xref: /linux/include/linux/sched/task.h (revision bf76f23aa1c178e9115eba17f699fa726aed669b)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_SCHED_TASK_H
3 #define _LINUX_SCHED_TASK_H
4 
5 /*
6  * Interface between the scheduler and various task lifetime (fork()/exit())
7  * functionality:
8  */
9 
10 #include <linux/rcupdate.h>
11 #include <linux/refcount.h>
12 #include <linux/sched.h>
13 #include <linux/uaccess.h>
14 
15 struct task_struct;
16 struct rusage;
17 union thread_union;
18 struct css_set;
19 
20 /* All the bits taken by the old clone syscall. */
21 #define CLONE_LEGACY_FLAGS 0xffffffffULL
22 
23 struct kernel_clone_args {
24 	u64 flags;
25 	int __user *pidfd;
26 	int __user *child_tid;
27 	int __user *parent_tid;
28 	const char *name;
29 	int exit_signal;
30 	u32 kthread:1;
31 	u32 io_thread:1;
32 	u32 user_worker:1;
33 	u32 no_files:1;
34 	unsigned long stack;
35 	unsigned long stack_size;
36 	unsigned long tls;
37 	pid_t *set_tid;
38 	/* Number of elements in *set_tid */
39 	size_t set_tid_size;
40 	int cgroup;
41 	int idle;
42 	int (*fn)(void *);
43 	void *fn_arg;
44 	struct cgroup *cgrp;
45 	struct css_set *cset;
46 	unsigned int kill_seq;
47 };
48 
49 /*
50  * This serializes "schedule()" and also protects
51  * the run-queue from deletions/modifications (but
52  * _adding_ to the beginning of the run-queue has
53  * a separate lock).
54  */
55 extern rwlock_t tasklist_lock;
56 extern spinlock_t mmlist_lock;
57 
58 extern union thread_union init_thread_union;
59 extern struct task_struct init_task;
60 
61 extern int lockdep_tasklist_lock_is_held(void);
62 
63 extern asmlinkage void schedule_tail(struct task_struct *prev);
64 extern void init_idle(struct task_struct *idle, int cpu);
65 
66 extern int sched_fork(unsigned long clone_flags, struct task_struct *p);
67 extern int sched_cgroup_fork(struct task_struct *p, struct kernel_clone_args *kargs);
68 extern void sched_cancel_fork(struct task_struct *p);
69 extern void sched_post_fork(struct task_struct *p);
70 extern void sched_dead(struct task_struct *p);
71 
72 void __noreturn do_task_dead(void);
73 void __noreturn make_task_dead(int signr);
74 
75 extern void mm_cache_init(void);
76 extern void proc_caches_init(void);
77 
78 extern void fork_init(void);
79 
80 extern void release_task(struct task_struct * p);
81 
82 extern int copy_thread(struct task_struct *, const struct kernel_clone_args *);
83 
84 extern void flush_thread(void);
85 
86 #ifdef CONFIG_HAVE_EXIT_THREAD
87 extern void exit_thread(struct task_struct *tsk);
88 #else
exit_thread(struct task_struct * tsk)89 static inline void exit_thread(struct task_struct *tsk)
90 {
91 }
92 #endif
93 extern __noreturn void do_group_exit(int);
94 
95 extern void exit_files(struct task_struct *);
96 extern void exit_itimers(struct task_struct *);
97 
98 extern pid_t kernel_clone(struct kernel_clone_args *kargs);
99 struct task_struct *copy_process(struct pid *pid, int trace, int node,
100 				 struct kernel_clone_args *args);
101 struct task_struct *create_io_thread(int (*fn)(void *), void *arg, int node);
102 struct task_struct *fork_idle(int);
103 extern pid_t kernel_thread(int (*fn)(void *), void *arg, const char *name,
104 			    unsigned long flags);
105 extern pid_t user_mode_thread(int (*fn)(void *), void *arg, unsigned long flags);
106 extern long kernel_wait4(pid_t, int __user *, int, struct rusage *);
107 int kernel_wait(pid_t pid, int *stat);
108 
109 extern void free_task(struct task_struct *tsk);
110 
111 /* sched_exec is called by processes performing an exec */
112 extern void sched_exec(void);
113 
get_task_struct(struct task_struct * t)114 static inline struct task_struct *get_task_struct(struct task_struct *t)
115 {
116 	refcount_inc(&t->usage);
117 	return t;
118 }
119 
tryget_task_struct(struct task_struct * t)120 static inline struct task_struct *tryget_task_struct(struct task_struct *t)
121 {
122 	return refcount_inc_not_zero(&t->usage) ? t : NULL;
123 }
124 
125 extern void __put_task_struct(struct task_struct *t);
126 extern void __put_task_struct_rcu_cb(struct rcu_head *rhp);
127 
put_task_struct(struct task_struct * t)128 static inline void put_task_struct(struct task_struct *t)
129 {
130 	if (!refcount_dec_and_test(&t->usage))
131 		return;
132 
133 	/*
134 	 * Under PREEMPT_RT, we can't call __put_task_struct
135 	 * in atomic context because it will indirectly
136 	 * acquire sleeping locks. The same is true if the
137 	 * current process has a mutex enqueued (blocked on
138 	 * a PI chain).
139 	 *
140 	 * In !RT, it is always safe to call __put_task_struct().
141 	 * Though, in order to simplify the code, resort to the
142 	 * deferred call too.
143 	 *
144 	 * call_rcu() will schedule __put_task_struct_rcu_cb()
145 	 * to be called in process context.
146 	 *
147 	 * __put_task_struct() is called when
148 	 * refcount_dec_and_test(&t->usage) succeeds.
149 	 *
150 	 * This means that it can't "conflict" with
151 	 * put_task_struct_rcu_user() which abuses ->rcu the same
152 	 * way; rcu_users has a reference so task->usage can't be
153 	 * zero after rcu_users 1 -> 0 transition.
154 	 *
155 	 * delayed_free_task() also uses ->rcu, but it is only called
156 	 * when it fails to fork a process. Therefore, there is no
157 	 * way it can conflict with __put_task_struct().
158 	 */
159 	call_rcu(&t->rcu, __put_task_struct_rcu_cb);
160 }
161 
DEFINE_FREE(put_task,struct task_struct *,if (_T)put_task_struct (_T))162 DEFINE_FREE(put_task, struct task_struct *, if (_T) put_task_struct(_T))
163 
164 static inline void put_task_struct_many(struct task_struct *t, int nr)
165 {
166 	if (refcount_sub_and_test(nr, &t->usage))
167 		__put_task_struct(t);
168 }
169 
170 void put_task_struct_rcu_user(struct task_struct *task);
171 
172 /* Free all architecture-specific resources held by a thread. */
173 void release_thread(struct task_struct *dead_task);
174 
175 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
176 extern int arch_task_struct_size __read_mostly;
177 #else
178 # define arch_task_struct_size (sizeof(struct task_struct))
179 #endif
180 
181 #ifndef CONFIG_HAVE_ARCH_THREAD_STRUCT_WHITELIST
182 /*
183  * If an architecture has not declared a thread_struct whitelist we
184  * must assume something there may need to be copied to userspace.
185  */
arch_thread_struct_whitelist(unsigned long * offset,unsigned long * size)186 static inline void arch_thread_struct_whitelist(unsigned long *offset,
187 						unsigned long *size)
188 {
189 	*offset = 0;
190 	/* Handle dynamically sized thread_struct. */
191 	*size = arch_task_struct_size - offsetof(struct task_struct, thread);
192 }
193 #endif
194 
195 #ifdef CONFIG_VMAP_STACK
task_stack_vm_area(const struct task_struct * t)196 static inline struct vm_struct *task_stack_vm_area(const struct task_struct *t)
197 {
198 	return t->stack_vm_area;
199 }
200 #else
task_stack_vm_area(const struct task_struct * t)201 static inline struct vm_struct *task_stack_vm_area(const struct task_struct *t)
202 {
203 	return NULL;
204 }
205 #endif
206 
207 /*
208  * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
209  * subscriptions and synchronises with wait4().  Also used in procfs.  Also
210  * pins the final release of task.io_context.  Also protects ->cpuset and
211  * ->cgroup.subsys[]. And ->vfork_done. And ->sysvshm.shm_clist.
212  *
213  * Nests both inside and outside of read_lock(&tasklist_lock).
214  * It must not be nested with write_lock_irq(&tasklist_lock),
215  * neither inside nor outside.
216  */
task_lock(struct task_struct * p)217 static inline void task_lock(struct task_struct *p)
218 {
219 	spin_lock(&p->alloc_lock);
220 }
221 
task_unlock(struct task_struct * p)222 static inline void task_unlock(struct task_struct *p)
223 {
224 	spin_unlock(&p->alloc_lock);
225 }
226 
227 DEFINE_GUARD(task_lock, struct task_struct *, task_lock(_T), task_unlock(_T))
228 
229 #endif /* _LINUX_SCHED_TASK_H */
230