xref: /linux/fs/proc/task_mmu.c (revision ddb7a62af2e766eabb4ab7080e6ed8d6b8915302)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/pagewalk.h>
3 #include <linux/mm_inline.h>
4 #include <linux/hugetlb.h>
5 #include <linux/huge_mm.h>
6 #include <linux/mount.h>
7 #include <linux/ksm.h>
8 #include <linux/seq_file.h>
9 #include <linux/highmem.h>
10 #include <linux/ptrace.h>
11 #include <linux/slab.h>
12 #include <linux/pagemap.h>
13 #include <linux/mempolicy.h>
14 #include <linux/rmap.h>
15 #include <linux/swap.h>
16 #include <linux/sched/mm.h>
17 #include <linux/swapops.h>
18 #include <linux/mmu_notifier.h>
19 #include <linux/page_idle.h>
20 #include <linux/shmem_fs.h>
21 #include <linux/uaccess.h>
22 #include <linux/pkeys.h>
23 #include <linux/minmax.h>
24 #include <linux/overflow.h>
25 #include <linux/buildid.h>
26 
27 #include <asm/elf.h>
28 #include <asm/tlb.h>
29 #include <asm/tlbflush.h>
30 #include "internal.h"
31 
32 #define SENTINEL_VMA_END	-1
33 #define SENTINEL_VMA_GATE	-2
34 
35 #define SEQ_PUT_DEC(str, val) \
36 		seq_put_decimal_ull_width(m, str, (val) << (PAGE_SHIFT-10), 8)
task_mem(struct seq_file * m,struct mm_struct * mm)37 void task_mem(struct seq_file *m, struct mm_struct *mm)
38 {
39 	unsigned long text, lib, swap, anon, file, shmem;
40 	unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
41 
42 	anon = get_mm_counter_sum(mm, MM_ANONPAGES);
43 	file = get_mm_counter_sum(mm, MM_FILEPAGES);
44 	shmem = get_mm_counter_sum(mm, MM_SHMEMPAGES);
45 
46 	/*
47 	 * Note: to minimize their overhead, mm maintains hiwater_vm and
48 	 * hiwater_rss only when about to *lower* total_vm or rss.  Any
49 	 * collector of these hiwater stats must therefore get total_vm
50 	 * and rss too, which will usually be the higher.  Barriers? not
51 	 * worth the effort, such snapshots can always be inconsistent.
52 	 */
53 	hiwater_vm = total_vm = mm->total_vm;
54 	if (hiwater_vm < mm->hiwater_vm)
55 		hiwater_vm = mm->hiwater_vm;
56 	hiwater_rss = total_rss = anon + file + shmem;
57 	if (hiwater_rss < mm->hiwater_rss)
58 		hiwater_rss = mm->hiwater_rss;
59 
60 	/* split executable areas between text and lib */
61 	text = PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK);
62 	text = min(text, mm->exec_vm << PAGE_SHIFT);
63 	lib = (mm->exec_vm << PAGE_SHIFT) - text;
64 
65 	swap = get_mm_counter_sum(mm, MM_SWAPENTS);
66 	SEQ_PUT_DEC("VmPeak:\t", hiwater_vm);
67 	SEQ_PUT_DEC(" kB\nVmSize:\t", total_vm);
68 	SEQ_PUT_DEC(" kB\nVmLck:\t", mm->locked_vm);
69 	SEQ_PUT_DEC(" kB\nVmPin:\t", atomic64_read(&mm->pinned_vm));
70 	SEQ_PUT_DEC(" kB\nVmHWM:\t", hiwater_rss);
71 	SEQ_PUT_DEC(" kB\nVmRSS:\t", total_rss);
72 	SEQ_PUT_DEC(" kB\nRssAnon:\t", anon);
73 	SEQ_PUT_DEC(" kB\nRssFile:\t", file);
74 	SEQ_PUT_DEC(" kB\nRssShmem:\t", shmem);
75 	SEQ_PUT_DEC(" kB\nVmData:\t", mm->data_vm);
76 	SEQ_PUT_DEC(" kB\nVmStk:\t", mm->stack_vm);
77 	seq_put_decimal_ull_width(m,
78 		    " kB\nVmExe:\t", text >> 10, 8);
79 	seq_put_decimal_ull_width(m,
80 		    " kB\nVmLib:\t", lib >> 10, 8);
81 	seq_put_decimal_ull_width(m,
82 		    " kB\nVmPTE:\t", mm_pgtables_bytes(mm) >> 10, 8);
83 	SEQ_PUT_DEC(" kB\nVmSwap:\t", swap);
84 	seq_puts(m, " kB\n");
85 	hugetlb_report_usage(m, mm);
86 }
87 #undef SEQ_PUT_DEC
88 
task_vsize(struct mm_struct * mm)89 unsigned long task_vsize(struct mm_struct *mm)
90 {
91 	return PAGE_SIZE * mm->total_vm;
92 }
93 
task_statm(struct mm_struct * mm,unsigned long * shared,unsigned long * text,unsigned long * data,unsigned long * resident)94 unsigned long task_statm(struct mm_struct *mm,
95 			 unsigned long *shared, unsigned long *text,
96 			 unsigned long *data, unsigned long *resident)
97 {
98 	*shared = get_mm_counter_sum(mm, MM_FILEPAGES) +
99 			get_mm_counter_sum(mm, MM_SHMEMPAGES);
100 	*text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
101 								>> PAGE_SHIFT;
102 	*data = mm->data_vm + mm->stack_vm;
103 	*resident = *shared + get_mm_counter_sum(mm, MM_ANONPAGES);
104 	return mm->total_vm;
105 }
106 
107 #ifdef CONFIG_NUMA
108 /*
109  * Save get_task_policy() for show_numa_map().
110  */
hold_task_mempolicy(struct proc_maps_private * priv)111 static void hold_task_mempolicy(struct proc_maps_private *priv)
112 {
113 	struct task_struct *task = priv->task;
114 
115 	task_lock(task);
116 	priv->task_mempolicy = get_task_policy(task);
117 	mpol_get(priv->task_mempolicy);
118 	task_unlock(task);
119 }
release_task_mempolicy(struct proc_maps_private * priv)120 static void release_task_mempolicy(struct proc_maps_private *priv)
121 {
122 	mpol_put(priv->task_mempolicy);
123 }
124 #else
hold_task_mempolicy(struct proc_maps_private * priv)125 static void hold_task_mempolicy(struct proc_maps_private *priv)
126 {
127 }
release_task_mempolicy(struct proc_maps_private * priv)128 static void release_task_mempolicy(struct proc_maps_private *priv)
129 {
130 }
131 #endif
132 
133 #ifdef CONFIG_PER_VMA_LOCK
134 
unlock_vma(struct proc_maps_private * priv)135 static void unlock_vma(struct proc_maps_private *priv)
136 {
137 	if (priv->locked_vma) {
138 		vma_end_read(priv->locked_vma);
139 		priv->locked_vma = NULL;
140 	}
141 }
142 
143 static const struct seq_operations proc_pid_maps_op;
144 
lock_vma_range(struct seq_file * m,struct proc_maps_private * priv)145 static inline bool lock_vma_range(struct seq_file *m,
146 				  struct proc_maps_private *priv)
147 {
148 	/*
149 	 * smaps and numa_maps perform page table walk, therefore require
150 	 * mmap_lock but maps can be read with locking just the vma and
151 	 * walking the vma tree under rcu read protection.
152 	 */
153 	if (m->op != &proc_pid_maps_op) {
154 		if (mmap_read_lock_killable(priv->mm))
155 			return false;
156 
157 		priv->mmap_locked = true;
158 	} else {
159 		rcu_read_lock();
160 		priv->locked_vma = NULL;
161 		priv->mmap_locked = false;
162 	}
163 
164 	return true;
165 }
166 
unlock_vma_range(struct proc_maps_private * priv)167 static inline void unlock_vma_range(struct proc_maps_private *priv)
168 {
169 	if (priv->mmap_locked) {
170 		mmap_read_unlock(priv->mm);
171 	} else {
172 		unlock_vma(priv);
173 		rcu_read_unlock();
174 	}
175 }
176 
get_next_vma(struct proc_maps_private * priv,loff_t last_pos)177 static struct vm_area_struct *get_next_vma(struct proc_maps_private *priv,
178 					   loff_t last_pos)
179 {
180 	struct vm_area_struct *vma;
181 
182 	if (priv->mmap_locked)
183 		return vma_next(&priv->iter);
184 
185 	unlock_vma(priv);
186 	vma = lock_next_vma(priv->mm, &priv->iter, last_pos);
187 	if (!IS_ERR_OR_NULL(vma))
188 		priv->locked_vma = vma;
189 
190 	return vma;
191 }
192 
fallback_to_mmap_lock(struct proc_maps_private * priv,loff_t pos)193 static inline bool fallback_to_mmap_lock(struct proc_maps_private *priv,
194 					 loff_t pos)
195 {
196 	if (priv->mmap_locked)
197 		return false;
198 
199 	rcu_read_unlock();
200 	mmap_read_lock(priv->mm);
201 	/* Reinitialize the iterator after taking mmap_lock */
202 	vma_iter_set(&priv->iter, pos);
203 	priv->mmap_locked = true;
204 
205 	return true;
206 }
207 
208 #else /* CONFIG_PER_VMA_LOCK */
209 
lock_vma_range(struct seq_file * m,struct proc_maps_private * priv)210 static inline bool lock_vma_range(struct seq_file *m,
211 				  struct proc_maps_private *priv)
212 {
213 	return mmap_read_lock_killable(priv->mm) == 0;
214 }
215 
unlock_vma_range(struct proc_maps_private * priv)216 static inline void unlock_vma_range(struct proc_maps_private *priv)
217 {
218 	mmap_read_unlock(priv->mm);
219 }
220 
get_next_vma(struct proc_maps_private * priv,loff_t last_pos)221 static struct vm_area_struct *get_next_vma(struct proc_maps_private *priv,
222 					   loff_t last_pos)
223 {
224 	return vma_next(&priv->iter);
225 }
226 
fallback_to_mmap_lock(struct proc_maps_private * priv,loff_t pos)227 static inline bool fallback_to_mmap_lock(struct proc_maps_private *priv,
228 					 loff_t pos)
229 {
230 	return false;
231 }
232 
233 #endif /* CONFIG_PER_VMA_LOCK */
234 
proc_get_vma(struct seq_file * m,loff_t * ppos)235 static struct vm_area_struct *proc_get_vma(struct seq_file *m, loff_t *ppos)
236 {
237 	struct proc_maps_private *priv = m->private;
238 	struct vm_area_struct *vma;
239 
240 retry:
241 	vma = get_next_vma(priv, *ppos);
242 	/* EINTR of EAGAIN is possible */
243 	if (IS_ERR(vma)) {
244 		if (PTR_ERR(vma) == -EAGAIN && fallback_to_mmap_lock(priv, *ppos))
245 			goto retry;
246 
247 		return vma;
248 	}
249 
250 	/* Store previous position to be able to restart if needed */
251 	priv->last_pos = *ppos;
252 	if (vma) {
253 		/*
254 		 * Track the end of the reported vma to ensure position changes
255 		 * even if previous vma was merged with the next vma and we
256 		 * found the extended vma with the same vm_start.
257 		 */
258 		*ppos = vma->vm_end;
259 	} else {
260 		*ppos = SENTINEL_VMA_GATE;
261 		vma = get_gate_vma(priv->mm);
262 	}
263 
264 	return vma;
265 }
266 
m_start(struct seq_file * m,loff_t * ppos)267 static void *m_start(struct seq_file *m, loff_t *ppos)
268 {
269 	struct proc_maps_private *priv = m->private;
270 	loff_t last_addr = *ppos;
271 	struct mm_struct *mm;
272 
273 	/* See m_next(). Zero at the start or after lseek. */
274 	if (last_addr == SENTINEL_VMA_END)
275 		return NULL;
276 
277 	priv->task = get_proc_task(priv->inode);
278 	if (!priv->task)
279 		return ERR_PTR(-ESRCH);
280 
281 	mm = priv->mm;
282 	if (!mm || !mmget_not_zero(mm)) {
283 		put_task_struct(priv->task);
284 		priv->task = NULL;
285 		return NULL;
286 	}
287 
288 	if (!lock_vma_range(m, priv)) {
289 		mmput(mm);
290 		put_task_struct(priv->task);
291 		priv->task = NULL;
292 		return ERR_PTR(-EINTR);
293 	}
294 
295 	/*
296 	 * Reset current position if last_addr was set before
297 	 * and it's not a sentinel.
298 	 */
299 	if (last_addr > 0)
300 		*ppos = last_addr = priv->last_pos;
301 	vma_iter_init(&priv->iter, mm, (unsigned long)last_addr);
302 	hold_task_mempolicy(priv);
303 	if (last_addr == SENTINEL_VMA_GATE)
304 		return get_gate_vma(mm);
305 
306 	return proc_get_vma(m, ppos);
307 }
308 
m_next(struct seq_file * m,void * v,loff_t * ppos)309 static void *m_next(struct seq_file *m, void *v, loff_t *ppos)
310 {
311 	if (*ppos == SENTINEL_VMA_GATE) {
312 		*ppos = SENTINEL_VMA_END;
313 		return NULL;
314 	}
315 	return proc_get_vma(m, ppos);
316 }
317 
m_stop(struct seq_file * m,void * v)318 static void m_stop(struct seq_file *m, void *v)
319 {
320 	struct proc_maps_private *priv = m->private;
321 	struct mm_struct *mm = priv->mm;
322 
323 	if (!priv->task)
324 		return;
325 
326 	release_task_mempolicy(priv);
327 	unlock_vma_range(priv);
328 	mmput(mm);
329 	put_task_struct(priv->task);
330 	priv->task = NULL;
331 }
332 
proc_maps_open(struct inode * inode,struct file * file,const struct seq_operations * ops,int psize)333 static int proc_maps_open(struct inode *inode, struct file *file,
334 			const struct seq_operations *ops, int psize)
335 {
336 	struct proc_maps_private *priv = __seq_open_private(file, ops, psize);
337 
338 	if (!priv)
339 		return -ENOMEM;
340 
341 	priv->inode = inode;
342 	priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
343 	if (IS_ERR_OR_NULL(priv->mm)) {
344 		int err = priv->mm ? PTR_ERR(priv->mm) : -ESRCH;
345 
346 		seq_release_private(inode, file);
347 		return err;
348 	}
349 
350 	return 0;
351 }
352 
proc_map_release(struct inode * inode,struct file * file)353 static int proc_map_release(struct inode *inode, struct file *file)
354 {
355 	struct seq_file *seq = file->private_data;
356 	struct proc_maps_private *priv = seq->private;
357 
358 	if (priv->mm)
359 		mmdrop(priv->mm);
360 
361 	return seq_release_private(inode, file);
362 }
363 
do_maps_open(struct inode * inode,struct file * file,const struct seq_operations * ops)364 static int do_maps_open(struct inode *inode, struct file *file,
365 			const struct seq_operations *ops)
366 {
367 	return proc_maps_open(inode, file, ops,
368 				sizeof(struct proc_maps_private));
369 }
370 
get_vma_name(struct vm_area_struct * vma,const struct path ** path,const char ** name,const char ** name_fmt)371 static void get_vma_name(struct vm_area_struct *vma,
372 			 const struct path **path,
373 			 const char **name,
374 			 const char **name_fmt)
375 {
376 	struct anon_vma_name *anon_name = vma->vm_mm ? anon_vma_name(vma) : NULL;
377 
378 	*name = NULL;
379 	*path = NULL;
380 	*name_fmt = NULL;
381 
382 	/*
383 	 * Print the dentry name for named mappings, and a
384 	 * special [heap] marker for the heap:
385 	 */
386 	if (vma->vm_file) {
387 		/*
388 		 * If user named this anon shared memory via
389 		 * prctl(PR_SET_VMA ..., use the provided name.
390 		 */
391 		if (anon_name) {
392 			*name_fmt = "[anon_shmem:%s]";
393 			*name = anon_name->name;
394 		} else {
395 			*path = file_user_path(vma->vm_file);
396 		}
397 		return;
398 	}
399 
400 	if (vma->vm_ops && vma->vm_ops->name) {
401 		*name = vma->vm_ops->name(vma);
402 		if (*name)
403 			return;
404 	}
405 
406 	*name = arch_vma_name(vma);
407 	if (*name)
408 		return;
409 
410 	if (!vma->vm_mm) {
411 		*name = "[vdso]";
412 		return;
413 	}
414 
415 	if (vma_is_initial_heap(vma)) {
416 		*name = "[heap]";
417 		return;
418 	}
419 
420 	if (vma_is_initial_stack(vma)) {
421 		*name = "[stack]";
422 		return;
423 	}
424 
425 	if (anon_name) {
426 		*name_fmt = "[anon:%s]";
427 		*name = anon_name->name;
428 		return;
429 	}
430 }
431 
show_vma_header_prefix(struct seq_file * m,unsigned long start,unsigned long end,vm_flags_t flags,unsigned long long pgoff,dev_t dev,unsigned long ino)432 static void show_vma_header_prefix(struct seq_file *m,
433 				   unsigned long start, unsigned long end,
434 				   vm_flags_t flags, unsigned long long pgoff,
435 				   dev_t dev, unsigned long ino)
436 {
437 	seq_setwidth(m, 25 + sizeof(void *) * 6 - 1);
438 	seq_put_hex_ll(m, NULL, start, 8);
439 	seq_put_hex_ll(m, "-", end, 8);
440 	seq_putc(m, ' ');
441 	seq_putc(m, flags & VM_READ ? 'r' : '-');
442 	seq_putc(m, flags & VM_WRITE ? 'w' : '-');
443 	seq_putc(m, flags & VM_EXEC ? 'x' : '-');
444 	seq_putc(m, flags & VM_MAYSHARE ? 's' : 'p');
445 	seq_put_hex_ll(m, " ", pgoff, 8);
446 	seq_put_hex_ll(m, " ", MAJOR(dev), 2);
447 	seq_put_hex_ll(m, ":", MINOR(dev), 2);
448 	seq_put_decimal_ull(m, " ", ino);
449 	seq_putc(m, ' ');
450 }
451 
452 static void
show_map_vma(struct seq_file * m,struct vm_area_struct * vma)453 show_map_vma(struct seq_file *m, struct vm_area_struct *vma)
454 {
455 	const struct path *path;
456 	const char *name_fmt, *name;
457 	vm_flags_t flags = vma->vm_flags;
458 	unsigned long ino = 0;
459 	unsigned long long pgoff = 0;
460 	unsigned long start, end;
461 	dev_t dev = 0;
462 
463 	if (vma->vm_file) {
464 		const struct inode *inode = file_user_inode(vma->vm_file);
465 
466 		dev = inode->i_sb->s_dev;
467 		ino = inode->i_ino;
468 		pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
469 	}
470 
471 	start = vma->vm_start;
472 	end = vma->vm_end;
473 	show_vma_header_prefix(m, start, end, flags, pgoff, dev, ino);
474 
475 	get_vma_name(vma, &path, &name, &name_fmt);
476 	if (path) {
477 		seq_pad(m, ' ');
478 		seq_path(m, path, "\n");
479 	} else if (name_fmt) {
480 		seq_pad(m, ' ');
481 		seq_printf(m, name_fmt, name);
482 	} else if (name) {
483 		seq_pad(m, ' ');
484 		seq_puts(m, name);
485 	}
486 	seq_putc(m, '\n');
487 }
488 
show_map(struct seq_file * m,void * v)489 static int show_map(struct seq_file *m, void *v)
490 {
491 	show_map_vma(m, v);
492 	return 0;
493 }
494 
495 static const struct seq_operations proc_pid_maps_op = {
496 	.start	= m_start,
497 	.next	= m_next,
498 	.stop	= m_stop,
499 	.show	= show_map
500 };
501 
pid_maps_open(struct inode * inode,struct file * file)502 static int pid_maps_open(struct inode *inode, struct file *file)
503 {
504 	return do_maps_open(inode, file, &proc_pid_maps_op);
505 }
506 
507 #define PROCMAP_QUERY_VMA_FLAGS (				\
508 		PROCMAP_QUERY_VMA_READABLE |			\
509 		PROCMAP_QUERY_VMA_WRITABLE |			\
510 		PROCMAP_QUERY_VMA_EXECUTABLE |			\
511 		PROCMAP_QUERY_VMA_SHARED			\
512 )
513 
514 #define PROCMAP_QUERY_VALID_FLAGS_MASK (			\
515 		PROCMAP_QUERY_COVERING_OR_NEXT_VMA |		\
516 		PROCMAP_QUERY_FILE_BACKED_VMA |			\
517 		PROCMAP_QUERY_VMA_FLAGS				\
518 )
519 
query_vma_setup(struct mm_struct * mm)520 static int query_vma_setup(struct mm_struct *mm)
521 {
522 	return mmap_read_lock_killable(mm);
523 }
524 
query_vma_teardown(struct mm_struct * mm,struct vm_area_struct * vma)525 static void query_vma_teardown(struct mm_struct *mm, struct vm_area_struct *vma)
526 {
527 	mmap_read_unlock(mm);
528 }
529 
query_vma_find_by_addr(struct mm_struct * mm,unsigned long addr)530 static struct vm_area_struct *query_vma_find_by_addr(struct mm_struct *mm, unsigned long addr)
531 {
532 	return find_vma(mm, addr);
533 }
534 
query_matching_vma(struct mm_struct * mm,unsigned long addr,u32 flags)535 static struct vm_area_struct *query_matching_vma(struct mm_struct *mm,
536 						 unsigned long addr, u32 flags)
537 {
538 	struct vm_area_struct *vma;
539 
540 next_vma:
541 	vma = query_vma_find_by_addr(mm, addr);
542 	if (!vma)
543 		goto no_vma;
544 
545 	/* user requested only file-backed VMA, keep iterating */
546 	if ((flags & PROCMAP_QUERY_FILE_BACKED_VMA) && !vma->vm_file)
547 		goto skip_vma;
548 
549 	/* VMA permissions should satisfy query flags */
550 	if (flags & PROCMAP_QUERY_VMA_FLAGS) {
551 		u32 perm = 0;
552 
553 		if (flags & PROCMAP_QUERY_VMA_READABLE)
554 			perm |= VM_READ;
555 		if (flags & PROCMAP_QUERY_VMA_WRITABLE)
556 			perm |= VM_WRITE;
557 		if (flags & PROCMAP_QUERY_VMA_EXECUTABLE)
558 			perm |= VM_EXEC;
559 		if (flags & PROCMAP_QUERY_VMA_SHARED)
560 			perm |= VM_MAYSHARE;
561 
562 		if ((vma->vm_flags & perm) != perm)
563 			goto skip_vma;
564 	}
565 
566 	/* found covering VMA or user is OK with the matching next VMA */
567 	if ((flags & PROCMAP_QUERY_COVERING_OR_NEXT_VMA) || vma->vm_start <= addr)
568 		return vma;
569 
570 skip_vma:
571 	/*
572 	 * If the user needs closest matching VMA, keep iterating.
573 	 */
574 	addr = vma->vm_end;
575 	if (flags & PROCMAP_QUERY_COVERING_OR_NEXT_VMA)
576 		goto next_vma;
577 
578 no_vma:
579 	return ERR_PTR(-ENOENT);
580 }
581 
do_procmap_query(struct proc_maps_private * priv,void __user * uarg)582 static int do_procmap_query(struct proc_maps_private *priv, void __user *uarg)
583 {
584 	struct procmap_query karg;
585 	struct vm_area_struct *vma;
586 	struct mm_struct *mm;
587 	const char *name = NULL;
588 	char build_id_buf[BUILD_ID_SIZE_MAX], *name_buf = NULL;
589 	__u64 usize;
590 	int err;
591 
592 	if (copy_from_user(&usize, (void __user *)uarg, sizeof(usize)))
593 		return -EFAULT;
594 	/* argument struct can never be that large, reject abuse */
595 	if (usize > PAGE_SIZE)
596 		return -E2BIG;
597 	/* argument struct should have at least query_flags and query_addr fields */
598 	if (usize < offsetofend(struct procmap_query, query_addr))
599 		return -EINVAL;
600 	err = copy_struct_from_user(&karg, sizeof(karg), uarg, usize);
601 	if (err)
602 		return err;
603 
604 	/* reject unknown flags */
605 	if (karg.query_flags & ~PROCMAP_QUERY_VALID_FLAGS_MASK)
606 		return -EINVAL;
607 	/* either both buffer address and size are set, or both should be zero */
608 	if (!!karg.vma_name_size != !!karg.vma_name_addr)
609 		return -EINVAL;
610 	if (!!karg.build_id_size != !!karg.build_id_addr)
611 		return -EINVAL;
612 
613 	mm = priv->mm;
614 	if (!mm || !mmget_not_zero(mm))
615 		return -ESRCH;
616 
617 	err = query_vma_setup(mm);
618 	if (err) {
619 		mmput(mm);
620 		return err;
621 	}
622 
623 	vma = query_matching_vma(mm, karg.query_addr, karg.query_flags);
624 	if (IS_ERR(vma)) {
625 		err = PTR_ERR(vma);
626 		vma = NULL;
627 		goto out;
628 	}
629 
630 	karg.vma_start = vma->vm_start;
631 	karg.vma_end = vma->vm_end;
632 
633 	karg.vma_flags = 0;
634 	if (vma->vm_flags & VM_READ)
635 		karg.vma_flags |= PROCMAP_QUERY_VMA_READABLE;
636 	if (vma->vm_flags & VM_WRITE)
637 		karg.vma_flags |= PROCMAP_QUERY_VMA_WRITABLE;
638 	if (vma->vm_flags & VM_EXEC)
639 		karg.vma_flags |= PROCMAP_QUERY_VMA_EXECUTABLE;
640 	if (vma->vm_flags & VM_MAYSHARE)
641 		karg.vma_flags |= PROCMAP_QUERY_VMA_SHARED;
642 
643 	karg.vma_page_size = vma_kernel_pagesize(vma);
644 
645 	if (vma->vm_file) {
646 		const struct inode *inode = file_user_inode(vma->vm_file);
647 
648 		karg.vma_offset = ((__u64)vma->vm_pgoff) << PAGE_SHIFT;
649 		karg.dev_major = MAJOR(inode->i_sb->s_dev);
650 		karg.dev_minor = MINOR(inode->i_sb->s_dev);
651 		karg.inode = inode->i_ino;
652 	} else {
653 		karg.vma_offset = 0;
654 		karg.dev_major = 0;
655 		karg.dev_minor = 0;
656 		karg.inode = 0;
657 	}
658 
659 	if (karg.build_id_size) {
660 		__u32 build_id_sz;
661 
662 		err = build_id_parse(vma, build_id_buf, &build_id_sz);
663 		if (err) {
664 			karg.build_id_size = 0;
665 		} else {
666 			if (karg.build_id_size < build_id_sz) {
667 				err = -ENAMETOOLONG;
668 				goto out;
669 			}
670 			karg.build_id_size = build_id_sz;
671 		}
672 	}
673 
674 	if (karg.vma_name_size) {
675 		size_t name_buf_sz = min_t(size_t, PATH_MAX, karg.vma_name_size);
676 		const struct path *path;
677 		const char *name_fmt;
678 		size_t name_sz = 0;
679 
680 		get_vma_name(vma, &path, &name, &name_fmt);
681 
682 		if (path || name_fmt || name) {
683 			name_buf = kmalloc(name_buf_sz, GFP_KERNEL);
684 			if (!name_buf) {
685 				err = -ENOMEM;
686 				goto out;
687 			}
688 		}
689 		if (path) {
690 			name = d_path(path, name_buf, name_buf_sz);
691 			if (IS_ERR(name)) {
692 				err = PTR_ERR(name);
693 				goto out;
694 			}
695 			name_sz = name_buf + name_buf_sz - name;
696 		} else if (name || name_fmt) {
697 			name_sz = 1 + snprintf(name_buf, name_buf_sz, name_fmt ?: "%s", name);
698 			name = name_buf;
699 		}
700 		if (name_sz > name_buf_sz) {
701 			err = -ENAMETOOLONG;
702 			goto out;
703 		}
704 		karg.vma_name_size = name_sz;
705 	}
706 
707 	/* unlock vma or mmap_lock, and put mm_struct before copying data to user */
708 	query_vma_teardown(mm, vma);
709 	mmput(mm);
710 
711 	if (karg.vma_name_size && copy_to_user(u64_to_user_ptr(karg.vma_name_addr),
712 					       name, karg.vma_name_size)) {
713 		kfree(name_buf);
714 		return -EFAULT;
715 	}
716 	kfree(name_buf);
717 
718 	if (karg.build_id_size && copy_to_user(u64_to_user_ptr(karg.build_id_addr),
719 					       build_id_buf, karg.build_id_size))
720 		return -EFAULT;
721 
722 	if (copy_to_user(uarg, &karg, min_t(size_t, sizeof(karg), usize)))
723 		return -EFAULT;
724 
725 	return 0;
726 
727 out:
728 	query_vma_teardown(mm, vma);
729 	mmput(mm);
730 	kfree(name_buf);
731 	return err;
732 }
733 
procfs_procmap_ioctl(struct file * file,unsigned int cmd,unsigned long arg)734 static long procfs_procmap_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
735 {
736 	struct seq_file *seq = file->private_data;
737 	struct proc_maps_private *priv = seq->private;
738 
739 	switch (cmd) {
740 	case PROCMAP_QUERY:
741 		return do_procmap_query(priv, (void __user *)arg);
742 	default:
743 		return -ENOIOCTLCMD;
744 	}
745 }
746 
747 const struct file_operations proc_pid_maps_operations = {
748 	.open		= pid_maps_open,
749 	.read		= seq_read,
750 	.llseek		= seq_lseek,
751 	.release	= proc_map_release,
752 	.unlocked_ioctl = procfs_procmap_ioctl,
753 	.compat_ioctl	= compat_ptr_ioctl,
754 };
755 
756 /*
757  * Proportional Set Size(PSS): my share of RSS.
758  *
759  * PSS of a process is the count of pages it has in memory, where each
760  * page is divided by the number of processes sharing it.  So if a
761  * process has 1000 pages all to itself, and 1000 shared with one other
762  * process, its PSS will be 1500.
763  *
764  * To keep (accumulated) division errors low, we adopt a 64bit
765  * fixed-point pss counter to minimize division errors. So (pss >>
766  * PSS_SHIFT) would be the real byte count.
767  *
768  * A shift of 12 before division means (assuming 4K page size):
769  * 	- 1M 3-user-pages add up to 8KB errors;
770  * 	- supports mapcount up to 2^24, or 16M;
771  * 	- supports PSS up to 2^52 bytes, or 4PB.
772  */
773 #define PSS_SHIFT 12
774 
775 #ifdef CONFIG_PROC_PAGE_MONITOR
776 struct mem_size_stats {
777 	unsigned long resident;
778 	unsigned long shared_clean;
779 	unsigned long shared_dirty;
780 	unsigned long private_clean;
781 	unsigned long private_dirty;
782 	unsigned long referenced;
783 	unsigned long anonymous;
784 	unsigned long lazyfree;
785 	unsigned long anonymous_thp;
786 	unsigned long shmem_thp;
787 	unsigned long file_thp;
788 	unsigned long swap;
789 	unsigned long shared_hugetlb;
790 	unsigned long private_hugetlb;
791 	unsigned long ksm;
792 	u64 pss;
793 	u64 pss_anon;
794 	u64 pss_file;
795 	u64 pss_shmem;
796 	u64 pss_dirty;
797 	u64 pss_locked;
798 	u64 swap_pss;
799 };
800 
smaps_page_accumulate(struct mem_size_stats * mss,struct folio * folio,unsigned long size,unsigned long pss,bool dirty,bool locked,bool private)801 static void smaps_page_accumulate(struct mem_size_stats *mss,
802 		struct folio *folio, unsigned long size, unsigned long pss,
803 		bool dirty, bool locked, bool private)
804 {
805 	mss->pss += pss;
806 
807 	if (folio_test_anon(folio))
808 		mss->pss_anon += pss;
809 	else if (folio_test_swapbacked(folio))
810 		mss->pss_shmem += pss;
811 	else
812 		mss->pss_file += pss;
813 
814 	if (locked)
815 		mss->pss_locked += pss;
816 
817 	if (dirty || folio_test_dirty(folio)) {
818 		mss->pss_dirty += pss;
819 		if (private)
820 			mss->private_dirty += size;
821 		else
822 			mss->shared_dirty += size;
823 	} else {
824 		if (private)
825 			mss->private_clean += size;
826 		else
827 			mss->shared_clean += size;
828 	}
829 }
830 
smaps_account(struct mem_size_stats * mss,struct page * page,bool compound,bool young,bool dirty,bool locked,bool present)831 static void smaps_account(struct mem_size_stats *mss, struct page *page,
832 		bool compound, bool young, bool dirty, bool locked,
833 		bool present)
834 {
835 	struct folio *folio = page_folio(page);
836 	int i, nr = compound ? compound_nr(page) : 1;
837 	unsigned long size = nr * PAGE_SIZE;
838 	bool exclusive;
839 	int mapcount;
840 
841 	/*
842 	 * First accumulate quantities that depend only on |size| and the type
843 	 * of the compound page.
844 	 */
845 	if (folio_test_anon(folio)) {
846 		mss->anonymous += size;
847 		if (!folio_test_swapbacked(folio) && !dirty &&
848 		    !folio_test_dirty(folio))
849 			mss->lazyfree += size;
850 	}
851 
852 	if (folio_test_ksm(folio))
853 		mss->ksm += size;
854 
855 	mss->resident += size;
856 	/* Accumulate the size in pages that have been accessed. */
857 	if (young || folio_test_young(folio) || folio_test_referenced(folio))
858 		mss->referenced += size;
859 
860 	/*
861 	 * Then accumulate quantities that may depend on sharing, or that may
862 	 * differ page-by-page.
863 	 *
864 	 * refcount == 1 for present entries guarantees that the folio is mapped
865 	 * exactly once. For large folios this implies that exactly one
866 	 * PTE/PMD/... maps (a part of) this folio.
867 	 *
868 	 * Treat all non-present entries (where relying on the mapcount and
869 	 * refcount doesn't make sense) as "maybe shared, but not sure how
870 	 * often". We treat device private entries as being fake-present.
871 	 *
872 	 * Note that it would not be safe to read the mapcount especially for
873 	 * pages referenced by migration entries, even with the PTL held.
874 	 */
875 	if (folio_ref_count(folio) == 1 || !present) {
876 		smaps_page_accumulate(mss, folio, size, size << PSS_SHIFT,
877 				      dirty, locked, present);
878 		return;
879 	}
880 
881 	if (IS_ENABLED(CONFIG_NO_PAGE_MAPCOUNT)) {
882 		mapcount = folio_average_page_mapcount(folio);
883 		exclusive = !folio_maybe_mapped_shared(folio);
884 	}
885 
886 	/*
887 	 * We obtain a snapshot of the mapcount. Without holding the folio lock
888 	 * this snapshot can be slightly wrong as we cannot always read the
889 	 * mapcount atomically.
890 	 */
891 	for (i = 0; i < nr; i++, page++) {
892 		unsigned long pss = PAGE_SIZE << PSS_SHIFT;
893 
894 		if (IS_ENABLED(CONFIG_PAGE_MAPCOUNT)) {
895 			mapcount = folio_precise_page_mapcount(folio, page);
896 			exclusive = mapcount < 2;
897 		}
898 
899 		if (mapcount >= 2)
900 			pss /= mapcount;
901 		smaps_page_accumulate(mss, folio, PAGE_SIZE, pss,
902 				dirty, locked, exclusive);
903 	}
904 }
905 
906 #ifdef CONFIG_SHMEM
smaps_pte_hole(unsigned long addr,unsigned long end,__always_unused int depth,struct mm_walk * walk)907 static int smaps_pte_hole(unsigned long addr, unsigned long end,
908 			  __always_unused int depth, struct mm_walk *walk)
909 {
910 	struct mem_size_stats *mss = walk->private;
911 	struct vm_area_struct *vma = walk->vma;
912 
913 	mss->swap += shmem_partial_swap_usage(walk->vma->vm_file->f_mapping,
914 					      linear_page_index(vma, addr),
915 					      linear_page_index(vma, end));
916 
917 	return 0;
918 }
919 #else
920 #define smaps_pte_hole		NULL
921 #endif /* CONFIG_SHMEM */
922 
smaps_pte_hole_lookup(unsigned long addr,struct mm_walk * walk)923 static void smaps_pte_hole_lookup(unsigned long addr, struct mm_walk *walk)
924 {
925 #ifdef CONFIG_SHMEM
926 	if (walk->ops->pte_hole) {
927 		/* depth is not used */
928 		smaps_pte_hole(addr, addr + PAGE_SIZE, 0, walk);
929 	}
930 #endif
931 }
932 
smaps_pte_entry(pte_t * pte,unsigned long addr,struct mm_walk * walk)933 static void smaps_pte_entry(pte_t *pte, unsigned long addr,
934 		struct mm_walk *walk)
935 {
936 	struct mem_size_stats *mss = walk->private;
937 	struct vm_area_struct *vma = walk->vma;
938 	bool locked = !!(vma->vm_flags & VM_LOCKED);
939 	struct page *page = NULL;
940 	bool present = false, young = false, dirty = false;
941 	pte_t ptent = ptep_get(pte);
942 
943 	if (pte_present(ptent)) {
944 		page = vm_normal_page(vma, addr, ptent);
945 		young = pte_young(ptent);
946 		dirty = pte_dirty(ptent);
947 		present = true;
948 	} else if (is_swap_pte(ptent)) {
949 		swp_entry_t swpent = pte_to_swp_entry(ptent);
950 
951 		if (!non_swap_entry(swpent)) {
952 			int mapcount;
953 
954 			mss->swap += PAGE_SIZE;
955 			mapcount = swp_swapcount(swpent);
956 			if (mapcount >= 2) {
957 				u64 pss_delta = (u64)PAGE_SIZE << PSS_SHIFT;
958 
959 				do_div(pss_delta, mapcount);
960 				mss->swap_pss += pss_delta;
961 			} else {
962 				mss->swap_pss += (u64)PAGE_SIZE << PSS_SHIFT;
963 			}
964 		} else if (is_pfn_swap_entry(swpent)) {
965 			if (is_device_private_entry(swpent))
966 				present = true;
967 			page = pfn_swap_entry_to_page(swpent);
968 		}
969 	} else {
970 		smaps_pte_hole_lookup(addr, walk);
971 		return;
972 	}
973 
974 	if (!page)
975 		return;
976 
977 	smaps_account(mss, page, false, young, dirty, locked, present);
978 }
979 
980 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
smaps_pmd_entry(pmd_t * pmd,unsigned long addr,struct mm_walk * walk)981 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
982 		struct mm_walk *walk)
983 {
984 	struct mem_size_stats *mss = walk->private;
985 	struct vm_area_struct *vma = walk->vma;
986 	bool locked = !!(vma->vm_flags & VM_LOCKED);
987 	struct page *page = NULL;
988 	bool present = false;
989 	struct folio *folio;
990 
991 	if (pmd_present(*pmd)) {
992 		page = vm_normal_page_pmd(vma, addr, *pmd);
993 		present = true;
994 	} else if (unlikely(thp_migration_supported() && is_swap_pmd(*pmd))) {
995 		swp_entry_t entry = pmd_to_swp_entry(*pmd);
996 
997 		if (is_pfn_swap_entry(entry))
998 			page = pfn_swap_entry_to_page(entry);
999 	}
1000 	if (IS_ERR_OR_NULL(page))
1001 		return;
1002 	folio = page_folio(page);
1003 	if (folio_test_anon(folio))
1004 		mss->anonymous_thp += HPAGE_PMD_SIZE;
1005 	else if (folio_test_swapbacked(folio))
1006 		mss->shmem_thp += HPAGE_PMD_SIZE;
1007 	else if (folio_is_zone_device(folio))
1008 		/* pass */;
1009 	else
1010 		mss->file_thp += HPAGE_PMD_SIZE;
1011 
1012 	smaps_account(mss, page, true, pmd_young(*pmd), pmd_dirty(*pmd),
1013 		      locked, present);
1014 }
1015 #else
smaps_pmd_entry(pmd_t * pmd,unsigned long addr,struct mm_walk * walk)1016 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
1017 		struct mm_walk *walk)
1018 {
1019 }
1020 #endif
1021 
smaps_pte_range(pmd_t * pmd,unsigned long addr,unsigned long end,struct mm_walk * walk)1022 static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
1023 			   struct mm_walk *walk)
1024 {
1025 	struct vm_area_struct *vma = walk->vma;
1026 	pte_t *pte;
1027 	spinlock_t *ptl;
1028 
1029 	ptl = pmd_trans_huge_lock(pmd, vma);
1030 	if (ptl) {
1031 		smaps_pmd_entry(pmd, addr, walk);
1032 		spin_unlock(ptl);
1033 		goto out;
1034 	}
1035 
1036 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1037 	if (!pte) {
1038 		walk->action = ACTION_AGAIN;
1039 		return 0;
1040 	}
1041 	for (; addr != end; pte++, addr += PAGE_SIZE)
1042 		smaps_pte_entry(pte, addr, walk);
1043 	pte_unmap_unlock(pte - 1, ptl);
1044 out:
1045 	cond_resched();
1046 	return 0;
1047 }
1048 
show_smap_vma_flags(struct seq_file * m,struct vm_area_struct * vma)1049 static void show_smap_vma_flags(struct seq_file *m, struct vm_area_struct *vma)
1050 {
1051 	/*
1052 	 * Don't forget to update Documentation/ on changes.
1053 	 *
1054 	 * The length of the second argument of mnemonics[]
1055 	 * needs to be 3 instead of previously set 2
1056 	 * (i.e. from [BITS_PER_LONG][2] to [BITS_PER_LONG][3])
1057 	 * to avoid spurious
1058 	 * -Werror=unterminated-string-initialization warning
1059 	 *  with GCC 15
1060 	 */
1061 	static const char mnemonics[BITS_PER_LONG][3] = {
1062 		/*
1063 		 * In case if we meet a flag we don't know about.
1064 		 */
1065 		[0 ... (BITS_PER_LONG-1)] = "??",
1066 
1067 		[ilog2(VM_READ)]	= "rd",
1068 		[ilog2(VM_WRITE)]	= "wr",
1069 		[ilog2(VM_EXEC)]	= "ex",
1070 		[ilog2(VM_SHARED)]	= "sh",
1071 		[ilog2(VM_MAYREAD)]	= "mr",
1072 		[ilog2(VM_MAYWRITE)]	= "mw",
1073 		[ilog2(VM_MAYEXEC)]	= "me",
1074 		[ilog2(VM_MAYSHARE)]	= "ms",
1075 		[ilog2(VM_GROWSDOWN)]	= "gd",
1076 		[ilog2(VM_PFNMAP)]	= "pf",
1077 		[ilog2(VM_LOCKED)]	= "lo",
1078 		[ilog2(VM_IO)]		= "io",
1079 		[ilog2(VM_SEQ_READ)]	= "sr",
1080 		[ilog2(VM_RAND_READ)]	= "rr",
1081 		[ilog2(VM_DONTCOPY)]	= "dc",
1082 		[ilog2(VM_DONTEXPAND)]	= "de",
1083 		[ilog2(VM_LOCKONFAULT)]	= "lf",
1084 		[ilog2(VM_ACCOUNT)]	= "ac",
1085 		[ilog2(VM_NORESERVE)]	= "nr",
1086 		[ilog2(VM_HUGETLB)]	= "ht",
1087 		[ilog2(VM_SYNC)]	= "sf",
1088 		[ilog2(VM_ARCH_1)]	= "ar",
1089 		[ilog2(VM_WIPEONFORK)]	= "wf",
1090 		[ilog2(VM_DONTDUMP)]	= "dd",
1091 #ifdef CONFIG_ARM64_BTI
1092 		[ilog2(VM_ARM64_BTI)]	= "bt",
1093 #endif
1094 #ifdef CONFIG_MEM_SOFT_DIRTY
1095 		[ilog2(VM_SOFTDIRTY)]	= "sd",
1096 #endif
1097 		[ilog2(VM_MIXEDMAP)]	= "mm",
1098 		[ilog2(VM_HUGEPAGE)]	= "hg",
1099 		[ilog2(VM_NOHUGEPAGE)]	= "nh",
1100 		[ilog2(VM_MERGEABLE)]	= "mg",
1101 		[ilog2(VM_UFFD_MISSING)]= "um",
1102 		[ilog2(VM_UFFD_WP)]	= "uw",
1103 #ifdef CONFIG_ARM64_MTE
1104 		[ilog2(VM_MTE)]		= "mt",
1105 		[ilog2(VM_MTE_ALLOWED)]	= "",
1106 #endif
1107 #ifdef CONFIG_ARCH_HAS_PKEYS
1108 		/* These come out via ProtectionKey: */
1109 		[ilog2(VM_PKEY_BIT0)]	= "",
1110 		[ilog2(VM_PKEY_BIT1)]	= "",
1111 		[ilog2(VM_PKEY_BIT2)]	= "",
1112 #if VM_PKEY_BIT3
1113 		[ilog2(VM_PKEY_BIT3)]	= "",
1114 #endif
1115 #if VM_PKEY_BIT4
1116 		[ilog2(VM_PKEY_BIT4)]	= "",
1117 #endif
1118 #endif /* CONFIG_ARCH_HAS_PKEYS */
1119 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
1120 		[ilog2(VM_UFFD_MINOR)]	= "ui",
1121 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
1122 #ifdef CONFIG_ARCH_HAS_USER_SHADOW_STACK
1123 		[ilog2(VM_SHADOW_STACK)] = "ss",
1124 #endif
1125 #if defined(CONFIG_64BIT) || defined(CONFIG_PPC32)
1126 		[ilog2(VM_DROPPABLE)] = "dp",
1127 #endif
1128 #ifdef CONFIG_64BIT
1129 		[ilog2(VM_SEALED)] = "sl",
1130 #endif
1131 	};
1132 	size_t i;
1133 
1134 	seq_puts(m, "VmFlags: ");
1135 	for (i = 0; i < BITS_PER_LONG; i++) {
1136 		if (!mnemonics[i][0])
1137 			continue;
1138 		if (vma->vm_flags & (1UL << i))
1139 			seq_printf(m, "%s ", mnemonics[i]);
1140 	}
1141 	seq_putc(m, '\n');
1142 }
1143 
1144 #ifdef CONFIG_HUGETLB_PAGE
smaps_hugetlb_range(pte_t * pte,unsigned long hmask,unsigned long addr,unsigned long end,struct mm_walk * walk)1145 static int smaps_hugetlb_range(pte_t *pte, unsigned long hmask,
1146 				 unsigned long addr, unsigned long end,
1147 				 struct mm_walk *walk)
1148 {
1149 	struct mem_size_stats *mss = walk->private;
1150 	struct vm_area_struct *vma = walk->vma;
1151 	pte_t ptent = huge_ptep_get(walk->mm, addr, pte);
1152 	struct folio *folio = NULL;
1153 	bool present = false;
1154 
1155 	if (pte_present(ptent)) {
1156 		folio = page_folio(pte_page(ptent));
1157 		present = true;
1158 	} else if (is_swap_pte(ptent)) {
1159 		swp_entry_t swpent = pte_to_swp_entry(ptent);
1160 
1161 		if (is_pfn_swap_entry(swpent))
1162 			folio = pfn_swap_entry_folio(swpent);
1163 	}
1164 
1165 	if (folio) {
1166 		/* We treat non-present entries as "maybe shared". */
1167 		if (!present || folio_maybe_mapped_shared(folio) ||
1168 		    hugetlb_pmd_shared(pte))
1169 			mss->shared_hugetlb += huge_page_size(hstate_vma(vma));
1170 		else
1171 			mss->private_hugetlb += huge_page_size(hstate_vma(vma));
1172 	}
1173 	return 0;
1174 }
1175 #else
1176 #define smaps_hugetlb_range	NULL
1177 #endif /* HUGETLB_PAGE */
1178 
1179 static const struct mm_walk_ops smaps_walk_ops = {
1180 	.pmd_entry		= smaps_pte_range,
1181 	.hugetlb_entry		= smaps_hugetlb_range,
1182 	.walk_lock		= PGWALK_RDLOCK,
1183 };
1184 
1185 static const struct mm_walk_ops smaps_shmem_walk_ops = {
1186 	.pmd_entry		= smaps_pte_range,
1187 	.hugetlb_entry		= smaps_hugetlb_range,
1188 	.pte_hole		= smaps_pte_hole,
1189 	.walk_lock		= PGWALK_RDLOCK,
1190 };
1191 
1192 /*
1193  * Gather mem stats from @vma with the indicated beginning
1194  * address @start, and keep them in @mss.
1195  *
1196  * Use vm_start of @vma as the beginning address if @start is 0.
1197  */
smap_gather_stats(struct vm_area_struct * vma,struct mem_size_stats * mss,unsigned long start)1198 static void smap_gather_stats(struct vm_area_struct *vma,
1199 		struct mem_size_stats *mss, unsigned long start)
1200 {
1201 	const struct mm_walk_ops *ops = &smaps_walk_ops;
1202 
1203 	/* Invalid start */
1204 	if (start >= vma->vm_end)
1205 		return;
1206 
1207 	if (vma->vm_file && shmem_mapping(vma->vm_file->f_mapping)) {
1208 		/*
1209 		 * For shared or readonly shmem mappings we know that all
1210 		 * swapped out pages belong to the shmem object, and we can
1211 		 * obtain the swap value much more efficiently. For private
1212 		 * writable mappings, we might have COW pages that are
1213 		 * not affected by the parent swapped out pages of the shmem
1214 		 * object, so we have to distinguish them during the page walk.
1215 		 * Unless we know that the shmem object (or the part mapped by
1216 		 * our VMA) has no swapped out pages at all.
1217 		 */
1218 		unsigned long shmem_swapped = shmem_swap_usage(vma);
1219 
1220 		if (!start && (!shmem_swapped || (vma->vm_flags & VM_SHARED) ||
1221 					!(vma->vm_flags & VM_WRITE))) {
1222 			mss->swap += shmem_swapped;
1223 		} else {
1224 			ops = &smaps_shmem_walk_ops;
1225 		}
1226 	}
1227 
1228 	/* mmap_lock is held in m_start */
1229 	if (!start)
1230 		walk_page_vma(vma, ops, mss);
1231 	else
1232 		walk_page_range(vma->vm_mm, start, vma->vm_end, ops, mss);
1233 }
1234 
1235 #define SEQ_PUT_DEC(str, val) \
1236 		seq_put_decimal_ull_width(m, str, (val) >> 10, 8)
1237 
1238 /* Show the contents common for smaps and smaps_rollup */
__show_smap(struct seq_file * m,const struct mem_size_stats * mss,bool rollup_mode)1239 static void __show_smap(struct seq_file *m, const struct mem_size_stats *mss,
1240 	bool rollup_mode)
1241 {
1242 	SEQ_PUT_DEC("Rss:            ", mss->resident);
1243 	SEQ_PUT_DEC(" kB\nPss:            ", mss->pss >> PSS_SHIFT);
1244 	SEQ_PUT_DEC(" kB\nPss_Dirty:      ", mss->pss_dirty >> PSS_SHIFT);
1245 	if (rollup_mode) {
1246 		/*
1247 		 * These are meaningful only for smaps_rollup, otherwise two of
1248 		 * them are zero, and the other one is the same as Pss.
1249 		 */
1250 		SEQ_PUT_DEC(" kB\nPss_Anon:       ",
1251 			mss->pss_anon >> PSS_SHIFT);
1252 		SEQ_PUT_DEC(" kB\nPss_File:       ",
1253 			mss->pss_file >> PSS_SHIFT);
1254 		SEQ_PUT_DEC(" kB\nPss_Shmem:      ",
1255 			mss->pss_shmem >> PSS_SHIFT);
1256 	}
1257 	SEQ_PUT_DEC(" kB\nShared_Clean:   ", mss->shared_clean);
1258 	SEQ_PUT_DEC(" kB\nShared_Dirty:   ", mss->shared_dirty);
1259 	SEQ_PUT_DEC(" kB\nPrivate_Clean:  ", mss->private_clean);
1260 	SEQ_PUT_DEC(" kB\nPrivate_Dirty:  ", mss->private_dirty);
1261 	SEQ_PUT_DEC(" kB\nReferenced:     ", mss->referenced);
1262 	SEQ_PUT_DEC(" kB\nAnonymous:      ", mss->anonymous);
1263 	SEQ_PUT_DEC(" kB\nKSM:            ", mss->ksm);
1264 	SEQ_PUT_DEC(" kB\nLazyFree:       ", mss->lazyfree);
1265 	SEQ_PUT_DEC(" kB\nAnonHugePages:  ", mss->anonymous_thp);
1266 	SEQ_PUT_DEC(" kB\nShmemPmdMapped: ", mss->shmem_thp);
1267 	SEQ_PUT_DEC(" kB\nFilePmdMapped:  ", mss->file_thp);
1268 	SEQ_PUT_DEC(" kB\nShared_Hugetlb: ", mss->shared_hugetlb);
1269 	seq_put_decimal_ull_width(m, " kB\nPrivate_Hugetlb: ",
1270 				  mss->private_hugetlb >> 10, 7);
1271 	SEQ_PUT_DEC(" kB\nSwap:           ", mss->swap);
1272 	SEQ_PUT_DEC(" kB\nSwapPss:        ",
1273 					mss->swap_pss >> PSS_SHIFT);
1274 	SEQ_PUT_DEC(" kB\nLocked:         ",
1275 					mss->pss_locked >> PSS_SHIFT);
1276 	seq_puts(m, " kB\n");
1277 }
1278 
show_smap(struct seq_file * m,void * v)1279 static int show_smap(struct seq_file *m, void *v)
1280 {
1281 	struct vm_area_struct *vma = v;
1282 	struct mem_size_stats mss = {};
1283 
1284 	smap_gather_stats(vma, &mss, 0);
1285 
1286 	show_map_vma(m, vma);
1287 
1288 	SEQ_PUT_DEC("Size:           ", vma->vm_end - vma->vm_start);
1289 	SEQ_PUT_DEC(" kB\nKernelPageSize: ", vma_kernel_pagesize(vma));
1290 	SEQ_PUT_DEC(" kB\nMMUPageSize:    ", vma_mmu_pagesize(vma));
1291 	seq_puts(m, " kB\n");
1292 
1293 	__show_smap(m, &mss, false);
1294 
1295 	seq_printf(m, "THPeligible:    %8u\n",
1296 		   !!thp_vma_allowable_orders(vma, vma->vm_flags,
1297 			   TVA_SMAPS | TVA_ENFORCE_SYSFS, THP_ORDERS_ALL));
1298 
1299 	if (arch_pkeys_enabled())
1300 		seq_printf(m, "ProtectionKey:  %8u\n", vma_pkey(vma));
1301 	show_smap_vma_flags(m, vma);
1302 
1303 	return 0;
1304 }
1305 
show_smaps_rollup(struct seq_file * m,void * v)1306 static int show_smaps_rollup(struct seq_file *m, void *v)
1307 {
1308 	struct proc_maps_private *priv = m->private;
1309 	struct mem_size_stats mss = {};
1310 	struct mm_struct *mm = priv->mm;
1311 	struct vm_area_struct *vma;
1312 	unsigned long vma_start = 0, last_vma_end = 0;
1313 	int ret = 0;
1314 	VMA_ITERATOR(vmi, mm, 0);
1315 
1316 	priv->task = get_proc_task(priv->inode);
1317 	if (!priv->task)
1318 		return -ESRCH;
1319 
1320 	if (!mm || !mmget_not_zero(mm)) {
1321 		ret = -ESRCH;
1322 		goto out_put_task;
1323 	}
1324 
1325 	ret = mmap_read_lock_killable(mm);
1326 	if (ret)
1327 		goto out_put_mm;
1328 
1329 	hold_task_mempolicy(priv);
1330 	vma = vma_next(&vmi);
1331 
1332 	if (unlikely(!vma))
1333 		goto empty_set;
1334 
1335 	vma_start = vma->vm_start;
1336 	do {
1337 		smap_gather_stats(vma, &mss, 0);
1338 		last_vma_end = vma->vm_end;
1339 
1340 		/*
1341 		 * Release mmap_lock temporarily if someone wants to
1342 		 * access it for write request.
1343 		 */
1344 		if (mmap_lock_is_contended(mm)) {
1345 			vma_iter_invalidate(&vmi);
1346 			mmap_read_unlock(mm);
1347 			ret = mmap_read_lock_killable(mm);
1348 			if (ret) {
1349 				release_task_mempolicy(priv);
1350 				goto out_put_mm;
1351 			}
1352 
1353 			/*
1354 			 * After dropping the lock, there are four cases to
1355 			 * consider. See the following example for explanation.
1356 			 *
1357 			 *   +------+------+-----------+
1358 			 *   | VMA1 | VMA2 | VMA3      |
1359 			 *   +------+------+-----------+
1360 			 *   |      |      |           |
1361 			 *  4k     8k     16k         400k
1362 			 *
1363 			 * Suppose we drop the lock after reading VMA2 due to
1364 			 * contention, then we get:
1365 			 *
1366 			 *	last_vma_end = 16k
1367 			 *
1368 			 * 1) VMA2 is freed, but VMA3 exists:
1369 			 *
1370 			 *    vma_next(vmi) will return VMA3.
1371 			 *    In this case, just continue from VMA3.
1372 			 *
1373 			 * 2) VMA2 still exists:
1374 			 *
1375 			 *    vma_next(vmi) will return VMA3.
1376 			 *    In this case, just continue from VMA3.
1377 			 *
1378 			 * 3) No more VMAs can be found:
1379 			 *
1380 			 *    vma_next(vmi) will return NULL.
1381 			 *    No more things to do, just break.
1382 			 *
1383 			 * 4) (last_vma_end - 1) is the middle of a vma (VMA'):
1384 			 *
1385 			 *    vma_next(vmi) will return VMA' whose range
1386 			 *    contains last_vma_end.
1387 			 *    Iterate VMA' from last_vma_end.
1388 			 */
1389 			vma = vma_next(&vmi);
1390 			/* Case 3 above */
1391 			if (!vma)
1392 				break;
1393 
1394 			/* Case 1 and 2 above */
1395 			if (vma->vm_start >= last_vma_end) {
1396 				smap_gather_stats(vma, &mss, 0);
1397 				last_vma_end = vma->vm_end;
1398 				continue;
1399 			}
1400 
1401 			/* Case 4 above */
1402 			if (vma->vm_end > last_vma_end) {
1403 				smap_gather_stats(vma, &mss, last_vma_end);
1404 				last_vma_end = vma->vm_end;
1405 			}
1406 		}
1407 	} for_each_vma(vmi, vma);
1408 
1409 empty_set:
1410 	show_vma_header_prefix(m, vma_start, last_vma_end, 0, 0, 0, 0);
1411 	seq_pad(m, ' ');
1412 	seq_puts(m, "[rollup]\n");
1413 
1414 	__show_smap(m, &mss, true);
1415 
1416 	release_task_mempolicy(priv);
1417 	mmap_read_unlock(mm);
1418 
1419 out_put_mm:
1420 	mmput(mm);
1421 out_put_task:
1422 	put_task_struct(priv->task);
1423 	priv->task = NULL;
1424 
1425 	return ret;
1426 }
1427 #undef SEQ_PUT_DEC
1428 
1429 static const struct seq_operations proc_pid_smaps_op = {
1430 	.start	= m_start,
1431 	.next	= m_next,
1432 	.stop	= m_stop,
1433 	.show	= show_smap
1434 };
1435 
pid_smaps_open(struct inode * inode,struct file * file)1436 static int pid_smaps_open(struct inode *inode, struct file *file)
1437 {
1438 	return do_maps_open(inode, file, &proc_pid_smaps_op);
1439 }
1440 
smaps_rollup_open(struct inode * inode,struct file * file)1441 static int smaps_rollup_open(struct inode *inode, struct file *file)
1442 {
1443 	int ret;
1444 	struct proc_maps_private *priv;
1445 
1446 	priv = kzalloc(sizeof(*priv), GFP_KERNEL_ACCOUNT);
1447 	if (!priv)
1448 		return -ENOMEM;
1449 
1450 	ret = single_open(file, show_smaps_rollup, priv);
1451 	if (ret)
1452 		goto out_free;
1453 
1454 	priv->inode = inode;
1455 	priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
1456 	if (IS_ERR_OR_NULL(priv->mm)) {
1457 		ret = priv->mm ? PTR_ERR(priv->mm) : -ESRCH;
1458 
1459 		single_release(inode, file);
1460 		goto out_free;
1461 	}
1462 
1463 	return 0;
1464 
1465 out_free:
1466 	kfree(priv);
1467 	return ret;
1468 }
1469 
smaps_rollup_release(struct inode * inode,struct file * file)1470 static int smaps_rollup_release(struct inode *inode, struct file *file)
1471 {
1472 	struct seq_file *seq = file->private_data;
1473 	struct proc_maps_private *priv = seq->private;
1474 
1475 	if (priv->mm)
1476 		mmdrop(priv->mm);
1477 
1478 	kfree(priv);
1479 	return single_release(inode, file);
1480 }
1481 
1482 const struct file_operations proc_pid_smaps_operations = {
1483 	.open		= pid_smaps_open,
1484 	.read		= seq_read,
1485 	.llseek		= seq_lseek,
1486 	.release	= proc_map_release,
1487 };
1488 
1489 const struct file_operations proc_pid_smaps_rollup_operations = {
1490 	.open		= smaps_rollup_open,
1491 	.read		= seq_read,
1492 	.llseek		= seq_lseek,
1493 	.release	= smaps_rollup_release,
1494 };
1495 
1496 enum clear_refs_types {
1497 	CLEAR_REFS_ALL = 1,
1498 	CLEAR_REFS_ANON,
1499 	CLEAR_REFS_MAPPED,
1500 	CLEAR_REFS_SOFT_DIRTY,
1501 	CLEAR_REFS_MM_HIWATER_RSS,
1502 	CLEAR_REFS_LAST,
1503 };
1504 
1505 struct clear_refs_private {
1506 	enum clear_refs_types type;
1507 };
1508 
1509 #ifdef CONFIG_MEM_SOFT_DIRTY
1510 
pte_is_pinned(struct vm_area_struct * vma,unsigned long addr,pte_t pte)1511 static inline bool pte_is_pinned(struct vm_area_struct *vma, unsigned long addr, pte_t pte)
1512 {
1513 	struct folio *folio;
1514 
1515 	if (!pte_write(pte))
1516 		return false;
1517 	if (!is_cow_mapping(vma->vm_flags))
1518 		return false;
1519 	if (likely(!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags)))
1520 		return false;
1521 	folio = vm_normal_folio(vma, addr, pte);
1522 	if (!folio)
1523 		return false;
1524 	return folio_maybe_dma_pinned(folio);
1525 }
1526 
clear_soft_dirty(struct vm_area_struct * vma,unsigned long addr,pte_t * pte)1527 static inline void clear_soft_dirty(struct vm_area_struct *vma,
1528 		unsigned long addr, pte_t *pte)
1529 {
1530 	/*
1531 	 * The soft-dirty tracker uses #PF-s to catch writes
1532 	 * to pages, so write-protect the pte as well. See the
1533 	 * Documentation/admin-guide/mm/soft-dirty.rst for full description
1534 	 * of how soft-dirty works.
1535 	 */
1536 	pte_t ptent = ptep_get(pte);
1537 
1538 	if (pte_present(ptent)) {
1539 		pte_t old_pte;
1540 
1541 		if (pte_is_pinned(vma, addr, ptent))
1542 			return;
1543 		old_pte = ptep_modify_prot_start(vma, addr, pte);
1544 		ptent = pte_wrprotect(old_pte);
1545 		ptent = pte_clear_soft_dirty(ptent);
1546 		ptep_modify_prot_commit(vma, addr, pte, old_pte, ptent);
1547 	} else if (is_swap_pte(ptent)) {
1548 		ptent = pte_swp_clear_soft_dirty(ptent);
1549 		set_pte_at(vma->vm_mm, addr, pte, ptent);
1550 	}
1551 }
1552 #else
clear_soft_dirty(struct vm_area_struct * vma,unsigned long addr,pte_t * pte)1553 static inline void clear_soft_dirty(struct vm_area_struct *vma,
1554 		unsigned long addr, pte_t *pte)
1555 {
1556 }
1557 #endif
1558 
1559 #if defined(CONFIG_MEM_SOFT_DIRTY) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
clear_soft_dirty_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmdp)1560 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
1561 		unsigned long addr, pmd_t *pmdp)
1562 {
1563 	pmd_t old, pmd = *pmdp;
1564 
1565 	if (pmd_present(pmd)) {
1566 		/* See comment in change_huge_pmd() */
1567 		old = pmdp_invalidate(vma, addr, pmdp);
1568 		if (pmd_dirty(old))
1569 			pmd = pmd_mkdirty(pmd);
1570 		if (pmd_young(old))
1571 			pmd = pmd_mkyoung(pmd);
1572 
1573 		pmd = pmd_wrprotect(pmd);
1574 		pmd = pmd_clear_soft_dirty(pmd);
1575 
1576 		set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
1577 	} else if (is_migration_entry(pmd_to_swp_entry(pmd))) {
1578 		pmd = pmd_swp_clear_soft_dirty(pmd);
1579 		set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
1580 	}
1581 }
1582 #else
clear_soft_dirty_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmdp)1583 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
1584 		unsigned long addr, pmd_t *pmdp)
1585 {
1586 }
1587 #endif
1588 
clear_refs_pte_range(pmd_t * pmd,unsigned long addr,unsigned long end,struct mm_walk * walk)1589 static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
1590 				unsigned long end, struct mm_walk *walk)
1591 {
1592 	struct clear_refs_private *cp = walk->private;
1593 	struct vm_area_struct *vma = walk->vma;
1594 	pte_t *pte, ptent;
1595 	spinlock_t *ptl;
1596 	struct folio *folio;
1597 
1598 	ptl = pmd_trans_huge_lock(pmd, vma);
1599 	if (ptl) {
1600 		if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
1601 			clear_soft_dirty_pmd(vma, addr, pmd);
1602 			goto out;
1603 		}
1604 
1605 		if (!pmd_present(*pmd))
1606 			goto out;
1607 
1608 		folio = pmd_folio(*pmd);
1609 
1610 		/* Clear accessed and referenced bits. */
1611 		pmdp_test_and_clear_young(vma, addr, pmd);
1612 		folio_test_clear_young(folio);
1613 		folio_clear_referenced(folio);
1614 out:
1615 		spin_unlock(ptl);
1616 		return 0;
1617 	}
1618 
1619 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1620 	if (!pte) {
1621 		walk->action = ACTION_AGAIN;
1622 		return 0;
1623 	}
1624 	for (; addr != end; pte++, addr += PAGE_SIZE) {
1625 		ptent = ptep_get(pte);
1626 
1627 		if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
1628 			clear_soft_dirty(vma, addr, pte);
1629 			continue;
1630 		}
1631 
1632 		if (!pte_present(ptent))
1633 			continue;
1634 
1635 		folio = vm_normal_folio(vma, addr, ptent);
1636 		if (!folio)
1637 			continue;
1638 
1639 		/* Clear accessed and referenced bits. */
1640 		ptep_test_and_clear_young(vma, addr, pte);
1641 		folio_test_clear_young(folio);
1642 		folio_clear_referenced(folio);
1643 	}
1644 	pte_unmap_unlock(pte - 1, ptl);
1645 	cond_resched();
1646 	return 0;
1647 }
1648 
clear_refs_test_walk(unsigned long start,unsigned long end,struct mm_walk * walk)1649 static int clear_refs_test_walk(unsigned long start, unsigned long end,
1650 				struct mm_walk *walk)
1651 {
1652 	struct clear_refs_private *cp = walk->private;
1653 	struct vm_area_struct *vma = walk->vma;
1654 
1655 	if (vma->vm_flags & VM_PFNMAP)
1656 		return 1;
1657 
1658 	/*
1659 	 * Writing 1 to /proc/pid/clear_refs affects all pages.
1660 	 * Writing 2 to /proc/pid/clear_refs only affects anonymous pages.
1661 	 * Writing 3 to /proc/pid/clear_refs only affects file mapped pages.
1662 	 * Writing 4 to /proc/pid/clear_refs affects all pages.
1663 	 */
1664 	if (cp->type == CLEAR_REFS_ANON && vma->vm_file)
1665 		return 1;
1666 	if (cp->type == CLEAR_REFS_MAPPED && !vma->vm_file)
1667 		return 1;
1668 	return 0;
1669 }
1670 
1671 static const struct mm_walk_ops clear_refs_walk_ops = {
1672 	.pmd_entry		= clear_refs_pte_range,
1673 	.test_walk		= clear_refs_test_walk,
1674 	.walk_lock		= PGWALK_WRLOCK,
1675 };
1676 
clear_refs_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)1677 static ssize_t clear_refs_write(struct file *file, const char __user *buf,
1678 				size_t count, loff_t *ppos)
1679 {
1680 	struct task_struct *task;
1681 	char buffer[PROC_NUMBUF] = {};
1682 	struct mm_struct *mm;
1683 	struct vm_area_struct *vma;
1684 	enum clear_refs_types type;
1685 	int itype;
1686 	int rv;
1687 
1688 	if (count > sizeof(buffer) - 1)
1689 		count = sizeof(buffer) - 1;
1690 	if (copy_from_user(buffer, buf, count))
1691 		return -EFAULT;
1692 	rv = kstrtoint(strstrip(buffer), 10, &itype);
1693 	if (rv < 0)
1694 		return rv;
1695 	type = (enum clear_refs_types)itype;
1696 	if (type < CLEAR_REFS_ALL || type >= CLEAR_REFS_LAST)
1697 		return -EINVAL;
1698 
1699 	task = get_proc_task(file_inode(file));
1700 	if (!task)
1701 		return -ESRCH;
1702 	mm = get_task_mm(task);
1703 	if (mm) {
1704 		VMA_ITERATOR(vmi, mm, 0);
1705 		struct mmu_notifier_range range;
1706 		struct clear_refs_private cp = {
1707 			.type = type,
1708 		};
1709 
1710 		if (mmap_write_lock_killable(mm)) {
1711 			count = -EINTR;
1712 			goto out_mm;
1713 		}
1714 		if (type == CLEAR_REFS_MM_HIWATER_RSS) {
1715 			/*
1716 			 * Writing 5 to /proc/pid/clear_refs resets the peak
1717 			 * resident set size to this mm's current rss value.
1718 			 */
1719 			reset_mm_hiwater_rss(mm);
1720 			goto out_unlock;
1721 		}
1722 
1723 		if (type == CLEAR_REFS_SOFT_DIRTY) {
1724 			for_each_vma(vmi, vma) {
1725 				if (!(vma->vm_flags & VM_SOFTDIRTY))
1726 					continue;
1727 				vm_flags_clear(vma, VM_SOFTDIRTY);
1728 				vma_set_page_prot(vma);
1729 			}
1730 
1731 			inc_tlb_flush_pending(mm);
1732 			mmu_notifier_range_init(&range, MMU_NOTIFY_SOFT_DIRTY,
1733 						0, mm, 0, -1UL);
1734 			mmu_notifier_invalidate_range_start(&range);
1735 		}
1736 		walk_page_range(mm, 0, -1, &clear_refs_walk_ops, &cp);
1737 		if (type == CLEAR_REFS_SOFT_DIRTY) {
1738 			mmu_notifier_invalidate_range_end(&range);
1739 			flush_tlb_mm(mm);
1740 			dec_tlb_flush_pending(mm);
1741 		}
1742 out_unlock:
1743 		mmap_write_unlock(mm);
1744 out_mm:
1745 		mmput(mm);
1746 	}
1747 	put_task_struct(task);
1748 
1749 	return count;
1750 }
1751 
1752 const struct file_operations proc_clear_refs_operations = {
1753 	.write		= clear_refs_write,
1754 	.llseek		= noop_llseek,
1755 };
1756 
1757 typedef struct {
1758 	u64 pme;
1759 } pagemap_entry_t;
1760 
1761 struct pagemapread {
1762 	int pos, len;		/* units: PM_ENTRY_BYTES, not bytes */
1763 	pagemap_entry_t *buffer;
1764 	bool show_pfn;
1765 };
1766 
1767 #define PAGEMAP_WALK_SIZE	(PMD_SIZE)
1768 #define PAGEMAP_WALK_MASK	(PMD_MASK)
1769 
1770 #define PM_ENTRY_BYTES		sizeof(pagemap_entry_t)
1771 #define PM_PFRAME_BITS		55
1772 #define PM_PFRAME_MASK		GENMASK_ULL(PM_PFRAME_BITS - 1, 0)
1773 #define PM_SOFT_DIRTY		BIT_ULL(55)
1774 #define PM_MMAP_EXCLUSIVE	BIT_ULL(56)
1775 #define PM_UFFD_WP		BIT_ULL(57)
1776 #define PM_GUARD_REGION		BIT_ULL(58)
1777 #define PM_FILE			BIT_ULL(61)
1778 #define PM_SWAP			BIT_ULL(62)
1779 #define PM_PRESENT		BIT_ULL(63)
1780 
1781 #define PM_END_OF_BUFFER    1
1782 
make_pme(u64 frame,u64 flags)1783 static inline pagemap_entry_t make_pme(u64 frame, u64 flags)
1784 {
1785 	return (pagemap_entry_t) { .pme = (frame & PM_PFRAME_MASK) | flags };
1786 }
1787 
add_to_pagemap(pagemap_entry_t * pme,struct pagemapread * pm)1788 static int add_to_pagemap(pagemap_entry_t *pme, struct pagemapread *pm)
1789 {
1790 	pm->buffer[pm->pos++] = *pme;
1791 	if (pm->pos >= pm->len)
1792 		return PM_END_OF_BUFFER;
1793 	return 0;
1794 }
1795 
__folio_page_mapped_exclusively(struct folio * folio,struct page * page)1796 static bool __folio_page_mapped_exclusively(struct folio *folio, struct page *page)
1797 {
1798 	if (IS_ENABLED(CONFIG_PAGE_MAPCOUNT))
1799 		return folio_precise_page_mapcount(folio, page) == 1;
1800 	return !folio_maybe_mapped_shared(folio);
1801 }
1802 
pagemap_pte_hole(unsigned long start,unsigned long end,__always_unused int depth,struct mm_walk * walk)1803 static int pagemap_pte_hole(unsigned long start, unsigned long end,
1804 			    __always_unused int depth, struct mm_walk *walk)
1805 {
1806 	struct pagemapread *pm = walk->private;
1807 	unsigned long addr = start;
1808 	int err = 0;
1809 
1810 	while (addr < end) {
1811 		struct vm_area_struct *vma = find_vma(walk->mm, addr);
1812 		pagemap_entry_t pme = make_pme(0, 0);
1813 		/* End of address space hole, which we mark as non-present. */
1814 		unsigned long hole_end;
1815 
1816 		if (vma)
1817 			hole_end = min(end, vma->vm_start);
1818 		else
1819 			hole_end = end;
1820 
1821 		for (; addr < hole_end; addr += PAGE_SIZE) {
1822 			err = add_to_pagemap(&pme, pm);
1823 			if (err)
1824 				goto out;
1825 		}
1826 
1827 		if (!vma)
1828 			break;
1829 
1830 		/* Addresses in the VMA. */
1831 		if (vma->vm_flags & VM_SOFTDIRTY)
1832 			pme = make_pme(0, PM_SOFT_DIRTY);
1833 		for (; addr < min(end, vma->vm_end); addr += PAGE_SIZE) {
1834 			err = add_to_pagemap(&pme, pm);
1835 			if (err)
1836 				goto out;
1837 		}
1838 	}
1839 out:
1840 	return err;
1841 }
1842 
pte_to_pagemap_entry(struct pagemapread * pm,struct vm_area_struct * vma,unsigned long addr,pte_t pte)1843 static pagemap_entry_t pte_to_pagemap_entry(struct pagemapread *pm,
1844 		struct vm_area_struct *vma, unsigned long addr, pte_t pte)
1845 {
1846 	u64 frame = 0, flags = 0;
1847 	struct page *page = NULL;
1848 	struct folio *folio;
1849 
1850 	if (pte_present(pte)) {
1851 		if (pm->show_pfn)
1852 			frame = pte_pfn(pte);
1853 		flags |= PM_PRESENT;
1854 		page = vm_normal_page(vma, addr, pte);
1855 		if (pte_soft_dirty(pte))
1856 			flags |= PM_SOFT_DIRTY;
1857 		if (pte_uffd_wp(pte))
1858 			flags |= PM_UFFD_WP;
1859 	} else if (is_swap_pte(pte)) {
1860 		swp_entry_t entry;
1861 		if (pte_swp_soft_dirty(pte))
1862 			flags |= PM_SOFT_DIRTY;
1863 		if (pte_swp_uffd_wp(pte))
1864 			flags |= PM_UFFD_WP;
1865 		entry = pte_to_swp_entry(pte);
1866 		if (pm->show_pfn) {
1867 			pgoff_t offset;
1868 			/*
1869 			 * For PFN swap offsets, keeping the offset field
1870 			 * to be PFN only to be compatible with old smaps.
1871 			 */
1872 			if (is_pfn_swap_entry(entry))
1873 				offset = swp_offset_pfn(entry);
1874 			else
1875 				offset = swp_offset(entry);
1876 			frame = swp_type(entry) |
1877 			    (offset << MAX_SWAPFILES_SHIFT);
1878 		}
1879 		flags |= PM_SWAP;
1880 		if (is_pfn_swap_entry(entry))
1881 			page = pfn_swap_entry_to_page(entry);
1882 		if (pte_marker_entry_uffd_wp(entry))
1883 			flags |= PM_UFFD_WP;
1884 		if (is_guard_swp_entry(entry))
1885 			flags |=  PM_GUARD_REGION;
1886 	}
1887 
1888 	if (page) {
1889 		folio = page_folio(page);
1890 		if (!folio_test_anon(folio))
1891 			flags |= PM_FILE;
1892 		if ((flags & PM_PRESENT) &&
1893 		    __folio_page_mapped_exclusively(folio, page))
1894 			flags |= PM_MMAP_EXCLUSIVE;
1895 	}
1896 	if (vma->vm_flags & VM_SOFTDIRTY)
1897 		flags |= PM_SOFT_DIRTY;
1898 
1899 	return make_pme(frame, flags);
1900 }
1901 
pagemap_pmd_range(pmd_t * pmdp,unsigned long addr,unsigned long end,struct mm_walk * walk)1902 static int pagemap_pmd_range(pmd_t *pmdp, unsigned long addr, unsigned long end,
1903 			     struct mm_walk *walk)
1904 {
1905 	struct vm_area_struct *vma = walk->vma;
1906 	struct pagemapread *pm = walk->private;
1907 	spinlock_t *ptl;
1908 	pte_t *pte, *orig_pte;
1909 	int err = 0;
1910 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1911 
1912 	ptl = pmd_trans_huge_lock(pmdp, vma);
1913 	if (ptl) {
1914 		unsigned int idx = (addr & ~PMD_MASK) >> PAGE_SHIFT;
1915 		u64 flags = 0, frame = 0;
1916 		pmd_t pmd = *pmdp;
1917 		struct page *page = NULL;
1918 		struct folio *folio = NULL;
1919 
1920 		if (vma->vm_flags & VM_SOFTDIRTY)
1921 			flags |= PM_SOFT_DIRTY;
1922 
1923 		if (pmd_present(pmd)) {
1924 			page = pmd_page(pmd);
1925 
1926 			flags |= PM_PRESENT;
1927 			if (pmd_soft_dirty(pmd))
1928 				flags |= PM_SOFT_DIRTY;
1929 			if (pmd_uffd_wp(pmd))
1930 				flags |= PM_UFFD_WP;
1931 			if (pm->show_pfn)
1932 				frame = pmd_pfn(pmd) + idx;
1933 		}
1934 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1935 		else if (is_swap_pmd(pmd)) {
1936 			swp_entry_t entry = pmd_to_swp_entry(pmd);
1937 			unsigned long offset;
1938 
1939 			if (pm->show_pfn) {
1940 				if (is_pfn_swap_entry(entry))
1941 					offset = swp_offset_pfn(entry) + idx;
1942 				else
1943 					offset = swp_offset(entry) + idx;
1944 				frame = swp_type(entry) |
1945 					(offset << MAX_SWAPFILES_SHIFT);
1946 			}
1947 			flags |= PM_SWAP;
1948 			if (pmd_swp_soft_dirty(pmd))
1949 				flags |= PM_SOFT_DIRTY;
1950 			if (pmd_swp_uffd_wp(pmd))
1951 				flags |= PM_UFFD_WP;
1952 			VM_BUG_ON(!is_pmd_migration_entry(pmd));
1953 			page = pfn_swap_entry_to_page(entry);
1954 		}
1955 #endif
1956 
1957 		if (page) {
1958 			folio = page_folio(page);
1959 			if (!folio_test_anon(folio))
1960 				flags |= PM_FILE;
1961 		}
1962 
1963 		for (; addr != end; addr += PAGE_SIZE, idx++) {
1964 			u64 cur_flags = flags;
1965 			pagemap_entry_t pme;
1966 
1967 			if (folio && (flags & PM_PRESENT) &&
1968 			    __folio_page_mapped_exclusively(folio, page))
1969 				cur_flags |= PM_MMAP_EXCLUSIVE;
1970 
1971 			pme = make_pme(frame, cur_flags);
1972 			err = add_to_pagemap(&pme, pm);
1973 			if (err)
1974 				break;
1975 			if (pm->show_pfn) {
1976 				if (flags & PM_PRESENT)
1977 					frame++;
1978 				else if (flags & PM_SWAP)
1979 					frame += (1 << MAX_SWAPFILES_SHIFT);
1980 			}
1981 		}
1982 		spin_unlock(ptl);
1983 		return err;
1984 	}
1985 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1986 
1987 	/*
1988 	 * We can assume that @vma always points to a valid one and @end never
1989 	 * goes beyond vma->vm_end.
1990 	 */
1991 	orig_pte = pte = pte_offset_map_lock(walk->mm, pmdp, addr, &ptl);
1992 	if (!pte) {
1993 		walk->action = ACTION_AGAIN;
1994 		return err;
1995 	}
1996 	for (; addr < end; pte++, addr += PAGE_SIZE) {
1997 		pagemap_entry_t pme;
1998 
1999 		pme = pte_to_pagemap_entry(pm, vma, addr, ptep_get(pte));
2000 		err = add_to_pagemap(&pme, pm);
2001 		if (err)
2002 			break;
2003 	}
2004 	pte_unmap_unlock(orig_pte, ptl);
2005 
2006 	cond_resched();
2007 
2008 	return err;
2009 }
2010 
2011 #ifdef CONFIG_HUGETLB_PAGE
2012 /* This function walks within one hugetlb entry in the single call */
pagemap_hugetlb_range(pte_t * ptep,unsigned long hmask,unsigned long addr,unsigned long end,struct mm_walk * walk)2013 static int pagemap_hugetlb_range(pte_t *ptep, unsigned long hmask,
2014 				 unsigned long addr, unsigned long end,
2015 				 struct mm_walk *walk)
2016 {
2017 	struct pagemapread *pm = walk->private;
2018 	struct vm_area_struct *vma = walk->vma;
2019 	u64 flags = 0, frame = 0;
2020 	int err = 0;
2021 	pte_t pte;
2022 
2023 	if (vma->vm_flags & VM_SOFTDIRTY)
2024 		flags |= PM_SOFT_DIRTY;
2025 
2026 	pte = huge_ptep_get(walk->mm, addr, ptep);
2027 	if (pte_present(pte)) {
2028 		struct folio *folio = page_folio(pte_page(pte));
2029 
2030 		if (!folio_test_anon(folio))
2031 			flags |= PM_FILE;
2032 
2033 		if (!folio_maybe_mapped_shared(folio) &&
2034 		    !hugetlb_pmd_shared(ptep))
2035 			flags |= PM_MMAP_EXCLUSIVE;
2036 
2037 		if (huge_pte_uffd_wp(pte))
2038 			flags |= PM_UFFD_WP;
2039 
2040 		flags |= PM_PRESENT;
2041 		if (pm->show_pfn)
2042 			frame = pte_pfn(pte) +
2043 				((addr & ~hmask) >> PAGE_SHIFT);
2044 	} else if (pte_swp_uffd_wp_any(pte)) {
2045 		flags |= PM_UFFD_WP;
2046 	}
2047 
2048 	for (; addr != end; addr += PAGE_SIZE) {
2049 		pagemap_entry_t pme = make_pme(frame, flags);
2050 
2051 		err = add_to_pagemap(&pme, pm);
2052 		if (err)
2053 			return err;
2054 		if (pm->show_pfn && (flags & PM_PRESENT))
2055 			frame++;
2056 	}
2057 
2058 	cond_resched();
2059 
2060 	return err;
2061 }
2062 #else
2063 #define pagemap_hugetlb_range	NULL
2064 #endif /* HUGETLB_PAGE */
2065 
2066 static const struct mm_walk_ops pagemap_ops = {
2067 	.pmd_entry	= pagemap_pmd_range,
2068 	.pte_hole	= pagemap_pte_hole,
2069 	.hugetlb_entry	= pagemap_hugetlb_range,
2070 	.walk_lock	= PGWALK_RDLOCK,
2071 };
2072 
2073 /*
2074  * /proc/pid/pagemap - an array mapping virtual pages to pfns
2075  *
2076  * For each page in the address space, this file contains one 64-bit entry
2077  * consisting of the following:
2078  *
2079  * Bits 0-54  page frame number (PFN) if present
2080  * Bits 0-4   swap type if swapped
2081  * Bits 5-54  swap offset if swapped
2082  * Bit  55    pte is soft-dirty (see Documentation/admin-guide/mm/soft-dirty.rst)
2083  * Bit  56    page exclusively mapped
2084  * Bit  57    pte is uffd-wp write-protected
2085  * Bit  58    pte is a guard region
2086  * Bits 59-60 zero
2087  * Bit  61    page is file-page or shared-anon
2088  * Bit  62    page swapped
2089  * Bit  63    page present
2090  *
2091  * If the page is not present but in swap, then the PFN contains an
2092  * encoding of the swap file number and the page's offset into the
2093  * swap. Unmapped pages return a null PFN. This allows determining
2094  * precisely which pages are mapped (or in swap) and comparing mapped
2095  * pages between processes.
2096  *
2097  * Efficient users of this interface will use /proc/pid/maps to
2098  * determine which areas of memory are actually mapped and llseek to
2099  * skip over unmapped regions.
2100  */
pagemap_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)2101 static ssize_t pagemap_read(struct file *file, char __user *buf,
2102 			    size_t count, loff_t *ppos)
2103 {
2104 	struct mm_struct *mm = file->private_data;
2105 	struct pagemapread pm;
2106 	unsigned long src;
2107 	unsigned long svpfn;
2108 	unsigned long start_vaddr;
2109 	unsigned long end_vaddr;
2110 	int ret = 0, copied = 0;
2111 
2112 	if (!mm || !mmget_not_zero(mm))
2113 		goto out;
2114 
2115 	ret = -EINVAL;
2116 	/* file position must be aligned */
2117 	if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
2118 		goto out_mm;
2119 
2120 	ret = 0;
2121 	if (!count)
2122 		goto out_mm;
2123 
2124 	/* do not disclose physical addresses: attack vector */
2125 	pm.show_pfn = file_ns_capable(file, &init_user_ns, CAP_SYS_ADMIN);
2126 
2127 	pm.len = (PAGEMAP_WALK_SIZE >> PAGE_SHIFT);
2128 	pm.buffer = kmalloc_array(pm.len, PM_ENTRY_BYTES, GFP_KERNEL);
2129 	ret = -ENOMEM;
2130 	if (!pm.buffer)
2131 		goto out_mm;
2132 
2133 	src = *ppos;
2134 	svpfn = src / PM_ENTRY_BYTES;
2135 	end_vaddr = mm->task_size;
2136 
2137 	/* watch out for wraparound */
2138 	start_vaddr = end_vaddr;
2139 	if (svpfn <= (ULONG_MAX >> PAGE_SHIFT)) {
2140 		unsigned long end;
2141 
2142 		ret = mmap_read_lock_killable(mm);
2143 		if (ret)
2144 			goto out_free;
2145 		start_vaddr = untagged_addr_remote(mm, svpfn << PAGE_SHIFT);
2146 		mmap_read_unlock(mm);
2147 
2148 		end = start_vaddr + ((count / PM_ENTRY_BYTES) << PAGE_SHIFT);
2149 		if (end >= start_vaddr && end < mm->task_size)
2150 			end_vaddr = end;
2151 	}
2152 
2153 	/* Ensure the address is inside the task */
2154 	if (start_vaddr > mm->task_size)
2155 		start_vaddr = end_vaddr;
2156 
2157 	ret = 0;
2158 	while (count && (start_vaddr < end_vaddr)) {
2159 		int len;
2160 		unsigned long end;
2161 
2162 		pm.pos = 0;
2163 		end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK;
2164 		/* overflow ? */
2165 		if (end < start_vaddr || end > end_vaddr)
2166 			end = end_vaddr;
2167 		ret = mmap_read_lock_killable(mm);
2168 		if (ret)
2169 			goto out_free;
2170 		ret = walk_page_range(mm, start_vaddr, end, &pagemap_ops, &pm);
2171 		mmap_read_unlock(mm);
2172 		start_vaddr = end;
2173 
2174 		len = min(count, PM_ENTRY_BYTES * pm.pos);
2175 		if (copy_to_user(buf, pm.buffer, len)) {
2176 			ret = -EFAULT;
2177 			goto out_free;
2178 		}
2179 		copied += len;
2180 		buf += len;
2181 		count -= len;
2182 	}
2183 	*ppos += copied;
2184 	if (!ret || ret == PM_END_OF_BUFFER)
2185 		ret = copied;
2186 
2187 out_free:
2188 	kfree(pm.buffer);
2189 out_mm:
2190 	mmput(mm);
2191 out:
2192 	return ret;
2193 }
2194 
pagemap_open(struct inode * inode,struct file * file)2195 static int pagemap_open(struct inode *inode, struct file *file)
2196 {
2197 	struct mm_struct *mm;
2198 
2199 	mm = proc_mem_open(inode, PTRACE_MODE_READ);
2200 	if (IS_ERR_OR_NULL(mm))
2201 		return mm ? PTR_ERR(mm) : -ESRCH;
2202 	file->private_data = mm;
2203 	return 0;
2204 }
2205 
pagemap_release(struct inode * inode,struct file * file)2206 static int pagemap_release(struct inode *inode, struct file *file)
2207 {
2208 	struct mm_struct *mm = file->private_data;
2209 
2210 	if (mm)
2211 		mmdrop(mm);
2212 	return 0;
2213 }
2214 
2215 #define PM_SCAN_CATEGORIES	(PAGE_IS_WPALLOWED | PAGE_IS_WRITTEN |	\
2216 				 PAGE_IS_FILE |	PAGE_IS_PRESENT |	\
2217 				 PAGE_IS_SWAPPED | PAGE_IS_PFNZERO |	\
2218 				 PAGE_IS_HUGE | PAGE_IS_SOFT_DIRTY |	\
2219 				 PAGE_IS_GUARD)
2220 #define PM_SCAN_FLAGS		(PM_SCAN_WP_MATCHING | PM_SCAN_CHECK_WPASYNC)
2221 
2222 struct pagemap_scan_private {
2223 	struct pm_scan_arg arg;
2224 	unsigned long masks_of_interest, cur_vma_category;
2225 	struct page_region *vec_buf;
2226 	unsigned long vec_buf_len, vec_buf_index, found_pages;
2227 	struct page_region __user *vec_out;
2228 };
2229 
pagemap_page_category(struct pagemap_scan_private * p,struct vm_area_struct * vma,unsigned long addr,pte_t pte)2230 static unsigned long pagemap_page_category(struct pagemap_scan_private *p,
2231 					   struct vm_area_struct *vma,
2232 					   unsigned long addr, pte_t pte)
2233 {
2234 	unsigned long categories = 0;
2235 
2236 	if (pte_present(pte)) {
2237 		struct page *page;
2238 
2239 		categories |= PAGE_IS_PRESENT;
2240 		if (!pte_uffd_wp(pte))
2241 			categories |= PAGE_IS_WRITTEN;
2242 
2243 		if (p->masks_of_interest & PAGE_IS_FILE) {
2244 			page = vm_normal_page(vma, addr, pte);
2245 			if (page && !PageAnon(page))
2246 				categories |= PAGE_IS_FILE;
2247 		}
2248 
2249 		if (is_zero_pfn(pte_pfn(pte)))
2250 			categories |= PAGE_IS_PFNZERO;
2251 		if (pte_soft_dirty(pte))
2252 			categories |= PAGE_IS_SOFT_DIRTY;
2253 	} else if (is_swap_pte(pte)) {
2254 		swp_entry_t swp;
2255 
2256 		categories |= PAGE_IS_SWAPPED;
2257 		if (!pte_swp_uffd_wp_any(pte))
2258 			categories |= PAGE_IS_WRITTEN;
2259 
2260 		swp = pte_to_swp_entry(pte);
2261 		if (is_guard_swp_entry(swp))
2262 			categories |= PAGE_IS_GUARD;
2263 		else if ((p->masks_of_interest & PAGE_IS_FILE) &&
2264 			 is_pfn_swap_entry(swp) &&
2265 			 !folio_test_anon(pfn_swap_entry_folio(swp)))
2266 			categories |= PAGE_IS_FILE;
2267 
2268 		if (pte_swp_soft_dirty(pte))
2269 			categories |= PAGE_IS_SOFT_DIRTY;
2270 	}
2271 
2272 	return categories;
2273 }
2274 
make_uffd_wp_pte(struct vm_area_struct * vma,unsigned long addr,pte_t * pte,pte_t ptent)2275 static void make_uffd_wp_pte(struct vm_area_struct *vma,
2276 			     unsigned long addr, pte_t *pte, pte_t ptent)
2277 {
2278 	if (pte_present(ptent)) {
2279 		pte_t old_pte;
2280 
2281 		old_pte = ptep_modify_prot_start(vma, addr, pte);
2282 		ptent = pte_mkuffd_wp(old_pte);
2283 		ptep_modify_prot_commit(vma, addr, pte, old_pte, ptent);
2284 	} else if (is_swap_pte(ptent)) {
2285 		ptent = pte_swp_mkuffd_wp(ptent);
2286 		set_pte_at(vma->vm_mm, addr, pte, ptent);
2287 	} else {
2288 		set_pte_at(vma->vm_mm, addr, pte,
2289 			   make_pte_marker(PTE_MARKER_UFFD_WP));
2290 	}
2291 }
2292 
2293 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
pagemap_thp_category(struct pagemap_scan_private * p,struct vm_area_struct * vma,unsigned long addr,pmd_t pmd)2294 static unsigned long pagemap_thp_category(struct pagemap_scan_private *p,
2295 					  struct vm_area_struct *vma,
2296 					  unsigned long addr, pmd_t pmd)
2297 {
2298 	unsigned long categories = PAGE_IS_HUGE;
2299 
2300 	if (pmd_present(pmd)) {
2301 		struct page *page;
2302 
2303 		categories |= PAGE_IS_PRESENT;
2304 		if (!pmd_uffd_wp(pmd))
2305 			categories |= PAGE_IS_WRITTEN;
2306 
2307 		if (p->masks_of_interest & PAGE_IS_FILE) {
2308 			page = vm_normal_page_pmd(vma, addr, pmd);
2309 			if (page && !PageAnon(page))
2310 				categories |= PAGE_IS_FILE;
2311 		}
2312 
2313 		if (is_huge_zero_pmd(pmd))
2314 			categories |= PAGE_IS_PFNZERO;
2315 		if (pmd_soft_dirty(pmd))
2316 			categories |= PAGE_IS_SOFT_DIRTY;
2317 	} else if (is_swap_pmd(pmd)) {
2318 		swp_entry_t swp;
2319 
2320 		categories |= PAGE_IS_SWAPPED;
2321 		if (!pmd_swp_uffd_wp(pmd))
2322 			categories |= PAGE_IS_WRITTEN;
2323 		if (pmd_swp_soft_dirty(pmd))
2324 			categories |= PAGE_IS_SOFT_DIRTY;
2325 
2326 		if (p->masks_of_interest & PAGE_IS_FILE) {
2327 			swp = pmd_to_swp_entry(pmd);
2328 			if (is_pfn_swap_entry(swp) &&
2329 			    !folio_test_anon(pfn_swap_entry_folio(swp)))
2330 				categories |= PAGE_IS_FILE;
2331 		}
2332 	}
2333 
2334 	return categories;
2335 }
2336 
make_uffd_wp_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmdp)2337 static void make_uffd_wp_pmd(struct vm_area_struct *vma,
2338 			     unsigned long addr, pmd_t *pmdp)
2339 {
2340 	pmd_t old, pmd = *pmdp;
2341 
2342 	if (pmd_present(pmd)) {
2343 		old = pmdp_invalidate_ad(vma, addr, pmdp);
2344 		pmd = pmd_mkuffd_wp(old);
2345 		set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
2346 	} else if (is_migration_entry(pmd_to_swp_entry(pmd))) {
2347 		pmd = pmd_swp_mkuffd_wp(pmd);
2348 		set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
2349 	}
2350 }
2351 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2352 
2353 #ifdef CONFIG_HUGETLB_PAGE
pagemap_hugetlb_category(pte_t pte)2354 static unsigned long pagemap_hugetlb_category(pte_t pte)
2355 {
2356 	unsigned long categories = PAGE_IS_HUGE;
2357 
2358 	/*
2359 	 * According to pagemap_hugetlb_range(), file-backed HugeTLB
2360 	 * page cannot be swapped. So PAGE_IS_FILE is not checked for
2361 	 * swapped pages.
2362 	 */
2363 	if (pte_present(pte)) {
2364 		categories |= PAGE_IS_PRESENT;
2365 		if (!huge_pte_uffd_wp(pte))
2366 			categories |= PAGE_IS_WRITTEN;
2367 		if (!PageAnon(pte_page(pte)))
2368 			categories |= PAGE_IS_FILE;
2369 		if (is_zero_pfn(pte_pfn(pte)))
2370 			categories |= PAGE_IS_PFNZERO;
2371 		if (pte_soft_dirty(pte))
2372 			categories |= PAGE_IS_SOFT_DIRTY;
2373 	} else if (is_swap_pte(pte)) {
2374 		categories |= PAGE_IS_SWAPPED;
2375 		if (!pte_swp_uffd_wp_any(pte))
2376 			categories |= PAGE_IS_WRITTEN;
2377 		if (pte_swp_soft_dirty(pte))
2378 			categories |= PAGE_IS_SOFT_DIRTY;
2379 	}
2380 
2381 	return categories;
2382 }
2383 
make_uffd_wp_huge_pte(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep,pte_t ptent)2384 static void make_uffd_wp_huge_pte(struct vm_area_struct *vma,
2385 				  unsigned long addr, pte_t *ptep,
2386 				  pte_t ptent)
2387 {
2388 	unsigned long psize;
2389 
2390 	if (is_hugetlb_entry_hwpoisoned(ptent) || is_pte_marker(ptent))
2391 		return;
2392 
2393 	psize = huge_page_size(hstate_vma(vma));
2394 
2395 	if (is_hugetlb_entry_migration(ptent))
2396 		set_huge_pte_at(vma->vm_mm, addr, ptep,
2397 				pte_swp_mkuffd_wp(ptent), psize);
2398 	else if (!huge_pte_none(ptent))
2399 		huge_ptep_modify_prot_commit(vma, addr, ptep, ptent,
2400 					     huge_pte_mkuffd_wp(ptent));
2401 	else
2402 		set_huge_pte_at(vma->vm_mm, addr, ptep,
2403 				make_pte_marker(PTE_MARKER_UFFD_WP), psize);
2404 }
2405 #endif /* CONFIG_HUGETLB_PAGE */
2406 
2407 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLB_PAGE)
pagemap_scan_backout_range(struct pagemap_scan_private * p,unsigned long addr,unsigned long end)2408 static void pagemap_scan_backout_range(struct pagemap_scan_private *p,
2409 				       unsigned long addr, unsigned long end)
2410 {
2411 	struct page_region *cur_buf = &p->vec_buf[p->vec_buf_index];
2412 
2413 	if (cur_buf->start != addr)
2414 		cur_buf->end = addr;
2415 	else
2416 		cur_buf->start = cur_buf->end = 0;
2417 
2418 	p->found_pages -= (end - addr) / PAGE_SIZE;
2419 }
2420 #endif
2421 
pagemap_scan_is_interesting_page(unsigned long categories,const struct pagemap_scan_private * p)2422 static bool pagemap_scan_is_interesting_page(unsigned long categories,
2423 					     const struct pagemap_scan_private *p)
2424 {
2425 	categories ^= p->arg.category_inverted;
2426 	if ((categories & p->arg.category_mask) != p->arg.category_mask)
2427 		return false;
2428 	if (p->arg.category_anyof_mask && !(categories & p->arg.category_anyof_mask))
2429 		return false;
2430 
2431 	return true;
2432 }
2433 
pagemap_scan_is_interesting_vma(unsigned long categories,const struct pagemap_scan_private * p)2434 static bool pagemap_scan_is_interesting_vma(unsigned long categories,
2435 					    const struct pagemap_scan_private *p)
2436 {
2437 	unsigned long required = p->arg.category_mask & PAGE_IS_WPALLOWED;
2438 
2439 	categories ^= p->arg.category_inverted;
2440 	if ((categories & required) != required)
2441 		return false;
2442 
2443 	return true;
2444 }
2445 
pagemap_scan_test_walk(unsigned long start,unsigned long end,struct mm_walk * walk)2446 static int pagemap_scan_test_walk(unsigned long start, unsigned long end,
2447 				  struct mm_walk *walk)
2448 {
2449 	struct pagemap_scan_private *p = walk->private;
2450 	struct vm_area_struct *vma = walk->vma;
2451 	unsigned long vma_category = 0;
2452 	bool wp_allowed = userfaultfd_wp_async(vma) &&
2453 	    userfaultfd_wp_use_markers(vma);
2454 
2455 	if (!wp_allowed) {
2456 		/* User requested explicit failure over wp-async capability */
2457 		if (p->arg.flags & PM_SCAN_CHECK_WPASYNC)
2458 			return -EPERM;
2459 		/*
2460 		 * User requires wr-protect, and allows silently skipping
2461 		 * unsupported vmas.
2462 		 */
2463 		if (p->arg.flags & PM_SCAN_WP_MATCHING)
2464 			return 1;
2465 		/*
2466 		 * Then the request doesn't involve wr-protects at all,
2467 		 * fall through to the rest checks, and allow vma walk.
2468 		 */
2469 	}
2470 
2471 	if (vma->vm_flags & VM_PFNMAP)
2472 		return 1;
2473 
2474 	if (wp_allowed)
2475 		vma_category |= PAGE_IS_WPALLOWED;
2476 
2477 	if (vma->vm_flags & VM_SOFTDIRTY)
2478 		vma_category |= PAGE_IS_SOFT_DIRTY;
2479 
2480 	if (!pagemap_scan_is_interesting_vma(vma_category, p))
2481 		return 1;
2482 
2483 	p->cur_vma_category = vma_category;
2484 
2485 	return 0;
2486 }
2487 
pagemap_scan_push_range(unsigned long categories,struct pagemap_scan_private * p,unsigned long addr,unsigned long end)2488 static bool pagemap_scan_push_range(unsigned long categories,
2489 				    struct pagemap_scan_private *p,
2490 				    unsigned long addr, unsigned long end)
2491 {
2492 	struct page_region *cur_buf = &p->vec_buf[p->vec_buf_index];
2493 
2494 	/*
2495 	 * When there is no output buffer provided at all, the sentinel values
2496 	 * won't match here. There is no other way for `cur_buf->end` to be
2497 	 * non-zero other than it being non-empty.
2498 	 */
2499 	if (addr == cur_buf->end && categories == cur_buf->categories) {
2500 		cur_buf->end = end;
2501 		return true;
2502 	}
2503 
2504 	if (cur_buf->end) {
2505 		if (p->vec_buf_index >= p->vec_buf_len - 1)
2506 			return false;
2507 
2508 		cur_buf = &p->vec_buf[++p->vec_buf_index];
2509 	}
2510 
2511 	cur_buf->start = addr;
2512 	cur_buf->end = end;
2513 	cur_buf->categories = categories;
2514 
2515 	return true;
2516 }
2517 
pagemap_scan_output(unsigned long categories,struct pagemap_scan_private * p,unsigned long addr,unsigned long * end)2518 static int pagemap_scan_output(unsigned long categories,
2519 			       struct pagemap_scan_private *p,
2520 			       unsigned long addr, unsigned long *end)
2521 {
2522 	unsigned long n_pages, total_pages;
2523 	int ret = 0;
2524 
2525 	if (!p->vec_buf)
2526 		return 0;
2527 
2528 	categories &= p->arg.return_mask;
2529 
2530 	n_pages = (*end - addr) / PAGE_SIZE;
2531 	if (check_add_overflow(p->found_pages, n_pages, &total_pages) ||
2532 	    total_pages > p->arg.max_pages) {
2533 		size_t n_too_much = total_pages - p->arg.max_pages;
2534 		*end -= n_too_much * PAGE_SIZE;
2535 		n_pages -= n_too_much;
2536 		ret = -ENOSPC;
2537 	}
2538 
2539 	if (!pagemap_scan_push_range(categories, p, addr, *end)) {
2540 		*end = addr;
2541 		n_pages = 0;
2542 		ret = -ENOSPC;
2543 	}
2544 
2545 	p->found_pages += n_pages;
2546 	if (ret)
2547 		p->arg.walk_end = *end;
2548 
2549 	return ret;
2550 }
2551 
pagemap_scan_thp_entry(pmd_t * pmd,unsigned long start,unsigned long end,struct mm_walk * walk)2552 static int pagemap_scan_thp_entry(pmd_t *pmd, unsigned long start,
2553 				  unsigned long end, struct mm_walk *walk)
2554 {
2555 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2556 	struct pagemap_scan_private *p = walk->private;
2557 	struct vm_area_struct *vma = walk->vma;
2558 	unsigned long categories;
2559 	spinlock_t *ptl;
2560 	int ret = 0;
2561 
2562 	ptl = pmd_trans_huge_lock(pmd, vma);
2563 	if (!ptl)
2564 		return -ENOENT;
2565 
2566 	categories = p->cur_vma_category |
2567 		     pagemap_thp_category(p, vma, start, *pmd);
2568 
2569 	if (!pagemap_scan_is_interesting_page(categories, p))
2570 		goto out_unlock;
2571 
2572 	ret = pagemap_scan_output(categories, p, start, &end);
2573 	if (start == end)
2574 		goto out_unlock;
2575 
2576 	if (~p->arg.flags & PM_SCAN_WP_MATCHING)
2577 		goto out_unlock;
2578 	if (~categories & PAGE_IS_WRITTEN)
2579 		goto out_unlock;
2580 
2581 	/*
2582 	 * Break huge page into small pages if the WP operation
2583 	 * needs to be performed on a portion of the huge page.
2584 	 */
2585 	if (end != start + HPAGE_SIZE) {
2586 		spin_unlock(ptl);
2587 		split_huge_pmd(vma, pmd, start);
2588 		pagemap_scan_backout_range(p, start, end);
2589 		/* Report as if there was no THP */
2590 		return -ENOENT;
2591 	}
2592 
2593 	make_uffd_wp_pmd(vma, start, pmd);
2594 	flush_tlb_range(vma, start, end);
2595 out_unlock:
2596 	spin_unlock(ptl);
2597 	return ret;
2598 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */
2599 	return -ENOENT;
2600 #endif
2601 }
2602 
pagemap_scan_pmd_entry(pmd_t * pmd,unsigned long start,unsigned long end,struct mm_walk * walk)2603 static int pagemap_scan_pmd_entry(pmd_t *pmd, unsigned long start,
2604 				  unsigned long end, struct mm_walk *walk)
2605 {
2606 	struct pagemap_scan_private *p = walk->private;
2607 	struct vm_area_struct *vma = walk->vma;
2608 	unsigned long addr, flush_end = 0;
2609 	pte_t *pte, *start_pte;
2610 	spinlock_t *ptl;
2611 	int ret;
2612 
2613 	ret = pagemap_scan_thp_entry(pmd, start, end, walk);
2614 	if (ret != -ENOENT)
2615 		return ret;
2616 
2617 	ret = 0;
2618 	start_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, start, &ptl);
2619 	if (!pte) {
2620 		walk->action = ACTION_AGAIN;
2621 		return 0;
2622 	}
2623 
2624 	arch_enter_lazy_mmu_mode();
2625 
2626 	if ((p->arg.flags & PM_SCAN_WP_MATCHING) && !p->vec_out) {
2627 		/* Fast path for performing exclusive WP */
2628 		for (addr = start; addr != end; pte++, addr += PAGE_SIZE) {
2629 			pte_t ptent = ptep_get(pte);
2630 
2631 			if ((pte_present(ptent) && pte_uffd_wp(ptent)) ||
2632 			    pte_swp_uffd_wp_any(ptent))
2633 				continue;
2634 			make_uffd_wp_pte(vma, addr, pte, ptent);
2635 			if (!flush_end)
2636 				start = addr;
2637 			flush_end = addr + PAGE_SIZE;
2638 		}
2639 		goto flush_and_return;
2640 	}
2641 
2642 	if (!p->arg.category_anyof_mask && !p->arg.category_inverted &&
2643 	    p->arg.category_mask == PAGE_IS_WRITTEN &&
2644 	    p->arg.return_mask == PAGE_IS_WRITTEN) {
2645 		for (addr = start; addr < end; pte++, addr += PAGE_SIZE) {
2646 			unsigned long next = addr + PAGE_SIZE;
2647 			pte_t ptent = ptep_get(pte);
2648 
2649 			if ((pte_present(ptent) && pte_uffd_wp(ptent)) ||
2650 			    pte_swp_uffd_wp_any(ptent))
2651 				continue;
2652 			ret = pagemap_scan_output(p->cur_vma_category | PAGE_IS_WRITTEN,
2653 						  p, addr, &next);
2654 			if (next == addr)
2655 				break;
2656 			if (~p->arg.flags & PM_SCAN_WP_MATCHING)
2657 				continue;
2658 			make_uffd_wp_pte(vma, addr, pte, ptent);
2659 			if (!flush_end)
2660 				start = addr;
2661 			flush_end = next;
2662 		}
2663 		goto flush_and_return;
2664 	}
2665 
2666 	for (addr = start; addr != end; pte++, addr += PAGE_SIZE) {
2667 		pte_t ptent = ptep_get(pte);
2668 		unsigned long categories = p->cur_vma_category |
2669 					   pagemap_page_category(p, vma, addr, ptent);
2670 		unsigned long next = addr + PAGE_SIZE;
2671 
2672 		if (!pagemap_scan_is_interesting_page(categories, p))
2673 			continue;
2674 
2675 		ret = pagemap_scan_output(categories, p, addr, &next);
2676 		if (next == addr)
2677 			break;
2678 
2679 		if (~p->arg.flags & PM_SCAN_WP_MATCHING)
2680 			continue;
2681 		if (~categories & PAGE_IS_WRITTEN)
2682 			continue;
2683 
2684 		make_uffd_wp_pte(vma, addr, pte, ptent);
2685 		if (!flush_end)
2686 			start = addr;
2687 		flush_end = next;
2688 	}
2689 
2690 flush_and_return:
2691 	if (flush_end)
2692 		flush_tlb_range(vma, start, addr);
2693 
2694 	arch_leave_lazy_mmu_mode();
2695 	pte_unmap_unlock(start_pte, ptl);
2696 
2697 	cond_resched();
2698 	return ret;
2699 }
2700 
2701 #ifdef CONFIG_HUGETLB_PAGE
pagemap_scan_hugetlb_entry(pte_t * ptep,unsigned long hmask,unsigned long start,unsigned long end,struct mm_walk * walk)2702 static int pagemap_scan_hugetlb_entry(pte_t *ptep, unsigned long hmask,
2703 				      unsigned long start, unsigned long end,
2704 				      struct mm_walk *walk)
2705 {
2706 	struct pagemap_scan_private *p = walk->private;
2707 	struct vm_area_struct *vma = walk->vma;
2708 	unsigned long categories;
2709 	spinlock_t *ptl;
2710 	int ret = 0;
2711 	pte_t pte;
2712 
2713 	if (~p->arg.flags & PM_SCAN_WP_MATCHING) {
2714 		/* Go the short route when not write-protecting pages. */
2715 
2716 		pte = huge_ptep_get(walk->mm, start, ptep);
2717 		categories = p->cur_vma_category | pagemap_hugetlb_category(pte);
2718 
2719 		if (!pagemap_scan_is_interesting_page(categories, p))
2720 			return 0;
2721 
2722 		return pagemap_scan_output(categories, p, start, &end);
2723 	}
2724 
2725 	i_mmap_lock_write(vma->vm_file->f_mapping);
2726 	ptl = huge_pte_lock(hstate_vma(vma), vma->vm_mm, ptep);
2727 
2728 	pte = huge_ptep_get(walk->mm, start, ptep);
2729 	categories = p->cur_vma_category | pagemap_hugetlb_category(pte);
2730 
2731 	if (!pagemap_scan_is_interesting_page(categories, p))
2732 		goto out_unlock;
2733 
2734 	ret = pagemap_scan_output(categories, p, start, &end);
2735 	if (start == end)
2736 		goto out_unlock;
2737 
2738 	if (~categories & PAGE_IS_WRITTEN)
2739 		goto out_unlock;
2740 
2741 	if (end != start + HPAGE_SIZE) {
2742 		/* Partial HugeTLB page WP isn't possible. */
2743 		pagemap_scan_backout_range(p, start, end);
2744 		p->arg.walk_end = start;
2745 		ret = 0;
2746 		goto out_unlock;
2747 	}
2748 
2749 	make_uffd_wp_huge_pte(vma, start, ptep, pte);
2750 	flush_hugetlb_tlb_range(vma, start, end);
2751 
2752 out_unlock:
2753 	spin_unlock(ptl);
2754 	i_mmap_unlock_write(vma->vm_file->f_mapping);
2755 
2756 	return ret;
2757 }
2758 #else
2759 #define pagemap_scan_hugetlb_entry NULL
2760 #endif
2761 
pagemap_scan_pte_hole(unsigned long addr,unsigned long end,int depth,struct mm_walk * walk)2762 static int pagemap_scan_pte_hole(unsigned long addr, unsigned long end,
2763 				 int depth, struct mm_walk *walk)
2764 {
2765 	struct pagemap_scan_private *p = walk->private;
2766 	struct vm_area_struct *vma = walk->vma;
2767 	int ret, err;
2768 
2769 	if (!vma || !pagemap_scan_is_interesting_page(p->cur_vma_category, p))
2770 		return 0;
2771 
2772 	ret = pagemap_scan_output(p->cur_vma_category, p, addr, &end);
2773 	if (addr == end)
2774 		return ret;
2775 
2776 	if (~p->arg.flags & PM_SCAN_WP_MATCHING)
2777 		return ret;
2778 
2779 	err = uffd_wp_range(vma, addr, end - addr, true);
2780 	if (err < 0)
2781 		ret = err;
2782 
2783 	return ret;
2784 }
2785 
2786 static const struct mm_walk_ops pagemap_scan_ops = {
2787 	.test_walk = pagemap_scan_test_walk,
2788 	.pmd_entry = pagemap_scan_pmd_entry,
2789 	.pte_hole = pagemap_scan_pte_hole,
2790 	.hugetlb_entry = pagemap_scan_hugetlb_entry,
2791 };
2792 
pagemap_scan_get_args(struct pm_scan_arg * arg,unsigned long uarg)2793 static int pagemap_scan_get_args(struct pm_scan_arg *arg,
2794 				 unsigned long uarg)
2795 {
2796 	if (copy_from_user(arg, (void __user *)uarg, sizeof(*arg)))
2797 		return -EFAULT;
2798 
2799 	if (arg->size != sizeof(struct pm_scan_arg))
2800 		return -EINVAL;
2801 
2802 	/* Validate requested features */
2803 	if (arg->flags & ~PM_SCAN_FLAGS)
2804 		return -EINVAL;
2805 	if ((arg->category_inverted | arg->category_mask |
2806 	     arg->category_anyof_mask | arg->return_mask) & ~PM_SCAN_CATEGORIES)
2807 		return -EINVAL;
2808 
2809 	arg->start = untagged_addr((unsigned long)arg->start);
2810 	arg->end = untagged_addr((unsigned long)arg->end);
2811 	arg->vec = untagged_addr((unsigned long)arg->vec);
2812 
2813 	/* Validate memory pointers */
2814 	if (!IS_ALIGNED(arg->start, PAGE_SIZE))
2815 		return -EINVAL;
2816 	if (!access_ok((void __user *)(long)arg->start, arg->end - arg->start))
2817 		return -EFAULT;
2818 	if (!arg->vec && arg->vec_len)
2819 		return -EINVAL;
2820 	if (UINT_MAX == SIZE_MAX && arg->vec_len > SIZE_MAX)
2821 		return -EINVAL;
2822 	if (arg->vec && !access_ok((void __user *)(long)arg->vec,
2823 				   size_mul(arg->vec_len, sizeof(struct page_region))))
2824 		return -EFAULT;
2825 
2826 	/* Fixup default values */
2827 	arg->end = ALIGN(arg->end, PAGE_SIZE);
2828 	arg->walk_end = 0;
2829 	if (!arg->max_pages)
2830 		arg->max_pages = ULONG_MAX;
2831 
2832 	return 0;
2833 }
2834 
pagemap_scan_writeback_args(struct pm_scan_arg * arg,unsigned long uargl)2835 static int pagemap_scan_writeback_args(struct pm_scan_arg *arg,
2836 				       unsigned long uargl)
2837 {
2838 	struct pm_scan_arg __user *uarg	= (void __user *)uargl;
2839 
2840 	if (copy_to_user(&uarg->walk_end, &arg->walk_end, sizeof(arg->walk_end)))
2841 		return -EFAULT;
2842 
2843 	return 0;
2844 }
2845 
pagemap_scan_init_bounce_buffer(struct pagemap_scan_private * p)2846 static int pagemap_scan_init_bounce_buffer(struct pagemap_scan_private *p)
2847 {
2848 	if (!p->arg.vec_len)
2849 		return 0;
2850 
2851 	p->vec_buf_len = min_t(size_t, PAGEMAP_WALK_SIZE >> PAGE_SHIFT,
2852 			       p->arg.vec_len);
2853 	p->vec_buf = kmalloc_array(p->vec_buf_len, sizeof(*p->vec_buf),
2854 				   GFP_KERNEL);
2855 	if (!p->vec_buf)
2856 		return -ENOMEM;
2857 
2858 	p->vec_buf->start = p->vec_buf->end = 0;
2859 	p->vec_out = (struct page_region __user *)(long)p->arg.vec;
2860 
2861 	return 0;
2862 }
2863 
pagemap_scan_flush_buffer(struct pagemap_scan_private * p)2864 static long pagemap_scan_flush_buffer(struct pagemap_scan_private *p)
2865 {
2866 	const struct page_region *buf = p->vec_buf;
2867 	long n = p->vec_buf_index;
2868 
2869 	if (!p->vec_buf)
2870 		return 0;
2871 
2872 	if (buf[n].end != buf[n].start)
2873 		n++;
2874 
2875 	if (!n)
2876 		return 0;
2877 
2878 	if (copy_to_user(p->vec_out, buf, n * sizeof(*buf)))
2879 		return -EFAULT;
2880 
2881 	p->arg.vec_len -= n;
2882 	p->vec_out += n;
2883 
2884 	p->vec_buf_index = 0;
2885 	p->vec_buf_len = min_t(size_t, p->vec_buf_len, p->arg.vec_len);
2886 	p->vec_buf->start = p->vec_buf->end = 0;
2887 
2888 	return n;
2889 }
2890 
do_pagemap_scan(struct mm_struct * mm,unsigned long uarg)2891 static long do_pagemap_scan(struct mm_struct *mm, unsigned long uarg)
2892 {
2893 	struct pagemap_scan_private p = {0};
2894 	unsigned long walk_start;
2895 	size_t n_ranges_out = 0;
2896 	int ret;
2897 
2898 	ret = pagemap_scan_get_args(&p.arg, uarg);
2899 	if (ret)
2900 		return ret;
2901 
2902 	p.masks_of_interest = p.arg.category_mask | p.arg.category_anyof_mask |
2903 			      p.arg.return_mask;
2904 	ret = pagemap_scan_init_bounce_buffer(&p);
2905 	if (ret)
2906 		return ret;
2907 
2908 	for (walk_start = p.arg.start; walk_start < p.arg.end;
2909 			walk_start = p.arg.walk_end) {
2910 		struct mmu_notifier_range range;
2911 		long n_out;
2912 
2913 		if (fatal_signal_pending(current)) {
2914 			ret = -EINTR;
2915 			break;
2916 		}
2917 
2918 		ret = mmap_read_lock_killable(mm);
2919 		if (ret)
2920 			break;
2921 
2922 		/* Protection change for the range is going to happen. */
2923 		if (p.arg.flags & PM_SCAN_WP_MATCHING) {
2924 			mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA, 0,
2925 						mm, walk_start, p.arg.end);
2926 			mmu_notifier_invalidate_range_start(&range);
2927 		}
2928 
2929 		ret = walk_page_range(mm, walk_start, p.arg.end,
2930 				      &pagemap_scan_ops, &p);
2931 
2932 		if (p.arg.flags & PM_SCAN_WP_MATCHING)
2933 			mmu_notifier_invalidate_range_end(&range);
2934 
2935 		mmap_read_unlock(mm);
2936 
2937 		n_out = pagemap_scan_flush_buffer(&p);
2938 		if (n_out < 0)
2939 			ret = n_out;
2940 		else
2941 			n_ranges_out += n_out;
2942 
2943 		if (ret != -ENOSPC)
2944 			break;
2945 
2946 		if (p.arg.vec_len == 0 || p.found_pages == p.arg.max_pages)
2947 			break;
2948 	}
2949 
2950 	/* ENOSPC signifies early stop (buffer full) from the walk. */
2951 	if (!ret || ret == -ENOSPC)
2952 		ret = n_ranges_out;
2953 
2954 	/* The walk_end isn't set when ret is zero */
2955 	if (!p.arg.walk_end)
2956 		p.arg.walk_end = p.arg.end;
2957 	if (pagemap_scan_writeback_args(&p.arg, uarg))
2958 		ret = -EFAULT;
2959 
2960 	kfree(p.vec_buf);
2961 	return ret;
2962 }
2963 
do_pagemap_cmd(struct file * file,unsigned int cmd,unsigned long arg)2964 static long do_pagemap_cmd(struct file *file, unsigned int cmd,
2965 			   unsigned long arg)
2966 {
2967 	struct mm_struct *mm = file->private_data;
2968 
2969 	switch (cmd) {
2970 	case PAGEMAP_SCAN:
2971 		return do_pagemap_scan(mm, arg);
2972 
2973 	default:
2974 		return -EINVAL;
2975 	}
2976 }
2977 
2978 const struct file_operations proc_pagemap_operations = {
2979 	.llseek		= mem_lseek, /* borrow this */
2980 	.read		= pagemap_read,
2981 	.open		= pagemap_open,
2982 	.release	= pagemap_release,
2983 	.unlocked_ioctl = do_pagemap_cmd,
2984 	.compat_ioctl	= do_pagemap_cmd,
2985 };
2986 #endif /* CONFIG_PROC_PAGE_MONITOR */
2987 
2988 #ifdef CONFIG_NUMA
2989 
2990 struct numa_maps {
2991 	unsigned long pages;
2992 	unsigned long anon;
2993 	unsigned long active;
2994 	unsigned long writeback;
2995 	unsigned long mapcount_max;
2996 	unsigned long dirty;
2997 	unsigned long swapcache;
2998 	unsigned long node[MAX_NUMNODES];
2999 };
3000 
3001 struct numa_maps_private {
3002 	struct proc_maps_private proc_maps;
3003 	struct numa_maps md;
3004 };
3005 
gather_stats(struct page * page,struct numa_maps * md,int pte_dirty,unsigned long nr_pages)3006 static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty,
3007 			unsigned long nr_pages)
3008 {
3009 	struct folio *folio = page_folio(page);
3010 	int count;
3011 
3012 	if (IS_ENABLED(CONFIG_PAGE_MAPCOUNT))
3013 		count = folio_precise_page_mapcount(folio, page);
3014 	else
3015 		count = folio_average_page_mapcount(folio);
3016 
3017 	md->pages += nr_pages;
3018 	if (pte_dirty || folio_test_dirty(folio))
3019 		md->dirty += nr_pages;
3020 
3021 	if (folio_test_swapcache(folio))
3022 		md->swapcache += nr_pages;
3023 
3024 	if (folio_test_active(folio) || folio_test_unevictable(folio))
3025 		md->active += nr_pages;
3026 
3027 	if (folio_test_writeback(folio))
3028 		md->writeback += nr_pages;
3029 
3030 	if (folio_test_anon(folio))
3031 		md->anon += nr_pages;
3032 
3033 	if (count > md->mapcount_max)
3034 		md->mapcount_max = count;
3035 
3036 	md->node[folio_nid(folio)] += nr_pages;
3037 }
3038 
can_gather_numa_stats(pte_t pte,struct vm_area_struct * vma,unsigned long addr)3039 static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma,
3040 		unsigned long addr)
3041 {
3042 	struct page *page;
3043 	int nid;
3044 
3045 	if (!pte_present(pte))
3046 		return NULL;
3047 
3048 	page = vm_normal_page(vma, addr, pte);
3049 	if (!page || is_zone_device_page(page))
3050 		return NULL;
3051 
3052 	if (PageReserved(page))
3053 		return NULL;
3054 
3055 	nid = page_to_nid(page);
3056 	if (!node_isset(nid, node_states[N_MEMORY]))
3057 		return NULL;
3058 
3059 	return page;
3060 }
3061 
3062 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
can_gather_numa_stats_pmd(pmd_t pmd,struct vm_area_struct * vma,unsigned long addr)3063 static struct page *can_gather_numa_stats_pmd(pmd_t pmd,
3064 					      struct vm_area_struct *vma,
3065 					      unsigned long addr)
3066 {
3067 	struct page *page;
3068 	int nid;
3069 
3070 	if (!pmd_present(pmd))
3071 		return NULL;
3072 
3073 	page = vm_normal_page_pmd(vma, addr, pmd);
3074 	if (!page)
3075 		return NULL;
3076 
3077 	if (PageReserved(page))
3078 		return NULL;
3079 
3080 	nid = page_to_nid(page);
3081 	if (!node_isset(nid, node_states[N_MEMORY]))
3082 		return NULL;
3083 
3084 	return page;
3085 }
3086 #endif
3087 
gather_pte_stats(pmd_t * pmd,unsigned long addr,unsigned long end,struct mm_walk * walk)3088 static int gather_pte_stats(pmd_t *pmd, unsigned long addr,
3089 		unsigned long end, struct mm_walk *walk)
3090 {
3091 	struct numa_maps *md = walk->private;
3092 	struct vm_area_struct *vma = walk->vma;
3093 	spinlock_t *ptl;
3094 	pte_t *orig_pte;
3095 	pte_t *pte;
3096 
3097 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3098 	ptl = pmd_trans_huge_lock(pmd, vma);
3099 	if (ptl) {
3100 		struct page *page;
3101 
3102 		page = can_gather_numa_stats_pmd(*pmd, vma, addr);
3103 		if (page)
3104 			gather_stats(page, md, pmd_dirty(*pmd),
3105 				     HPAGE_PMD_SIZE/PAGE_SIZE);
3106 		spin_unlock(ptl);
3107 		return 0;
3108 	}
3109 #endif
3110 	orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
3111 	if (!pte) {
3112 		walk->action = ACTION_AGAIN;
3113 		return 0;
3114 	}
3115 	do {
3116 		pte_t ptent = ptep_get(pte);
3117 		struct page *page = can_gather_numa_stats(ptent, vma, addr);
3118 		if (!page)
3119 			continue;
3120 		gather_stats(page, md, pte_dirty(ptent), 1);
3121 
3122 	} while (pte++, addr += PAGE_SIZE, addr != end);
3123 	pte_unmap_unlock(orig_pte, ptl);
3124 	cond_resched();
3125 	return 0;
3126 }
3127 #ifdef CONFIG_HUGETLB_PAGE
gather_hugetlb_stats(pte_t * pte,unsigned long hmask,unsigned long addr,unsigned long end,struct mm_walk * walk)3128 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
3129 		unsigned long addr, unsigned long end, struct mm_walk *walk)
3130 {
3131 	pte_t huge_pte = huge_ptep_get(walk->mm, addr, pte);
3132 	struct numa_maps *md;
3133 	struct page *page;
3134 
3135 	if (!pte_present(huge_pte))
3136 		return 0;
3137 
3138 	page = pte_page(huge_pte);
3139 
3140 	md = walk->private;
3141 	gather_stats(page, md, pte_dirty(huge_pte), 1);
3142 	return 0;
3143 }
3144 
3145 #else
gather_hugetlb_stats(pte_t * pte,unsigned long hmask,unsigned long addr,unsigned long end,struct mm_walk * walk)3146 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
3147 		unsigned long addr, unsigned long end, struct mm_walk *walk)
3148 {
3149 	return 0;
3150 }
3151 #endif
3152 
3153 static const struct mm_walk_ops show_numa_ops = {
3154 	.hugetlb_entry = gather_hugetlb_stats,
3155 	.pmd_entry = gather_pte_stats,
3156 	.walk_lock = PGWALK_RDLOCK,
3157 };
3158 
3159 /*
3160  * Display pages allocated per node and memory policy via /proc.
3161  */
show_numa_map(struct seq_file * m,void * v)3162 static int show_numa_map(struct seq_file *m, void *v)
3163 {
3164 	struct numa_maps_private *numa_priv = m->private;
3165 	struct proc_maps_private *proc_priv = &numa_priv->proc_maps;
3166 	struct vm_area_struct *vma = v;
3167 	struct numa_maps *md = &numa_priv->md;
3168 	struct file *file = vma->vm_file;
3169 	struct mm_struct *mm = vma->vm_mm;
3170 	char buffer[64];
3171 	struct mempolicy *pol;
3172 	pgoff_t ilx;
3173 	int nid;
3174 
3175 	if (!mm)
3176 		return 0;
3177 
3178 	/* Ensure we start with an empty set of numa_maps statistics. */
3179 	memset(md, 0, sizeof(*md));
3180 
3181 	pol = __get_vma_policy(vma, vma->vm_start, &ilx);
3182 	if (pol) {
3183 		mpol_to_str(buffer, sizeof(buffer), pol);
3184 		mpol_cond_put(pol);
3185 	} else {
3186 		mpol_to_str(buffer, sizeof(buffer), proc_priv->task_mempolicy);
3187 	}
3188 
3189 	seq_printf(m, "%08lx %s", vma->vm_start, buffer);
3190 
3191 	if (file) {
3192 		seq_puts(m, " file=");
3193 		seq_path(m, file_user_path(file), "\n\t= ");
3194 	} else if (vma_is_initial_heap(vma)) {
3195 		seq_puts(m, " heap");
3196 	} else if (vma_is_initial_stack(vma)) {
3197 		seq_puts(m, " stack");
3198 	}
3199 
3200 	if (is_vm_hugetlb_page(vma))
3201 		seq_puts(m, " huge");
3202 
3203 	/* mmap_lock is held by m_start */
3204 	walk_page_vma(vma, &show_numa_ops, md);
3205 
3206 	if (!md->pages)
3207 		goto out;
3208 
3209 	if (md->anon)
3210 		seq_printf(m, " anon=%lu", md->anon);
3211 
3212 	if (md->dirty)
3213 		seq_printf(m, " dirty=%lu", md->dirty);
3214 
3215 	if (md->pages != md->anon && md->pages != md->dirty)
3216 		seq_printf(m, " mapped=%lu", md->pages);
3217 
3218 	if (md->mapcount_max > 1)
3219 		seq_printf(m, " mapmax=%lu", md->mapcount_max);
3220 
3221 	if (md->swapcache)
3222 		seq_printf(m, " swapcache=%lu", md->swapcache);
3223 
3224 	if (md->active < md->pages && !is_vm_hugetlb_page(vma))
3225 		seq_printf(m, " active=%lu", md->active);
3226 
3227 	if (md->writeback)
3228 		seq_printf(m, " writeback=%lu", md->writeback);
3229 
3230 	for_each_node_state(nid, N_MEMORY)
3231 		if (md->node[nid])
3232 			seq_printf(m, " N%d=%lu", nid, md->node[nid]);
3233 
3234 	seq_printf(m, " kernelpagesize_kB=%lu", vma_kernel_pagesize(vma) >> 10);
3235 out:
3236 	seq_putc(m, '\n');
3237 	return 0;
3238 }
3239 
3240 static const struct seq_operations proc_pid_numa_maps_op = {
3241 	.start  = m_start,
3242 	.next   = m_next,
3243 	.stop   = m_stop,
3244 	.show   = show_numa_map,
3245 };
3246 
pid_numa_maps_open(struct inode * inode,struct file * file)3247 static int pid_numa_maps_open(struct inode *inode, struct file *file)
3248 {
3249 	return proc_maps_open(inode, file, &proc_pid_numa_maps_op,
3250 				sizeof(struct numa_maps_private));
3251 }
3252 
3253 const struct file_operations proc_pid_numa_maps_operations = {
3254 	.open		= pid_numa_maps_open,
3255 	.read		= seq_read,
3256 	.llseek		= seq_lseek,
3257 	.release	= proc_map_release,
3258 };
3259 
3260 #endif /* CONFIG_NUMA */
3261