq_tick() which
63  * gets called by the scheduler on every tick.
64  *
65  * Note that the arch specific counters have higher priority than CPPC counters,
66  * if available, though the CPPC driver doesn't need to have any special
67  * handling for that.
68  *
69  * On an invocation of cppc_scale_freq_tick(), we schedule an irq work (since we
70  * reach here from hard-irq context), which then schedules a normal work item
71  * and cppc_scale_freq_workfn() updates the per_cpu arch_freq_scale variable
72  * based on the counter updates since the last tick.
73  */
cppc_scale_freq_workfn(struct kthread_work * work)74 static void cppc_scale_freq_workfn(struct kthread_work *work)
75 {
76 	struct cppc_freq_invariance *cppc_fi;
77 	struct cppc_perf_fb_ctrs fb_ctrs = {0};
78 	struct cppc_cpudata *cpu_data;
79 	unsigned long local_freq_scale;
80 	u64 perf;
81 
82 	cppc_fi = container_of(work, struct cppc_freq_invariance, work);
83 	cpu_data = cppc_fi->cpu_data;
84 
85 	if (cppc_get_perf_ctrs(cppc_fi->cpu, &fb_ctrs)) {
86 		pr_warn("%s: failed to read perf counters\n", __func__);
87 		return;
88 	}
89 
90 	perf = cppc_perf_from_fbctrs(cpu_data, &cppc_fi->prev_perf_fb_ctrs,
91 				     &fb_ctrs);
92 	if (!perf)
93 		return;
94 
95 	cppc_fi->prev_perf_fb_ctrs = fb_ctrs;
96 
97 	perf <<= SCHED_CAPACITY_SHIFT;
98 	local_freq_scale = div64_u64(perf, cpu_data->perf_caps.highest_perf);
99 
100 	/* This can happen due to counter's overflow */
101 	if (unlikely(local_freq_scale > 1024))
102 		local_freq_scale = 1024;
103 
104 	per_cpu(arch_freq_scale, cppc_fi->cpu) = local_freq_scale;
105 }
106 
cppc_irq_work(struct irq_work * irq_work)107 static void cppc_irq_work(struct irq_work *irq_work)
108 {
109 	struct cppc_freq_invariance *cppc_fi;
110 
111 	cppc_fi = container_of(irq_work, struct cppc_freq_invariance, irq_work);
112 	kthread_queue_work(kworker_fie, &cppc_fi->work);
113 }
114 
cppc_scale_freq_tick(void)115 static void cppc_scale_freq_tick(void)
116 {
117 	struct cppc_freq_invariance *cppc_fi = &per_cpu(cppc_freq_inv, smp_processor_id());
118 
119 	/*
120 	 * cppc_get_perf_ctrs() can potentially sleep, call that from the right
121 	 * context.
122 	 */
123 	irq_work_queue(&cppc_fi->irq_work);
124 }
125 
126 static struct scale_freq_data cppc_sftd = {
127 	.source = SCALE_FREQ_SOURCE_CPPC,
128 	.set_freq_scale = cppc_scale_freq_tick,
129 };
130 
cppc_cpufreq_cpu_fie_init(struct cpufreq_policy * policy)131 static void cppc_cpufreq_cpu_fie_init(struct cpufreq_policy *policy)
132 {
133 	struct cppc_freq_invariance *cppc_fi;
134 	int cpu, ret;
135 
136 	if (fie_disabled)
137 		return;
138 
139 	for_each_cpu(cpu, policy->cpus) {
140 		cppc_fi = &per_cpu(cppc_freq_inv, cpu);
141 		cppc_fi->cpu = cpu;
142 		cppc_fi->cpu_data = policy->driver_data;
143 		kthread_init_work(&cppc_fi->work, cppc_scale_freq_workfn);
144 		init_irq_work(&cppc_fi->irq_work, cppc_irq_work);
145 
146 		ret = cppc_get_perf_ctrs(cpu, &cppc_fi->prev_perf_fb_ctrs);
147 		if (ret) {
148 			pr_warn("%s: failed to read perf counters for cpu:%d: %d\n",
149 				__func__, cpu, ret);
150 
151 			/*
152 			 * Don't abort if the CPU was offline while the driver
153 			 * was getting registered.
154 			 */
155 			if (cpu_online(cpu))
156 				return;
157 		}
158 	}
159 
160 	/* Register for freq-invariance */
161 	topology_set_scale_freq_source(&cppc_sftd, policy->cpus);
162 }
163 
164 /*
165  * We free all the resources on policy's removal and not on CPU removal as the
166  * irq-work are per-cpu and the hotplug core takes care of flushing the pending
167  * irq-works (hint: smpcfd_dying_cpu()) on CPU hotplug. Even if the kthread-work
168  * fires on another CPU after the concerned CPU is removed, it won't harm.
169  *
170  * We just need to make sure to remove them all on policy->exit().
171  */
cppc_cpufreq_cpu_fie_exit(struct cpufreq_policy * policy)172 static void cppc_cpufreq_cpu_fie_exit(struct cpufreq_policy *policy)
173 {
174 	struct cppc_freq_invariance *cppc_fi;
175 	int cpu;
176 
177 	if (fie_disabled)
178 		return;
179 
180 	/* policy->cpus will be empty here, use related_cpus instead */
181 	topology_clear_scale_freq_source(SCALE_FREQ_SOURCE_CPPC, policy->related_cpus);
182 
183 	for_each_cpu(cpu, policy->related_cpus) {
184 		cppc_fi = &per_cpu(cppc_freq_inv, cpu);
185 		irq_work_sync(&cppc_fi->irq_work);
186 		kthread_cancel_work_sync(&cppc_fi->work);
187 	}
188 }
189 
cppc_freq_invariance_init(void)190 static void __init cppc_freq_invariance_init(void)
191 {
192 	struct sched_attr attr = {
193 		.size		= sizeof(struct sched_attr),
194 		.sched_policy	= SCHED_DEADLINE,
195 		.sched_nice	= 0,
196 		.sched_priority	= 0,
197 		/*
198 		 * Fake (unused) bandwidth; workaround to "fix"
199 		 * priority inheritance.
200 		 */
201 		.sched_runtime	= NSEC_PER_MSEC,
202 		.sched_deadline = 10 * NSEC_PER_MSEC,
203 		.sched_period	= 10 * NSEC_PER_MSEC,
204 	};
205 	int ret;
206 
207 	if (fie_disabled != FIE_ENABLED && fie_disabled != FIE_DISABLED) {
208 		fie_disabled = FIE_ENABLED;
209 		if (cppc_perf_ctrs_in_pcc()) {
210 			pr_info("FIE not enabled on systems with registers in PCC\n");
211 			fie_disabled = FIE_DISABLED;
212 		}
213 	}
214 
215 	if (fie_disabled)
216 		return;
217 
218 	kworker_fie = kthread_run_worker(0, "cppc_fie");
219 	if (IS_ERR(kworker_fie)) {
220 		pr_warn("%s: failed to create kworker_fie: %ld\n", __func__,
221 			PTR_ERR(kworker_fie));
222 		fie_disabled = FIE_DISABLED;
223 		return;
224 	}
225 
226 	ret = sched_setattr_nocheck(kworker_fie->task, &attr);
227 	if (ret) {
228 		pr_warn("%s: failed to set SCHED_DEADLINE: %d\n", __func__,
229 			ret);
230 		kthread_destroy_worker(kworker_fie);
231 		fie_disabled = FIE_DISABLED;
232 	}
233 }
234 
cppc_freq_invariance_exit(void)235 static void cppc_freq_invariance_exit(void)
236 {
237 	if (fie_disabled)
238 		return;
239 
240 	kthread_destroy_worker(kworker_fie);
241 }
242 
243 #else
cppc_cpufreq_cpu_fie_init(struct cpufreq_policy * policy)244 static inline void cppc_cpufreq_cpu_fie_init(struct cpufreq_policy *policy)
245 {
246 }
247 
cppc_cpufreq_cpu_fie_exit(struct cpufreq_policy * policy)248 static inline void cppc_cpufreq_cpu_fie_exit(struct cpufreq_policy *policy)
249 {
250 }
251 
cppc_freq_invariance_init(void)252 static inline void cppc_freq_invariance_init(void)
253 {
254 }
255 
cppc_freq_invariance_exit(void)256 static inline void cppc_freq_invariance_exit(void)
257 {
258 }
259 #endif /* CONFIG_ACPI_CPPC_CPUFREQ_FIE */
260 
cppc_cpufreq_set_target(struct cpufreq_policy * policy,unsigned int target_freq,unsigned int relation)261 static int cppc_cpufreq_set_target(struct cpufreq_policy *policy,
262 				   unsigned int target_freq,
263 				   unsigned int relation)
264 {
265 	struct cppc_cpudata *cpu_data = policy->driver_data;
266 	unsigned int cpu = policy->cpu;
267 	struct cpufreq_freqs freqs;
268 	int ret = 0;
269 
270 	cpu_data->perf_ctrls.desired_perf =
271 			cppc_khz_to_perf(&cpu_data->perf_caps, target_freq);
272 	freqs.old = policy->cur;
273 	freqs.new = target_freq;
274 
275 	cpufreq_freq_transition_begin(policy, &freqs);
276 	ret = cppc_set_perf(cpu, &cpu_data->perf_ctrls);
277 	cpufreq_freq_transition_end(policy, &freqs, ret != 0);
278 
279 	if (ret)
280 		pr_debug("Failed to set target on CPU:%d. ret:%d\n",
281 			 cpu, ret);
282 
283 	return ret;
284 }
285 
cppc_cpufreq_fast_switch(struct cpufreq_policy * policy,unsigned int target_freq)286 static unsigned int cppc_cpufreq_fast_switch(struct cpufreq_policy *policy,
287 					      unsigned int target_freq)
288 {
289 	struct cppc_cpudata *cpu_data = policy->driver_data;
290 	unsigned int cpu = policy->cpu;
291 	u32 desired_perf;
292 	int ret;
293 
294 	desired_perf = cppc_khz_to_perf(&cpu_data->perf_caps, target_freq);
295 	cpu_data->perf_ctrls.desired_perf = desired_perf;
296 	ret = cppc_set_perf(cpu, &cpu_data->perf_ctrls);
297 
298 	if (ret) {
299 		pr_debug("Failed to set target on CPU:%d. ret:%d\n",
300 			 cpu, ret);
301 		return 0;
302 	}
303 
304 	return target_freq;
305 }
306 
cppc_verify_policy(struct cpufreq_policy_data * policy)307 static int cppc_verify_policy(struct cpufreq_policy_data *policy)
308 {
309 	cpufreq_verify_within_cpu_limits(policy);
310 	return 0;
311 }
312 
313 /*
314  * The PCC subspace describes the rate at which platform can accept commands
315  * on the shared PCC channel (including READs which do not count towards freq
316  * transition requests), so ideally we need to use the PCC values as a fallback
317  * if we don't have a platform specific transition_delay_us
318  */
319 #ifdef CONFIG_ARM64
320 #include <asm/cputype.h>
321 
cppc_cpufreq_get_transition_delay_us(unsigned int cpu)322 static unsigned int cppc_cpufreq_get_transition_delay_us(unsigned int cpu)
323 {
324 	unsigned long implementor = read_cpuid_implementor();
325 	unsigned long part_num = read_cpuid_part_number();
326 
327 	switch (implementor) {
328 	case ARM_CPU_IMP_QCOM:
329 		switch (part_num) {
330 		case QCOM_CPU_PART_FALKOR_V1:
331 		case QCOM_CPU_PART_FALKOR:
332 			return 10000;
333 		}
334 	}
335 	return cppc_get_transition_latency(cpu) / NSEC_PER_USEC;
336 }
337 #else
cppc_cpufreq_get_transition_delay_us(unsigned int cpu)338 static unsigned int cppc_cpufreq_get_transition_delay_us(unsigned int cpu)
339 {
340 	return cppc_get_transition_latency(cpu) / NSEC_PER_USEC;
341 }
342 #endif
343 
344 #if defined(CONFIG_ARM64) && defined(CONFIG_ENERGY_MODEL)
345 
346 static DEFINE_PER_CPU(unsigned int, efficiency_class);
347 
348 /* Create an artificial performance state every CPPC_EM_CAP_STEP capacity unit. */
349 #define CPPC_EM_CAP_STEP	(20)
350 /* Increase the cost value by CPPC_EM_COST_STEP every performance state. */
351 #define CPPC_EM_COST_STEP	(1)
352 /* Add a cost gap correspnding to the energy of 4 CPUs. */
353 #define CPPC_EM_COST_GAP	(4 * SCHED_CAPACITY_SCALE * CPPC_EM_COST_STEP \
354 				/ CPPC_EM_CAP_STEP)
355 
get_perf_level_count(struct cpufreq_policy * policy)356 static unsigned int get_perf_level_count(struct cpufreq_policy *policy)
357 {
358 	struct cppc_perf_caps *perf_caps;
359 	unsigned int min_cap, max_cap;
360 	struct cppc_cpudata *cpu_data;
361 	int cpu = policy->cpu;
362 
363 	cpu_data = policy->driver_data;
364 	perf_caps = &cpu_data->perf_caps;
365 	max_cap = arch_scale_cpu_capacity(cpu);
366 	min_cap = div_u64((u64)max_cap * perf_caps->lowest_perf,
367 			  perf_caps->highest_perf);
368 	if ((min_cap == 0) || (max_cap < min_cap))
369 		return 0;
370 	return 1 + max_cap / CPPC_EM_CAP_STEP - min_cap / CPPC_EM_CAP_STEP;
371 }
372 
373 /*
374  * The cost is defined as:
375  *   cost = power * max_frequency / frequency
376  */
compute_cost(int cpu,int step)377 static inline unsigned long compute_cost(int cpu, int step)
378 {
379 	return CPPC_EM_COST_GAP * per_cpu(efficiency_class, cpu) +
380 			step * CPPC_EM_COST_STEP;
381 }
382 
cppc_get_cpu_power(struct device * cpu_dev,unsigned long * power,unsigned long * KHz)383 static int cppc_get_cpu_power(struct device *cpu_dev,
384 		unsigned long *power, unsigned long *KHz)
385 {
386 	unsigned long perf_step, perf_prev, perf, perf_check;
387 	unsigned int min_step, max_step, step, step_check;
388 	unsigned long prev_freq = *KHz;
389 	unsigned int min_cap, max_cap;
390 	struct cpufreq_policy *policy;
391 
392 	struct cppc_perf_caps *perf_caps;
393 	struct cppc_cpudata *cpu_data;
394 
395 	policy = cpufreq_cpu_get_raw(cpu_dev->id);
396 	if (!policy)
397 		return -EINVAL;
398 
399 	cpu_data = policy->driver_data;
400 	perf_caps = &cpu_data->perf_caps;
401 	max_cap = arch_scale_cpu_capacity(cpu_dev->id);
402 	min_cap = div_u64((u64)max_cap * perf_caps->lowest_perf,
403 			  perf_caps->highest_perf);
404 	perf_step = div_u64((u64)CPPC_EM_CAP_STEP * perf_caps->highest_perf,
405 			    max_cap);
406 	min_step = min_cap / CPPC_EM_CAP_STEP;
407 	max_step = max_cap / CPPC_EM_CAP_STEP;
408 
409 	perf_prev = cppc_khz_to_perf(perf_caps, *KHz);
410 	step = perf_prev / perf_step;
411 
412 	if (step > max_step)
413 		return -EINVAL;
414 
415 	if (min_step == max_step) {
416 		step = max_step;
417 		perf = perf_caps->highest_perf;
418 	} else if (step < min_step) {
419 		step = min_step;
420 		perf = perf_caps->lowest_perf;
421 	} else {
422 		step++;
423 		if (step == max_step)
424 			perf = perf_caps->highest_perf;
425 		else
426 			perf = step * perf_step;
427 	}
428 
429 	*KHz = cppc_perf_to_khz(perf_caps, perf);
430 	perf_check = cppc_khz_to_perf(perf_caps, *KHz);
431 	step_check = perf_check / perf_step;
432 
433 	/*
434 	 * To avoid bad integer approximation, check that new frequency value
435 	 * increased and that the new frequency will be converted to the
436 	 * desired step value.
437 	 */
438 	while ((*KHz == prev_freq) || (step_check != step)) {
439 		perf++;
440 		*KHz = cppc_perf_to_khz(perf_caps, perf);
441 		perf_check = cppc_khz_to_perf(perf_caps, *KHz);
442 		step_check = perf_check / perf_step;
443 	}
444 
445 	/*
446 	 * With an artificial EM, only the cost value is used. Still the power
447 	 * is populated such as 0 < power < EM_MAX_POWER. This allows to add
448 	 * more sense to the artificial performance states.
449 	 */
450 	*power = compute_cost(cpu_dev->id, step);
451 
452 	return 0;
453 }
454 
cppc_get_cpu_cost(struct device * cpu_dev,unsigned long KHz,unsigned long * cost)455 static int cppc_get_cpu_cost(struct device *cpu_dev, unsigned long KHz,
456 		unsigned long *cost)
457 {
458 	unsigned long perf_step, perf_prev;
459 	struct cppc_perf_caps *perf_caps;
460 	struct cpufreq_policy *policy;
461 	struct cppc_cpudata *cpu_data;
462 	unsigned int max_cap;
463 	int step;
464 
465 	policy = cpufreq_cpu_get_raw(cpu_dev->id);
466 	if (!policy)
467 		return -EINVAL;
468 
469 	cpu_data = policy->driver_data;
470 	perf_caps = &cpu_data->perf_caps;
471 	max_cap = arch_scale_cpu_capacity(cpu_dev->id);
472 
473 	perf_prev = cppc_khz_to_perf(perf_caps, KHz);
474 	perf_step = CPPC_EM_CAP_STEP * perf_caps->highest_perf / max_cap;
475 	step = perf_prev / perf_step;
476 
477 	*cost = compute_cost(cpu_dev->id, step);
478 
479 	return 0;
480 }
481 
cppc_cpufreq_register_em(struct cpufreq_policy * policy)482 static void cppc_cpufreq_register_em(struct cpufreq_policy *policy)
483 {
484 	struct cppc_cpudata *cpu_data;
485 	struct em_data_callback em_cb =
486 		EM_ADV_DATA_CB(cppc_get_cpu_power, cppc_get_cpu_cost);
487 
488 	cpu_data = policy->driver_data;
489 	em_dev_register_perf_domain(get_cpu_device(policy->cpu),
490 			get_perf_level_count(policy), &em_cb,
491 			cpu_data->shared_cpu_map, 0);
492 }
493 
populate_efficiency_class(void)494 static void populate_efficiency_class(void)
495 {
496 	struct acpi_madt_generic_interrupt *gicc;
497 	DECLARE_BITMAP(used_classes, 256) = {};
498 	int class, cpu, index;
499 
500 	for_each_possible_cpu(cpu) {
501 		gicc = acpi_cpu_get_madt_gicc(cpu);
502 		class = gicc->efficiency_class;
503 		bitmap_set(used_classes, class, 1);
504 	}
505 
506 	if (bitmap_weight(used_classes, 256) <= 1) {
507 		pr_debug("Efficiency classes are all equal (=%d). "
508 			"No EM registered", class);
509 		return;
510 	}
511 
512 	/*
513 	 * Squeeze efficiency class values on [0:#efficiency_class-1].
514 	 * Values are per spec in [0:255].
515 	 */
516 	index = 0;
517 	for_each_set_bit(class, used_classes, 256) {
518 		for_each_possible_cpu(cpu) {
519 			gicc = acpi_cpu_get_madt_gicc(cpu);
520 			if (gicc->efficiency_class == class)
521 				per_cpu(efficiency_class, cpu) = index;
522 		}
523 		index++;
524 	}
525 	cppc_cpufreq_driver.register_em = cppc_cpufreq_register_em;
526 }
527 
528 #else
populate_efficiency_class(void)529 static void populate_efficiency_class(void)
530 {
531 }
532 #endif
533 
cppc_cpufreq_get_cpu_data(unsigned int cpu)534 static struct cppc_cpudata *cppc_cpufreq_get_cpu_data(unsigned int cpu)
535 {
536 	struct cppc_cpudata *cpu_data;
537 	int ret;
538 
539 	cpu_data = kzalloc(sizeof(struct cppc_cpudata), GFP_KERNEL);
540 	if (!cpu_data)
541 		goto out;
542 
543 	if (!zalloc_cpumask_var(&cpu_data->shared_cpu_map, GFP_KERNEL))
544 		goto free_cpu;
545 
546 	ret = acpi_get_psd_map(cpu, cpu_data);
547 	if (ret) {
548 		pr_debug("Err parsing CPU%d PSD data: ret:%d\n", cpu, ret);
549 		goto free_mask;
550 	}
551 
552 	ret = cppc_get_perf_caps(cpu, &cpu_data->perf_caps);
553 	if (ret) {
554 		pr_debug("Err reading CPU%d perf caps: ret:%d\n", cpu, ret);
555 		goto free_mask;
556 	}
557 
558 	return cpu_data;
559 
560 free_mask:
561 	free_cpumask_var(cpu_data->shared_cpu_map);
562 free_cpu:
563 	kfree(cpu_data);
564 out:
565 	return NULL;
566 }
567 
cppc_cpufreq_put_cpu_data(struct cpufreq_policy * policy)568 static void cppc_cpufreq_put_cpu_data(struct cpufreq_policy *policy)
569 {
570 	struct cppc_cpudata *cpu_data = policy->driver_data;
571 
572 	free_cpumask_var(cpu_data->shared_cpu_map);
573 	kfree(cpu_data);
574 	policy->driver_data = NULL;
575 }
576 
cppc_cpufreq_cpu_init(struct cpufreq_policy * policy)577 static int cppc_cpufreq_cpu_init(struct cpufreq_policy *policy)
578 {
579 	unsigned int cpu = policy->cpu;
580 	struct cppc_cpudata *cpu_data;
581 	struct cppc_perf_caps *caps;
582 	int ret;
583 
584 	cpu_data = cppc_cpufreq_get_cpu_data(cpu);
585 	if (!cpu_data) {
586 		pr_err("Error in acquiring _CPC/_PSD data for CPU%d.\n", cpu);
587 		return -ENODEV;
588 	}
589 	caps = &cpu_data->perf_caps;
590 	policy->driver_data = cpu_data;
591 
592 	/*
593 	 * Set min to lowest nonlinear perf to avoid any efficiency penalty (see
594 	 * Section 8.4.7.1.1.5 of ACPI 6.1 spec)
595 	 */
596 	policy->min = cppc_perf_to_khz(caps, caps->lowest_nonlinear_perf);
597 	policy->max = cppc_perf_to_khz(caps, policy->boost_enabled ?
598 						caps->highest_perf : caps->nominal_perf);
599 
600 	/*
601 	 * Set cpuinfo.min_freq to Lowest to make the full range of performance
602 	 * available if userspace wants to use any perf between lowest & lowest
603 	 * nonlinear perf
604 	 */
605 	policy->cpuinfo.min_freq = cppc_perf_to_khz(caps, caps->lowest_perf);
606 	policy->cpuinfo.max_freq = policy->max;
607 
608 	policy->transition_delay_us = cppc_cpufreq_get_transition_delay_us(cpu);
609 	policy->shared_type = cpu_data->shared_type;
610 
611 	switch (policy->shared_type) {
612 	case CPUFREQ_SHARED_TYPE_HW:
613 	case CPUFREQ_SHARED_TYPE_NONE:
614 		/* Nothing to be done - we'll have a policy for each CPU */
615 		break;
616 	case CPUFREQ_SHARED_TYPE_ANY:
617 		/*
618 		 * All CPUs in the domain will share a policy and all cpufreq
619 		 * operations will use a single cppc_cpudata structure stored
620 		 * in policy->driver_data.
621 		 */
622 		cpumask_copy(policy->cpus, cpu_data->shared_cpu_map);
623 		break;
624 	default:
625 		pr_debug("Unsupported CPU co-ord type: %d\n",
626 			 policy->shared_type);
627 		ret = -EFAULT;
628 		goto out;
629 	}
630 
631 	policy->fast_switch_possible = cppc_allow_fast_switch();
632 	policy->dvfs_possible_from_any_cpu = true;
633 
634 	/*
635 	 * If 'highest_perf' is greater than 'nominal_perf', we assume CPU Boost
636 	 * is supported.
637 	 */
638 	if (caps->highest_perf > caps->nominal_perf)
639 		policy->boost_supported = true;
640 
641 	/* Set policy->cur to max now. The governors will adjust later. */
642 	policy->cur = cppc_perf_to_khz(caps, caps->highest_perf);
643 	cpu_data->perf_ctrls.desired_perf =  caps->highest_perf;
644 
645 	ret = cppc_set_perf(cpu, &cpu_data->perf_ctrls);
646 	if (ret) {
647 		pr_debug("Err setting perf value:%d on CPU:%d. ret:%d\n",
648 			 caps->highest_perf, cpu, ret);
649 		goto out;
650 	}
651 
652 	cppc_cpufreq_cpu_fie_init(policy);
653 	return 0;
654 
655 out:
656 	cppc_cpufreq_put_cpu_data(policy);
657 	return ret;
658 }
659 
cppc_cpufreq_cpu_exit(struct cpufreq_policy * policy)660 static void cppc_cpufreq_cpu_exit(struct cpufreq_policy *policy)
661 {
662 	struct cppc_cpudata *cpu_data = policy->driver_data;
663 	struct cppc_perf_caps *caps = &cpu_data->perf_caps;
664 	unsigned int cpu = policy->cpu;
665 	int ret;
666 
667 	cppc_cpufreq_cpu_fie_exit(policy);
668 
669 	cpu_data->perf_ctrls.desired_perf = caps->lowest_perf;
670 
671 	ret = cppc_set_perf(cpu, &cpu_data->perf_ctrls);
672 	if (ret)
673 		pr_debug("Err setting perf value:%d on CPU:%d. ret:%d\n",
674 			 caps->lowest_perf, cpu, ret);
675 
676 	cppc_cpufreq_put_cpu_data(policy);
677 }
678 
get_delta(u64 t1,u64 t0)679 static inline u64 get_delta(u64 t1, u64 t0)
680 {
681 	if (t1 > t0 || t0 > ~(u32)0)
682 		return t1 - t0;
683 
684 	return (u32)t1 - (u32)t0;
685 }
686 
cppc_perf_from_fbctrs(struct cppc_cpudata * cpu_data,struct cppc_perf_fb_ctrs * fb_ctrs_t0,struct cppc_perf_fb_ctrs * fb_ctrs_t1)687 static int cppc_perf_from_fbctrs(struct cppc_cpudata *cpu_data,
688 				 struct cppc_perf_fb_ctrs *fb_ctrs_t0,
689 				 struct cppc_perf_fb_ctrs *fb_ctrs_t1)
690 {
691 	u64 delta_reference, delta_delivered;
692 	u64 reference_perf;
693 
694 	reference_perf = fb_ctrs_t0->reference_perf;
695 
696 	delta_reference = get_delta(fb_ctrs_t1->reference,
697 				    fb_ctrs_t0->reference);
698 	delta_delivered = get_delta(fb_ctrs_t1->delivered,
699 				    fb_ctrs_t0->delivered);
700 
701 	/*
702 	 * Avoid divide-by zero and unchanged feedback counters.
703 	 * Leave it for callers to handle.
704 	 */
705 	if (!delta_reference || !delta_delivered)
706 		return 0;
707 
708 	return (reference_perf * delta_delivered) / delta_reference;
709 }
710 
cppc_get_perf_ctrs_sample(int cpu,struct cppc_perf_fb_ctrs * fb_ctrs_t0,struct cppc_perf_fb_ctrs * fb_ctrs_t1)711 static int cppc_get_perf_ctrs_sample(int cpu,
712 				     struct cppc_perf_fb_ctrs *fb_ctrs_t0,
713 				     struct cppc_perf_fb_ctrs *fb_ctrs_t1)
714 {
715 	int ret;
716 
717 	ret = cppc_get_perf_ctrs(cpu, fb_ctrs_t0);
718 	if (ret)
719 		return ret;
720 
721 	udelay(2); /* 2usec delay between sampling */
722 
723 	return cppc_get_perf_ctrs(cpu, fb_ctrs_t1);
724 }
725 
cppc_cpufreq_get_rate(unsigned int cpu)726 static unsigned int cppc_cpufreq_get_rate(unsigned int cpu)
727 {
728 	struct cppc_perf_fb_ctrs fb_ctrs_t0 = {0}, fb_ctrs_t1 = {0};
729 	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
730 	struct cppc_cpudata *cpu_data;
731 	u64 delivered_perf;
732 	int ret;
733 
734 	if (!policy)
735 		return 0;
736 
737 	cpu_data = policy->driver_data;
738 
739 	cpufreq_cpu_put(policy);
740 
741 	ret = cppc_get_perf_ctrs_sample(cpu, &fb_ctrs_t0, &fb_ctrs_t1);
742 	if (ret) {
743 		if (ret == -EFAULT)
744 			/* Any of the associated CPPC regs is 0. */
745 			goto out_invalid_counters;
746 		else
747 			return 0;
748 	}
749 
750 	delivered_perf = cppc_perf_from_fbctrs(cpu_data, &fb_ctrs_t0,
751 					       &fb_ctrs_t1);
752 	if (!delivered_perf)
753 		goto out_invalid_counters;
754 
755 	return cppc_perf_to_khz(&cpu_data->perf_caps, delivered_perf);
756 
757 out_invalid_counters:
758 	/*
759 	 * Feedback counters could be unchanged or 0 when a cpu enters a
760 	 * low-power idle state, e.g. clock-gated or power-gated.
761 	 * Use desired perf for reflecting frequency.  Get the latest register
762 	 * value first as some platforms may update the actual delivered perf
763 	 * there; if failed, resort to the cached desired perf.
764 	 */
765 	if (cppc_get_desired_perf(cpu, &delivered_perf))
766 		delivered_perf = cpu_data->perf_ctrls.desired_perf;
767 
768 	return cppc_perf_to_khz(&cpu_data->perf_caps, delivered_perf);
769 }
770 
cppc_cpufreq_set_boost(struct cpufreq_policy * policy,int state)771 static int cppc_cpufreq_set_boost(struct cpufreq_policy *policy, int state)
772 {
773 	struct cppc_cpudata *cpu_data = policy->driver_data;
774 	struct cppc_perf_caps *caps = &cpu_data->perf_caps;
775 	int ret;
776 
777 	if (state)
778 		policy->max = cppc_perf_to_khz(caps, caps->highest_perf);
779 	else
780 		policy->max = cppc_perf_to_khz(caps, caps->nominal_perf);
781 	policy->cpuinfo.max_freq = policy->max;
782 
783 	ret = freq_qos_update_request(policy->max_freq_req, policy->max);
784 	if (ret < 0)
785 		return ret;
786 
787 	return 0;
788 }
789 
show_freqdomain_cpus(struct cpufreq_policy * policy,char * buf)790 static ssize_t show_freqdomain_cpus(struct cpufreq_policy *policy, char *buf)
791 {
792 	struct cppc_cpudata *cpu_data = policy->driver_data;
793 
794 	return cpufreq_show_cpus(cpu_data->shared_cpu_map, buf);
795 }
796 
show_auto_select(struct cpufreq_policy * policy,char * buf)797 static ssize_t show_auto_select(struct cpufreq_policy *policy, char *buf)
798 {
799 	bool val;
800 	int ret;
801 
802 	ret = cppc_get_auto_sel(policy->cpu, &val);
803 
804 	/* show "<unsupported>" when this register is not supported by cpc */
805 	if (ret == -EOPNOTSUPP)
806 		return sysfs_emit(buf, "<unsupported>\n");
807 
808 	if (ret)
809 		return ret;
810 
811 	return sysfs_emit(buf, "%d\n", val);
812 }
813 
store_auto_select(struct cpufreq_policy * policy,const char * buf,size_t count)814 static ssize_t store_auto_select(struct cpufreq_policy *policy,
815 				 const char *buf, size_t count)
816 {
817 	bool val;
818 	int ret;
819 
820 	ret = kstrtobool(buf, &val);
821 	if (ret)
822 		return ret;
823 
824 	ret = cppc_set_auto_sel(policy->cpu, val);
825 	if (ret)
826 		return ret;
827 
828 	return count;
829 }
830 
show_auto_act_window(struct cpufreq_policy * policy,char * buf)831 static ssize_t show_auto_act_window(struct cpufreq_policy *policy, char *buf)
832 {
833 	u64 val;
834 	int ret;
835 
836 	ret = cppc_get_auto_act_window(policy->cpu, &val);
837 
838 	/* show "<unsupported>" when this register is not supported by cpc */
839 	if (ret == -EOPNOTSUPP)
840 		return sysfs_emit(buf, "<unsupported>\n");
841 
842 	if (ret)
843 		return ret;
844 
845 	return sysfs_emit(buf, "%llu\n", val);
846 }
847 
store_auto_act_window(struct cpufreq_policy * policy,const char * buf,size_t count)848 static ssize_t store_auto_act_window(struct cpufreq_policy *policy,
849 				     const char *buf, size_t count)
850 {
851 	u64 usec;
852 	int ret;
853 
854 	ret = kstrtou64(buf, 0, &usec);
855 	if (ret)
856 		return ret;
857 
858 	ret = cppc_set_auto_act_window(policy->cpu, usec);
859 	if (ret)
860 		return ret;
861 
862 	return count;
863 }
864 
show_energy_performance_preference_val(struct cpufreq_policy * policy,char * buf)865 static ssize_t show_energy_performance_preference_val(struct cpufreq_policy *policy, char *buf)
866 {
867 	u64 val;
868 	int ret;
869 
870 	ret = cppc_get_epp_perf(policy->cpu, &val);
871 
872 	/* show "<unsupported>" when this register is not supported by cpc */
873 	if (ret == -EOPNOTSUPP)
874 		return sysfs_emit(buf, "<unsupported>\n");
875 
876 	if (ret)
877 		return ret;
878 
879 	return sysfs_emit(buf, "%llu\n", val);
880 }
881 
store_energy_performance_preference_val(struct cpufreq_policy * policy,const char * buf,size_t count)882 static ssize_t store_energy_performance_preference_val(struct cpufreq_policy *policy,
883 						       const char *buf, size_t count)
884 {
885 	u64 val;
886 	int ret;
887 
888 	ret = kstrtou64(buf, 0, &val);
889 	if (ret)
890 		return ret;
891 
892 	ret = cppc_set_epp(policy->cpu, val);
893 	if (ret)
894 		return ret;
895 
896 	return count;
897 }
898 
899 cpufreq_freq_attr_ro(freqdomain_cpus);
900 cpufreq_freq_attr_rw(auto_select);
901 cpufreq_freq_attr_rw(auto_act_window);
902 cpufreq_freq_attr_rw(energy_performance_preference_val);
903 
904 static struct freq_attr *cppc_cpufreq_attr[] = {
905 	&freqdomain_cpus,
906 	&auto_select,
907 	&auto_act_window,
908 	&energy_performance_preference_val,
909 	NULL,
910 };
911 
912 static struct cpufreq_driver cppc_cpufreq_driver = {
913 	.flags = CPUFREQ_CONST_LOOPS | CPUFREQ_NEED_UPDATE_LIMITS,
914 	.verify = cppc_verify_policy,
915 	.target = cppc_cpufreq_set_target,
916 	.get = cppc_cpufreq_get_rate,
917 	.fast_switch = cppc_cpufreq_fast_switch,
918 	.init = cppc_cpufreq_cpu_init,
919 	.exit = cppc_cpufreq_cpu_exit,
920 	.set_boost = cppc_cpufreq_set_boost,
921 	.attr = cppc_cpufreq_attr,
922 	.name = "cppc_cpufreq",
923 };
924 
cppc_cpufreq_init(void)925 static int __init cppc_cpufreq_init(void)
926 {
927 	int ret;
928 
929 	if (!acpi_cpc_valid())
930 		return -ENODEV;
931 
932 	cppc_freq_invariance_init();
933 	populate_efficiency_class();
934 
935 	ret = cpufreq_register_driver(&cppc_cpufreq_driver);
936 	if (ret)
937 		cppc_freq_invariance_exit();
938 
939 	return ret;
940 }
941 
cppc_cpufreq_exit(void)942 static void __exit cppc_cpufreq_exit(void)
943 {
944 	cpufreq_unregister_driver(&cppc_cpufreq_driver);
945 	cppc_freq_invariance_exit();
946 }
947 
948 module_exit(cppc_cpufreq_exit);
949 MODULE_AUTHOR("Ashwin Chaugule");
950 MODULE_DESCRIPTION("CPUFreq driver based on the ACPI CPPC v5.0+ spec");
951 MODULE_LICENSE("GPL");
952 
953 late_initcall(cppc_cpufreq_init);
954 
955 static const struct acpi_device_id cppc_acpi_ids[] __used = {
956 	{ACPI_PROCESSOR_DEVICE_HID, },
957 	{}
958 };
959 
960 MODULE_DEVICE_TABLE(acpi, cppc_acpi_ids);
961