1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3 * fs/f2fs/node.h
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8 /* start node id of a node block dedicated to the given node id */
9 #define START_NID(nid) (((nid) / NAT_ENTRY_PER_BLOCK) * NAT_ENTRY_PER_BLOCK)
10
11 /* node block offset on the NAT area dedicated to the given start node id */
12 #define NAT_BLOCK_OFFSET(start_nid) ((start_nid) / NAT_ENTRY_PER_BLOCK)
13
14 /* # of pages to perform synchronous readahead before building free nids */
15 #define FREE_NID_PAGES 8
16 #define MAX_FREE_NIDS (NAT_ENTRY_PER_BLOCK * FREE_NID_PAGES)
17
18 /* size of free nid batch when shrinking */
19 #define SHRINK_NID_BATCH_SIZE 8
20
21 #define DEF_RA_NID_PAGES 0 /* # of nid pages to be readaheaded */
22
23 /* maximum readahead size for node during getting data blocks */
24 #define MAX_RA_NODE 128
25
26 /* control the memory footprint threshold (10MB per 1GB ram) */
27 #define DEF_RAM_THRESHOLD 1
28
29 /* control dirty nats ratio threshold (default: 10% over max nid count) */
30 #define DEF_DIRTY_NAT_RATIO_THRESHOLD 10
31 /* control total # of nats */
32 #define DEF_NAT_CACHE_THRESHOLD 100000
33
34 /* control total # of node writes used for roll-forward recovery */
35 #define DEF_RF_NODE_BLOCKS 0
36
37 /* vector size for gang look-up from nat cache that consists of radix tree */
38 #define NAT_VEC_SIZE 32
39
40 /* return value for read_node_page */
41 #define LOCKED_PAGE 1
42
43 /* check pinned file's alignment status of physical blocks */
44 #define FILE_NOT_ALIGNED 1
45
46 /* For flag in struct node_info */
47 enum {
48 IS_CHECKPOINTED, /* is it checkpointed before? */
49 HAS_FSYNCED_INODE, /* is the inode fsynced before? */
50 HAS_LAST_FSYNC, /* has the latest node fsync mark? */
51 IS_DIRTY, /* this nat entry is dirty? */
52 IS_PREALLOC, /* nat entry is preallocated */
53 };
54
55 /* For node type in __get_node_folio() */
56 enum node_type {
57 NODE_TYPE_REGULAR,
58 NODE_TYPE_INODE,
59 NODE_TYPE_XATTR,
60 NODE_TYPE_NON_INODE,
61 };
62
63 /*
64 * For node information
65 */
66 struct node_info {
67 nid_t nid; /* node id */
68 nid_t ino; /* inode number of the node's owner */
69 block_t blk_addr; /* block address of the node */
70 unsigned char version; /* version of the node */
71 unsigned char flag; /* for node information bits */
72 };
73
74 struct nat_entry {
75 struct list_head list; /* for clean or dirty nat list */
76 struct node_info ni; /* in-memory node information */
77 };
78
79 #define nat_get_nid(nat) ((nat)->ni.nid)
80 #define nat_set_nid(nat, n) ((nat)->ni.nid = (n))
81 #define nat_get_blkaddr(nat) ((nat)->ni.blk_addr)
82 #define nat_set_blkaddr(nat, b) ((nat)->ni.blk_addr = (b))
83 #define nat_get_ino(nat) ((nat)->ni.ino)
84 #define nat_set_ino(nat, i) ((nat)->ni.ino = (i))
85 #define nat_get_version(nat) ((nat)->ni.version)
86 #define nat_set_version(nat, v) ((nat)->ni.version = (v))
87
88 #define inc_node_version(version) (++(version))
89
copy_node_info(struct node_info * dst,struct node_info * src)90 static inline void copy_node_info(struct node_info *dst,
91 struct node_info *src)
92 {
93 dst->nid = src->nid;
94 dst->ino = src->ino;
95 dst->blk_addr = src->blk_addr;
96 dst->version = src->version;
97 /* should not copy flag here */
98 }
99
set_nat_flag(struct nat_entry * ne,unsigned int type,bool set)100 static inline void set_nat_flag(struct nat_entry *ne,
101 unsigned int type, bool set)
102 {
103 if (set)
104 ne->ni.flag |= BIT(type);
105 else
106 ne->ni.flag &= ~BIT(type);
107 }
108
get_nat_flag(struct nat_entry * ne,unsigned int type)109 static inline bool get_nat_flag(struct nat_entry *ne, unsigned int type)
110 {
111 return ne->ni.flag & BIT(type);
112 }
113
nat_reset_flag(struct nat_entry * ne)114 static inline void nat_reset_flag(struct nat_entry *ne)
115 {
116 /* these states can be set only after checkpoint was done */
117 set_nat_flag(ne, IS_CHECKPOINTED, true);
118 set_nat_flag(ne, HAS_FSYNCED_INODE, false);
119 set_nat_flag(ne, HAS_LAST_FSYNC, true);
120 }
121
node_info_from_raw_nat(struct node_info * ni,struct f2fs_nat_entry * raw_ne)122 static inline void node_info_from_raw_nat(struct node_info *ni,
123 struct f2fs_nat_entry *raw_ne)
124 {
125 ni->ino = le32_to_cpu(raw_ne->ino);
126 ni->blk_addr = le32_to_cpu(raw_ne->block_addr);
127 ni->version = raw_ne->version;
128 }
129
raw_nat_from_node_info(struct f2fs_nat_entry * raw_ne,struct node_info * ni)130 static inline void raw_nat_from_node_info(struct f2fs_nat_entry *raw_ne,
131 struct node_info *ni)
132 {
133 raw_ne->ino = cpu_to_le32(ni->ino);
134 raw_ne->block_addr = cpu_to_le32(ni->blk_addr);
135 raw_ne->version = ni->version;
136 }
137
excess_dirty_nats(struct f2fs_sb_info * sbi)138 static inline bool excess_dirty_nats(struct f2fs_sb_info *sbi)
139 {
140 return NM_I(sbi)->nat_cnt[DIRTY_NAT] >= NM_I(sbi)->max_nid *
141 NM_I(sbi)->dirty_nats_ratio / 100;
142 }
143
excess_cached_nats(struct f2fs_sb_info * sbi)144 static inline bool excess_cached_nats(struct f2fs_sb_info *sbi)
145 {
146 return NM_I(sbi)->nat_cnt[TOTAL_NAT] >= DEF_NAT_CACHE_THRESHOLD;
147 }
148
149 enum mem_type {
150 FREE_NIDS, /* indicates the free nid list */
151 NAT_ENTRIES, /* indicates the cached nat entry */
152 DIRTY_DENTS, /* indicates dirty dentry pages */
153 INO_ENTRIES, /* indicates inode entries */
154 READ_EXTENT_CACHE, /* indicates read extent cache */
155 AGE_EXTENT_CACHE, /* indicates age extent cache */
156 DISCARD_CACHE, /* indicates memory of cached discard cmds */
157 COMPRESS_PAGE, /* indicates memory of cached compressed pages */
158 BASE_CHECK, /* check kernel status */
159 };
160
161 struct nat_entry_set {
162 struct list_head set_list; /* link with other nat sets */
163 struct list_head entry_list; /* link with dirty nat entries */
164 nid_t set; /* set number*/
165 unsigned int entry_cnt; /* the # of nat entries in set */
166 };
167
168 struct free_nid {
169 struct list_head list; /* for free node id list */
170 nid_t nid; /* node id */
171 int state; /* in use or not: FREE_NID or PREALLOC_NID */
172 };
173
next_free_nid(struct f2fs_sb_info * sbi,nid_t * nid)174 static inline void next_free_nid(struct f2fs_sb_info *sbi, nid_t *nid)
175 {
176 struct f2fs_nm_info *nm_i = NM_I(sbi);
177 struct free_nid *fnid;
178
179 spin_lock(&nm_i->nid_list_lock);
180 if (nm_i->nid_cnt[FREE_NID] <= 0) {
181 spin_unlock(&nm_i->nid_list_lock);
182 return;
183 }
184 fnid = list_first_entry(&nm_i->free_nid_list, struct free_nid, list);
185 *nid = fnid->nid;
186 spin_unlock(&nm_i->nid_list_lock);
187 }
188
189 /*
190 * inline functions
191 */
get_nat_bitmap(struct f2fs_sb_info * sbi,void * addr)192 static inline void get_nat_bitmap(struct f2fs_sb_info *sbi, void *addr)
193 {
194 struct f2fs_nm_info *nm_i = NM_I(sbi);
195
196 #ifdef CONFIG_F2FS_CHECK_FS
197 if (memcmp(nm_i->nat_bitmap, nm_i->nat_bitmap_mir,
198 nm_i->bitmap_size))
199 f2fs_bug_on(sbi, 1);
200 #endif
201 memcpy(addr, nm_i->nat_bitmap, nm_i->bitmap_size);
202 }
203
current_nat_addr(struct f2fs_sb_info * sbi,nid_t start)204 static inline pgoff_t current_nat_addr(struct f2fs_sb_info *sbi, nid_t start)
205 {
206 struct f2fs_nm_info *nm_i = NM_I(sbi);
207 pgoff_t block_off;
208 pgoff_t block_addr;
209
210 /*
211 * block_off = segment_off * 512 + off_in_segment
212 * OLD = (segment_off * 512) * 2 + off_in_segment
213 * NEW = 2 * (segment_off * 512 + off_in_segment) - off_in_segment
214 */
215 block_off = NAT_BLOCK_OFFSET(start);
216
217 block_addr = (pgoff_t)(nm_i->nat_blkaddr +
218 (block_off << 1) -
219 (block_off & (BLKS_PER_SEG(sbi) - 1)));
220
221 if (f2fs_test_bit(block_off, nm_i->nat_bitmap))
222 block_addr += BLKS_PER_SEG(sbi);
223
224 return block_addr;
225 }
226
next_nat_addr(struct f2fs_sb_info * sbi,pgoff_t block_addr)227 static inline pgoff_t next_nat_addr(struct f2fs_sb_info *sbi,
228 pgoff_t block_addr)
229 {
230 struct f2fs_nm_info *nm_i = NM_I(sbi);
231
232 block_addr -= nm_i->nat_blkaddr;
233 block_addr ^= BIT(sbi->log_blocks_per_seg);
234 return block_addr + nm_i->nat_blkaddr;
235 }
236
set_to_next_nat(struct f2fs_nm_info * nm_i,nid_t start_nid)237 static inline void set_to_next_nat(struct f2fs_nm_info *nm_i, nid_t start_nid)
238 {
239 unsigned int block_off = NAT_BLOCK_OFFSET(start_nid);
240
241 f2fs_change_bit(block_off, nm_i->nat_bitmap);
242 #ifdef CONFIG_F2FS_CHECK_FS
243 f2fs_change_bit(block_off, nm_i->nat_bitmap_mir);
244 #endif
245 }
246
ino_of_node(const struct folio * node_folio)247 static inline nid_t ino_of_node(const struct folio *node_folio)
248 {
249 struct f2fs_node *rn = F2FS_NODE(node_folio);
250 return le32_to_cpu(rn->footer.ino);
251 }
252
nid_of_node(const struct folio * node_folio)253 static inline nid_t nid_of_node(const struct folio *node_folio)
254 {
255 struct f2fs_node *rn = F2FS_NODE(node_folio);
256 return le32_to_cpu(rn->footer.nid);
257 }
258
ofs_of_node(const struct folio * node_folio)259 static inline unsigned int ofs_of_node(const struct folio *node_folio)
260 {
261 struct f2fs_node *rn = F2FS_NODE(node_folio);
262 unsigned flag = le32_to_cpu(rn->footer.flag);
263 return flag >> OFFSET_BIT_SHIFT;
264 }
265
cpver_of_node(const struct folio * node_folio)266 static inline __u64 cpver_of_node(const struct folio *node_folio)
267 {
268 struct f2fs_node *rn = F2FS_NODE(node_folio);
269 return le64_to_cpu(rn->footer.cp_ver);
270 }
271
next_blkaddr_of_node(const struct folio * node_folio)272 static inline block_t next_blkaddr_of_node(const struct folio *node_folio)
273 {
274 struct f2fs_node *rn = F2FS_NODE(node_folio);
275 return le32_to_cpu(rn->footer.next_blkaddr);
276 }
277
fill_node_footer(const struct folio * folio,nid_t nid,nid_t ino,unsigned int ofs,bool reset)278 static inline void fill_node_footer(const struct folio *folio, nid_t nid,
279 nid_t ino, unsigned int ofs, bool reset)
280 {
281 struct f2fs_node *rn = F2FS_NODE(folio);
282 unsigned int old_flag = 0;
283
284 if (reset)
285 memset(rn, 0, sizeof(*rn));
286 else
287 old_flag = le32_to_cpu(rn->footer.flag);
288
289 rn->footer.nid = cpu_to_le32(nid);
290 rn->footer.ino = cpu_to_le32(ino);
291
292 /* should remain old flag bits such as COLD_BIT_SHIFT */
293 rn->footer.flag = cpu_to_le32((ofs << OFFSET_BIT_SHIFT) |
294 (old_flag & OFFSET_BIT_MASK));
295 }
296
copy_node_footer(const struct folio * dst,const struct folio * src)297 static inline void copy_node_footer(const struct folio *dst,
298 const struct folio *src)
299 {
300 struct f2fs_node *src_rn = F2FS_NODE(src);
301 struct f2fs_node *dst_rn = F2FS_NODE(dst);
302 memcpy(&dst_rn->footer, &src_rn->footer, sizeof(struct node_footer));
303 }
304
fill_node_footer_blkaddr(struct folio * folio,block_t blkaddr)305 static inline void fill_node_footer_blkaddr(struct folio *folio, block_t blkaddr)
306 {
307 struct f2fs_checkpoint *ckpt = F2FS_CKPT(F2FS_F_SB(folio));
308 struct f2fs_node *rn = F2FS_NODE(folio);
309 __u64 cp_ver = cur_cp_version(ckpt);
310
311 if (__is_set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG))
312 cp_ver |= (cur_cp_crc(ckpt) << 32);
313
314 rn->footer.cp_ver = cpu_to_le64(cp_ver);
315 rn->footer.next_blkaddr = cpu_to_le32(blkaddr);
316 }
317
is_recoverable_dnode(const struct folio * folio)318 static inline bool is_recoverable_dnode(const struct folio *folio)
319 {
320 struct f2fs_checkpoint *ckpt = F2FS_CKPT(F2FS_F_SB(folio));
321 __u64 cp_ver = cur_cp_version(ckpt);
322
323 /* Don't care crc part, if fsck.f2fs sets it. */
324 if (__is_set_ckpt_flags(ckpt, CP_NOCRC_RECOVERY_FLAG))
325 return (cp_ver << 32) == (cpver_of_node(folio) << 32);
326
327 if (__is_set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG))
328 cp_ver |= (cur_cp_crc(ckpt) << 32);
329
330 return cp_ver == cpver_of_node(folio);
331 }
332
333 /*
334 * f2fs assigns the following node offsets described as (num).
335 * N = NIDS_PER_BLOCK
336 *
337 * Inode block (0)
338 * |- direct node (1)
339 * |- direct node (2)
340 * |- indirect node (3)
341 * | `- direct node (4 => 4 + N - 1)
342 * |- indirect node (4 + N)
343 * | `- direct node (5 + N => 5 + 2N - 1)
344 * `- double indirect node (5 + 2N)
345 * `- indirect node (6 + 2N)
346 * `- direct node
347 * ......
348 * `- indirect node ((6 + 2N) + x(N + 1))
349 * `- direct node
350 * ......
351 * `- indirect node ((6 + 2N) + (N - 1)(N + 1))
352 * `- direct node
353 */
IS_DNODE(const struct folio * node_folio)354 static inline bool IS_DNODE(const struct folio *node_folio)
355 {
356 unsigned int ofs = ofs_of_node(node_folio);
357
358 if (f2fs_has_xattr_block(ofs))
359 return true;
360
361 if (ofs == 3 || ofs == 4 + NIDS_PER_BLOCK ||
362 ofs == 5 + 2 * NIDS_PER_BLOCK)
363 return false;
364 if (ofs >= 6 + 2 * NIDS_PER_BLOCK) {
365 ofs -= 6 + 2 * NIDS_PER_BLOCK;
366 if (!((long int)ofs % (NIDS_PER_BLOCK + 1)))
367 return false;
368 }
369 return true;
370 }
371
set_nid(struct folio * folio,int off,nid_t nid,bool i)372 static inline int set_nid(struct folio *folio, int off, nid_t nid, bool i)
373 {
374 struct f2fs_node *rn = F2FS_NODE(folio);
375
376 f2fs_folio_wait_writeback(folio, NODE, true, true);
377
378 if (i)
379 rn->i.i_nid[off - NODE_DIR1_BLOCK] = cpu_to_le32(nid);
380 else
381 rn->in.nid[off] = cpu_to_le32(nid);
382 return folio_mark_dirty(folio);
383 }
384
get_nid(const struct folio * folio,int off,bool i)385 static inline nid_t get_nid(const struct folio *folio, int off, bool i)
386 {
387 struct f2fs_node *rn = F2FS_NODE(folio);
388
389 if (i)
390 return le32_to_cpu(rn->i.i_nid[off - NODE_DIR1_BLOCK]);
391 return le32_to_cpu(rn->in.nid[off]);
392 }
393
394 /*
395 * Coldness identification:
396 * - Mark cold files in f2fs_inode_info
397 * - Mark cold node blocks in their node footer
398 * - Mark cold data pages in page cache
399 */
400
is_node(const struct folio * folio,int type)401 static inline int is_node(const struct folio *folio, int type)
402 {
403 struct f2fs_node *rn = F2FS_NODE(folio);
404 return le32_to_cpu(rn->footer.flag) & BIT(type);
405 }
406
407 #define is_cold_node(folio) is_node(folio, COLD_BIT_SHIFT)
408 #define is_fsync_dnode(folio) is_node(folio, FSYNC_BIT_SHIFT)
409 #define is_dent_dnode(folio) is_node(folio, DENT_BIT_SHIFT)
410
set_cold_node(const struct folio * folio,bool is_dir)411 static inline void set_cold_node(const struct folio *folio, bool is_dir)
412 {
413 struct f2fs_node *rn = F2FS_NODE(folio);
414 unsigned int flag = le32_to_cpu(rn->footer.flag);
415
416 if (is_dir)
417 flag &= ~BIT(COLD_BIT_SHIFT);
418 else
419 flag |= BIT(COLD_BIT_SHIFT);
420 rn->footer.flag = cpu_to_le32(flag);
421 }
422
set_mark(struct folio * folio,int mark,int type)423 static inline void set_mark(struct folio *folio, int mark, int type)
424 {
425 struct f2fs_node *rn = F2FS_NODE(folio);
426 unsigned int flag = le32_to_cpu(rn->footer.flag);
427 if (mark)
428 flag |= BIT(type);
429 else
430 flag &= ~BIT(type);
431 rn->footer.flag = cpu_to_le32(flag);
432
433 #ifdef CONFIG_F2FS_CHECK_FS
434 f2fs_inode_chksum_set(F2FS_F_SB(folio), folio);
435 #endif
436 }
437 #define set_dentry_mark(folio, mark) set_mark(folio, mark, DENT_BIT_SHIFT)
438 #define set_fsync_mark(folio, mark) set_mark(folio, mark, FSYNC_BIT_SHIFT)
439