1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * TI K3 R5F (MCU) Remote Processor driver
4 *
5 * Copyright (C) 2017-2022 Texas Instruments Incorporated - https://www.ti.com/
6 * Suman Anna <s-anna@ti.com>
7 */
8
9 #include <linux/dma-mapping.h>
10 #include <linux/err.h>
11 #include <linux/interrupt.h>
12 #include <linux/kernel.h>
13 #include <linux/mailbox_client.h>
14 #include <linux/module.h>
15 #include <linux/of.h>
16 #include <linux/of_address.h>
17 #include <linux/of_reserved_mem.h>
18 #include <linux/of_platform.h>
19 #include <linux/omap-mailbox.h>
20 #include <linux/platform_device.h>
21 #include <linux/pm_runtime.h>
22 #include <linux/remoteproc.h>
23 #include <linux/reset.h>
24 #include <linux/slab.h>
25
26 #include "omap_remoteproc.h"
27 #include "remoteproc_internal.h"
28 #include "ti_sci_proc.h"
29
30 /* This address can either be for ATCM or BTCM with the other at address 0x0 */
31 #define K3_R5_TCM_DEV_ADDR 0x41010000
32
33 /* R5 TI-SCI Processor Configuration Flags */
34 #define PROC_BOOT_CFG_FLAG_R5_DBG_EN 0x00000001
35 #define PROC_BOOT_CFG_FLAG_R5_DBG_NIDEN 0x00000002
36 #define PROC_BOOT_CFG_FLAG_R5_LOCKSTEP 0x00000100
37 #define PROC_BOOT_CFG_FLAG_R5_TEINIT 0x00000200
38 #define PROC_BOOT_CFG_FLAG_R5_NMFI_EN 0x00000400
39 #define PROC_BOOT_CFG_FLAG_R5_TCM_RSTBASE 0x00000800
40 #define PROC_BOOT_CFG_FLAG_R5_BTCM_EN 0x00001000
41 #define PROC_BOOT_CFG_FLAG_R5_ATCM_EN 0x00002000
42 /* Available from J7200 SoCs onwards */
43 #define PROC_BOOT_CFG_FLAG_R5_MEM_INIT_DIS 0x00004000
44 /* Applicable to only AM64x SoCs */
45 #define PROC_BOOT_CFG_FLAG_R5_SINGLE_CORE 0x00008000
46
47 /* R5 TI-SCI Processor Control Flags */
48 #define PROC_BOOT_CTRL_FLAG_R5_CORE_HALT 0x00000001
49
50 /* R5 TI-SCI Processor Status Flags */
51 #define PROC_BOOT_STATUS_FLAG_R5_WFE 0x00000001
52 #define PROC_BOOT_STATUS_FLAG_R5_WFI 0x00000002
53 #define PROC_BOOT_STATUS_FLAG_R5_CLK_GATED 0x00000004
54 #define PROC_BOOT_STATUS_FLAG_R5_LOCKSTEP_PERMITTED 0x00000100
55 /* Applicable to only AM64x SoCs */
56 #define PROC_BOOT_STATUS_FLAG_R5_SINGLECORE_ONLY 0x00000200
57
58 /**
59 * struct k3_r5_mem - internal memory structure
60 * @cpu_addr: MPU virtual address of the memory region
61 * @bus_addr: Bus address used to access the memory region
62 * @dev_addr: Device address from remoteproc view
63 * @size: Size of the memory region
64 */
65 struct k3_r5_mem {
66 void __iomem *cpu_addr;
67 phys_addr_t bus_addr;
68 u32 dev_addr;
69 size_t size;
70 };
71
72 /*
73 * All cluster mode values are not applicable on all SoCs. The following
74 * are the modes supported on various SoCs:
75 * Split mode : AM65x, J721E, J7200 and AM64x SoCs
76 * LockStep mode : AM65x, J721E and J7200 SoCs
77 * Single-CPU mode : AM64x SoCs only
78 * Single-Core mode : AM62x, AM62A SoCs
79 */
80 enum cluster_mode {
81 CLUSTER_MODE_SPLIT = 0,
82 CLUSTER_MODE_LOCKSTEP,
83 CLUSTER_MODE_SINGLECPU,
84 CLUSTER_MODE_SINGLECORE
85 };
86
87 /**
88 * struct k3_r5_soc_data - match data to handle SoC variations
89 * @tcm_is_double: flag to denote the larger unified TCMs in certain modes
90 * @tcm_ecc_autoinit: flag to denote the auto-initialization of TCMs for ECC
91 * @single_cpu_mode: flag to denote if SoC/IP supports Single-CPU mode
92 * @is_single_core: flag to denote if SoC/IP has only single core R5
93 */
94 struct k3_r5_soc_data {
95 bool tcm_is_double;
96 bool tcm_ecc_autoinit;
97 bool single_cpu_mode;
98 bool is_single_core;
99 };
100
101 /**
102 * struct k3_r5_cluster - K3 R5F Cluster structure
103 * @dev: cached device pointer
104 * @mode: Mode to configure the Cluster - Split or LockStep
105 * @cores: list of R5 cores within the cluster
106 * @core_transition: wait queue to sync core state changes
107 * @soc_data: SoC-specific feature data for a R5FSS
108 */
109 struct k3_r5_cluster {
110 struct device *dev;
111 enum cluster_mode mode;
112 struct list_head cores;
113 wait_queue_head_t core_transition;
114 const struct k3_r5_soc_data *soc_data;
115 };
116
117 /**
118 * struct k3_r5_core - K3 R5 core structure
119 * @elem: linked list item
120 * @dev: cached device pointer
121 * @rproc: rproc handle representing this core
122 * @mem: internal memory regions data
123 * @sram: on-chip SRAM memory regions data
124 * @num_mems: number of internal memory regions
125 * @num_sram: number of on-chip SRAM memory regions
126 * @reset: reset control handle
127 * @tsp: TI-SCI processor control handle
128 * @ti_sci: TI-SCI handle
129 * @ti_sci_id: TI-SCI device identifier
130 * @atcm_enable: flag to control ATCM enablement
131 * @btcm_enable: flag to control BTCM enablement
132 * @loczrama: flag to dictate which TCM is at device address 0x0
133 * @released_from_reset: flag to signal when core is out of reset
134 */
135 struct k3_r5_core {
136 struct list_head elem;
137 struct device *dev;
138 struct rproc *rproc;
139 struct k3_r5_mem *mem;
140 struct k3_r5_mem *sram;
141 int num_mems;
142 int num_sram;
143 struct reset_control *reset;
144 struct ti_sci_proc *tsp;
145 const struct ti_sci_handle *ti_sci;
146 u32 ti_sci_id;
147 u32 atcm_enable;
148 u32 btcm_enable;
149 u32 loczrama;
150 bool released_from_reset;
151 };
152
153 /**
154 * struct k3_r5_rproc - K3 remote processor state
155 * @dev: cached device pointer
156 * @cluster: cached pointer to parent cluster structure
157 * @mbox: mailbox channel handle
158 * @client: mailbox client to request the mailbox channel
159 * @rproc: rproc handle
160 * @core: cached pointer to r5 core structure being used
161 * @rmem: reserved memory regions data
162 * @num_rmems: number of reserved memory regions
163 */
164 struct k3_r5_rproc {
165 struct device *dev;
166 struct k3_r5_cluster *cluster;
167 struct mbox_chan *mbox;
168 struct mbox_client client;
169 struct rproc *rproc;
170 struct k3_r5_core *core;
171 struct k3_r5_mem *rmem;
172 int num_rmems;
173 };
174
175 /**
176 * k3_r5_rproc_mbox_callback() - inbound mailbox message handler
177 * @client: mailbox client pointer used for requesting the mailbox channel
178 * @data: mailbox payload
179 *
180 * This handler is invoked by the OMAP mailbox driver whenever a mailbox
181 * message is received. Usually, the mailbox payload simply contains
182 * the index of the virtqueue that is kicked by the remote processor,
183 * and we let remoteproc core handle it.
184 *
185 * In addition to virtqueue indices, we also have some out-of-band values
186 * that indicate different events. Those values are deliberately very
187 * large so they don't coincide with virtqueue indices.
188 */
k3_r5_rproc_mbox_callback(struct mbox_client * client,void * data)189 static void k3_r5_rproc_mbox_callback(struct mbox_client *client, void *data)
190 {
191 struct k3_r5_rproc *kproc = container_of(client, struct k3_r5_rproc,
192 client);
193 struct device *dev = kproc->rproc->dev.parent;
194 const char *name = kproc->rproc->name;
195 u32 msg = omap_mbox_message(data);
196
197 /* Do not forward message from a detached core */
198 if (kproc->rproc->state == RPROC_DETACHED)
199 return;
200
201 dev_dbg(dev, "mbox msg: 0x%x\n", msg);
202
203 switch (msg) {
204 case RP_MBOX_CRASH:
205 /*
206 * remoteproc detected an exception, but error recovery is not
207 * supported. So, just log this for now
208 */
209 dev_err(dev, "K3 R5F rproc %s crashed\n", name);
210 break;
211 case RP_MBOX_ECHO_REPLY:
212 dev_info(dev, "received echo reply from %s\n", name);
213 break;
214 default:
215 /* silently handle all other valid messages */
216 if (msg >= RP_MBOX_READY && msg < RP_MBOX_END_MSG)
217 return;
218 if (msg > kproc->rproc->max_notifyid) {
219 dev_dbg(dev, "dropping unknown message 0x%x", msg);
220 return;
221 }
222 /* msg contains the index of the triggered vring */
223 if (rproc_vq_interrupt(kproc->rproc, msg) == IRQ_NONE)
224 dev_dbg(dev, "no message was found in vqid %d\n", msg);
225 }
226 }
227
228 /* kick a virtqueue */
k3_r5_rproc_kick(struct rproc * rproc,int vqid)229 static void k3_r5_rproc_kick(struct rproc *rproc, int vqid)
230 {
231 struct k3_r5_rproc *kproc = rproc->priv;
232 struct device *dev = rproc->dev.parent;
233 mbox_msg_t msg = (mbox_msg_t)vqid;
234 int ret;
235
236 /* Do not forward message to a detached core */
237 if (kproc->rproc->state == RPROC_DETACHED)
238 return;
239
240 /* send the index of the triggered virtqueue in the mailbox payload */
241 ret = mbox_send_message(kproc->mbox, (void *)msg);
242 if (ret < 0)
243 dev_err(dev, "failed to send mailbox message, status = %d\n",
244 ret);
245 }
246
k3_r5_split_reset(struct k3_r5_core * core)247 static int k3_r5_split_reset(struct k3_r5_core *core)
248 {
249 int ret;
250
251 ret = reset_control_assert(core->reset);
252 if (ret) {
253 dev_err(core->dev, "local-reset assert failed, ret = %d\n",
254 ret);
255 return ret;
256 }
257
258 ret = core->ti_sci->ops.dev_ops.put_device(core->ti_sci,
259 core->ti_sci_id);
260 if (ret) {
261 dev_err(core->dev, "module-reset assert failed, ret = %d\n",
262 ret);
263 if (reset_control_deassert(core->reset))
264 dev_warn(core->dev, "local-reset deassert back failed\n");
265 }
266
267 return ret;
268 }
269
k3_r5_split_release(struct k3_r5_core * core)270 static int k3_r5_split_release(struct k3_r5_core *core)
271 {
272 int ret;
273
274 ret = core->ti_sci->ops.dev_ops.get_device(core->ti_sci,
275 core->ti_sci_id);
276 if (ret) {
277 dev_err(core->dev, "module-reset deassert failed, ret = %d\n",
278 ret);
279 return ret;
280 }
281
282 ret = reset_control_deassert(core->reset);
283 if (ret) {
284 dev_err(core->dev, "local-reset deassert failed, ret = %d\n",
285 ret);
286 if (core->ti_sci->ops.dev_ops.put_device(core->ti_sci,
287 core->ti_sci_id))
288 dev_warn(core->dev, "module-reset assert back failed\n");
289 }
290
291 return ret;
292 }
293
k3_r5_lockstep_reset(struct k3_r5_cluster * cluster)294 static int k3_r5_lockstep_reset(struct k3_r5_cluster *cluster)
295 {
296 struct k3_r5_core *core;
297 int ret;
298
299 /* assert local reset on all applicable cores */
300 list_for_each_entry(core, &cluster->cores, elem) {
301 ret = reset_control_assert(core->reset);
302 if (ret) {
303 dev_err(core->dev, "local-reset assert failed, ret = %d\n",
304 ret);
305 core = list_prev_entry(core, elem);
306 goto unroll_local_reset;
307 }
308 }
309
310 /* disable PSC modules on all applicable cores */
311 list_for_each_entry(core, &cluster->cores, elem) {
312 ret = core->ti_sci->ops.dev_ops.put_device(core->ti_sci,
313 core->ti_sci_id);
314 if (ret) {
315 dev_err(core->dev, "module-reset assert failed, ret = %d\n",
316 ret);
317 goto unroll_module_reset;
318 }
319 }
320
321 return 0;
322
323 unroll_module_reset:
324 list_for_each_entry_continue_reverse(core, &cluster->cores, elem) {
325 if (core->ti_sci->ops.dev_ops.put_device(core->ti_sci,
326 core->ti_sci_id))
327 dev_warn(core->dev, "module-reset assert back failed\n");
328 }
329 core = list_last_entry(&cluster->cores, struct k3_r5_core, elem);
330 unroll_local_reset:
331 list_for_each_entry_from_reverse(core, &cluster->cores, elem) {
332 if (reset_control_deassert(core->reset))
333 dev_warn(core->dev, "local-reset deassert back failed\n");
334 }
335
336 return ret;
337 }
338
k3_r5_lockstep_release(struct k3_r5_cluster * cluster)339 static int k3_r5_lockstep_release(struct k3_r5_cluster *cluster)
340 {
341 struct k3_r5_core *core;
342 int ret;
343
344 /* enable PSC modules on all applicable cores */
345 list_for_each_entry_reverse(core, &cluster->cores, elem) {
346 ret = core->ti_sci->ops.dev_ops.get_device(core->ti_sci,
347 core->ti_sci_id);
348 if (ret) {
349 dev_err(core->dev, "module-reset deassert failed, ret = %d\n",
350 ret);
351 core = list_next_entry(core, elem);
352 goto unroll_module_reset;
353 }
354 }
355
356 /* deassert local reset on all applicable cores */
357 list_for_each_entry_reverse(core, &cluster->cores, elem) {
358 ret = reset_control_deassert(core->reset);
359 if (ret) {
360 dev_err(core->dev, "module-reset deassert failed, ret = %d\n",
361 ret);
362 goto unroll_local_reset;
363 }
364 }
365
366 return 0;
367
368 unroll_local_reset:
369 list_for_each_entry_continue(core, &cluster->cores, elem) {
370 if (reset_control_assert(core->reset))
371 dev_warn(core->dev, "local-reset assert back failed\n");
372 }
373 core = list_first_entry(&cluster->cores, struct k3_r5_core, elem);
374 unroll_module_reset:
375 list_for_each_entry_from(core, &cluster->cores, elem) {
376 if (core->ti_sci->ops.dev_ops.put_device(core->ti_sci,
377 core->ti_sci_id))
378 dev_warn(core->dev, "module-reset assert back failed\n");
379 }
380
381 return ret;
382 }
383
k3_r5_core_halt(struct k3_r5_core * core)384 static inline int k3_r5_core_halt(struct k3_r5_core *core)
385 {
386 return ti_sci_proc_set_control(core->tsp,
387 PROC_BOOT_CTRL_FLAG_R5_CORE_HALT, 0);
388 }
389
k3_r5_core_run(struct k3_r5_core * core)390 static inline int k3_r5_core_run(struct k3_r5_core *core)
391 {
392 return ti_sci_proc_set_control(core->tsp,
393 0, PROC_BOOT_CTRL_FLAG_R5_CORE_HALT);
394 }
395
k3_r5_rproc_request_mbox(struct rproc * rproc)396 static int k3_r5_rproc_request_mbox(struct rproc *rproc)
397 {
398 struct k3_r5_rproc *kproc = rproc->priv;
399 struct mbox_client *client = &kproc->client;
400 struct device *dev = kproc->dev;
401 int ret;
402
403 client->dev = dev;
404 client->tx_done = NULL;
405 client->rx_callback = k3_r5_rproc_mbox_callback;
406 client->tx_block = false;
407 client->knows_txdone = false;
408
409 kproc->mbox = mbox_request_channel(client, 0);
410 if (IS_ERR(kproc->mbox))
411 return dev_err_probe(dev, PTR_ERR(kproc->mbox),
412 "mbox_request_channel failed\n");
413
414 /*
415 * Ping the remote processor, this is only for sanity-sake for now;
416 * there is no functional effect whatsoever.
417 *
418 * Note that the reply will _not_ arrive immediately: this message
419 * will wait in the mailbox fifo until the remote processor is booted.
420 */
421 ret = mbox_send_message(kproc->mbox, (void *)RP_MBOX_ECHO_REQUEST);
422 if (ret < 0) {
423 dev_err(dev, "mbox_send_message failed: %d\n", ret);
424 mbox_free_channel(kproc->mbox);
425 return ret;
426 }
427
428 return 0;
429 }
430
431 /*
432 * The R5F cores have controls for both a reset and a halt/run. The code
433 * execution from DDR requires the initial boot-strapping code to be run
434 * from the internal TCMs. This function is used to release the resets on
435 * applicable cores to allow loading into the TCMs. The .prepare() ops is
436 * invoked by remoteproc core before any firmware loading, and is followed
437 * by the .start() ops after loading to actually let the R5 cores run.
438 *
439 * The Single-CPU mode on applicable SoCs (eg: AM64x) only uses Core0 to
440 * execute code, but combines the TCMs from both cores. The resets for both
441 * cores need to be released to make this possible, as the TCMs are in general
442 * private to each core. Only Core0 needs to be unhalted for running the
443 * cluster in this mode. The function uses the same reset logic as LockStep
444 * mode for this (though the behavior is agnostic of the reset release order).
445 * This callback is invoked only in remoteproc mode.
446 */
k3_r5_rproc_prepare(struct rproc * rproc)447 static int k3_r5_rproc_prepare(struct rproc *rproc)
448 {
449 struct k3_r5_rproc *kproc = rproc->priv;
450 struct k3_r5_cluster *cluster = kproc->cluster;
451 struct k3_r5_core *core = kproc->core;
452 struct device *dev = kproc->dev;
453 u32 ctrl = 0, cfg = 0, stat = 0;
454 u64 boot_vec = 0;
455 bool mem_init_dis;
456 int ret;
457
458 ret = ti_sci_proc_get_status(core->tsp, &boot_vec, &cfg, &ctrl, &stat);
459 if (ret < 0)
460 return ret;
461 mem_init_dis = !!(cfg & PROC_BOOT_CFG_FLAG_R5_MEM_INIT_DIS);
462
463 /* Re-use LockStep-mode reset logic for Single-CPU mode */
464 ret = (cluster->mode == CLUSTER_MODE_LOCKSTEP ||
465 cluster->mode == CLUSTER_MODE_SINGLECPU) ?
466 k3_r5_lockstep_release(cluster) : k3_r5_split_release(core);
467 if (ret) {
468 dev_err(dev, "unable to enable cores for TCM loading, ret = %d\n",
469 ret);
470 return ret;
471 }
472
473 /*
474 * Newer IP revisions like on J7200 SoCs support h/w auto-initialization
475 * of TCMs, so there is no need to perform the s/w memzero. This bit is
476 * configurable through System Firmware, the default value does perform
477 * auto-init, but account for it in case it is disabled
478 */
479 if (cluster->soc_data->tcm_ecc_autoinit && !mem_init_dis) {
480 dev_dbg(dev, "leveraging h/w init for TCM memories\n");
481 return 0;
482 }
483
484 /*
485 * Zero out both TCMs unconditionally (access from v8 Arm core is not
486 * affected by ATCM & BTCM enable configuration values) so that ECC
487 * can be effective on all TCM addresses.
488 */
489 dev_dbg(dev, "zeroing out ATCM memory\n");
490 memset(core->mem[0].cpu_addr, 0x00, core->mem[0].size);
491
492 dev_dbg(dev, "zeroing out BTCM memory\n");
493 memset(core->mem[1].cpu_addr, 0x00, core->mem[1].size);
494
495 return 0;
496 }
497
498 /*
499 * This function implements the .unprepare() ops and performs the complimentary
500 * operations to that of the .prepare() ops. The function is used to assert the
501 * resets on all applicable cores for the rproc device (depending on LockStep
502 * or Split mode). This completes the second portion of powering down the R5F
503 * cores. The cores themselves are only halted in the .stop() ops, and the
504 * .unprepare() ops is invoked by the remoteproc core after the remoteproc is
505 * stopped.
506 *
507 * The Single-CPU mode on applicable SoCs (eg: AM64x) combines the TCMs from
508 * both cores. The access is made possible only with releasing the resets for
509 * both cores, but with only Core0 unhalted. This function re-uses the same
510 * reset assert logic as LockStep mode for this mode (though the behavior is
511 * agnostic of the reset assert order). This callback is invoked only in
512 * remoteproc mode.
513 */
k3_r5_rproc_unprepare(struct rproc * rproc)514 static int k3_r5_rproc_unprepare(struct rproc *rproc)
515 {
516 struct k3_r5_rproc *kproc = rproc->priv;
517 struct k3_r5_cluster *cluster = kproc->cluster;
518 struct k3_r5_core *core = kproc->core;
519 struct device *dev = kproc->dev;
520 int ret;
521
522 /* Re-use LockStep-mode reset logic for Single-CPU mode */
523 ret = (cluster->mode == CLUSTER_MODE_LOCKSTEP ||
524 cluster->mode == CLUSTER_MODE_SINGLECPU) ?
525 k3_r5_lockstep_reset(cluster) : k3_r5_split_reset(core);
526 if (ret)
527 dev_err(dev, "unable to disable cores, ret = %d\n", ret);
528
529 return ret;
530 }
531
532 /*
533 * The R5F start sequence includes two different operations
534 * 1. Configure the boot vector for R5F core(s)
535 * 2. Unhalt/Run the R5F core(s)
536 *
537 * The sequence is different between LockStep and Split modes. The LockStep
538 * mode requires the boot vector to be configured only for Core0, and then
539 * unhalt both the cores to start the execution - Core1 needs to be unhalted
540 * first followed by Core0. The Split-mode requires that Core0 to be maintained
541 * always in a higher power state that Core1 (implying Core1 needs to be started
542 * always only after Core0 is started).
543 *
544 * The Single-CPU mode on applicable SoCs (eg: AM64x) only uses Core0 to execute
545 * code, so only Core0 needs to be unhalted. The function uses the same logic
546 * flow as Split-mode for this. This callback is invoked only in remoteproc
547 * mode.
548 */
k3_r5_rproc_start(struct rproc * rproc)549 static int k3_r5_rproc_start(struct rproc *rproc)
550 {
551 struct k3_r5_rproc *kproc = rproc->priv;
552 struct k3_r5_cluster *cluster = kproc->cluster;
553 struct device *dev = kproc->dev;
554 struct k3_r5_core *core0, *core;
555 u32 boot_addr;
556 int ret;
557
558 boot_addr = rproc->bootaddr;
559 /* TODO: add boot_addr sanity checking */
560 dev_dbg(dev, "booting R5F core using boot addr = 0x%x\n", boot_addr);
561
562 /* boot vector need not be programmed for Core1 in LockStep mode */
563 core = kproc->core;
564 ret = ti_sci_proc_set_config(core->tsp, boot_addr, 0, 0);
565 if (ret)
566 return ret;
567
568 /* unhalt/run all applicable cores */
569 if (cluster->mode == CLUSTER_MODE_LOCKSTEP) {
570 list_for_each_entry_reverse(core, &cluster->cores, elem) {
571 ret = k3_r5_core_run(core);
572 if (ret)
573 goto unroll_core_run;
574 }
575 } else {
576 /* do not allow core 1 to start before core 0 */
577 core0 = list_first_entry(&cluster->cores, struct k3_r5_core,
578 elem);
579 if (core != core0 && core0->rproc->state == RPROC_OFFLINE) {
580 dev_err(dev, "%s: can not start core 1 before core 0\n",
581 __func__);
582 return -EPERM;
583 }
584
585 ret = k3_r5_core_run(core);
586 if (ret)
587 return ret;
588
589 core->released_from_reset = true;
590 wake_up_interruptible(&cluster->core_transition);
591 }
592
593 return 0;
594
595 unroll_core_run:
596 list_for_each_entry_continue(core, &cluster->cores, elem) {
597 if (k3_r5_core_halt(core))
598 dev_warn(core->dev, "core halt back failed\n");
599 }
600 return ret;
601 }
602
603 /*
604 * The R5F stop function includes the following operations
605 * 1. Halt R5F core(s)
606 *
607 * The sequence is different between LockStep and Split modes, and the order
608 * of cores the operations are performed are also in general reverse to that
609 * of the start function. The LockStep mode requires each operation to be
610 * performed first on Core0 followed by Core1. The Split-mode requires that
611 * Core0 to be maintained always in a higher power state that Core1 (implying
612 * Core1 needs to be stopped first before Core0).
613 *
614 * The Single-CPU mode on applicable SoCs (eg: AM64x) only uses Core0 to execute
615 * code, so only Core0 needs to be halted. The function uses the same logic
616 * flow as Split-mode for this.
617 *
618 * Note that the R5F halt operation in general is not effective when the R5F
619 * core is running, but is needed to make sure the core won't run after
620 * deasserting the reset the subsequent time. The asserting of reset can
621 * be done here, but is preferred to be done in the .unprepare() ops - this
622 * maintains the symmetric behavior between the .start(), .stop(), .prepare()
623 * and .unprepare() ops, and also balances them well between sysfs 'state'
624 * flow and device bind/unbind or module removal. This callback is invoked
625 * only in remoteproc mode.
626 */
k3_r5_rproc_stop(struct rproc * rproc)627 static int k3_r5_rproc_stop(struct rproc *rproc)
628 {
629 struct k3_r5_rproc *kproc = rproc->priv;
630 struct k3_r5_cluster *cluster = kproc->cluster;
631 struct device *dev = kproc->dev;
632 struct k3_r5_core *core1, *core = kproc->core;
633 int ret;
634
635 /* halt all applicable cores */
636 if (cluster->mode == CLUSTER_MODE_LOCKSTEP) {
637 list_for_each_entry(core, &cluster->cores, elem) {
638 ret = k3_r5_core_halt(core);
639 if (ret) {
640 core = list_prev_entry(core, elem);
641 goto unroll_core_halt;
642 }
643 }
644 } else {
645 /* do not allow core 0 to stop before core 1 */
646 core1 = list_last_entry(&cluster->cores, struct k3_r5_core,
647 elem);
648 if (core != core1 && core1->rproc->state != RPROC_OFFLINE) {
649 dev_err(dev, "%s: can not stop core 0 before core 1\n",
650 __func__);
651 ret = -EPERM;
652 goto out;
653 }
654
655 ret = k3_r5_core_halt(core);
656 if (ret)
657 goto out;
658 }
659
660 return 0;
661
662 unroll_core_halt:
663 list_for_each_entry_from_reverse(core, &cluster->cores, elem) {
664 if (k3_r5_core_run(core))
665 dev_warn(core->dev, "core run back failed\n");
666 }
667 out:
668 return ret;
669 }
670
671 /*
672 * Attach to a running R5F remote processor (IPC-only mode)
673 *
674 * The R5F attach callback is a NOP. The remote processor is already booted, and
675 * all required resources have been acquired during probe routine, so there is
676 * no need to issue any TI-SCI commands to boot the R5F cores in IPC-only mode.
677 * This callback is invoked only in IPC-only mode and exists because
678 * rproc_validate() checks for its existence.
679 */
k3_r5_rproc_attach(struct rproc * rproc)680 static int k3_r5_rproc_attach(struct rproc *rproc) { return 0; }
681
682 /*
683 * Detach from a running R5F remote processor (IPC-only mode)
684 *
685 * The R5F detach callback is a NOP. The R5F cores are not stopped and will be
686 * left in booted state in IPC-only mode. This callback is invoked only in
687 * IPC-only mode and exists for sanity sake.
688 */
k3_r5_rproc_detach(struct rproc * rproc)689 static int k3_r5_rproc_detach(struct rproc *rproc) { return 0; }
690
691 /*
692 * This function implements the .get_loaded_rsc_table() callback and is used
693 * to provide the resource table for the booted R5F in IPC-only mode. The K3 R5F
694 * firmwares follow a design-by-contract approach and are expected to have the
695 * resource table at the base of the DDR region reserved for firmware usage.
696 * This provides flexibility for the remote processor to be booted by different
697 * bootloaders that may or may not have the ability to publish the resource table
698 * address and size through a DT property. This callback is invoked only in
699 * IPC-only mode.
700 */
k3_r5_get_loaded_rsc_table(struct rproc * rproc,size_t * rsc_table_sz)701 static struct resource_table *k3_r5_get_loaded_rsc_table(struct rproc *rproc,
702 size_t *rsc_table_sz)
703 {
704 struct k3_r5_rproc *kproc = rproc->priv;
705 struct device *dev = kproc->dev;
706
707 if (!kproc->rmem[0].cpu_addr) {
708 dev_err(dev, "memory-region #1 does not exist, loaded rsc table can't be found");
709 return ERR_PTR(-ENOMEM);
710 }
711
712 /*
713 * NOTE: The resource table size is currently hard-coded to a maximum
714 * of 256 bytes. The most common resource table usage for K3 firmwares
715 * is to only have the vdev resource entry and an optional trace entry.
716 * The exact size could be computed based on resource table address, but
717 * the hard-coded value suffices to support the IPC-only mode.
718 */
719 *rsc_table_sz = 256;
720 return (struct resource_table *)kproc->rmem[0].cpu_addr;
721 }
722
723 /*
724 * Internal Memory translation helper
725 *
726 * Custom function implementing the rproc .da_to_va ops to provide address
727 * translation (device address to kernel virtual address) for internal RAMs
728 * present in a DSP or IPU device). The translated addresses can be used
729 * either by the remoteproc core for loading, or by any rpmsg bus drivers.
730 */
k3_r5_rproc_da_to_va(struct rproc * rproc,u64 da,size_t len,bool * is_iomem)731 static void *k3_r5_rproc_da_to_va(struct rproc *rproc, u64 da, size_t len, bool *is_iomem)
732 {
733 struct k3_r5_rproc *kproc = rproc->priv;
734 struct k3_r5_core *core = kproc->core;
735 void __iomem *va = NULL;
736 phys_addr_t bus_addr;
737 u32 dev_addr, offset;
738 size_t size;
739 int i;
740
741 if (len == 0)
742 return NULL;
743
744 /* handle both R5 and SoC views of ATCM and BTCM */
745 for (i = 0; i < core->num_mems; i++) {
746 bus_addr = core->mem[i].bus_addr;
747 dev_addr = core->mem[i].dev_addr;
748 size = core->mem[i].size;
749
750 /* handle R5-view addresses of TCMs */
751 if (da >= dev_addr && ((da + len) <= (dev_addr + size))) {
752 offset = da - dev_addr;
753 va = core->mem[i].cpu_addr + offset;
754 return (__force void *)va;
755 }
756
757 /* handle SoC-view addresses of TCMs */
758 if (da >= bus_addr && ((da + len) <= (bus_addr + size))) {
759 offset = da - bus_addr;
760 va = core->mem[i].cpu_addr + offset;
761 return (__force void *)va;
762 }
763 }
764
765 /* handle any SRAM regions using SoC-view addresses */
766 for (i = 0; i < core->num_sram; i++) {
767 dev_addr = core->sram[i].dev_addr;
768 size = core->sram[i].size;
769
770 if (da >= dev_addr && ((da + len) <= (dev_addr + size))) {
771 offset = da - dev_addr;
772 va = core->sram[i].cpu_addr + offset;
773 return (__force void *)va;
774 }
775 }
776
777 /* handle static DDR reserved memory regions */
778 for (i = 0; i < kproc->num_rmems; i++) {
779 dev_addr = kproc->rmem[i].dev_addr;
780 size = kproc->rmem[i].size;
781
782 if (da >= dev_addr && ((da + len) <= (dev_addr + size))) {
783 offset = da - dev_addr;
784 va = kproc->rmem[i].cpu_addr + offset;
785 return (__force void *)va;
786 }
787 }
788
789 return NULL;
790 }
791
792 static const struct rproc_ops k3_r5_rproc_ops = {
793 .prepare = k3_r5_rproc_prepare,
794 .unprepare = k3_r5_rproc_unprepare,
795 .start = k3_r5_rproc_start,
796 .stop = k3_r5_rproc_stop,
797 .kick = k3_r5_rproc_kick,
798 .da_to_va = k3_r5_rproc_da_to_va,
799 };
800
801 /*
802 * Internal R5F Core configuration
803 *
804 * Each R5FSS has a cluster-level setting for configuring the processor
805 * subsystem either in a safety/fault-tolerant LockStep mode or a performance
806 * oriented Split mode on most SoCs. A fewer SoCs support a non-safety mode
807 * as an alternate for LockStep mode that exercises only a single R5F core
808 * called Single-CPU mode. Each R5F core has a number of settings to either
809 * enable/disable each of the TCMs, control which TCM appears at the R5F core's
810 * address 0x0. These settings need to be configured before the resets for the
811 * corresponding core are released. These settings are all protected and managed
812 * by the System Processor.
813 *
814 * This function is used to pre-configure these settings for each R5F core, and
815 * the configuration is all done through various ti_sci_proc functions that
816 * communicate with the System Processor. The function also ensures that both
817 * the cores are halted before the .prepare() step.
818 *
819 * The function is called from k3_r5_cluster_rproc_init() and is invoked either
820 * once (in LockStep mode or Single-CPU modes) or twice (in Split mode). Support
821 * for LockStep-mode is dictated by an eFUSE register bit, and the config
822 * settings retrieved from DT are adjusted accordingly as per the permitted
823 * cluster mode. Another eFUSE register bit dictates if the R5F cluster only
824 * supports a Single-CPU mode. All cluster level settings like Cluster mode and
825 * TEINIT (exception handling state dictating ARM or Thumb mode) can only be set
826 * and retrieved using Core0.
827 *
828 * The function behavior is different based on the cluster mode. The R5F cores
829 * are configured independently as per their individual settings in Split mode.
830 * They are identically configured in LockStep mode using the primary Core0
831 * settings. However, some individual settings cannot be set in LockStep mode.
832 * This is overcome by switching to Split-mode initially and then programming
833 * both the cores with the same settings, before reconfiguing again for
834 * LockStep mode.
835 */
k3_r5_rproc_configure(struct k3_r5_rproc * kproc)836 static int k3_r5_rproc_configure(struct k3_r5_rproc *kproc)
837 {
838 struct k3_r5_cluster *cluster = kproc->cluster;
839 struct device *dev = kproc->dev;
840 struct k3_r5_core *core0, *core, *temp;
841 u32 ctrl = 0, cfg = 0, stat = 0;
842 u32 set_cfg = 0, clr_cfg = 0;
843 u64 boot_vec = 0;
844 bool lockstep_en;
845 bool single_cpu;
846 int ret;
847
848 core0 = list_first_entry(&cluster->cores, struct k3_r5_core, elem);
849 if (cluster->mode == CLUSTER_MODE_LOCKSTEP ||
850 cluster->mode == CLUSTER_MODE_SINGLECPU ||
851 cluster->mode == CLUSTER_MODE_SINGLECORE) {
852 core = core0;
853 } else {
854 core = kproc->core;
855 }
856
857 ret = ti_sci_proc_get_status(core->tsp, &boot_vec, &cfg, &ctrl,
858 &stat);
859 if (ret < 0)
860 return ret;
861
862 dev_dbg(dev, "boot_vector = 0x%llx, cfg = 0x%x ctrl = 0x%x stat = 0x%x\n",
863 boot_vec, cfg, ctrl, stat);
864
865 single_cpu = !!(stat & PROC_BOOT_STATUS_FLAG_R5_SINGLECORE_ONLY);
866 lockstep_en = !!(stat & PROC_BOOT_STATUS_FLAG_R5_LOCKSTEP_PERMITTED);
867
868 /* Override to single CPU mode if set in status flag */
869 if (single_cpu && cluster->mode == CLUSTER_MODE_SPLIT) {
870 dev_err(cluster->dev, "split-mode not permitted, force configuring for single-cpu mode\n");
871 cluster->mode = CLUSTER_MODE_SINGLECPU;
872 }
873
874 /* Override to split mode if lockstep enable bit is not set in status flag */
875 if (!lockstep_en && cluster->mode == CLUSTER_MODE_LOCKSTEP) {
876 dev_err(cluster->dev, "lockstep mode not permitted, force configuring for split-mode\n");
877 cluster->mode = CLUSTER_MODE_SPLIT;
878 }
879
880 /* always enable ARM mode and set boot vector to 0 */
881 boot_vec = 0x0;
882 if (core == core0) {
883 clr_cfg = PROC_BOOT_CFG_FLAG_R5_TEINIT;
884 /*
885 * Single-CPU configuration bit can only be configured
886 * on Core0 and system firmware will NACK any requests
887 * with the bit configured, so program it only on
888 * permitted cores
889 */
890 if (cluster->mode == CLUSTER_MODE_SINGLECPU ||
891 cluster->mode == CLUSTER_MODE_SINGLECORE) {
892 set_cfg = PROC_BOOT_CFG_FLAG_R5_SINGLE_CORE;
893 } else {
894 /*
895 * LockStep configuration bit is Read-only on Split-mode
896 * _only_ devices and system firmware will NACK any
897 * requests with the bit configured, so program it only
898 * on permitted devices
899 */
900 if (lockstep_en)
901 clr_cfg |= PROC_BOOT_CFG_FLAG_R5_LOCKSTEP;
902 }
903 }
904
905 if (core->atcm_enable)
906 set_cfg |= PROC_BOOT_CFG_FLAG_R5_ATCM_EN;
907 else
908 clr_cfg |= PROC_BOOT_CFG_FLAG_R5_ATCM_EN;
909
910 if (core->btcm_enable)
911 set_cfg |= PROC_BOOT_CFG_FLAG_R5_BTCM_EN;
912 else
913 clr_cfg |= PROC_BOOT_CFG_FLAG_R5_BTCM_EN;
914
915 if (core->loczrama)
916 set_cfg |= PROC_BOOT_CFG_FLAG_R5_TCM_RSTBASE;
917 else
918 clr_cfg |= PROC_BOOT_CFG_FLAG_R5_TCM_RSTBASE;
919
920 if (cluster->mode == CLUSTER_MODE_LOCKSTEP) {
921 /*
922 * work around system firmware limitations to make sure both
923 * cores are programmed symmetrically in LockStep. LockStep
924 * and TEINIT config is only allowed with Core0.
925 */
926 list_for_each_entry(temp, &cluster->cores, elem) {
927 ret = k3_r5_core_halt(temp);
928 if (ret)
929 goto out;
930
931 if (temp != core) {
932 clr_cfg &= ~PROC_BOOT_CFG_FLAG_R5_LOCKSTEP;
933 clr_cfg &= ~PROC_BOOT_CFG_FLAG_R5_TEINIT;
934 }
935 ret = ti_sci_proc_set_config(temp->tsp, boot_vec,
936 set_cfg, clr_cfg);
937 if (ret)
938 goto out;
939 }
940
941 set_cfg = PROC_BOOT_CFG_FLAG_R5_LOCKSTEP;
942 clr_cfg = 0;
943 ret = ti_sci_proc_set_config(core->tsp, boot_vec,
944 set_cfg, clr_cfg);
945 } else {
946 ret = k3_r5_core_halt(core);
947 if (ret)
948 goto out;
949
950 ret = ti_sci_proc_set_config(core->tsp, boot_vec,
951 set_cfg, clr_cfg);
952 }
953
954 out:
955 return ret;
956 }
957
k3_r5_reserved_mem_init(struct k3_r5_rproc * kproc)958 static int k3_r5_reserved_mem_init(struct k3_r5_rproc *kproc)
959 {
960 struct device *dev = kproc->dev;
961 struct device_node *np = dev_of_node(dev);
962 struct device_node *rmem_np;
963 struct reserved_mem *rmem;
964 int num_rmems;
965 int ret, i;
966
967 num_rmems = of_property_count_elems_of_size(np, "memory-region",
968 sizeof(phandle));
969 if (num_rmems <= 0) {
970 dev_err(dev, "device does not have reserved memory regions, ret = %d\n",
971 num_rmems);
972 return -EINVAL;
973 }
974 if (num_rmems < 2) {
975 dev_err(dev, "device needs at least two memory regions to be defined, num = %d\n",
976 num_rmems);
977 return -EINVAL;
978 }
979
980 /* use reserved memory region 0 for vring DMA allocations */
981 ret = of_reserved_mem_device_init_by_idx(dev, np, 0);
982 if (ret) {
983 dev_err(dev, "device cannot initialize DMA pool, ret = %d\n",
984 ret);
985 return ret;
986 }
987
988 num_rmems--;
989 kproc->rmem = kcalloc(num_rmems, sizeof(*kproc->rmem), GFP_KERNEL);
990 if (!kproc->rmem) {
991 ret = -ENOMEM;
992 goto release_rmem;
993 }
994
995 /* use remaining reserved memory regions for static carveouts */
996 for (i = 0; i < num_rmems; i++) {
997 rmem_np = of_parse_phandle(np, "memory-region", i + 1);
998 if (!rmem_np) {
999 ret = -EINVAL;
1000 goto unmap_rmem;
1001 }
1002
1003 rmem = of_reserved_mem_lookup(rmem_np);
1004 if (!rmem) {
1005 of_node_put(rmem_np);
1006 ret = -EINVAL;
1007 goto unmap_rmem;
1008 }
1009 of_node_put(rmem_np);
1010
1011 kproc->rmem[i].bus_addr = rmem->base;
1012 /*
1013 * R5Fs do not have an MMU, but have a Region Address Translator
1014 * (RAT) module that provides a fixed entry translation between
1015 * the 32-bit processor addresses to 64-bit bus addresses. The
1016 * RAT is programmable only by the R5F cores. Support for RAT
1017 * is currently not supported, so 64-bit address regions are not
1018 * supported. The absence of MMUs implies that the R5F device
1019 * addresses/supported memory regions are restricted to 32-bit
1020 * bus addresses, and are identical
1021 */
1022 kproc->rmem[i].dev_addr = (u32)rmem->base;
1023 kproc->rmem[i].size = rmem->size;
1024 kproc->rmem[i].cpu_addr = ioremap_wc(rmem->base, rmem->size);
1025 if (!kproc->rmem[i].cpu_addr) {
1026 dev_err(dev, "failed to map reserved memory#%d at %pa of size %pa\n",
1027 i + 1, &rmem->base, &rmem->size);
1028 ret = -ENOMEM;
1029 goto unmap_rmem;
1030 }
1031
1032 dev_dbg(dev, "reserved memory%d: bus addr %pa size 0x%zx va %pK da 0x%x\n",
1033 i + 1, &kproc->rmem[i].bus_addr,
1034 kproc->rmem[i].size, kproc->rmem[i].cpu_addr,
1035 kproc->rmem[i].dev_addr);
1036 }
1037 kproc->num_rmems = num_rmems;
1038
1039 return 0;
1040
1041 unmap_rmem:
1042 for (i--; i >= 0; i--)
1043 iounmap(kproc->rmem[i].cpu_addr);
1044 kfree(kproc->rmem);
1045 release_rmem:
1046 of_reserved_mem_device_release(dev);
1047 return ret;
1048 }
1049
k3_r5_reserved_mem_exit(struct k3_r5_rproc * kproc)1050 static void k3_r5_reserved_mem_exit(struct k3_r5_rproc *kproc)
1051 {
1052 int i;
1053
1054 for (i = 0; i < kproc->num_rmems; i++)
1055 iounmap(kproc->rmem[i].cpu_addr);
1056 kfree(kproc->rmem);
1057
1058 of_reserved_mem_device_release(kproc->dev);
1059 }
1060
1061 /*
1062 * Each R5F core within a typical R5FSS instance has a total of 64 KB of TCMs,
1063 * split equally into two 32 KB banks between ATCM and BTCM. The TCMs from both
1064 * cores are usable in Split-mode, but only the Core0 TCMs can be used in
1065 * LockStep-mode. The newer revisions of the R5FSS IP maximizes these TCMs by
1066 * leveraging the Core1 TCMs as well in certain modes where they would have
1067 * otherwise been unusable (Eg: LockStep-mode on J7200 SoCs, Single-CPU mode on
1068 * AM64x SoCs). This is done by making a Core1 TCM visible immediately after the
1069 * corresponding Core0 TCM. The SoC memory map uses the larger 64 KB sizes for
1070 * the Core0 TCMs, and the dts representation reflects this increased size on
1071 * supported SoCs. The Core0 TCM sizes therefore have to be adjusted to only
1072 * half the original size in Split mode.
1073 */
k3_r5_adjust_tcm_sizes(struct k3_r5_rproc * kproc)1074 static void k3_r5_adjust_tcm_sizes(struct k3_r5_rproc *kproc)
1075 {
1076 struct k3_r5_cluster *cluster = kproc->cluster;
1077 struct k3_r5_core *core = kproc->core;
1078 struct device *cdev = core->dev;
1079 struct k3_r5_core *core0;
1080
1081 if (cluster->mode == CLUSTER_MODE_LOCKSTEP ||
1082 cluster->mode == CLUSTER_MODE_SINGLECPU ||
1083 cluster->mode == CLUSTER_MODE_SINGLECORE ||
1084 !cluster->soc_data->tcm_is_double)
1085 return;
1086
1087 core0 = list_first_entry(&cluster->cores, struct k3_r5_core, elem);
1088 if (core == core0) {
1089 WARN_ON(core->mem[0].size != SZ_64K);
1090 WARN_ON(core->mem[1].size != SZ_64K);
1091
1092 core->mem[0].size /= 2;
1093 core->mem[1].size /= 2;
1094
1095 dev_dbg(cdev, "adjusted TCM sizes, ATCM = 0x%zx BTCM = 0x%zx\n",
1096 core->mem[0].size, core->mem[1].size);
1097 }
1098 }
1099
1100 /*
1101 * This function checks and configures a R5F core for IPC-only or remoteproc
1102 * mode. The driver is configured to be in IPC-only mode for a R5F core when
1103 * the core has been loaded and started by a bootloader. The IPC-only mode is
1104 * detected by querying the System Firmware for reset, power on and halt status
1105 * and ensuring that the core is running. Any incomplete steps at bootloader
1106 * are validated and errored out.
1107 *
1108 * In IPC-only mode, the driver state flags for ATCM, BTCM and LOCZRAMA settings
1109 * and cluster mode parsed originally from kernel DT are updated to reflect the
1110 * actual values configured by bootloader. The driver internal device memory
1111 * addresses for TCMs are also updated.
1112 */
k3_r5_rproc_configure_mode(struct k3_r5_rproc * kproc)1113 static int k3_r5_rproc_configure_mode(struct k3_r5_rproc *kproc)
1114 {
1115 struct k3_r5_cluster *cluster = kproc->cluster;
1116 struct k3_r5_core *core = kproc->core;
1117 struct device *cdev = core->dev;
1118 bool r_state = false, c_state = false, lockstep_en = false, single_cpu = false;
1119 u32 ctrl = 0, cfg = 0, stat = 0, halted = 0;
1120 u64 boot_vec = 0;
1121 u32 atcm_enable, btcm_enable, loczrama;
1122 struct k3_r5_core *core0;
1123 enum cluster_mode mode = cluster->mode;
1124 int reset_ctrl_status;
1125 int ret;
1126
1127 core0 = list_first_entry(&cluster->cores, struct k3_r5_core, elem);
1128
1129 ret = core->ti_sci->ops.dev_ops.is_on(core->ti_sci, core->ti_sci_id,
1130 &r_state, &c_state);
1131 if (ret) {
1132 dev_err(cdev, "failed to get initial state, mode cannot be determined, ret = %d\n",
1133 ret);
1134 return ret;
1135 }
1136 if (r_state != c_state) {
1137 dev_warn(cdev, "R5F core may have been powered on by a different host, programmed state (%d) != actual state (%d)\n",
1138 r_state, c_state);
1139 }
1140
1141 reset_ctrl_status = reset_control_status(core->reset);
1142 if (reset_ctrl_status < 0) {
1143 dev_err(cdev, "failed to get initial local reset status, ret = %d\n",
1144 reset_ctrl_status);
1145 return reset_ctrl_status;
1146 }
1147
1148 /*
1149 * Skip the waiting mechanism for sequential power-on of cores if the
1150 * core has already been booted by another entity.
1151 */
1152 core->released_from_reset = c_state;
1153
1154 ret = ti_sci_proc_get_status(core->tsp, &boot_vec, &cfg, &ctrl,
1155 &stat);
1156 if (ret < 0) {
1157 dev_err(cdev, "failed to get initial processor status, ret = %d\n",
1158 ret);
1159 return ret;
1160 }
1161 atcm_enable = cfg & PROC_BOOT_CFG_FLAG_R5_ATCM_EN ? 1 : 0;
1162 btcm_enable = cfg & PROC_BOOT_CFG_FLAG_R5_BTCM_EN ? 1 : 0;
1163 loczrama = cfg & PROC_BOOT_CFG_FLAG_R5_TCM_RSTBASE ? 1 : 0;
1164 single_cpu = cfg & PROC_BOOT_CFG_FLAG_R5_SINGLE_CORE ? 1 : 0;
1165 lockstep_en = cfg & PROC_BOOT_CFG_FLAG_R5_LOCKSTEP ? 1 : 0;
1166
1167 if (single_cpu && mode != CLUSTER_MODE_SINGLECORE)
1168 mode = CLUSTER_MODE_SINGLECPU;
1169 if (lockstep_en)
1170 mode = CLUSTER_MODE_LOCKSTEP;
1171
1172 halted = ctrl & PROC_BOOT_CTRL_FLAG_R5_CORE_HALT;
1173
1174 /*
1175 * IPC-only mode detection requires both local and module resets to
1176 * be deasserted and R5F core to be unhalted. Local reset status is
1177 * irrelevant if module reset is asserted (POR value has local reset
1178 * deasserted), and is deemed as remoteproc mode
1179 */
1180 if (c_state && !reset_ctrl_status && !halted) {
1181 dev_info(cdev, "configured R5F for IPC-only mode\n");
1182 kproc->rproc->state = RPROC_DETACHED;
1183 ret = 1;
1184 /* override rproc ops with only required IPC-only mode ops */
1185 kproc->rproc->ops->prepare = NULL;
1186 kproc->rproc->ops->unprepare = NULL;
1187 kproc->rproc->ops->start = NULL;
1188 kproc->rproc->ops->stop = NULL;
1189 kproc->rproc->ops->attach = k3_r5_rproc_attach;
1190 kproc->rproc->ops->detach = k3_r5_rproc_detach;
1191 kproc->rproc->ops->get_loaded_rsc_table =
1192 k3_r5_get_loaded_rsc_table;
1193 } else if (!c_state) {
1194 dev_info(cdev, "configured R5F for remoteproc mode\n");
1195 ret = 0;
1196 } else {
1197 dev_err(cdev, "mismatched mode: local_reset = %s, module_reset = %s, core_state = %s\n",
1198 !reset_ctrl_status ? "deasserted" : "asserted",
1199 c_state ? "deasserted" : "asserted",
1200 halted ? "halted" : "unhalted");
1201 ret = -EINVAL;
1202 }
1203
1204 /* fixup TCMs, cluster & core flags to actual values in IPC-only mode */
1205 if (ret > 0) {
1206 if (core == core0)
1207 cluster->mode = mode;
1208 core->atcm_enable = atcm_enable;
1209 core->btcm_enable = btcm_enable;
1210 core->loczrama = loczrama;
1211 core->mem[0].dev_addr = loczrama ? 0 : K3_R5_TCM_DEV_ADDR;
1212 core->mem[1].dev_addr = loczrama ? K3_R5_TCM_DEV_ADDR : 0;
1213 }
1214
1215 return ret;
1216 }
1217
k3_r5_cluster_rproc_init(struct platform_device * pdev)1218 static int k3_r5_cluster_rproc_init(struct platform_device *pdev)
1219 {
1220 struct k3_r5_cluster *cluster = platform_get_drvdata(pdev);
1221 struct device *dev = &pdev->dev;
1222 struct k3_r5_rproc *kproc;
1223 struct k3_r5_core *core, *core1;
1224 struct device *cdev;
1225 const char *fw_name;
1226 struct rproc *rproc;
1227 int ret, ret1;
1228
1229 core1 = list_last_entry(&cluster->cores, struct k3_r5_core, elem);
1230 list_for_each_entry(core, &cluster->cores, elem) {
1231 cdev = core->dev;
1232 ret = rproc_of_parse_firmware(cdev, 0, &fw_name);
1233 if (ret) {
1234 dev_err(dev, "failed to parse firmware-name property, ret = %d\n",
1235 ret);
1236 goto out;
1237 }
1238
1239 rproc = devm_rproc_alloc(cdev, dev_name(cdev), &k3_r5_rproc_ops,
1240 fw_name, sizeof(*kproc));
1241 if (!rproc) {
1242 ret = -ENOMEM;
1243 goto out;
1244 }
1245
1246 /* K3 R5s have a Region Address Translator (RAT) but no MMU */
1247 rproc->has_iommu = false;
1248 /* error recovery is not supported at present */
1249 rproc->recovery_disabled = true;
1250
1251 kproc = rproc->priv;
1252 kproc->cluster = cluster;
1253 kproc->core = core;
1254 kproc->dev = cdev;
1255 kproc->rproc = rproc;
1256 core->rproc = rproc;
1257
1258 ret = k3_r5_rproc_request_mbox(rproc);
1259 if (ret)
1260 return ret;
1261
1262 ret = k3_r5_rproc_configure_mode(kproc);
1263 if (ret < 0)
1264 goto out;
1265 if (ret)
1266 goto init_rmem;
1267
1268 ret = k3_r5_rproc_configure(kproc);
1269 if (ret) {
1270 dev_err(dev, "initial configure failed, ret = %d\n",
1271 ret);
1272 goto out;
1273 }
1274
1275 init_rmem:
1276 k3_r5_adjust_tcm_sizes(kproc);
1277
1278 ret = k3_r5_reserved_mem_init(kproc);
1279 if (ret) {
1280 dev_err(dev, "reserved memory init failed, ret = %d\n",
1281 ret);
1282 goto out;
1283 }
1284
1285 ret = rproc_add(rproc);
1286 if (ret) {
1287 dev_err(dev, "rproc_add failed, ret = %d\n", ret);
1288 goto err_add;
1289 }
1290
1291 /* create only one rproc in lockstep, single-cpu or
1292 * single core mode
1293 */
1294 if (cluster->mode == CLUSTER_MODE_LOCKSTEP ||
1295 cluster->mode == CLUSTER_MODE_SINGLECPU ||
1296 cluster->mode == CLUSTER_MODE_SINGLECORE)
1297 break;
1298
1299 /*
1300 * R5 cores require to be powered on sequentially, core0
1301 * should be in higher power state than core1 in a cluster
1302 * So, wait for current core to power up before proceeding
1303 * to next core and put timeout of 2sec for each core.
1304 *
1305 * This waiting mechanism is necessary because
1306 * rproc_auto_boot_callback() for core1 can be called before
1307 * core0 due to thread execution order.
1308 */
1309 ret = wait_event_interruptible_timeout(cluster->core_transition,
1310 core->released_from_reset,
1311 msecs_to_jiffies(2000));
1312 if (ret <= 0) {
1313 dev_err(dev,
1314 "Timed out waiting for %s core to power up!\n",
1315 rproc->name);
1316 goto err_powerup;
1317 }
1318 }
1319
1320 return 0;
1321
1322 err_split:
1323 if (rproc->state == RPROC_ATTACHED) {
1324 ret1 = rproc_detach(rproc);
1325 if (ret1) {
1326 dev_err(kproc->dev, "failed to detach rproc, ret = %d\n",
1327 ret1);
1328 return ret1;
1329 }
1330 }
1331
1332 err_powerup:
1333 rproc_del(rproc);
1334 err_add:
1335 k3_r5_reserved_mem_exit(kproc);
1336 out:
1337 /* undo core0 upon any failures on core1 in split-mode */
1338 if (cluster->mode == CLUSTER_MODE_SPLIT && core == core1) {
1339 core = list_prev_entry(core, elem);
1340 rproc = core->rproc;
1341 kproc = rproc->priv;
1342 goto err_split;
1343 }
1344 return ret;
1345 }
1346
k3_r5_cluster_rproc_exit(void * data)1347 static void k3_r5_cluster_rproc_exit(void *data)
1348 {
1349 struct k3_r5_cluster *cluster = platform_get_drvdata(data);
1350 struct k3_r5_rproc *kproc;
1351 struct k3_r5_core *core;
1352 struct rproc *rproc;
1353 int ret;
1354
1355 /*
1356 * lockstep mode and single-cpu modes have only one rproc associated
1357 * with first core, whereas split-mode has two rprocs associated with
1358 * each core, and requires that core1 be powered down first
1359 */
1360 core = (cluster->mode == CLUSTER_MODE_LOCKSTEP ||
1361 cluster->mode == CLUSTER_MODE_SINGLECPU) ?
1362 list_first_entry(&cluster->cores, struct k3_r5_core, elem) :
1363 list_last_entry(&cluster->cores, struct k3_r5_core, elem);
1364
1365 list_for_each_entry_from_reverse(core, &cluster->cores, elem) {
1366 rproc = core->rproc;
1367 kproc = rproc->priv;
1368
1369 if (rproc->state == RPROC_ATTACHED) {
1370 ret = rproc_detach(rproc);
1371 if (ret) {
1372 dev_err(kproc->dev, "failed to detach rproc, ret = %d\n", ret);
1373 return;
1374 }
1375 }
1376
1377 mbox_free_channel(kproc->mbox);
1378
1379 rproc_del(rproc);
1380
1381 k3_r5_reserved_mem_exit(kproc);
1382 }
1383 }
1384
k3_r5_core_of_get_internal_memories(struct platform_device * pdev,struct k3_r5_core * core)1385 static int k3_r5_core_of_get_internal_memories(struct platform_device *pdev,
1386 struct k3_r5_core *core)
1387 {
1388 static const char * const mem_names[] = {"atcm", "btcm"};
1389 struct device *dev = &pdev->dev;
1390 struct resource *res;
1391 int num_mems;
1392 int i;
1393
1394 num_mems = ARRAY_SIZE(mem_names);
1395 core->mem = devm_kcalloc(dev, num_mems, sizeof(*core->mem), GFP_KERNEL);
1396 if (!core->mem)
1397 return -ENOMEM;
1398
1399 for (i = 0; i < num_mems; i++) {
1400 res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
1401 mem_names[i]);
1402 if (!res) {
1403 dev_err(dev, "found no memory resource for %s\n",
1404 mem_names[i]);
1405 return -EINVAL;
1406 }
1407 if (!devm_request_mem_region(dev, res->start,
1408 resource_size(res),
1409 dev_name(dev))) {
1410 dev_err(dev, "could not request %s region for resource\n",
1411 mem_names[i]);
1412 return -EBUSY;
1413 }
1414
1415 /*
1416 * TCMs are designed in general to support RAM-like backing
1417 * memories. So, map these as Normal Non-Cached memories. This
1418 * also avoids/fixes any potential alignment faults due to
1419 * unaligned data accesses when using memcpy() or memset()
1420 * functions (normally seen with device type memory).
1421 */
1422 core->mem[i].cpu_addr = devm_ioremap_wc(dev, res->start,
1423 resource_size(res));
1424 if (!core->mem[i].cpu_addr) {
1425 dev_err(dev, "failed to map %s memory\n", mem_names[i]);
1426 return -ENOMEM;
1427 }
1428 core->mem[i].bus_addr = res->start;
1429
1430 /*
1431 * TODO:
1432 * The R5F cores can place ATCM & BTCM anywhere in its address
1433 * based on the corresponding Region Registers in the System
1434 * Control coprocessor. For now, place ATCM and BTCM at
1435 * addresses 0 and 0x41010000 (same as the bus address on AM65x
1436 * SoCs) based on loczrama setting
1437 */
1438 if (!strcmp(mem_names[i], "atcm")) {
1439 core->mem[i].dev_addr = core->loczrama ?
1440 0 : K3_R5_TCM_DEV_ADDR;
1441 } else {
1442 core->mem[i].dev_addr = core->loczrama ?
1443 K3_R5_TCM_DEV_ADDR : 0;
1444 }
1445 core->mem[i].size = resource_size(res);
1446
1447 dev_dbg(dev, "memory %5s: bus addr %pa size 0x%zx va %pK da 0x%x\n",
1448 mem_names[i], &core->mem[i].bus_addr,
1449 core->mem[i].size, core->mem[i].cpu_addr,
1450 core->mem[i].dev_addr);
1451 }
1452 core->num_mems = num_mems;
1453
1454 return 0;
1455 }
1456
k3_r5_core_of_get_sram_memories(struct platform_device * pdev,struct k3_r5_core * core)1457 static int k3_r5_core_of_get_sram_memories(struct platform_device *pdev,
1458 struct k3_r5_core *core)
1459 {
1460 struct device_node *np = pdev->dev.of_node;
1461 struct device *dev = &pdev->dev;
1462 struct device_node *sram_np;
1463 struct resource res;
1464 int num_sram;
1465 int i, ret;
1466
1467 num_sram = of_property_count_elems_of_size(np, "sram", sizeof(phandle));
1468 if (num_sram <= 0) {
1469 dev_dbg(dev, "device does not use reserved on-chip memories, num_sram = %d\n",
1470 num_sram);
1471 return 0;
1472 }
1473
1474 core->sram = devm_kcalloc(dev, num_sram, sizeof(*core->sram), GFP_KERNEL);
1475 if (!core->sram)
1476 return -ENOMEM;
1477
1478 for (i = 0; i < num_sram; i++) {
1479 sram_np = of_parse_phandle(np, "sram", i);
1480 if (!sram_np)
1481 return -EINVAL;
1482
1483 if (!of_device_is_available(sram_np)) {
1484 of_node_put(sram_np);
1485 return -EINVAL;
1486 }
1487
1488 ret = of_address_to_resource(sram_np, 0, &res);
1489 of_node_put(sram_np);
1490 if (ret)
1491 return -EINVAL;
1492
1493 core->sram[i].bus_addr = res.start;
1494 core->sram[i].dev_addr = res.start;
1495 core->sram[i].size = resource_size(&res);
1496 core->sram[i].cpu_addr = devm_ioremap_wc(dev, res.start,
1497 resource_size(&res));
1498 if (!core->sram[i].cpu_addr) {
1499 dev_err(dev, "failed to parse and map sram%d memory at %pad\n",
1500 i, &res.start);
1501 return -ENOMEM;
1502 }
1503
1504 dev_dbg(dev, "memory sram%d: bus addr %pa size 0x%zx va %pK da 0x%x\n",
1505 i, &core->sram[i].bus_addr,
1506 core->sram[i].size, core->sram[i].cpu_addr,
1507 core->sram[i].dev_addr);
1508 }
1509 core->num_sram = num_sram;
1510
1511 return 0;
1512 }
1513
k3_r5_core_of_init(struct platform_device * pdev)1514 static int k3_r5_core_of_init(struct platform_device *pdev)
1515 {
1516 struct device *dev = &pdev->dev;
1517 struct device_node *np = dev_of_node(dev);
1518 struct k3_r5_core *core;
1519 int ret;
1520
1521 if (!devres_open_group(dev, k3_r5_core_of_init, GFP_KERNEL))
1522 return -ENOMEM;
1523
1524 core = devm_kzalloc(dev, sizeof(*core), GFP_KERNEL);
1525 if (!core) {
1526 ret = -ENOMEM;
1527 goto err;
1528 }
1529
1530 core->dev = dev;
1531 /*
1532 * Use SoC Power-on-Reset values as default if no DT properties are
1533 * used to dictate the TCM configurations
1534 */
1535 core->atcm_enable = 0;
1536 core->btcm_enable = 1;
1537 core->loczrama = 1;
1538
1539 ret = of_property_read_u32(np, "ti,atcm-enable", &core->atcm_enable);
1540 if (ret < 0 && ret != -EINVAL) {
1541 dev_err(dev, "invalid format for ti,atcm-enable, ret = %d\n",
1542 ret);
1543 goto err;
1544 }
1545
1546 ret = of_property_read_u32(np, "ti,btcm-enable", &core->btcm_enable);
1547 if (ret < 0 && ret != -EINVAL) {
1548 dev_err(dev, "invalid format for ti,btcm-enable, ret = %d\n",
1549 ret);
1550 goto err;
1551 }
1552
1553 ret = of_property_read_u32(np, "ti,loczrama", &core->loczrama);
1554 if (ret < 0 && ret != -EINVAL) {
1555 dev_err(dev, "invalid format for ti,loczrama, ret = %d\n", ret);
1556 goto err;
1557 }
1558
1559 core->ti_sci = devm_ti_sci_get_by_phandle(dev, "ti,sci");
1560 if (IS_ERR(core->ti_sci)) {
1561 ret = PTR_ERR(core->ti_sci);
1562 if (ret != -EPROBE_DEFER) {
1563 dev_err(dev, "failed to get ti-sci handle, ret = %d\n",
1564 ret);
1565 }
1566 core->ti_sci = NULL;
1567 goto err;
1568 }
1569
1570 ret = of_property_read_u32(np, "ti,sci-dev-id", &core->ti_sci_id);
1571 if (ret) {
1572 dev_err(dev, "missing 'ti,sci-dev-id' property\n");
1573 goto err;
1574 }
1575
1576 core->reset = devm_reset_control_get_exclusive(dev, NULL);
1577 if (IS_ERR_OR_NULL(core->reset)) {
1578 ret = PTR_ERR_OR_ZERO(core->reset);
1579 if (!ret)
1580 ret = -ENODEV;
1581 if (ret != -EPROBE_DEFER) {
1582 dev_err(dev, "failed to get reset handle, ret = %d\n",
1583 ret);
1584 }
1585 goto err;
1586 }
1587
1588 core->tsp = ti_sci_proc_of_get_tsp(dev, core->ti_sci);
1589 if (IS_ERR(core->tsp)) {
1590 ret = PTR_ERR(core->tsp);
1591 dev_err(dev, "failed to construct ti-sci proc control, ret = %d\n",
1592 ret);
1593 goto err;
1594 }
1595
1596 ret = k3_r5_core_of_get_internal_memories(pdev, core);
1597 if (ret) {
1598 dev_err(dev, "failed to get internal memories, ret = %d\n",
1599 ret);
1600 goto err;
1601 }
1602
1603 ret = k3_r5_core_of_get_sram_memories(pdev, core);
1604 if (ret) {
1605 dev_err(dev, "failed to get sram memories, ret = %d\n", ret);
1606 goto err;
1607 }
1608
1609 ret = ti_sci_proc_request(core->tsp);
1610 if (ret < 0) {
1611 dev_err(dev, "ti_sci_proc_request failed, ret = %d\n", ret);
1612 goto err;
1613 }
1614
1615 platform_set_drvdata(pdev, core);
1616 devres_close_group(dev, k3_r5_core_of_init);
1617
1618 return 0;
1619
1620 err:
1621 devres_release_group(dev, k3_r5_core_of_init);
1622 return ret;
1623 }
1624
1625 /*
1626 * free the resources explicitly since driver model is not being used
1627 * for the child R5F devices
1628 */
k3_r5_core_of_exit(struct platform_device * pdev)1629 static void k3_r5_core_of_exit(struct platform_device *pdev)
1630 {
1631 struct k3_r5_core *core = platform_get_drvdata(pdev);
1632 struct device *dev = &pdev->dev;
1633 int ret;
1634
1635 ret = ti_sci_proc_release(core->tsp);
1636 if (ret)
1637 dev_err(dev, "failed to release proc, ret = %d\n", ret);
1638
1639 platform_set_drvdata(pdev, NULL);
1640 devres_release_group(dev, k3_r5_core_of_init);
1641 }
1642
k3_r5_cluster_of_exit(void * data)1643 static void k3_r5_cluster_of_exit(void *data)
1644 {
1645 struct k3_r5_cluster *cluster = platform_get_drvdata(data);
1646 struct platform_device *cpdev;
1647 struct k3_r5_core *core, *temp;
1648
1649 list_for_each_entry_safe_reverse(core, temp, &cluster->cores, elem) {
1650 list_del(&core->elem);
1651 cpdev = to_platform_device(core->dev);
1652 k3_r5_core_of_exit(cpdev);
1653 }
1654 }
1655
k3_r5_cluster_of_init(struct platform_device * pdev)1656 static int k3_r5_cluster_of_init(struct platform_device *pdev)
1657 {
1658 struct k3_r5_cluster *cluster = platform_get_drvdata(pdev);
1659 struct device *dev = &pdev->dev;
1660 struct device_node *np = dev_of_node(dev);
1661 struct platform_device *cpdev;
1662 struct device_node *child;
1663 struct k3_r5_core *core;
1664 int ret;
1665
1666 for_each_available_child_of_node(np, child) {
1667 cpdev = of_find_device_by_node(child);
1668 if (!cpdev) {
1669 ret = -ENODEV;
1670 dev_err(dev, "could not get R5 core platform device\n");
1671 of_node_put(child);
1672 goto fail;
1673 }
1674
1675 ret = k3_r5_core_of_init(cpdev);
1676 if (ret) {
1677 dev_err(dev, "k3_r5_core_of_init failed, ret = %d\n",
1678 ret);
1679 put_device(&cpdev->dev);
1680 of_node_put(child);
1681 goto fail;
1682 }
1683
1684 core = platform_get_drvdata(cpdev);
1685 put_device(&cpdev->dev);
1686 list_add_tail(&core->elem, &cluster->cores);
1687 }
1688
1689 return 0;
1690
1691 fail:
1692 k3_r5_cluster_of_exit(pdev);
1693 return ret;
1694 }
1695
k3_r5_probe(struct platform_device * pdev)1696 static int k3_r5_probe(struct platform_device *pdev)
1697 {
1698 struct device *dev = &pdev->dev;
1699 struct device_node *np = dev_of_node(dev);
1700 struct k3_r5_cluster *cluster;
1701 const struct k3_r5_soc_data *data;
1702 int ret;
1703 int num_cores;
1704
1705 data = of_device_get_match_data(&pdev->dev);
1706 if (!data) {
1707 dev_err(dev, "SoC-specific data is not defined\n");
1708 return -ENODEV;
1709 }
1710
1711 cluster = devm_kzalloc(dev, sizeof(*cluster), GFP_KERNEL);
1712 if (!cluster)
1713 return -ENOMEM;
1714
1715 cluster->dev = dev;
1716 cluster->soc_data = data;
1717 INIT_LIST_HEAD(&cluster->cores);
1718 init_waitqueue_head(&cluster->core_transition);
1719
1720 ret = of_property_read_u32(np, "ti,cluster-mode", &cluster->mode);
1721 if (ret < 0 && ret != -EINVAL) {
1722 dev_err(dev, "invalid format for ti,cluster-mode, ret = %d\n",
1723 ret);
1724 return ret;
1725 }
1726
1727 if (ret == -EINVAL) {
1728 /*
1729 * default to most common efuse configurations - Split-mode on AM64x
1730 * and LockStep-mode on all others
1731 * default to most common efuse configurations -
1732 * Split-mode on AM64x
1733 * Single core on AM62x
1734 * LockStep-mode on all others
1735 */
1736 if (!data->is_single_core)
1737 cluster->mode = data->single_cpu_mode ?
1738 CLUSTER_MODE_SPLIT : CLUSTER_MODE_LOCKSTEP;
1739 else
1740 cluster->mode = CLUSTER_MODE_SINGLECORE;
1741 }
1742
1743 if ((cluster->mode == CLUSTER_MODE_SINGLECPU && !data->single_cpu_mode) ||
1744 (cluster->mode == CLUSTER_MODE_SINGLECORE && !data->is_single_core)) {
1745 dev_err(dev, "Cluster mode = %d is not supported on this SoC\n", cluster->mode);
1746 return -EINVAL;
1747 }
1748
1749 num_cores = of_get_available_child_count(np);
1750 if (num_cores != 2 && !data->is_single_core) {
1751 dev_err(dev, "MCU cluster requires both R5F cores to be enabled but num_cores is set to = %d\n",
1752 num_cores);
1753 return -ENODEV;
1754 }
1755
1756 if (num_cores != 1 && data->is_single_core) {
1757 dev_err(dev, "SoC supports only single core R5 but num_cores is set to %d\n",
1758 num_cores);
1759 return -ENODEV;
1760 }
1761
1762 platform_set_drvdata(pdev, cluster);
1763
1764 ret = devm_of_platform_populate(dev);
1765 if (ret) {
1766 dev_err(dev, "devm_of_platform_populate failed, ret = %d\n",
1767 ret);
1768 return ret;
1769 }
1770
1771 ret = k3_r5_cluster_of_init(pdev);
1772 if (ret) {
1773 dev_err(dev, "k3_r5_cluster_of_init failed, ret = %d\n", ret);
1774 return ret;
1775 }
1776
1777 ret = devm_add_action_or_reset(dev, k3_r5_cluster_of_exit, pdev);
1778 if (ret)
1779 return ret;
1780
1781 ret = k3_r5_cluster_rproc_init(pdev);
1782 if (ret) {
1783 dev_err(dev, "k3_r5_cluster_rproc_init failed, ret = %d\n",
1784 ret);
1785 return ret;
1786 }
1787
1788 ret = devm_add_action_or_reset(dev, k3_r5_cluster_rproc_exit, pdev);
1789 if (ret)
1790 return ret;
1791
1792 return 0;
1793 }
1794
1795 static const struct k3_r5_soc_data am65_j721e_soc_data = {
1796 .tcm_is_double = false,
1797 .tcm_ecc_autoinit = false,
1798 .single_cpu_mode = false,
1799 .is_single_core = false,
1800 };
1801
1802 static const struct k3_r5_soc_data j7200_j721s2_soc_data = {
1803 .tcm_is_double = true,
1804 .tcm_ecc_autoinit = true,
1805 .single_cpu_mode = false,
1806 .is_single_core = false,
1807 };
1808
1809 static const struct k3_r5_soc_data am64_soc_data = {
1810 .tcm_is_double = true,
1811 .tcm_ecc_autoinit = true,
1812 .single_cpu_mode = true,
1813 .is_single_core = false,
1814 };
1815
1816 static const struct k3_r5_soc_data am62_soc_data = {
1817 .tcm_is_double = false,
1818 .tcm_ecc_autoinit = true,
1819 .single_cpu_mode = false,
1820 .is_single_core = true,
1821 };
1822
1823 static const struct of_device_id k3_r5_of_match[] = {
1824 { .compatible = "ti,am654-r5fss", .data = &am65_j721e_soc_data, },
1825 { .compatible = "ti,j721e-r5fss", .data = &am65_j721e_soc_data, },
1826 { .compatible = "ti,j7200-r5fss", .data = &j7200_j721s2_soc_data, },
1827 { .compatible = "ti,am64-r5fss", .data = &am64_soc_data, },
1828 { .compatible = "ti,am62-r5fss", .data = &am62_soc_data, },
1829 { .compatible = "ti,j721s2-r5fss", .data = &j7200_j721s2_soc_data, },
1830 { /* sentinel */ },
1831 };
1832 MODULE_DEVICE_TABLE(of, k3_r5_of_match);
1833
1834 static struct platform_driver k3_r5_rproc_driver = {
1835 .probe = k3_r5_probe,
1836 .driver = {
1837 .name = "k3_r5_rproc",
1838 .of_match_table = k3_r5_of_match,
1839 },
1840 };
1841
1842 module_platform_driver(k3_r5_rproc_driver);
1843
1844 MODULE_LICENSE("GPL v2");
1845 MODULE_DESCRIPTION("TI K3 R5F remote processor driver");
1846 MODULE_AUTHOR("Suman Anna <s-anna@ti.com>");
1847