xref: /linux/drivers/clk/renesas/rcar-gen4-cpg.c (revision 3a39d672e7f48b8d6b91a09afa4b55352773b4b5)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * R-Car Gen4 Clock Pulse Generator
4  *
5  * Copyright (C) 2021 Renesas Electronics Corp.
6  *
7  * Based on rcar-gen3-cpg.c
8  *
9  * Copyright (C) 2015-2018 Glider bvba
10  * Copyright (C) 2019 Renesas Electronics Corp.
11  */
12 
13 #include <linux/bitfield.h>
14 #include <linux/clk.h>
15 #include <linux/clk-provider.h>
16 #include <linux/device.h>
17 #include <linux/err.h>
18 #include <linux/init.h>
19 #include <linux/io.h>
20 #include <linux/iopoll.h>
21 #include <linux/slab.h>
22 
23 #include "renesas-cpg-mssr.h"
24 #include "rcar-gen4-cpg.h"
25 #include "rcar-cpg-lib.h"
26 
27 static const struct rcar_gen4_cpg_pll_config *cpg_pll_config __initdata;
28 static unsigned int cpg_clk_extalr __initdata;
29 static u32 cpg_mode __initdata;
30 
31 #define CPG_PLLECR		0x0820	/* PLL Enable Control Register */
32 
33 #define CPG_PLLECR_PLLST(n)	BIT(8 + ((n) < 3 ? (n) - 1 : \
34 					 (n) > 3 ? (n) + 1 : n)) /* PLLn Circuit Status */
35 
36 #define CPG_PLL1CR0		0x830	/* PLLn Control Registers */
37 #define CPG_PLL1CR1		0x8b0
38 #define CPG_PLL2CR0		0x834
39 #define CPG_PLL2CR1		0x8b8
40 #define CPG_PLL3CR0		0x83c
41 #define CPG_PLL3CR1		0x8c0
42 #define CPG_PLL4CR0		0x844
43 #define CPG_PLL4CR1		0x8c8
44 #define CPG_PLL6CR0		0x84c
45 #define CPG_PLL6CR1		0x8d8
46 
47 #define CPG_PLLxCR0_KICK	BIT(31)
48 #define CPG_PLLxCR0_SSMODE	GENMASK(18, 16)	/* PLL mode */
49 #define CPG_PLLxCR0_SSMODE_FM	BIT(18)	/* Fractional Multiplication */
50 #define CPG_PLLxCR0_SSMODE_DITH	BIT(17) /* Frequency Dithering */
51 #define CPG_PLLxCR0_SSMODE_CENT	BIT(16)	/* Center (vs. Down) Spread Dithering */
52 #define CPG_PLLxCR0_SSFREQ	GENMASK(14, 8)	/* SSCG Modulation Frequency */
53 #define CPG_PLLxCR0_SSDEPT	GENMASK(6, 0)	/* SSCG Modulation Depth */
54 
55 /* Fractional 8.25 PLL */
56 #define CPG_PLLxCR0_NI8		GENMASK(27, 20)	/* Integer mult. factor */
57 #define CPG_PLLxCR1_NF25	GENMASK(24, 0)	/* Fractional mult. factor */
58 
59 /* Fractional 9.24 PLL */
60 #define CPG_PLLxCR0_NI9		GENMASK(28, 20)	/* Integer mult. factor */
61 #define CPG_PLLxCR1_NF24	GENMASK(23, 0)	/* Fractional mult. factor */
62 
63 #define CPG_PLLxCR_STC		GENMASK(30, 24)	/* R_Car V3U PLLxCR */
64 
65 #define CPG_RPCCKCR		0x874	/* RPC Clock Freq. Control Register */
66 
67 #define CPG_SD0CKCR1		0x8a4	/* SD-IF0 Clock Freq. Control Reg. 1 */
68 
69 #define CPG_SD0CKCR1_SDSRC_SEL	GENMASK(30, 29)	/* SDSRC clock freq. select */
70 
71 /* PLL Clocks */
72 struct cpg_pll_clk {
73 	struct clk_hw hw;
74 	void __iomem *pllcr0_reg;
75 	void __iomem *pllcr1_reg;
76 	void __iomem *pllecr_reg;
77 	u32 pllecr_pllst_mask;
78 };
79 
80 #define to_pll_clk(_hw)   container_of(_hw, struct cpg_pll_clk, hw)
81 
cpg_pll_8_25_clk_recalc_rate(struct clk_hw * hw,unsigned long parent_rate)82 static unsigned long cpg_pll_8_25_clk_recalc_rate(struct clk_hw *hw,
83 						  unsigned long parent_rate)
84 {
85 	struct cpg_pll_clk *pll_clk = to_pll_clk(hw);
86 	u32 cr0 = readl(pll_clk->pllcr0_reg);
87 	unsigned int ni, nf;
88 	unsigned long rate;
89 
90 	ni = (FIELD_GET(CPG_PLLxCR0_NI8, cr0) + 1) * 2;
91 	rate = parent_rate * ni;
92 	if (cr0 & CPG_PLLxCR0_SSMODE_FM) {
93 		nf = FIELD_GET(CPG_PLLxCR1_NF25, readl(pll_clk->pllcr1_reg));
94 		rate += mul_u64_u32_shr(parent_rate, nf, 24);
95 	}
96 
97 	return rate;
98 }
99 
cpg_pll_8_25_clk_determine_rate(struct clk_hw * hw,struct clk_rate_request * req)100 static int cpg_pll_8_25_clk_determine_rate(struct clk_hw *hw,
101 					   struct clk_rate_request *req)
102 {
103 	struct cpg_pll_clk *pll_clk = to_pll_clk(hw);
104 	unsigned int min_mult, max_mult, ni, nf;
105 	u32 cr0 = readl(pll_clk->pllcr0_reg);
106 	unsigned long prate;
107 
108 	prate = req->best_parent_rate * 2;
109 	min_mult = max(div64_ul(req->min_rate, prate), 1ULL);
110 	max_mult = min(div64_ul(req->max_rate, prate), 256ULL);
111 	if (max_mult < min_mult)
112 		return -EINVAL;
113 
114 	if (cr0 & CPG_PLLxCR0_SSMODE_FM) {
115 		ni = div64_ul(req->rate, prate);
116 		if (ni < min_mult) {
117 			ni = min_mult;
118 			nf = 0;
119 		} else {
120 			ni = min(ni, max_mult);
121 			nf = div64_ul((u64)(req->rate - prate * ni) << 24,
122 				      req->best_parent_rate);
123 		}
124 	} else {
125 		ni = DIV_ROUND_CLOSEST_ULL(req->rate, prate);
126 		ni = clamp(ni, min_mult, max_mult);
127 		nf = 0;
128 	}
129 	req->rate = prate * ni + mul_u64_u32_shr(req->best_parent_rate, nf, 24);
130 
131 	return 0;
132 }
133 
cpg_pll_8_25_clk_set_rate(struct clk_hw * hw,unsigned long rate,unsigned long parent_rate)134 static int cpg_pll_8_25_clk_set_rate(struct clk_hw *hw, unsigned long rate,
135 				     unsigned long parent_rate)
136 {
137 	struct cpg_pll_clk *pll_clk = to_pll_clk(hw);
138 	unsigned long prate = parent_rate * 2;
139 	u32 cr0 = readl(pll_clk->pllcr0_reg);
140 	unsigned int ni, nf;
141 	u32 val;
142 
143 	if (cr0 & CPG_PLLxCR0_SSMODE_FM) {
144 		ni = div64_ul(rate, prate);
145 		if (ni < 1) {
146 			ni = 1;
147 			nf = 0;
148 		} else {
149 			ni = min(ni, 256U);
150 			nf = div64_ul((u64)(rate - prate * ni) << 24,
151 				      parent_rate);
152 		}
153 	} else {
154 		ni = DIV_ROUND_CLOSEST_ULL(rate, prate);
155 		ni = clamp(ni, 1U, 256U);
156 	}
157 
158 	if (readl(pll_clk->pllcr0_reg) & CPG_PLLxCR0_KICK)
159 		return -EBUSY;
160 
161 	cpg_reg_modify(pll_clk->pllcr0_reg, CPG_PLLxCR0_NI8,
162 		       FIELD_PREP(CPG_PLLxCR0_NI8, ni - 1));
163 	if (cr0 & CPG_PLLxCR0_SSMODE_FM)
164 		cpg_reg_modify(pll_clk->pllcr1_reg, CPG_PLLxCR1_NF25,
165 			       FIELD_PREP(CPG_PLLxCR1_NF25, nf));
166 
167 	/*
168 	 * Set KICK bit in PLLxCR0 to update hardware setting and wait for
169 	 * clock change completion.
170 	 */
171 	cpg_reg_modify(pll_clk->pllcr0_reg, 0, CPG_PLLxCR0_KICK);
172 
173 	/*
174 	 * Note: There is no HW information about the worst case latency.
175 	 *
176 	 * Using experimental measurements, it seems that no more than
177 	 * ~45 µs are needed, independently of the CPU rate.
178 	 * Since this value might be dependent on external xtal rate, pll
179 	 * rate or even the other emulation clocks rate, use 1000 as a
180 	 * "super" safe value.
181 	 */
182 	return readl_poll_timeout(pll_clk->pllecr_reg, val,
183 				  val & pll_clk->pllecr_pllst_mask, 0, 1000);
184 }
185 
186 static const struct clk_ops cpg_pll_f8_25_clk_ops = {
187 	.recalc_rate = cpg_pll_8_25_clk_recalc_rate,
188 };
189 
190 static const struct clk_ops cpg_pll_v8_25_clk_ops = {
191 	.recalc_rate = cpg_pll_8_25_clk_recalc_rate,
192 	.determine_rate = cpg_pll_8_25_clk_determine_rate,
193 	.set_rate = cpg_pll_8_25_clk_set_rate,
194 };
195 
cpg_pll_9_24_clk_recalc_rate(struct clk_hw * hw,unsigned long parent_rate)196 static unsigned long cpg_pll_9_24_clk_recalc_rate(struct clk_hw *hw,
197 						  unsigned long parent_rate)
198 {
199 	struct cpg_pll_clk *pll_clk = to_pll_clk(hw);
200 	u32 cr0 = readl(pll_clk->pllcr0_reg);
201 	unsigned int ni, nf;
202 	unsigned long rate;
203 
204 	ni = FIELD_GET(CPG_PLLxCR0_NI9, cr0) + 1;
205 	rate = parent_rate * ni;
206 	if (cr0 & CPG_PLLxCR0_SSMODE_FM) {
207 		nf = FIELD_GET(CPG_PLLxCR1_NF24, readl(pll_clk->pllcr1_reg));
208 		rate += mul_u64_u32_shr(parent_rate, nf, 24);
209 	} else {
210 		rate *= 2;
211 	}
212 
213 	return rate;
214 }
215 
216 static const struct clk_ops cpg_pll_f9_24_clk_ops = {
217 	.recalc_rate = cpg_pll_9_24_clk_recalc_rate,
218 };
219 
cpg_pll_clk_register(const char * name,const char * parent_name,void __iomem * base,unsigned int index,const struct clk_ops * ops)220 static struct clk * __init cpg_pll_clk_register(const char *name,
221 						const char *parent_name,
222 						void __iomem *base,
223 						unsigned int index,
224 						const struct clk_ops *ops)
225 {
226 	static const struct { u16 cr0, cr1; } pll_cr_offsets[] __initconst = {
227 		[1 - 1] = { CPG_PLL1CR0, CPG_PLL1CR1 },
228 		[2 - 1] = { CPG_PLL2CR0, CPG_PLL2CR1 },
229 		[3 - 1] = { CPG_PLL3CR0, CPG_PLL3CR1 },
230 		[4 - 1] = { CPG_PLL4CR0, CPG_PLL4CR1 },
231 		[6 - 1] = { CPG_PLL6CR0, CPG_PLL6CR1 },
232 	};
233 	struct clk_init_data init = {};
234 	struct cpg_pll_clk *pll_clk;
235 	struct clk *clk;
236 
237 	pll_clk = kzalloc(sizeof(*pll_clk), GFP_KERNEL);
238 	if (!pll_clk)
239 		return ERR_PTR(-ENOMEM);
240 
241 	init.name = name;
242 	init.ops = ops;
243 	init.parent_names = &parent_name;
244 	init.num_parents = 1;
245 
246 	pll_clk->hw.init = &init;
247 	pll_clk->pllcr0_reg = base + pll_cr_offsets[index - 1].cr0;
248 	pll_clk->pllcr1_reg = base + pll_cr_offsets[index - 1].cr1;
249 	pll_clk->pllecr_reg = base + CPG_PLLECR;
250 	pll_clk->pllecr_pllst_mask = CPG_PLLECR_PLLST(index);
251 
252 	clk = clk_register(NULL, &pll_clk->hw);
253 	if (IS_ERR(clk))
254 		kfree(pll_clk);
255 
256 	return clk;
257 }
258 
259 /*
260  * Z0 Clock & Z1 Clock
261  */
262 #define CPG_FRQCRB			0x00000804
263 #define CPG_FRQCRB_KICK			BIT(31)
264 #define CPG_FRQCRC0			0x00000808
265 #define CPG_FRQCRC1			0x000008e0
266 
267 struct cpg_z_clk {
268 	struct clk_hw hw;
269 	void __iomem *reg;
270 	void __iomem *kick_reg;
271 	unsigned long max_rate;		/* Maximum rate for normal mode */
272 	unsigned int fixed_div;
273 	u32 mask;
274 };
275 
276 #define to_z_clk(_hw)	container_of(_hw, struct cpg_z_clk, hw)
277 
cpg_z_clk_recalc_rate(struct clk_hw * hw,unsigned long parent_rate)278 static unsigned long cpg_z_clk_recalc_rate(struct clk_hw *hw,
279 					   unsigned long parent_rate)
280 {
281 	struct cpg_z_clk *zclk = to_z_clk(hw);
282 	unsigned int mult;
283 	u32 val;
284 
285 	val = readl(zclk->reg) & zclk->mask;
286 	mult = 32 - (val >> __ffs(zclk->mask));
287 
288 	return DIV_ROUND_CLOSEST_ULL((u64)parent_rate * mult,
289 				     32 * zclk->fixed_div);
290 }
291 
cpg_z_clk_determine_rate(struct clk_hw * hw,struct clk_rate_request * req)292 static int cpg_z_clk_determine_rate(struct clk_hw *hw,
293 				    struct clk_rate_request *req)
294 {
295 	struct cpg_z_clk *zclk = to_z_clk(hw);
296 	unsigned int min_mult, max_mult, mult;
297 	unsigned long rate, prate;
298 
299 	rate = min(req->rate, req->max_rate);
300 	if (rate <= zclk->max_rate) {
301 		/* Set parent rate to initial value for normal modes */
302 		prate = zclk->max_rate;
303 	} else {
304 		/* Set increased parent rate for boost modes */
305 		prate = rate;
306 	}
307 	req->best_parent_rate = clk_hw_round_rate(clk_hw_get_parent(hw),
308 						  prate * zclk->fixed_div);
309 
310 	prate = req->best_parent_rate / zclk->fixed_div;
311 	min_mult = max(div64_ul(req->min_rate * 32ULL, prate), 1ULL);
312 	max_mult = min(div64_ul(req->max_rate * 32ULL, prate), 32ULL);
313 	if (max_mult < min_mult)
314 		return -EINVAL;
315 
316 	mult = DIV_ROUND_CLOSEST_ULL(rate * 32ULL, prate);
317 	mult = clamp(mult, min_mult, max_mult);
318 
319 	req->rate = DIV_ROUND_CLOSEST_ULL((u64)prate * mult, 32);
320 	return 0;
321 }
322 
cpg_z_clk_set_rate(struct clk_hw * hw,unsigned long rate,unsigned long parent_rate)323 static int cpg_z_clk_set_rate(struct clk_hw *hw, unsigned long rate,
324 			      unsigned long parent_rate)
325 {
326 	struct cpg_z_clk *zclk = to_z_clk(hw);
327 	unsigned int mult;
328 	unsigned int i;
329 
330 	mult = DIV64_U64_ROUND_CLOSEST(rate * 32ULL * zclk->fixed_div,
331 				       parent_rate);
332 	mult = clamp(mult, 1U, 32U);
333 
334 	if (readl(zclk->kick_reg) & CPG_FRQCRB_KICK)
335 		return -EBUSY;
336 
337 	cpg_reg_modify(zclk->reg, zclk->mask, (32 - mult) << __ffs(zclk->mask));
338 
339 	/*
340 	 * Set KICK bit in FRQCRB to update hardware setting and wait for
341 	 * clock change completion.
342 	 */
343 	cpg_reg_modify(zclk->kick_reg, 0, CPG_FRQCRB_KICK);
344 
345 	/*
346 	 * Note: There is no HW information about the worst case latency.
347 	 *
348 	 * Using experimental measurements, it seems that no more than
349 	 * ~10 iterations are needed, independently of the CPU rate.
350 	 * Since this value might be dependent on external xtal rate, pll1
351 	 * rate or even the other emulation clocks rate, use 1000 as a
352 	 * "super" safe value.
353 	 */
354 	for (i = 1000; i; i--) {
355 		if (!(readl(zclk->kick_reg) & CPG_FRQCRB_KICK))
356 			return 0;
357 
358 		cpu_relax();
359 	}
360 
361 	return -ETIMEDOUT;
362 }
363 
364 static const struct clk_ops cpg_z_clk_ops = {
365 	.recalc_rate = cpg_z_clk_recalc_rate,
366 	.determine_rate = cpg_z_clk_determine_rate,
367 	.set_rate = cpg_z_clk_set_rate,
368 };
369 
cpg_z_clk_register(const char * name,const char * parent_name,void __iomem * reg,unsigned int div,unsigned int offset)370 static struct clk * __init cpg_z_clk_register(const char *name,
371 					      const char *parent_name,
372 					      void __iomem *reg,
373 					      unsigned int div,
374 					      unsigned int offset)
375 {
376 	struct clk_init_data init = {};
377 	struct cpg_z_clk *zclk;
378 	struct clk *clk;
379 
380 	zclk = kzalloc(sizeof(*zclk), GFP_KERNEL);
381 	if (!zclk)
382 		return ERR_PTR(-ENOMEM);
383 
384 	init.name = name;
385 	init.ops = &cpg_z_clk_ops;
386 	init.flags = CLK_SET_RATE_PARENT;
387 	init.parent_names = &parent_name;
388 	init.num_parents = 1;
389 
390 	if (offset < 32) {
391 		zclk->reg = reg + CPG_FRQCRC0;
392 	} else {
393 		zclk->reg = reg + CPG_FRQCRC1;
394 		offset -= 32;
395 	}
396 	zclk->kick_reg = reg + CPG_FRQCRB;
397 	zclk->hw.init = &init;
398 	zclk->mask = GENMASK(offset + 4, offset);
399 	zclk->fixed_div = div; /* PLLVCO x 1/div x SYS-CPU divider */
400 
401 	clk = clk_register(NULL, &zclk->hw);
402 	if (IS_ERR(clk)) {
403 		kfree(zclk);
404 		return clk;
405 	}
406 
407 	zclk->max_rate = clk_hw_get_rate(clk_hw_get_parent(&zclk->hw)) /
408 			 zclk->fixed_div;
409 	return clk;
410 }
411 
412 /*
413  * RPC Clocks
414  */
415 static const struct clk_div_table cpg_rpcsrc_div_table[] = {
416 	{ 0, 4 }, { 1, 6 }, { 2, 5 }, { 3, 6 }, { 0, 0 },
417 };
418 
rcar_gen4_cpg_clk_register(struct device * dev,const struct cpg_core_clk * core,const struct cpg_mssr_info * info,struct clk ** clks,void __iomem * base,struct raw_notifier_head * notifiers)419 struct clk * __init rcar_gen4_cpg_clk_register(struct device *dev,
420 	const struct cpg_core_clk *core, const struct cpg_mssr_info *info,
421 	struct clk **clks, void __iomem *base,
422 	struct raw_notifier_head *notifiers)
423 {
424 	const struct clk *parent;
425 	unsigned int mult = 1;
426 	unsigned int div = 1;
427 	u32 value;
428 
429 	parent = clks[core->parent & 0xffff];	/* some types use high bits */
430 	if (IS_ERR(parent))
431 		return ERR_CAST(parent);
432 
433 	switch (core->type) {
434 	case CLK_TYPE_GEN4_MAIN:
435 		div = cpg_pll_config->extal_div;
436 		break;
437 
438 	case CLK_TYPE_GEN4_PLL1:
439 		mult = cpg_pll_config->pll1_mult;
440 		div = cpg_pll_config->pll1_div;
441 		break;
442 
443 	case CLK_TYPE_GEN4_PLL5:
444 		mult = cpg_pll_config->pll5_mult;
445 		div = cpg_pll_config->pll5_div;
446 		break;
447 
448 	case CLK_TYPE_GEN4_PLL2X_3X:
449 		value = readl(base + core->offset);
450 		mult = (FIELD_GET(CPG_PLLxCR_STC, value) + 1) * 2;
451 		break;
452 
453 	case CLK_TYPE_GEN4_PLL_F8_25:
454 		return cpg_pll_clk_register(core->name, __clk_get_name(parent),
455 					    base, core->offset,
456 					    &cpg_pll_f8_25_clk_ops);
457 
458 	case CLK_TYPE_GEN4_PLL_V8_25:
459 		return cpg_pll_clk_register(core->name, __clk_get_name(parent),
460 					    base, core->offset,
461 					    &cpg_pll_v8_25_clk_ops);
462 
463 	case CLK_TYPE_GEN4_PLL_V9_24:
464 		/* Variable fractional 9.24 is not yet supported, using fixed */
465 		fallthrough;
466 	case CLK_TYPE_GEN4_PLL_F9_24:
467 		return cpg_pll_clk_register(core->name, __clk_get_name(parent),
468 					    base, core->offset,
469 					    &cpg_pll_f9_24_clk_ops);
470 
471 	case CLK_TYPE_GEN4_Z:
472 		return cpg_z_clk_register(core->name, __clk_get_name(parent),
473 					  base, core->div, core->offset);
474 
475 	case CLK_TYPE_GEN4_SDSRC:
476 		value = readl(base + CPG_SD0CKCR1);
477 		div = FIELD_GET(CPG_SD0CKCR1_SDSRC_SEL, value) + 4;
478 		break;
479 
480 	case CLK_TYPE_GEN4_SDH:
481 		return cpg_sdh_clk_register(core->name, base + core->offset,
482 					   __clk_get_name(parent), notifiers);
483 
484 	case CLK_TYPE_GEN4_SD:
485 		return cpg_sd_clk_register(core->name, base + core->offset,
486 					   __clk_get_name(parent));
487 
488 	case CLK_TYPE_GEN4_MDSEL:
489 		/*
490 		 * Clock selectable between two parents and two fixed dividers
491 		 * using a mode pin
492 		 */
493 		if (cpg_mode & BIT(core->offset)) {
494 			div = core->div & 0xffff;
495 		} else {
496 			parent = clks[core->parent >> 16];
497 			if (IS_ERR(parent))
498 				return ERR_CAST(parent);
499 			div = core->div >> 16;
500 		}
501 		mult = 1;
502 		break;
503 
504 	case CLK_TYPE_GEN4_OSC:
505 		/*
506 		 * Clock combining OSC EXTAL predivider and a fixed divider
507 		 */
508 		div = cpg_pll_config->osc_prediv * core->div;
509 		break;
510 
511 	case CLK_TYPE_GEN4_RPCSRC:
512 		return clk_register_divider_table(NULL, core->name,
513 						  __clk_get_name(parent), 0,
514 						  base + CPG_RPCCKCR, 3, 2, 0,
515 						  cpg_rpcsrc_div_table,
516 						  &cpg_lock);
517 
518 	case CLK_TYPE_GEN4_RPC:
519 		return cpg_rpc_clk_register(core->name, base + CPG_RPCCKCR,
520 					    __clk_get_name(parent), notifiers);
521 
522 	case CLK_TYPE_GEN4_RPCD2:
523 		return cpg_rpcd2_clk_register(core->name, base + CPG_RPCCKCR,
524 					      __clk_get_name(parent));
525 
526 	default:
527 		return ERR_PTR(-EINVAL);
528 	}
529 
530 	return clk_register_fixed_factor(NULL, core->name,
531 					 __clk_get_name(parent), 0, mult, div);
532 }
533 
rcar_gen4_cpg_init(const struct rcar_gen4_cpg_pll_config * config,unsigned int clk_extalr,u32 mode)534 int __init rcar_gen4_cpg_init(const struct rcar_gen4_cpg_pll_config *config,
535 			      unsigned int clk_extalr, u32 mode)
536 {
537 	cpg_pll_config = config;
538 	cpg_clk_extalr = clk_extalr;
539 	cpg_mode = mode;
540 
541 	return 0;
542 }
543