xref: /linux/crypto/Kconfig (revision a619fe35ab41fded440d3762d4fbad84ff86a4d4)
1# SPDX-License-Identifier: GPL-2.0
2#
3# Generic algorithms support
4#
5config XOR_BLOCKS
6	tristate
7
8#
9# async_tx api: hardware offloaded memory transfer/transform support
10#
11source "crypto/async_tx/Kconfig"
12
13#
14# Cryptographic API Configuration
15#
16menuconfig CRYPTO
17	tristate "Cryptographic API"
18	select CRYPTO_LIB_UTILS
19	help
20	  This option provides the core Cryptographic API.
21
22if CRYPTO
23
24menu "Crypto core or helper"
25
26config CRYPTO_FIPS
27	bool "FIPS 200 compliance"
28	depends on CRYPTO_DRBG && CRYPTO_SELFTESTS
29	depends on (MODULE_SIG || !MODULES)
30	help
31	  This option enables the fips boot option which is
32	  required if you want the system to operate in a FIPS 200
33	  certification.  You should say no unless you know what
34	  this is.
35
36config CRYPTO_FIPS_NAME
37	string "FIPS Module Name"
38	default "Linux Kernel Cryptographic API"
39	depends on CRYPTO_FIPS
40	help
41	  This option sets the FIPS Module name reported by the Crypto API via
42	  the /proc/sys/crypto/fips_name file.
43
44config CRYPTO_FIPS_CUSTOM_VERSION
45	bool "Use Custom FIPS Module Version"
46	depends on CRYPTO_FIPS
47	default n
48
49config CRYPTO_FIPS_VERSION
50	string "FIPS Module Version"
51	default "(none)"
52	depends on CRYPTO_FIPS_CUSTOM_VERSION
53	help
54	  This option provides the ability to override the FIPS Module Version.
55	  By default the KERNELRELEASE value is used.
56
57config CRYPTO_ALGAPI
58	tristate
59	select CRYPTO_ALGAPI2
60	help
61	  This option provides the API for cryptographic algorithms.
62
63config CRYPTO_ALGAPI2
64	tristate
65
66config CRYPTO_AEAD
67	tristate
68	select CRYPTO_AEAD2
69	select CRYPTO_ALGAPI
70
71config CRYPTO_AEAD2
72	tristate
73	select CRYPTO_ALGAPI2
74
75config CRYPTO_SIG
76	tristate
77	select CRYPTO_SIG2
78	select CRYPTO_ALGAPI
79
80config CRYPTO_SIG2
81	tristate
82	select CRYPTO_ALGAPI2
83
84config CRYPTO_SKCIPHER
85	tristate
86	select CRYPTO_SKCIPHER2
87	select CRYPTO_ALGAPI
88	select CRYPTO_ECB
89
90config CRYPTO_SKCIPHER2
91	tristate
92	select CRYPTO_ALGAPI2
93
94config CRYPTO_HASH
95	tristate
96	select CRYPTO_HASH2
97	select CRYPTO_ALGAPI
98
99config CRYPTO_HASH2
100	tristate
101	select CRYPTO_ALGAPI2
102
103config CRYPTO_RNG
104	tristate
105	select CRYPTO_RNG2
106	select CRYPTO_ALGAPI
107
108config CRYPTO_RNG2
109	tristate
110	select CRYPTO_ALGAPI2
111
112config CRYPTO_RNG_DEFAULT
113	tristate
114	select CRYPTO_DRBG_MENU
115
116config CRYPTO_AKCIPHER2
117	tristate
118	select CRYPTO_ALGAPI2
119
120config CRYPTO_AKCIPHER
121	tristate
122	select CRYPTO_AKCIPHER2
123	select CRYPTO_ALGAPI
124
125config CRYPTO_KPP2
126	tristate
127	select CRYPTO_ALGAPI2
128
129config CRYPTO_KPP
130	tristate
131	select CRYPTO_ALGAPI
132	select CRYPTO_KPP2
133
134config CRYPTO_ACOMP2
135	tristate
136	select CRYPTO_ALGAPI2
137	select SGL_ALLOC
138
139config CRYPTO_ACOMP
140	tristate
141	select CRYPTO_ALGAPI
142	select CRYPTO_ACOMP2
143
144config CRYPTO_HKDF
145	tristate
146	select CRYPTO_SHA256 if CRYPTO_SELFTESTS
147	select CRYPTO_SHA512 if CRYPTO_SELFTESTS
148	select CRYPTO_HASH2
149
150config CRYPTO_MANAGER
151	tristate
152	default CRYPTO_ALGAPI if CRYPTO_SELFTESTS
153	select CRYPTO_MANAGER2
154	help
155	  This provides the support for instantiating templates such as
156	  cbc(aes), and the support for the crypto self-tests.
157
158config CRYPTO_MANAGER2
159	def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y)
160	select CRYPTO_ACOMP2
161	select CRYPTO_AEAD2
162	select CRYPTO_AKCIPHER2
163	select CRYPTO_SIG2
164	select CRYPTO_HASH2
165	select CRYPTO_KPP2
166	select CRYPTO_RNG2
167	select CRYPTO_SKCIPHER2
168
169config CRYPTO_USER
170	tristate "Userspace cryptographic algorithm configuration"
171	depends on NET
172	select CRYPTO_MANAGER
173	help
174	  Userspace configuration for cryptographic instantiations such as
175	  cbc(aes).
176
177config CRYPTO_SELFTESTS
178	bool "Enable cryptographic self-tests"
179	depends on EXPERT
180	help
181	  Enable the cryptographic self-tests.
182
183	  The cryptographic self-tests run at boot time, or at algorithm
184	  registration time if algorithms are dynamically loaded later.
185
186	  There are two main use cases for these tests:
187
188	  - Development and pre-release testing.  In this case, also enable
189	    CRYPTO_SELFTESTS_FULL to get the full set of tests.  All crypto code
190	    in the kernel is expected to pass the full set of tests.
191
192	  - Production kernels, to help prevent buggy drivers from being used
193	    and/or meet FIPS 140-3 pre-operational testing requirements.  In
194	    this case, enable CRYPTO_SELFTESTS but not CRYPTO_SELFTESTS_FULL.
195
196config CRYPTO_SELFTESTS_FULL
197	bool "Enable the full set of cryptographic self-tests"
198	depends on CRYPTO_SELFTESTS
199	help
200	  Enable the full set of cryptographic self-tests for each algorithm.
201
202	  The full set of tests should be enabled for development and
203	  pre-release testing, but not in production kernels.
204
205	  All crypto code in the kernel is expected to pass the full tests.
206
207config CRYPTO_NULL
208	tristate "Null algorithms"
209	select CRYPTO_ALGAPI
210	select CRYPTO_SKCIPHER
211	select CRYPTO_HASH
212	help
213	  These are 'Null' algorithms, used by IPsec, which do nothing.
214
215config CRYPTO_PCRYPT
216	tristate "Parallel crypto engine"
217	depends on SMP
218	select PADATA
219	select CRYPTO_MANAGER
220	select CRYPTO_AEAD
221	help
222	  This converts an arbitrary crypto algorithm into a parallel
223	  algorithm that executes in kernel threads.
224
225config CRYPTO_CRYPTD
226	tristate "Software async crypto daemon"
227	select CRYPTO_SKCIPHER
228	select CRYPTO_HASH
229	select CRYPTO_MANAGER
230	help
231	  This is a generic software asynchronous crypto daemon that
232	  converts an arbitrary synchronous software crypto algorithm
233	  into an asynchronous algorithm that executes in a kernel thread.
234
235config CRYPTO_AUTHENC
236	tristate "Authenc support"
237	select CRYPTO_AEAD
238	select CRYPTO_SKCIPHER
239	select CRYPTO_MANAGER
240	select CRYPTO_HASH
241	help
242	  Authenc: Combined mode wrapper for IPsec.
243
244	  This is required for IPSec ESP (XFRM_ESP).
245
246config CRYPTO_KRB5ENC
247	tristate "Kerberos 5 combined hash+cipher support"
248	select CRYPTO_AEAD
249	select CRYPTO_SKCIPHER
250	select CRYPTO_MANAGER
251	select CRYPTO_HASH
252	help
253	  Combined hash and cipher support for Kerberos 5 RFC3961 simplified
254	  profile.  This is required for Kerberos 5-style encryption, used by
255	  sunrpc/NFS and rxrpc/AFS.
256
257config CRYPTO_BENCHMARK
258	tristate "Crypto benchmarking module"
259	depends on m || EXPERT
260	select CRYPTO_MANAGER
261	help
262	  Quick & dirty crypto benchmarking module.
263
264	  This is mainly intended for use by people developing cryptographic
265	  algorithms in the kernel.  It should not be enabled in production
266	  kernels.
267
268config CRYPTO_SIMD
269	tristate
270	select CRYPTO_CRYPTD
271
272config CRYPTO_ENGINE
273	tristate
274
275endmenu
276
277menu "Public-key cryptography"
278
279config CRYPTO_RSA
280	tristate "RSA (Rivest-Shamir-Adleman)"
281	select CRYPTO_AKCIPHER
282	select CRYPTO_MANAGER
283	select CRYPTO_SIG
284	select MPILIB
285	select ASN1
286	help
287	  RSA (Rivest-Shamir-Adleman) public key algorithm (RFC8017)
288
289config CRYPTO_DH
290	tristate "DH (Diffie-Hellman)"
291	select CRYPTO_KPP
292	select MPILIB
293	help
294	  DH (Diffie-Hellman) key exchange algorithm
295
296config CRYPTO_DH_RFC7919_GROUPS
297	bool "RFC 7919 FFDHE groups"
298	depends on CRYPTO_DH
299	select CRYPTO_RNG_DEFAULT
300	help
301	  FFDHE (Finite-Field-based Diffie-Hellman Ephemeral) groups
302	  defined in RFC7919.
303
304	  Support these finite-field groups in DH key exchanges:
305	  - ffdhe2048, ffdhe3072, ffdhe4096, ffdhe6144, ffdhe8192
306
307	  If unsure, say N.
308
309config CRYPTO_ECC
310	tristate
311	select CRYPTO_RNG_DEFAULT
312
313config CRYPTO_ECDH
314	tristate "ECDH (Elliptic Curve Diffie-Hellman)"
315	select CRYPTO_ECC
316	select CRYPTO_KPP
317	help
318	  ECDH (Elliptic Curve Diffie-Hellman) key exchange algorithm
319	  using curves P-192, P-256, and P-384 (FIPS 186)
320
321config CRYPTO_ECDSA
322	tristate "ECDSA (Elliptic Curve Digital Signature Algorithm)"
323	select CRYPTO_ECC
324	select CRYPTO_SIG
325	select ASN1
326	help
327	  ECDSA (Elliptic Curve Digital Signature Algorithm) (FIPS 186,
328	  ISO/IEC 14888-3)
329	  using curves P-192, P-256, P-384 and P-521
330
331	  Only signature verification is implemented.
332
333config CRYPTO_ECRDSA
334	tristate "EC-RDSA (Elliptic Curve Russian Digital Signature Algorithm)"
335	select CRYPTO_ECC
336	select CRYPTO_SIG
337	select CRYPTO_STREEBOG
338	select OID_REGISTRY
339	select ASN1
340	help
341	  Elliptic Curve Russian Digital Signature Algorithm (GOST R 34.10-2012,
342	  RFC 7091, ISO/IEC 14888-3)
343
344	  One of the Russian cryptographic standard algorithms (called GOST
345	  algorithms). Only signature verification is implemented.
346
347endmenu
348
349menu "Block ciphers"
350
351config CRYPTO_AES
352	tristate "AES (Advanced Encryption Standard)"
353	select CRYPTO_ALGAPI
354	select CRYPTO_LIB_AES
355	help
356	  AES cipher algorithms (Rijndael)(FIPS-197, ISO/IEC 18033-3)
357
358	  Rijndael appears to be consistently a very good performer in
359	  both hardware and software across a wide range of computing
360	  environments regardless of its use in feedback or non-feedback
361	  modes. Its key setup time is excellent, and its key agility is
362	  good. Rijndael's very low memory requirements make it very well
363	  suited for restricted-space environments, in which it also
364	  demonstrates excellent performance. Rijndael's operations are
365	  among the easiest to defend against power and timing attacks.
366
367	  The AES specifies three key sizes: 128, 192 and 256 bits
368
369config CRYPTO_AES_TI
370	tristate "AES (Advanced Encryption Standard) (fixed time)"
371	select CRYPTO_ALGAPI
372	select CRYPTO_LIB_AES
373	help
374	  AES cipher algorithms (Rijndael)(FIPS-197, ISO/IEC 18033-3)
375
376	  This is a generic implementation of AES that attempts to eliminate
377	  data dependent latencies as much as possible without affecting
378	  performance too much. It is intended for use by the generic CCM
379	  and GCM drivers, and other CTR or CMAC/XCBC based modes that rely
380	  solely on encryption (although decryption is supported as well, but
381	  with a more dramatic performance hit)
382
383	  Instead of using 16 lookup tables of 1 KB each, (8 for encryption and
384	  8 for decryption), this implementation only uses just two S-boxes of
385	  256 bytes each, and attempts to eliminate data dependent latencies by
386	  prefetching the entire table into the cache at the start of each
387	  block. Interrupts are also disabled to avoid races where cachelines
388	  are evicted when the CPU is interrupted to do something else.
389
390config CRYPTO_ANUBIS
391	tristate "Anubis"
392	depends on CRYPTO_USER_API_ENABLE_OBSOLETE
393	select CRYPTO_ALGAPI
394	help
395	  Anubis cipher algorithm
396
397	  Anubis is a variable key length cipher which can use keys from
398	  128 bits to 320 bits in length.  It was evaluated as a entrant
399	  in the NESSIE competition.
400
401	  See https://web.archive.org/web/20160606112246/http://www.larc.usp.br/~pbarreto/AnubisPage.html
402	  for further information.
403
404config CRYPTO_ARIA
405	tristate "ARIA"
406	select CRYPTO_ALGAPI
407	help
408	  ARIA cipher algorithm (RFC5794)
409
410	  ARIA is a standard encryption algorithm of the Republic of Korea.
411	  The ARIA specifies three key sizes and rounds.
412	  128-bit: 12 rounds.
413	  192-bit: 14 rounds.
414	  256-bit: 16 rounds.
415
416	  See:
417	  https://seed.kisa.or.kr/kisa/algorithm/EgovAriaInfo.do
418
419config CRYPTO_BLOWFISH
420	tristate "Blowfish"
421	select CRYPTO_ALGAPI
422	select CRYPTO_BLOWFISH_COMMON
423	help
424	  Blowfish cipher algorithm, by Bruce Schneier
425
426	  This is a variable key length cipher which can use keys from 32
427	  bits to 448 bits in length.  It's fast, simple and specifically
428	  designed for use on "large microprocessors".
429
430	  See https://www.schneier.com/blowfish.html for further information.
431
432config CRYPTO_BLOWFISH_COMMON
433	tristate
434	help
435	  Common parts of the Blowfish cipher algorithm shared by the
436	  generic c and the assembler implementations.
437
438config CRYPTO_CAMELLIA
439	tristate "Camellia"
440	select CRYPTO_ALGAPI
441	help
442	  Camellia cipher algorithms (ISO/IEC 18033-3)
443
444	  Camellia is a symmetric key block cipher developed jointly
445	  at NTT and Mitsubishi Electric Corporation.
446
447	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
448
449	  See https://info.isl.ntt.co.jp/crypt/eng/camellia/ for further information.
450
451config CRYPTO_CAST_COMMON
452	tristate
453	help
454	  Common parts of the CAST cipher algorithms shared by the
455	  generic c and the assembler implementations.
456
457config CRYPTO_CAST5
458	tristate "CAST5 (CAST-128)"
459	select CRYPTO_ALGAPI
460	select CRYPTO_CAST_COMMON
461	help
462	  CAST5 (CAST-128) cipher algorithm (RFC2144, ISO/IEC 18033-3)
463
464config CRYPTO_CAST6
465	tristate "CAST6 (CAST-256)"
466	select CRYPTO_ALGAPI
467	select CRYPTO_CAST_COMMON
468	help
469	  CAST6 (CAST-256) encryption algorithm (RFC2612)
470
471config CRYPTO_DES
472	tristate "DES and Triple DES EDE"
473	select CRYPTO_ALGAPI
474	select CRYPTO_LIB_DES
475	help
476	  DES (Data Encryption Standard)(FIPS 46-2, ISO/IEC 18033-3) and
477	  Triple DES EDE (Encrypt/Decrypt/Encrypt) (FIPS 46-3, ISO/IEC 18033-3)
478	  cipher algorithms
479
480config CRYPTO_FCRYPT
481	tristate "FCrypt"
482	select CRYPTO_ALGAPI
483	select CRYPTO_SKCIPHER
484	help
485	  FCrypt algorithm used by RxRPC
486
487	  See https://ota.polyonymo.us/fcrypt-paper.txt
488
489config CRYPTO_KHAZAD
490	tristate "Khazad"
491	depends on CRYPTO_USER_API_ENABLE_OBSOLETE
492	select CRYPTO_ALGAPI
493	help
494	  Khazad cipher algorithm
495
496	  Khazad was a finalist in the initial NESSIE competition.  It is
497	  an algorithm optimized for 64-bit processors with good performance
498	  on 32-bit processors.  Khazad uses an 128 bit key size.
499
500	  See https://web.archive.org/web/20171011071731/http://www.larc.usp.br/~pbarreto/KhazadPage.html
501	  for further information.
502
503config CRYPTO_SEED
504	tristate "SEED"
505	depends on CRYPTO_USER_API_ENABLE_OBSOLETE
506	select CRYPTO_ALGAPI
507	help
508	  SEED cipher algorithm (RFC4269, ISO/IEC 18033-3)
509
510	  SEED is a 128-bit symmetric key block cipher that has been
511	  developed by KISA (Korea Information Security Agency) as a
512	  national standard encryption algorithm of the Republic of Korea.
513	  It is a 16 round block cipher with the key size of 128 bit.
514
515	  See https://seed.kisa.or.kr/kisa/algorithm/EgovSeedInfo.do
516	  for further information.
517
518config CRYPTO_SERPENT
519	tristate "Serpent"
520	select CRYPTO_ALGAPI
521	help
522	  Serpent cipher algorithm, by Anderson, Biham & Knudsen
523
524	  Keys are allowed to be from 0 to 256 bits in length, in steps
525	  of 8 bits.
526
527	  See https://www.cl.cam.ac.uk/~rja14/serpent.html for further information.
528
529config CRYPTO_SM4
530	tristate
531
532config CRYPTO_SM4_GENERIC
533	tristate "SM4 (ShangMi 4)"
534	select CRYPTO_ALGAPI
535	select CRYPTO_SM4
536	help
537	  SM4 cipher algorithms (OSCCA GB/T 32907-2016,
538	  ISO/IEC 18033-3:2010/Amd 1:2021)
539
540	  SM4 (GBT.32907-2016) is a cryptographic standard issued by the
541	  Organization of State Commercial Administration of China (OSCCA)
542	  as an authorized cryptographic algorithms for the use within China.
543
544	  SMS4 was originally created for use in protecting wireless
545	  networks, and is mandated in the Chinese National Standard for
546	  Wireless LAN WAPI (Wired Authentication and Privacy Infrastructure)
547	  (GB.15629.11-2003).
548
549	  The latest SM4 standard (GBT.32907-2016) was proposed by OSCCA and
550	  standardized through TC 260 of the Standardization Administration
551	  of the People's Republic of China (SAC).
552
553	  The input, output, and key of SMS4 are each 128 bits.
554
555	  See https://eprint.iacr.org/2008/329.pdf for further information.
556
557	  If unsure, say N.
558
559config CRYPTO_TEA
560	tristate "TEA, XTEA and XETA"
561	depends on CRYPTO_USER_API_ENABLE_OBSOLETE
562	select CRYPTO_ALGAPI
563	help
564	  TEA (Tiny Encryption Algorithm) cipher algorithms
565
566	  Tiny Encryption Algorithm is a simple cipher that uses
567	  many rounds for security.  It is very fast and uses
568	  little memory.
569
570	  Xtendend Tiny Encryption Algorithm is a modification to
571	  the TEA algorithm to address a potential key weakness
572	  in the TEA algorithm.
573
574	  Xtendend Encryption Tiny Algorithm is a mis-implementation
575	  of the XTEA algorithm for compatibility purposes.
576
577config CRYPTO_TWOFISH
578	tristate "Twofish"
579	select CRYPTO_ALGAPI
580	select CRYPTO_TWOFISH_COMMON
581	help
582	  Twofish cipher algorithm
583
584	  Twofish was submitted as an AES (Advanced Encryption Standard)
585	  candidate cipher by researchers at CounterPane Systems.  It is a
586	  16 round block cipher supporting key sizes of 128, 192, and 256
587	  bits.
588
589	  See https://www.schneier.com/twofish.html for further information.
590
591config CRYPTO_TWOFISH_COMMON
592	tristate
593	help
594	  Common parts of the Twofish cipher algorithm shared by the
595	  generic c and the assembler implementations.
596
597endmenu
598
599menu "Length-preserving ciphers and modes"
600
601config CRYPTO_ADIANTUM
602	tristate "Adiantum"
603	select CRYPTO_CHACHA20
604	select CRYPTO_LIB_POLY1305
605	select CRYPTO_LIB_POLY1305_GENERIC
606	select CRYPTO_NHPOLY1305
607	select CRYPTO_MANAGER
608	help
609	  Adiantum tweakable, length-preserving encryption mode
610
611	  Designed for fast and secure disk encryption, especially on
612	  CPUs without dedicated crypto instructions.  It encrypts
613	  each sector using the XChaCha12 stream cipher, two passes of
614	  an ε-almost-∆-universal hash function, and an invocation of
615	  the AES-256 block cipher on a single 16-byte block.  On CPUs
616	  without AES instructions, Adiantum is much faster than
617	  AES-XTS.
618
619	  Adiantum's security is provably reducible to that of its
620	  underlying stream and block ciphers, subject to a security
621	  bound.  Unlike XTS, Adiantum is a true wide-block encryption
622	  mode, so it actually provides an even stronger notion of
623	  security than XTS, subject to the security bound.
624
625	  If unsure, say N.
626
627config CRYPTO_ARC4
628	tristate "ARC4 (Alleged Rivest Cipher 4)"
629	depends on CRYPTO_USER_API_ENABLE_OBSOLETE
630	select CRYPTO_SKCIPHER
631	select CRYPTO_LIB_ARC4
632	help
633	  ARC4 cipher algorithm
634
635	  ARC4 is a stream cipher using keys ranging from 8 bits to 2048
636	  bits in length.  This algorithm is required for driver-based
637	  WEP, but it should not be for other purposes because of the
638	  weakness of the algorithm.
639
640config CRYPTO_CHACHA20
641	tristate "ChaCha"
642	select CRYPTO_LIB_CHACHA
643	select CRYPTO_SKCIPHER
644	help
645	  The ChaCha20, XChaCha20, and XChaCha12 stream cipher algorithms
646
647	  ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J.
648	  Bernstein and further specified in RFC7539 for use in IETF protocols.
649	  This is the portable C implementation of ChaCha20.  See
650	  https://cr.yp.to/chacha/chacha-20080128.pdf for further information.
651
652	  XChaCha20 is the application of the XSalsa20 construction to ChaCha20
653	  rather than to Salsa20.  XChaCha20 extends ChaCha20's nonce length
654	  from 64 bits (or 96 bits using the RFC7539 convention) to 192 bits,
655	  while provably retaining ChaCha20's security.  See
656	  https://cr.yp.to/snuffle/xsalsa-20081128.pdf for further information.
657
658	  XChaCha12 is XChaCha20 reduced to 12 rounds, with correspondingly
659	  reduced security margin but increased performance.  It can be needed
660	  in some performance-sensitive scenarios.
661
662config CRYPTO_CBC
663	tristate "CBC (Cipher Block Chaining)"
664	select CRYPTO_SKCIPHER
665	select CRYPTO_MANAGER
666	help
667	  CBC (Cipher Block Chaining) mode (NIST SP800-38A)
668
669	  This block cipher mode is required for IPSec ESP (XFRM_ESP).
670
671config CRYPTO_CTR
672	tristate "CTR (Counter)"
673	select CRYPTO_SKCIPHER
674	select CRYPTO_MANAGER
675	help
676	  CTR (Counter) mode (NIST SP800-38A)
677
678config CRYPTO_CTS
679	tristate "CTS (Cipher Text Stealing)"
680	select CRYPTO_SKCIPHER
681	select CRYPTO_MANAGER
682	help
683	  CBC-CS3 variant of CTS (Cipher Text Stealing) (NIST
684	  Addendum to SP800-38A (October 2010))
685
686	  This mode is required for Kerberos gss mechanism support
687	  for AES encryption.
688
689config CRYPTO_ECB
690	tristate "ECB (Electronic Codebook)"
691	select CRYPTO_SKCIPHER2
692	select CRYPTO_MANAGER
693	help
694	  ECB (Electronic Codebook) mode (NIST SP800-38A)
695
696config CRYPTO_HCTR2
697	tristate "HCTR2"
698	select CRYPTO_XCTR
699	select CRYPTO_LIB_POLYVAL
700	select CRYPTO_MANAGER
701	help
702	  HCTR2 length-preserving encryption mode
703
704	  A mode for storage encryption that is efficient on processors with
705	  instructions to accelerate AES and carryless multiplication, e.g.
706	  x86 processors with AES-NI and CLMUL, and ARM processors with the
707	  ARMv8 crypto extensions.
708
709	  See https://eprint.iacr.org/2021/1441
710
711config CRYPTO_LRW
712	tristate "LRW (Liskov Rivest Wagner)"
713	select CRYPTO_LIB_GF128MUL
714	select CRYPTO_SKCIPHER
715	select CRYPTO_MANAGER
716	select CRYPTO_ECB
717	help
718	  LRW (Liskov Rivest Wagner) mode
719
720	  A tweakable, non malleable, non movable
721	  narrow block cipher mode for dm-crypt.  Use it with cipher
722	  specification string aes-lrw-benbi, the key must be 256, 320 or 384.
723	  The first 128, 192 or 256 bits in the key are used for AES and the
724	  rest is used to tie each cipher block to its logical position.
725
726	  See https://people.csail.mit.edu/rivest/pubs/LRW02.pdf
727
728config CRYPTO_PCBC
729	tristate "PCBC (Propagating Cipher Block Chaining)"
730	select CRYPTO_SKCIPHER
731	select CRYPTO_MANAGER
732	help
733	  PCBC (Propagating Cipher Block Chaining) mode
734
735	  This block cipher mode is required for RxRPC.
736
737config CRYPTO_XCTR
738	tristate
739	select CRYPTO_SKCIPHER
740	select CRYPTO_MANAGER
741	help
742	  XCTR (XOR Counter) mode for HCTR2
743
744	  This blockcipher mode is a variant of CTR mode using XORs and little-endian
745	  addition rather than big-endian arithmetic.
746
747	  XCTR mode is used to implement HCTR2.
748
749config CRYPTO_XTS
750	tristate "XTS (XOR Encrypt XOR with ciphertext stealing)"
751	select CRYPTO_SKCIPHER
752	select CRYPTO_MANAGER
753	select CRYPTO_ECB
754	help
755	  XTS (XOR Encrypt XOR with ciphertext stealing) mode (NIST SP800-38E
756	  and IEEE 1619)
757
758	  Use with aes-xts-plain, key size 256, 384 or 512 bits. This
759	  implementation currently can't handle a sectorsize which is not a
760	  multiple of 16 bytes.
761
762config CRYPTO_NHPOLY1305
763	tristate
764	select CRYPTO_HASH
765	select CRYPTO_LIB_POLY1305
766	select CRYPTO_LIB_POLY1305_GENERIC
767
768endmenu
769
770menu "AEAD (authenticated encryption with associated data) ciphers"
771
772config CRYPTO_AEGIS128
773	tristate "AEGIS-128"
774	select CRYPTO_AEAD
775	select CRYPTO_AES  # for AES S-box tables
776	help
777	  AEGIS-128 AEAD algorithm
778
779config CRYPTO_AEGIS128_SIMD
780	bool "AEGIS-128 (arm NEON, arm64 NEON)"
781	depends on CRYPTO_AEGIS128 && ((ARM || ARM64) && KERNEL_MODE_NEON)
782	default y
783	help
784	  AEGIS-128 AEAD algorithm
785
786	  Architecture: arm or arm64 using:
787	  - NEON (Advanced SIMD) extension
788
789config CRYPTO_CHACHA20POLY1305
790	tristate "ChaCha20-Poly1305"
791	select CRYPTO_CHACHA20
792	select CRYPTO_AEAD
793	select CRYPTO_LIB_POLY1305
794	select CRYPTO_MANAGER
795	help
796	  ChaCha20 stream cipher and Poly1305 authenticator combined
797	  mode (RFC8439)
798
799config CRYPTO_CCM
800	tristate "CCM (Counter with Cipher Block Chaining-MAC)"
801	select CRYPTO_CTR
802	select CRYPTO_HASH
803	select CRYPTO_AEAD
804	select CRYPTO_MANAGER
805	help
806	  CCM (Counter with Cipher Block Chaining-Message Authentication Code)
807	  authenticated encryption mode (NIST SP800-38C)
808
809config CRYPTO_GCM
810	tristate "GCM (Galois/Counter Mode) and GMAC (GCM MAC)"
811	select CRYPTO_CTR
812	select CRYPTO_AEAD
813	select CRYPTO_GHASH
814	select CRYPTO_MANAGER
815	help
816	  GCM (Galois/Counter Mode) authenticated encryption mode and GMAC
817	  (GCM Message Authentication Code) (NIST SP800-38D)
818
819	  This is required for IPSec ESP (XFRM_ESP).
820
821config CRYPTO_GENIV
822	tristate
823	select CRYPTO_AEAD
824	select CRYPTO_MANAGER
825	select CRYPTO_RNG_DEFAULT
826
827config CRYPTO_SEQIV
828	tristate "Sequence Number IV Generator"
829	select CRYPTO_GENIV
830	help
831	  Sequence Number IV generator
832
833	  This IV generator generates an IV based on a sequence number by
834	  xoring it with a salt.  This algorithm is mainly useful for CTR.
835
836	  This is required for IPsec ESP (XFRM_ESP).
837
838config CRYPTO_ECHAINIV
839	tristate "Encrypted Chain IV Generator"
840	select CRYPTO_GENIV
841	help
842	  Encrypted Chain IV generator
843
844	  This IV generator generates an IV based on the encryption of
845	  a sequence number xored with a salt.  This is the default
846	  algorithm for CBC.
847
848config CRYPTO_ESSIV
849	tristate "Encrypted Salt-Sector IV Generator"
850	select CRYPTO_AUTHENC
851	help
852	  Encrypted Salt-Sector IV generator
853
854	  This IV generator is used in some cases by fscrypt and/or
855	  dm-crypt. It uses the hash of the block encryption key as the
856	  symmetric key for a block encryption pass applied to the input
857	  IV, making low entropy IV sources more suitable for block
858	  encryption.
859
860	  This driver implements a crypto API template that can be
861	  instantiated either as an skcipher or as an AEAD (depending on the
862	  type of the first template argument), and which defers encryption
863	  and decryption requests to the encapsulated cipher after applying
864	  ESSIV to the input IV. Note that in the AEAD case, it is assumed
865	  that the keys are presented in the same format used by the authenc
866	  template, and that the IV appears at the end of the authenticated
867	  associated data (AAD) region (which is how dm-crypt uses it.)
868
869	  Note that the use of ESSIV is not recommended for new deployments,
870	  and so this only needs to be enabled when interoperability with
871	  existing encrypted volumes of filesystems is required, or when
872	  building for a particular system that requires it (e.g., when
873	  the SoC in question has accelerated CBC but not XTS, making CBC
874	  combined with ESSIV the only feasible mode for h/w accelerated
875	  block encryption)
876
877endmenu
878
879menu "Hashes, digests, and MACs"
880
881config CRYPTO_BLAKE2B
882	tristate "BLAKE2b"
883	select CRYPTO_HASH
884	select CRYPTO_LIB_BLAKE2B
885	help
886	  BLAKE2b cryptographic hash function (RFC 7693)
887
888	  BLAKE2b is optimized for 64-bit platforms and can produce digests
889	  of any size between 1 and 64 bytes. The keyed hash is also implemented.
890
891	  This module provides the following algorithms:
892	  - blake2b-160
893	  - blake2b-256
894	  - blake2b-384
895	  - blake2b-512
896
897	  Used by the btrfs filesystem.
898
899	  See https://blake2.net for further information.
900
901config CRYPTO_CMAC
902	tristate "CMAC (Cipher-based MAC)"
903	select CRYPTO_HASH
904	select CRYPTO_MANAGER
905	help
906	  CMAC (Cipher-based Message Authentication Code) authentication
907	  mode (NIST SP800-38B and IETF RFC4493)
908
909config CRYPTO_GHASH
910	tristate "GHASH"
911	select CRYPTO_HASH
912	select CRYPTO_LIB_GF128MUL
913	help
914	  GCM GHASH function (NIST SP800-38D)
915
916config CRYPTO_HMAC
917	tristate "HMAC (Keyed-Hash MAC)"
918	select CRYPTO_HASH
919	select CRYPTO_MANAGER
920	help
921	  HMAC (Keyed-Hash Message Authentication Code) (FIPS 198 and
922	  RFC2104)
923
924	  This is required for IPsec AH (XFRM_AH) and IPsec ESP (XFRM_ESP).
925
926config CRYPTO_MD4
927	tristate "MD4"
928	select CRYPTO_HASH
929	help
930	  MD4 message digest algorithm (RFC1320)
931
932config CRYPTO_MD5
933	tristate "MD5"
934	select CRYPTO_HASH
935	select CRYPTO_LIB_MD5
936	help
937	  MD5 message digest algorithm (RFC1321), including HMAC support.
938
939config CRYPTO_MICHAEL_MIC
940	tristate "Michael MIC"
941	select CRYPTO_HASH
942	help
943	  Michael MIC (Message Integrity Code) (IEEE 802.11i)
944
945	  Defined by the IEEE 802.11i TKIP (Temporal Key Integrity Protocol),
946	  known as WPA (Wif-Fi Protected Access).
947
948	  This algorithm is required for TKIP, but it should not be used for
949	  other purposes because of the weakness of the algorithm.
950
951config CRYPTO_RMD160
952	tristate "RIPEMD-160"
953	select CRYPTO_HASH
954	help
955	  RIPEMD-160 hash function (ISO/IEC 10118-3)
956
957	  RIPEMD-160 is a 160-bit cryptographic hash function. It is intended
958	  to be used as a secure replacement for the 128-bit hash functions
959	  MD4, MD5 and its predecessor RIPEMD
960	  (not to be confused with RIPEMD-128).
961
962	  Its speed is comparable to SHA-1 and there are no known attacks
963	  against RIPEMD-160.
964
965	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
966	  See https://homes.esat.kuleuven.be/~bosselae/ripemd160.html
967	  for further information.
968
969config CRYPTO_SHA1
970	tristate "SHA-1"
971	select CRYPTO_HASH
972	select CRYPTO_LIB_SHA1
973	help
974	  SHA-1 secure hash algorithm (FIPS 180, ISO/IEC 10118-3), including
975	  HMAC support.
976
977config CRYPTO_SHA256
978	tristate "SHA-224 and SHA-256"
979	select CRYPTO_HASH
980	select CRYPTO_LIB_SHA256
981	help
982	  SHA-224 and SHA-256 secure hash algorithms (FIPS 180, ISO/IEC
983	  10118-3), including HMAC support.
984
985	  This is required for IPsec AH (XFRM_AH) and IPsec ESP (XFRM_ESP).
986	  Used by the btrfs filesystem, Ceph, NFS, and SMB.
987
988config CRYPTO_SHA512
989	tristate "SHA-384 and SHA-512"
990	select CRYPTO_HASH
991	select CRYPTO_LIB_SHA512
992	help
993	  SHA-384 and SHA-512 secure hash algorithms (FIPS 180, ISO/IEC
994	  10118-3), including HMAC support.
995
996config CRYPTO_SHA3
997	tristate "SHA-3"
998	select CRYPTO_HASH
999	select CRYPTO_LIB_SHA3
1000	help
1001	  SHA-3 secure hash algorithms (FIPS 202, ISO/IEC 10118-3)
1002
1003config CRYPTO_SM3_GENERIC
1004	tristate "SM3 (ShangMi 3)"
1005	select CRYPTO_HASH
1006	select CRYPTO_LIB_SM3
1007	help
1008	  SM3 (ShangMi 3) secure hash function (OSCCA GM/T 0004-2012, ISO/IEC 10118-3)
1009
1010	  This is part of the Chinese Commercial Cryptography suite.
1011
1012	  References:
1013	  http://www.oscca.gov.cn/UpFile/20101222141857786.pdf
1014	  https://datatracker.ietf.org/doc/html/draft-shen-sm3-hash
1015
1016config CRYPTO_STREEBOG
1017	tristate "Streebog"
1018	select CRYPTO_HASH
1019	help
1020	  Streebog Hash Function (GOST R 34.11-2012, RFC 6986, ISO/IEC 10118-3)
1021
1022	  This is one of the Russian cryptographic standard algorithms (called
1023	  GOST algorithms). This setting enables two hash algorithms with
1024	  256 and 512 bits output.
1025
1026	  References:
1027	  https://tc26.ru/upload/iblock/fed/feddbb4d26b685903faa2ba11aea43f6.pdf
1028	  https://tools.ietf.org/html/rfc6986
1029
1030config CRYPTO_WP512
1031	tristate "Whirlpool"
1032	select CRYPTO_HASH
1033	help
1034	  Whirlpool hash function (ISO/IEC 10118-3)
1035
1036	  512, 384 and 256-bit hashes.
1037
1038	  Whirlpool-512 is part of the NESSIE cryptographic primitives.
1039
1040	  See https://web.archive.org/web/20171129084214/http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html
1041	  for further information.
1042
1043config CRYPTO_XCBC
1044	tristate "XCBC-MAC (Extended Cipher Block Chaining MAC)"
1045	select CRYPTO_HASH
1046	select CRYPTO_MANAGER
1047	help
1048	  XCBC-MAC (Extended Cipher Block Chaining Message Authentication
1049	  Code) (RFC3566)
1050
1051config CRYPTO_XXHASH
1052	tristate "xxHash"
1053	select CRYPTO_HASH
1054	select XXHASH
1055	help
1056	  xxHash non-cryptographic hash algorithm
1057
1058	  Extremely fast, working at speeds close to RAM limits.
1059
1060	  Used by the btrfs filesystem.
1061
1062endmenu
1063
1064menu "CRCs (cyclic redundancy checks)"
1065
1066config CRYPTO_CRC32C
1067	tristate "CRC32c"
1068	select CRYPTO_HASH
1069	select CRC32
1070	help
1071	  CRC32c CRC algorithm with the iSCSI polynomial (RFC 3385 and RFC 3720)
1072
1073	  A 32-bit CRC (cyclic redundancy check) with a polynomial defined
1074	  by G. Castagnoli, S. Braeuer and M. Herrman in "Optimization of Cyclic
1075	  Redundancy-Check Codes with 24 and 32 Parity Bits", IEEE Transactions
1076	  on Communications, Vol. 41, No. 6, June 1993, selected for use with
1077	  iSCSI.
1078
1079	  Used by btrfs, ext4, jbd2, NVMeoF/TCP, and iSCSI.
1080
1081config CRYPTO_CRC32
1082	tristate "CRC32"
1083	select CRYPTO_HASH
1084	select CRC32
1085	help
1086	  CRC32 CRC algorithm (IEEE 802.3)
1087
1088	  Used by RoCEv2 and f2fs.
1089
1090endmenu
1091
1092menu "Compression"
1093
1094config CRYPTO_DEFLATE
1095	tristate "Deflate"
1096	select CRYPTO_ALGAPI
1097	select CRYPTO_ACOMP2
1098	select ZLIB_INFLATE
1099	select ZLIB_DEFLATE
1100	help
1101	  Deflate compression algorithm (RFC1951)
1102
1103	  Used by IPSec with the IPCOMP protocol (RFC3173, RFC2394)
1104
1105config CRYPTO_LZO
1106	tristate "LZO"
1107	select CRYPTO_ALGAPI
1108	select CRYPTO_ACOMP2
1109	select LZO_COMPRESS
1110	select LZO_DECOMPRESS
1111	help
1112	  LZO compression algorithm
1113
1114	  See https://www.oberhumer.com/opensource/lzo/ for further information.
1115
1116config CRYPTO_842
1117	tristate "842"
1118	select CRYPTO_ALGAPI
1119	select CRYPTO_ACOMP2
1120	select 842_COMPRESS
1121	select 842_DECOMPRESS
1122	help
1123	  842 compression algorithm by IBM
1124
1125	  See https://github.com/plauth/lib842 for further information.
1126
1127config CRYPTO_LZ4
1128	tristate "LZ4"
1129	select CRYPTO_ALGAPI
1130	select CRYPTO_ACOMP2
1131	select LZ4_COMPRESS
1132	select LZ4_DECOMPRESS
1133	help
1134	  LZ4 compression algorithm
1135
1136	  See https://github.com/lz4/lz4 for further information.
1137
1138config CRYPTO_LZ4HC
1139	tristate "LZ4HC"
1140	select CRYPTO_ALGAPI
1141	select CRYPTO_ACOMP2
1142	select LZ4HC_COMPRESS
1143	select LZ4_DECOMPRESS
1144	help
1145	  LZ4 high compression mode algorithm
1146
1147	  See https://github.com/lz4/lz4 for further information.
1148
1149config CRYPTO_ZSTD
1150	tristate "Zstd"
1151	select CRYPTO_ALGAPI
1152	select CRYPTO_ACOMP2
1153	select ZSTD_COMPRESS
1154	select ZSTD_DECOMPRESS
1155	help
1156	  zstd compression algorithm
1157
1158	  See https://github.com/facebook/zstd for further information.
1159
1160endmenu
1161
1162menu "Random number generation"
1163
1164menuconfig CRYPTO_DRBG_MENU
1165	tristate "NIST SP800-90A DRBG (Deterministic Random Bit Generator)"
1166	help
1167	  DRBG (Deterministic Random Bit Generator) (NIST SP800-90A)
1168
1169	  In the following submenu, one or more of the DRBG types must be selected.
1170
1171if CRYPTO_DRBG_MENU
1172
1173config CRYPTO_DRBG_HMAC
1174	bool
1175	default y
1176	select CRYPTO_HMAC
1177	select CRYPTO_SHA512
1178
1179config CRYPTO_DRBG_HASH
1180	bool "Hash_DRBG"
1181	select CRYPTO_SHA256
1182	help
1183	  Hash_DRBG variant as defined in NIST SP800-90A.
1184
1185	  This uses the SHA-1, SHA-256, SHA-384, or SHA-512 hash algorithms.
1186
1187config CRYPTO_DRBG_CTR
1188	bool "CTR_DRBG"
1189	select CRYPTO_DF80090A
1190	help
1191	  CTR_DRBG variant as defined in NIST SP800-90A.
1192
1193	  This uses the AES cipher algorithm with the counter block mode.
1194
1195config CRYPTO_DRBG
1196	tristate
1197	default CRYPTO_DRBG_MENU
1198	select CRYPTO_RNG
1199	select CRYPTO_JITTERENTROPY
1200
1201endif	# if CRYPTO_DRBG_MENU
1202
1203config CRYPTO_JITTERENTROPY
1204	tristate "CPU Jitter Non-Deterministic RNG (Random Number Generator)"
1205	select CRYPTO_RNG
1206	select CRYPTO_SHA3
1207	help
1208	  CPU Jitter RNG (Random Number Generator) from the Jitterentropy library
1209
1210	  A non-physical non-deterministic ("true") RNG (e.g., an entropy source
1211	  compliant with NIST SP800-90B) intended to provide a seed to a
1212	  deterministic RNG (e.g., per NIST SP800-90C).
1213	  This RNG does not perform any cryptographic whitening of the generated
1214	  random numbers.
1215
1216	  See https://www.chronox.de/jent/
1217
1218if CRYPTO_JITTERENTROPY
1219if CRYPTO_FIPS && EXPERT
1220
1221choice
1222	prompt "CPU Jitter RNG Memory Size"
1223	default CRYPTO_JITTERENTROPY_MEMSIZE_2
1224	help
1225	  The Jitter RNG measures the execution time of memory accesses.
1226	  Multiple consecutive memory accesses are performed. If the memory
1227	  size fits into a cache (e.g. L1), only the memory access timing
1228	  to that cache is measured. The closer the cache is to the CPU
1229	  the less variations are measured and thus the less entropy is
1230	  obtained. Thus, if the memory size fits into the L1 cache, the
1231	  obtained entropy is less than if the memory size fits within
1232	  L1 + L2, which in turn is less if the memory fits into
1233	  L1 + L2 + L3. Thus, by selecting a different memory size,
1234	  the entropy rate produced by the Jitter RNG can be modified.
1235
1236	config CRYPTO_JITTERENTROPY_MEMSIZE_2
1237		bool "2048 Bytes (default)"
1238
1239	config CRYPTO_JITTERENTROPY_MEMSIZE_128
1240		bool "128 kBytes"
1241
1242	config CRYPTO_JITTERENTROPY_MEMSIZE_1024
1243		bool "1024 kBytes"
1244
1245	config CRYPTO_JITTERENTROPY_MEMSIZE_8192
1246		bool "8192 kBytes"
1247endchoice
1248
1249config CRYPTO_JITTERENTROPY_MEMORY_BLOCKS
1250	int
1251	default 64 if CRYPTO_JITTERENTROPY_MEMSIZE_2
1252	default 512 if CRYPTO_JITTERENTROPY_MEMSIZE_128
1253	default 1024 if CRYPTO_JITTERENTROPY_MEMSIZE_1024
1254	default 4096 if CRYPTO_JITTERENTROPY_MEMSIZE_8192
1255
1256config CRYPTO_JITTERENTROPY_MEMORY_BLOCKSIZE
1257	int
1258	default 32 if CRYPTO_JITTERENTROPY_MEMSIZE_2
1259	default 256 if CRYPTO_JITTERENTROPY_MEMSIZE_128
1260	default 1024 if CRYPTO_JITTERENTROPY_MEMSIZE_1024
1261	default 2048 if CRYPTO_JITTERENTROPY_MEMSIZE_8192
1262
1263config CRYPTO_JITTERENTROPY_OSR
1264	int "CPU Jitter RNG Oversampling Rate"
1265	range 1 15
1266	default 3
1267	help
1268	  The Jitter RNG allows the specification of an oversampling rate (OSR).
1269	  The Jitter RNG operation requires a fixed amount of timing
1270	  measurements to produce one output block of random numbers. The
1271	  OSR value is multiplied with the amount of timing measurements to
1272	  generate one output block. Thus, the timing measurement is oversampled
1273	  by the OSR factor. The oversampling allows the Jitter RNG to operate
1274	  on hardware whose timers deliver limited amount of entropy (e.g.
1275	  the timer is coarse) by setting the OSR to a higher value. The
1276	  trade-off, however, is that the Jitter RNG now requires more time
1277	  to generate random numbers.
1278
1279config CRYPTO_JITTERENTROPY_TESTINTERFACE
1280	bool "CPU Jitter RNG Test Interface"
1281	help
1282	  The test interface allows a privileged process to capture
1283	  the raw unconditioned high resolution time stamp noise that
1284	  is collected by the Jitter RNG for statistical analysis. As
1285	  this data is used at the same time to generate random bits,
1286	  the Jitter RNG operates in an insecure mode as long as the
1287	  recording is enabled. This interface therefore is only
1288	  intended for testing purposes and is not suitable for
1289	  production systems.
1290
1291	  The raw noise data can be obtained using the jent_raw_hires
1292	  debugfs file. Using the option
1293	  jitterentropy_testing.boot_raw_hires_test=1 the raw noise of
1294	  the first 1000 entropy events since boot can be sampled.
1295
1296	  If unsure, select N.
1297
1298endif	# if CRYPTO_FIPS && EXPERT
1299
1300if !(CRYPTO_FIPS && EXPERT)
1301
1302config CRYPTO_JITTERENTROPY_MEMORY_BLOCKS
1303	int
1304	default 64
1305
1306config CRYPTO_JITTERENTROPY_MEMORY_BLOCKSIZE
1307	int
1308	default 32
1309
1310config CRYPTO_JITTERENTROPY_OSR
1311	int
1312	default 1
1313
1314config CRYPTO_JITTERENTROPY_TESTINTERFACE
1315	bool
1316
1317endif	# if !(CRYPTO_FIPS && EXPERT)
1318endif	# if CRYPTO_JITTERENTROPY
1319
1320config CRYPTO_KDF800108_CTR
1321	tristate
1322	select CRYPTO_HMAC
1323	select CRYPTO_SHA256
1324
1325config CRYPTO_DF80090A
1326	tristate
1327	select CRYPTO_AES
1328	select CRYPTO_CTR
1329
1330endmenu
1331menu "Userspace interface"
1332
1333config CRYPTO_USER_API
1334	tristate
1335
1336config CRYPTO_USER_API_HASH
1337	tristate "Hash algorithms"
1338	depends on NET
1339	select CRYPTO_HASH
1340	select CRYPTO_USER_API
1341	help
1342	  Enable the userspace interface for hash algorithms.
1343
1344	  See Documentation/crypto/userspace-if.rst and
1345	  https://www.chronox.de/libkcapi/html/index.html
1346
1347config CRYPTO_USER_API_SKCIPHER
1348	tristate "Symmetric key cipher algorithms"
1349	depends on NET
1350	select CRYPTO_SKCIPHER
1351	select CRYPTO_USER_API
1352	help
1353	  Enable the userspace interface for symmetric key cipher algorithms.
1354
1355	  See Documentation/crypto/userspace-if.rst and
1356	  https://www.chronox.de/libkcapi/html/index.html
1357
1358config CRYPTO_USER_API_RNG
1359	tristate "RNG (random number generator) algorithms"
1360	depends on NET
1361	select CRYPTO_RNG
1362	select CRYPTO_USER_API
1363	help
1364	  Enable the userspace interface for RNG (random number generator)
1365	  algorithms.
1366
1367	  See Documentation/crypto/userspace-if.rst and
1368	  https://www.chronox.de/libkcapi/html/index.html
1369
1370config CRYPTO_USER_API_RNG_CAVP
1371	bool "Enable CAVP testing of DRBG"
1372	depends on CRYPTO_USER_API_RNG && CRYPTO_DRBG
1373	help
1374	  Enable extra APIs in the userspace interface for NIST CAVP
1375	  (Cryptographic Algorithm Validation Program) testing:
1376	  - resetting DRBG entropy
1377	  - providing Additional Data
1378
1379	  This should only be enabled for CAVP testing. You should say
1380	  no unless you know what this is.
1381
1382config CRYPTO_USER_API_AEAD
1383	tristate "AEAD cipher algorithms"
1384	depends on NET
1385	select CRYPTO_AEAD
1386	select CRYPTO_SKCIPHER
1387	select CRYPTO_USER_API
1388	help
1389	  Enable the userspace interface for AEAD cipher algorithms.
1390
1391	  See Documentation/crypto/userspace-if.rst and
1392	  https://www.chronox.de/libkcapi/html/index.html
1393
1394config CRYPTO_USER_API_ENABLE_OBSOLETE
1395	bool "Obsolete cryptographic algorithms"
1396	depends on CRYPTO_USER_API
1397	default y
1398	help
1399	  Allow obsolete cryptographic algorithms to be selected that have
1400	  already been phased out from internal use by the kernel, and are
1401	  only useful for userspace clients that still rely on them.
1402
1403endmenu
1404
1405if !KMSAN # avoid false positives from assembly
1406if ARM
1407source "arch/arm/crypto/Kconfig"
1408endif
1409if ARM64
1410source "arch/arm64/crypto/Kconfig"
1411endif
1412if LOONGARCH
1413source "arch/loongarch/crypto/Kconfig"
1414endif
1415if MIPS
1416source "arch/mips/crypto/Kconfig"
1417endif
1418if PPC
1419source "arch/powerpc/crypto/Kconfig"
1420endif
1421if RISCV
1422source "arch/riscv/crypto/Kconfig"
1423endif
1424if S390
1425source "arch/s390/crypto/Kconfig"
1426endif
1427if SPARC
1428source "arch/sparc/crypto/Kconfig"
1429endif
1430if X86
1431source "arch/x86/crypto/Kconfig"
1432endif
1433endif
1434
1435source "drivers/crypto/Kconfig"
1436source "crypto/asymmetric_keys/Kconfig"
1437source "certs/Kconfig"
1438source "crypto/krb5/Kconfig"
1439
1440endif	# if CRYPTO
1441