1 // SPDX-License-Identifier: GPL-2.0 OR MIT
2 /*
3 * Copyright 2014-2022 Advanced Micro Devices, Inc.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice shall be included in
13 * all copies or substantial portions of the Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21 * OTHER DEALINGS IN THE SOFTWARE.
22 *
23 */
24
25 #include <linux/ratelimit.h>
26 #include <linux/printk.h>
27 #include <linux/slab.h>
28 #include <linux/list.h>
29 #include <linux/types.h>
30 #include <linux/bitops.h>
31 #include <linux/sched.h>
32 #include "kfd_priv.h"
33 #include "kfd_device_queue_manager.h"
34 #include "kfd_mqd_manager.h"
35 #include "cik_regs.h"
36 #include "kfd_kernel_queue.h"
37 #include "amdgpu_amdkfd.h"
38 #include "amdgpu_reset.h"
39 #include "amdgpu_sdma.h"
40 #include "mes_v11_api_def.h"
41 #include "kfd_debug.h"
42
43 /* Size of the per-pipe EOP queue */
44 #define CIK_HPD_EOP_BYTES_LOG2 11
45 #define CIK_HPD_EOP_BYTES (1U << CIK_HPD_EOP_BYTES_LOG2)
46 /* See unmap_queues_cpsch() */
47 #define USE_DEFAULT_GRACE_PERIOD 0xffffffff
48
49 static int set_pasid_vmid_mapping(struct device_queue_manager *dqm,
50 u32 pasid, unsigned int vmid);
51
52 static int execute_queues_cpsch(struct device_queue_manager *dqm,
53 enum kfd_unmap_queues_filter filter,
54 uint32_t filter_param,
55 uint32_t grace_period);
56 static int unmap_queues_cpsch(struct device_queue_manager *dqm,
57 enum kfd_unmap_queues_filter filter,
58 uint32_t filter_param,
59 uint32_t grace_period,
60 bool reset);
61
62 static int map_queues_cpsch(struct device_queue_manager *dqm);
63
64 static void deallocate_sdma_queue(struct device_queue_manager *dqm,
65 struct queue *q);
66
67 static inline void deallocate_hqd(struct device_queue_manager *dqm,
68 struct queue *q);
69 static int allocate_hqd(struct device_queue_manager *dqm, struct queue *q);
70 static int allocate_sdma_queue(struct device_queue_manager *dqm,
71 struct queue *q, const uint32_t *restore_sdma_id);
72
73 static int reset_queues_on_hws_hang(struct device_queue_manager *dqm, bool is_sdma);
74
75 static inline
get_mqd_type_from_queue_type(enum kfd_queue_type type)76 enum KFD_MQD_TYPE get_mqd_type_from_queue_type(enum kfd_queue_type type)
77 {
78 if (type == KFD_QUEUE_TYPE_SDMA || type == KFD_QUEUE_TYPE_SDMA_XGMI)
79 return KFD_MQD_TYPE_SDMA;
80 return KFD_MQD_TYPE_CP;
81 }
82
is_pipe_enabled(struct device_queue_manager * dqm,int mec,int pipe)83 static bool is_pipe_enabled(struct device_queue_manager *dqm, int mec, int pipe)
84 {
85 int i;
86 int pipe_offset = (mec * dqm->dev->kfd->shared_resources.num_pipe_per_mec
87 + pipe) * dqm->dev->kfd->shared_resources.num_queue_per_pipe;
88
89 /* queue is available for KFD usage if bit is 1 */
90 for (i = 0; i < dqm->dev->kfd->shared_resources.num_queue_per_pipe; ++i)
91 if (test_bit(pipe_offset + i,
92 dqm->dev->kfd->shared_resources.cp_queue_bitmap))
93 return true;
94 return false;
95 }
96
get_cp_queues_num(struct device_queue_manager * dqm)97 unsigned int get_cp_queues_num(struct device_queue_manager *dqm)
98 {
99 return bitmap_weight(dqm->dev->kfd->shared_resources.cp_queue_bitmap,
100 AMDGPU_MAX_QUEUES);
101 }
102
get_queues_per_pipe(struct device_queue_manager * dqm)103 unsigned int get_queues_per_pipe(struct device_queue_manager *dqm)
104 {
105 return dqm->dev->kfd->shared_resources.num_queue_per_pipe;
106 }
107
get_pipes_per_mec(struct device_queue_manager * dqm)108 unsigned int get_pipes_per_mec(struct device_queue_manager *dqm)
109 {
110 return dqm->dev->kfd->shared_resources.num_pipe_per_mec;
111 }
112
get_num_all_sdma_engines(struct device_queue_manager * dqm)113 static unsigned int get_num_all_sdma_engines(struct device_queue_manager *dqm)
114 {
115 return kfd_get_num_sdma_engines(dqm->dev) +
116 kfd_get_num_xgmi_sdma_engines(dqm->dev);
117 }
118
get_num_sdma_queues(struct device_queue_manager * dqm)119 unsigned int get_num_sdma_queues(struct device_queue_manager *dqm)
120 {
121 return kfd_get_num_sdma_engines(dqm->dev) *
122 dqm->dev->kfd->device_info.num_sdma_queues_per_engine;
123 }
124
get_num_xgmi_sdma_queues(struct device_queue_manager * dqm)125 unsigned int get_num_xgmi_sdma_queues(struct device_queue_manager *dqm)
126 {
127 return kfd_get_num_xgmi_sdma_engines(dqm->dev) *
128 dqm->dev->kfd->device_info.num_sdma_queues_per_engine;
129 }
130
init_sdma_bitmaps(struct device_queue_manager * dqm)131 static void init_sdma_bitmaps(struct device_queue_manager *dqm)
132 {
133 bitmap_zero(dqm->sdma_bitmap, KFD_MAX_SDMA_QUEUES);
134 bitmap_set(dqm->sdma_bitmap, 0, get_num_sdma_queues(dqm));
135
136 bitmap_zero(dqm->xgmi_sdma_bitmap, KFD_MAX_SDMA_QUEUES);
137 bitmap_set(dqm->xgmi_sdma_bitmap, 0, get_num_xgmi_sdma_queues(dqm));
138
139 /* Mask out the reserved queues */
140 bitmap_andnot(dqm->sdma_bitmap, dqm->sdma_bitmap,
141 dqm->dev->kfd->device_info.reserved_sdma_queues_bitmap,
142 KFD_MAX_SDMA_QUEUES);
143 }
144
program_sh_mem_settings(struct device_queue_manager * dqm,struct qcm_process_device * qpd)145 void program_sh_mem_settings(struct device_queue_manager *dqm,
146 struct qcm_process_device *qpd)
147 {
148 uint32_t xcc_mask = dqm->dev->xcc_mask;
149 int xcc_id;
150
151 for_each_inst(xcc_id, xcc_mask)
152 dqm->dev->kfd2kgd->program_sh_mem_settings(
153 dqm->dev->adev, qpd->vmid, qpd->sh_mem_config,
154 qpd->sh_mem_ape1_base, qpd->sh_mem_ape1_limit,
155 qpd->sh_mem_bases, xcc_id);
156 }
157
kfd_hws_hang(struct device_queue_manager * dqm)158 static void kfd_hws_hang(struct device_queue_manager *dqm)
159 {
160 struct device_process_node *cur;
161 struct qcm_process_device *qpd;
162 struct queue *q;
163
164 /* Mark all device queues as reset. */
165 list_for_each_entry(cur, &dqm->queues, list) {
166 qpd = cur->qpd;
167 list_for_each_entry(q, &qpd->queues_list, list) {
168 struct kfd_process_device *pdd = qpd_to_pdd(qpd);
169
170 pdd->has_reset_queue = true;
171 }
172 }
173
174 /*
175 * Issue a GPU reset if HWS is unresponsive
176 */
177 amdgpu_amdkfd_gpu_reset(dqm->dev->adev);
178 }
179
convert_to_mes_queue_type(int queue_type)180 static int convert_to_mes_queue_type(int queue_type)
181 {
182 int mes_queue_type;
183
184 switch (queue_type) {
185 case KFD_QUEUE_TYPE_COMPUTE:
186 mes_queue_type = MES_QUEUE_TYPE_COMPUTE;
187 break;
188 case KFD_QUEUE_TYPE_SDMA:
189 mes_queue_type = MES_QUEUE_TYPE_SDMA;
190 break;
191 default:
192 WARN(1, "Invalid queue type %d", queue_type);
193 mes_queue_type = -EINVAL;
194 break;
195 }
196
197 return mes_queue_type;
198 }
199
add_queue_mes(struct device_queue_manager * dqm,struct queue * q,struct qcm_process_device * qpd)200 static int add_queue_mes(struct device_queue_manager *dqm, struct queue *q,
201 struct qcm_process_device *qpd)
202 {
203 struct amdgpu_device *adev = (struct amdgpu_device *)dqm->dev->adev;
204 struct kfd_process_device *pdd = qpd_to_pdd(qpd);
205 struct mes_add_queue_input queue_input;
206 int r, queue_type;
207 uint64_t wptr_addr_off;
208
209 if (!dqm->sched_running || dqm->sched_halt)
210 return 0;
211 if (!down_read_trylock(&adev->reset_domain->sem))
212 return -EIO;
213
214 memset(&queue_input, 0x0, sizeof(struct mes_add_queue_input));
215 queue_input.process_id = pdd->pasid;
216 queue_input.page_table_base_addr = qpd->page_table_base;
217 queue_input.process_va_start = 0;
218 queue_input.process_va_end = adev->vm_manager.max_pfn - 1;
219 /* MES unit for quantum is 100ns */
220 queue_input.process_quantum = KFD_MES_PROCESS_QUANTUM; /* Equivalent to 10ms. */
221 queue_input.process_context_addr = pdd->proc_ctx_gpu_addr;
222 queue_input.gang_quantum = KFD_MES_GANG_QUANTUM; /* Equivalent to 1ms */
223 queue_input.gang_context_addr = q->gang_ctx_gpu_addr;
224 queue_input.inprocess_gang_priority = q->properties.priority;
225 queue_input.gang_global_priority_level =
226 AMDGPU_MES_PRIORITY_LEVEL_NORMAL;
227 queue_input.doorbell_offset = q->properties.doorbell_off;
228 queue_input.mqd_addr = q->gart_mqd_addr;
229 queue_input.wptr_addr = (uint64_t)q->properties.write_ptr;
230
231 wptr_addr_off = (uint64_t)q->properties.write_ptr & (PAGE_SIZE - 1);
232 queue_input.wptr_mc_addr = amdgpu_bo_gpu_offset(q->properties.wptr_bo) + wptr_addr_off;
233
234 queue_input.is_kfd_process = 1;
235 queue_input.is_aql_queue = (q->properties.format == KFD_QUEUE_FORMAT_AQL);
236 queue_input.queue_size = q->properties.queue_size >> 2;
237
238 queue_input.paging = false;
239 queue_input.tba_addr = qpd->tba_addr;
240 queue_input.tma_addr = qpd->tma_addr;
241 queue_input.trap_en = !kfd_dbg_has_cwsr_workaround(q->device);
242 queue_input.skip_process_ctx_clear =
243 qpd->pqm->process->runtime_info.runtime_state == DEBUG_RUNTIME_STATE_ENABLED &&
244 (qpd->pqm->process->debug_trap_enabled ||
245 kfd_dbg_has_ttmps_always_setup(q->device));
246
247 queue_type = convert_to_mes_queue_type(q->properties.type);
248 if (queue_type < 0) {
249 dev_err(adev->dev, "Queue type not supported with MES, queue:%d\n",
250 q->properties.type);
251 up_read(&adev->reset_domain->sem);
252 return -EINVAL;
253 }
254 queue_input.queue_type = (uint32_t)queue_type;
255
256 queue_input.exclusively_scheduled = q->properties.is_gws;
257
258 amdgpu_mes_lock(&adev->mes);
259 r = adev->mes.funcs->add_hw_queue(&adev->mes, &queue_input);
260 amdgpu_mes_unlock(&adev->mes);
261 up_read(&adev->reset_domain->sem);
262 if (r) {
263 dev_err(adev->dev, "failed to add hardware queue to MES, doorbell=0x%x\n",
264 q->properties.doorbell_off);
265 dev_err(adev->dev, "MES might be in unrecoverable state, issue a GPU reset\n");
266 kfd_hws_hang(dqm);
267 }
268
269 return r;
270 }
271
remove_queue_mes(struct device_queue_manager * dqm,struct queue * q,struct qcm_process_device * qpd)272 static int remove_queue_mes(struct device_queue_manager *dqm, struct queue *q,
273 struct qcm_process_device *qpd)
274 {
275 struct amdgpu_device *adev = (struct amdgpu_device *)dqm->dev->adev;
276 int r;
277 struct mes_remove_queue_input queue_input;
278
279 if (!dqm->sched_running || dqm->sched_halt)
280 return 0;
281 if (!down_read_trylock(&adev->reset_domain->sem))
282 return -EIO;
283
284 memset(&queue_input, 0x0, sizeof(struct mes_remove_queue_input));
285 queue_input.doorbell_offset = q->properties.doorbell_off;
286 queue_input.gang_context_addr = q->gang_ctx_gpu_addr;
287
288 amdgpu_mes_lock(&adev->mes);
289 r = adev->mes.funcs->remove_hw_queue(&adev->mes, &queue_input);
290 amdgpu_mes_unlock(&adev->mes);
291 up_read(&adev->reset_domain->sem);
292
293 if (r) {
294 dev_err(adev->dev, "failed to remove hardware queue from MES, doorbell=0x%x\n",
295 q->properties.doorbell_off);
296 dev_err(adev->dev, "MES might be in unrecoverable state, issue a GPU reset\n");
297 kfd_hws_hang(dqm);
298 }
299
300 return r;
301 }
302
remove_all_kfd_queues_mes(struct device_queue_manager * dqm)303 static int remove_all_kfd_queues_mes(struct device_queue_manager *dqm)
304 {
305 struct device_process_node *cur;
306 struct device *dev = dqm->dev->adev->dev;
307 struct qcm_process_device *qpd;
308 struct queue *q;
309 int retval = 0;
310
311 list_for_each_entry(cur, &dqm->queues, list) {
312 qpd = cur->qpd;
313 list_for_each_entry(q, &qpd->queues_list, list) {
314 if (q->properties.is_active) {
315 retval = remove_queue_mes(dqm, q, qpd);
316 if (retval) {
317 dev_err(dev, "%s: Failed to remove queue %d for dev %d",
318 __func__,
319 q->properties.queue_id,
320 dqm->dev->id);
321 return retval;
322 }
323 }
324 }
325 }
326
327 return retval;
328 }
329
add_all_kfd_queues_mes(struct device_queue_manager * dqm)330 static int add_all_kfd_queues_mes(struct device_queue_manager *dqm)
331 {
332 struct device_process_node *cur;
333 struct device *dev = dqm->dev->adev->dev;
334 struct qcm_process_device *qpd;
335 struct queue *q;
336 int retval = 0;
337
338 list_for_each_entry(cur, &dqm->queues, list) {
339 qpd = cur->qpd;
340 list_for_each_entry(q, &qpd->queues_list, list) {
341 if (!q->properties.is_active)
342 continue;
343 retval = add_queue_mes(dqm, q, qpd);
344 if (retval) {
345 dev_err(dev, "%s: Failed to add queue %d for dev %d",
346 __func__,
347 q->properties.queue_id,
348 dqm->dev->id);
349 return retval;
350 }
351 }
352 }
353
354 return retval;
355 }
356
suspend_all_queues_mes(struct device_queue_manager * dqm)357 static int suspend_all_queues_mes(struct device_queue_manager *dqm)
358 {
359 struct amdgpu_device *adev = (struct amdgpu_device *)dqm->dev->adev;
360 int r = 0;
361
362 if (!down_read_trylock(&adev->reset_domain->sem))
363 return -EIO;
364
365 r = amdgpu_mes_suspend(adev);
366 up_read(&adev->reset_domain->sem);
367
368 if (r) {
369 dev_err(adev->dev, "failed to suspend gangs from MES\n");
370 dev_err(adev->dev, "MES might be in unrecoverable state, issue a GPU reset\n");
371 kfd_hws_hang(dqm);
372 }
373
374 return r;
375 }
376
resume_all_queues_mes(struct device_queue_manager * dqm)377 static int resume_all_queues_mes(struct device_queue_manager *dqm)
378 {
379 struct amdgpu_device *adev = (struct amdgpu_device *)dqm->dev->adev;
380 int r = 0;
381
382 if (!down_read_trylock(&adev->reset_domain->sem))
383 return -EIO;
384
385 r = amdgpu_mes_resume(adev);
386 up_read(&adev->reset_domain->sem);
387
388 if (r) {
389 dev_err(adev->dev, "failed to resume gangs from MES\n");
390 dev_err(adev->dev, "MES might be in unrecoverable state, issue a GPU reset\n");
391 kfd_hws_hang(dqm);
392 }
393
394 return r;
395 }
396
increment_queue_count(struct device_queue_manager * dqm,struct qcm_process_device * qpd,struct queue * q)397 static void increment_queue_count(struct device_queue_manager *dqm,
398 struct qcm_process_device *qpd,
399 struct queue *q)
400 {
401 dqm->active_queue_count++;
402 if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE ||
403 q->properties.type == KFD_QUEUE_TYPE_DIQ)
404 dqm->active_cp_queue_count++;
405
406 if (q->properties.is_gws) {
407 dqm->gws_queue_count++;
408 qpd->mapped_gws_queue = true;
409 }
410 }
411
decrement_queue_count(struct device_queue_manager * dqm,struct qcm_process_device * qpd,struct queue * q)412 static void decrement_queue_count(struct device_queue_manager *dqm,
413 struct qcm_process_device *qpd,
414 struct queue *q)
415 {
416 dqm->active_queue_count--;
417 if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE ||
418 q->properties.type == KFD_QUEUE_TYPE_DIQ)
419 dqm->active_cp_queue_count--;
420
421 if (q->properties.is_gws) {
422 dqm->gws_queue_count--;
423 qpd->mapped_gws_queue = false;
424 }
425 }
426
427 /*
428 * Allocate a doorbell ID to this queue.
429 * If doorbell_id is passed in, make sure requested ID is valid then allocate it.
430 */
allocate_doorbell(struct qcm_process_device * qpd,struct queue * q,uint32_t const * restore_id)431 static int allocate_doorbell(struct qcm_process_device *qpd,
432 struct queue *q,
433 uint32_t const *restore_id)
434 {
435 struct kfd_node *dev = qpd->dqm->dev;
436
437 if (!KFD_IS_SOC15(dev)) {
438 /* On pre-SOC15 chips we need to use the queue ID to
439 * preserve the user mode ABI.
440 */
441
442 if (restore_id && *restore_id != q->properties.queue_id)
443 return -EINVAL;
444
445 q->doorbell_id = q->properties.queue_id;
446 } else if (q->properties.type == KFD_QUEUE_TYPE_SDMA ||
447 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) {
448 /* For SDMA queues on SOC15 with 8-byte doorbell, use static
449 * doorbell assignments based on the engine and queue id.
450 * The doobell index distance between RLC (2*i) and (2*i+1)
451 * for a SDMA engine is 512.
452 */
453
454 uint32_t *idx_offset = dev->kfd->shared_resources.sdma_doorbell_idx;
455
456 /*
457 * q->properties.sdma_engine_id corresponds to the virtual
458 * sdma engine number. However, for doorbell allocation,
459 * we need the physical sdma engine id in order to get the
460 * correct doorbell offset.
461 */
462 uint32_t valid_id = idx_offset[qpd->dqm->dev->node_id *
463 get_num_all_sdma_engines(qpd->dqm) +
464 q->properties.sdma_engine_id]
465 + (q->properties.sdma_queue_id & 1)
466 * KFD_QUEUE_DOORBELL_MIRROR_OFFSET
467 + (q->properties.sdma_queue_id >> 1);
468
469 if (restore_id && *restore_id != valid_id)
470 return -EINVAL;
471 q->doorbell_id = valid_id;
472 } else {
473 /* For CP queues on SOC15 */
474 if (restore_id) {
475 /* make sure that ID is free */
476 if (__test_and_set_bit(*restore_id, qpd->doorbell_bitmap))
477 return -EINVAL;
478
479 q->doorbell_id = *restore_id;
480 } else {
481 /* or reserve a free doorbell ID */
482 unsigned int found;
483
484 found = find_first_zero_bit(qpd->doorbell_bitmap,
485 KFD_MAX_NUM_OF_QUEUES_PER_PROCESS);
486 if (found >= KFD_MAX_NUM_OF_QUEUES_PER_PROCESS) {
487 pr_debug("No doorbells available");
488 return -EBUSY;
489 }
490 set_bit(found, qpd->doorbell_bitmap);
491 q->doorbell_id = found;
492 }
493 }
494
495 q->properties.doorbell_off = amdgpu_doorbell_index_on_bar(dev->adev,
496 qpd->proc_doorbells,
497 q->doorbell_id,
498 dev->kfd->device_info.doorbell_size);
499 return 0;
500 }
501
deallocate_doorbell(struct qcm_process_device * qpd,struct queue * q)502 static void deallocate_doorbell(struct qcm_process_device *qpd,
503 struct queue *q)
504 {
505 unsigned int old;
506 struct kfd_node *dev = qpd->dqm->dev;
507
508 if (!KFD_IS_SOC15(dev) ||
509 q->properties.type == KFD_QUEUE_TYPE_SDMA ||
510 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)
511 return;
512
513 old = test_and_clear_bit(q->doorbell_id, qpd->doorbell_bitmap);
514 WARN_ON(!old);
515 }
516
program_trap_handler_settings(struct device_queue_manager * dqm,struct qcm_process_device * qpd)517 static void program_trap_handler_settings(struct device_queue_manager *dqm,
518 struct qcm_process_device *qpd)
519 {
520 uint32_t xcc_mask = dqm->dev->xcc_mask;
521 int xcc_id;
522
523 if (dqm->dev->kfd2kgd->program_trap_handler_settings)
524 for_each_inst(xcc_id, xcc_mask)
525 dqm->dev->kfd2kgd->program_trap_handler_settings(
526 dqm->dev->adev, qpd->vmid, qpd->tba_addr,
527 qpd->tma_addr, xcc_id);
528 }
529
allocate_vmid(struct device_queue_manager * dqm,struct qcm_process_device * qpd,struct queue * q)530 static int allocate_vmid(struct device_queue_manager *dqm,
531 struct qcm_process_device *qpd,
532 struct queue *q)
533 {
534 struct kfd_process_device *pdd = qpd_to_pdd(qpd);
535 struct device *dev = dqm->dev->adev->dev;
536 int allocated_vmid = -1, i;
537
538 for (i = dqm->dev->vm_info.first_vmid_kfd;
539 i <= dqm->dev->vm_info.last_vmid_kfd; i++) {
540 if (!dqm->vmid_pasid[i]) {
541 allocated_vmid = i;
542 break;
543 }
544 }
545
546 if (allocated_vmid < 0) {
547 dev_err(dev, "no more vmid to allocate\n");
548 return -ENOSPC;
549 }
550
551 pr_debug("vmid allocated: %d\n", allocated_vmid);
552
553 dqm->vmid_pasid[allocated_vmid] = pdd->pasid;
554
555 set_pasid_vmid_mapping(dqm, pdd->pasid, allocated_vmid);
556
557 qpd->vmid = allocated_vmid;
558 q->properties.vmid = allocated_vmid;
559
560 program_sh_mem_settings(dqm, qpd);
561
562 if (KFD_IS_SOC15(dqm->dev) && dqm->dev->kfd->cwsr_enabled)
563 program_trap_handler_settings(dqm, qpd);
564
565 /* qpd->page_table_base is set earlier when register_process()
566 * is called, i.e. when the first queue is created.
567 */
568 dqm->dev->kfd2kgd->set_vm_context_page_table_base(dqm->dev->adev,
569 qpd->vmid,
570 qpd->page_table_base);
571 /* invalidate the VM context after pasid and vmid mapping is set up */
572 kfd_flush_tlb(qpd_to_pdd(qpd), TLB_FLUSH_LEGACY);
573
574 if (dqm->dev->kfd2kgd->set_scratch_backing_va)
575 dqm->dev->kfd2kgd->set_scratch_backing_va(dqm->dev->adev,
576 qpd->sh_hidden_private_base, qpd->vmid);
577
578 return 0;
579 }
580
flush_texture_cache_nocpsch(struct kfd_node * kdev,struct qcm_process_device * qpd)581 static int flush_texture_cache_nocpsch(struct kfd_node *kdev,
582 struct qcm_process_device *qpd)
583 {
584 const struct packet_manager_funcs *pmf = qpd->dqm->packet_mgr.pmf;
585 int ret;
586
587 if (!qpd->ib_kaddr)
588 return -ENOMEM;
589
590 ret = pmf->release_mem(qpd->ib_base, (uint32_t *)qpd->ib_kaddr);
591 if (ret)
592 return ret;
593
594 return amdgpu_amdkfd_submit_ib(kdev->adev, KGD_ENGINE_MEC1, qpd->vmid,
595 qpd->ib_base, (uint32_t *)qpd->ib_kaddr,
596 pmf->release_mem_size / sizeof(uint32_t));
597 }
598
deallocate_vmid(struct device_queue_manager * dqm,struct qcm_process_device * qpd,struct queue * q)599 static void deallocate_vmid(struct device_queue_manager *dqm,
600 struct qcm_process_device *qpd,
601 struct queue *q)
602 {
603 struct device *dev = dqm->dev->adev->dev;
604
605 /* On GFX v7, CP doesn't flush TC at dequeue */
606 if (q->device->adev->asic_type == CHIP_HAWAII)
607 if (flush_texture_cache_nocpsch(q->device, qpd))
608 dev_err(dev, "Failed to flush TC\n");
609
610 kfd_flush_tlb(qpd_to_pdd(qpd), TLB_FLUSH_LEGACY);
611
612 /* Release the vmid mapping */
613 set_pasid_vmid_mapping(dqm, 0, qpd->vmid);
614 dqm->vmid_pasid[qpd->vmid] = 0;
615
616 qpd->vmid = 0;
617 q->properties.vmid = 0;
618 }
619
create_queue_nocpsch(struct device_queue_manager * dqm,struct queue * q,struct qcm_process_device * qpd,const struct kfd_criu_queue_priv_data * qd,const void * restore_mqd,const void * restore_ctl_stack)620 static int create_queue_nocpsch(struct device_queue_manager *dqm,
621 struct queue *q,
622 struct qcm_process_device *qpd,
623 const struct kfd_criu_queue_priv_data *qd,
624 const void *restore_mqd, const void *restore_ctl_stack)
625 {
626 struct mqd_manager *mqd_mgr;
627 int retval;
628
629 dqm_lock(dqm);
630
631 if (dqm->total_queue_count >= max_num_of_queues_per_device) {
632 pr_warn("Can't create new usermode queue because %d queues were already created\n",
633 dqm->total_queue_count);
634 retval = -EPERM;
635 goto out_unlock;
636 }
637
638 if (list_empty(&qpd->queues_list)) {
639 retval = allocate_vmid(dqm, qpd, q);
640 if (retval)
641 goto out_unlock;
642 }
643 q->properties.vmid = qpd->vmid;
644 /*
645 * Eviction state logic: mark all queues as evicted, even ones
646 * not currently active. Restoring inactive queues later only
647 * updates the is_evicted flag but is a no-op otherwise.
648 */
649 q->properties.is_evicted = !!qpd->evicted;
650
651 q->properties.tba_addr = qpd->tba_addr;
652 q->properties.tma_addr = qpd->tma_addr;
653
654 mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
655 q->properties.type)];
656 if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE) {
657 retval = allocate_hqd(dqm, q);
658 if (retval)
659 goto deallocate_vmid;
660 pr_debug("Loading mqd to hqd on pipe %d, queue %d\n",
661 q->pipe, q->queue);
662 } else if (q->properties.type == KFD_QUEUE_TYPE_SDMA ||
663 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) {
664 retval = allocate_sdma_queue(dqm, q, qd ? &qd->sdma_id : NULL);
665 if (retval)
666 goto deallocate_vmid;
667 dqm->asic_ops.init_sdma_vm(dqm, q, qpd);
668 }
669
670 retval = allocate_doorbell(qpd, q, qd ? &qd->doorbell_id : NULL);
671 if (retval)
672 goto out_deallocate_hqd;
673
674 /* Temporarily release dqm lock to avoid a circular lock dependency */
675 dqm_unlock(dqm);
676 q->mqd_mem_obj = mqd_mgr->allocate_mqd(mqd_mgr->dev, &q->properties);
677 dqm_lock(dqm);
678
679 if (!q->mqd_mem_obj) {
680 retval = -ENOMEM;
681 goto out_deallocate_doorbell;
682 }
683
684 if (qd)
685 mqd_mgr->restore_mqd(mqd_mgr, &q->mqd, q->mqd_mem_obj, &q->gart_mqd_addr,
686 &q->properties, restore_mqd, restore_ctl_stack,
687 qd->ctl_stack_size);
688 else
689 mqd_mgr->init_mqd(mqd_mgr, &q->mqd, q->mqd_mem_obj,
690 &q->gart_mqd_addr, &q->properties);
691
692 if (q->properties.is_active) {
693 if (!dqm->sched_running) {
694 WARN_ONCE(1, "Load non-HWS mqd while stopped\n");
695 goto add_queue_to_list;
696 }
697
698 if (WARN(q->process->mm != current->mm,
699 "should only run in user thread"))
700 retval = -EFAULT;
701 else
702 retval = mqd_mgr->load_mqd(mqd_mgr, q->mqd, q->pipe,
703 q->queue, &q->properties, current->mm);
704 if (retval)
705 goto out_free_mqd;
706 }
707
708 add_queue_to_list:
709 list_add(&q->list, &qpd->queues_list);
710 qpd->queue_count++;
711 if (q->properties.is_active)
712 increment_queue_count(dqm, qpd, q);
713
714 /*
715 * Unconditionally increment this counter, regardless of the queue's
716 * type or whether the queue is active.
717 */
718 dqm->total_queue_count++;
719 pr_debug("Total of %d queues are accountable so far\n",
720 dqm->total_queue_count);
721 goto out_unlock;
722
723 out_free_mqd:
724 mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj);
725 out_deallocate_doorbell:
726 deallocate_doorbell(qpd, q);
727 out_deallocate_hqd:
728 if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE)
729 deallocate_hqd(dqm, q);
730 else if (q->properties.type == KFD_QUEUE_TYPE_SDMA ||
731 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)
732 deallocate_sdma_queue(dqm, q);
733 deallocate_vmid:
734 if (list_empty(&qpd->queues_list))
735 deallocate_vmid(dqm, qpd, q);
736 out_unlock:
737 dqm_unlock(dqm);
738 return retval;
739 }
740
allocate_hqd(struct device_queue_manager * dqm,struct queue * q)741 static int allocate_hqd(struct device_queue_manager *dqm, struct queue *q)
742 {
743 bool set;
744 int pipe, bit, i;
745
746 set = false;
747
748 for (pipe = dqm->next_pipe_to_allocate, i = 0;
749 i < get_pipes_per_mec(dqm);
750 pipe = ((pipe + 1) % get_pipes_per_mec(dqm)), ++i) {
751
752 if (!is_pipe_enabled(dqm, 0, pipe))
753 continue;
754
755 if (dqm->allocated_queues[pipe] != 0) {
756 bit = ffs(dqm->allocated_queues[pipe]) - 1;
757 dqm->allocated_queues[pipe] &= ~(1 << bit);
758 q->pipe = pipe;
759 q->queue = bit;
760 set = true;
761 break;
762 }
763 }
764
765 if (!set)
766 return -EBUSY;
767
768 pr_debug("hqd slot - pipe %d, queue %d\n", q->pipe, q->queue);
769 /* horizontal hqd allocation */
770 dqm->next_pipe_to_allocate = (pipe + 1) % get_pipes_per_mec(dqm);
771
772 return 0;
773 }
774
deallocate_hqd(struct device_queue_manager * dqm,struct queue * q)775 static inline void deallocate_hqd(struct device_queue_manager *dqm,
776 struct queue *q)
777 {
778 dqm->allocated_queues[q->pipe] |= (1 << q->queue);
779 }
780
781 #define SQ_IND_CMD_CMD_KILL 0x00000003
782 #define SQ_IND_CMD_MODE_BROADCAST 0x00000001
783
dbgdev_wave_reset_wavefronts(struct kfd_node * dev,struct kfd_process * p)784 static int dbgdev_wave_reset_wavefronts(struct kfd_node *dev, struct kfd_process *p)
785 {
786 int status = 0;
787 unsigned int vmid;
788 uint16_t queried_pasid;
789 union SQ_CMD_BITS reg_sq_cmd;
790 union GRBM_GFX_INDEX_BITS reg_gfx_index;
791 struct kfd_process_device *pdd;
792 int first_vmid_to_scan = dev->vm_info.first_vmid_kfd;
793 int last_vmid_to_scan = dev->vm_info.last_vmid_kfd;
794 uint32_t xcc_mask = dev->xcc_mask;
795 int xcc_id;
796
797 reg_sq_cmd.u32All = 0;
798 reg_gfx_index.u32All = 0;
799
800 pr_debug("Killing all process wavefronts\n");
801
802 if (!dev->kfd2kgd->get_atc_vmid_pasid_mapping_info) {
803 dev_err(dev->adev->dev, "no vmid pasid mapping supported\n");
804 return -EOPNOTSUPP;
805 }
806
807 /* taking the VMID for that process on the safe way using PDD */
808 pdd = kfd_get_process_device_data(dev, p);
809 if (!pdd)
810 return -EFAULT;
811
812 /* Scan all registers in the range ATC_VMID8_PASID_MAPPING ..
813 * ATC_VMID15_PASID_MAPPING
814 * to check which VMID the current process is mapped to.
815 */
816
817 for (vmid = first_vmid_to_scan; vmid <= last_vmid_to_scan; vmid++) {
818 status = dev->kfd2kgd->get_atc_vmid_pasid_mapping_info
819 (dev->adev, vmid, &queried_pasid);
820
821 if (status && queried_pasid == pdd->pasid) {
822 pr_debug("Killing wave fronts of vmid %d and process pid %d\n",
823 vmid, p->lead_thread->pid);
824 break;
825 }
826 }
827
828 if (vmid > last_vmid_to_scan) {
829 dev_err(dev->adev->dev, "Didn't find vmid for process pid %d\n",
830 p->lead_thread->pid);
831 return -EFAULT;
832 }
833
834 reg_gfx_index.bits.sh_broadcast_writes = 1;
835 reg_gfx_index.bits.se_broadcast_writes = 1;
836 reg_gfx_index.bits.instance_broadcast_writes = 1;
837 reg_sq_cmd.bits.mode = SQ_IND_CMD_MODE_BROADCAST;
838 reg_sq_cmd.bits.cmd = SQ_IND_CMD_CMD_KILL;
839 reg_sq_cmd.bits.vm_id = vmid;
840
841 for_each_inst(xcc_id, xcc_mask)
842 dev->kfd2kgd->wave_control_execute(
843 dev->adev, reg_gfx_index.u32All,
844 reg_sq_cmd.u32All, xcc_id);
845
846 return 0;
847 }
848
849 /* Access to DQM has to be locked before calling destroy_queue_nocpsch_locked
850 * to avoid asynchronized access
851 */
destroy_queue_nocpsch_locked(struct device_queue_manager * dqm,struct qcm_process_device * qpd,struct queue * q)852 static int destroy_queue_nocpsch_locked(struct device_queue_manager *dqm,
853 struct qcm_process_device *qpd,
854 struct queue *q)
855 {
856 int retval;
857 struct mqd_manager *mqd_mgr;
858
859 mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
860 q->properties.type)];
861
862 if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE)
863 deallocate_hqd(dqm, q);
864 else if (q->properties.type == KFD_QUEUE_TYPE_SDMA)
865 deallocate_sdma_queue(dqm, q);
866 else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)
867 deallocate_sdma_queue(dqm, q);
868 else {
869 pr_debug("q->properties.type %d is invalid\n",
870 q->properties.type);
871 return -EINVAL;
872 }
873 dqm->total_queue_count--;
874
875 deallocate_doorbell(qpd, q);
876
877 if (!dqm->sched_running) {
878 WARN_ONCE(1, "Destroy non-HWS queue while stopped\n");
879 return 0;
880 }
881
882 retval = mqd_mgr->destroy_mqd(mqd_mgr, q->mqd,
883 KFD_PREEMPT_TYPE_WAVEFRONT_RESET,
884 KFD_UNMAP_LATENCY_MS,
885 q->pipe, q->queue);
886 if (retval == -ETIME)
887 qpd->reset_wavefronts = true;
888
889 list_del(&q->list);
890 if (list_empty(&qpd->queues_list)) {
891 if (qpd->reset_wavefronts) {
892 pr_warn("Resetting wave fronts (nocpsch) on dev %p\n",
893 dqm->dev);
894 /* dbgdev_wave_reset_wavefronts has to be called before
895 * deallocate_vmid(), i.e. when vmid is still in use.
896 */
897 dbgdev_wave_reset_wavefronts(dqm->dev,
898 qpd->pqm->process);
899 qpd->reset_wavefronts = false;
900 }
901
902 deallocate_vmid(dqm, qpd, q);
903 }
904 qpd->queue_count--;
905 if (q->properties.is_active)
906 decrement_queue_count(dqm, qpd, q);
907
908 return retval;
909 }
910
destroy_queue_nocpsch(struct device_queue_manager * dqm,struct qcm_process_device * qpd,struct queue * q)911 static int destroy_queue_nocpsch(struct device_queue_manager *dqm,
912 struct qcm_process_device *qpd,
913 struct queue *q)
914 {
915 int retval;
916 uint64_t sdma_val = 0;
917 struct device *dev = dqm->dev->adev->dev;
918 struct kfd_process_device *pdd = qpd_to_pdd(qpd);
919 struct mqd_manager *mqd_mgr =
920 dqm->mqd_mgrs[get_mqd_type_from_queue_type(q->properties.type)];
921
922 /* Get the SDMA queue stats */
923 if ((q->properties.type == KFD_QUEUE_TYPE_SDMA) ||
924 (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) {
925 retval = read_sdma_queue_counter((uint64_t __user *)q->properties.read_ptr,
926 &sdma_val);
927 if (retval)
928 dev_err(dev, "Failed to read SDMA queue counter for queue: %d\n",
929 q->properties.queue_id);
930 }
931
932 dqm_lock(dqm);
933 retval = destroy_queue_nocpsch_locked(dqm, qpd, q);
934 if (!retval)
935 pdd->sdma_past_activity_counter += sdma_val;
936 dqm_unlock(dqm);
937
938 mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj);
939
940 return retval;
941 }
942
update_queue(struct device_queue_manager * dqm,struct queue * q,struct mqd_update_info * minfo)943 static int update_queue(struct device_queue_manager *dqm, struct queue *q,
944 struct mqd_update_info *minfo)
945 {
946 int retval = 0;
947 struct device *dev = dqm->dev->adev->dev;
948 struct mqd_manager *mqd_mgr;
949 struct kfd_process_device *pdd;
950 bool prev_active = false;
951
952 dqm_lock(dqm);
953 pdd = kfd_get_process_device_data(q->device, q->process);
954 if (!pdd) {
955 retval = -ENODEV;
956 goto out_unlock;
957 }
958 mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
959 q->properties.type)];
960
961 /* Save previous activity state for counters */
962 prev_active = q->properties.is_active;
963
964 /* Make sure the queue is unmapped before updating the MQD */
965 if (dqm->sched_policy != KFD_SCHED_POLICY_NO_HWS) {
966 if (!dqm->dev->kfd->shared_resources.enable_mes)
967 retval = unmap_queues_cpsch(dqm,
968 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0, USE_DEFAULT_GRACE_PERIOD, false);
969 else if (prev_active)
970 retval = remove_queue_mes(dqm, q, &pdd->qpd);
971
972 /* queue is reset so inaccessable */
973 if (pdd->has_reset_queue) {
974 retval = -EACCES;
975 goto out_unlock;
976 }
977
978 if (retval) {
979 dev_err(dev, "unmap queue failed\n");
980 goto out_unlock;
981 }
982 } else if (prev_active &&
983 (q->properties.type == KFD_QUEUE_TYPE_COMPUTE ||
984 q->properties.type == KFD_QUEUE_TYPE_SDMA ||
985 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) {
986
987 if (!dqm->sched_running) {
988 WARN_ONCE(1, "Update non-HWS queue while stopped\n");
989 goto out_unlock;
990 }
991
992 retval = mqd_mgr->destroy_mqd(mqd_mgr, q->mqd,
993 (dqm->dev->kfd->cwsr_enabled ?
994 KFD_PREEMPT_TYPE_WAVEFRONT_SAVE :
995 KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN),
996 KFD_UNMAP_LATENCY_MS, q->pipe, q->queue);
997 if (retval) {
998 dev_err(dev, "destroy mqd failed\n");
999 goto out_unlock;
1000 }
1001 }
1002
1003 mqd_mgr->update_mqd(mqd_mgr, q->mqd, &q->properties, minfo);
1004
1005 /*
1006 * check active state vs. the previous state and modify
1007 * counter accordingly. map_queues_cpsch uses the
1008 * dqm->active_queue_count to determine whether a new runlist must be
1009 * uploaded.
1010 */
1011 if (q->properties.is_active && !prev_active) {
1012 increment_queue_count(dqm, &pdd->qpd, q);
1013 } else if (!q->properties.is_active && prev_active) {
1014 decrement_queue_count(dqm, &pdd->qpd, q);
1015 } else if (q->gws && !q->properties.is_gws) {
1016 if (q->properties.is_active) {
1017 dqm->gws_queue_count++;
1018 pdd->qpd.mapped_gws_queue = true;
1019 }
1020 q->properties.is_gws = true;
1021 } else if (!q->gws && q->properties.is_gws) {
1022 if (q->properties.is_active) {
1023 dqm->gws_queue_count--;
1024 pdd->qpd.mapped_gws_queue = false;
1025 }
1026 q->properties.is_gws = false;
1027 }
1028
1029 if (dqm->sched_policy != KFD_SCHED_POLICY_NO_HWS) {
1030 if (!dqm->dev->kfd->shared_resources.enable_mes)
1031 retval = map_queues_cpsch(dqm);
1032 else if (q->properties.is_active)
1033 retval = add_queue_mes(dqm, q, &pdd->qpd);
1034 } else if (q->properties.is_active &&
1035 (q->properties.type == KFD_QUEUE_TYPE_COMPUTE ||
1036 q->properties.type == KFD_QUEUE_TYPE_SDMA ||
1037 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) {
1038 if (WARN(q->process->mm != current->mm,
1039 "should only run in user thread"))
1040 retval = -EFAULT;
1041 else
1042 retval = mqd_mgr->load_mqd(mqd_mgr, q->mqd,
1043 q->pipe, q->queue,
1044 &q->properties, current->mm);
1045 }
1046
1047 out_unlock:
1048 dqm_unlock(dqm);
1049 return retval;
1050 }
1051
1052 /* suspend_single_queue does not lock the dqm like the
1053 * evict_process_queues_cpsch or evict_process_queues_nocpsch. You should
1054 * lock the dqm before calling, and unlock after calling.
1055 *
1056 * The reason we don't lock the dqm is because this function may be
1057 * called on multiple queues in a loop, so rather than locking/unlocking
1058 * multiple times, we will just keep the dqm locked for all of the calls.
1059 */
suspend_single_queue(struct device_queue_manager * dqm,struct kfd_process_device * pdd,struct queue * q)1060 static int suspend_single_queue(struct device_queue_manager *dqm,
1061 struct kfd_process_device *pdd,
1062 struct queue *q)
1063 {
1064 bool is_new;
1065
1066 if (q->properties.is_suspended)
1067 return 0;
1068
1069 pr_debug("Suspending process pid %d queue [%i]\n",
1070 pdd->process->lead_thread->pid,
1071 q->properties.queue_id);
1072
1073 is_new = q->properties.exception_status & KFD_EC_MASK(EC_QUEUE_NEW);
1074
1075 if (is_new || q->properties.is_being_destroyed) {
1076 pr_debug("Suspend: skip %s queue id %i\n",
1077 is_new ? "new" : "destroyed",
1078 q->properties.queue_id);
1079 return -EBUSY;
1080 }
1081
1082 q->properties.is_suspended = true;
1083 if (q->properties.is_active) {
1084 if (dqm->dev->kfd->shared_resources.enable_mes) {
1085 int r = remove_queue_mes(dqm, q, &pdd->qpd);
1086
1087 if (r)
1088 return r;
1089 }
1090
1091 decrement_queue_count(dqm, &pdd->qpd, q);
1092 q->properties.is_active = false;
1093 }
1094
1095 return 0;
1096 }
1097
1098 /* resume_single_queue does not lock the dqm like the functions
1099 * restore_process_queues_cpsch or restore_process_queues_nocpsch. You should
1100 * lock the dqm before calling, and unlock after calling.
1101 *
1102 * The reason we don't lock the dqm is because this function may be
1103 * called on multiple queues in a loop, so rather than locking/unlocking
1104 * multiple times, we will just keep the dqm locked for all of the calls.
1105 */
resume_single_queue(struct device_queue_manager * dqm,struct qcm_process_device * qpd,struct queue * q)1106 static int resume_single_queue(struct device_queue_manager *dqm,
1107 struct qcm_process_device *qpd,
1108 struct queue *q)
1109 {
1110 struct kfd_process_device *pdd;
1111
1112 if (!q->properties.is_suspended)
1113 return 0;
1114
1115 pdd = qpd_to_pdd(qpd);
1116
1117 pr_debug("Restoring from suspend process pid %d queue [%i]\n",
1118 pdd->process->lead_thread->pid,
1119 q->properties.queue_id);
1120
1121 q->properties.is_suspended = false;
1122
1123 if (QUEUE_IS_ACTIVE(q->properties)) {
1124 if (dqm->dev->kfd->shared_resources.enable_mes) {
1125 int r = add_queue_mes(dqm, q, &pdd->qpd);
1126
1127 if (r)
1128 return r;
1129 }
1130
1131 q->properties.is_active = true;
1132 increment_queue_count(dqm, qpd, q);
1133 }
1134
1135 return 0;
1136 }
1137
evict_process_queues_nocpsch(struct device_queue_manager * dqm,struct qcm_process_device * qpd)1138 static int evict_process_queues_nocpsch(struct device_queue_manager *dqm,
1139 struct qcm_process_device *qpd)
1140 {
1141 struct queue *q;
1142 struct mqd_manager *mqd_mgr;
1143 struct kfd_process_device *pdd;
1144 int retval, ret = 0;
1145
1146 dqm_lock(dqm);
1147 if (qpd->evicted++ > 0) /* already evicted, do nothing */
1148 goto out;
1149
1150 pdd = qpd_to_pdd(qpd);
1151 pr_debug_ratelimited("Evicting process pid %d queues\n",
1152 pdd->process->lead_thread->pid);
1153
1154 pdd->last_evict_timestamp = get_jiffies_64();
1155 /* Mark all queues as evicted. Deactivate all active queues on
1156 * the qpd.
1157 */
1158 list_for_each_entry(q, &qpd->queues_list, list) {
1159 q->properties.is_evicted = true;
1160 if (!q->properties.is_active)
1161 continue;
1162
1163 mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
1164 q->properties.type)];
1165 q->properties.is_active = false;
1166 decrement_queue_count(dqm, qpd, q);
1167
1168 if (WARN_ONCE(!dqm->sched_running, "Evict when stopped\n"))
1169 continue;
1170
1171 retval = mqd_mgr->destroy_mqd(mqd_mgr, q->mqd,
1172 (dqm->dev->kfd->cwsr_enabled ?
1173 KFD_PREEMPT_TYPE_WAVEFRONT_SAVE :
1174 KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN),
1175 KFD_UNMAP_LATENCY_MS, q->pipe, q->queue);
1176 if (retval && !ret)
1177 /* Return the first error, but keep going to
1178 * maintain a consistent eviction state
1179 */
1180 ret = retval;
1181 }
1182
1183 out:
1184 dqm_unlock(dqm);
1185 return ret;
1186 }
1187
evict_process_queues_cpsch(struct device_queue_manager * dqm,struct qcm_process_device * qpd)1188 static int evict_process_queues_cpsch(struct device_queue_manager *dqm,
1189 struct qcm_process_device *qpd)
1190 {
1191 struct queue *q;
1192 struct device *dev = dqm->dev->adev->dev;
1193 struct kfd_process_device *pdd;
1194 int retval = 0;
1195
1196 dqm_lock(dqm);
1197 if (qpd->evicted++ > 0) /* already evicted, do nothing */
1198 goto out;
1199
1200 pdd = qpd_to_pdd(qpd);
1201
1202 /* The debugger creates processes that temporarily have not acquired
1203 * all VMs for all devices and has no VMs itself.
1204 * Skip queue eviction on process eviction.
1205 */
1206 if (!pdd->drm_priv)
1207 goto out;
1208
1209 pr_debug_ratelimited("Evicting process pid %d queues\n",
1210 pdd->process->lead_thread->pid);
1211
1212 if (dqm->dev->kfd->shared_resources.enable_mes) {
1213 pdd->last_evict_timestamp = get_jiffies_64();
1214 retval = suspend_all_queues_mes(dqm);
1215 if (retval) {
1216 dev_err(dev, "Suspending all queues failed");
1217 goto out;
1218 }
1219 }
1220
1221 /* Mark all queues as evicted. Deactivate all active queues on
1222 * the qpd.
1223 */
1224 list_for_each_entry(q, &qpd->queues_list, list) {
1225 q->properties.is_evicted = true;
1226 if (!q->properties.is_active)
1227 continue;
1228
1229 q->properties.is_active = false;
1230 decrement_queue_count(dqm, qpd, q);
1231
1232 if (dqm->dev->kfd->shared_resources.enable_mes) {
1233 retval = remove_queue_mes(dqm, q, qpd);
1234 if (retval) {
1235 dev_err(dev, "Failed to evict queue %d\n",
1236 q->properties.queue_id);
1237 goto out;
1238 }
1239 }
1240 }
1241
1242 if (!dqm->dev->kfd->shared_resources.enable_mes) {
1243 pdd->last_evict_timestamp = get_jiffies_64();
1244 retval = execute_queues_cpsch(dqm,
1245 qpd->is_debug ?
1246 KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES :
1247 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0,
1248 USE_DEFAULT_GRACE_PERIOD);
1249 } else {
1250 retval = resume_all_queues_mes(dqm);
1251 if (retval)
1252 dev_err(dev, "Resuming all queues failed");
1253 }
1254
1255 out:
1256 dqm_unlock(dqm);
1257 return retval;
1258 }
1259
restore_process_queues_nocpsch(struct device_queue_manager * dqm,struct qcm_process_device * qpd)1260 static int restore_process_queues_nocpsch(struct device_queue_manager *dqm,
1261 struct qcm_process_device *qpd)
1262 {
1263 struct mm_struct *mm = NULL;
1264 struct queue *q;
1265 struct mqd_manager *mqd_mgr;
1266 struct kfd_process_device *pdd;
1267 uint64_t pd_base;
1268 uint64_t eviction_duration;
1269 int retval, ret = 0;
1270
1271 pdd = qpd_to_pdd(qpd);
1272 /* Retrieve PD base */
1273 pd_base = amdgpu_amdkfd_gpuvm_get_process_page_dir(pdd->drm_priv);
1274
1275 dqm_lock(dqm);
1276 if (WARN_ON_ONCE(!qpd->evicted)) /* already restored, do nothing */
1277 goto out;
1278 if (qpd->evicted > 1) { /* ref count still > 0, decrement & quit */
1279 qpd->evicted--;
1280 goto out;
1281 }
1282
1283 pr_debug_ratelimited("Restoring process pid %d queues\n",
1284 pdd->process->lead_thread->pid);
1285
1286 /* Update PD Base in QPD */
1287 qpd->page_table_base = pd_base;
1288 pr_debug("Updated PD address to 0x%llx\n", pd_base);
1289
1290 if (!list_empty(&qpd->queues_list)) {
1291 dqm->dev->kfd2kgd->set_vm_context_page_table_base(
1292 dqm->dev->adev,
1293 qpd->vmid,
1294 qpd->page_table_base);
1295 kfd_flush_tlb(pdd, TLB_FLUSH_LEGACY);
1296 }
1297
1298 /* Take a safe reference to the mm_struct, which may otherwise
1299 * disappear even while the kfd_process is still referenced.
1300 */
1301 mm = get_task_mm(pdd->process->lead_thread);
1302 if (!mm) {
1303 ret = -EFAULT;
1304 goto out;
1305 }
1306
1307 /* Remove the eviction flags. Activate queues that are not
1308 * inactive for other reasons.
1309 */
1310 list_for_each_entry(q, &qpd->queues_list, list) {
1311 q->properties.is_evicted = false;
1312 if (!QUEUE_IS_ACTIVE(q->properties))
1313 continue;
1314
1315 mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
1316 q->properties.type)];
1317 q->properties.is_active = true;
1318 increment_queue_count(dqm, qpd, q);
1319
1320 if (WARN_ONCE(!dqm->sched_running, "Restore when stopped\n"))
1321 continue;
1322
1323 retval = mqd_mgr->load_mqd(mqd_mgr, q->mqd, q->pipe,
1324 q->queue, &q->properties, mm);
1325 if (retval && !ret)
1326 /* Return the first error, but keep going to
1327 * maintain a consistent eviction state
1328 */
1329 ret = retval;
1330 }
1331 qpd->evicted = 0;
1332 eviction_duration = get_jiffies_64() - pdd->last_evict_timestamp;
1333 atomic64_add(eviction_duration, &pdd->evict_duration_counter);
1334 out:
1335 if (mm)
1336 mmput(mm);
1337 dqm_unlock(dqm);
1338 return ret;
1339 }
1340
restore_process_queues_cpsch(struct device_queue_manager * dqm,struct qcm_process_device * qpd)1341 static int restore_process_queues_cpsch(struct device_queue_manager *dqm,
1342 struct qcm_process_device *qpd)
1343 {
1344 struct queue *q;
1345 struct device *dev = dqm->dev->adev->dev;
1346 struct kfd_process_device *pdd;
1347 uint64_t eviction_duration;
1348 int retval = 0;
1349
1350 pdd = qpd_to_pdd(qpd);
1351
1352 dqm_lock(dqm);
1353 if (WARN_ON_ONCE(!qpd->evicted)) /* already restored, do nothing */
1354 goto out;
1355 if (qpd->evicted > 1) { /* ref count still > 0, decrement & quit */
1356 qpd->evicted--;
1357 goto out;
1358 }
1359
1360 /* The debugger creates processes that temporarily have not acquired
1361 * all VMs for all devices and has no VMs itself.
1362 * Skip queue restore on process restore.
1363 */
1364 if (!pdd->drm_priv)
1365 goto vm_not_acquired;
1366
1367 pr_debug_ratelimited("Restoring process pid %d queues\n",
1368 pdd->process->lead_thread->pid);
1369
1370 /* Update PD Base in QPD */
1371 qpd->page_table_base = amdgpu_amdkfd_gpuvm_get_process_page_dir(pdd->drm_priv);
1372 pr_debug("Updated PD address to 0x%llx\n", qpd->page_table_base);
1373
1374 /* activate all active queues on the qpd */
1375 list_for_each_entry(q, &qpd->queues_list, list) {
1376 q->properties.is_evicted = false;
1377 if (!QUEUE_IS_ACTIVE(q->properties))
1378 continue;
1379
1380 q->properties.is_active = true;
1381 increment_queue_count(dqm, &pdd->qpd, q);
1382
1383 if (dqm->dev->kfd->shared_resources.enable_mes) {
1384 retval = add_queue_mes(dqm, q, qpd);
1385 if (retval) {
1386 dev_err(dev, "Failed to restore queue %d\n",
1387 q->properties.queue_id);
1388 goto out;
1389 }
1390 }
1391 }
1392 if (!dqm->dev->kfd->shared_resources.enable_mes)
1393 retval = execute_queues_cpsch(dqm,
1394 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0, USE_DEFAULT_GRACE_PERIOD);
1395 eviction_duration = get_jiffies_64() - pdd->last_evict_timestamp;
1396 atomic64_add(eviction_duration, &pdd->evict_duration_counter);
1397 vm_not_acquired:
1398 qpd->evicted = 0;
1399 out:
1400 dqm_unlock(dqm);
1401 return retval;
1402 }
1403
register_process(struct device_queue_manager * dqm,struct qcm_process_device * qpd)1404 static int register_process(struct device_queue_manager *dqm,
1405 struct qcm_process_device *qpd)
1406 {
1407 struct device_process_node *n;
1408 struct kfd_process_device *pdd;
1409 uint64_t pd_base;
1410 int retval;
1411
1412 n = kzalloc(sizeof(*n), GFP_KERNEL);
1413 if (!n)
1414 return -ENOMEM;
1415
1416 n->qpd = qpd;
1417
1418 pdd = qpd_to_pdd(qpd);
1419 /* Retrieve PD base */
1420 pd_base = amdgpu_amdkfd_gpuvm_get_process_page_dir(pdd->drm_priv);
1421
1422 dqm_lock(dqm);
1423 list_add(&n->list, &dqm->queues);
1424
1425 /* Update PD Base in QPD */
1426 qpd->page_table_base = pd_base;
1427 pr_debug("Updated PD address to 0x%llx\n", pd_base);
1428
1429 retval = dqm->asic_ops.update_qpd(dqm, qpd);
1430
1431 dqm->processes_count++;
1432
1433 dqm_unlock(dqm);
1434
1435 /* Outside the DQM lock because under the DQM lock we can't do
1436 * reclaim or take other locks that others hold while reclaiming.
1437 */
1438 kfd_inc_compute_active(dqm->dev);
1439
1440 return retval;
1441 }
1442
unregister_process(struct device_queue_manager * dqm,struct qcm_process_device * qpd)1443 static int unregister_process(struct device_queue_manager *dqm,
1444 struct qcm_process_device *qpd)
1445 {
1446 int retval;
1447 struct device_process_node *cur, *next;
1448
1449 pr_debug("qpd->queues_list is %s\n",
1450 list_empty(&qpd->queues_list) ? "empty" : "not empty");
1451
1452 retval = 0;
1453 dqm_lock(dqm);
1454
1455 list_for_each_entry_safe(cur, next, &dqm->queues, list) {
1456 if (qpd == cur->qpd) {
1457 list_del(&cur->list);
1458 kfree(cur);
1459 dqm->processes_count--;
1460 goto out;
1461 }
1462 }
1463 /* qpd not found in dqm list */
1464 retval = 1;
1465 out:
1466 dqm_unlock(dqm);
1467
1468 /* Outside the DQM lock because under the DQM lock we can't do
1469 * reclaim or take other locks that others hold while reclaiming.
1470 */
1471 if (!retval)
1472 kfd_dec_compute_active(dqm->dev);
1473
1474 return retval;
1475 }
1476
1477 static int
set_pasid_vmid_mapping(struct device_queue_manager * dqm,u32 pasid,unsigned int vmid)1478 set_pasid_vmid_mapping(struct device_queue_manager *dqm, u32 pasid,
1479 unsigned int vmid)
1480 {
1481 uint32_t xcc_mask = dqm->dev->xcc_mask;
1482 int xcc_id, ret;
1483
1484 for_each_inst(xcc_id, xcc_mask) {
1485 ret = dqm->dev->kfd2kgd->set_pasid_vmid_mapping(
1486 dqm->dev->adev, pasid, vmid, xcc_id);
1487 if (ret)
1488 break;
1489 }
1490
1491 return ret;
1492 }
1493
init_interrupts(struct device_queue_manager * dqm)1494 static void init_interrupts(struct device_queue_manager *dqm)
1495 {
1496 uint32_t xcc_mask = dqm->dev->xcc_mask;
1497 unsigned int i, xcc_id;
1498
1499 for_each_inst(xcc_id, xcc_mask) {
1500 for (i = 0 ; i < get_pipes_per_mec(dqm) ; i++) {
1501 if (is_pipe_enabled(dqm, 0, i)) {
1502 dqm->dev->kfd2kgd->init_interrupts(
1503 dqm->dev->adev, i, xcc_id);
1504 }
1505 }
1506 }
1507 }
1508
initialize_nocpsch(struct device_queue_manager * dqm)1509 static int initialize_nocpsch(struct device_queue_manager *dqm)
1510 {
1511 int pipe, queue;
1512
1513 pr_debug("num of pipes: %d\n", get_pipes_per_mec(dqm));
1514
1515 dqm->allocated_queues = kcalloc(get_pipes_per_mec(dqm),
1516 sizeof(unsigned int), GFP_KERNEL);
1517 if (!dqm->allocated_queues)
1518 return -ENOMEM;
1519
1520 mutex_init(&dqm->lock_hidden);
1521 INIT_LIST_HEAD(&dqm->queues);
1522 dqm->active_queue_count = dqm->next_pipe_to_allocate = 0;
1523 dqm->active_cp_queue_count = 0;
1524 dqm->gws_queue_count = 0;
1525
1526 for (pipe = 0; pipe < get_pipes_per_mec(dqm); pipe++) {
1527 int pipe_offset = pipe * get_queues_per_pipe(dqm);
1528
1529 for (queue = 0; queue < get_queues_per_pipe(dqm); queue++)
1530 if (test_bit(pipe_offset + queue,
1531 dqm->dev->kfd->shared_resources.cp_queue_bitmap))
1532 dqm->allocated_queues[pipe] |= 1 << queue;
1533 }
1534
1535 memset(dqm->vmid_pasid, 0, sizeof(dqm->vmid_pasid));
1536
1537 init_sdma_bitmaps(dqm);
1538
1539 return 0;
1540 }
1541
uninitialize(struct device_queue_manager * dqm)1542 static void uninitialize(struct device_queue_manager *dqm)
1543 {
1544 int i;
1545
1546 WARN_ON(dqm->active_queue_count > 0 || dqm->processes_count > 0);
1547
1548 kfree(dqm->allocated_queues);
1549 for (i = 0 ; i < KFD_MQD_TYPE_MAX ; i++)
1550 kfree(dqm->mqd_mgrs[i]);
1551 mutex_destroy(&dqm->lock_hidden);
1552 }
1553
start_nocpsch(struct device_queue_manager * dqm)1554 static int start_nocpsch(struct device_queue_manager *dqm)
1555 {
1556 int r = 0;
1557
1558 pr_info("SW scheduler is used");
1559 init_interrupts(dqm);
1560
1561 if (dqm->dev->adev->asic_type == CHIP_HAWAII)
1562 r = pm_init(&dqm->packet_mgr, dqm);
1563 if (!r)
1564 dqm->sched_running = true;
1565
1566 return r;
1567 }
1568
stop_nocpsch(struct device_queue_manager * dqm)1569 static int stop_nocpsch(struct device_queue_manager *dqm)
1570 {
1571 dqm_lock(dqm);
1572 if (!dqm->sched_running) {
1573 dqm_unlock(dqm);
1574 return 0;
1575 }
1576
1577 if (dqm->dev->adev->asic_type == CHIP_HAWAII)
1578 pm_uninit(&dqm->packet_mgr);
1579 dqm->sched_running = false;
1580 dqm_unlock(dqm);
1581
1582 return 0;
1583 }
1584
allocate_sdma_queue(struct device_queue_manager * dqm,struct queue * q,const uint32_t * restore_sdma_id)1585 static int allocate_sdma_queue(struct device_queue_manager *dqm,
1586 struct queue *q, const uint32_t *restore_sdma_id)
1587 {
1588 struct device *dev = dqm->dev->adev->dev;
1589 int bit;
1590
1591 if (q->properties.type == KFD_QUEUE_TYPE_SDMA) {
1592 if (bitmap_empty(dqm->sdma_bitmap, get_num_sdma_queues(dqm))) {
1593 dev_warn(dev, "No more SDMA queue to allocate (%d total queues)\n",
1594 get_num_sdma_queues(dqm));
1595 return -ENOMEM;
1596 }
1597
1598 if (restore_sdma_id) {
1599 /* Re-use existing sdma_id */
1600 if (!test_bit(*restore_sdma_id, dqm->sdma_bitmap)) {
1601 dev_err(dev, "SDMA queue already in use\n");
1602 return -EBUSY;
1603 }
1604 clear_bit(*restore_sdma_id, dqm->sdma_bitmap);
1605 q->sdma_id = *restore_sdma_id;
1606 } else {
1607 /* Find first available sdma_id */
1608 bit = find_first_bit(dqm->sdma_bitmap,
1609 get_num_sdma_queues(dqm));
1610 clear_bit(bit, dqm->sdma_bitmap);
1611 q->sdma_id = bit;
1612 }
1613
1614 q->properties.sdma_engine_id =
1615 q->sdma_id % kfd_get_num_sdma_engines(dqm->dev);
1616 q->properties.sdma_queue_id = q->sdma_id /
1617 kfd_get_num_sdma_engines(dqm->dev);
1618 } else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) {
1619 if (bitmap_empty(dqm->xgmi_sdma_bitmap, get_num_xgmi_sdma_queues(dqm))) {
1620 dev_warn(dev, "No more XGMI SDMA queue to allocate (%d total queues)\n",
1621 get_num_xgmi_sdma_queues(dqm));
1622 return -ENOMEM;
1623 }
1624 if (restore_sdma_id) {
1625 /* Re-use existing sdma_id */
1626 if (!test_bit(*restore_sdma_id, dqm->xgmi_sdma_bitmap)) {
1627 dev_err(dev, "SDMA queue already in use\n");
1628 return -EBUSY;
1629 }
1630 clear_bit(*restore_sdma_id, dqm->xgmi_sdma_bitmap);
1631 q->sdma_id = *restore_sdma_id;
1632 } else {
1633 bit = find_first_bit(dqm->xgmi_sdma_bitmap,
1634 get_num_xgmi_sdma_queues(dqm));
1635 clear_bit(bit, dqm->xgmi_sdma_bitmap);
1636 q->sdma_id = bit;
1637 }
1638 /* sdma_engine_id is sdma id including
1639 * both PCIe-optimized SDMAs and XGMI-
1640 * optimized SDMAs. The calculation below
1641 * assumes the first N engines are always
1642 * PCIe-optimized ones
1643 */
1644 q->properties.sdma_engine_id =
1645 kfd_get_num_sdma_engines(dqm->dev) +
1646 q->sdma_id % kfd_get_num_xgmi_sdma_engines(dqm->dev);
1647 q->properties.sdma_queue_id = q->sdma_id /
1648 kfd_get_num_xgmi_sdma_engines(dqm->dev);
1649 } else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_BY_ENG_ID) {
1650 int i, num_queues, num_engines, eng_offset = 0, start_engine;
1651 bool free_bit_found = false, is_xgmi = false;
1652
1653 if (q->properties.sdma_engine_id < kfd_get_num_sdma_engines(dqm->dev)) {
1654 num_queues = get_num_sdma_queues(dqm);
1655 num_engines = kfd_get_num_sdma_engines(dqm->dev);
1656 q->properties.type = KFD_QUEUE_TYPE_SDMA;
1657 } else {
1658 num_queues = get_num_xgmi_sdma_queues(dqm);
1659 num_engines = kfd_get_num_xgmi_sdma_engines(dqm->dev);
1660 eng_offset = kfd_get_num_sdma_engines(dqm->dev);
1661 q->properties.type = KFD_QUEUE_TYPE_SDMA_XGMI;
1662 is_xgmi = true;
1663 }
1664
1665 /* Scan available bit based on target engine ID. */
1666 start_engine = q->properties.sdma_engine_id - eng_offset;
1667 for (i = start_engine; i < num_queues; i += num_engines) {
1668
1669 if (!test_bit(i, is_xgmi ? dqm->xgmi_sdma_bitmap : dqm->sdma_bitmap))
1670 continue;
1671
1672 clear_bit(i, is_xgmi ? dqm->xgmi_sdma_bitmap : dqm->sdma_bitmap);
1673 q->sdma_id = i;
1674 q->properties.sdma_queue_id = q->sdma_id / num_engines;
1675 free_bit_found = true;
1676 break;
1677 }
1678
1679 if (!free_bit_found) {
1680 dev_warn(dev, "No more SDMA queue to allocate for target ID %i (%d total queues)\n",
1681 q->properties.sdma_engine_id, num_queues);
1682 return -ENOMEM;
1683 }
1684 }
1685
1686 pr_debug("SDMA engine id: %d\n", q->properties.sdma_engine_id);
1687 pr_debug("SDMA queue id: %d\n", q->properties.sdma_queue_id);
1688
1689 return 0;
1690 }
1691
deallocate_sdma_queue(struct device_queue_manager * dqm,struct queue * q)1692 static void deallocate_sdma_queue(struct device_queue_manager *dqm,
1693 struct queue *q)
1694 {
1695 if (q->properties.type == KFD_QUEUE_TYPE_SDMA) {
1696 if (q->sdma_id >= get_num_sdma_queues(dqm))
1697 return;
1698 set_bit(q->sdma_id, dqm->sdma_bitmap);
1699 } else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) {
1700 if (q->sdma_id >= get_num_xgmi_sdma_queues(dqm))
1701 return;
1702 set_bit(q->sdma_id, dqm->xgmi_sdma_bitmap);
1703 }
1704 }
1705
1706 /*
1707 * Device Queue Manager implementation for cp scheduler
1708 */
1709
set_sched_resources(struct device_queue_manager * dqm)1710 static int set_sched_resources(struct device_queue_manager *dqm)
1711 {
1712 int i, mec;
1713 struct scheduling_resources res;
1714 struct device *dev = dqm->dev->adev->dev;
1715
1716 res.vmid_mask = dqm->dev->compute_vmid_bitmap;
1717
1718 res.queue_mask = 0;
1719 for (i = 0; i < AMDGPU_MAX_QUEUES; ++i) {
1720 mec = (i / dqm->dev->kfd->shared_resources.num_queue_per_pipe)
1721 / dqm->dev->kfd->shared_resources.num_pipe_per_mec;
1722
1723 if (!test_bit(i, dqm->dev->kfd->shared_resources.cp_queue_bitmap))
1724 continue;
1725
1726 /* only acquire queues from the first MEC */
1727 if (mec > 0)
1728 continue;
1729
1730 /* This situation may be hit in the future if a new HW
1731 * generation exposes more than 64 queues. If so, the
1732 * definition of res.queue_mask needs updating
1733 */
1734 if (WARN_ON(i >= (sizeof(res.queue_mask)*8))) {
1735 dev_err(dev, "Invalid queue enabled by amdgpu: %d\n", i);
1736 break;
1737 }
1738
1739 res.queue_mask |= 1ull
1740 << amdgpu_queue_mask_bit_to_set_resource_bit(
1741 dqm->dev->adev, i);
1742 }
1743 res.gws_mask = ~0ull;
1744 res.oac_mask = res.gds_heap_base = res.gds_heap_size = 0;
1745
1746 pr_debug("Scheduling resources:\n"
1747 "vmid mask: 0x%8X\n"
1748 "queue mask: 0x%8llX\n",
1749 res.vmid_mask, res.queue_mask);
1750
1751 return pm_send_set_resources(&dqm->packet_mgr, &res);
1752 }
1753
initialize_cpsch(struct device_queue_manager * dqm)1754 static int initialize_cpsch(struct device_queue_manager *dqm)
1755 {
1756 pr_debug("num of pipes: %d\n", get_pipes_per_mec(dqm));
1757
1758 mutex_init(&dqm->lock_hidden);
1759 INIT_LIST_HEAD(&dqm->queues);
1760 dqm->active_queue_count = dqm->processes_count = 0;
1761 dqm->active_cp_queue_count = 0;
1762 dqm->gws_queue_count = 0;
1763 dqm->active_runlist = false;
1764 dqm->trap_debug_vmid = 0;
1765
1766 init_sdma_bitmaps(dqm);
1767
1768 update_dqm_wait_times(dqm);
1769 return 0;
1770 }
1771
1772 /* halt_cpsch:
1773 * Unmap queues so the schedule doesn't continue remaining jobs in the queue.
1774 * Then set dqm->sched_halt so queues don't map to runlist until unhalt_cpsch
1775 * is called.
1776 */
halt_cpsch(struct device_queue_manager * dqm)1777 static int halt_cpsch(struct device_queue_manager *dqm)
1778 {
1779 int ret = 0;
1780
1781 dqm_lock(dqm);
1782 if (!dqm->sched_running) {
1783 dqm_unlock(dqm);
1784 return 0;
1785 }
1786
1787 WARN_ONCE(dqm->sched_halt, "Scheduling is already on halt\n");
1788
1789 if (!dqm->is_hws_hang) {
1790 if (!dqm->dev->kfd->shared_resources.enable_mes)
1791 ret = unmap_queues_cpsch(dqm,
1792 KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0,
1793 USE_DEFAULT_GRACE_PERIOD, false);
1794 else
1795 ret = remove_all_kfd_queues_mes(dqm);
1796 }
1797 dqm->sched_halt = true;
1798 dqm_unlock(dqm);
1799
1800 return ret;
1801 }
1802
1803 /* unhalt_cpsch
1804 * Unset dqm->sched_halt and map queues back to runlist
1805 */
unhalt_cpsch(struct device_queue_manager * dqm)1806 static int unhalt_cpsch(struct device_queue_manager *dqm)
1807 {
1808 int ret = 0;
1809
1810 dqm_lock(dqm);
1811 if (!dqm->sched_running || !dqm->sched_halt) {
1812 WARN_ONCE(!dqm->sched_halt, "Scheduling is not on halt.\n");
1813 dqm_unlock(dqm);
1814 return 0;
1815 }
1816 dqm->sched_halt = false;
1817 if (!dqm->dev->kfd->shared_resources.enable_mes)
1818 ret = execute_queues_cpsch(dqm,
1819 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES,
1820 0, USE_DEFAULT_GRACE_PERIOD);
1821 else
1822 ret = add_all_kfd_queues_mes(dqm);
1823
1824 dqm_unlock(dqm);
1825
1826 return ret;
1827 }
1828
start_cpsch(struct device_queue_manager * dqm)1829 static int start_cpsch(struct device_queue_manager *dqm)
1830 {
1831 struct device *dev = dqm->dev->adev->dev;
1832 int retval, num_hw_queue_slots;
1833
1834 retval = 0;
1835
1836 dqm_lock(dqm);
1837
1838 if (!dqm->dev->kfd->shared_resources.enable_mes) {
1839 retval = pm_init(&dqm->packet_mgr, dqm);
1840 if (retval)
1841 goto fail_packet_manager_init;
1842
1843 retval = set_sched_resources(dqm);
1844 if (retval)
1845 goto fail_set_sched_resources;
1846 }
1847 pr_debug("Allocating fence memory\n");
1848
1849 /* allocate fence memory on the gart */
1850 retval = kfd_gtt_sa_allocate(dqm->dev, sizeof(*dqm->fence_addr),
1851 &dqm->fence_mem);
1852
1853 if (retval)
1854 goto fail_allocate_vidmem;
1855
1856 dqm->fence_addr = (uint64_t *)dqm->fence_mem->cpu_ptr;
1857 dqm->fence_gpu_addr = dqm->fence_mem->gpu_addr;
1858
1859 init_interrupts(dqm);
1860
1861 /* clear hang status when driver try to start the hw scheduler */
1862 dqm->sched_running = true;
1863
1864 if (!dqm->dev->kfd->shared_resources.enable_mes) {
1865 if (pm_config_dequeue_wait_counts(&dqm->packet_mgr,
1866 KFD_DEQUEUE_WAIT_INIT, 0 /* unused */))
1867 dev_err(dev, "Setting optimized dequeue wait failed. Using default values\n");
1868 execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0, USE_DEFAULT_GRACE_PERIOD);
1869 }
1870
1871 /* setup per-queue reset detection buffer */
1872 num_hw_queue_slots = dqm->dev->kfd->shared_resources.num_queue_per_pipe *
1873 dqm->dev->kfd->shared_resources.num_pipe_per_mec *
1874 NUM_XCC(dqm->dev->xcc_mask);
1875
1876 dqm->detect_hang_info_size = num_hw_queue_slots * sizeof(struct dqm_detect_hang_info);
1877 dqm->detect_hang_info = kzalloc(dqm->detect_hang_info_size, GFP_KERNEL);
1878
1879 if (!dqm->detect_hang_info) {
1880 retval = -ENOMEM;
1881 goto fail_detect_hang_buffer;
1882 }
1883
1884 dqm_unlock(dqm);
1885
1886 return 0;
1887 fail_detect_hang_buffer:
1888 kfd_gtt_sa_free(dqm->dev, dqm->fence_mem);
1889 fail_allocate_vidmem:
1890 fail_set_sched_resources:
1891 if (!dqm->dev->kfd->shared_resources.enable_mes)
1892 pm_uninit(&dqm->packet_mgr);
1893 fail_packet_manager_init:
1894 dqm_unlock(dqm);
1895 return retval;
1896 }
1897
stop_cpsch(struct device_queue_manager * dqm)1898 static int stop_cpsch(struct device_queue_manager *dqm)
1899 {
1900 int ret = 0;
1901
1902 dqm_lock(dqm);
1903 if (!dqm->sched_running) {
1904 dqm_unlock(dqm);
1905 return 0;
1906 }
1907
1908 if (!dqm->dev->kfd->shared_resources.enable_mes)
1909 ret = unmap_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES,
1910 0, USE_DEFAULT_GRACE_PERIOD, false);
1911 else
1912 ret = remove_all_kfd_queues_mes(dqm);
1913
1914 dqm->sched_running = false;
1915
1916 if (!dqm->dev->kfd->shared_resources.enable_mes)
1917 pm_release_ib(&dqm->packet_mgr);
1918
1919 kfd_gtt_sa_free(dqm->dev, dqm->fence_mem);
1920 if (!dqm->dev->kfd->shared_resources.enable_mes)
1921 pm_uninit(&dqm->packet_mgr);
1922 kfree(dqm->detect_hang_info);
1923 dqm->detect_hang_info = NULL;
1924 dqm_unlock(dqm);
1925
1926 return ret;
1927 }
1928
create_kernel_queue_cpsch(struct device_queue_manager * dqm,struct kernel_queue * kq,struct qcm_process_device * qpd)1929 static int create_kernel_queue_cpsch(struct device_queue_manager *dqm,
1930 struct kernel_queue *kq,
1931 struct qcm_process_device *qpd)
1932 {
1933 dqm_lock(dqm);
1934 if (dqm->total_queue_count >= max_num_of_queues_per_device) {
1935 pr_warn("Can't create new kernel queue because %d queues were already created\n",
1936 dqm->total_queue_count);
1937 dqm_unlock(dqm);
1938 return -EPERM;
1939 }
1940
1941 /*
1942 * Unconditionally increment this counter, regardless of the queue's
1943 * type or whether the queue is active.
1944 */
1945 dqm->total_queue_count++;
1946 pr_debug("Total of %d queues are accountable so far\n",
1947 dqm->total_queue_count);
1948
1949 list_add(&kq->list, &qpd->priv_queue_list);
1950 increment_queue_count(dqm, qpd, kq->queue);
1951 qpd->is_debug = true;
1952 execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0,
1953 USE_DEFAULT_GRACE_PERIOD);
1954 dqm_unlock(dqm);
1955
1956 return 0;
1957 }
1958
destroy_kernel_queue_cpsch(struct device_queue_manager * dqm,struct kernel_queue * kq,struct qcm_process_device * qpd)1959 static void destroy_kernel_queue_cpsch(struct device_queue_manager *dqm,
1960 struct kernel_queue *kq,
1961 struct qcm_process_device *qpd)
1962 {
1963 dqm_lock(dqm);
1964 list_del(&kq->list);
1965 decrement_queue_count(dqm, qpd, kq->queue);
1966 qpd->is_debug = false;
1967 execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0,
1968 USE_DEFAULT_GRACE_PERIOD);
1969 /*
1970 * Unconditionally decrement this counter, regardless of the queue's
1971 * type.
1972 */
1973 dqm->total_queue_count--;
1974 pr_debug("Total of %d queues are accountable so far\n",
1975 dqm->total_queue_count);
1976 dqm_unlock(dqm);
1977 }
1978
create_queue_cpsch(struct device_queue_manager * dqm,struct queue * q,struct qcm_process_device * qpd,const struct kfd_criu_queue_priv_data * qd,const void * restore_mqd,const void * restore_ctl_stack)1979 static int create_queue_cpsch(struct device_queue_manager *dqm, struct queue *q,
1980 struct qcm_process_device *qpd,
1981 const struct kfd_criu_queue_priv_data *qd,
1982 const void *restore_mqd, const void *restore_ctl_stack)
1983 {
1984 int retval;
1985 struct mqd_manager *mqd_mgr;
1986
1987 if (dqm->total_queue_count >= max_num_of_queues_per_device) {
1988 pr_warn("Can't create new usermode queue because %d queues were already created\n",
1989 dqm->total_queue_count);
1990 retval = -EPERM;
1991 goto out;
1992 }
1993
1994 if (q->properties.type == KFD_QUEUE_TYPE_SDMA ||
1995 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI ||
1996 q->properties.type == KFD_QUEUE_TYPE_SDMA_BY_ENG_ID) {
1997 dqm_lock(dqm);
1998 retval = allocate_sdma_queue(dqm, q, qd ? &qd->sdma_id : NULL);
1999 dqm_unlock(dqm);
2000 if (retval)
2001 goto out;
2002 }
2003
2004 retval = allocate_doorbell(qpd, q, qd ? &qd->doorbell_id : NULL);
2005 if (retval)
2006 goto out_deallocate_sdma_queue;
2007
2008 mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
2009 q->properties.type)];
2010
2011 if (q->properties.type == KFD_QUEUE_TYPE_SDMA ||
2012 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)
2013 dqm->asic_ops.init_sdma_vm(dqm, q, qpd);
2014 q->properties.tba_addr = qpd->tba_addr;
2015 q->properties.tma_addr = qpd->tma_addr;
2016 q->mqd_mem_obj = mqd_mgr->allocate_mqd(mqd_mgr->dev, &q->properties);
2017 if (!q->mqd_mem_obj) {
2018 retval = -ENOMEM;
2019 goto out_deallocate_doorbell;
2020 }
2021
2022 dqm_lock(dqm);
2023 /*
2024 * Eviction state logic: mark all queues as evicted, even ones
2025 * not currently active. Restoring inactive queues later only
2026 * updates the is_evicted flag but is a no-op otherwise.
2027 */
2028 q->properties.is_evicted = !!qpd->evicted;
2029 q->properties.is_dbg_wa = qpd->pqm->process->debug_trap_enabled &&
2030 kfd_dbg_has_cwsr_workaround(q->device);
2031
2032 if (qd)
2033 mqd_mgr->restore_mqd(mqd_mgr, &q->mqd, q->mqd_mem_obj, &q->gart_mqd_addr,
2034 &q->properties, restore_mqd, restore_ctl_stack,
2035 qd->ctl_stack_size);
2036 else
2037 mqd_mgr->init_mqd(mqd_mgr, &q->mqd, q->mqd_mem_obj,
2038 &q->gart_mqd_addr, &q->properties);
2039
2040 list_add(&q->list, &qpd->queues_list);
2041 qpd->queue_count++;
2042
2043 if (q->properties.is_active) {
2044 increment_queue_count(dqm, qpd, q);
2045
2046 if (!dqm->dev->kfd->shared_resources.enable_mes)
2047 retval = execute_queues_cpsch(dqm,
2048 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0, USE_DEFAULT_GRACE_PERIOD);
2049 else
2050 retval = add_queue_mes(dqm, q, qpd);
2051 if (retval)
2052 goto cleanup_queue;
2053 }
2054
2055 /*
2056 * Unconditionally increment this counter, regardless of the queue's
2057 * type or whether the queue is active.
2058 */
2059 dqm->total_queue_count++;
2060
2061 pr_debug("Total of %d queues are accountable so far\n",
2062 dqm->total_queue_count);
2063
2064 dqm_unlock(dqm);
2065 return retval;
2066
2067 cleanup_queue:
2068 qpd->queue_count--;
2069 list_del(&q->list);
2070 if (q->properties.is_active)
2071 decrement_queue_count(dqm, qpd, q);
2072 mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj);
2073 dqm_unlock(dqm);
2074 out_deallocate_doorbell:
2075 deallocate_doorbell(qpd, q);
2076 out_deallocate_sdma_queue:
2077 if (q->properties.type == KFD_QUEUE_TYPE_SDMA ||
2078 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) {
2079 dqm_lock(dqm);
2080 deallocate_sdma_queue(dqm, q);
2081 dqm_unlock(dqm);
2082 }
2083 out:
2084 return retval;
2085 }
2086
amdkfd_fence_wait_timeout(struct device_queue_manager * dqm,uint64_t fence_value,unsigned int timeout_ms)2087 int amdkfd_fence_wait_timeout(struct device_queue_manager *dqm,
2088 uint64_t fence_value,
2089 unsigned int timeout_ms)
2090 {
2091 unsigned long end_jiffies = msecs_to_jiffies(timeout_ms) + jiffies;
2092 struct device *dev = dqm->dev->adev->dev;
2093 uint64_t *fence_addr = dqm->fence_addr;
2094
2095 while (*fence_addr != fence_value) {
2096 /* Fatal err detected, this response won't come */
2097 if (amdgpu_amdkfd_is_fed(dqm->dev->adev) ||
2098 amdgpu_in_reset(dqm->dev->adev))
2099 return -EIO;
2100
2101 if (time_after(jiffies, end_jiffies)) {
2102 dev_err(dev, "qcm fence wait loop timeout expired\n");
2103 /* In HWS case, this is used to halt the driver thread
2104 * in order not to mess up CP states before doing
2105 * scandumps for FW debugging.
2106 */
2107 while (halt_if_hws_hang)
2108 schedule();
2109
2110 return -ETIME;
2111 }
2112 schedule();
2113 }
2114
2115 return 0;
2116 }
2117
2118 /* dqm->lock mutex has to be locked before calling this function */
map_queues_cpsch(struct device_queue_manager * dqm)2119 static int map_queues_cpsch(struct device_queue_manager *dqm)
2120 {
2121 struct device *dev = dqm->dev->adev->dev;
2122 int retval;
2123
2124 if (!dqm->sched_running || dqm->sched_halt)
2125 return 0;
2126 if (dqm->active_queue_count <= 0 || dqm->processes_count <= 0)
2127 return 0;
2128 if (dqm->active_runlist)
2129 return 0;
2130
2131 retval = pm_send_runlist(&dqm->packet_mgr, &dqm->queues);
2132 pr_debug("%s sent runlist\n", __func__);
2133 if (retval) {
2134 dev_err(dev, "failed to execute runlist\n");
2135 return retval;
2136 }
2137 dqm->active_runlist = true;
2138
2139 return retval;
2140 }
2141
set_queue_as_reset(struct device_queue_manager * dqm,struct queue * q,struct qcm_process_device * qpd)2142 static void set_queue_as_reset(struct device_queue_manager *dqm, struct queue *q,
2143 struct qcm_process_device *qpd)
2144 {
2145 struct kfd_process_device *pdd = qpd_to_pdd(qpd);
2146
2147 dev_err(dqm->dev->adev->dev, "queue id 0x%0x at pasid %d is reset\n",
2148 q->properties.queue_id, pdd->process->lead_thread->pid);
2149
2150 pdd->has_reset_queue = true;
2151 if (q->properties.is_active) {
2152 q->properties.is_active = false;
2153 decrement_queue_count(dqm, qpd, q);
2154 }
2155 }
2156
detect_queue_hang(struct device_queue_manager * dqm)2157 static int detect_queue_hang(struct device_queue_manager *dqm)
2158 {
2159 int i;
2160
2161 /* detect should be used only in dqm locked queue reset */
2162 if (WARN_ON(dqm->detect_hang_count > 0))
2163 return 0;
2164
2165 memset(dqm->detect_hang_info, 0, dqm->detect_hang_info_size);
2166
2167 for (i = 0; i < AMDGPU_MAX_QUEUES; ++i) {
2168 uint32_t mec, pipe, queue;
2169 int xcc_id;
2170
2171 mec = (i / dqm->dev->kfd->shared_resources.num_queue_per_pipe)
2172 / dqm->dev->kfd->shared_resources.num_pipe_per_mec;
2173
2174 if (mec || !test_bit(i, dqm->dev->kfd->shared_resources.cp_queue_bitmap))
2175 continue;
2176
2177 amdgpu_queue_mask_bit_to_mec_queue(dqm->dev->adev, i, &mec, &pipe, &queue);
2178
2179 for_each_inst(xcc_id, dqm->dev->xcc_mask) {
2180 uint64_t queue_addr = dqm->dev->kfd2kgd->hqd_get_pq_addr(
2181 dqm->dev->adev, pipe, queue, xcc_id);
2182 struct dqm_detect_hang_info hang_info;
2183
2184 if (!queue_addr)
2185 continue;
2186
2187 hang_info.pipe_id = pipe;
2188 hang_info.queue_id = queue;
2189 hang_info.xcc_id = xcc_id;
2190 hang_info.queue_address = queue_addr;
2191
2192 dqm->detect_hang_info[dqm->detect_hang_count] = hang_info;
2193 dqm->detect_hang_count++;
2194 }
2195 }
2196
2197 return dqm->detect_hang_count;
2198 }
2199
find_queue_by_address(struct device_queue_manager * dqm,uint64_t queue_address)2200 static struct queue *find_queue_by_address(struct device_queue_manager *dqm, uint64_t queue_address)
2201 {
2202 struct device_process_node *cur;
2203 struct qcm_process_device *qpd;
2204 struct queue *q;
2205
2206 list_for_each_entry(cur, &dqm->queues, list) {
2207 qpd = cur->qpd;
2208 list_for_each_entry(q, &qpd->queues_list, list) {
2209 if (queue_address == q->properties.queue_address)
2210 return q;
2211 }
2212 }
2213
2214 return NULL;
2215 }
2216
reset_hung_queues(struct device_queue_manager * dqm)2217 static int reset_hung_queues(struct device_queue_manager *dqm)
2218 {
2219 int r = 0, reset_count = 0, i;
2220
2221 if (!dqm->detect_hang_info || dqm->is_hws_hang)
2222 return -EIO;
2223
2224 /* assume dqm locked. */
2225 if (!detect_queue_hang(dqm))
2226 return -ENOTRECOVERABLE;
2227
2228 for (i = 0; i < dqm->detect_hang_count; i++) {
2229 struct dqm_detect_hang_info hang_info = dqm->detect_hang_info[i];
2230 struct queue *q = find_queue_by_address(dqm, hang_info.queue_address);
2231 struct kfd_process_device *pdd;
2232 uint64_t queue_addr = 0;
2233
2234 if (!q) {
2235 r = -ENOTRECOVERABLE;
2236 goto reset_fail;
2237 }
2238
2239 pdd = kfd_get_process_device_data(dqm->dev, q->process);
2240 if (!pdd) {
2241 r = -ENOTRECOVERABLE;
2242 goto reset_fail;
2243 }
2244
2245 queue_addr = dqm->dev->kfd2kgd->hqd_reset(dqm->dev->adev,
2246 hang_info.pipe_id, hang_info.queue_id, hang_info.xcc_id,
2247 KFD_UNMAP_LATENCY_MS);
2248
2249 /* either reset failed or we reset an unexpected queue. */
2250 if (queue_addr != q->properties.queue_address) {
2251 r = -ENOTRECOVERABLE;
2252 goto reset_fail;
2253 }
2254
2255 set_queue_as_reset(dqm, q, &pdd->qpd);
2256 reset_count++;
2257 }
2258
2259 if (reset_count == dqm->detect_hang_count)
2260 kfd_signal_reset_event(dqm->dev);
2261 else
2262 r = -ENOTRECOVERABLE;
2263
2264 reset_fail:
2265 dqm->detect_hang_count = 0;
2266
2267 return r;
2268 }
2269
sdma_has_hang(struct device_queue_manager * dqm)2270 static bool sdma_has_hang(struct device_queue_manager *dqm)
2271 {
2272 int engine_start = dqm->dev->node_id * get_num_all_sdma_engines(dqm);
2273 int engine_end = engine_start + get_num_all_sdma_engines(dqm);
2274 int num_queues_per_eng = dqm->dev->kfd->device_info.num_sdma_queues_per_engine;
2275 int i, j;
2276
2277 for (i = engine_start; i < engine_end; i++) {
2278 for (j = 0; j < num_queues_per_eng; j++) {
2279 if (!dqm->dev->kfd2kgd->hqd_sdma_get_doorbell(dqm->dev->adev, i, j))
2280 continue;
2281
2282 return true;
2283 }
2284 }
2285
2286 return false;
2287 }
2288
set_sdma_queue_as_reset(struct device_queue_manager * dqm,uint32_t doorbell_off)2289 static bool set_sdma_queue_as_reset(struct device_queue_manager *dqm,
2290 uint32_t doorbell_off)
2291 {
2292 struct device_process_node *cur;
2293 struct qcm_process_device *qpd;
2294 struct queue *q;
2295
2296 list_for_each_entry(cur, &dqm->queues, list) {
2297 qpd = cur->qpd;
2298 list_for_each_entry(q, &qpd->queues_list, list) {
2299 if ((q->properties.type == KFD_QUEUE_TYPE_SDMA ||
2300 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) &&
2301 q->properties.doorbell_off == doorbell_off) {
2302 set_queue_as_reset(dqm, q, qpd);
2303 return true;
2304 }
2305 }
2306 }
2307
2308 return false;
2309 }
2310
reset_hung_queues_sdma(struct device_queue_manager * dqm)2311 static int reset_hung_queues_sdma(struct device_queue_manager *dqm)
2312 {
2313 int engine_start = dqm->dev->node_id * get_num_all_sdma_engines(dqm);
2314 int engine_end = engine_start + get_num_all_sdma_engines(dqm);
2315 int num_queues_per_eng = dqm->dev->kfd->device_info.num_sdma_queues_per_engine;
2316 int r = 0, i, j;
2317
2318 if (dqm->is_hws_hang)
2319 return -EIO;
2320
2321 /* Scan for hung HW queues and reset engine. */
2322 dqm->detect_hang_count = 0;
2323 for (i = engine_start; i < engine_end; i++) {
2324 for (j = 0; j < num_queues_per_eng; j++) {
2325 uint32_t doorbell_off =
2326 dqm->dev->kfd2kgd->hqd_sdma_get_doorbell(dqm->dev->adev, i, j);
2327
2328 if (!doorbell_off)
2329 continue;
2330
2331 /* Reset engine and check. */
2332 if (amdgpu_sdma_reset_engine(dqm->dev->adev, i, false) ||
2333 dqm->dev->kfd2kgd->hqd_sdma_get_doorbell(dqm->dev->adev, i, j) ||
2334 !set_sdma_queue_as_reset(dqm, doorbell_off)) {
2335 r = -ENOTRECOVERABLE;
2336 goto reset_fail;
2337 }
2338
2339 /* Should only expect one queue active per engine */
2340 dqm->detect_hang_count++;
2341 break;
2342 }
2343 }
2344
2345 /* Signal process reset */
2346 if (dqm->detect_hang_count)
2347 kfd_signal_reset_event(dqm->dev);
2348 else
2349 r = -ENOTRECOVERABLE;
2350
2351 reset_fail:
2352 dqm->detect_hang_count = 0;
2353
2354 return r;
2355 }
2356
reset_queues_on_hws_hang(struct device_queue_manager * dqm,bool is_sdma)2357 static int reset_queues_on_hws_hang(struct device_queue_manager *dqm, bool is_sdma)
2358 {
2359 struct amdgpu_device *adev = dqm->dev->adev;
2360
2361 while (halt_if_hws_hang)
2362 schedule();
2363
2364 if (adev->debug_disable_gpu_ring_reset) {
2365 dev_info_once(adev->dev,
2366 "%s queue hung, but ring reset disabled",
2367 is_sdma ? "sdma" : "compute");
2368
2369 return -EPERM;
2370 }
2371 if (!amdgpu_gpu_recovery)
2372 return -ENOTRECOVERABLE;
2373
2374 return is_sdma ? reset_hung_queues_sdma(dqm) : reset_hung_queues(dqm);
2375 }
2376
2377 /* dqm->lock mutex has to be locked before calling this function
2378 *
2379 * @grace_period: If USE_DEFAULT_GRACE_PERIOD then default wait time
2380 * for context switch latency. Lower values are used by debugger
2381 * since context switching are triggered at high frequency.
2382 * This is configured by setting CP_IQ_WAIT_TIME2.SCH_WAVE
2383 *
2384 */
unmap_queues_cpsch(struct device_queue_manager * dqm,enum kfd_unmap_queues_filter filter,uint32_t filter_param,uint32_t grace_period,bool reset)2385 static int unmap_queues_cpsch(struct device_queue_manager *dqm,
2386 enum kfd_unmap_queues_filter filter,
2387 uint32_t filter_param,
2388 uint32_t grace_period,
2389 bool reset)
2390 {
2391 struct device *dev = dqm->dev->adev->dev;
2392 struct mqd_manager *mqd_mgr;
2393 int retval;
2394
2395 if (!dqm->sched_running)
2396 return 0;
2397 if (!dqm->active_runlist)
2398 return 0;
2399 if (!down_read_trylock(&dqm->dev->adev->reset_domain->sem))
2400 return -EIO;
2401
2402 if (grace_period != USE_DEFAULT_GRACE_PERIOD) {
2403 retval = pm_config_dequeue_wait_counts(&dqm->packet_mgr,
2404 KFD_DEQUEUE_WAIT_SET_SCH_WAVE, grace_period);
2405 if (retval)
2406 goto out;
2407 }
2408
2409 retval = pm_send_unmap_queue(&dqm->packet_mgr, filter, filter_param, reset);
2410 if (retval)
2411 goto out;
2412
2413 *dqm->fence_addr = KFD_FENCE_INIT;
2414 mb();
2415 pm_send_query_status(&dqm->packet_mgr, dqm->fence_gpu_addr,
2416 KFD_FENCE_COMPLETED);
2417 /* should be timed out */
2418 retval = amdkfd_fence_wait_timeout(dqm, KFD_FENCE_COMPLETED,
2419 queue_preemption_timeout_ms);
2420 if (retval) {
2421 dev_err(dev, "The cp might be in an unrecoverable state due to an unsuccessful queues preemption\n");
2422 kfd_hws_hang(dqm);
2423 goto out;
2424 }
2425
2426 /* In the current MEC firmware implementation, if compute queue
2427 * doesn't response to the preemption request in time, HIQ will
2428 * abandon the unmap request without returning any timeout error
2429 * to driver. Instead, MEC firmware will log the doorbell of the
2430 * unresponding compute queue to HIQ.MQD.queue_doorbell_id fields.
2431 * To make sure the queue unmap was successful, driver need to
2432 * check those fields
2433 */
2434 mqd_mgr = dqm->mqd_mgrs[KFD_MQD_TYPE_HIQ];
2435 if (mqd_mgr->check_preemption_failed(mqd_mgr, dqm->packet_mgr.priv_queue->queue->mqd) &&
2436 reset_queues_on_hws_hang(dqm, false))
2437 goto reset_fail;
2438
2439 /* Check for SDMA hang and attempt SDMA reset */
2440 if (sdma_has_hang(dqm) && reset_queues_on_hws_hang(dqm, true))
2441 goto reset_fail;
2442
2443 /* We need to reset the grace period value for this device */
2444 if (grace_period != USE_DEFAULT_GRACE_PERIOD) {
2445 if (pm_config_dequeue_wait_counts(&dqm->packet_mgr,
2446 KFD_DEQUEUE_WAIT_RESET, 0 /* unused */))
2447 dev_err(dev, "Failed to reset grace period\n");
2448 }
2449
2450 pm_release_ib(&dqm->packet_mgr);
2451 dqm->active_runlist = false;
2452 out:
2453 up_read(&dqm->dev->adev->reset_domain->sem);
2454 return retval;
2455
2456 reset_fail:
2457 dqm->is_hws_hang = true;
2458 kfd_hws_hang(dqm);
2459 up_read(&dqm->dev->adev->reset_domain->sem);
2460 return -ETIME;
2461 }
2462
2463 /* only for compute queue */
reset_queues_cpsch(struct device_queue_manager * dqm,uint16_t pasid)2464 static int reset_queues_cpsch(struct device_queue_manager *dqm, uint16_t pasid)
2465 {
2466 int retval;
2467
2468 dqm_lock(dqm);
2469
2470 retval = unmap_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_BY_PASID,
2471 pasid, USE_DEFAULT_GRACE_PERIOD, true);
2472
2473 dqm_unlock(dqm);
2474 return retval;
2475 }
2476
2477 /* dqm->lock mutex has to be locked before calling this function */
execute_queues_cpsch(struct device_queue_manager * dqm,enum kfd_unmap_queues_filter filter,uint32_t filter_param,uint32_t grace_period)2478 static int execute_queues_cpsch(struct device_queue_manager *dqm,
2479 enum kfd_unmap_queues_filter filter,
2480 uint32_t filter_param,
2481 uint32_t grace_period)
2482 {
2483 int retval;
2484
2485 if (!down_read_trylock(&dqm->dev->adev->reset_domain->sem))
2486 return -EIO;
2487 retval = unmap_queues_cpsch(dqm, filter, filter_param, grace_period, false);
2488 if (!retval)
2489 retval = map_queues_cpsch(dqm);
2490 up_read(&dqm->dev->adev->reset_domain->sem);
2491 return retval;
2492 }
2493
wait_on_destroy_queue(struct device_queue_manager * dqm,struct queue * q)2494 static int wait_on_destroy_queue(struct device_queue_manager *dqm,
2495 struct queue *q)
2496 {
2497 struct kfd_process_device *pdd = kfd_get_process_device_data(q->device,
2498 q->process);
2499 int ret = 0;
2500
2501 if (WARN_ON(!pdd))
2502 return ret;
2503
2504 if (pdd->qpd.is_debug)
2505 return ret;
2506
2507 q->properties.is_being_destroyed = true;
2508
2509 if (pdd->process->debug_trap_enabled && q->properties.is_suspended) {
2510 dqm_unlock(dqm);
2511 mutex_unlock(&q->process->mutex);
2512 ret = wait_event_interruptible(dqm->destroy_wait,
2513 !q->properties.is_suspended);
2514
2515 mutex_lock(&q->process->mutex);
2516 dqm_lock(dqm);
2517 }
2518
2519 return ret;
2520 }
2521
destroy_queue_cpsch(struct device_queue_manager * dqm,struct qcm_process_device * qpd,struct queue * q)2522 static int destroy_queue_cpsch(struct device_queue_manager *dqm,
2523 struct qcm_process_device *qpd,
2524 struct queue *q)
2525 {
2526 int retval;
2527 struct mqd_manager *mqd_mgr;
2528 uint64_t sdma_val = 0;
2529 struct kfd_process_device *pdd = qpd_to_pdd(qpd);
2530 struct device *dev = dqm->dev->adev->dev;
2531
2532 /* Get the SDMA queue stats */
2533 if ((q->properties.type == KFD_QUEUE_TYPE_SDMA) ||
2534 (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) {
2535 retval = read_sdma_queue_counter((uint64_t __user *)q->properties.read_ptr,
2536 &sdma_val);
2537 if (retval)
2538 dev_err(dev, "Failed to read SDMA queue counter for queue: %d\n",
2539 q->properties.queue_id);
2540 }
2541
2542 /* remove queue from list to prevent rescheduling after preemption */
2543 dqm_lock(dqm);
2544
2545 retval = wait_on_destroy_queue(dqm, q);
2546
2547 if (retval) {
2548 dqm_unlock(dqm);
2549 return retval;
2550 }
2551
2552 if (qpd->is_debug) {
2553 /*
2554 * error, currently we do not allow to destroy a queue
2555 * of a currently debugged process
2556 */
2557 retval = -EBUSY;
2558 goto failed_try_destroy_debugged_queue;
2559
2560 }
2561
2562 mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
2563 q->properties.type)];
2564
2565 deallocate_doorbell(qpd, q);
2566
2567 if ((q->properties.type == KFD_QUEUE_TYPE_SDMA) ||
2568 (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) {
2569 deallocate_sdma_queue(dqm, q);
2570 pdd->sdma_past_activity_counter += sdma_val;
2571 }
2572
2573 if (q->properties.is_active) {
2574 decrement_queue_count(dqm, qpd, q);
2575 q->properties.is_active = false;
2576 if (!dqm->dev->kfd->shared_resources.enable_mes) {
2577 retval = execute_queues_cpsch(dqm,
2578 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0,
2579 USE_DEFAULT_GRACE_PERIOD);
2580 if (retval == -ETIME)
2581 qpd->reset_wavefronts = true;
2582 } else {
2583 retval = remove_queue_mes(dqm, q, qpd);
2584 }
2585 }
2586 list_del(&q->list);
2587 qpd->queue_count--;
2588
2589 /*
2590 * Unconditionally decrement this counter, regardless of the queue's
2591 * type
2592 */
2593 dqm->total_queue_count--;
2594 pr_debug("Total of %d queues are accountable so far\n",
2595 dqm->total_queue_count);
2596
2597 dqm_unlock(dqm);
2598
2599 /*
2600 * Do free_mqd and raise delete event after dqm_unlock(dqm) to avoid
2601 * circular locking
2602 */
2603 kfd_dbg_ev_raise(KFD_EC_MASK(EC_DEVICE_QUEUE_DELETE),
2604 qpd->pqm->process, q->device,
2605 -1, false, NULL, 0);
2606
2607 mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj);
2608
2609 return retval;
2610
2611 failed_try_destroy_debugged_queue:
2612
2613 dqm_unlock(dqm);
2614 return retval;
2615 }
2616
set_cache_memory_policy(struct device_queue_manager * dqm,struct qcm_process_device * qpd,enum cache_policy default_policy,enum cache_policy alternate_policy,void __user * alternate_aperture_base,uint64_t alternate_aperture_size,u32 misc_process_properties)2617 static bool set_cache_memory_policy(struct device_queue_manager *dqm,
2618 struct qcm_process_device *qpd,
2619 enum cache_policy default_policy,
2620 enum cache_policy alternate_policy,
2621 void __user *alternate_aperture_base,
2622 uint64_t alternate_aperture_size,
2623 u32 misc_process_properties)
2624 {
2625 bool retval = true;
2626
2627 if (!dqm->asic_ops.set_cache_memory_policy)
2628 return retval;
2629
2630 dqm_lock(dqm);
2631
2632 retval = dqm->asic_ops.set_cache_memory_policy(
2633 dqm,
2634 qpd,
2635 default_policy,
2636 alternate_policy,
2637 alternate_aperture_base,
2638 alternate_aperture_size,
2639 misc_process_properties);
2640
2641 if (retval)
2642 goto out;
2643
2644 if ((dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) && (qpd->vmid != 0))
2645 program_sh_mem_settings(dqm, qpd);
2646
2647 pr_debug("sh_mem_config: 0x%x, ape1_base: 0x%x, ape1_limit: 0x%x\n",
2648 qpd->sh_mem_config, qpd->sh_mem_ape1_base,
2649 qpd->sh_mem_ape1_limit);
2650
2651 out:
2652 dqm_unlock(dqm);
2653 return retval;
2654 }
2655
process_termination_nocpsch(struct device_queue_manager * dqm,struct qcm_process_device * qpd)2656 static int process_termination_nocpsch(struct device_queue_manager *dqm,
2657 struct qcm_process_device *qpd)
2658 {
2659 struct queue *q;
2660 struct device_process_node *cur, *next_dpn;
2661 int retval = 0;
2662 bool found = false;
2663
2664 dqm_lock(dqm);
2665
2666 /* Clear all user mode queues */
2667 while (!list_empty(&qpd->queues_list)) {
2668 struct mqd_manager *mqd_mgr;
2669 int ret;
2670
2671 q = list_first_entry(&qpd->queues_list, struct queue, list);
2672 mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
2673 q->properties.type)];
2674 ret = destroy_queue_nocpsch_locked(dqm, qpd, q);
2675 if (ret)
2676 retval = ret;
2677 dqm_unlock(dqm);
2678 mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj);
2679 dqm_lock(dqm);
2680 }
2681
2682 /* Unregister process */
2683 list_for_each_entry_safe(cur, next_dpn, &dqm->queues, list) {
2684 if (qpd == cur->qpd) {
2685 list_del(&cur->list);
2686 kfree(cur);
2687 dqm->processes_count--;
2688 found = true;
2689 break;
2690 }
2691 }
2692
2693 dqm_unlock(dqm);
2694
2695 /* Outside the DQM lock because under the DQM lock we can't do
2696 * reclaim or take other locks that others hold while reclaiming.
2697 */
2698 if (found)
2699 kfd_dec_compute_active(dqm->dev);
2700
2701 return retval;
2702 }
2703
get_wave_state(struct device_queue_manager * dqm,struct queue * q,void __user * ctl_stack,u32 * ctl_stack_used_size,u32 * save_area_used_size)2704 static int get_wave_state(struct device_queue_manager *dqm,
2705 struct queue *q,
2706 void __user *ctl_stack,
2707 u32 *ctl_stack_used_size,
2708 u32 *save_area_used_size)
2709 {
2710 struct mqd_manager *mqd_mgr;
2711
2712 dqm_lock(dqm);
2713
2714 mqd_mgr = dqm->mqd_mgrs[KFD_MQD_TYPE_CP];
2715
2716 if (q->properties.type != KFD_QUEUE_TYPE_COMPUTE ||
2717 q->properties.is_active || !q->device->kfd->cwsr_enabled ||
2718 !mqd_mgr->get_wave_state) {
2719 dqm_unlock(dqm);
2720 return -EINVAL;
2721 }
2722
2723 dqm_unlock(dqm);
2724
2725 /*
2726 * get_wave_state is outside the dqm lock to prevent circular locking
2727 * and the queue should be protected against destruction by the process
2728 * lock.
2729 */
2730 return mqd_mgr->get_wave_state(mqd_mgr, q->mqd, &q->properties,
2731 ctl_stack, ctl_stack_used_size, save_area_used_size);
2732 }
2733
get_queue_checkpoint_info(struct device_queue_manager * dqm,const struct queue * q,u32 * mqd_size,u32 * ctl_stack_size)2734 static void get_queue_checkpoint_info(struct device_queue_manager *dqm,
2735 const struct queue *q,
2736 u32 *mqd_size,
2737 u32 *ctl_stack_size)
2738 {
2739 struct mqd_manager *mqd_mgr;
2740 enum KFD_MQD_TYPE mqd_type =
2741 get_mqd_type_from_queue_type(q->properties.type);
2742
2743 dqm_lock(dqm);
2744 mqd_mgr = dqm->mqd_mgrs[mqd_type];
2745 *mqd_size = mqd_mgr->mqd_size * NUM_XCC(mqd_mgr->dev->xcc_mask);
2746 *ctl_stack_size = 0;
2747
2748 if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE && mqd_mgr->get_checkpoint_info)
2749 mqd_mgr->get_checkpoint_info(mqd_mgr, q->mqd, ctl_stack_size);
2750
2751 dqm_unlock(dqm);
2752 }
2753
checkpoint_mqd(struct device_queue_manager * dqm,const struct queue * q,void * mqd,void * ctl_stack)2754 static int checkpoint_mqd(struct device_queue_manager *dqm,
2755 const struct queue *q,
2756 void *mqd,
2757 void *ctl_stack)
2758 {
2759 struct mqd_manager *mqd_mgr;
2760 int r = 0;
2761 enum KFD_MQD_TYPE mqd_type =
2762 get_mqd_type_from_queue_type(q->properties.type);
2763
2764 dqm_lock(dqm);
2765
2766 if (q->properties.is_active || !q->device->kfd->cwsr_enabled) {
2767 r = -EINVAL;
2768 goto dqm_unlock;
2769 }
2770
2771 mqd_mgr = dqm->mqd_mgrs[mqd_type];
2772 if (!mqd_mgr->checkpoint_mqd) {
2773 r = -EOPNOTSUPP;
2774 goto dqm_unlock;
2775 }
2776
2777 mqd_mgr->checkpoint_mqd(mqd_mgr, q->mqd, mqd, ctl_stack);
2778
2779 dqm_unlock:
2780 dqm_unlock(dqm);
2781 return r;
2782 }
2783
process_termination_cpsch(struct device_queue_manager * dqm,struct qcm_process_device * qpd)2784 static int process_termination_cpsch(struct device_queue_manager *dqm,
2785 struct qcm_process_device *qpd)
2786 {
2787 int retval;
2788 struct queue *q;
2789 struct device *dev = dqm->dev->adev->dev;
2790 struct kernel_queue *kq, *kq_next;
2791 struct mqd_manager *mqd_mgr;
2792 struct device_process_node *cur, *next_dpn;
2793 enum kfd_unmap_queues_filter filter =
2794 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES;
2795 bool found = false;
2796
2797 retval = 0;
2798
2799 dqm_lock(dqm);
2800
2801 /* Clean all kernel queues */
2802 list_for_each_entry_safe(kq, kq_next, &qpd->priv_queue_list, list) {
2803 list_del(&kq->list);
2804 decrement_queue_count(dqm, qpd, kq->queue);
2805 qpd->is_debug = false;
2806 dqm->total_queue_count--;
2807 filter = KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES;
2808 }
2809
2810 /* Clear all user mode queues */
2811 list_for_each_entry(q, &qpd->queues_list, list) {
2812 if (q->properties.type == KFD_QUEUE_TYPE_SDMA)
2813 deallocate_sdma_queue(dqm, q);
2814 else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)
2815 deallocate_sdma_queue(dqm, q);
2816
2817 if (q->properties.is_active) {
2818 decrement_queue_count(dqm, qpd, q);
2819
2820 if (dqm->dev->kfd->shared_resources.enable_mes) {
2821 retval = remove_queue_mes(dqm, q, qpd);
2822 if (retval)
2823 dev_err(dev, "Failed to remove queue %d\n",
2824 q->properties.queue_id);
2825 }
2826 }
2827
2828 dqm->total_queue_count--;
2829 }
2830
2831 /* Unregister process */
2832 list_for_each_entry_safe(cur, next_dpn, &dqm->queues, list) {
2833 if (qpd == cur->qpd) {
2834 list_del(&cur->list);
2835 kfree(cur);
2836 dqm->processes_count--;
2837 found = true;
2838 break;
2839 }
2840 }
2841
2842 if (!dqm->dev->kfd->shared_resources.enable_mes)
2843 retval = execute_queues_cpsch(dqm, filter, 0, USE_DEFAULT_GRACE_PERIOD);
2844
2845 if ((retval || qpd->reset_wavefronts) &&
2846 down_read_trylock(&dqm->dev->adev->reset_domain->sem)) {
2847 pr_warn("Resetting wave fronts (cpsch) on dev %p\n", dqm->dev);
2848 dbgdev_wave_reset_wavefronts(dqm->dev, qpd->pqm->process);
2849 qpd->reset_wavefronts = false;
2850 up_read(&dqm->dev->adev->reset_domain->sem);
2851 }
2852
2853 /* Lastly, free mqd resources.
2854 * Do free_mqd() after dqm_unlock to avoid circular locking.
2855 */
2856 while (!list_empty(&qpd->queues_list)) {
2857 q = list_first_entry(&qpd->queues_list, struct queue, list);
2858 mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
2859 q->properties.type)];
2860 list_del(&q->list);
2861 qpd->queue_count--;
2862 dqm_unlock(dqm);
2863 mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj);
2864 dqm_lock(dqm);
2865 }
2866 dqm_unlock(dqm);
2867
2868 /* Outside the DQM lock because under the DQM lock we can't do
2869 * reclaim or take other locks that others hold while reclaiming.
2870 */
2871 if (found)
2872 kfd_dec_compute_active(dqm->dev);
2873
2874 return retval;
2875 }
2876
init_mqd_managers(struct device_queue_manager * dqm)2877 static int init_mqd_managers(struct device_queue_manager *dqm)
2878 {
2879 int i, j;
2880 struct device *dev = dqm->dev->adev->dev;
2881 struct mqd_manager *mqd_mgr;
2882
2883 for (i = 0; i < KFD_MQD_TYPE_MAX; i++) {
2884 mqd_mgr = dqm->asic_ops.mqd_manager_init(i, dqm->dev);
2885 if (!mqd_mgr) {
2886 dev_err(dev, "mqd manager [%d] initialization failed\n", i);
2887 goto out_free;
2888 }
2889 dqm->mqd_mgrs[i] = mqd_mgr;
2890 }
2891
2892 return 0;
2893
2894 out_free:
2895 for (j = 0; j < i; j++) {
2896 kfree(dqm->mqd_mgrs[j]);
2897 dqm->mqd_mgrs[j] = NULL;
2898 }
2899
2900 return -ENOMEM;
2901 }
2902
2903 /* Allocate one hiq mqd (HWS) and all SDMA mqd in a continuous trunk*/
allocate_hiq_sdma_mqd(struct device_queue_manager * dqm)2904 static int allocate_hiq_sdma_mqd(struct device_queue_manager *dqm)
2905 {
2906 int retval;
2907 struct kfd_node *dev = dqm->dev;
2908 struct kfd_mem_obj *mem_obj = &dqm->hiq_sdma_mqd;
2909 uint32_t size = dqm->mqd_mgrs[KFD_MQD_TYPE_SDMA]->mqd_size *
2910 get_num_all_sdma_engines(dqm) *
2911 dev->kfd->device_info.num_sdma_queues_per_engine +
2912 (dqm->mqd_mgrs[KFD_MQD_TYPE_HIQ]->mqd_size *
2913 NUM_XCC(dqm->dev->xcc_mask));
2914
2915 retval = amdgpu_amdkfd_alloc_gtt_mem(dev->adev, size,
2916 &(mem_obj->gtt_mem), &(mem_obj->gpu_addr),
2917 (void *)&(mem_obj->cpu_ptr), false);
2918
2919 return retval;
2920 }
2921
device_queue_manager_init(struct kfd_node * dev)2922 struct device_queue_manager *device_queue_manager_init(struct kfd_node *dev)
2923 {
2924 struct device_queue_manager *dqm;
2925
2926 pr_debug("Loading device queue manager\n");
2927
2928 dqm = kzalloc(sizeof(*dqm), GFP_KERNEL);
2929 if (!dqm)
2930 return NULL;
2931
2932 switch (dev->adev->asic_type) {
2933 /* HWS is not available on Hawaii. */
2934 case CHIP_HAWAII:
2935 /* HWS depends on CWSR for timely dequeue. CWSR is not
2936 * available on Tonga.
2937 *
2938 * FIXME: This argument also applies to Kaveri.
2939 */
2940 case CHIP_TONGA:
2941 dqm->sched_policy = KFD_SCHED_POLICY_NO_HWS;
2942 break;
2943 default:
2944 dqm->sched_policy = sched_policy;
2945 break;
2946 }
2947
2948 dqm->dev = dev;
2949 switch (dqm->sched_policy) {
2950 case KFD_SCHED_POLICY_HWS:
2951 case KFD_SCHED_POLICY_HWS_NO_OVERSUBSCRIPTION:
2952 /* initialize dqm for cp scheduling */
2953 dqm->ops.create_queue = create_queue_cpsch;
2954 dqm->ops.initialize = initialize_cpsch;
2955 dqm->ops.start = start_cpsch;
2956 dqm->ops.stop = stop_cpsch;
2957 dqm->ops.halt = halt_cpsch;
2958 dqm->ops.unhalt = unhalt_cpsch;
2959 dqm->ops.destroy_queue = destroy_queue_cpsch;
2960 dqm->ops.update_queue = update_queue;
2961 dqm->ops.register_process = register_process;
2962 dqm->ops.unregister_process = unregister_process;
2963 dqm->ops.uninitialize = uninitialize;
2964 dqm->ops.create_kernel_queue = create_kernel_queue_cpsch;
2965 dqm->ops.destroy_kernel_queue = destroy_kernel_queue_cpsch;
2966 dqm->ops.set_cache_memory_policy = set_cache_memory_policy;
2967 dqm->ops.process_termination = process_termination_cpsch;
2968 dqm->ops.evict_process_queues = evict_process_queues_cpsch;
2969 dqm->ops.restore_process_queues = restore_process_queues_cpsch;
2970 dqm->ops.get_wave_state = get_wave_state;
2971 dqm->ops.reset_queues = reset_queues_cpsch;
2972 dqm->ops.get_queue_checkpoint_info = get_queue_checkpoint_info;
2973 dqm->ops.checkpoint_mqd = checkpoint_mqd;
2974 break;
2975 case KFD_SCHED_POLICY_NO_HWS:
2976 /* initialize dqm for no cp scheduling */
2977 dqm->ops.start = start_nocpsch;
2978 dqm->ops.stop = stop_nocpsch;
2979 dqm->ops.create_queue = create_queue_nocpsch;
2980 dqm->ops.destroy_queue = destroy_queue_nocpsch;
2981 dqm->ops.update_queue = update_queue;
2982 dqm->ops.register_process = register_process;
2983 dqm->ops.unregister_process = unregister_process;
2984 dqm->ops.initialize = initialize_nocpsch;
2985 dqm->ops.uninitialize = uninitialize;
2986 dqm->ops.set_cache_memory_policy = set_cache_memory_policy;
2987 dqm->ops.process_termination = process_termination_nocpsch;
2988 dqm->ops.evict_process_queues = evict_process_queues_nocpsch;
2989 dqm->ops.restore_process_queues =
2990 restore_process_queues_nocpsch;
2991 dqm->ops.get_wave_state = get_wave_state;
2992 dqm->ops.get_queue_checkpoint_info = get_queue_checkpoint_info;
2993 dqm->ops.checkpoint_mqd = checkpoint_mqd;
2994 break;
2995 default:
2996 dev_err(dev->adev->dev, "Invalid scheduling policy %d\n", dqm->sched_policy);
2997 goto out_free;
2998 }
2999
3000 switch (dev->adev->asic_type) {
3001 case CHIP_KAVERI:
3002 case CHIP_HAWAII:
3003 device_queue_manager_init_cik(&dqm->asic_ops);
3004 break;
3005
3006 case CHIP_CARRIZO:
3007 case CHIP_TONGA:
3008 case CHIP_FIJI:
3009 case CHIP_POLARIS10:
3010 case CHIP_POLARIS11:
3011 case CHIP_POLARIS12:
3012 case CHIP_VEGAM:
3013 device_queue_manager_init_vi(&dqm->asic_ops);
3014 break;
3015
3016 default:
3017 if (KFD_GC_VERSION(dev) >= IP_VERSION(12, 0, 0))
3018 device_queue_manager_init_v12(&dqm->asic_ops);
3019 else if (KFD_GC_VERSION(dev) >= IP_VERSION(11, 0, 0))
3020 device_queue_manager_init_v11(&dqm->asic_ops);
3021 else if (KFD_GC_VERSION(dev) >= IP_VERSION(10, 1, 1))
3022 device_queue_manager_init_v10(&dqm->asic_ops);
3023 else if (KFD_GC_VERSION(dev) >= IP_VERSION(9, 0, 1))
3024 device_queue_manager_init_v9(&dqm->asic_ops);
3025 else {
3026 WARN(1, "Unexpected ASIC family %u",
3027 dev->adev->asic_type);
3028 goto out_free;
3029 }
3030 }
3031
3032 if (init_mqd_managers(dqm))
3033 goto out_free;
3034
3035 if (!dev->kfd->shared_resources.enable_mes && allocate_hiq_sdma_mqd(dqm)) {
3036 dev_err(dev->adev->dev, "Failed to allocate hiq sdma mqd trunk buffer\n");
3037 goto out_free;
3038 }
3039
3040 if (!dqm->ops.initialize(dqm)) {
3041 init_waitqueue_head(&dqm->destroy_wait);
3042 return dqm;
3043 }
3044
3045 out_free:
3046 kfree(dqm);
3047 return NULL;
3048 }
3049
deallocate_hiq_sdma_mqd(struct kfd_node * dev,struct kfd_mem_obj * mqd)3050 static void deallocate_hiq_sdma_mqd(struct kfd_node *dev,
3051 struct kfd_mem_obj *mqd)
3052 {
3053 WARN(!mqd, "No hiq sdma mqd trunk to free");
3054
3055 amdgpu_amdkfd_free_gtt_mem(dev->adev, &mqd->gtt_mem);
3056 }
3057
device_queue_manager_uninit(struct device_queue_manager * dqm)3058 void device_queue_manager_uninit(struct device_queue_manager *dqm)
3059 {
3060 dqm->ops.stop(dqm);
3061 dqm->ops.uninitialize(dqm);
3062 if (!dqm->dev->kfd->shared_resources.enable_mes)
3063 deallocate_hiq_sdma_mqd(dqm->dev, &dqm->hiq_sdma_mqd);
3064 kfree(dqm);
3065 }
3066
kfd_dqm_suspend_bad_queue_mes(struct kfd_node * knode,u32 pasid,u32 doorbell_id)3067 int kfd_dqm_suspend_bad_queue_mes(struct kfd_node *knode, u32 pasid, u32 doorbell_id)
3068 {
3069 struct kfd_process_device *pdd = NULL;
3070 struct kfd_process *p = kfd_lookup_process_by_pasid(pasid, &pdd);
3071 struct device_queue_manager *dqm = knode->dqm;
3072 struct device *dev = dqm->dev->adev->dev;
3073 struct qcm_process_device *qpd;
3074 struct queue *q = NULL;
3075 int ret = 0;
3076
3077 if (!pdd)
3078 return -EINVAL;
3079
3080 dqm_lock(dqm);
3081
3082 if (pdd) {
3083 qpd = &pdd->qpd;
3084
3085 list_for_each_entry(q, &qpd->queues_list, list) {
3086 if (q->doorbell_id == doorbell_id && q->properties.is_active) {
3087 ret = suspend_all_queues_mes(dqm);
3088 if (ret) {
3089 dev_err(dev, "Suspending all queues failed");
3090 goto out;
3091 }
3092
3093 q->properties.is_evicted = true;
3094 q->properties.is_active = false;
3095 decrement_queue_count(dqm, qpd, q);
3096
3097 ret = remove_queue_mes(dqm, q, qpd);
3098 if (ret) {
3099 dev_err(dev, "Removing bad queue failed");
3100 goto out;
3101 }
3102
3103 ret = resume_all_queues_mes(dqm);
3104 if (ret)
3105 dev_err(dev, "Resuming all queues failed");
3106
3107 break;
3108 }
3109 }
3110 }
3111
3112 out:
3113 dqm_unlock(dqm);
3114 kfd_unref_process(p);
3115 return ret;
3116 }
3117
kfd_evict_process_device(struct kfd_process_device * pdd)3118 int kfd_evict_process_device(struct kfd_process_device *pdd)
3119 {
3120 struct device_queue_manager *dqm;
3121 struct kfd_process *p;
3122
3123 p = pdd->process;
3124 dqm = pdd->dev->dqm;
3125
3126 WARN(debug_evictions, "Evicting pid %d", p->lead_thread->pid);
3127
3128 return dqm->ops.evict_process_queues(dqm, &pdd->qpd);
3129 }
3130
reserve_debug_trap_vmid(struct device_queue_manager * dqm,struct qcm_process_device * qpd)3131 int reserve_debug_trap_vmid(struct device_queue_manager *dqm,
3132 struct qcm_process_device *qpd)
3133 {
3134 int r;
3135 struct device *dev = dqm->dev->adev->dev;
3136 int updated_vmid_mask;
3137
3138 if (dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) {
3139 dev_err(dev, "Unsupported on sched_policy: %i\n", dqm->sched_policy);
3140 return -EINVAL;
3141 }
3142
3143 dqm_lock(dqm);
3144
3145 if (dqm->trap_debug_vmid != 0) {
3146 dev_err(dev, "Trap debug id already reserved\n");
3147 r = -EBUSY;
3148 goto out_unlock;
3149 }
3150
3151 r = unmap_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0,
3152 USE_DEFAULT_GRACE_PERIOD, false);
3153 if (r)
3154 goto out_unlock;
3155
3156 updated_vmid_mask = dqm->dev->kfd->shared_resources.compute_vmid_bitmap;
3157 updated_vmid_mask &= ~(1 << dqm->dev->vm_info.last_vmid_kfd);
3158
3159 dqm->dev->kfd->shared_resources.compute_vmid_bitmap = updated_vmid_mask;
3160 dqm->trap_debug_vmid = dqm->dev->vm_info.last_vmid_kfd;
3161 r = set_sched_resources(dqm);
3162 if (r)
3163 goto out_unlock;
3164
3165 r = map_queues_cpsch(dqm);
3166 if (r)
3167 goto out_unlock;
3168
3169 pr_debug("Reserved VMID for trap debug: %i\n", dqm->trap_debug_vmid);
3170
3171 out_unlock:
3172 dqm_unlock(dqm);
3173 return r;
3174 }
3175
3176 /*
3177 * Releases vmid for the trap debugger
3178 */
release_debug_trap_vmid(struct device_queue_manager * dqm,struct qcm_process_device * qpd)3179 int release_debug_trap_vmid(struct device_queue_manager *dqm,
3180 struct qcm_process_device *qpd)
3181 {
3182 struct device *dev = dqm->dev->adev->dev;
3183 int r;
3184 int updated_vmid_mask;
3185 uint32_t trap_debug_vmid;
3186
3187 if (dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) {
3188 dev_err(dev, "Unsupported on sched_policy: %i\n", dqm->sched_policy);
3189 return -EINVAL;
3190 }
3191
3192 dqm_lock(dqm);
3193 trap_debug_vmid = dqm->trap_debug_vmid;
3194 if (dqm->trap_debug_vmid == 0) {
3195 dev_err(dev, "Trap debug id is not reserved\n");
3196 r = -EINVAL;
3197 goto out_unlock;
3198 }
3199
3200 r = unmap_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0,
3201 USE_DEFAULT_GRACE_PERIOD, false);
3202 if (r)
3203 goto out_unlock;
3204
3205 updated_vmid_mask = dqm->dev->kfd->shared_resources.compute_vmid_bitmap;
3206 updated_vmid_mask |= (1 << dqm->dev->vm_info.last_vmid_kfd);
3207
3208 dqm->dev->kfd->shared_resources.compute_vmid_bitmap = updated_vmid_mask;
3209 dqm->trap_debug_vmid = 0;
3210 r = set_sched_resources(dqm);
3211 if (r)
3212 goto out_unlock;
3213
3214 r = map_queues_cpsch(dqm);
3215 if (r)
3216 goto out_unlock;
3217
3218 pr_debug("Released VMID for trap debug: %i\n", trap_debug_vmid);
3219
3220 out_unlock:
3221 dqm_unlock(dqm);
3222 return r;
3223 }
3224
3225 #define QUEUE_NOT_FOUND -1
3226 /* invalidate queue operation in array */
q_array_invalidate(uint32_t num_queues,uint32_t * queue_ids)3227 static void q_array_invalidate(uint32_t num_queues, uint32_t *queue_ids)
3228 {
3229 int i;
3230
3231 for (i = 0; i < num_queues; i++)
3232 queue_ids[i] |= KFD_DBG_QUEUE_INVALID_MASK;
3233 }
3234
3235 /* find queue index in array */
q_array_get_index(unsigned int queue_id,uint32_t num_queues,uint32_t * queue_ids)3236 static int q_array_get_index(unsigned int queue_id,
3237 uint32_t num_queues,
3238 uint32_t *queue_ids)
3239 {
3240 int i;
3241
3242 for (i = 0; i < num_queues; i++)
3243 if (queue_id == (queue_ids[i] & ~KFD_DBG_QUEUE_INVALID_MASK))
3244 return i;
3245
3246 return QUEUE_NOT_FOUND;
3247 }
3248
3249 struct copy_context_work_handler_workarea {
3250 struct work_struct copy_context_work;
3251 struct kfd_process *p;
3252 };
3253
copy_context_work_handler(struct work_struct * work)3254 static void copy_context_work_handler(struct work_struct *work)
3255 {
3256 struct copy_context_work_handler_workarea *workarea;
3257 struct mqd_manager *mqd_mgr;
3258 struct queue *q;
3259 struct mm_struct *mm;
3260 struct kfd_process *p;
3261 uint32_t tmp_ctl_stack_used_size, tmp_save_area_used_size;
3262 int i;
3263
3264 workarea = container_of(work,
3265 struct copy_context_work_handler_workarea,
3266 copy_context_work);
3267
3268 p = workarea->p;
3269 mm = get_task_mm(p->lead_thread);
3270
3271 if (!mm)
3272 return;
3273
3274 kthread_use_mm(mm);
3275 for (i = 0; i < p->n_pdds; i++) {
3276 struct kfd_process_device *pdd = p->pdds[i];
3277 struct device_queue_manager *dqm = pdd->dev->dqm;
3278 struct qcm_process_device *qpd = &pdd->qpd;
3279
3280 list_for_each_entry(q, &qpd->queues_list, list) {
3281 if (q->properties.type != KFD_QUEUE_TYPE_COMPUTE)
3282 continue;
3283
3284 mqd_mgr = dqm->mqd_mgrs[KFD_MQD_TYPE_CP];
3285
3286 /* We ignore the return value from get_wave_state
3287 * because
3288 * i) right now, it always returns 0, and
3289 * ii) if we hit an error, we would continue to the
3290 * next queue anyway.
3291 */
3292 mqd_mgr->get_wave_state(mqd_mgr,
3293 q->mqd,
3294 &q->properties,
3295 (void __user *) q->properties.ctx_save_restore_area_address,
3296 &tmp_ctl_stack_used_size,
3297 &tmp_save_area_used_size);
3298 }
3299 }
3300 kthread_unuse_mm(mm);
3301 mmput(mm);
3302 }
3303
get_queue_ids(uint32_t num_queues,uint32_t * usr_queue_id_array)3304 static uint32_t *get_queue_ids(uint32_t num_queues, uint32_t *usr_queue_id_array)
3305 {
3306 size_t array_size = num_queues * sizeof(uint32_t);
3307
3308 if (!usr_queue_id_array)
3309 return NULL;
3310
3311 return memdup_user(usr_queue_id_array, array_size);
3312 }
3313
resume_queues(struct kfd_process * p,uint32_t num_queues,uint32_t * usr_queue_id_array)3314 int resume_queues(struct kfd_process *p,
3315 uint32_t num_queues,
3316 uint32_t *usr_queue_id_array)
3317 {
3318 uint32_t *queue_ids = NULL;
3319 int total_resumed = 0;
3320 int i;
3321
3322 if (usr_queue_id_array) {
3323 queue_ids = get_queue_ids(num_queues, usr_queue_id_array);
3324
3325 if (IS_ERR(queue_ids))
3326 return PTR_ERR(queue_ids);
3327
3328 /* mask all queues as invalid. unmask per successful request */
3329 q_array_invalidate(num_queues, queue_ids);
3330 }
3331
3332 for (i = 0; i < p->n_pdds; i++) {
3333 struct kfd_process_device *pdd = p->pdds[i];
3334 struct device_queue_manager *dqm = pdd->dev->dqm;
3335 struct device *dev = dqm->dev->adev->dev;
3336 struct qcm_process_device *qpd = &pdd->qpd;
3337 struct queue *q;
3338 int r, per_device_resumed = 0;
3339
3340 dqm_lock(dqm);
3341
3342 /* unmask queues that resume or already resumed as valid */
3343 list_for_each_entry(q, &qpd->queues_list, list) {
3344 int q_idx = QUEUE_NOT_FOUND;
3345
3346 if (queue_ids)
3347 q_idx = q_array_get_index(
3348 q->properties.queue_id,
3349 num_queues,
3350 queue_ids);
3351
3352 if (!queue_ids || q_idx != QUEUE_NOT_FOUND) {
3353 int err = resume_single_queue(dqm, &pdd->qpd, q);
3354
3355 if (queue_ids) {
3356 if (!err) {
3357 queue_ids[q_idx] &=
3358 ~KFD_DBG_QUEUE_INVALID_MASK;
3359 } else {
3360 queue_ids[q_idx] |=
3361 KFD_DBG_QUEUE_ERROR_MASK;
3362 break;
3363 }
3364 }
3365
3366 if (dqm->dev->kfd->shared_resources.enable_mes) {
3367 wake_up_all(&dqm->destroy_wait);
3368 if (!err)
3369 total_resumed++;
3370 } else {
3371 per_device_resumed++;
3372 }
3373 }
3374 }
3375
3376 if (!per_device_resumed) {
3377 dqm_unlock(dqm);
3378 continue;
3379 }
3380
3381 r = execute_queues_cpsch(dqm,
3382 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES,
3383 0,
3384 USE_DEFAULT_GRACE_PERIOD);
3385 if (r) {
3386 dev_err(dev, "Failed to resume process queues\n");
3387 if (queue_ids) {
3388 list_for_each_entry(q, &qpd->queues_list, list) {
3389 int q_idx = q_array_get_index(
3390 q->properties.queue_id,
3391 num_queues,
3392 queue_ids);
3393
3394 /* mask queue as error on resume fail */
3395 if (q_idx != QUEUE_NOT_FOUND)
3396 queue_ids[q_idx] |=
3397 KFD_DBG_QUEUE_ERROR_MASK;
3398 }
3399 }
3400 } else {
3401 wake_up_all(&dqm->destroy_wait);
3402 total_resumed += per_device_resumed;
3403 }
3404
3405 dqm_unlock(dqm);
3406 }
3407
3408 if (queue_ids) {
3409 if (copy_to_user((void __user *)usr_queue_id_array, queue_ids,
3410 num_queues * sizeof(uint32_t)))
3411 pr_err("copy_to_user failed on queue resume\n");
3412
3413 kfree(queue_ids);
3414 }
3415
3416 return total_resumed;
3417 }
3418
suspend_queues(struct kfd_process * p,uint32_t num_queues,uint32_t grace_period,uint64_t exception_clear_mask,uint32_t * usr_queue_id_array)3419 int suspend_queues(struct kfd_process *p,
3420 uint32_t num_queues,
3421 uint32_t grace_period,
3422 uint64_t exception_clear_mask,
3423 uint32_t *usr_queue_id_array)
3424 {
3425 uint32_t *queue_ids = get_queue_ids(num_queues, usr_queue_id_array);
3426 int total_suspended = 0;
3427 int i;
3428
3429 if (IS_ERR(queue_ids))
3430 return PTR_ERR(queue_ids);
3431
3432 /* mask all queues as invalid. umask on successful request */
3433 q_array_invalidate(num_queues, queue_ids);
3434
3435 for (i = 0; i < p->n_pdds; i++) {
3436 struct kfd_process_device *pdd = p->pdds[i];
3437 struct device_queue_manager *dqm = pdd->dev->dqm;
3438 struct device *dev = dqm->dev->adev->dev;
3439 struct qcm_process_device *qpd = &pdd->qpd;
3440 struct queue *q;
3441 int r, per_device_suspended = 0;
3442
3443 mutex_lock(&p->event_mutex);
3444 dqm_lock(dqm);
3445
3446 /* unmask queues that suspend or already suspended */
3447 list_for_each_entry(q, &qpd->queues_list, list) {
3448 int q_idx = q_array_get_index(q->properties.queue_id,
3449 num_queues,
3450 queue_ids);
3451
3452 if (q_idx != QUEUE_NOT_FOUND) {
3453 int err = suspend_single_queue(dqm, pdd, q);
3454 bool is_mes = dqm->dev->kfd->shared_resources.enable_mes;
3455
3456 if (!err) {
3457 queue_ids[q_idx] &= ~KFD_DBG_QUEUE_INVALID_MASK;
3458 if (exception_clear_mask && is_mes)
3459 q->properties.exception_status &=
3460 ~exception_clear_mask;
3461
3462 if (is_mes)
3463 total_suspended++;
3464 else
3465 per_device_suspended++;
3466 } else if (err != -EBUSY) {
3467 r = err;
3468 queue_ids[q_idx] |= KFD_DBG_QUEUE_ERROR_MASK;
3469 break;
3470 }
3471 }
3472 }
3473
3474 if (!per_device_suspended) {
3475 dqm_unlock(dqm);
3476 mutex_unlock(&p->event_mutex);
3477 if (total_suspended)
3478 amdgpu_amdkfd_debug_mem_fence(dqm->dev->adev);
3479 continue;
3480 }
3481
3482 r = execute_queues_cpsch(dqm,
3483 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0,
3484 grace_period);
3485
3486 if (r)
3487 dev_err(dev, "Failed to suspend process queues.\n");
3488 else
3489 total_suspended += per_device_suspended;
3490
3491 list_for_each_entry(q, &qpd->queues_list, list) {
3492 int q_idx = q_array_get_index(q->properties.queue_id,
3493 num_queues, queue_ids);
3494
3495 if (q_idx == QUEUE_NOT_FOUND)
3496 continue;
3497
3498 /* mask queue as error on suspend fail */
3499 if (r)
3500 queue_ids[q_idx] |= KFD_DBG_QUEUE_ERROR_MASK;
3501 else if (exception_clear_mask)
3502 q->properties.exception_status &=
3503 ~exception_clear_mask;
3504 }
3505
3506 dqm_unlock(dqm);
3507 mutex_unlock(&p->event_mutex);
3508 amdgpu_device_flush_hdp(dqm->dev->adev, NULL);
3509 }
3510
3511 if (total_suspended) {
3512 struct copy_context_work_handler_workarea copy_context_worker;
3513
3514 INIT_WORK_ONSTACK(
3515 ©_context_worker.copy_context_work,
3516 copy_context_work_handler);
3517
3518 copy_context_worker.p = p;
3519
3520 schedule_work(©_context_worker.copy_context_work);
3521
3522
3523 flush_work(©_context_worker.copy_context_work);
3524 destroy_work_on_stack(©_context_worker.copy_context_work);
3525 }
3526
3527 if (copy_to_user((void __user *)usr_queue_id_array, queue_ids,
3528 num_queues * sizeof(uint32_t)))
3529 pr_err("copy_to_user failed on queue suspend\n");
3530
3531 kfree(queue_ids);
3532
3533 return total_suspended;
3534 }
3535
set_queue_type_for_user(struct queue_properties * q_props)3536 static uint32_t set_queue_type_for_user(struct queue_properties *q_props)
3537 {
3538 switch (q_props->type) {
3539 case KFD_QUEUE_TYPE_COMPUTE:
3540 return q_props->format == KFD_QUEUE_FORMAT_PM4
3541 ? KFD_IOC_QUEUE_TYPE_COMPUTE
3542 : KFD_IOC_QUEUE_TYPE_COMPUTE_AQL;
3543 case KFD_QUEUE_TYPE_SDMA:
3544 return KFD_IOC_QUEUE_TYPE_SDMA;
3545 case KFD_QUEUE_TYPE_SDMA_XGMI:
3546 return KFD_IOC_QUEUE_TYPE_SDMA_XGMI;
3547 default:
3548 WARN_ONCE(true, "queue type not recognized!");
3549 return 0xffffffff;
3550 };
3551 }
3552
set_queue_snapshot_entry(struct queue * q,uint64_t exception_clear_mask,struct kfd_queue_snapshot_entry * qss_entry)3553 void set_queue_snapshot_entry(struct queue *q,
3554 uint64_t exception_clear_mask,
3555 struct kfd_queue_snapshot_entry *qss_entry)
3556 {
3557 qss_entry->ring_base_address = q->properties.queue_address;
3558 qss_entry->write_pointer_address = (uint64_t)q->properties.write_ptr;
3559 qss_entry->read_pointer_address = (uint64_t)q->properties.read_ptr;
3560 qss_entry->ctx_save_restore_address =
3561 q->properties.ctx_save_restore_area_address;
3562 qss_entry->ctx_save_restore_area_size =
3563 q->properties.ctx_save_restore_area_size;
3564 qss_entry->exception_status = q->properties.exception_status;
3565 qss_entry->queue_id = q->properties.queue_id;
3566 qss_entry->gpu_id = q->device->id;
3567 qss_entry->ring_size = (uint32_t)q->properties.queue_size;
3568 qss_entry->queue_type = set_queue_type_for_user(&q->properties);
3569 q->properties.exception_status &= ~exception_clear_mask;
3570 }
3571
debug_lock_and_unmap(struct device_queue_manager * dqm)3572 int debug_lock_and_unmap(struct device_queue_manager *dqm)
3573 {
3574 struct device *dev = dqm->dev->adev->dev;
3575 int r;
3576
3577 if (dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) {
3578 dev_err(dev, "Unsupported on sched_policy: %i\n", dqm->sched_policy);
3579 return -EINVAL;
3580 }
3581
3582 if (!kfd_dbg_is_per_vmid_supported(dqm->dev))
3583 return 0;
3584
3585 dqm_lock(dqm);
3586
3587 r = unmap_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0, 0, false);
3588 if (r)
3589 dqm_unlock(dqm);
3590
3591 return r;
3592 }
3593
debug_map_and_unlock(struct device_queue_manager * dqm)3594 int debug_map_and_unlock(struct device_queue_manager *dqm)
3595 {
3596 struct device *dev = dqm->dev->adev->dev;
3597 int r;
3598
3599 if (dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) {
3600 dev_err(dev, "Unsupported on sched_policy: %i\n", dqm->sched_policy);
3601 return -EINVAL;
3602 }
3603
3604 if (!kfd_dbg_is_per_vmid_supported(dqm->dev))
3605 return 0;
3606
3607 r = map_queues_cpsch(dqm);
3608
3609 dqm_unlock(dqm);
3610
3611 return r;
3612 }
3613
debug_refresh_runlist(struct device_queue_manager * dqm)3614 int debug_refresh_runlist(struct device_queue_manager *dqm)
3615 {
3616 int r = debug_lock_and_unmap(dqm);
3617
3618 if (r)
3619 return r;
3620
3621 return debug_map_and_unlock(dqm);
3622 }
3623
kfd_dqm_is_queue_in_process(struct device_queue_manager * dqm,struct qcm_process_device * qpd,int doorbell_off,u32 * queue_format)3624 bool kfd_dqm_is_queue_in_process(struct device_queue_manager *dqm,
3625 struct qcm_process_device *qpd,
3626 int doorbell_off, u32 *queue_format)
3627 {
3628 struct queue *q;
3629 bool r = false;
3630
3631 if (!queue_format)
3632 return r;
3633
3634 dqm_lock(dqm);
3635
3636 list_for_each_entry(q, &qpd->queues_list, list) {
3637 if (q->properties.doorbell_off == doorbell_off) {
3638 *queue_format = q->properties.format;
3639 r = true;
3640 goto out;
3641 }
3642 }
3643
3644 out:
3645 dqm_unlock(dqm);
3646 return r;
3647 }
3648 #if defined(CONFIG_DEBUG_FS)
3649
seq_reg_dump(struct seq_file * m,uint32_t (* dump)[2],uint32_t n_regs)3650 static void seq_reg_dump(struct seq_file *m,
3651 uint32_t (*dump)[2], uint32_t n_regs)
3652 {
3653 uint32_t i, count;
3654
3655 for (i = 0, count = 0; i < n_regs; i++) {
3656 if (count == 0 ||
3657 dump[i-1][0] + sizeof(uint32_t) != dump[i][0]) {
3658 seq_printf(m, "%s %08x: %08x",
3659 i ? "\n" : "",
3660 dump[i][0], dump[i][1]);
3661 count = 7;
3662 } else {
3663 seq_printf(m, " %08x", dump[i][1]);
3664 count--;
3665 }
3666 }
3667
3668 seq_puts(m, "\n");
3669 }
3670
dqm_debugfs_hqds(struct seq_file * m,void * data)3671 int dqm_debugfs_hqds(struct seq_file *m, void *data)
3672 {
3673 struct device_queue_manager *dqm = data;
3674 uint32_t xcc_mask = dqm->dev->xcc_mask;
3675 uint32_t (*dump)[2], n_regs;
3676 int pipe, queue;
3677 int r = 0, xcc_id;
3678 uint32_t sdma_engine_start;
3679
3680 if (!dqm->sched_running) {
3681 seq_puts(m, " Device is stopped\n");
3682 return 0;
3683 }
3684
3685 for_each_inst(xcc_id, xcc_mask) {
3686 r = dqm->dev->kfd2kgd->hqd_dump(dqm->dev->adev,
3687 KFD_CIK_HIQ_PIPE,
3688 KFD_CIK_HIQ_QUEUE, &dump,
3689 &n_regs, xcc_id);
3690 if (!r) {
3691 seq_printf(
3692 m,
3693 " Inst %d, HIQ on MEC %d Pipe %d Queue %d\n",
3694 xcc_id,
3695 KFD_CIK_HIQ_PIPE / get_pipes_per_mec(dqm) + 1,
3696 KFD_CIK_HIQ_PIPE % get_pipes_per_mec(dqm),
3697 KFD_CIK_HIQ_QUEUE);
3698 seq_reg_dump(m, dump, n_regs);
3699
3700 kfree(dump);
3701 }
3702
3703 for (pipe = 0; pipe < get_pipes_per_mec(dqm); pipe++) {
3704 int pipe_offset = pipe * get_queues_per_pipe(dqm);
3705
3706 for (queue = 0; queue < get_queues_per_pipe(dqm); queue++) {
3707 if (!test_bit(pipe_offset + queue,
3708 dqm->dev->kfd->shared_resources.cp_queue_bitmap))
3709 continue;
3710
3711 r = dqm->dev->kfd2kgd->hqd_dump(dqm->dev->adev,
3712 pipe, queue,
3713 &dump, &n_regs,
3714 xcc_id);
3715 if (r)
3716 break;
3717
3718 seq_printf(m,
3719 " Inst %d, CP Pipe %d, Queue %d\n",
3720 xcc_id, pipe, queue);
3721 seq_reg_dump(m, dump, n_regs);
3722
3723 kfree(dump);
3724 }
3725 }
3726 }
3727
3728 sdma_engine_start = dqm->dev->node_id * get_num_all_sdma_engines(dqm);
3729 for (pipe = sdma_engine_start;
3730 pipe < (sdma_engine_start + get_num_all_sdma_engines(dqm));
3731 pipe++) {
3732 for (queue = 0;
3733 queue < dqm->dev->kfd->device_info.num_sdma_queues_per_engine;
3734 queue++) {
3735 r = dqm->dev->kfd2kgd->hqd_sdma_dump(
3736 dqm->dev->adev, pipe, queue, &dump, &n_regs);
3737 if (r)
3738 break;
3739
3740 seq_printf(m, " SDMA Engine %d, RLC %d\n",
3741 pipe, queue);
3742 seq_reg_dump(m, dump, n_regs);
3743
3744 kfree(dump);
3745 }
3746 }
3747
3748 return r;
3749 }
3750
dqm_debugfs_hang_hws(struct device_queue_manager * dqm)3751 int dqm_debugfs_hang_hws(struct device_queue_manager *dqm)
3752 {
3753 int r = 0;
3754
3755 dqm_lock(dqm);
3756 r = pm_debugfs_hang_hws(&dqm->packet_mgr);
3757 if (r) {
3758 dqm_unlock(dqm);
3759 return r;
3760 }
3761 dqm->active_runlist = true;
3762 r = execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES,
3763 0, USE_DEFAULT_GRACE_PERIOD);
3764 dqm_unlock(dqm);
3765
3766 return r;
3767 }
3768
3769 #endif
3770