1# SPDX-License-Identifier: GPL-2.0 2# 3# Generic algorithms support 4# 5config XOR_BLOCKS 6 tristate 7 8# 9# async_tx api: hardware offloaded memory transfer/transform support 10# 11source "crypto/async_tx/Kconfig" 12 13# 14# Cryptographic API Configuration 15# 16menuconfig CRYPTO 17 tristate "Cryptographic API" 18 select CRYPTO_LIB_UTILS 19 help 20 This option provides the core Cryptographic API. 21 22if CRYPTO 23 24menu "Crypto core or helper" 25 26config CRYPTO_FIPS 27 bool "FIPS 200 compliance" 28 depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS 29 depends on (MODULE_SIG || !MODULES) 30 help 31 This option enables the fips boot option which is 32 required if you want the system to operate in a FIPS 200 33 certification. You should say no unless you know what 34 this is. 35 36config CRYPTO_FIPS_NAME 37 string "FIPS Module Name" 38 default "Linux Kernel Cryptographic API" 39 depends on CRYPTO_FIPS 40 help 41 This option sets the FIPS Module name reported by the Crypto API via 42 the /proc/sys/crypto/fips_name file. 43 44config CRYPTO_FIPS_CUSTOM_VERSION 45 bool "Use Custom FIPS Module Version" 46 depends on CRYPTO_FIPS 47 default n 48 49config CRYPTO_FIPS_VERSION 50 string "FIPS Module Version" 51 default "(none)" 52 depends on CRYPTO_FIPS_CUSTOM_VERSION 53 help 54 This option provides the ability to override the FIPS Module Version. 55 By default the KERNELRELEASE value is used. 56 57config CRYPTO_ALGAPI 58 tristate 59 select CRYPTO_ALGAPI2 60 help 61 This option provides the API for cryptographic algorithms. 62 63config CRYPTO_ALGAPI2 64 tristate 65 66config CRYPTO_AEAD 67 tristate 68 select CRYPTO_AEAD2 69 select CRYPTO_ALGAPI 70 71config CRYPTO_AEAD2 72 tristate 73 select CRYPTO_ALGAPI2 74 75config CRYPTO_SIG 76 tristate 77 select CRYPTO_SIG2 78 select CRYPTO_ALGAPI 79 80config CRYPTO_SIG2 81 tristate 82 select CRYPTO_ALGAPI2 83 84config CRYPTO_SKCIPHER 85 tristate 86 select CRYPTO_SKCIPHER2 87 select CRYPTO_ALGAPI 88 select CRYPTO_ECB 89 90config CRYPTO_SKCIPHER2 91 tristate 92 select CRYPTO_ALGAPI2 93 94config CRYPTO_HASH 95 tristate 96 select CRYPTO_HASH2 97 select CRYPTO_ALGAPI 98 99config CRYPTO_HASH2 100 tristate 101 select CRYPTO_ALGAPI2 102 103config CRYPTO_RNG 104 tristate 105 select CRYPTO_RNG2 106 select CRYPTO_ALGAPI 107 108config CRYPTO_RNG2 109 tristate 110 select CRYPTO_ALGAPI2 111 112config CRYPTO_RNG_DEFAULT 113 tristate 114 select CRYPTO_DRBG_MENU 115 116config CRYPTO_AKCIPHER2 117 tristate 118 select CRYPTO_ALGAPI2 119 120config CRYPTO_AKCIPHER 121 tristate 122 select CRYPTO_AKCIPHER2 123 select CRYPTO_ALGAPI 124 125config CRYPTO_KPP2 126 tristate 127 select CRYPTO_ALGAPI2 128 129config CRYPTO_KPP 130 tristate 131 select CRYPTO_ALGAPI 132 select CRYPTO_KPP2 133 134config CRYPTO_ACOMP2 135 tristate 136 select CRYPTO_ALGAPI2 137 select SGL_ALLOC 138 139config CRYPTO_ACOMP 140 tristate 141 select CRYPTO_ALGAPI 142 select CRYPTO_ACOMP2 143 144config CRYPTO_HKDF 145 tristate 146 select CRYPTO_SHA256 if !CONFIG_CRYPTO_MANAGER_DISABLE_TESTS 147 select CRYPTO_SHA512 if !CONFIG_CRYPTO_MANAGER_DISABLE_TESTS 148 select CRYPTO_HASH2 149 150config CRYPTO_MANAGER 151 tristate "Cryptographic algorithm manager" 152 select CRYPTO_MANAGER2 153 help 154 Create default cryptographic template instantiations such as 155 cbc(aes). 156 157config CRYPTO_MANAGER2 158 def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y) 159 select CRYPTO_ACOMP2 160 select CRYPTO_AEAD2 161 select CRYPTO_AKCIPHER2 162 select CRYPTO_SIG2 163 select CRYPTO_HASH2 164 select CRYPTO_KPP2 165 select CRYPTO_RNG2 166 select CRYPTO_SKCIPHER2 167 168config CRYPTO_USER 169 tristate "Userspace cryptographic algorithm configuration" 170 depends on NET 171 select CRYPTO_MANAGER 172 help 173 Userspace configuration for cryptographic instantiations such as 174 cbc(aes). 175 176config CRYPTO_MANAGER_DISABLE_TESTS 177 bool "Disable run-time self tests" 178 default y 179 help 180 Disable run-time self tests that normally take place at 181 algorithm registration. 182 183config CRYPTO_MANAGER_EXTRA_TESTS 184 bool "Enable extra run-time crypto self tests" 185 depends on DEBUG_KERNEL && !CRYPTO_MANAGER_DISABLE_TESTS && CRYPTO_MANAGER 186 help 187 Enable extra run-time self tests of registered crypto algorithms, 188 including randomized fuzz tests. 189 190 This is intended for developer use only, as these tests take much 191 longer to run than the normal self tests. 192 193config CRYPTO_NULL 194 tristate "Null algorithms" 195 select CRYPTO_NULL2 196 help 197 These are 'Null' algorithms, used by IPsec, which do nothing. 198 199config CRYPTO_NULL2 200 tristate 201 select CRYPTO_ALGAPI2 202 select CRYPTO_SKCIPHER2 203 select CRYPTO_HASH2 204 205config CRYPTO_PCRYPT 206 tristate "Parallel crypto engine" 207 depends on SMP 208 select PADATA 209 select CRYPTO_MANAGER 210 select CRYPTO_AEAD 211 help 212 This converts an arbitrary crypto algorithm into a parallel 213 algorithm that executes in kernel threads. 214 215config CRYPTO_CRYPTD 216 tristate "Software async crypto daemon" 217 select CRYPTO_SKCIPHER 218 select CRYPTO_HASH 219 select CRYPTO_MANAGER 220 help 221 This is a generic software asynchronous crypto daemon that 222 converts an arbitrary synchronous software crypto algorithm 223 into an asynchronous algorithm that executes in a kernel thread. 224 225config CRYPTO_AUTHENC 226 tristate "Authenc support" 227 select CRYPTO_AEAD 228 select CRYPTO_SKCIPHER 229 select CRYPTO_MANAGER 230 select CRYPTO_HASH 231 select CRYPTO_NULL 232 help 233 Authenc: Combined mode wrapper for IPsec. 234 235 This is required for IPSec ESP (XFRM_ESP). 236 237config CRYPTO_TEST 238 tristate "Testing module" 239 depends on m || EXPERT 240 select CRYPTO_MANAGER 241 help 242 Quick & dirty crypto test module. 243 244config CRYPTO_SIMD 245 tristate 246 select CRYPTO_CRYPTD 247 248config CRYPTO_ENGINE 249 tristate 250 251endmenu 252 253menu "Public-key cryptography" 254 255config CRYPTO_RSA 256 tristate "RSA (Rivest-Shamir-Adleman)" 257 select CRYPTO_AKCIPHER 258 select CRYPTO_MANAGER 259 select CRYPTO_SIG 260 select MPILIB 261 select ASN1 262 help 263 RSA (Rivest-Shamir-Adleman) public key algorithm (RFC8017) 264 265config CRYPTO_DH 266 tristate "DH (Diffie-Hellman)" 267 select CRYPTO_KPP 268 select MPILIB 269 help 270 DH (Diffie-Hellman) key exchange algorithm 271 272config CRYPTO_DH_RFC7919_GROUPS 273 bool "RFC 7919 FFDHE groups" 274 depends on CRYPTO_DH 275 select CRYPTO_RNG_DEFAULT 276 help 277 FFDHE (Finite-Field-based Diffie-Hellman Ephemeral) groups 278 defined in RFC7919. 279 280 Support these finite-field groups in DH key exchanges: 281 - ffdhe2048, ffdhe3072, ffdhe4096, ffdhe6144, ffdhe8192 282 283 If unsure, say N. 284 285config CRYPTO_ECC 286 tristate 287 select CRYPTO_RNG_DEFAULT 288 289config CRYPTO_ECDH 290 tristate "ECDH (Elliptic Curve Diffie-Hellman)" 291 select CRYPTO_ECC 292 select CRYPTO_KPP 293 help 294 ECDH (Elliptic Curve Diffie-Hellman) key exchange algorithm 295 using curves P-192, P-256, and P-384 (FIPS 186) 296 297config CRYPTO_ECDSA 298 tristate "ECDSA (Elliptic Curve Digital Signature Algorithm)" 299 select CRYPTO_ECC 300 select CRYPTO_SIG 301 select ASN1 302 help 303 ECDSA (Elliptic Curve Digital Signature Algorithm) (FIPS 186, 304 ISO/IEC 14888-3) 305 using curves P-192, P-256, P-384 and P-521 306 307 Only signature verification is implemented. 308 309config CRYPTO_ECRDSA 310 tristate "EC-RDSA (Elliptic Curve Russian Digital Signature Algorithm)" 311 select CRYPTO_ECC 312 select CRYPTO_SIG 313 select CRYPTO_STREEBOG 314 select OID_REGISTRY 315 select ASN1 316 help 317 Elliptic Curve Russian Digital Signature Algorithm (GOST R 34.10-2012, 318 RFC 7091, ISO/IEC 14888-3) 319 320 One of the Russian cryptographic standard algorithms (called GOST 321 algorithms). Only signature verification is implemented. 322 323config CRYPTO_CURVE25519 324 tristate "Curve25519" 325 select CRYPTO_KPP 326 select CRYPTO_LIB_CURVE25519_GENERIC 327 help 328 Curve25519 elliptic curve (RFC7748) 329 330endmenu 331 332menu "Block ciphers" 333 334config CRYPTO_AES 335 tristate "AES (Advanced Encryption Standard)" 336 select CRYPTO_ALGAPI 337 select CRYPTO_LIB_AES 338 help 339 AES cipher algorithms (Rijndael)(FIPS-197, ISO/IEC 18033-3) 340 341 Rijndael appears to be consistently a very good performer in 342 both hardware and software across a wide range of computing 343 environments regardless of its use in feedback or non-feedback 344 modes. Its key setup time is excellent, and its key agility is 345 good. Rijndael's very low memory requirements make it very well 346 suited for restricted-space environments, in which it also 347 demonstrates excellent performance. Rijndael's operations are 348 among the easiest to defend against power and timing attacks. 349 350 The AES specifies three key sizes: 128, 192 and 256 bits 351 352config CRYPTO_AES_TI 353 tristate "AES (Advanced Encryption Standard) (fixed time)" 354 select CRYPTO_ALGAPI 355 select CRYPTO_LIB_AES 356 help 357 AES cipher algorithms (Rijndael)(FIPS-197, ISO/IEC 18033-3) 358 359 This is a generic implementation of AES that attempts to eliminate 360 data dependent latencies as much as possible without affecting 361 performance too much. It is intended for use by the generic CCM 362 and GCM drivers, and other CTR or CMAC/XCBC based modes that rely 363 solely on encryption (although decryption is supported as well, but 364 with a more dramatic performance hit) 365 366 Instead of using 16 lookup tables of 1 KB each, (8 for encryption and 367 8 for decryption), this implementation only uses just two S-boxes of 368 256 bytes each, and attempts to eliminate data dependent latencies by 369 prefetching the entire table into the cache at the start of each 370 block. Interrupts are also disabled to avoid races where cachelines 371 are evicted when the CPU is interrupted to do something else. 372 373config CRYPTO_ANUBIS 374 tristate "Anubis" 375 depends on CRYPTO_USER_API_ENABLE_OBSOLETE 376 select CRYPTO_ALGAPI 377 help 378 Anubis cipher algorithm 379 380 Anubis is a variable key length cipher which can use keys from 381 128 bits to 320 bits in length. It was evaluated as a entrant 382 in the NESSIE competition. 383 384 See https://web.archive.org/web/20160606112246/http://www.larc.usp.br/~pbarreto/AnubisPage.html 385 for further information. 386 387config CRYPTO_ARIA 388 tristate "ARIA" 389 select CRYPTO_ALGAPI 390 help 391 ARIA cipher algorithm (RFC5794) 392 393 ARIA is a standard encryption algorithm of the Republic of Korea. 394 The ARIA specifies three key sizes and rounds. 395 128-bit: 12 rounds. 396 192-bit: 14 rounds. 397 256-bit: 16 rounds. 398 399 See: 400 https://seed.kisa.or.kr/kisa/algorithm/EgovAriaInfo.do 401 402config CRYPTO_BLOWFISH 403 tristate "Blowfish" 404 select CRYPTO_ALGAPI 405 select CRYPTO_BLOWFISH_COMMON 406 help 407 Blowfish cipher algorithm, by Bruce Schneier 408 409 This is a variable key length cipher which can use keys from 32 410 bits to 448 bits in length. It's fast, simple and specifically 411 designed for use on "large microprocessors". 412 413 See https://www.schneier.com/blowfish.html for further information. 414 415config CRYPTO_BLOWFISH_COMMON 416 tristate 417 help 418 Common parts of the Blowfish cipher algorithm shared by the 419 generic c and the assembler implementations. 420 421config CRYPTO_CAMELLIA 422 tristate "Camellia" 423 select CRYPTO_ALGAPI 424 help 425 Camellia cipher algorithms (ISO/IEC 18033-3) 426 427 Camellia is a symmetric key block cipher developed jointly 428 at NTT and Mitsubishi Electric Corporation. 429 430 The Camellia specifies three key sizes: 128, 192 and 256 bits. 431 432 See https://info.isl.ntt.co.jp/crypt/eng/camellia/ for further information. 433 434config CRYPTO_CAST_COMMON 435 tristate 436 help 437 Common parts of the CAST cipher algorithms shared by the 438 generic c and the assembler implementations. 439 440config CRYPTO_CAST5 441 tristate "CAST5 (CAST-128)" 442 select CRYPTO_ALGAPI 443 select CRYPTO_CAST_COMMON 444 help 445 CAST5 (CAST-128) cipher algorithm (RFC2144, ISO/IEC 18033-3) 446 447config CRYPTO_CAST6 448 tristate "CAST6 (CAST-256)" 449 select CRYPTO_ALGAPI 450 select CRYPTO_CAST_COMMON 451 help 452 CAST6 (CAST-256) encryption algorithm (RFC2612) 453 454config CRYPTO_DES 455 tristate "DES and Triple DES EDE" 456 select CRYPTO_ALGAPI 457 select CRYPTO_LIB_DES 458 help 459 DES (Data Encryption Standard)(FIPS 46-2, ISO/IEC 18033-3) and 460 Triple DES EDE (Encrypt/Decrypt/Encrypt) (FIPS 46-3, ISO/IEC 18033-3) 461 cipher algorithms 462 463config CRYPTO_FCRYPT 464 tristate "FCrypt" 465 select CRYPTO_ALGAPI 466 select CRYPTO_SKCIPHER 467 help 468 FCrypt algorithm used by RxRPC 469 470 See https://ota.polyonymo.us/fcrypt-paper.txt 471 472config CRYPTO_KHAZAD 473 tristate "Khazad" 474 depends on CRYPTO_USER_API_ENABLE_OBSOLETE 475 select CRYPTO_ALGAPI 476 help 477 Khazad cipher algorithm 478 479 Khazad was a finalist in the initial NESSIE competition. It is 480 an algorithm optimized for 64-bit processors with good performance 481 on 32-bit processors. Khazad uses an 128 bit key size. 482 483 See https://web.archive.org/web/20171011071731/http://www.larc.usp.br/~pbarreto/KhazadPage.html 484 for further information. 485 486config CRYPTO_SEED 487 tristate "SEED" 488 depends on CRYPTO_USER_API_ENABLE_OBSOLETE 489 select CRYPTO_ALGAPI 490 help 491 SEED cipher algorithm (RFC4269, ISO/IEC 18033-3) 492 493 SEED is a 128-bit symmetric key block cipher that has been 494 developed by KISA (Korea Information Security Agency) as a 495 national standard encryption algorithm of the Republic of Korea. 496 It is a 16 round block cipher with the key size of 128 bit. 497 498 See https://seed.kisa.or.kr/kisa/algorithm/EgovSeedInfo.do 499 for further information. 500 501config CRYPTO_SERPENT 502 tristate "Serpent" 503 select CRYPTO_ALGAPI 504 help 505 Serpent cipher algorithm, by Anderson, Biham & Knudsen 506 507 Keys are allowed to be from 0 to 256 bits in length, in steps 508 of 8 bits. 509 510 See https://www.cl.cam.ac.uk/~rja14/serpent.html for further information. 511 512config CRYPTO_SM4 513 tristate 514 515config CRYPTO_SM4_GENERIC 516 tristate "SM4 (ShangMi 4)" 517 select CRYPTO_ALGAPI 518 select CRYPTO_SM4 519 help 520 SM4 cipher algorithms (OSCCA GB/T 32907-2016, 521 ISO/IEC 18033-3:2010/Amd 1:2021) 522 523 SM4 (GBT.32907-2016) is a cryptographic standard issued by the 524 Organization of State Commercial Administration of China (OSCCA) 525 as an authorized cryptographic algorithms for the use within China. 526 527 SMS4 was originally created for use in protecting wireless 528 networks, and is mandated in the Chinese National Standard for 529 Wireless LAN WAPI (Wired Authentication and Privacy Infrastructure) 530 (GB.15629.11-2003). 531 532 The latest SM4 standard (GBT.32907-2016) was proposed by OSCCA and 533 standardized through TC 260 of the Standardization Administration 534 of the People's Republic of China (SAC). 535 536 The input, output, and key of SMS4 are each 128 bits. 537 538 See https://eprint.iacr.org/2008/329.pdf for further information. 539 540 If unsure, say N. 541 542config CRYPTO_TEA 543 tristate "TEA, XTEA and XETA" 544 depends on CRYPTO_USER_API_ENABLE_OBSOLETE 545 select CRYPTO_ALGAPI 546 help 547 TEA (Tiny Encryption Algorithm) cipher algorithms 548 549 Tiny Encryption Algorithm is a simple cipher that uses 550 many rounds for security. It is very fast and uses 551 little memory. 552 553 Xtendend Tiny Encryption Algorithm is a modification to 554 the TEA algorithm to address a potential key weakness 555 in the TEA algorithm. 556 557 Xtendend Encryption Tiny Algorithm is a mis-implementation 558 of the XTEA algorithm for compatibility purposes. 559 560config CRYPTO_TWOFISH 561 tristate "Twofish" 562 select CRYPTO_ALGAPI 563 select CRYPTO_TWOFISH_COMMON 564 help 565 Twofish cipher algorithm 566 567 Twofish was submitted as an AES (Advanced Encryption Standard) 568 candidate cipher by researchers at CounterPane Systems. It is a 569 16 round block cipher supporting key sizes of 128, 192, and 256 570 bits. 571 572 See https://www.schneier.com/twofish.html for further information. 573 574config CRYPTO_TWOFISH_COMMON 575 tristate 576 help 577 Common parts of the Twofish cipher algorithm shared by the 578 generic c and the assembler implementations. 579 580endmenu 581 582menu "Length-preserving ciphers and modes" 583 584config CRYPTO_ADIANTUM 585 tristate "Adiantum" 586 select CRYPTO_CHACHA20 587 select CRYPTO_LIB_POLY1305_GENERIC 588 select CRYPTO_NHPOLY1305 589 select CRYPTO_MANAGER 590 help 591 Adiantum tweakable, length-preserving encryption mode 592 593 Designed for fast and secure disk encryption, especially on 594 CPUs without dedicated crypto instructions. It encrypts 595 each sector using the XChaCha12 stream cipher, two passes of 596 an ε-almost-∆-universal hash function, and an invocation of 597 the AES-256 block cipher on a single 16-byte block. On CPUs 598 without AES instructions, Adiantum is much faster than 599 AES-XTS. 600 601 Adiantum's security is provably reducible to that of its 602 underlying stream and block ciphers, subject to a security 603 bound. Unlike XTS, Adiantum is a true wide-block encryption 604 mode, so it actually provides an even stronger notion of 605 security than XTS, subject to the security bound. 606 607 If unsure, say N. 608 609config CRYPTO_ARC4 610 tristate "ARC4 (Alleged Rivest Cipher 4)" 611 depends on CRYPTO_USER_API_ENABLE_OBSOLETE 612 select CRYPTO_SKCIPHER 613 select CRYPTO_LIB_ARC4 614 help 615 ARC4 cipher algorithm 616 617 ARC4 is a stream cipher using keys ranging from 8 bits to 2048 618 bits in length. This algorithm is required for driver-based 619 WEP, but it should not be for other purposes because of the 620 weakness of the algorithm. 621 622config CRYPTO_CHACHA20 623 tristate "ChaCha" 624 select CRYPTO_LIB_CHACHA_GENERIC 625 select CRYPTO_SKCIPHER 626 help 627 The ChaCha20, XChaCha20, and XChaCha12 stream cipher algorithms 628 629 ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J. 630 Bernstein and further specified in RFC7539 for use in IETF protocols. 631 This is the portable C implementation of ChaCha20. See 632 https://cr.yp.to/chacha/chacha-20080128.pdf for further information. 633 634 XChaCha20 is the application of the XSalsa20 construction to ChaCha20 635 rather than to Salsa20. XChaCha20 extends ChaCha20's nonce length 636 from 64 bits (or 96 bits using the RFC7539 convention) to 192 bits, 637 while provably retaining ChaCha20's security. See 638 https://cr.yp.to/snuffle/xsalsa-20081128.pdf for further information. 639 640 XChaCha12 is XChaCha20 reduced to 12 rounds, with correspondingly 641 reduced security margin but increased performance. It can be needed 642 in some performance-sensitive scenarios. 643 644config CRYPTO_CBC 645 tristate "CBC (Cipher Block Chaining)" 646 select CRYPTO_SKCIPHER 647 select CRYPTO_MANAGER 648 help 649 CBC (Cipher Block Chaining) mode (NIST SP800-38A) 650 651 This block cipher mode is required for IPSec ESP (XFRM_ESP). 652 653config CRYPTO_CTR 654 tristate "CTR (Counter)" 655 select CRYPTO_SKCIPHER 656 select CRYPTO_MANAGER 657 help 658 CTR (Counter) mode (NIST SP800-38A) 659 660config CRYPTO_CTS 661 tristate "CTS (Cipher Text Stealing)" 662 select CRYPTO_SKCIPHER 663 select CRYPTO_MANAGER 664 help 665 CBC-CS3 variant of CTS (Cipher Text Stealing) (NIST 666 Addendum to SP800-38A (October 2010)) 667 668 This mode is required for Kerberos gss mechanism support 669 for AES encryption. 670 671config CRYPTO_ECB 672 tristate "ECB (Electronic Codebook)" 673 select CRYPTO_SKCIPHER2 674 select CRYPTO_MANAGER 675 help 676 ECB (Electronic Codebook) mode (NIST SP800-38A) 677 678config CRYPTO_HCTR2 679 tristate "HCTR2" 680 select CRYPTO_XCTR 681 select CRYPTO_POLYVAL 682 select CRYPTO_MANAGER 683 help 684 HCTR2 length-preserving encryption mode 685 686 A mode for storage encryption that is efficient on processors with 687 instructions to accelerate AES and carryless multiplication, e.g. 688 x86 processors with AES-NI and CLMUL, and ARM processors with the 689 ARMv8 crypto extensions. 690 691 See https://eprint.iacr.org/2021/1441 692 693config CRYPTO_LRW 694 tristate "LRW (Liskov Rivest Wagner)" 695 select CRYPTO_LIB_GF128MUL 696 select CRYPTO_SKCIPHER 697 select CRYPTO_MANAGER 698 select CRYPTO_ECB 699 help 700 LRW (Liskov Rivest Wagner) mode 701 702 A tweakable, non malleable, non movable 703 narrow block cipher mode for dm-crypt. Use it with cipher 704 specification string aes-lrw-benbi, the key must be 256, 320 or 384. 705 The first 128, 192 or 256 bits in the key are used for AES and the 706 rest is used to tie each cipher block to its logical position. 707 708 See https://people.csail.mit.edu/rivest/pubs/LRW02.pdf 709 710config CRYPTO_PCBC 711 tristate "PCBC (Propagating Cipher Block Chaining)" 712 select CRYPTO_SKCIPHER 713 select CRYPTO_MANAGER 714 help 715 PCBC (Propagating Cipher Block Chaining) mode 716 717 This block cipher mode is required for RxRPC. 718 719config CRYPTO_XCTR 720 tristate 721 select CRYPTO_SKCIPHER 722 select CRYPTO_MANAGER 723 help 724 XCTR (XOR Counter) mode for HCTR2 725 726 This blockcipher mode is a variant of CTR mode using XORs and little-endian 727 addition rather than big-endian arithmetic. 728 729 XCTR mode is used to implement HCTR2. 730 731config CRYPTO_XTS 732 tristate "XTS (XOR Encrypt XOR with ciphertext stealing)" 733 select CRYPTO_SKCIPHER 734 select CRYPTO_MANAGER 735 select CRYPTO_ECB 736 help 737 XTS (XOR Encrypt XOR with ciphertext stealing) mode (NIST SP800-38E 738 and IEEE 1619) 739 740 Use with aes-xts-plain, key size 256, 384 or 512 bits. This 741 implementation currently can't handle a sectorsize which is not a 742 multiple of 16 bytes. 743 744config CRYPTO_NHPOLY1305 745 tristate 746 select CRYPTO_HASH 747 select CRYPTO_LIB_POLY1305_GENERIC 748 749endmenu 750 751menu "AEAD (authenticated encryption with associated data) ciphers" 752 753config CRYPTO_AEGIS128 754 tristate "AEGIS-128" 755 select CRYPTO_AEAD 756 select CRYPTO_AES # for AES S-box tables 757 help 758 AEGIS-128 AEAD algorithm 759 760config CRYPTO_AEGIS128_SIMD 761 bool "AEGIS-128 (arm NEON, arm64 NEON)" 762 depends on CRYPTO_AEGIS128 && ((ARM || ARM64) && KERNEL_MODE_NEON) 763 default y 764 help 765 AEGIS-128 AEAD algorithm 766 767 Architecture: arm or arm64 using: 768 - NEON (Advanced SIMD) extension 769 770config CRYPTO_CHACHA20POLY1305 771 tristate "ChaCha20-Poly1305" 772 select CRYPTO_CHACHA20 773 select CRYPTO_POLY1305 774 select CRYPTO_AEAD 775 select CRYPTO_MANAGER 776 help 777 ChaCha20 stream cipher and Poly1305 authenticator combined 778 mode (RFC8439) 779 780config CRYPTO_CCM 781 tristate "CCM (Counter with Cipher Block Chaining-MAC)" 782 select CRYPTO_CTR 783 select CRYPTO_HASH 784 select CRYPTO_AEAD 785 select CRYPTO_MANAGER 786 help 787 CCM (Counter with Cipher Block Chaining-Message Authentication Code) 788 authenticated encryption mode (NIST SP800-38C) 789 790config CRYPTO_GCM 791 tristate "GCM (Galois/Counter Mode) and GMAC (GCM MAC)" 792 select CRYPTO_CTR 793 select CRYPTO_AEAD 794 select CRYPTO_GHASH 795 select CRYPTO_NULL 796 select CRYPTO_MANAGER 797 help 798 GCM (Galois/Counter Mode) authenticated encryption mode and GMAC 799 (GCM Message Authentication Code) (NIST SP800-38D) 800 801 This is required for IPSec ESP (XFRM_ESP). 802 803config CRYPTO_GENIV 804 tristate 805 select CRYPTO_AEAD 806 select CRYPTO_NULL 807 select CRYPTO_MANAGER 808 select CRYPTO_RNG_DEFAULT 809 810config CRYPTO_SEQIV 811 tristate "Sequence Number IV Generator" 812 select CRYPTO_GENIV 813 help 814 Sequence Number IV generator 815 816 This IV generator generates an IV based on a sequence number by 817 xoring it with a salt. This algorithm is mainly useful for CTR. 818 819 This is required for IPsec ESP (XFRM_ESP). 820 821config CRYPTO_ECHAINIV 822 tristate "Encrypted Chain IV Generator" 823 select CRYPTO_GENIV 824 help 825 Encrypted Chain IV generator 826 827 This IV generator generates an IV based on the encryption of 828 a sequence number xored with a salt. This is the default 829 algorithm for CBC. 830 831config CRYPTO_ESSIV 832 tristate "Encrypted Salt-Sector IV Generator" 833 select CRYPTO_AUTHENC 834 help 835 Encrypted Salt-Sector IV generator 836 837 This IV generator is used in some cases by fscrypt and/or 838 dm-crypt. It uses the hash of the block encryption key as the 839 symmetric key for a block encryption pass applied to the input 840 IV, making low entropy IV sources more suitable for block 841 encryption. 842 843 This driver implements a crypto API template that can be 844 instantiated either as an skcipher or as an AEAD (depending on the 845 type of the first template argument), and which defers encryption 846 and decryption requests to the encapsulated cipher after applying 847 ESSIV to the input IV. Note that in the AEAD case, it is assumed 848 that the keys are presented in the same format used by the authenc 849 template, and that the IV appears at the end of the authenticated 850 associated data (AAD) region (which is how dm-crypt uses it.) 851 852 Note that the use of ESSIV is not recommended for new deployments, 853 and so this only needs to be enabled when interoperability with 854 existing encrypted volumes of filesystems is required, or when 855 building for a particular system that requires it (e.g., when 856 the SoC in question has accelerated CBC but not XTS, making CBC 857 combined with ESSIV the only feasible mode for h/w accelerated 858 block encryption) 859 860endmenu 861 862menu "Hashes, digests, and MACs" 863 864config CRYPTO_BLAKE2B 865 tristate "BLAKE2b" 866 select CRYPTO_HASH 867 help 868 BLAKE2b cryptographic hash function (RFC 7693) 869 870 BLAKE2b is optimized for 64-bit platforms and can produce digests 871 of any size between 1 and 64 bytes. The keyed hash is also implemented. 872 873 This module provides the following algorithms: 874 - blake2b-160 875 - blake2b-256 876 - blake2b-384 877 - blake2b-512 878 879 Used by the btrfs filesystem. 880 881 See https://blake2.net for further information. 882 883config CRYPTO_CMAC 884 tristate "CMAC (Cipher-based MAC)" 885 select CRYPTO_HASH 886 select CRYPTO_MANAGER 887 help 888 CMAC (Cipher-based Message Authentication Code) authentication 889 mode (NIST SP800-38B and IETF RFC4493) 890 891config CRYPTO_GHASH 892 tristate "GHASH" 893 select CRYPTO_HASH 894 select CRYPTO_LIB_GF128MUL 895 help 896 GCM GHASH function (NIST SP800-38D) 897 898config CRYPTO_HMAC 899 tristate "HMAC (Keyed-Hash MAC)" 900 select CRYPTO_HASH 901 select CRYPTO_MANAGER 902 help 903 HMAC (Keyed-Hash Message Authentication Code) (FIPS 198 and 904 RFC2104) 905 906 This is required for IPsec AH (XFRM_AH) and IPsec ESP (XFRM_ESP). 907 908config CRYPTO_MD4 909 tristate "MD4" 910 select CRYPTO_HASH 911 help 912 MD4 message digest algorithm (RFC1320) 913 914config CRYPTO_MD5 915 tristate "MD5" 916 select CRYPTO_HASH 917 help 918 MD5 message digest algorithm (RFC1321) 919 920config CRYPTO_MICHAEL_MIC 921 tristate "Michael MIC" 922 select CRYPTO_HASH 923 help 924 Michael MIC (Message Integrity Code) (IEEE 802.11i) 925 926 Defined by the IEEE 802.11i TKIP (Temporal Key Integrity Protocol), 927 known as WPA (Wif-Fi Protected Access). 928 929 This algorithm is required for TKIP, but it should not be used for 930 other purposes because of the weakness of the algorithm. 931 932config CRYPTO_POLYVAL 933 tristate 934 select CRYPTO_HASH 935 select CRYPTO_LIB_GF128MUL 936 help 937 POLYVAL hash function for HCTR2 938 939 This is used in HCTR2. It is not a general-purpose 940 cryptographic hash function. 941 942config CRYPTO_POLY1305 943 tristate "Poly1305" 944 select CRYPTO_HASH 945 select CRYPTO_LIB_POLY1305_GENERIC 946 help 947 Poly1305 authenticator algorithm (RFC7539) 948 949 Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein. 950 It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use 951 in IETF protocols. This is the portable C implementation of Poly1305. 952 953config CRYPTO_RMD160 954 tristate "RIPEMD-160" 955 select CRYPTO_HASH 956 help 957 RIPEMD-160 hash function (ISO/IEC 10118-3) 958 959 RIPEMD-160 is a 160-bit cryptographic hash function. It is intended 960 to be used as a secure replacement for the 128-bit hash functions 961 MD4, MD5 and its predecessor RIPEMD 962 (not to be confused with RIPEMD-128). 963 964 Its speed is comparable to SHA-1 and there are no known attacks 965 against RIPEMD-160. 966 967 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 968 See https://homes.esat.kuleuven.be/~bosselae/ripemd160.html 969 for further information. 970 971config CRYPTO_SHA1 972 tristate "SHA-1" 973 select CRYPTO_HASH 974 select CRYPTO_LIB_SHA1 975 help 976 SHA-1 secure hash algorithm (FIPS 180, ISO/IEC 10118-3) 977 978config CRYPTO_SHA256 979 tristate "SHA-224 and SHA-256" 980 select CRYPTO_HASH 981 select CRYPTO_LIB_SHA256 982 help 983 SHA-224 and SHA-256 secure hash algorithms (FIPS 180, ISO/IEC 10118-3) 984 985 This is required for IPsec AH (XFRM_AH) and IPsec ESP (XFRM_ESP). 986 Used by the btrfs filesystem, Ceph, NFS, and SMB. 987 988config CRYPTO_SHA512 989 tristate "SHA-384 and SHA-512" 990 select CRYPTO_HASH 991 help 992 SHA-384 and SHA-512 secure hash algorithms (FIPS 180, ISO/IEC 10118-3) 993 994config CRYPTO_SHA3 995 tristate "SHA-3" 996 select CRYPTO_HASH 997 help 998 SHA-3 secure hash algorithms (FIPS 202, ISO/IEC 10118-3) 999 1000config CRYPTO_SM3 1001 tristate 1002 1003config CRYPTO_SM3_GENERIC 1004 tristate "SM3 (ShangMi 3)" 1005 select CRYPTO_HASH 1006 select CRYPTO_SM3 1007 help 1008 SM3 (ShangMi 3) secure hash function (OSCCA GM/T 0004-2012, ISO/IEC 10118-3) 1009 1010 This is part of the Chinese Commercial Cryptography suite. 1011 1012 References: 1013 http://www.oscca.gov.cn/UpFile/20101222141857786.pdf 1014 https://datatracker.ietf.org/doc/html/draft-shen-sm3-hash 1015 1016config CRYPTO_STREEBOG 1017 tristate "Streebog" 1018 select CRYPTO_HASH 1019 help 1020 Streebog Hash Function (GOST R 34.11-2012, RFC 6986, ISO/IEC 10118-3) 1021 1022 This is one of the Russian cryptographic standard algorithms (called 1023 GOST algorithms). This setting enables two hash algorithms with 1024 256 and 512 bits output. 1025 1026 References: 1027 https://tc26.ru/upload/iblock/fed/feddbb4d26b685903faa2ba11aea43f6.pdf 1028 https://tools.ietf.org/html/rfc6986 1029 1030config CRYPTO_WP512 1031 tristate "Whirlpool" 1032 select CRYPTO_HASH 1033 help 1034 Whirlpool hash function (ISO/IEC 10118-3) 1035 1036 512, 384 and 256-bit hashes. 1037 1038 Whirlpool-512 is part of the NESSIE cryptographic primitives. 1039 1040 See https://web.archive.org/web/20171129084214/http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html 1041 for further information. 1042 1043config CRYPTO_XCBC 1044 tristate "XCBC-MAC (Extended Cipher Block Chaining MAC)" 1045 select CRYPTO_HASH 1046 select CRYPTO_MANAGER 1047 help 1048 XCBC-MAC (Extended Cipher Block Chaining Message Authentication 1049 Code) (RFC3566) 1050 1051config CRYPTO_XXHASH 1052 tristate "xxHash" 1053 select CRYPTO_HASH 1054 select XXHASH 1055 help 1056 xxHash non-cryptographic hash algorithm 1057 1058 Extremely fast, working at speeds close to RAM limits. 1059 1060 Used by the btrfs filesystem. 1061 1062endmenu 1063 1064menu "CRCs (cyclic redundancy checks)" 1065 1066config CRYPTO_CRC32C 1067 tristate "CRC32c" 1068 select CRYPTO_HASH 1069 select CRC32 1070 help 1071 CRC32c CRC algorithm with the iSCSI polynomial (RFC 3385 and RFC 3720) 1072 1073 A 32-bit CRC (cyclic redundancy check) with a polynomial defined 1074 by G. Castagnoli, S. Braeuer and M. Herrman in "Optimization of Cyclic 1075 Redundancy-Check Codes with 24 and 32 Parity Bits", IEEE Transactions 1076 on Communications, Vol. 41, No. 6, June 1993, selected for use with 1077 iSCSI. 1078 1079 Used by btrfs, ext4, jbd2, NVMeoF/TCP, and iSCSI. 1080 1081config CRYPTO_CRC32 1082 tristate "CRC32" 1083 select CRYPTO_HASH 1084 select CRC32 1085 help 1086 CRC32 CRC algorithm (IEEE 802.3) 1087 1088 Used by RoCEv2 and f2fs. 1089 1090endmenu 1091 1092menu "Compression" 1093 1094config CRYPTO_DEFLATE 1095 tristate "Deflate" 1096 select CRYPTO_ALGAPI 1097 select CRYPTO_ACOMP2 1098 select ZLIB_INFLATE 1099 select ZLIB_DEFLATE 1100 help 1101 Deflate compression algorithm (RFC1951) 1102 1103 Used by IPSec with the IPCOMP protocol (RFC3173, RFC2394) 1104 1105config CRYPTO_LZO 1106 tristate "LZO" 1107 select CRYPTO_ALGAPI 1108 select CRYPTO_ACOMP2 1109 select LZO_COMPRESS 1110 select LZO_DECOMPRESS 1111 help 1112 LZO compression algorithm 1113 1114 See https://www.oberhumer.com/opensource/lzo/ for further information. 1115 1116config CRYPTO_842 1117 tristate "842" 1118 select CRYPTO_ALGAPI 1119 select CRYPTO_ACOMP2 1120 select 842_COMPRESS 1121 select 842_DECOMPRESS 1122 help 1123 842 compression algorithm by IBM 1124 1125 See https://github.com/plauth/lib842 for further information. 1126 1127config CRYPTO_LZ4 1128 tristate "LZ4" 1129 select CRYPTO_ALGAPI 1130 select CRYPTO_ACOMP2 1131 select LZ4_COMPRESS 1132 select LZ4_DECOMPRESS 1133 help 1134 LZ4 compression algorithm 1135 1136 See https://github.com/lz4/lz4 for further information. 1137 1138config CRYPTO_LZ4HC 1139 tristate "LZ4HC" 1140 select CRYPTO_ALGAPI 1141 select CRYPTO_ACOMP2 1142 select LZ4HC_COMPRESS 1143 select LZ4_DECOMPRESS 1144 help 1145 LZ4 high compression mode algorithm 1146 1147 See https://github.com/lz4/lz4 for further information. 1148 1149config CRYPTO_ZSTD 1150 tristate "Zstd" 1151 select CRYPTO_ALGAPI 1152 select CRYPTO_ACOMP2 1153 select ZSTD_COMPRESS 1154 select ZSTD_DECOMPRESS 1155 help 1156 zstd compression algorithm 1157 1158 See https://github.com/facebook/zstd for further information. 1159 1160endmenu 1161 1162menu "Random number generation" 1163 1164config CRYPTO_ANSI_CPRNG 1165 tristate "ANSI PRNG (Pseudo Random Number Generator)" 1166 select CRYPTO_AES 1167 select CRYPTO_RNG 1168 help 1169 Pseudo RNG (random number generator) (ANSI X9.31 Appendix A.2.4) 1170 1171 This uses the AES cipher algorithm. 1172 1173 Note that this option must be enabled if CRYPTO_FIPS is selected 1174 1175menuconfig CRYPTO_DRBG_MENU 1176 tristate "NIST SP800-90A DRBG (Deterministic Random Bit Generator)" 1177 help 1178 DRBG (Deterministic Random Bit Generator) (NIST SP800-90A) 1179 1180 In the following submenu, one or more of the DRBG types must be selected. 1181 1182if CRYPTO_DRBG_MENU 1183 1184config CRYPTO_DRBG_HMAC 1185 bool 1186 default y 1187 select CRYPTO_HMAC 1188 select CRYPTO_SHA512 1189 1190config CRYPTO_DRBG_HASH 1191 bool "Hash_DRBG" 1192 select CRYPTO_SHA256 1193 help 1194 Hash_DRBG variant as defined in NIST SP800-90A. 1195 1196 This uses the SHA-1, SHA-256, SHA-384, or SHA-512 hash algorithms. 1197 1198config CRYPTO_DRBG_CTR 1199 bool "CTR_DRBG" 1200 select CRYPTO_AES 1201 select CRYPTO_CTR 1202 help 1203 CTR_DRBG variant as defined in NIST SP800-90A. 1204 1205 This uses the AES cipher algorithm with the counter block mode. 1206 1207config CRYPTO_DRBG 1208 tristate 1209 default CRYPTO_DRBG_MENU 1210 select CRYPTO_RNG 1211 select CRYPTO_JITTERENTROPY 1212 1213endif # if CRYPTO_DRBG_MENU 1214 1215config CRYPTO_JITTERENTROPY 1216 tristate "CPU Jitter Non-Deterministic RNG (Random Number Generator)" 1217 select CRYPTO_RNG 1218 select CRYPTO_SHA3 1219 help 1220 CPU Jitter RNG (Random Number Generator) from the Jitterentropy library 1221 1222 A non-physical non-deterministic ("true") RNG (e.g., an entropy source 1223 compliant with NIST SP800-90B) intended to provide a seed to a 1224 deterministic RNG (e.g., per NIST SP800-90C). 1225 This RNG does not perform any cryptographic whitening of the generated 1226 random numbers. 1227 1228 See https://www.chronox.de/jent/ 1229 1230if CRYPTO_JITTERENTROPY 1231if CRYPTO_FIPS && EXPERT 1232 1233choice 1234 prompt "CPU Jitter RNG Memory Size" 1235 default CRYPTO_JITTERENTROPY_MEMSIZE_2 1236 help 1237 The Jitter RNG measures the execution time of memory accesses. 1238 Multiple consecutive memory accesses are performed. If the memory 1239 size fits into a cache (e.g. L1), only the memory access timing 1240 to that cache is measured. The closer the cache is to the CPU 1241 the less variations are measured and thus the less entropy is 1242 obtained. Thus, if the memory size fits into the L1 cache, the 1243 obtained entropy is less than if the memory size fits within 1244 L1 + L2, which in turn is less if the memory fits into 1245 L1 + L2 + L3. Thus, by selecting a different memory size, 1246 the entropy rate produced by the Jitter RNG can be modified. 1247 1248 config CRYPTO_JITTERENTROPY_MEMSIZE_2 1249 bool "2048 Bytes (default)" 1250 1251 config CRYPTO_JITTERENTROPY_MEMSIZE_128 1252 bool "128 kBytes" 1253 1254 config CRYPTO_JITTERENTROPY_MEMSIZE_1024 1255 bool "1024 kBytes" 1256 1257 config CRYPTO_JITTERENTROPY_MEMSIZE_8192 1258 bool "8192 kBytes" 1259endchoice 1260 1261config CRYPTO_JITTERENTROPY_MEMORY_BLOCKS 1262 int 1263 default 64 if CRYPTO_JITTERENTROPY_MEMSIZE_2 1264 default 512 if CRYPTO_JITTERENTROPY_MEMSIZE_128 1265 default 1024 if CRYPTO_JITTERENTROPY_MEMSIZE_1024 1266 default 4096 if CRYPTO_JITTERENTROPY_MEMSIZE_8192 1267 1268config CRYPTO_JITTERENTROPY_MEMORY_BLOCKSIZE 1269 int 1270 default 32 if CRYPTO_JITTERENTROPY_MEMSIZE_2 1271 default 256 if CRYPTO_JITTERENTROPY_MEMSIZE_128 1272 default 1024 if CRYPTO_JITTERENTROPY_MEMSIZE_1024 1273 default 2048 if CRYPTO_JITTERENTROPY_MEMSIZE_8192 1274 1275config CRYPTO_JITTERENTROPY_OSR 1276 int "CPU Jitter RNG Oversampling Rate" 1277 range 1 15 1278 default 3 1279 help 1280 The Jitter RNG allows the specification of an oversampling rate (OSR). 1281 The Jitter RNG operation requires a fixed amount of timing 1282 measurements to produce one output block of random numbers. The 1283 OSR value is multiplied with the amount of timing measurements to 1284 generate one output block. Thus, the timing measurement is oversampled 1285 by the OSR factor. The oversampling allows the Jitter RNG to operate 1286 on hardware whose timers deliver limited amount of entropy (e.g. 1287 the timer is coarse) by setting the OSR to a higher value. The 1288 trade-off, however, is that the Jitter RNG now requires more time 1289 to generate random numbers. 1290 1291config CRYPTO_JITTERENTROPY_TESTINTERFACE 1292 bool "CPU Jitter RNG Test Interface" 1293 help 1294 The test interface allows a privileged process to capture 1295 the raw unconditioned high resolution time stamp noise that 1296 is collected by the Jitter RNG for statistical analysis. As 1297 this data is used at the same time to generate random bits, 1298 the Jitter RNG operates in an insecure mode as long as the 1299 recording is enabled. This interface therefore is only 1300 intended for testing purposes and is not suitable for 1301 production systems. 1302 1303 The raw noise data can be obtained using the jent_raw_hires 1304 debugfs file. Using the option 1305 jitterentropy_testing.boot_raw_hires_test=1 the raw noise of 1306 the first 1000 entropy events since boot can be sampled. 1307 1308 If unsure, select N. 1309 1310endif # if CRYPTO_FIPS && EXPERT 1311 1312if !(CRYPTO_FIPS && EXPERT) 1313 1314config CRYPTO_JITTERENTROPY_MEMORY_BLOCKS 1315 int 1316 default 64 1317 1318config CRYPTO_JITTERENTROPY_MEMORY_BLOCKSIZE 1319 int 1320 default 32 1321 1322config CRYPTO_JITTERENTROPY_OSR 1323 int 1324 default 1 1325 1326config CRYPTO_JITTERENTROPY_TESTINTERFACE 1327 bool 1328 1329endif # if !(CRYPTO_FIPS && EXPERT) 1330endif # if CRYPTO_JITTERENTROPY 1331 1332config CRYPTO_KDF800108_CTR 1333 tristate 1334 select CRYPTO_HMAC 1335 select CRYPTO_SHA256 1336 1337endmenu 1338menu "Userspace interface" 1339 1340config CRYPTO_USER_API 1341 tristate 1342 1343config CRYPTO_USER_API_HASH 1344 tristate "Hash algorithms" 1345 depends on NET 1346 select CRYPTO_HASH 1347 select CRYPTO_USER_API 1348 help 1349 Enable the userspace interface for hash algorithms. 1350 1351 See Documentation/crypto/userspace-if.rst and 1352 https://www.chronox.de/libkcapi/html/index.html 1353 1354config CRYPTO_USER_API_SKCIPHER 1355 tristate "Symmetric key cipher algorithms" 1356 depends on NET 1357 select CRYPTO_SKCIPHER 1358 select CRYPTO_USER_API 1359 help 1360 Enable the userspace interface for symmetric key cipher algorithms. 1361 1362 See Documentation/crypto/userspace-if.rst and 1363 https://www.chronox.de/libkcapi/html/index.html 1364 1365config CRYPTO_USER_API_RNG 1366 tristate "RNG (random number generator) algorithms" 1367 depends on NET 1368 select CRYPTO_RNG 1369 select CRYPTO_USER_API 1370 help 1371 Enable the userspace interface for RNG (random number generator) 1372 algorithms. 1373 1374 See Documentation/crypto/userspace-if.rst and 1375 https://www.chronox.de/libkcapi/html/index.html 1376 1377config CRYPTO_USER_API_RNG_CAVP 1378 bool "Enable CAVP testing of DRBG" 1379 depends on CRYPTO_USER_API_RNG && CRYPTO_DRBG 1380 help 1381 Enable extra APIs in the userspace interface for NIST CAVP 1382 (Cryptographic Algorithm Validation Program) testing: 1383 - resetting DRBG entropy 1384 - providing Additional Data 1385 1386 This should only be enabled for CAVP testing. You should say 1387 no unless you know what this is. 1388 1389config CRYPTO_USER_API_AEAD 1390 tristate "AEAD cipher algorithms" 1391 depends on NET 1392 select CRYPTO_AEAD 1393 select CRYPTO_SKCIPHER 1394 select CRYPTO_NULL 1395 select CRYPTO_USER_API 1396 help 1397 Enable the userspace interface for AEAD cipher algorithms. 1398 1399 See Documentation/crypto/userspace-if.rst and 1400 https://www.chronox.de/libkcapi/html/index.html 1401 1402config CRYPTO_USER_API_ENABLE_OBSOLETE 1403 bool "Obsolete cryptographic algorithms" 1404 depends on CRYPTO_USER_API 1405 default y 1406 help 1407 Allow obsolete cryptographic algorithms to be selected that have 1408 already been phased out from internal use by the kernel, and are 1409 only useful for userspace clients that still rely on them. 1410 1411endmenu 1412 1413config CRYPTO_HASH_INFO 1414 bool 1415 1416if !KMSAN # avoid false positives from assembly 1417if ARM 1418source "arch/arm/crypto/Kconfig" 1419endif 1420if ARM64 1421source "arch/arm64/crypto/Kconfig" 1422endif 1423if LOONGARCH 1424source "arch/loongarch/crypto/Kconfig" 1425endif 1426if MIPS 1427source "arch/mips/crypto/Kconfig" 1428endif 1429if PPC 1430source "arch/powerpc/crypto/Kconfig" 1431endif 1432if RISCV 1433source "arch/riscv/crypto/Kconfig" 1434endif 1435if S390 1436source "arch/s390/crypto/Kconfig" 1437endif 1438if SPARC 1439source "arch/sparc/crypto/Kconfig" 1440endif 1441if X86 1442source "arch/x86/crypto/Kconfig" 1443endif 1444endif 1445 1446source "drivers/crypto/Kconfig" 1447source "crypto/asymmetric_keys/Kconfig" 1448source "certs/Kconfig" 1449 1450endif # if CRYPTO 1451