1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * A V4L2 driver for OmniVision OV7670 cameras.
4 *
5 * Copyright 2006 One Laptop Per Child Association, Inc. Written
6 * by Jonathan Corbet with substantial inspiration from Mark
7 * McClelland's ovcamchip code.
8 *
9 * Copyright 2006-7 Jonathan Corbet <corbet@lwn.net>
10 */
11 #include <linux/clk.h>
12 #include <linux/init.h>
13 #include <linux/mod_devicetable.h>
14 #include <linux/module.h>
15 #include <linux/slab.h>
16 #include <linux/i2c.h>
17 #include <linux/delay.h>
18 #include <linux/videodev2.h>
19 #include <linux/gpio/consumer.h>
20 #include <media/v4l2-device.h>
21 #include <media/v4l2-event.h>
22 #include <media/v4l2-ctrls.h>
23 #include <media/v4l2-fwnode.h>
24 #include <media/v4l2-mediabus.h>
25 #include <media/v4l2-image-sizes.h>
26 #include <media/i2c/ov7670.h>
27
28 MODULE_AUTHOR("Jonathan Corbet <corbet@lwn.net>");
29 MODULE_DESCRIPTION("A low-level driver for OmniVision ov7670 sensors");
30 MODULE_LICENSE("GPL");
31
32 static bool debug;
33 module_param(debug, bool, 0644);
34 MODULE_PARM_DESC(debug, "Debug level (0-1)");
35
36 /*
37 * The 7670 sits on i2c with ID 0x42
38 */
39 #define OV7670_I2C_ADDR 0x42
40
41 #define PLL_FACTOR 4
42
43 /* Registers */
44 #define REG_GAIN 0x00 /* Gain lower 8 bits (rest in vref) */
45 #define REG_BLUE 0x01 /* blue gain */
46 #define REG_RED 0x02 /* red gain */
47 #define REG_VREF 0x03 /* Pieces of GAIN, VSTART, VSTOP */
48 #define REG_COM1 0x04 /* Control 1 */
49 #define COM1_CCIR656 0x40 /* CCIR656 enable */
50 #define REG_BAVE 0x05 /* U/B Average level */
51 #define REG_GbAVE 0x06 /* Y/Gb Average level */
52 #define REG_AECHH 0x07 /* AEC MS 5 bits */
53 #define REG_RAVE 0x08 /* V/R Average level */
54 #define REG_COM2 0x09 /* Control 2 */
55 #define COM2_SSLEEP 0x10 /* Soft sleep mode */
56 #define REG_PID 0x0a /* Product ID MSB */
57 #define REG_VER 0x0b /* Product ID LSB */
58 #define REG_COM3 0x0c /* Control 3 */
59 #define COM3_SWAP 0x40 /* Byte swap */
60 #define COM3_SCALEEN 0x08 /* Enable scaling */
61 #define COM3_DCWEN 0x04 /* Enable downsamp/crop/window */
62 #define REG_COM4 0x0d /* Control 4 */
63 #define REG_COM5 0x0e /* All "reserved" */
64 #define REG_COM6 0x0f /* Control 6 */
65 #define REG_AECH 0x10 /* More bits of AEC value */
66 #define REG_CLKRC 0x11 /* Clocl control */
67 #define CLK_EXT 0x40 /* Use external clock directly */
68 #define CLK_SCALE 0x3f /* Mask for internal clock scale */
69 #define REG_COM7 0x12 /* Control 7 */
70 #define COM7_RESET 0x80 /* Register reset */
71 #define COM7_FMT_MASK 0x38
72 #define COM7_FMT_VGA 0x00
73 #define COM7_FMT_CIF 0x20 /* CIF format */
74 #define COM7_FMT_QVGA 0x10 /* QVGA format */
75 #define COM7_FMT_QCIF 0x08 /* QCIF format */
76 #define COM7_RGB 0x04 /* bits 0 and 2 - RGB format */
77 #define COM7_YUV 0x00 /* YUV */
78 #define COM7_BAYER 0x01 /* Bayer format */
79 #define COM7_PBAYER 0x05 /* "Processed bayer" */
80 #define REG_COM8 0x13 /* Control 8 */
81 #define COM8_FASTAEC 0x80 /* Enable fast AGC/AEC */
82 #define COM8_AECSTEP 0x40 /* Unlimited AEC step size */
83 #define COM8_BFILT 0x20 /* Band filter enable */
84 #define COM8_AGC 0x04 /* Auto gain enable */
85 #define COM8_AWB 0x02 /* White balance enable */
86 #define COM8_AEC 0x01 /* Auto exposure enable */
87 #define REG_COM9 0x14 /* Control 9 - gain ceiling */
88 #define REG_COM10 0x15 /* Control 10 */
89 #define COM10_HSYNC 0x40 /* HSYNC instead of HREF */
90 #define COM10_PCLK_HB 0x20 /* Suppress PCLK on horiz blank */
91 #define COM10_HREF_REV 0x08 /* Reverse HREF */
92 #define COM10_VS_LEAD 0x04 /* VSYNC on clock leading edge */
93 #define COM10_VS_NEG 0x02 /* VSYNC negative */
94 #define COM10_HS_NEG 0x01 /* HSYNC negative */
95 #define REG_HSTART 0x17 /* Horiz start high bits */
96 #define REG_HSTOP 0x18 /* Horiz stop high bits */
97 #define REG_VSTART 0x19 /* Vert start high bits */
98 #define REG_VSTOP 0x1a /* Vert stop high bits */
99 #define REG_PSHFT 0x1b /* Pixel delay after HREF */
100 #define REG_MIDH 0x1c /* Manuf. ID high */
101 #define REG_MIDL 0x1d /* Manuf. ID low */
102 #define REG_MVFP 0x1e /* Mirror / vflip */
103 #define MVFP_MIRROR 0x20 /* Mirror image */
104 #define MVFP_FLIP 0x10 /* Vertical flip */
105
106 #define REG_AEW 0x24 /* AGC upper limit */
107 #define REG_AEB 0x25 /* AGC lower limit */
108 #define REG_VPT 0x26 /* AGC/AEC fast mode op region */
109 #define REG_HSYST 0x30 /* HSYNC rising edge delay */
110 #define REG_HSYEN 0x31 /* HSYNC falling edge delay */
111 #define REG_HREF 0x32 /* HREF pieces */
112 #define REG_TSLB 0x3a /* lots of stuff */
113 #define TSLB_YLAST 0x04 /* UYVY or VYUY - see com13 */
114 #define REG_COM11 0x3b /* Control 11 */
115 #define COM11_NIGHT 0x80 /* NIght mode enable */
116 #define COM11_NMFR 0x60 /* Two bit NM frame rate */
117 #define COM11_HZAUTO 0x10 /* Auto detect 50/60 Hz */
118 #define COM11_50HZ 0x08 /* Manual 50Hz select */
119 #define COM11_EXP 0x02
120 #define REG_COM12 0x3c /* Control 12 */
121 #define COM12_HREF 0x80 /* HREF always */
122 #define REG_COM13 0x3d /* Control 13 */
123 #define COM13_GAMMA 0x80 /* Gamma enable */
124 #define COM13_UVSAT 0x40 /* UV saturation auto adjustment */
125 #define COM13_UVSWAP 0x01 /* V before U - w/TSLB */
126 #define REG_COM14 0x3e /* Control 14 */
127 #define COM14_DCWEN 0x10 /* DCW/PCLK-scale enable */
128 #define REG_EDGE 0x3f /* Edge enhancement factor */
129 #define REG_COM15 0x40 /* Control 15 */
130 #define COM15_R10F0 0x00 /* Data range 10 to F0 */
131 #define COM15_R01FE 0x80 /* 01 to FE */
132 #define COM15_R00FF 0xc0 /* 00 to FF */
133 #define COM15_RGB565 0x10 /* RGB565 output */
134 #define COM15_RGB555 0x30 /* RGB555 output */
135 #define REG_COM16 0x41 /* Control 16 */
136 #define COM16_AWBGAIN 0x08 /* AWB gain enable */
137 #define REG_COM17 0x42 /* Control 17 */
138 #define COM17_AECWIN 0xc0 /* AEC window - must match COM4 */
139 #define COM17_CBAR 0x08 /* DSP Color bar */
140
141 /*
142 * This matrix defines how the colors are generated, must be
143 * tweaked to adjust hue and saturation.
144 *
145 * Order: v-red, v-green, v-blue, u-red, u-green, u-blue
146 *
147 * They are nine-bit signed quantities, with the sign bit
148 * stored in 0x58. Sign for v-red is bit 0, and up from there.
149 */
150 #define REG_CMATRIX_BASE 0x4f
151 #define CMATRIX_LEN 6
152 #define REG_CMATRIX_SIGN 0x58
153
154
155 #define REG_BRIGHT 0x55 /* Brightness */
156 #define REG_CONTRAS 0x56 /* Contrast control */
157
158 #define REG_GFIX 0x69 /* Fix gain control */
159
160 #define REG_DBLV 0x6b /* PLL control an debugging */
161 #define DBLV_BYPASS 0x0a /* Bypass PLL */
162 #define DBLV_X4 0x4a /* clock x4 */
163 #define DBLV_X6 0x8a /* clock x6 */
164 #define DBLV_X8 0xca /* clock x8 */
165
166 #define REG_SCALING_XSC 0x70 /* Test pattern and horizontal scale factor */
167 #define TEST_PATTTERN_0 0x80
168 #define REG_SCALING_YSC 0x71 /* Test pattern and vertical scale factor */
169 #define TEST_PATTTERN_1 0x80
170
171 #define REG_REG76 0x76 /* OV's name */
172 #define R76_BLKPCOR 0x80 /* Black pixel correction enable */
173 #define R76_WHTPCOR 0x40 /* White pixel correction enable */
174
175 #define REG_RGB444 0x8c /* RGB 444 control */
176 #define R444_ENABLE 0x02 /* Turn on RGB444, overrides 5x5 */
177 #define R444_RGBX 0x01 /* Empty nibble at end */
178
179 #define REG_HAECC1 0x9f /* Hist AEC/AGC control 1 */
180 #define REG_HAECC2 0xa0 /* Hist AEC/AGC control 2 */
181
182 #define REG_BD50MAX 0xa5 /* 50hz banding step limit */
183 #define REG_HAECC3 0xa6 /* Hist AEC/AGC control 3 */
184 #define REG_HAECC4 0xa7 /* Hist AEC/AGC control 4 */
185 #define REG_HAECC5 0xa8 /* Hist AEC/AGC control 5 */
186 #define REG_HAECC6 0xa9 /* Hist AEC/AGC control 6 */
187 #define REG_HAECC7 0xaa /* Hist AEC/AGC control 7 */
188 #define REG_BD60MAX 0xab /* 60hz banding step limit */
189
190 struct ov7670_win_size {
191 int width;
192 int height;
193 unsigned char com7_bit;
194 int hstart; /* Start/stop values for the camera. Note */
195 int hstop; /* that they do not always make complete */
196 int vstart; /* sense to humans, but evidently the sensor */
197 int vstop; /* will do the right thing... */
198 struct regval_list *regs; /* Regs to tweak */
199 };
200
201 struct ov7670_devtype {
202 /* formats supported for each model */
203 struct ov7670_win_size *win_sizes;
204 unsigned int n_win_sizes;
205 /* callbacks for frame rate control */
206 int (*set_framerate)(struct v4l2_subdev *, struct v4l2_fract *);
207 void (*get_framerate)(struct v4l2_subdev *, struct v4l2_fract *);
208 };
209
210 /*
211 * Information we maintain about a known sensor.
212 */
213 struct ov7670_format_struct; /* coming later */
214 struct ov7670_info {
215 struct v4l2_subdev sd;
216 struct media_pad pad;
217 struct v4l2_ctrl_handler hdl;
218 struct {
219 /* gain cluster */
220 struct v4l2_ctrl *auto_gain;
221 struct v4l2_ctrl *gain;
222 };
223 struct {
224 /* exposure cluster */
225 struct v4l2_ctrl *auto_exposure;
226 struct v4l2_ctrl *exposure;
227 };
228 struct {
229 /* saturation/hue cluster */
230 struct v4l2_ctrl *saturation;
231 struct v4l2_ctrl *hue;
232 };
233 struct v4l2_mbus_framefmt format;
234 struct ov7670_format_struct *fmt; /* Current format */
235 struct ov7670_win_size *wsize;
236 struct clk *clk;
237 int on;
238 struct gpio_desc *resetb_gpio;
239 struct gpio_desc *pwdn_gpio;
240 unsigned int mbus_config; /* Media bus configuration flags */
241 int min_width; /* Filter out smaller sizes */
242 int min_height; /* Filter out smaller sizes */
243 int clock_speed; /* External clock speed (MHz) */
244 u8 clkrc; /* Clock divider value */
245 bool use_smbus; /* Use smbus I/O instead of I2C */
246 bool pll_bypass;
247 bool pclk_hb_disable;
248 const struct ov7670_devtype *devtype; /* Device specifics */
249 };
250
to_state(struct v4l2_subdev * sd)251 static inline struct ov7670_info *to_state(struct v4l2_subdev *sd)
252 {
253 return container_of(sd, struct ov7670_info, sd);
254 }
255
to_sd(struct v4l2_ctrl * ctrl)256 static inline struct v4l2_subdev *to_sd(struct v4l2_ctrl *ctrl)
257 {
258 return &container_of(ctrl->handler, struct ov7670_info, hdl)->sd;
259 }
260
261
262
263 /*
264 * The default register settings, as obtained from OmniVision. There
265 * is really no making sense of most of these - lots of "reserved" values
266 * and such.
267 *
268 * These settings give VGA YUYV.
269 */
270
271 struct regval_list {
272 unsigned char reg_num;
273 unsigned char value;
274 };
275
276 static struct regval_list ov7670_default_regs[] = {
277 { REG_COM7, COM7_RESET },
278 /*
279 * Clock scale: 3 = 15fps
280 * 2 = 20fps
281 * 1 = 30fps
282 */
283 { REG_CLKRC, 0x1 }, /* OV: clock scale (30 fps) */
284 { REG_TSLB, 0x04 }, /* OV */
285 { REG_COM7, 0 }, /* VGA */
286 /*
287 * Set the hardware window. These values from OV don't entirely
288 * make sense - hstop is less than hstart. But they work...
289 */
290 { REG_HSTART, 0x13 }, { REG_HSTOP, 0x01 },
291 { REG_HREF, 0xb6 }, { REG_VSTART, 0x02 },
292 { REG_VSTOP, 0x7a }, { REG_VREF, 0x0a },
293
294 { REG_COM3, 0 }, { REG_COM14, 0 },
295 /* Mystery scaling numbers */
296 { REG_SCALING_XSC, 0x3a },
297 { REG_SCALING_YSC, 0x35 },
298 { 0x72, 0x11 }, { 0x73, 0xf0 },
299 { 0xa2, 0x02 }, { REG_COM10, 0x0 },
300
301 /* Gamma curve values */
302 { 0x7a, 0x20 }, { 0x7b, 0x10 },
303 { 0x7c, 0x1e }, { 0x7d, 0x35 },
304 { 0x7e, 0x5a }, { 0x7f, 0x69 },
305 { 0x80, 0x76 }, { 0x81, 0x80 },
306 { 0x82, 0x88 }, { 0x83, 0x8f },
307 { 0x84, 0x96 }, { 0x85, 0xa3 },
308 { 0x86, 0xaf }, { 0x87, 0xc4 },
309 { 0x88, 0xd7 }, { 0x89, 0xe8 },
310
311 /* AGC and AEC parameters. Note we start by disabling those features,
312 then turn them only after tweaking the values. */
313 { REG_COM8, COM8_FASTAEC | COM8_AECSTEP | COM8_BFILT },
314 { REG_GAIN, 0 }, { REG_AECH, 0 },
315 { REG_COM4, 0x40 }, /* magic reserved bit */
316 { REG_COM9, 0x18 }, /* 4x gain + magic rsvd bit */
317 { REG_BD50MAX, 0x05 }, { REG_BD60MAX, 0x07 },
318 { REG_AEW, 0x95 }, { REG_AEB, 0x33 },
319 { REG_VPT, 0xe3 }, { REG_HAECC1, 0x78 },
320 { REG_HAECC2, 0x68 }, { 0xa1, 0x03 }, /* magic */
321 { REG_HAECC3, 0xd8 }, { REG_HAECC4, 0xd8 },
322 { REG_HAECC5, 0xf0 }, { REG_HAECC6, 0x90 },
323 { REG_HAECC7, 0x94 },
324 { REG_COM8, COM8_FASTAEC|COM8_AECSTEP|COM8_BFILT|COM8_AGC|COM8_AEC },
325
326 /* Almost all of these are magic "reserved" values. */
327 { REG_COM5, 0x61 }, { REG_COM6, 0x4b },
328 { 0x16, 0x02 }, { REG_MVFP, 0x07 },
329 { 0x21, 0x02 }, { 0x22, 0x91 },
330 { 0x29, 0x07 }, { 0x33, 0x0b },
331 { 0x35, 0x0b }, { 0x37, 0x1d },
332 { 0x38, 0x71 }, { 0x39, 0x2a },
333 { REG_COM12, 0x78 }, { 0x4d, 0x40 },
334 { 0x4e, 0x20 }, { REG_GFIX, 0 },
335 { 0x6b, 0x4a }, { 0x74, 0x10 },
336 { 0x8d, 0x4f }, { 0x8e, 0 },
337 { 0x8f, 0 }, { 0x90, 0 },
338 { 0x91, 0 }, { 0x96, 0 },
339 { 0x9a, 0 }, { 0xb0, 0x84 },
340 { 0xb1, 0x0c }, { 0xb2, 0x0e },
341 { 0xb3, 0x82 }, { 0xb8, 0x0a },
342
343 /* More reserved magic, some of which tweaks white balance */
344 { 0x43, 0x0a }, { 0x44, 0xf0 },
345 { 0x45, 0x34 }, { 0x46, 0x58 },
346 { 0x47, 0x28 }, { 0x48, 0x3a },
347 { 0x59, 0x88 }, { 0x5a, 0x88 },
348 { 0x5b, 0x44 }, { 0x5c, 0x67 },
349 { 0x5d, 0x49 }, { 0x5e, 0x0e },
350 { 0x6c, 0x0a }, { 0x6d, 0x55 },
351 { 0x6e, 0x11 }, { 0x6f, 0x9f }, /* "9e for advance AWB" */
352 { 0x6a, 0x40 }, { REG_BLUE, 0x40 },
353 { REG_RED, 0x60 },
354 { REG_COM8, COM8_FASTAEC|COM8_AECSTEP|COM8_BFILT|COM8_AGC|COM8_AEC|COM8_AWB },
355
356 /* Matrix coefficients */
357 { 0x4f, 0x80 }, { 0x50, 0x80 },
358 { 0x51, 0 }, { 0x52, 0x22 },
359 { 0x53, 0x5e }, { 0x54, 0x80 },
360 { 0x58, 0x9e },
361
362 { REG_COM16, COM16_AWBGAIN }, { REG_EDGE, 0 },
363 { 0x75, 0x05 }, { 0x76, 0xe1 },
364 { 0x4c, 0 }, { 0x77, 0x01 },
365 { REG_COM13, 0xc3 }, { 0x4b, 0x09 },
366 { 0xc9, 0x60 }, { REG_COM16, 0x38 },
367 { 0x56, 0x40 },
368
369 { 0x34, 0x11 }, { REG_COM11, COM11_EXP|COM11_HZAUTO },
370 { 0xa4, 0x88 }, { 0x96, 0 },
371 { 0x97, 0x30 }, { 0x98, 0x20 },
372 { 0x99, 0x30 }, { 0x9a, 0x84 },
373 { 0x9b, 0x29 }, { 0x9c, 0x03 },
374 { 0x9d, 0x4c }, { 0x9e, 0x3f },
375 { 0x78, 0x04 },
376
377 /* Extra-weird stuff. Some sort of multiplexor register */
378 { 0x79, 0x01 }, { 0xc8, 0xf0 },
379 { 0x79, 0x0f }, { 0xc8, 0x00 },
380 { 0x79, 0x10 }, { 0xc8, 0x7e },
381 { 0x79, 0x0a }, { 0xc8, 0x80 },
382 { 0x79, 0x0b }, { 0xc8, 0x01 },
383 { 0x79, 0x0c }, { 0xc8, 0x0f },
384 { 0x79, 0x0d }, { 0xc8, 0x20 },
385 { 0x79, 0x09 }, { 0xc8, 0x80 },
386 { 0x79, 0x02 }, { 0xc8, 0xc0 },
387 { 0x79, 0x03 }, { 0xc8, 0x40 },
388 { 0x79, 0x05 }, { 0xc8, 0x30 },
389 { 0x79, 0x26 },
390
391 { 0xff, 0xff }, /* END MARKER */
392 };
393
394
395 /*
396 * Here we'll try to encapsulate the changes for just the output
397 * video format.
398 *
399 * RGB656 and YUV422 come from OV; RGB444 is homebrewed.
400 *
401 * IMPORTANT RULE: the first entry must be for COM7, see ov7670_s_fmt for why.
402 */
403
404
405 static struct regval_list ov7670_fmt_yuv422[] = {
406 { REG_COM7, 0x0 }, /* Selects YUV mode */
407 { REG_RGB444, 0 }, /* No RGB444 please */
408 { REG_COM1, 0 }, /* CCIR601 */
409 { REG_COM15, COM15_R00FF },
410 { REG_COM9, 0x48 }, /* 32x gain ceiling; 0x8 is reserved bit */
411 { 0x4f, 0x80 }, /* "matrix coefficient 1" */
412 { 0x50, 0x80 }, /* "matrix coefficient 2" */
413 { 0x51, 0 }, /* vb */
414 { 0x52, 0x22 }, /* "matrix coefficient 4" */
415 { 0x53, 0x5e }, /* "matrix coefficient 5" */
416 { 0x54, 0x80 }, /* "matrix coefficient 6" */
417 { REG_COM13, COM13_GAMMA|COM13_UVSAT },
418 { 0xff, 0xff },
419 };
420
421 static struct regval_list ov7670_fmt_rgb565[] = {
422 { REG_COM7, COM7_RGB }, /* Selects RGB mode */
423 { REG_RGB444, 0 }, /* No RGB444 please */
424 { REG_COM1, 0x0 }, /* CCIR601 */
425 { REG_COM15, COM15_RGB565 },
426 { REG_COM9, 0x38 }, /* 16x gain ceiling; 0x8 is reserved bit */
427 { 0x4f, 0xb3 }, /* "matrix coefficient 1" */
428 { 0x50, 0xb3 }, /* "matrix coefficient 2" */
429 { 0x51, 0 }, /* vb */
430 { 0x52, 0x3d }, /* "matrix coefficient 4" */
431 { 0x53, 0xa7 }, /* "matrix coefficient 5" */
432 { 0x54, 0xe4 }, /* "matrix coefficient 6" */
433 { REG_COM13, COM13_GAMMA|COM13_UVSAT },
434 { 0xff, 0xff },
435 };
436
437 static struct regval_list ov7670_fmt_rgb444[] = {
438 { REG_COM7, COM7_RGB }, /* Selects RGB mode */
439 { REG_RGB444, R444_ENABLE }, /* Enable xxxxrrrr ggggbbbb */
440 { REG_COM1, 0x0 }, /* CCIR601 */
441 { REG_COM15, COM15_R01FE|COM15_RGB565 }, /* Data range needed? */
442 { REG_COM9, 0x38 }, /* 16x gain ceiling; 0x8 is reserved bit */
443 { 0x4f, 0xb3 }, /* "matrix coefficient 1" */
444 { 0x50, 0xb3 }, /* "matrix coefficient 2" */
445 { 0x51, 0 }, /* vb */
446 { 0x52, 0x3d }, /* "matrix coefficient 4" */
447 { 0x53, 0xa7 }, /* "matrix coefficient 5" */
448 { 0x54, 0xe4 }, /* "matrix coefficient 6" */
449 { REG_COM13, COM13_GAMMA|COM13_UVSAT|0x2 }, /* Magic rsvd bit */
450 { 0xff, 0xff },
451 };
452
453 static struct regval_list ov7670_fmt_raw[] = {
454 { REG_COM7, COM7_BAYER },
455 { REG_COM13, 0x08 }, /* No gamma, magic rsvd bit */
456 { REG_COM16, 0x3d }, /* Edge enhancement, denoise */
457 { REG_REG76, 0xe1 }, /* Pix correction, magic rsvd */
458 { 0xff, 0xff },
459 };
460
461
462
463 /*
464 * Low-level register I/O.
465 *
466 * Note that there are two versions of these. On the XO 1, the
467 * i2c controller only does SMBUS, so that's what we use. The
468 * ov7670 is not really an SMBUS device, though, so the communication
469 * is not always entirely reliable.
470 */
ov7670_read_smbus(struct v4l2_subdev * sd,unsigned char reg,unsigned char * value)471 static int ov7670_read_smbus(struct v4l2_subdev *sd, unsigned char reg,
472 unsigned char *value)
473 {
474 struct i2c_client *client = v4l2_get_subdevdata(sd);
475 int ret;
476
477 ret = i2c_smbus_read_byte_data(client, reg);
478 if (ret >= 0) {
479 *value = (unsigned char)ret;
480 ret = 0;
481 }
482 return ret;
483 }
484
485
ov7670_write_smbus(struct v4l2_subdev * sd,unsigned char reg,unsigned char value)486 static int ov7670_write_smbus(struct v4l2_subdev *sd, unsigned char reg,
487 unsigned char value)
488 {
489 struct i2c_client *client = v4l2_get_subdevdata(sd);
490 int ret = i2c_smbus_write_byte_data(client, reg, value);
491
492 if (reg == REG_COM7 && (value & COM7_RESET))
493 msleep(5); /* Wait for reset to run */
494 return ret;
495 }
496
497 /*
498 * On most platforms, we'd rather do straight i2c I/O.
499 */
ov7670_read_i2c(struct v4l2_subdev * sd,unsigned char reg,unsigned char * value)500 static int ov7670_read_i2c(struct v4l2_subdev *sd, unsigned char reg,
501 unsigned char *value)
502 {
503 struct i2c_client *client = v4l2_get_subdevdata(sd);
504 u8 data = reg;
505 struct i2c_msg msg;
506 int ret;
507
508 /*
509 * Send out the register address...
510 */
511 msg.addr = client->addr;
512 msg.flags = 0;
513 msg.len = 1;
514 msg.buf = &data;
515 ret = i2c_transfer(client->adapter, &msg, 1);
516 if (ret < 0) {
517 printk(KERN_ERR "Error %d on register write\n", ret);
518 return ret;
519 }
520 /*
521 * ...then read back the result.
522 */
523 msg.flags = I2C_M_RD;
524 ret = i2c_transfer(client->adapter, &msg, 1);
525 if (ret >= 0) {
526 *value = data;
527 ret = 0;
528 }
529 return ret;
530 }
531
532
ov7670_write_i2c(struct v4l2_subdev * sd,unsigned char reg,unsigned char value)533 static int ov7670_write_i2c(struct v4l2_subdev *sd, unsigned char reg,
534 unsigned char value)
535 {
536 struct i2c_client *client = v4l2_get_subdevdata(sd);
537 struct i2c_msg msg;
538 unsigned char data[2] = { reg, value };
539 int ret;
540
541 msg.addr = client->addr;
542 msg.flags = 0;
543 msg.len = 2;
544 msg.buf = data;
545 ret = i2c_transfer(client->adapter, &msg, 1);
546 if (ret > 0)
547 ret = 0;
548 if (reg == REG_COM7 && (value & COM7_RESET))
549 msleep(5); /* Wait for reset to run */
550 return ret;
551 }
552
ov7670_read(struct v4l2_subdev * sd,unsigned char reg,unsigned char * value)553 static int ov7670_read(struct v4l2_subdev *sd, unsigned char reg,
554 unsigned char *value)
555 {
556 struct ov7670_info *info = to_state(sd);
557
558 if (info->use_smbus)
559 return ov7670_read_smbus(sd, reg, value);
560 else
561 return ov7670_read_i2c(sd, reg, value);
562 }
563
ov7670_write(struct v4l2_subdev * sd,unsigned char reg,unsigned char value)564 static int ov7670_write(struct v4l2_subdev *sd, unsigned char reg,
565 unsigned char value)
566 {
567 struct ov7670_info *info = to_state(sd);
568
569 if (info->use_smbus)
570 return ov7670_write_smbus(sd, reg, value);
571 else
572 return ov7670_write_i2c(sd, reg, value);
573 }
574
ov7670_update_bits(struct v4l2_subdev * sd,unsigned char reg,unsigned char mask,unsigned char value)575 static int ov7670_update_bits(struct v4l2_subdev *sd, unsigned char reg,
576 unsigned char mask, unsigned char value)
577 {
578 unsigned char orig;
579 int ret;
580
581 ret = ov7670_read(sd, reg, &orig);
582 if (ret)
583 return ret;
584
585 return ov7670_write(sd, reg, (orig & ~mask) | (value & mask));
586 }
587
588 /*
589 * Write a list of register settings; ff/ff stops the process.
590 */
ov7670_write_array(struct v4l2_subdev * sd,struct regval_list * vals)591 static int ov7670_write_array(struct v4l2_subdev *sd, struct regval_list *vals)
592 {
593 while (vals->reg_num != 0xff || vals->value != 0xff) {
594 int ret = ov7670_write(sd, vals->reg_num, vals->value);
595
596 if (ret < 0)
597 return ret;
598 vals++;
599 }
600 return 0;
601 }
602
603
604 /*
605 * Stuff that knows about the sensor.
606 */
ov7670_reset(struct v4l2_subdev * sd,u32 val)607 static int ov7670_reset(struct v4l2_subdev *sd, u32 val)
608 {
609 ov7670_write(sd, REG_COM7, COM7_RESET);
610 msleep(1);
611 return 0;
612 }
613
614
ov7670_init(struct v4l2_subdev * sd,u32 val)615 static int ov7670_init(struct v4l2_subdev *sd, u32 val)
616 {
617 return ov7670_write_array(sd, ov7670_default_regs);
618 }
619
ov7670_detect(struct v4l2_subdev * sd)620 static int ov7670_detect(struct v4l2_subdev *sd)
621 {
622 unsigned char v;
623 int ret;
624
625 ret = ov7670_init(sd, 0);
626 if (ret < 0)
627 return ret;
628 ret = ov7670_read(sd, REG_MIDH, &v);
629 if (ret < 0)
630 return ret;
631 if (v != 0x7f) /* OV manuf. id. */
632 return -ENODEV;
633 ret = ov7670_read(sd, REG_MIDL, &v);
634 if (ret < 0)
635 return ret;
636 if (v != 0xa2)
637 return -ENODEV;
638 /*
639 * OK, we know we have an OmniVision chip...but which one?
640 */
641 ret = ov7670_read(sd, REG_PID, &v);
642 if (ret < 0)
643 return ret;
644 if (v != 0x76) /* PID + VER = 0x76 / 0x73 */
645 return -ENODEV;
646 ret = ov7670_read(sd, REG_VER, &v);
647 if (ret < 0)
648 return ret;
649 if (v != 0x73) /* PID + VER = 0x76 / 0x73 */
650 return -ENODEV;
651 return 0;
652 }
653
654
655 /*
656 * Store information about the video data format. The color matrix
657 * is deeply tied into the format, so keep the relevant values here.
658 * The magic matrix numbers come from OmniVision.
659 */
660 static struct ov7670_format_struct {
661 u32 mbus_code;
662 enum v4l2_colorspace colorspace;
663 struct regval_list *regs;
664 int cmatrix[CMATRIX_LEN];
665 } ov7670_formats[] = {
666 {
667 .mbus_code = MEDIA_BUS_FMT_YUYV8_2X8,
668 .colorspace = V4L2_COLORSPACE_SRGB,
669 .regs = ov7670_fmt_yuv422,
670 .cmatrix = { 128, -128, 0, -34, -94, 128 },
671 },
672 {
673 .mbus_code = MEDIA_BUS_FMT_RGB444_2X8_PADHI_LE,
674 .colorspace = V4L2_COLORSPACE_SRGB,
675 .regs = ov7670_fmt_rgb444,
676 .cmatrix = { 179, -179, 0, -61, -176, 228 },
677 },
678 {
679 .mbus_code = MEDIA_BUS_FMT_RGB565_2X8_LE,
680 .colorspace = V4L2_COLORSPACE_SRGB,
681 .regs = ov7670_fmt_rgb565,
682 .cmatrix = { 179, -179, 0, -61, -176, 228 },
683 },
684 {
685 .mbus_code = MEDIA_BUS_FMT_SBGGR8_1X8,
686 .colorspace = V4L2_COLORSPACE_SRGB,
687 .regs = ov7670_fmt_raw,
688 .cmatrix = { 0, 0, 0, 0, 0, 0 },
689 },
690 };
691 #define N_OV7670_FMTS ARRAY_SIZE(ov7670_formats)
692
693
694 /*
695 * Then there is the issue of window sizes. Try to capture the info here.
696 */
697
698 /*
699 * QCIF mode is done (by OV) in a very strange way - it actually looks like
700 * VGA with weird scaling options - they do *not* use the canned QCIF mode
701 * which is allegedly provided by the sensor. So here's the weird register
702 * settings.
703 */
704 static struct regval_list ov7670_qcif_regs[] = {
705 { REG_COM3, COM3_SCALEEN|COM3_DCWEN },
706 { REG_COM3, COM3_DCWEN },
707 { REG_COM14, COM14_DCWEN | 0x01},
708 { 0x73, 0xf1 },
709 { 0xa2, 0x52 },
710 { 0x7b, 0x1c },
711 { 0x7c, 0x28 },
712 { 0x7d, 0x3c },
713 { 0x7f, 0x69 },
714 { REG_COM9, 0x38 },
715 { 0xa1, 0x0b },
716 { 0x74, 0x19 },
717 { 0x9a, 0x80 },
718 { 0x43, 0x14 },
719 { REG_COM13, 0xc0 },
720 { 0xff, 0xff },
721 };
722
723 static struct ov7670_win_size ov7670_win_sizes[] = {
724 /* VGA */
725 {
726 .width = VGA_WIDTH,
727 .height = VGA_HEIGHT,
728 .com7_bit = COM7_FMT_VGA,
729 .hstart = 158, /* These values from */
730 .hstop = 14, /* Omnivision */
731 .vstart = 10,
732 .vstop = 490,
733 .regs = NULL,
734 },
735 /* CIF */
736 {
737 .width = CIF_WIDTH,
738 .height = CIF_HEIGHT,
739 .com7_bit = COM7_FMT_CIF,
740 .hstart = 170, /* Empirically determined */
741 .hstop = 90,
742 .vstart = 14,
743 .vstop = 494,
744 .regs = NULL,
745 },
746 /* QVGA */
747 {
748 .width = QVGA_WIDTH,
749 .height = QVGA_HEIGHT,
750 .com7_bit = COM7_FMT_QVGA,
751 .hstart = 168, /* Empirically determined */
752 .hstop = 24,
753 .vstart = 12,
754 .vstop = 492,
755 .regs = NULL,
756 },
757 /* QCIF */
758 {
759 .width = QCIF_WIDTH,
760 .height = QCIF_HEIGHT,
761 .com7_bit = COM7_FMT_VGA, /* see comment above */
762 .hstart = 456, /* Empirically determined */
763 .hstop = 24,
764 .vstart = 14,
765 .vstop = 494,
766 .regs = ov7670_qcif_regs,
767 }
768 };
769
770 static struct ov7670_win_size ov7675_win_sizes[] = {
771 /*
772 * Currently, only VGA is supported. Theoretically it could be possible
773 * to support CIF, QVGA and QCIF too. Taking values for ov7670 as a
774 * base and tweak them empirically could be required.
775 */
776 {
777 .width = VGA_WIDTH,
778 .height = VGA_HEIGHT,
779 .com7_bit = COM7_FMT_VGA,
780 .hstart = 158, /* These values from */
781 .hstop = 14, /* Omnivision */
782 .vstart = 14, /* Empirically determined */
783 .vstop = 494,
784 .regs = NULL,
785 }
786 };
787
ov7675_get_framerate(struct v4l2_subdev * sd,struct v4l2_fract * tpf)788 static void ov7675_get_framerate(struct v4l2_subdev *sd,
789 struct v4l2_fract *tpf)
790 {
791 struct ov7670_info *info = to_state(sd);
792 u32 clkrc = info->clkrc;
793 int pll_factor;
794
795 if (info->pll_bypass)
796 pll_factor = 1;
797 else
798 pll_factor = PLL_FACTOR;
799
800 clkrc++;
801 if (info->fmt->mbus_code == MEDIA_BUS_FMT_SBGGR8_1X8)
802 clkrc = (clkrc >> 1);
803
804 tpf->numerator = 1;
805 tpf->denominator = (5 * pll_factor * info->clock_speed) /
806 (4 * clkrc);
807 }
808
ov7675_apply_framerate(struct v4l2_subdev * sd)809 static int ov7675_apply_framerate(struct v4l2_subdev *sd)
810 {
811 struct ov7670_info *info = to_state(sd);
812 int ret;
813
814 ret = ov7670_write(sd, REG_CLKRC, info->clkrc);
815 if (ret < 0)
816 return ret;
817
818 return ov7670_write(sd, REG_DBLV,
819 info->pll_bypass ? DBLV_BYPASS : DBLV_X4);
820 }
821
ov7675_set_framerate(struct v4l2_subdev * sd,struct v4l2_fract * tpf)822 static int ov7675_set_framerate(struct v4l2_subdev *sd,
823 struct v4l2_fract *tpf)
824 {
825 struct ov7670_info *info = to_state(sd);
826 u32 clkrc;
827 int pll_factor;
828
829 /*
830 * The formula is fps = 5/4*pixclk for YUV/RGB and
831 * fps = 5/2*pixclk for RAW.
832 *
833 * pixclk = clock_speed / (clkrc + 1) * PLLfactor
834 *
835 */
836 if (tpf->numerator == 0 || tpf->denominator == 0) {
837 clkrc = 0;
838 } else {
839 pll_factor = info->pll_bypass ? 1 : PLL_FACTOR;
840 clkrc = (5 * pll_factor * info->clock_speed * tpf->numerator) /
841 (4 * tpf->denominator);
842 if (info->fmt->mbus_code == MEDIA_BUS_FMT_SBGGR8_1X8)
843 clkrc = (clkrc << 1);
844 clkrc--;
845 }
846
847 /*
848 * The datasheet claims that clkrc = 0 will divide the input clock by 1
849 * but we've checked with an oscilloscope that it divides by 2 instead.
850 * So, if clkrc = 0 just bypass the divider.
851 */
852 if (clkrc <= 0)
853 clkrc = CLK_EXT;
854 else if (clkrc > CLK_SCALE)
855 clkrc = CLK_SCALE;
856 info->clkrc = clkrc;
857
858 /* Recalculate frame rate */
859 ov7675_get_framerate(sd, tpf);
860
861 /*
862 * If the device is not powered up by the host driver do
863 * not apply any changes to H/W at this time. Instead
864 * the framerate will be restored right after power-up.
865 */
866 if (info->on)
867 return ov7675_apply_framerate(sd);
868
869 return 0;
870 }
871
ov7670_get_framerate_legacy(struct v4l2_subdev * sd,struct v4l2_fract * tpf)872 static void ov7670_get_framerate_legacy(struct v4l2_subdev *sd,
873 struct v4l2_fract *tpf)
874 {
875 struct ov7670_info *info = to_state(sd);
876
877 tpf->numerator = 1;
878 tpf->denominator = info->clock_speed;
879 if ((info->clkrc & CLK_EXT) == 0 && (info->clkrc & CLK_SCALE) > 1)
880 tpf->denominator /= (info->clkrc & CLK_SCALE);
881 }
882
ov7670_set_framerate_legacy(struct v4l2_subdev * sd,struct v4l2_fract * tpf)883 static int ov7670_set_framerate_legacy(struct v4l2_subdev *sd,
884 struct v4l2_fract *tpf)
885 {
886 struct ov7670_info *info = to_state(sd);
887 int div;
888
889 if (tpf->numerator == 0 || tpf->denominator == 0)
890 div = 1; /* Reset to full rate */
891 else
892 div = (tpf->numerator * info->clock_speed) / tpf->denominator;
893 if (div == 0)
894 div = 1;
895 else if (div > CLK_SCALE)
896 div = CLK_SCALE;
897 info->clkrc = (info->clkrc & 0x80) | div;
898 tpf->numerator = 1;
899 tpf->denominator = info->clock_speed / div;
900
901 /*
902 * If the device is not powered up by the host driver do
903 * not apply any changes to H/W at this time. Instead
904 * the framerate will be restored right after power-up.
905 */
906 if (info->on)
907 return ov7670_write(sd, REG_CLKRC, info->clkrc);
908
909 return 0;
910 }
911
912 /*
913 * Store a set of start/stop values into the camera.
914 */
ov7670_set_hw(struct v4l2_subdev * sd,int hstart,int hstop,int vstart,int vstop)915 static int ov7670_set_hw(struct v4l2_subdev *sd, int hstart, int hstop,
916 int vstart, int vstop)
917 {
918 int ret;
919 unsigned char v;
920 /*
921 * Horizontal: 11 bits, top 8 live in hstart and hstop. Bottom 3 of
922 * hstart are in href[2:0], bottom 3 of hstop in href[5:3]. There is
923 * a mystery "edge offset" value in the top two bits of href.
924 */
925 ret = ov7670_write(sd, REG_HSTART, (hstart >> 3) & 0xff);
926 if (ret)
927 return ret;
928 ret = ov7670_write(sd, REG_HSTOP, (hstop >> 3) & 0xff);
929 if (ret)
930 return ret;
931 ret = ov7670_read(sd, REG_HREF, &v);
932 if (ret)
933 return ret;
934 v = (v & 0xc0) | ((hstop & 0x7) << 3) | (hstart & 0x7);
935 msleep(10);
936 ret = ov7670_write(sd, REG_HREF, v);
937 if (ret)
938 return ret;
939 /* Vertical: similar arrangement, but only 10 bits. */
940 ret = ov7670_write(sd, REG_VSTART, (vstart >> 2) & 0xff);
941 if (ret)
942 return ret;
943 ret = ov7670_write(sd, REG_VSTOP, (vstop >> 2) & 0xff);
944 if (ret)
945 return ret;
946 ret = ov7670_read(sd, REG_VREF, &v);
947 if (ret)
948 return ret;
949 v = (v & 0xf0) | ((vstop & 0x3) << 2) | (vstart & 0x3);
950 msleep(10);
951 return ov7670_write(sd, REG_VREF, v);
952 }
953
954
ov7670_enum_mbus_code(struct v4l2_subdev * sd,struct v4l2_subdev_state * sd_state,struct v4l2_subdev_mbus_code_enum * code)955 static int ov7670_enum_mbus_code(struct v4l2_subdev *sd,
956 struct v4l2_subdev_state *sd_state,
957 struct v4l2_subdev_mbus_code_enum *code)
958 {
959 if (code->pad || code->index >= N_OV7670_FMTS)
960 return -EINVAL;
961
962 code->code = ov7670_formats[code->index].mbus_code;
963 return 0;
964 }
965
ov7670_try_fmt_internal(struct v4l2_subdev * sd,struct v4l2_mbus_framefmt * fmt,struct ov7670_format_struct ** ret_fmt,struct ov7670_win_size ** ret_wsize)966 static int ov7670_try_fmt_internal(struct v4l2_subdev *sd,
967 struct v4l2_mbus_framefmt *fmt,
968 struct ov7670_format_struct **ret_fmt,
969 struct ov7670_win_size **ret_wsize)
970 {
971 int index, i;
972 struct ov7670_win_size *wsize;
973 struct ov7670_info *info = to_state(sd);
974 unsigned int n_win_sizes = info->devtype->n_win_sizes;
975 unsigned int win_sizes_limit = n_win_sizes;
976
977 for (index = 0; index < N_OV7670_FMTS; index++)
978 if (ov7670_formats[index].mbus_code == fmt->code)
979 break;
980 if (index >= N_OV7670_FMTS) {
981 /* default to first format */
982 index = 0;
983 fmt->code = ov7670_formats[0].mbus_code;
984 }
985 if (ret_fmt != NULL)
986 *ret_fmt = ov7670_formats + index;
987 /*
988 * Fields: the OV devices claim to be progressive.
989 */
990 fmt->field = V4L2_FIELD_NONE;
991
992 /*
993 * Don't consider values that don't match min_height and min_width
994 * constraints.
995 */
996 if (info->min_width || info->min_height)
997 for (i = 0; i < n_win_sizes; i++) {
998 wsize = info->devtype->win_sizes + i;
999
1000 if (wsize->width < info->min_width ||
1001 wsize->height < info->min_height) {
1002 win_sizes_limit = i;
1003 break;
1004 }
1005 }
1006 /*
1007 * Round requested image size down to the nearest
1008 * we support, but not below the smallest.
1009 */
1010 for (wsize = info->devtype->win_sizes;
1011 wsize < info->devtype->win_sizes + win_sizes_limit; wsize++)
1012 if (fmt->width >= wsize->width && fmt->height >= wsize->height)
1013 break;
1014 if (wsize >= info->devtype->win_sizes + win_sizes_limit)
1015 wsize--; /* Take the smallest one */
1016 if (ret_wsize != NULL)
1017 *ret_wsize = wsize;
1018 /*
1019 * Note the size we'll actually handle.
1020 */
1021 fmt->width = wsize->width;
1022 fmt->height = wsize->height;
1023 fmt->colorspace = ov7670_formats[index].colorspace;
1024
1025 info->format = *fmt;
1026
1027 return 0;
1028 }
1029
ov7670_apply_fmt(struct v4l2_subdev * sd)1030 static int ov7670_apply_fmt(struct v4l2_subdev *sd)
1031 {
1032 struct ov7670_info *info = to_state(sd);
1033 struct ov7670_win_size *wsize = info->wsize;
1034 unsigned char com7, com10 = 0;
1035 int ret;
1036
1037 /*
1038 * COM7 is a pain in the ass, it doesn't like to be read then
1039 * quickly written afterward. But we have everything we need
1040 * to set it absolutely here, as long as the format-specific
1041 * register sets list it first.
1042 */
1043 com7 = info->fmt->regs[0].value;
1044 com7 |= wsize->com7_bit;
1045 ret = ov7670_write(sd, REG_COM7, com7);
1046 if (ret)
1047 return ret;
1048
1049 /*
1050 * Configure the media bus through COM10 register
1051 */
1052 if (info->mbus_config & V4L2_MBUS_VSYNC_ACTIVE_LOW)
1053 com10 |= COM10_VS_NEG;
1054 if (info->mbus_config & V4L2_MBUS_HSYNC_ACTIVE_LOW)
1055 com10 |= COM10_HREF_REV;
1056 if (info->pclk_hb_disable)
1057 com10 |= COM10_PCLK_HB;
1058 ret = ov7670_write(sd, REG_COM10, com10);
1059 if (ret)
1060 return ret;
1061
1062 /*
1063 * Now write the rest of the array. Also store start/stops
1064 */
1065 ret = ov7670_write_array(sd, info->fmt->regs + 1);
1066 if (ret)
1067 return ret;
1068
1069 ret = ov7670_set_hw(sd, wsize->hstart, wsize->hstop, wsize->vstart,
1070 wsize->vstop);
1071 if (ret)
1072 return ret;
1073
1074 if (wsize->regs) {
1075 ret = ov7670_write_array(sd, wsize->regs);
1076 if (ret)
1077 return ret;
1078 }
1079
1080 /*
1081 * If we're running RGB565, we must rewrite clkrc after setting
1082 * the other parameters or the image looks poor. If we're *not*
1083 * doing RGB565, we must not rewrite clkrc or the image looks
1084 * *really* poor.
1085 *
1086 * (Update) Now that we retain clkrc state, we should be able
1087 * to write it unconditionally, and that will make the frame
1088 * rate persistent too.
1089 */
1090 ret = ov7670_write(sd, REG_CLKRC, info->clkrc);
1091 if (ret)
1092 return ret;
1093
1094 return 0;
1095 }
1096
1097 /*
1098 * Set a format.
1099 */
ov7670_set_fmt(struct v4l2_subdev * sd,struct v4l2_subdev_state * sd_state,struct v4l2_subdev_format * format)1100 static int ov7670_set_fmt(struct v4l2_subdev *sd,
1101 struct v4l2_subdev_state *sd_state,
1102 struct v4l2_subdev_format *format)
1103 {
1104 struct ov7670_info *info = to_state(sd);
1105 struct v4l2_mbus_framefmt *mbus_fmt;
1106 int ret;
1107
1108 if (format->pad)
1109 return -EINVAL;
1110
1111 if (format->which == V4L2_SUBDEV_FORMAT_TRY) {
1112 ret = ov7670_try_fmt_internal(sd, &format->format, NULL, NULL);
1113 if (ret)
1114 return ret;
1115 mbus_fmt = v4l2_subdev_state_get_format(sd_state, format->pad);
1116 *mbus_fmt = format->format;
1117 return 0;
1118 }
1119
1120 ret = ov7670_try_fmt_internal(sd, &format->format, &info->fmt, &info->wsize);
1121 if (ret)
1122 return ret;
1123
1124 /*
1125 * If the device is not powered up by the host driver do
1126 * not apply any changes to H/W at this time. Instead
1127 * the frame format will be restored right after power-up.
1128 */
1129 if (info->on)
1130 return ov7670_apply_fmt(sd);
1131
1132 return 0;
1133 }
1134
ov7670_get_fmt(struct v4l2_subdev * sd,struct v4l2_subdev_state * sd_state,struct v4l2_subdev_format * format)1135 static int ov7670_get_fmt(struct v4l2_subdev *sd,
1136 struct v4l2_subdev_state *sd_state,
1137 struct v4l2_subdev_format *format)
1138 {
1139 struct ov7670_info *info = to_state(sd);
1140 struct v4l2_mbus_framefmt *mbus_fmt;
1141
1142 if (format->which == V4L2_SUBDEV_FORMAT_TRY) {
1143 mbus_fmt = v4l2_subdev_state_get_format(sd_state, 0);
1144 format->format = *mbus_fmt;
1145 return 0;
1146 } else {
1147 format->format = info->format;
1148 }
1149
1150 return 0;
1151 }
1152
1153 /*
1154 * Implement G/S_PARM. There is a "high quality" mode we could try
1155 * to do someday; for now, we just do the frame rate tweak.
1156 */
ov7670_get_frame_interval(struct v4l2_subdev * sd,struct v4l2_subdev_state * sd_state,struct v4l2_subdev_frame_interval * ival)1157 static int ov7670_get_frame_interval(struct v4l2_subdev *sd,
1158 struct v4l2_subdev_state *sd_state,
1159 struct v4l2_subdev_frame_interval *ival)
1160 {
1161 struct ov7670_info *info = to_state(sd);
1162
1163 /*
1164 * FIXME: Implement support for V4L2_SUBDEV_FORMAT_TRY, using the V4L2
1165 * subdev active state API.
1166 */
1167 if (ival->which != V4L2_SUBDEV_FORMAT_ACTIVE)
1168 return -EINVAL;
1169
1170 info->devtype->get_framerate(sd, &ival->interval);
1171
1172 return 0;
1173 }
1174
ov7670_set_frame_interval(struct v4l2_subdev * sd,struct v4l2_subdev_state * sd_state,struct v4l2_subdev_frame_interval * ival)1175 static int ov7670_set_frame_interval(struct v4l2_subdev *sd,
1176 struct v4l2_subdev_state *sd_state,
1177 struct v4l2_subdev_frame_interval *ival)
1178 {
1179 struct v4l2_fract *tpf = &ival->interval;
1180 struct ov7670_info *info = to_state(sd);
1181
1182 /*
1183 * FIXME: Implement support for V4L2_SUBDEV_FORMAT_TRY, using the V4L2
1184 * subdev active state API.
1185 */
1186 if (ival->which != V4L2_SUBDEV_FORMAT_ACTIVE)
1187 return -EINVAL;
1188
1189 return info->devtype->set_framerate(sd, tpf);
1190 }
1191
1192
1193 /*
1194 * Frame intervals. Since frame rates are controlled with the clock
1195 * divider, we can only do 30/n for integer n values. So no continuous
1196 * or stepwise options. Here we just pick a handful of logical values.
1197 */
1198
1199 static int ov7670_frame_rates[] = { 30, 15, 10, 5, 1 };
1200
ov7670_enum_frame_interval(struct v4l2_subdev * sd,struct v4l2_subdev_state * sd_state,struct v4l2_subdev_frame_interval_enum * fie)1201 static int ov7670_enum_frame_interval(struct v4l2_subdev *sd,
1202 struct v4l2_subdev_state *sd_state,
1203 struct v4l2_subdev_frame_interval_enum *fie)
1204 {
1205 struct ov7670_info *info = to_state(sd);
1206 unsigned int n_win_sizes = info->devtype->n_win_sizes;
1207 int i;
1208
1209 if (fie->pad)
1210 return -EINVAL;
1211 if (fie->index >= ARRAY_SIZE(ov7670_frame_rates))
1212 return -EINVAL;
1213
1214 /*
1215 * Check if the width/height is valid.
1216 *
1217 * If a minimum width/height was requested, filter out the capture
1218 * windows that fall outside that.
1219 */
1220 for (i = 0; i < n_win_sizes; i++) {
1221 struct ov7670_win_size *win = &info->devtype->win_sizes[i];
1222
1223 if (info->min_width && win->width < info->min_width)
1224 continue;
1225 if (info->min_height && win->height < info->min_height)
1226 continue;
1227 if (fie->width == win->width && fie->height == win->height)
1228 break;
1229 }
1230 if (i == n_win_sizes)
1231 return -EINVAL;
1232 fie->interval.numerator = 1;
1233 fie->interval.denominator = ov7670_frame_rates[fie->index];
1234 return 0;
1235 }
1236
1237 /*
1238 * Frame size enumeration
1239 */
ov7670_enum_frame_size(struct v4l2_subdev * sd,struct v4l2_subdev_state * sd_state,struct v4l2_subdev_frame_size_enum * fse)1240 static int ov7670_enum_frame_size(struct v4l2_subdev *sd,
1241 struct v4l2_subdev_state *sd_state,
1242 struct v4l2_subdev_frame_size_enum *fse)
1243 {
1244 struct ov7670_info *info = to_state(sd);
1245 int i;
1246 int num_valid = -1;
1247 __u32 index = fse->index;
1248 unsigned int n_win_sizes = info->devtype->n_win_sizes;
1249
1250 if (fse->pad)
1251 return -EINVAL;
1252
1253 /*
1254 * If a minimum width/height was requested, filter out the capture
1255 * windows that fall outside that.
1256 */
1257 for (i = 0; i < n_win_sizes; i++) {
1258 struct ov7670_win_size *win = &info->devtype->win_sizes[i];
1259
1260 if (info->min_width && win->width < info->min_width)
1261 continue;
1262 if (info->min_height && win->height < info->min_height)
1263 continue;
1264 if (index == ++num_valid) {
1265 fse->min_width = fse->max_width = win->width;
1266 fse->min_height = fse->max_height = win->height;
1267 return 0;
1268 }
1269 }
1270
1271 return -EINVAL;
1272 }
1273
1274 /*
1275 * Code for dealing with controls.
1276 */
1277
ov7670_store_cmatrix(struct v4l2_subdev * sd,int matrix[CMATRIX_LEN])1278 static int ov7670_store_cmatrix(struct v4l2_subdev *sd,
1279 int matrix[CMATRIX_LEN])
1280 {
1281 int i, ret;
1282 unsigned char signbits = 0;
1283
1284 /*
1285 * Weird crap seems to exist in the upper part of
1286 * the sign bits register, so let's preserve it.
1287 */
1288 ret = ov7670_read(sd, REG_CMATRIX_SIGN, &signbits);
1289 signbits &= 0xc0;
1290
1291 for (i = 0; i < CMATRIX_LEN; i++) {
1292 unsigned char raw;
1293
1294 if (matrix[i] < 0) {
1295 signbits |= (1 << i);
1296 if (matrix[i] < -255)
1297 raw = 0xff;
1298 else
1299 raw = (-1 * matrix[i]) & 0xff;
1300 } else {
1301 if (matrix[i] > 255)
1302 raw = 0xff;
1303 else
1304 raw = matrix[i] & 0xff;
1305 }
1306 ret = ov7670_write(sd, REG_CMATRIX_BASE + i, raw);
1307 if (ret)
1308 return ret;
1309 }
1310 return ov7670_write(sd, REG_CMATRIX_SIGN, signbits);
1311 }
1312
1313
1314 /*
1315 * Hue also requires messing with the color matrix. It also requires
1316 * trig functions, which tend not to be well supported in the kernel.
1317 * So here is a simple table of sine values, 0-90 degrees, in steps
1318 * of five degrees. Values are multiplied by 1000.
1319 *
1320 * The following naive approximate trig functions require an argument
1321 * carefully limited to -180 <= theta <= 180.
1322 */
1323 #define SIN_STEP 5
1324 static const int ov7670_sin_table[] = {
1325 0, 87, 173, 258, 342, 422,
1326 499, 573, 642, 707, 766, 819,
1327 866, 906, 939, 965, 984, 996,
1328 1000
1329 };
1330
ov7670_sine(int theta)1331 static int ov7670_sine(int theta)
1332 {
1333 int chs = 1;
1334 int sine;
1335
1336 if (theta < 0) {
1337 theta = -theta;
1338 chs = -1;
1339 }
1340 if (theta <= 90)
1341 sine = ov7670_sin_table[theta/SIN_STEP];
1342 else {
1343 theta -= 90;
1344 sine = 1000 - ov7670_sin_table[theta/SIN_STEP];
1345 }
1346 return sine*chs;
1347 }
1348
ov7670_cosine(int theta)1349 static int ov7670_cosine(int theta)
1350 {
1351 theta = 90 - theta;
1352 if (theta > 180)
1353 theta -= 360;
1354 else if (theta < -180)
1355 theta += 360;
1356 return ov7670_sine(theta);
1357 }
1358
1359
1360
1361
ov7670_calc_cmatrix(struct ov7670_info * info,int matrix[CMATRIX_LEN],int sat,int hue)1362 static void ov7670_calc_cmatrix(struct ov7670_info *info,
1363 int matrix[CMATRIX_LEN], int sat, int hue)
1364 {
1365 int i;
1366 /*
1367 * Apply the current saturation setting first.
1368 */
1369 for (i = 0; i < CMATRIX_LEN; i++)
1370 matrix[i] = (info->fmt->cmatrix[i] * sat) >> 7;
1371 /*
1372 * Then, if need be, rotate the hue value.
1373 */
1374 if (hue != 0) {
1375 int sinth, costh, tmpmatrix[CMATRIX_LEN];
1376
1377 memcpy(tmpmatrix, matrix, CMATRIX_LEN*sizeof(int));
1378 sinth = ov7670_sine(hue);
1379 costh = ov7670_cosine(hue);
1380
1381 matrix[0] = (matrix[3]*sinth + matrix[0]*costh)/1000;
1382 matrix[1] = (matrix[4]*sinth + matrix[1]*costh)/1000;
1383 matrix[2] = (matrix[5]*sinth + matrix[2]*costh)/1000;
1384 matrix[3] = (matrix[3]*costh - matrix[0]*sinth)/1000;
1385 matrix[4] = (matrix[4]*costh - matrix[1]*sinth)/1000;
1386 matrix[5] = (matrix[5]*costh - matrix[2]*sinth)/1000;
1387 }
1388 }
1389
1390
1391
ov7670_s_sat_hue(struct v4l2_subdev * sd,int sat,int hue)1392 static int ov7670_s_sat_hue(struct v4l2_subdev *sd, int sat, int hue)
1393 {
1394 struct ov7670_info *info = to_state(sd);
1395 int matrix[CMATRIX_LEN];
1396
1397 ov7670_calc_cmatrix(info, matrix, sat, hue);
1398 return ov7670_store_cmatrix(sd, matrix);
1399 }
1400
1401
1402 /*
1403 * Some weird registers seem to store values in a sign/magnitude format!
1404 */
1405
ov7670_abs_to_sm(unsigned char v)1406 static unsigned char ov7670_abs_to_sm(unsigned char v)
1407 {
1408 if (v > 127)
1409 return v & 0x7f;
1410 return (128 - v) | 0x80;
1411 }
1412
ov7670_s_brightness(struct v4l2_subdev * sd,int value)1413 static int ov7670_s_brightness(struct v4l2_subdev *sd, int value)
1414 {
1415 unsigned char com8 = 0, v;
1416
1417 ov7670_read(sd, REG_COM8, &com8);
1418 com8 &= ~COM8_AEC;
1419 ov7670_write(sd, REG_COM8, com8);
1420 v = ov7670_abs_to_sm(value);
1421 return ov7670_write(sd, REG_BRIGHT, v);
1422 }
1423
ov7670_s_contrast(struct v4l2_subdev * sd,int value)1424 static int ov7670_s_contrast(struct v4l2_subdev *sd, int value)
1425 {
1426 return ov7670_write(sd, REG_CONTRAS, (unsigned char) value);
1427 }
1428
ov7670_s_hflip(struct v4l2_subdev * sd,int value)1429 static int ov7670_s_hflip(struct v4l2_subdev *sd, int value)
1430 {
1431 unsigned char v = 0;
1432 int ret;
1433
1434 ret = ov7670_read(sd, REG_MVFP, &v);
1435 if (ret)
1436 return ret;
1437 if (value)
1438 v |= MVFP_MIRROR;
1439 else
1440 v &= ~MVFP_MIRROR;
1441 msleep(10); /* FIXME */
1442 return ov7670_write(sd, REG_MVFP, v);
1443 }
1444
ov7670_s_vflip(struct v4l2_subdev * sd,int value)1445 static int ov7670_s_vflip(struct v4l2_subdev *sd, int value)
1446 {
1447 unsigned char v = 0;
1448 int ret;
1449
1450 ret = ov7670_read(sd, REG_MVFP, &v);
1451 if (ret)
1452 return ret;
1453 if (value)
1454 v |= MVFP_FLIP;
1455 else
1456 v &= ~MVFP_FLIP;
1457 msleep(10); /* FIXME */
1458 return ov7670_write(sd, REG_MVFP, v);
1459 }
1460
1461 /*
1462 * GAIN is split between REG_GAIN and REG_VREF[7:6]. If one believes
1463 * the data sheet, the VREF parts should be the most significant, but
1464 * experience shows otherwise. There seems to be little value in
1465 * messing with the VREF bits, so we leave them alone.
1466 */
ov7670_g_gain(struct v4l2_subdev * sd,__s32 * value)1467 static int ov7670_g_gain(struct v4l2_subdev *sd, __s32 *value)
1468 {
1469 int ret;
1470 unsigned char gain;
1471
1472 ret = ov7670_read(sd, REG_GAIN, &gain);
1473 if (ret)
1474 return ret;
1475 *value = gain;
1476 return 0;
1477 }
1478
ov7670_s_gain(struct v4l2_subdev * sd,int value)1479 static int ov7670_s_gain(struct v4l2_subdev *sd, int value)
1480 {
1481 int ret;
1482 unsigned char com8;
1483
1484 ret = ov7670_write(sd, REG_GAIN, value & 0xff);
1485 if (ret)
1486 return ret;
1487 /* Have to turn off AGC as well */
1488 ret = ov7670_read(sd, REG_COM8, &com8);
1489 if (ret)
1490 return ret;
1491 return ov7670_write(sd, REG_COM8, com8 & ~COM8_AGC);
1492 }
1493
1494 /*
1495 * Tweak autogain.
1496 */
ov7670_s_autogain(struct v4l2_subdev * sd,int value)1497 static int ov7670_s_autogain(struct v4l2_subdev *sd, int value)
1498 {
1499 int ret;
1500 unsigned char com8;
1501
1502 ret = ov7670_read(sd, REG_COM8, &com8);
1503 if (ret == 0) {
1504 if (value)
1505 com8 |= COM8_AGC;
1506 else
1507 com8 &= ~COM8_AGC;
1508 ret = ov7670_write(sd, REG_COM8, com8);
1509 }
1510 return ret;
1511 }
1512
ov7670_s_exp(struct v4l2_subdev * sd,int value)1513 static int ov7670_s_exp(struct v4l2_subdev *sd, int value)
1514 {
1515 int ret;
1516 unsigned char com1, com8, aech, aechh;
1517
1518 ret = ov7670_read(sd, REG_COM1, &com1) +
1519 ov7670_read(sd, REG_COM8, &com8) +
1520 ov7670_read(sd, REG_AECHH, &aechh);
1521 if (ret)
1522 return ret;
1523
1524 com1 = (com1 & 0xfc) | (value & 0x03);
1525 aech = (value >> 2) & 0xff;
1526 aechh = (aechh & 0xc0) | ((value >> 10) & 0x3f);
1527 ret = ov7670_write(sd, REG_COM1, com1) +
1528 ov7670_write(sd, REG_AECH, aech) +
1529 ov7670_write(sd, REG_AECHH, aechh);
1530 /* Have to turn off AEC as well */
1531 if (ret == 0)
1532 ret = ov7670_write(sd, REG_COM8, com8 & ~COM8_AEC);
1533 return ret;
1534 }
1535
1536 /*
1537 * Tweak autoexposure.
1538 */
ov7670_s_autoexp(struct v4l2_subdev * sd,enum v4l2_exposure_auto_type value)1539 static int ov7670_s_autoexp(struct v4l2_subdev *sd,
1540 enum v4l2_exposure_auto_type value)
1541 {
1542 int ret;
1543 unsigned char com8;
1544
1545 ret = ov7670_read(sd, REG_COM8, &com8);
1546 if (ret == 0) {
1547 if (value == V4L2_EXPOSURE_AUTO)
1548 com8 |= COM8_AEC;
1549 else
1550 com8 &= ~COM8_AEC;
1551 ret = ov7670_write(sd, REG_COM8, com8);
1552 }
1553 return ret;
1554 }
1555
1556 static const char * const ov7670_test_pattern_menu[] = {
1557 "No test output",
1558 "Shifting \"1\"",
1559 "8-bar color bar",
1560 "Fade to gray color bar",
1561 };
1562
ov7670_s_test_pattern(struct v4l2_subdev * sd,int value)1563 static int ov7670_s_test_pattern(struct v4l2_subdev *sd, int value)
1564 {
1565 int ret;
1566
1567 ret = ov7670_update_bits(sd, REG_SCALING_XSC, TEST_PATTTERN_0,
1568 value & BIT(0) ? TEST_PATTTERN_0 : 0);
1569 if (ret)
1570 return ret;
1571
1572 return ov7670_update_bits(sd, REG_SCALING_YSC, TEST_PATTTERN_1,
1573 value & BIT(1) ? TEST_PATTTERN_1 : 0);
1574 }
1575
ov7670_g_volatile_ctrl(struct v4l2_ctrl * ctrl)1576 static int ov7670_g_volatile_ctrl(struct v4l2_ctrl *ctrl)
1577 {
1578 struct v4l2_subdev *sd = to_sd(ctrl);
1579 struct ov7670_info *info = to_state(sd);
1580
1581 switch (ctrl->id) {
1582 case V4L2_CID_AUTOGAIN:
1583 return ov7670_g_gain(sd, &info->gain->val);
1584 }
1585 return -EINVAL;
1586 }
1587
ov7670_s_ctrl(struct v4l2_ctrl * ctrl)1588 static int ov7670_s_ctrl(struct v4l2_ctrl *ctrl)
1589 {
1590 struct v4l2_subdev *sd = to_sd(ctrl);
1591 struct ov7670_info *info = to_state(sd);
1592
1593 switch (ctrl->id) {
1594 case V4L2_CID_BRIGHTNESS:
1595 return ov7670_s_brightness(sd, ctrl->val);
1596 case V4L2_CID_CONTRAST:
1597 return ov7670_s_contrast(sd, ctrl->val);
1598 case V4L2_CID_SATURATION:
1599 return ov7670_s_sat_hue(sd,
1600 info->saturation->val, info->hue->val);
1601 case V4L2_CID_VFLIP:
1602 return ov7670_s_vflip(sd, ctrl->val);
1603 case V4L2_CID_HFLIP:
1604 return ov7670_s_hflip(sd, ctrl->val);
1605 case V4L2_CID_AUTOGAIN:
1606 /* Only set manual gain if auto gain is not explicitly
1607 turned on. */
1608 if (!ctrl->val) {
1609 /* ov7670_s_gain turns off auto gain */
1610 return ov7670_s_gain(sd, info->gain->val);
1611 }
1612 return ov7670_s_autogain(sd, ctrl->val);
1613 case V4L2_CID_EXPOSURE_AUTO:
1614 /* Only set manual exposure if auto exposure is not explicitly
1615 turned on. */
1616 if (ctrl->val == V4L2_EXPOSURE_MANUAL) {
1617 /* ov7670_s_exp turns off auto exposure */
1618 return ov7670_s_exp(sd, info->exposure->val);
1619 }
1620 return ov7670_s_autoexp(sd, ctrl->val);
1621 case V4L2_CID_TEST_PATTERN:
1622 return ov7670_s_test_pattern(sd, ctrl->val);
1623 }
1624 return -EINVAL;
1625 }
1626
1627 static const struct v4l2_ctrl_ops ov7670_ctrl_ops = {
1628 .s_ctrl = ov7670_s_ctrl,
1629 .g_volatile_ctrl = ov7670_g_volatile_ctrl,
1630 };
1631
1632 #ifdef CONFIG_VIDEO_ADV_DEBUG
ov7670_g_register(struct v4l2_subdev * sd,struct v4l2_dbg_register * reg)1633 static int ov7670_g_register(struct v4l2_subdev *sd, struct v4l2_dbg_register *reg)
1634 {
1635 unsigned char val = 0;
1636 int ret;
1637
1638 ret = ov7670_read(sd, reg->reg & 0xff, &val);
1639 reg->val = val;
1640 reg->size = 1;
1641 return ret;
1642 }
1643
ov7670_s_register(struct v4l2_subdev * sd,const struct v4l2_dbg_register * reg)1644 static int ov7670_s_register(struct v4l2_subdev *sd, const struct v4l2_dbg_register *reg)
1645 {
1646 ov7670_write(sd, reg->reg & 0xff, reg->val & 0xff);
1647 return 0;
1648 }
1649 #endif
1650
ov7670_power_on(struct v4l2_subdev * sd)1651 static void ov7670_power_on(struct v4l2_subdev *sd)
1652 {
1653 struct ov7670_info *info = to_state(sd);
1654
1655 if (info->on)
1656 return;
1657
1658 clk_prepare_enable(info->clk);
1659
1660 if (info->pwdn_gpio)
1661 gpiod_set_value(info->pwdn_gpio, 0);
1662 if (info->resetb_gpio) {
1663 gpiod_set_value(info->resetb_gpio, 1);
1664 usleep_range(500, 1000);
1665 gpiod_set_value(info->resetb_gpio, 0);
1666 }
1667 if (info->pwdn_gpio || info->resetb_gpio || info->clk)
1668 usleep_range(3000, 5000);
1669
1670 info->on = true;
1671 }
1672
ov7670_power_off(struct v4l2_subdev * sd)1673 static void ov7670_power_off(struct v4l2_subdev *sd)
1674 {
1675 struct ov7670_info *info = to_state(sd);
1676
1677 if (!info->on)
1678 return;
1679
1680 clk_disable_unprepare(info->clk);
1681
1682 if (info->pwdn_gpio)
1683 gpiod_set_value(info->pwdn_gpio, 1);
1684
1685 info->on = false;
1686 }
1687
ov7670_s_power(struct v4l2_subdev * sd,int on)1688 static int ov7670_s_power(struct v4l2_subdev *sd, int on)
1689 {
1690 struct ov7670_info *info = to_state(sd);
1691
1692 if (info->on == on)
1693 return 0;
1694
1695 if (on) {
1696 ov7670_power_on(sd);
1697 ov7670_init(sd, 0);
1698 ov7670_apply_fmt(sd);
1699 ov7675_apply_framerate(sd);
1700 v4l2_ctrl_handler_setup(&info->hdl);
1701 } else {
1702 ov7670_power_off(sd);
1703 }
1704
1705 return 0;
1706 }
1707
ov7670_get_default_format(struct v4l2_subdev * sd,struct v4l2_mbus_framefmt * format)1708 static void ov7670_get_default_format(struct v4l2_subdev *sd,
1709 struct v4l2_mbus_framefmt *format)
1710 {
1711 struct ov7670_info *info = to_state(sd);
1712
1713 format->width = info->devtype->win_sizes[0].width;
1714 format->height = info->devtype->win_sizes[0].height;
1715 format->colorspace = info->fmt->colorspace;
1716 format->code = info->fmt->mbus_code;
1717 format->field = V4L2_FIELD_NONE;
1718 }
1719
ov7670_open(struct v4l2_subdev * sd,struct v4l2_subdev_fh * fh)1720 static int ov7670_open(struct v4l2_subdev *sd, struct v4l2_subdev_fh *fh)
1721 {
1722 struct v4l2_mbus_framefmt *format =
1723 v4l2_subdev_state_get_format(fh->state, 0);
1724
1725 ov7670_get_default_format(sd, format);
1726
1727 return 0;
1728 }
1729
1730 /* ----------------------------------------------------------------------- */
1731
1732 static const struct v4l2_subdev_core_ops ov7670_core_ops = {
1733 .reset = ov7670_reset,
1734 .init = ov7670_init,
1735 .s_power = ov7670_s_power,
1736 .log_status = v4l2_ctrl_subdev_log_status,
1737 .subscribe_event = v4l2_ctrl_subdev_subscribe_event,
1738 .unsubscribe_event = v4l2_event_subdev_unsubscribe,
1739 #ifdef CONFIG_VIDEO_ADV_DEBUG
1740 .g_register = ov7670_g_register,
1741 .s_register = ov7670_s_register,
1742 #endif
1743 };
1744
1745 static const struct v4l2_subdev_pad_ops ov7670_pad_ops = {
1746 .enum_frame_interval = ov7670_enum_frame_interval,
1747 .enum_frame_size = ov7670_enum_frame_size,
1748 .enum_mbus_code = ov7670_enum_mbus_code,
1749 .get_fmt = ov7670_get_fmt,
1750 .set_fmt = ov7670_set_fmt,
1751 .get_frame_interval = ov7670_get_frame_interval,
1752 .set_frame_interval = ov7670_set_frame_interval,
1753 };
1754
1755 static const struct v4l2_subdev_ops ov7670_ops = {
1756 .core = &ov7670_core_ops,
1757 .pad = &ov7670_pad_ops,
1758 };
1759
1760 static const struct v4l2_subdev_internal_ops ov7670_subdev_internal_ops = {
1761 .open = ov7670_open,
1762 };
1763
1764 /* ----------------------------------------------------------------------- */
1765
ov7670_init_gpio(struct i2c_client * client,struct ov7670_info * info)1766 static int ov7670_init_gpio(struct i2c_client *client, struct ov7670_info *info)
1767 {
1768 info->pwdn_gpio = devm_gpiod_get_optional(&client->dev, "powerdown",
1769 GPIOD_OUT_LOW);
1770 if (IS_ERR(info->pwdn_gpio)) {
1771 dev_info(&client->dev, "can't get %s GPIO\n", "powerdown");
1772 return PTR_ERR(info->pwdn_gpio);
1773 }
1774
1775 info->resetb_gpio = devm_gpiod_get_optional(&client->dev, "reset",
1776 GPIOD_OUT_LOW);
1777 if (IS_ERR(info->resetb_gpio)) {
1778 dev_info(&client->dev, "can't get %s GPIO\n", "reset");
1779 return PTR_ERR(info->resetb_gpio);
1780 }
1781
1782 usleep_range(3000, 5000);
1783
1784 return 0;
1785 }
1786
1787 /*
1788 * ov7670_parse_dt() - Parse device tree to collect mbus configuration
1789 * properties
1790 */
ov7670_parse_dt(struct device * dev,struct ov7670_info * info)1791 static int ov7670_parse_dt(struct device *dev,
1792 struct ov7670_info *info)
1793 {
1794 struct fwnode_handle *fwnode = dev_fwnode(dev);
1795 struct v4l2_fwnode_endpoint bus_cfg = { .bus_type = 0 };
1796 struct fwnode_handle *ep;
1797 int ret;
1798
1799 if (!fwnode)
1800 return -EINVAL;
1801
1802 info->pclk_hb_disable = false;
1803 if (fwnode_property_present(fwnode, "ov7670,pclk-hb-disable"))
1804 info->pclk_hb_disable = true;
1805
1806 ep = fwnode_graph_get_next_endpoint(fwnode, NULL);
1807 if (!ep)
1808 return -EINVAL;
1809
1810 ret = v4l2_fwnode_endpoint_parse(ep, &bus_cfg);
1811 fwnode_handle_put(ep);
1812 if (ret)
1813 return ret;
1814
1815 if (bus_cfg.bus_type != V4L2_MBUS_PARALLEL) {
1816 dev_err(dev, "Unsupported media bus type\n");
1817 return -EINVAL;
1818 }
1819 info->mbus_config = bus_cfg.bus.parallel.flags;
1820
1821 return 0;
1822 }
1823
ov7670_probe(struct i2c_client * client)1824 static int ov7670_probe(struct i2c_client *client)
1825 {
1826 struct v4l2_fract tpf;
1827 struct v4l2_subdev *sd;
1828 struct ov7670_info *info;
1829 int ret;
1830
1831 info = devm_kzalloc(&client->dev, sizeof(*info), GFP_KERNEL);
1832 if (info == NULL)
1833 return -ENOMEM;
1834 sd = &info->sd;
1835 v4l2_i2c_subdev_init(sd, client, &ov7670_ops);
1836
1837 sd->internal_ops = &ov7670_subdev_internal_ops;
1838 sd->flags |= V4L2_SUBDEV_FL_HAS_DEVNODE | V4L2_SUBDEV_FL_HAS_EVENTS;
1839
1840 info->clock_speed = 30; /* default: a guess */
1841
1842 if (dev_fwnode(&client->dev)) {
1843 ret = ov7670_parse_dt(&client->dev, info);
1844 if (ret)
1845 return ret;
1846
1847 } else if (client->dev.platform_data) {
1848 struct ov7670_config *config = client->dev.platform_data;
1849
1850 /*
1851 * Must apply configuration before initializing device, because it
1852 * selects I/O method.
1853 */
1854 info->min_width = config->min_width;
1855 info->min_height = config->min_height;
1856 info->use_smbus = config->use_smbus;
1857
1858 if (config->clock_speed)
1859 info->clock_speed = config->clock_speed;
1860
1861 if (config->pll_bypass)
1862 info->pll_bypass = true;
1863
1864 if (config->pclk_hb_disable)
1865 info->pclk_hb_disable = true;
1866 }
1867
1868 info->clk = devm_clk_get_optional(&client->dev, "xclk");
1869 if (IS_ERR(info->clk))
1870 return PTR_ERR(info->clk);
1871
1872 ret = ov7670_init_gpio(client, info);
1873 if (ret)
1874 return ret;
1875
1876 ov7670_power_on(sd);
1877
1878 if (info->clk) {
1879 info->clock_speed = clk_get_rate(info->clk) / 1000000;
1880 if (info->clock_speed < 10 || info->clock_speed > 48) {
1881 ret = -EINVAL;
1882 goto power_off;
1883 }
1884 }
1885
1886 /* Make sure it's an ov7670 */
1887 ret = ov7670_detect(sd);
1888 if (ret) {
1889 v4l_dbg(1, debug, client,
1890 "chip found @ 0x%x (%s) is not an ov7670 chip.\n",
1891 client->addr << 1, client->adapter->name);
1892 goto power_off;
1893 }
1894 v4l_info(client, "chip found @ 0x%02x (%s)\n",
1895 client->addr << 1, client->adapter->name);
1896
1897 info->devtype = i2c_get_match_data(client);
1898 info->fmt = &ov7670_formats[0];
1899 info->wsize = &info->devtype->win_sizes[0];
1900
1901 ov7670_get_default_format(sd, &info->format);
1902
1903 info->clkrc = 0;
1904
1905 /* Set default frame rate to 30 fps */
1906 tpf.numerator = 1;
1907 tpf.denominator = 30;
1908 info->devtype->set_framerate(sd, &tpf);
1909
1910 v4l2_ctrl_handler_init(&info->hdl, 10);
1911 v4l2_ctrl_new_std(&info->hdl, &ov7670_ctrl_ops,
1912 V4L2_CID_BRIGHTNESS, 0, 255, 1, 128);
1913 v4l2_ctrl_new_std(&info->hdl, &ov7670_ctrl_ops,
1914 V4L2_CID_CONTRAST, 0, 127, 1, 64);
1915 v4l2_ctrl_new_std(&info->hdl, &ov7670_ctrl_ops,
1916 V4L2_CID_VFLIP, 0, 1, 1, 0);
1917 v4l2_ctrl_new_std(&info->hdl, &ov7670_ctrl_ops,
1918 V4L2_CID_HFLIP, 0, 1, 1, 0);
1919 info->saturation = v4l2_ctrl_new_std(&info->hdl, &ov7670_ctrl_ops,
1920 V4L2_CID_SATURATION, 0, 256, 1, 128);
1921 info->hue = v4l2_ctrl_new_std(&info->hdl, &ov7670_ctrl_ops,
1922 V4L2_CID_HUE, -180, 180, 5, 0);
1923 info->gain = v4l2_ctrl_new_std(&info->hdl, &ov7670_ctrl_ops,
1924 V4L2_CID_GAIN, 0, 255, 1, 128);
1925 info->auto_gain = v4l2_ctrl_new_std(&info->hdl, &ov7670_ctrl_ops,
1926 V4L2_CID_AUTOGAIN, 0, 1, 1, 1);
1927 info->exposure = v4l2_ctrl_new_std(&info->hdl, &ov7670_ctrl_ops,
1928 V4L2_CID_EXPOSURE, 0, 65535, 1, 500);
1929 info->auto_exposure = v4l2_ctrl_new_std_menu(&info->hdl, &ov7670_ctrl_ops,
1930 V4L2_CID_EXPOSURE_AUTO, V4L2_EXPOSURE_MANUAL, 0,
1931 V4L2_EXPOSURE_AUTO);
1932 v4l2_ctrl_new_std_menu_items(&info->hdl, &ov7670_ctrl_ops,
1933 V4L2_CID_TEST_PATTERN,
1934 ARRAY_SIZE(ov7670_test_pattern_menu) - 1, 0, 0,
1935 ov7670_test_pattern_menu);
1936 sd->ctrl_handler = &info->hdl;
1937 if (info->hdl.error) {
1938 ret = info->hdl.error;
1939
1940 goto hdl_free;
1941 }
1942 /*
1943 * We have checked empirically that hw allows to read back the gain
1944 * value chosen by auto gain but that's not the case for auto exposure.
1945 */
1946 v4l2_ctrl_auto_cluster(2, &info->auto_gain, 0, true);
1947 v4l2_ctrl_auto_cluster(2, &info->auto_exposure,
1948 V4L2_EXPOSURE_MANUAL, false);
1949 v4l2_ctrl_cluster(2, &info->saturation);
1950
1951 info->pad.flags = MEDIA_PAD_FL_SOURCE;
1952 info->sd.entity.function = MEDIA_ENT_F_CAM_SENSOR;
1953 ret = media_entity_pads_init(&info->sd.entity, 1, &info->pad);
1954 if (ret < 0)
1955 goto hdl_free;
1956
1957 v4l2_ctrl_handler_setup(&info->hdl);
1958
1959 ret = v4l2_async_register_subdev(&info->sd);
1960 if (ret < 0)
1961 goto entity_cleanup;
1962
1963 ov7670_power_off(sd);
1964 return 0;
1965
1966 entity_cleanup:
1967 media_entity_cleanup(&info->sd.entity);
1968 hdl_free:
1969 v4l2_ctrl_handler_free(&info->hdl);
1970 power_off:
1971 ov7670_power_off(sd);
1972 return ret;
1973 }
1974
ov7670_remove(struct i2c_client * client)1975 static void ov7670_remove(struct i2c_client *client)
1976 {
1977 struct v4l2_subdev *sd = i2c_get_clientdata(client);
1978 struct ov7670_info *info = to_state(sd);
1979
1980 v4l2_async_unregister_subdev(sd);
1981 v4l2_ctrl_handler_free(&info->hdl);
1982 media_entity_cleanup(&info->sd.entity);
1983 }
1984
1985 static const struct ov7670_devtype ov7670_devdata = {
1986 .win_sizes = ov7670_win_sizes,
1987 .n_win_sizes = ARRAY_SIZE(ov7670_win_sizes),
1988 .set_framerate = ov7670_set_framerate_legacy,
1989 .get_framerate = ov7670_get_framerate_legacy,
1990 };
1991
1992 static const struct ov7670_devtype ov7675_devdata = {
1993 .win_sizes = ov7675_win_sizes,
1994 .n_win_sizes = ARRAY_SIZE(ov7675_win_sizes),
1995 .set_framerate = ov7675_set_framerate,
1996 .get_framerate = ov7675_get_framerate,
1997 };
1998
1999 static const struct i2c_device_id ov7670_id[] = {
2000 { "ov7670", (kernel_ulong_t)&ov7670_devdata },
2001 { "ov7675", (kernel_ulong_t)&ov7675_devdata },
2002 { /* sentinel */ }
2003 };
2004 MODULE_DEVICE_TABLE(i2c, ov7670_id);
2005
2006 static const struct of_device_id ov7670_of_match[] = {
2007 { .compatible = "ovti,ov7670", &ov7670_devdata },
2008 { /* sentinel */ }
2009 };
2010 MODULE_DEVICE_TABLE(of, ov7670_of_match);
2011
2012 static struct i2c_driver ov7670_driver = {
2013 .driver = {
2014 .name = "ov7670",
2015 .of_match_table = ov7670_of_match,
2016 },
2017 .probe = ov7670_probe,
2018 .remove = ov7670_remove,
2019 .id_table = ov7670_id,
2020 };
2021
2022 module_i2c_driver(ov7670_driver);
2023