xref: /linux/include/net/cfg80211.h (revision 8be4d31cb8aaeea27bde4b7ddb26e28a89062ebf)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 #ifndef __NET_CFG80211_H
3 #define __NET_CFG80211_H
4 /*
5  * 802.11 device and configuration interface
6  *
7  * Copyright 2006-2010	Johannes Berg <johannes@sipsolutions.net>
8  * Copyright 2013-2014 Intel Mobile Communications GmbH
9  * Copyright 2015-2017	Intel Deutschland GmbH
10  * Copyright (C) 2018-2025 Intel Corporation
11  */
12 
13 #include <linux/ethtool.h>
14 #include <uapi/linux/rfkill.h>
15 #include <linux/netdevice.h>
16 #include <linux/debugfs.h>
17 #include <linux/list.h>
18 #include <linux/bug.h>
19 #include <linux/netlink.h>
20 #include <linux/skbuff.h>
21 #include <linux/nl80211.h>
22 #include <linux/if_ether.h>
23 #include <linux/ieee80211.h>
24 #include <linux/net.h>
25 #include <linux/rfkill.h>
26 #include <net/regulatory.h>
27 
28 /**
29  * DOC: Introduction
30  *
31  * cfg80211 is the configuration API for 802.11 devices in Linux. It bridges
32  * userspace and drivers, and offers some utility functionality associated
33  * with 802.11. cfg80211 must, directly or indirectly via mac80211, be used
34  * by all modern wireless drivers in Linux, so that they offer a consistent
35  * API through nl80211. For backward compatibility, cfg80211 also offers
36  * wireless extensions to userspace, but hides them from drivers completely.
37  *
38  * Additionally, cfg80211 contains code to help enforce regulatory spectrum
39  * use restrictions.
40  */
41 
42 
43 /**
44  * DOC: Device registration
45  *
46  * In order for a driver to use cfg80211, it must register the hardware device
47  * with cfg80211. This happens through a number of hardware capability structs
48  * described below.
49  *
50  * The fundamental structure for each device is the 'wiphy', of which each
51  * instance describes a physical wireless device connected to the system. Each
52  * such wiphy can have zero, one, or many virtual interfaces associated with
53  * it, which need to be identified as such by pointing the network interface's
54  * @ieee80211_ptr pointer to a &struct wireless_dev which further describes
55  * the wireless part of the interface. Normally this struct is embedded in the
56  * network interface's private data area. Drivers can optionally allow creating
57  * or destroying virtual interfaces on the fly, but without at least one or the
58  * ability to create some the wireless device isn't useful.
59  *
60  * Each wiphy structure contains device capability information, and also has
61  * a pointer to the various operations the driver offers. The definitions and
62  * structures here describe these capabilities in detail.
63  */
64 
65 struct wiphy;
66 
67 /*
68  * wireless hardware capability structures
69  */
70 
71 /**
72  * enum ieee80211_channel_flags - channel flags
73  *
74  * Channel flags set by the regulatory control code.
75  *
76  * @IEEE80211_CHAN_DISABLED: This channel is disabled.
77  * @IEEE80211_CHAN_NO_IR: do not initiate radiation, this includes
78  *	sending probe requests or beaconing.
79  * @IEEE80211_CHAN_PSD: Power spectral density (in dBm) is set for this
80  *	channel.
81  * @IEEE80211_CHAN_RADAR: Radar detection is required on this channel.
82  * @IEEE80211_CHAN_NO_HT40PLUS: extension channel above this channel
83  *	is not permitted.
84  * @IEEE80211_CHAN_NO_HT40MINUS: extension channel below this channel
85  *	is not permitted.
86  * @IEEE80211_CHAN_NO_OFDM: OFDM is not allowed on this channel.
87  * @IEEE80211_CHAN_NO_80MHZ: If the driver supports 80 MHz on the band,
88  *	this flag indicates that an 80 MHz channel cannot use this
89  *	channel as the control or any of the secondary channels.
90  *	This may be due to the driver or due to regulatory bandwidth
91  *	restrictions.
92  * @IEEE80211_CHAN_NO_160MHZ: If the driver supports 160 MHz on the band,
93  *	this flag indicates that an 160 MHz channel cannot use this
94  *	channel as the control or any of the secondary channels.
95  *	This may be due to the driver or due to regulatory bandwidth
96  *	restrictions.
97  * @IEEE80211_CHAN_INDOOR_ONLY: see %NL80211_FREQUENCY_ATTR_INDOOR_ONLY
98  * @IEEE80211_CHAN_IR_CONCURRENT: see %NL80211_FREQUENCY_ATTR_IR_CONCURRENT
99  * @IEEE80211_CHAN_NO_20MHZ: 20 MHz bandwidth is not permitted
100  *	on this channel.
101  * @IEEE80211_CHAN_NO_10MHZ: 10 MHz bandwidth is not permitted
102  *	on this channel.
103  * @IEEE80211_CHAN_NO_HE: HE operation is not permitted on this channel.
104  * @IEEE80211_CHAN_1MHZ: 1 MHz bandwidth is permitted
105  *	on this channel.
106  * @IEEE80211_CHAN_2MHZ: 2 MHz bandwidth is permitted
107  *	on this channel.
108  * @IEEE80211_CHAN_4MHZ: 4 MHz bandwidth is permitted
109  *	on this channel.
110  * @IEEE80211_CHAN_8MHZ: 8 MHz bandwidth is permitted
111  *	on this channel.
112  * @IEEE80211_CHAN_16MHZ: 16 MHz bandwidth is permitted
113  *	on this channel.
114  * @IEEE80211_CHAN_NO_320MHZ: If the driver supports 320 MHz on the band,
115  *	this flag indicates that a 320 MHz channel cannot use this
116  *	channel as the control or any of the secondary channels.
117  *	This may be due to the driver or due to regulatory bandwidth
118  *	restrictions.
119  * @IEEE80211_CHAN_NO_EHT: EHT operation is not permitted on this channel.
120  * @IEEE80211_CHAN_DFS_CONCURRENT: See %NL80211_RRF_DFS_CONCURRENT
121  * @IEEE80211_CHAN_NO_6GHZ_VLP_CLIENT: Client connection with VLP AP
122  *	not permitted using this channel
123  * @IEEE80211_CHAN_NO_6GHZ_AFC_CLIENT: Client connection with AFC AP
124  *	not permitted using this channel
125  * @IEEE80211_CHAN_CAN_MONITOR: This channel can be used for monitor
126  *	mode even in the presence of other (regulatory) restrictions,
127  *	even if it is otherwise disabled.
128  * @IEEE80211_CHAN_ALLOW_6GHZ_VLP_AP: Allow using this channel for AP operation
129  *	with very low power (VLP), even if otherwise set to NO_IR.
130  * @IEEE80211_CHAN_ALLOW_20MHZ_ACTIVITY: Allow activity on a 20 MHz channel,
131  *	even if otherwise set to NO_IR.
132  */
133 enum ieee80211_channel_flags {
134 	IEEE80211_CHAN_DISABLED			= BIT(0),
135 	IEEE80211_CHAN_NO_IR			= BIT(1),
136 	IEEE80211_CHAN_PSD			= BIT(2),
137 	IEEE80211_CHAN_RADAR			= BIT(3),
138 	IEEE80211_CHAN_NO_HT40PLUS		= BIT(4),
139 	IEEE80211_CHAN_NO_HT40MINUS		= BIT(5),
140 	IEEE80211_CHAN_NO_OFDM			= BIT(6),
141 	IEEE80211_CHAN_NO_80MHZ			= BIT(7),
142 	IEEE80211_CHAN_NO_160MHZ		= BIT(8),
143 	IEEE80211_CHAN_INDOOR_ONLY		= BIT(9),
144 	IEEE80211_CHAN_IR_CONCURRENT		= BIT(10),
145 	IEEE80211_CHAN_NO_20MHZ			= BIT(11),
146 	IEEE80211_CHAN_NO_10MHZ			= BIT(12),
147 	IEEE80211_CHAN_NO_HE			= BIT(13),
148 	IEEE80211_CHAN_1MHZ			= BIT(14),
149 	IEEE80211_CHAN_2MHZ			= BIT(15),
150 	IEEE80211_CHAN_4MHZ			= BIT(16),
151 	IEEE80211_CHAN_8MHZ			= BIT(17),
152 	IEEE80211_CHAN_16MHZ			= BIT(18),
153 	IEEE80211_CHAN_NO_320MHZ		= BIT(19),
154 	IEEE80211_CHAN_NO_EHT			= BIT(20),
155 	IEEE80211_CHAN_DFS_CONCURRENT		= BIT(21),
156 	IEEE80211_CHAN_NO_6GHZ_VLP_CLIENT	= BIT(22),
157 	IEEE80211_CHAN_NO_6GHZ_AFC_CLIENT	= BIT(23),
158 	IEEE80211_CHAN_CAN_MONITOR		= BIT(24),
159 	IEEE80211_CHAN_ALLOW_6GHZ_VLP_AP	= BIT(25),
160 	IEEE80211_CHAN_ALLOW_20MHZ_ACTIVITY     = BIT(26),
161 };
162 
163 #define IEEE80211_CHAN_NO_HT40 \
164 	(IEEE80211_CHAN_NO_HT40PLUS | IEEE80211_CHAN_NO_HT40MINUS)
165 
166 #define IEEE80211_DFS_MIN_CAC_TIME_MS		60000
167 #define IEEE80211_DFS_MIN_NOP_TIME_MS		(30 * 60 * 1000)
168 
169 /**
170  * struct ieee80211_channel - channel definition
171  *
172  * This structure describes a single channel for use
173  * with cfg80211.
174  *
175  * @center_freq: center frequency in MHz
176  * @freq_offset: offset from @center_freq, in KHz
177  * @hw_value: hardware-specific value for the channel
178  * @flags: channel flags from &enum ieee80211_channel_flags.
179  * @orig_flags: channel flags at registration time, used by regulatory
180  *	code to support devices with additional restrictions
181  * @band: band this channel belongs to.
182  * @max_antenna_gain: maximum antenna gain in dBi
183  * @max_power: maximum transmission power (in dBm)
184  * @max_reg_power: maximum regulatory transmission power (in dBm)
185  * @beacon_found: helper to regulatory code to indicate when a beacon
186  *	has been found on this channel. Use regulatory_hint_found_beacon()
187  *	to enable this, this is useful only on 5 GHz band.
188  * @orig_mag: internal use
189  * @orig_mpwr: internal use
190  * @dfs_state: current state of this channel. Only relevant if radar is required
191  *	on this channel.
192  * @dfs_state_entered: timestamp (jiffies) when the dfs state was entered.
193  * @dfs_cac_ms: DFS CAC time in milliseconds, this is valid for DFS channels.
194  * @psd: power spectral density (in dBm)
195  */
196 struct ieee80211_channel {
197 	enum nl80211_band band;
198 	u32 center_freq;
199 	u16 freq_offset;
200 	u16 hw_value;
201 	u32 flags;
202 	int max_antenna_gain;
203 	int max_power;
204 	int max_reg_power;
205 	bool beacon_found;
206 	u32 orig_flags;
207 	int orig_mag, orig_mpwr;
208 	enum nl80211_dfs_state dfs_state;
209 	unsigned long dfs_state_entered;
210 	unsigned int dfs_cac_ms;
211 	s8 psd;
212 };
213 
214 /**
215  * enum ieee80211_rate_flags - rate flags
216  *
217  * Hardware/specification flags for rates. These are structured
218  * in a way that allows using the same bitrate structure for
219  * different bands/PHY modes.
220  *
221  * @IEEE80211_RATE_SHORT_PREAMBLE: Hardware can send with short
222  *	preamble on this bitrate; only relevant in 2.4GHz band and
223  *	with CCK rates.
224  * @IEEE80211_RATE_MANDATORY_A: This bitrate is a mandatory rate
225  *	when used with 802.11a (on the 5 GHz band); filled by the
226  *	core code when registering the wiphy.
227  * @IEEE80211_RATE_MANDATORY_B: This bitrate is a mandatory rate
228  *	when used with 802.11b (on the 2.4 GHz band); filled by the
229  *	core code when registering the wiphy.
230  * @IEEE80211_RATE_MANDATORY_G: This bitrate is a mandatory rate
231  *	when used with 802.11g (on the 2.4 GHz band); filled by the
232  *	core code when registering the wiphy.
233  * @IEEE80211_RATE_ERP_G: This is an ERP rate in 802.11g mode.
234  * @IEEE80211_RATE_SUPPORTS_5MHZ: Rate can be used in 5 MHz mode
235  * @IEEE80211_RATE_SUPPORTS_10MHZ: Rate can be used in 10 MHz mode
236  */
237 enum ieee80211_rate_flags {
238 	IEEE80211_RATE_SHORT_PREAMBLE	= BIT(0),
239 	IEEE80211_RATE_MANDATORY_A	= BIT(1),
240 	IEEE80211_RATE_MANDATORY_B	= BIT(2),
241 	IEEE80211_RATE_MANDATORY_G	= BIT(3),
242 	IEEE80211_RATE_ERP_G		= BIT(4),
243 	IEEE80211_RATE_SUPPORTS_5MHZ	= BIT(5),
244 	IEEE80211_RATE_SUPPORTS_10MHZ	= BIT(6),
245 };
246 
247 /**
248  * enum ieee80211_bss_type - BSS type filter
249  *
250  * @IEEE80211_BSS_TYPE_ESS: Infrastructure BSS
251  * @IEEE80211_BSS_TYPE_PBSS: Personal BSS
252  * @IEEE80211_BSS_TYPE_IBSS: Independent BSS
253  * @IEEE80211_BSS_TYPE_MBSS: Mesh BSS
254  * @IEEE80211_BSS_TYPE_ANY: Wildcard value for matching any BSS type
255  */
256 enum ieee80211_bss_type {
257 	IEEE80211_BSS_TYPE_ESS,
258 	IEEE80211_BSS_TYPE_PBSS,
259 	IEEE80211_BSS_TYPE_IBSS,
260 	IEEE80211_BSS_TYPE_MBSS,
261 	IEEE80211_BSS_TYPE_ANY
262 };
263 
264 /**
265  * enum ieee80211_privacy - BSS privacy filter
266  *
267  * @IEEE80211_PRIVACY_ON: privacy bit set
268  * @IEEE80211_PRIVACY_OFF: privacy bit clear
269  * @IEEE80211_PRIVACY_ANY: Wildcard value for matching any privacy setting
270  */
271 enum ieee80211_privacy {
272 	IEEE80211_PRIVACY_ON,
273 	IEEE80211_PRIVACY_OFF,
274 	IEEE80211_PRIVACY_ANY
275 };
276 
277 #define IEEE80211_PRIVACY(x)	\
278 	((x) ? IEEE80211_PRIVACY_ON : IEEE80211_PRIVACY_OFF)
279 
280 /**
281  * struct ieee80211_rate - bitrate definition
282  *
283  * This structure describes a bitrate that an 802.11 PHY can
284  * operate with. The two values @hw_value and @hw_value_short
285  * are only for driver use when pointers to this structure are
286  * passed around.
287  *
288  * @flags: rate-specific flags from &enum ieee80211_rate_flags
289  * @bitrate: bitrate in units of 100 Kbps
290  * @hw_value: driver/hardware value for this rate
291  * @hw_value_short: driver/hardware value for this rate when
292  *	short preamble is used
293  */
294 struct ieee80211_rate {
295 	u32 flags;
296 	u16 bitrate;
297 	u16 hw_value, hw_value_short;
298 };
299 
300 /**
301  * struct ieee80211_he_obss_pd - AP settings for spatial reuse
302  *
303  * @enable: is the feature enabled.
304  * @sr_ctrl: The SR Control field of SRP element.
305  * @non_srg_max_offset: non-SRG maximum tx power offset
306  * @min_offset: minimal tx power offset an associated station shall use
307  * @max_offset: maximum tx power offset an associated station shall use
308  * @bss_color_bitmap: bitmap that indicates the BSS color values used by
309  *	members of the SRG
310  * @partial_bssid_bitmap: bitmap that indicates the partial BSSID values
311  *	used by members of the SRG
312  */
313 struct ieee80211_he_obss_pd {
314 	bool enable;
315 	u8 sr_ctrl;
316 	u8 non_srg_max_offset;
317 	u8 min_offset;
318 	u8 max_offset;
319 	u8 bss_color_bitmap[8];
320 	u8 partial_bssid_bitmap[8];
321 };
322 
323 /**
324  * struct cfg80211_he_bss_color - AP settings for BSS coloring
325  *
326  * @color: the current color.
327  * @enabled: HE BSS color is used
328  * @partial: define the AID equation.
329  */
330 struct cfg80211_he_bss_color {
331 	u8 color;
332 	bool enabled;
333 	bool partial;
334 };
335 
336 /**
337  * struct ieee80211_sta_ht_cap - STA's HT capabilities
338  *
339  * This structure describes most essential parameters needed
340  * to describe 802.11n HT capabilities for an STA.
341  *
342  * @ht_supported: is HT supported by the STA
343  * @cap: HT capabilities map as described in 802.11n spec
344  * @ampdu_factor: Maximum A-MPDU length factor
345  * @ampdu_density: Minimum A-MPDU spacing
346  * @mcs: Supported MCS rates
347  */
348 struct ieee80211_sta_ht_cap {
349 	u16 cap; /* use IEEE80211_HT_CAP_ */
350 	bool ht_supported;
351 	u8 ampdu_factor;
352 	u8 ampdu_density;
353 	struct ieee80211_mcs_info mcs;
354 };
355 
356 /**
357  * struct ieee80211_sta_vht_cap - STA's VHT capabilities
358  *
359  * This structure describes most essential parameters needed
360  * to describe 802.11ac VHT capabilities for an STA.
361  *
362  * @vht_supported: is VHT supported by the STA
363  * @cap: VHT capabilities map as described in 802.11ac spec
364  * @vht_mcs: Supported VHT MCS rates
365  */
366 struct ieee80211_sta_vht_cap {
367 	bool vht_supported;
368 	u32 cap; /* use IEEE80211_VHT_CAP_ */
369 	struct ieee80211_vht_mcs_info vht_mcs;
370 };
371 
372 #define IEEE80211_HE_PPE_THRES_MAX_LEN		25
373 
374 /**
375  * struct ieee80211_sta_he_cap - STA's HE capabilities
376  *
377  * This structure describes most essential parameters needed
378  * to describe 802.11ax HE capabilities for a STA.
379  *
380  * @has_he: true iff HE data is valid.
381  * @he_cap_elem: Fixed portion of the HE capabilities element.
382  * @he_mcs_nss_supp: The supported NSS/MCS combinations.
383  * @ppe_thres: Holds the PPE Thresholds data.
384  */
385 struct ieee80211_sta_he_cap {
386 	bool has_he;
387 	struct ieee80211_he_cap_elem he_cap_elem;
388 	struct ieee80211_he_mcs_nss_supp he_mcs_nss_supp;
389 	u8 ppe_thres[IEEE80211_HE_PPE_THRES_MAX_LEN];
390 };
391 
392 /**
393  * struct ieee80211_eht_mcs_nss_supp - EHT max supported NSS per MCS
394  *
395  * See P802.11be_D1.3 Table 9-401k - "Subfields of the Supported EHT-MCS
396  * and NSS Set field"
397  *
398  * @only_20mhz: MCS/NSS support for 20 MHz-only STA.
399  * @bw: MCS/NSS support for 80, 160 and 320 MHz
400  * @bw._80: MCS/NSS support for BW <= 80 MHz
401  * @bw._160: MCS/NSS support for BW = 160 MHz
402  * @bw._320: MCS/NSS support for BW = 320 MHz
403  */
404 struct ieee80211_eht_mcs_nss_supp {
405 	union {
406 		struct ieee80211_eht_mcs_nss_supp_20mhz_only only_20mhz;
407 		struct {
408 			struct ieee80211_eht_mcs_nss_supp_bw _80;
409 			struct ieee80211_eht_mcs_nss_supp_bw _160;
410 			struct ieee80211_eht_mcs_nss_supp_bw _320;
411 		} __packed bw;
412 	} __packed;
413 } __packed;
414 
415 #define IEEE80211_EHT_PPE_THRES_MAX_LEN		32
416 
417 /**
418  * struct ieee80211_sta_eht_cap - STA's EHT capabilities
419  *
420  * This structure describes most essential parameters needed
421  * to describe 802.11be EHT capabilities for a STA.
422  *
423  * @has_eht: true iff EHT data is valid.
424  * @eht_cap_elem: Fixed portion of the eht capabilities element.
425  * @eht_mcs_nss_supp: The supported NSS/MCS combinations.
426  * @eht_ppe_thres: Holds the PPE Thresholds data.
427  */
428 struct ieee80211_sta_eht_cap {
429 	bool has_eht;
430 	struct ieee80211_eht_cap_elem_fixed eht_cap_elem;
431 	struct ieee80211_eht_mcs_nss_supp eht_mcs_nss_supp;
432 	u8 eht_ppe_thres[IEEE80211_EHT_PPE_THRES_MAX_LEN];
433 };
434 
435 /* sparse defines __CHECKER__; see Documentation/dev-tools/sparse.rst */
436 #ifdef __CHECKER__
437 /*
438  * This is used to mark the sband->iftype_data pointer which is supposed
439  * to be an array with special access semantics (per iftype), but a lot
440  * of code got it wrong in the past, so with this marking sparse will be
441  * noisy when the pointer is used directly.
442  */
443 # define __iftd		__attribute__((noderef, address_space(__iftype_data)))
444 #else
445 # define __iftd
446 #endif /* __CHECKER__ */
447 
448 /**
449  * struct ieee80211_sband_iftype_data - sband data per interface type
450  *
451  * This structure encapsulates sband data that is relevant for the
452  * interface types defined in @types_mask.  Each type in the
453  * @types_mask must be unique across all instances of iftype_data.
454  *
455  * @types_mask: interface types mask
456  * @he_cap: holds the HE capabilities
457  * @he_6ghz_capa: HE 6 GHz capabilities, must be filled in for a
458  *	6 GHz band channel (and 0 may be valid value).
459  * @eht_cap: STA's EHT capabilities
460  * @vendor_elems: vendor element(s) to advertise
461  * @vendor_elems.data: vendor element(s) data
462  * @vendor_elems.len: vendor element(s) length
463  */
464 struct ieee80211_sband_iftype_data {
465 	u16 types_mask;
466 	struct ieee80211_sta_he_cap he_cap;
467 	struct ieee80211_he_6ghz_capa he_6ghz_capa;
468 	struct ieee80211_sta_eht_cap eht_cap;
469 	struct {
470 		const u8 *data;
471 		unsigned int len;
472 	} vendor_elems;
473 };
474 
475 /**
476  * enum ieee80211_edmg_bw_config - allowed channel bandwidth configurations
477  *
478  * @IEEE80211_EDMG_BW_CONFIG_4: 2.16GHz
479  * @IEEE80211_EDMG_BW_CONFIG_5: 2.16GHz and 4.32GHz
480  * @IEEE80211_EDMG_BW_CONFIG_6: 2.16GHz, 4.32GHz and 6.48GHz
481  * @IEEE80211_EDMG_BW_CONFIG_7: 2.16GHz, 4.32GHz, 6.48GHz and 8.64GHz
482  * @IEEE80211_EDMG_BW_CONFIG_8: 2.16GHz and 2.16GHz + 2.16GHz
483  * @IEEE80211_EDMG_BW_CONFIG_9: 2.16GHz, 4.32GHz and 2.16GHz + 2.16GHz
484  * @IEEE80211_EDMG_BW_CONFIG_10: 2.16GHz, 4.32GHz, 6.48GHz and 2.16GHz+2.16GHz
485  * @IEEE80211_EDMG_BW_CONFIG_11: 2.16GHz, 4.32GHz, 6.48GHz, 8.64GHz and
486  *	2.16GHz+2.16GHz
487  * @IEEE80211_EDMG_BW_CONFIG_12: 2.16GHz, 2.16GHz + 2.16GHz and
488  *	4.32GHz + 4.32GHz
489  * @IEEE80211_EDMG_BW_CONFIG_13: 2.16GHz, 4.32GHz, 2.16GHz + 2.16GHz and
490  *	4.32GHz + 4.32GHz
491  * @IEEE80211_EDMG_BW_CONFIG_14: 2.16GHz, 4.32GHz, 6.48GHz, 2.16GHz + 2.16GHz
492  *	and 4.32GHz + 4.32GHz
493  * @IEEE80211_EDMG_BW_CONFIG_15: 2.16GHz, 4.32GHz, 6.48GHz, 8.64GHz,
494  *	2.16GHz + 2.16GHz and 4.32GHz + 4.32GHz
495  */
496 enum ieee80211_edmg_bw_config {
497 	IEEE80211_EDMG_BW_CONFIG_4	= 4,
498 	IEEE80211_EDMG_BW_CONFIG_5	= 5,
499 	IEEE80211_EDMG_BW_CONFIG_6	= 6,
500 	IEEE80211_EDMG_BW_CONFIG_7	= 7,
501 	IEEE80211_EDMG_BW_CONFIG_8	= 8,
502 	IEEE80211_EDMG_BW_CONFIG_9	= 9,
503 	IEEE80211_EDMG_BW_CONFIG_10	= 10,
504 	IEEE80211_EDMG_BW_CONFIG_11	= 11,
505 	IEEE80211_EDMG_BW_CONFIG_12	= 12,
506 	IEEE80211_EDMG_BW_CONFIG_13	= 13,
507 	IEEE80211_EDMG_BW_CONFIG_14	= 14,
508 	IEEE80211_EDMG_BW_CONFIG_15	= 15,
509 };
510 
511 /**
512  * struct ieee80211_edmg - EDMG configuration
513  *
514  * This structure describes most essential parameters needed
515  * to describe 802.11ay EDMG configuration
516  *
517  * @channels: bitmap that indicates the 2.16 GHz channel(s)
518  *	that are allowed to be used for transmissions.
519  *	Bit 0 indicates channel 1, bit 1 indicates channel 2, etc.
520  *	Set to 0 indicate EDMG not supported.
521  * @bw_config: Channel BW Configuration subfield encodes
522  *	the allowed channel bandwidth configurations
523  */
524 struct ieee80211_edmg {
525 	u8 channels;
526 	enum ieee80211_edmg_bw_config bw_config;
527 };
528 
529 /**
530  * struct ieee80211_sta_s1g_cap - STA's S1G capabilities
531  *
532  * This structure describes most essential parameters needed
533  * to describe 802.11ah S1G capabilities for a STA.
534  *
535  * @s1g: is STA an S1G STA
536  * @cap: S1G capabilities information
537  * @nss_mcs: Supported NSS MCS set
538  */
539 struct ieee80211_sta_s1g_cap {
540 	bool s1g;
541 	u8 cap[10]; /* use S1G_CAPAB_ */
542 	u8 nss_mcs[5];
543 };
544 
545 /**
546  * struct ieee80211_supported_band - frequency band definition
547  *
548  * This structure describes a frequency band a wiphy
549  * is able to operate in.
550  *
551  * @channels: Array of channels the hardware can operate with
552  *	in this band.
553  * @band: the band this structure represents
554  * @n_channels: Number of channels in @channels
555  * @bitrates: Array of bitrates the hardware can operate with
556  *	in this band. Must be sorted to give a valid "supported
557  *	rates" IE, i.e. CCK rates first, then OFDM.
558  * @n_bitrates: Number of bitrates in @bitrates
559  * @ht_cap: HT capabilities in this band
560  * @vht_cap: VHT capabilities in this band
561  * @s1g_cap: S1G capabilities in this band
562  * @edmg_cap: EDMG capabilities in this band
563  * @s1g_cap: S1G capabilities in this band (S1G band only, of course)
564  * @n_iftype_data: number of iftype data entries
565  * @iftype_data: interface type data entries.  Note that the bits in
566  *	@types_mask inside this structure cannot overlap (i.e. only
567  *	one occurrence of each type is allowed across all instances of
568  *	iftype_data).
569  */
570 struct ieee80211_supported_band {
571 	struct ieee80211_channel *channels;
572 	struct ieee80211_rate *bitrates;
573 	enum nl80211_band band;
574 	int n_channels;
575 	int n_bitrates;
576 	struct ieee80211_sta_ht_cap ht_cap;
577 	struct ieee80211_sta_vht_cap vht_cap;
578 	struct ieee80211_sta_s1g_cap s1g_cap;
579 	struct ieee80211_edmg edmg_cap;
580 	u16 n_iftype_data;
581 	const struct ieee80211_sband_iftype_data __iftd *iftype_data;
582 };
583 
584 /**
585  * _ieee80211_set_sband_iftype_data - set sband iftype data array
586  * @sband: the sband to initialize
587  * @iftd: the iftype data array pointer
588  * @n_iftd: the length of the iftype data array
589  *
590  * Set the sband iftype data array; use this where the length cannot
591  * be derived from the ARRAY_SIZE() of the argument, but prefer
592  * ieee80211_set_sband_iftype_data() where it can be used.
593  */
594 static inline void
_ieee80211_set_sband_iftype_data(struct ieee80211_supported_band * sband,const struct ieee80211_sband_iftype_data * iftd,u16 n_iftd)595 _ieee80211_set_sband_iftype_data(struct ieee80211_supported_band *sband,
596 				 const struct ieee80211_sband_iftype_data *iftd,
597 				 u16 n_iftd)
598 {
599 	sband->iftype_data = (const void __iftd __force *)iftd;
600 	sband->n_iftype_data = n_iftd;
601 }
602 
603 /**
604  * ieee80211_set_sband_iftype_data - set sband iftype data array
605  * @sband: the sband to initialize
606  * @iftd: the iftype data array
607  */
608 #define ieee80211_set_sband_iftype_data(sband, iftd)	\
609 	_ieee80211_set_sband_iftype_data(sband, iftd, ARRAY_SIZE(iftd))
610 
611 /**
612  * for_each_sband_iftype_data - iterate sband iftype data entries
613  * @sband: the sband whose iftype_data array to iterate
614  * @i: iterator counter
615  * @iftd: iftype data pointer to set
616  */
617 #define for_each_sband_iftype_data(sband, i, iftd)				\
618 	for (i = 0, iftd = (const void __force *)&(sband)->iftype_data[i];	\
619 	     i < (sband)->n_iftype_data;					\
620 	     i++, iftd = (const void __force *)&(sband)->iftype_data[i])
621 
622 /**
623  * ieee80211_get_sband_iftype_data - return sband data for a given iftype
624  * @sband: the sband to search for the STA on
625  * @iftype: enum nl80211_iftype
626  *
627  * Return: pointer to struct ieee80211_sband_iftype_data, or NULL is none found
628  */
629 static inline const struct ieee80211_sband_iftype_data *
ieee80211_get_sband_iftype_data(const struct ieee80211_supported_band * sband,u8 iftype)630 ieee80211_get_sband_iftype_data(const struct ieee80211_supported_band *sband,
631 				u8 iftype)
632 {
633 	const struct ieee80211_sband_iftype_data *data;
634 	int i;
635 
636 	if (WARN_ON(iftype >= NUM_NL80211_IFTYPES))
637 		return NULL;
638 
639 	if (iftype == NL80211_IFTYPE_AP_VLAN)
640 		iftype = NL80211_IFTYPE_AP;
641 
642 	for_each_sband_iftype_data(sband, i, data) {
643 		if (data->types_mask & BIT(iftype))
644 			return data;
645 	}
646 
647 	return NULL;
648 }
649 
650 /**
651  * ieee80211_get_he_iftype_cap - return HE capabilities for an sband's iftype
652  * @sband: the sband to search for the iftype on
653  * @iftype: enum nl80211_iftype
654  *
655  * Return: pointer to the struct ieee80211_sta_he_cap, or NULL is none found
656  */
657 static inline const struct ieee80211_sta_he_cap *
ieee80211_get_he_iftype_cap(const struct ieee80211_supported_band * sband,u8 iftype)658 ieee80211_get_he_iftype_cap(const struct ieee80211_supported_band *sband,
659 			    u8 iftype)
660 {
661 	const struct ieee80211_sband_iftype_data *data =
662 		ieee80211_get_sband_iftype_data(sband, iftype);
663 
664 	if (data && data->he_cap.has_he)
665 		return &data->he_cap;
666 
667 	return NULL;
668 }
669 
670 /**
671  * ieee80211_get_he_6ghz_capa - return HE 6 GHz capabilities
672  * @sband: the sband to search for the STA on
673  * @iftype: the iftype to search for
674  *
675  * Return: the 6GHz capabilities
676  */
677 static inline __le16
ieee80211_get_he_6ghz_capa(const struct ieee80211_supported_band * sband,enum nl80211_iftype iftype)678 ieee80211_get_he_6ghz_capa(const struct ieee80211_supported_band *sband,
679 			   enum nl80211_iftype iftype)
680 {
681 	const struct ieee80211_sband_iftype_data *data =
682 		ieee80211_get_sband_iftype_data(sband, iftype);
683 
684 	if (WARN_ON(!data || !data->he_cap.has_he))
685 		return 0;
686 
687 	return data->he_6ghz_capa.capa;
688 }
689 
690 /**
691  * ieee80211_get_eht_iftype_cap - return ETH capabilities for an sband's iftype
692  * @sband: the sband to search for the iftype on
693  * @iftype: enum nl80211_iftype
694  *
695  * Return: pointer to the struct ieee80211_sta_eht_cap, or NULL is none found
696  */
697 static inline const struct ieee80211_sta_eht_cap *
ieee80211_get_eht_iftype_cap(const struct ieee80211_supported_band * sband,enum nl80211_iftype iftype)698 ieee80211_get_eht_iftype_cap(const struct ieee80211_supported_band *sband,
699 			     enum nl80211_iftype iftype)
700 {
701 	const struct ieee80211_sband_iftype_data *data =
702 		ieee80211_get_sband_iftype_data(sband, iftype);
703 
704 	if (data && data->eht_cap.has_eht)
705 		return &data->eht_cap;
706 
707 	return NULL;
708 }
709 
710 /**
711  * wiphy_read_of_freq_limits - read frequency limits from device tree
712  *
713  * @wiphy: the wireless device to get extra limits for
714  *
715  * Some devices may have extra limitations specified in DT. This may be useful
716  * for chipsets that normally support more bands but are limited due to board
717  * design (e.g. by antennas or external power amplifier).
718  *
719  * This function reads info from DT and uses it to *modify* channels (disable
720  * unavailable ones). It's usually a *bad* idea to use it in drivers with
721  * shared channel data as DT limitations are device specific. You should make
722  * sure to call it only if channels in wiphy are copied and can be modified
723  * without affecting other devices.
724  *
725  * As this function access device node it has to be called after set_wiphy_dev.
726  * It also modifies channels so they have to be set first.
727  * If using this helper, call it before wiphy_register().
728  */
729 #ifdef CONFIG_OF
730 void wiphy_read_of_freq_limits(struct wiphy *wiphy);
731 #else /* CONFIG_OF */
wiphy_read_of_freq_limits(struct wiphy * wiphy)732 static inline void wiphy_read_of_freq_limits(struct wiphy *wiphy)
733 {
734 }
735 #endif /* !CONFIG_OF */
736 
737 
738 /*
739  * Wireless hardware/device configuration structures and methods
740  */
741 
742 /**
743  * DOC: Actions and configuration
744  *
745  * Each wireless device and each virtual interface offer a set of configuration
746  * operations and other actions that are invoked by userspace. Each of these
747  * actions is described in the operations structure, and the parameters these
748  * operations use are described separately.
749  *
750  * Additionally, some operations are asynchronous and expect to get status
751  * information via some functions that drivers need to call.
752  *
753  * Scanning and BSS list handling with its associated functionality is described
754  * in a separate chapter.
755  */
756 
757 #define VHT_MUMIMO_GROUPS_DATA_LEN (WLAN_MEMBERSHIP_LEN +\
758 				    WLAN_USER_POSITION_LEN)
759 
760 /**
761  * struct vif_params - describes virtual interface parameters
762  * @flags: monitor interface flags, unchanged if 0, otherwise
763  *	%MONITOR_FLAG_CHANGED will be set
764  * @use_4addr: use 4-address frames
765  * @macaddr: address to use for this virtual interface.
766  *	If this parameter is set to zero address the driver may
767  *	determine the address as needed.
768  *	This feature is only fully supported by drivers that enable the
769  *	%NL80211_FEATURE_MAC_ON_CREATE flag.  Others may support creating
770  **	only p2p devices with specified MAC.
771  * @vht_mumimo_groups: MU-MIMO groupID, used for monitoring MU-MIMO packets
772  *	belonging to that MU-MIMO groupID; %NULL if not changed
773  * @vht_mumimo_follow_addr: MU-MIMO follow address, used for monitoring
774  *	MU-MIMO packets going to the specified station; %NULL if not changed
775  */
776 struct vif_params {
777 	u32 flags;
778 	int use_4addr;
779 	u8 macaddr[ETH_ALEN];
780 	const u8 *vht_mumimo_groups;
781 	const u8 *vht_mumimo_follow_addr;
782 };
783 
784 /**
785  * struct key_params - key information
786  *
787  * Information about a key
788  *
789  * @key: key material
790  * @key_len: length of key material
791  * @cipher: cipher suite selector
792  * @seq: sequence counter (IV/PN) for TKIP and CCMP keys, only used
793  *	with the get_key() callback, must be in little endian,
794  *	length given by @seq_len.
795  * @seq_len: length of @seq.
796  * @vlan_id: vlan_id for VLAN group key (if nonzero)
797  * @mode: key install mode (RX_TX, NO_TX or SET_TX)
798  */
799 struct key_params {
800 	const u8 *key;
801 	const u8 *seq;
802 	int key_len;
803 	int seq_len;
804 	u16 vlan_id;
805 	u32 cipher;
806 	enum nl80211_key_mode mode;
807 };
808 
809 /**
810  * struct cfg80211_chan_def - channel definition
811  * @chan: the (control) channel
812  * @width: channel width
813  * @center_freq1: center frequency of first segment
814  * @center_freq2: center frequency of second segment
815  *	(only with 80+80 MHz)
816  * @edmg: define the EDMG channels configuration.
817  *	If edmg is requested (i.e. the .channels member is non-zero),
818  *	chan will define the primary channel and all other
819  *	parameters are ignored.
820  * @freq1_offset: offset from @center_freq1, in KHz
821  * @punctured: mask of the punctured 20 MHz subchannels, with
822  *	bits turned on being disabled (punctured); numbered
823  *	from lower to higher frequency (like in the spec)
824  */
825 struct cfg80211_chan_def {
826 	struct ieee80211_channel *chan;
827 	enum nl80211_chan_width width;
828 	u32 center_freq1;
829 	u32 center_freq2;
830 	struct ieee80211_edmg edmg;
831 	u16 freq1_offset;
832 	u16 punctured;
833 };
834 
835 /*
836  * cfg80211_bitrate_mask - masks for bitrate control
837  */
838 struct cfg80211_bitrate_mask {
839 	struct {
840 		u32 legacy;
841 		u8 ht_mcs[IEEE80211_HT_MCS_MASK_LEN];
842 		u16 vht_mcs[NL80211_VHT_NSS_MAX];
843 		u16 he_mcs[NL80211_HE_NSS_MAX];
844 		enum nl80211_txrate_gi gi;
845 		enum nl80211_he_gi he_gi;
846 		enum nl80211_he_ltf he_ltf;
847 	} control[NUM_NL80211_BANDS];
848 };
849 
850 
851 /**
852  * struct cfg80211_tid_cfg - TID specific configuration
853  * @config_override: Flag to notify driver to reset TID configuration
854  *	of the peer.
855  * @tids: bitmap of TIDs to modify
856  * @mask: bitmap of attributes indicating which parameter changed,
857  *	similar to &nl80211_tid_config_supp.
858  * @noack: noack configuration value for the TID
859  * @retry_long: retry count value
860  * @retry_short: retry count value
861  * @ampdu: Enable/Disable MPDU aggregation
862  * @rtscts: Enable/Disable RTS/CTS
863  * @amsdu: Enable/Disable MSDU aggregation
864  * @txrate_type: Tx bitrate mask type
865  * @txrate_mask: Tx bitrate to be applied for the TID
866  */
867 struct cfg80211_tid_cfg {
868 	bool config_override;
869 	u8 tids;
870 	u64 mask;
871 	enum nl80211_tid_config noack;
872 	u8 retry_long, retry_short;
873 	enum nl80211_tid_config ampdu;
874 	enum nl80211_tid_config rtscts;
875 	enum nl80211_tid_config amsdu;
876 	enum nl80211_tx_rate_setting txrate_type;
877 	struct cfg80211_bitrate_mask txrate_mask;
878 };
879 
880 /**
881  * struct cfg80211_tid_config - TID configuration
882  * @peer: Station's MAC address
883  * @n_tid_conf: Number of TID specific configurations to be applied
884  * @tid_conf: Configuration change info
885  */
886 struct cfg80211_tid_config {
887 	const u8 *peer;
888 	u32 n_tid_conf;
889 	struct cfg80211_tid_cfg tid_conf[] __counted_by(n_tid_conf);
890 };
891 
892 /**
893  * struct cfg80211_fils_aad - FILS AAD data
894  * @macaddr: STA MAC address
895  * @kek: FILS KEK
896  * @kek_len: FILS KEK length
897  * @snonce: STA Nonce
898  * @anonce: AP Nonce
899  */
900 struct cfg80211_fils_aad {
901 	const u8 *macaddr;
902 	const u8 *kek;
903 	u8 kek_len;
904 	const u8 *snonce;
905 	const u8 *anonce;
906 };
907 
908 /**
909  * struct cfg80211_set_hw_timestamp - enable/disable HW timestamping
910  * @macaddr: peer MAC address. NULL to enable/disable HW timestamping for all
911  *	addresses.
912  * @enable: if set, enable HW timestamping for the specified MAC address.
913  *	Otherwise disable HW timestamping for the specified MAC address.
914  */
915 struct cfg80211_set_hw_timestamp {
916 	const u8 *macaddr;
917 	bool enable;
918 };
919 
920 /**
921  * cfg80211_get_chandef_type - return old channel type from chandef
922  * @chandef: the channel definition
923  *
924  * Return: The old channel type (NOHT, HT20, HT40+/-) from a given
925  * chandef, which must have a bandwidth allowing this conversion.
926  */
927 static inline enum nl80211_channel_type
cfg80211_get_chandef_type(const struct cfg80211_chan_def * chandef)928 cfg80211_get_chandef_type(const struct cfg80211_chan_def *chandef)
929 {
930 	switch (chandef->width) {
931 	case NL80211_CHAN_WIDTH_20_NOHT:
932 		return NL80211_CHAN_NO_HT;
933 	case NL80211_CHAN_WIDTH_20:
934 		return NL80211_CHAN_HT20;
935 	case NL80211_CHAN_WIDTH_40:
936 		if (chandef->center_freq1 > chandef->chan->center_freq)
937 			return NL80211_CHAN_HT40PLUS;
938 		return NL80211_CHAN_HT40MINUS;
939 	default:
940 		WARN_ON(1);
941 		return NL80211_CHAN_NO_HT;
942 	}
943 }
944 
945 /**
946  * cfg80211_chandef_create - create channel definition using channel type
947  * @chandef: the channel definition struct to fill
948  * @channel: the control channel
949  * @chantype: the channel type
950  *
951  * Given a channel type, create a channel definition.
952  */
953 void cfg80211_chandef_create(struct cfg80211_chan_def *chandef,
954 			     struct ieee80211_channel *channel,
955 			     enum nl80211_channel_type chantype);
956 
957 /**
958  * cfg80211_chandef_identical - check if two channel definitions are identical
959  * @chandef1: first channel definition
960  * @chandef2: second channel definition
961  *
962  * Return: %true if the channels defined by the channel definitions are
963  * identical, %false otherwise.
964  */
965 static inline bool
cfg80211_chandef_identical(const struct cfg80211_chan_def * chandef1,const struct cfg80211_chan_def * chandef2)966 cfg80211_chandef_identical(const struct cfg80211_chan_def *chandef1,
967 			   const struct cfg80211_chan_def *chandef2)
968 {
969 	return (chandef1->chan == chandef2->chan &&
970 		chandef1->width == chandef2->width &&
971 		chandef1->center_freq1 == chandef2->center_freq1 &&
972 		chandef1->freq1_offset == chandef2->freq1_offset &&
973 		chandef1->center_freq2 == chandef2->center_freq2 &&
974 		chandef1->punctured == chandef2->punctured);
975 }
976 
977 /**
978  * cfg80211_chandef_is_edmg - check if chandef represents an EDMG channel
979  *
980  * @chandef: the channel definition
981  *
982  * Return: %true if EDMG defined, %false otherwise.
983  */
984 static inline bool
cfg80211_chandef_is_edmg(const struct cfg80211_chan_def * chandef)985 cfg80211_chandef_is_edmg(const struct cfg80211_chan_def *chandef)
986 {
987 	return chandef->edmg.channels || chandef->edmg.bw_config;
988 }
989 
990 /**
991  * cfg80211_chandef_compatible - check if two channel definitions are compatible
992  * @chandef1: first channel definition
993  * @chandef2: second channel definition
994  *
995  * Return: %NULL if the given channel definitions are incompatible,
996  * chandef1 or chandef2 otherwise.
997  */
998 const struct cfg80211_chan_def *
999 cfg80211_chandef_compatible(const struct cfg80211_chan_def *chandef1,
1000 			    const struct cfg80211_chan_def *chandef2);
1001 
1002 /**
1003  * nl80211_chan_width_to_mhz - get the channel width in MHz
1004  * @chan_width: the channel width from &enum nl80211_chan_width
1005  *
1006  * Return: channel width in MHz if the chan_width from &enum nl80211_chan_width
1007  * is valid. -1 otherwise.
1008  */
1009 int nl80211_chan_width_to_mhz(enum nl80211_chan_width chan_width);
1010 
1011 /**
1012  * cfg80211_chandef_get_width - return chandef width in MHz
1013  * @c: chandef to return bandwidth for
1014  * Return: channel width in MHz for the given chandef; note that it returns
1015  *	80 for 80+80 configurations
1016  */
cfg80211_chandef_get_width(const struct cfg80211_chan_def * c)1017 static inline int cfg80211_chandef_get_width(const struct cfg80211_chan_def *c)
1018 {
1019 	return nl80211_chan_width_to_mhz(c->width);
1020 }
1021 
1022 /**
1023  * cfg80211_chandef_valid - check if a channel definition is valid
1024  * @chandef: the channel definition to check
1025  * Return: %true if the channel definition is valid. %false otherwise.
1026  */
1027 bool cfg80211_chandef_valid(const struct cfg80211_chan_def *chandef);
1028 
1029 /**
1030  * cfg80211_chandef_usable - check if secondary channels can be used
1031  * @wiphy: the wiphy to validate against
1032  * @chandef: the channel definition to check
1033  * @prohibited_flags: the regulatory channel flags that must not be set
1034  * Return: %true if secondary channels are usable. %false otherwise.
1035  */
1036 bool cfg80211_chandef_usable(struct wiphy *wiphy,
1037 			     const struct cfg80211_chan_def *chandef,
1038 			     u32 prohibited_flags);
1039 
1040 /**
1041  * cfg80211_chandef_dfs_required - checks if radar detection is required
1042  * @wiphy: the wiphy to validate against
1043  * @chandef: the channel definition to check
1044  * @iftype: the interface type as specified in &enum nl80211_iftype
1045  * Returns:
1046  *	1 if radar detection is required, 0 if it is not, < 0 on error
1047  */
1048 int cfg80211_chandef_dfs_required(struct wiphy *wiphy,
1049 				  const struct cfg80211_chan_def *chandef,
1050 				  enum nl80211_iftype iftype);
1051 
1052 /**
1053  * cfg80211_chandef_dfs_usable - checks if chandef is DFS usable and we
1054  *				 can/need start CAC on such channel
1055  * @wiphy: the wiphy to validate against
1056  * @chandef: the channel definition to check
1057  *
1058  * Return: true if all channels available and at least
1059  *	   one channel requires CAC (NL80211_DFS_USABLE)
1060  */
1061 bool cfg80211_chandef_dfs_usable(struct wiphy *wiphy,
1062 				 const struct cfg80211_chan_def *chandef);
1063 
1064 /**
1065  * cfg80211_chandef_dfs_cac_time - get the DFS CAC time (in ms) for given
1066  *				   channel definition
1067  * @wiphy: the wiphy to validate against
1068  * @chandef: the channel definition to check
1069  *
1070  * Returns: DFS CAC time (in ms) which applies for this channel definition
1071  */
1072 unsigned int
1073 cfg80211_chandef_dfs_cac_time(struct wiphy *wiphy,
1074 			      const struct cfg80211_chan_def *chandef);
1075 
1076 /**
1077  * cfg80211_chandef_primary - calculate primary 40/80/160 MHz freq
1078  * @chandef: chandef to calculate for
1079  * @primary_chan_width: primary channel width to calculate center for
1080  * @punctured: punctured sub-channel bitmap, will be recalculated
1081  *	according to the new bandwidth, can be %NULL
1082  *
1083  * Returns: the primary 40/80/160 MHz channel center frequency, or -1
1084  *	for errors, updating the punctured bitmap
1085  */
1086 int cfg80211_chandef_primary(const struct cfg80211_chan_def *chandef,
1087 			     enum nl80211_chan_width primary_chan_width,
1088 			     u16 *punctured);
1089 
1090 /**
1091  * nl80211_send_chandef - sends the channel definition.
1092  * @msg: the msg to send channel definition
1093  * @chandef: the channel definition to check
1094  *
1095  * Returns: 0 if sent the channel definition to msg, < 0 on error
1096  **/
1097 int nl80211_send_chandef(struct sk_buff *msg, const struct cfg80211_chan_def *chandef);
1098 
1099 /**
1100  * ieee80211_chandef_max_power - maximum transmission power for the chandef
1101  *
1102  * In some regulations, the transmit power may depend on the configured channel
1103  * bandwidth which may be defined as dBm/MHz. This function returns the actual
1104  * max_power for non-standard (20 MHz) channels.
1105  *
1106  * @chandef: channel definition for the channel
1107  *
1108  * Returns: maximum allowed transmission power in dBm for the chandef
1109  */
1110 static inline int
ieee80211_chandef_max_power(struct cfg80211_chan_def * chandef)1111 ieee80211_chandef_max_power(struct cfg80211_chan_def *chandef)
1112 {
1113 	switch (chandef->width) {
1114 	case NL80211_CHAN_WIDTH_5:
1115 		return min(chandef->chan->max_reg_power - 6,
1116 			   chandef->chan->max_power);
1117 	case NL80211_CHAN_WIDTH_10:
1118 		return min(chandef->chan->max_reg_power - 3,
1119 			   chandef->chan->max_power);
1120 	default:
1121 		break;
1122 	}
1123 	return chandef->chan->max_power;
1124 }
1125 
1126 /**
1127  * cfg80211_any_usable_channels - check for usable channels
1128  * @wiphy: the wiphy to check for
1129  * @band_mask: which bands to check on
1130  * @prohibited_flags: which channels to not consider usable,
1131  *	%IEEE80211_CHAN_DISABLED is always taken into account
1132  *
1133  * Return: %true if usable channels found, %false otherwise
1134  */
1135 bool cfg80211_any_usable_channels(struct wiphy *wiphy,
1136 				  unsigned long band_mask,
1137 				  u32 prohibited_flags);
1138 
1139 /**
1140  * enum survey_info_flags - survey information flags
1141  *
1142  * @SURVEY_INFO_NOISE_DBM: noise (in dBm) was filled in
1143  * @SURVEY_INFO_IN_USE: channel is currently being used
1144  * @SURVEY_INFO_TIME: active time (in ms) was filled in
1145  * @SURVEY_INFO_TIME_BUSY: busy time was filled in
1146  * @SURVEY_INFO_TIME_EXT_BUSY: extension channel busy time was filled in
1147  * @SURVEY_INFO_TIME_RX: receive time was filled in
1148  * @SURVEY_INFO_TIME_TX: transmit time was filled in
1149  * @SURVEY_INFO_TIME_SCAN: scan time was filled in
1150  * @SURVEY_INFO_TIME_BSS_RX: local BSS receive time was filled in
1151  *
1152  * Used by the driver to indicate which info in &struct survey_info
1153  * it has filled in during the get_survey().
1154  */
1155 enum survey_info_flags {
1156 	SURVEY_INFO_NOISE_DBM		= BIT(0),
1157 	SURVEY_INFO_IN_USE		= BIT(1),
1158 	SURVEY_INFO_TIME		= BIT(2),
1159 	SURVEY_INFO_TIME_BUSY		= BIT(3),
1160 	SURVEY_INFO_TIME_EXT_BUSY	= BIT(4),
1161 	SURVEY_INFO_TIME_RX		= BIT(5),
1162 	SURVEY_INFO_TIME_TX		= BIT(6),
1163 	SURVEY_INFO_TIME_SCAN		= BIT(7),
1164 	SURVEY_INFO_TIME_BSS_RX		= BIT(8),
1165 };
1166 
1167 /**
1168  * struct survey_info - channel survey response
1169  *
1170  * @channel: the channel this survey record reports, may be %NULL for a single
1171  *	record to report global statistics
1172  * @filled: bitflag of flags from &enum survey_info_flags
1173  * @noise: channel noise in dBm. This and all following fields are
1174  *	optional
1175  * @time: amount of time in ms the radio was turn on (on the channel)
1176  * @time_busy: amount of time the primary channel was sensed busy
1177  * @time_ext_busy: amount of time the extension channel was sensed busy
1178  * @time_rx: amount of time the radio spent receiving data
1179  * @time_tx: amount of time the radio spent transmitting data
1180  * @time_scan: amount of time the radio spent for scanning
1181  * @time_bss_rx: amount of time the radio spent receiving data on a local BSS
1182  *
1183  * Used by dump_survey() to report back per-channel survey information.
1184  *
1185  * This structure can later be expanded with things like
1186  * channel duty cycle etc.
1187  */
1188 struct survey_info {
1189 	struct ieee80211_channel *channel;
1190 	u64 time;
1191 	u64 time_busy;
1192 	u64 time_ext_busy;
1193 	u64 time_rx;
1194 	u64 time_tx;
1195 	u64 time_scan;
1196 	u64 time_bss_rx;
1197 	u32 filled;
1198 	s8 noise;
1199 };
1200 
1201 #define CFG80211_MAX_NUM_AKM_SUITES	10
1202 
1203 /**
1204  * struct cfg80211_crypto_settings - Crypto settings
1205  * @wpa_versions: indicates which, if any, WPA versions are enabled
1206  *	(from enum nl80211_wpa_versions)
1207  * @cipher_group: group key cipher suite (or 0 if unset)
1208  * @n_ciphers_pairwise: number of AP supported unicast ciphers
1209  * @ciphers_pairwise: unicast key cipher suites
1210  * @n_akm_suites: number of AKM suites
1211  * @akm_suites: AKM suites
1212  * @control_port: Whether user space controls IEEE 802.1X port, i.e.,
1213  *	sets/clears %NL80211_STA_FLAG_AUTHORIZED. If true, the driver is
1214  *	required to assume that the port is unauthorized until authorized by
1215  *	user space. Otherwise, port is marked authorized by default.
1216  * @control_port_ethertype: the control port protocol that should be
1217  *	allowed through even on unauthorized ports
1218  * @control_port_no_encrypt: TRUE to prevent encryption of control port
1219  *	protocol frames.
1220  * @control_port_over_nl80211: TRUE if userspace expects to exchange control
1221  *	port frames over NL80211 instead of the network interface.
1222  * @control_port_no_preauth: disables pre-auth rx over the nl80211 control
1223  *	port for mac80211
1224  * @psk: PSK (for devices supporting 4-way-handshake offload)
1225  * @sae_pwd: password for SAE authentication (for devices supporting SAE
1226  *	offload)
1227  * @sae_pwd_len: length of SAE password (for devices supporting SAE offload)
1228  * @sae_pwe: The mechanisms allowed for SAE PWE derivation:
1229  *
1230  *	NL80211_SAE_PWE_UNSPECIFIED
1231  *	  Not-specified, used to indicate userspace did not specify any
1232  *	  preference. The driver should follow its internal policy in
1233  *	  such a scenario.
1234  *
1235  *	NL80211_SAE_PWE_HUNT_AND_PECK
1236  *	  Allow hunting-and-pecking loop only
1237  *
1238  *	NL80211_SAE_PWE_HASH_TO_ELEMENT
1239  *	  Allow hash-to-element only
1240  *
1241  *	NL80211_SAE_PWE_BOTH
1242  *	  Allow either hunting-and-pecking loop or hash-to-element
1243  */
1244 struct cfg80211_crypto_settings {
1245 	u32 wpa_versions;
1246 	u32 cipher_group;
1247 	int n_ciphers_pairwise;
1248 	u32 ciphers_pairwise[NL80211_MAX_NR_CIPHER_SUITES];
1249 	int n_akm_suites;
1250 	u32 akm_suites[CFG80211_MAX_NUM_AKM_SUITES];
1251 	bool control_port;
1252 	__be16 control_port_ethertype;
1253 	bool control_port_no_encrypt;
1254 	bool control_port_over_nl80211;
1255 	bool control_port_no_preauth;
1256 	const u8 *psk;
1257 	const u8 *sae_pwd;
1258 	u8 sae_pwd_len;
1259 	enum nl80211_sae_pwe_mechanism sae_pwe;
1260 };
1261 
1262 /**
1263  * struct cfg80211_mbssid_config - AP settings for multi bssid
1264  *
1265  * @tx_wdev: pointer to the transmitted interface in the MBSSID set
1266  * @tx_link_id: link ID of the transmitted profile in an MLD.
1267  * @index: index of this AP in the multi bssid group.
1268  * @ema: set to true if the beacons should be sent out in EMA mode.
1269  */
1270 struct cfg80211_mbssid_config {
1271 	struct wireless_dev *tx_wdev;
1272 	u8 tx_link_id;
1273 	u8 index;
1274 	bool ema;
1275 };
1276 
1277 /**
1278  * struct cfg80211_mbssid_elems - Multiple BSSID elements
1279  *
1280  * @cnt: Number of elements in array %elems.
1281  *
1282  * @elem: Array of multiple BSSID element(s) to be added into Beacon frames.
1283  * @elem.data: Data for multiple BSSID elements.
1284  * @elem.len: Length of data.
1285  */
1286 struct cfg80211_mbssid_elems {
1287 	u8 cnt;
1288 	struct {
1289 		const u8 *data;
1290 		size_t len;
1291 	} elem[] __counted_by(cnt);
1292 };
1293 
1294 /**
1295  * struct cfg80211_rnr_elems - Reduced neighbor report (RNR) elements
1296  *
1297  * @cnt: Number of elements in array %elems.
1298  *
1299  * @elem: Array of RNR element(s) to be added into Beacon frames.
1300  * @elem.data: Data for RNR elements.
1301  * @elem.len: Length of data.
1302  */
1303 struct cfg80211_rnr_elems {
1304 	u8 cnt;
1305 	struct {
1306 		const u8 *data;
1307 		size_t len;
1308 	} elem[] __counted_by(cnt);
1309 };
1310 
1311 /**
1312  * struct cfg80211_beacon_data - beacon data
1313  * @link_id: the link ID for the AP MLD link sending this beacon
1314  * @head: head portion of beacon (before TIM IE)
1315  *	or %NULL if not changed
1316  * @tail: tail portion of beacon (after TIM IE)
1317  *	or %NULL if not changed
1318  * @head_len: length of @head
1319  * @tail_len: length of @tail
1320  * @beacon_ies: extra information element(s) to add into Beacon frames or %NULL
1321  * @beacon_ies_len: length of beacon_ies in octets
1322  * @proberesp_ies: extra information element(s) to add into Probe Response
1323  *	frames or %NULL
1324  * @proberesp_ies_len: length of proberesp_ies in octets
1325  * @assocresp_ies: extra information element(s) to add into (Re)Association
1326  *	Response frames or %NULL
1327  * @assocresp_ies_len: length of assocresp_ies in octets
1328  * @probe_resp_len: length of probe response template (@probe_resp)
1329  * @probe_resp: probe response template (AP mode only)
1330  * @mbssid_ies: multiple BSSID elements
1331  * @rnr_ies: reduced neighbor report elements
1332  * @ftm_responder: enable FTM responder functionality; -1 for no change
1333  *	(which also implies no change in LCI/civic location data)
1334  * @lci: Measurement Report element content, starting with Measurement Token
1335  *	(measurement type 8)
1336  * @civicloc: Measurement Report element content, starting with Measurement
1337  *	Token (measurement type 11)
1338  * @lci_len: LCI data length
1339  * @civicloc_len: Civic location data length
1340  * @he_bss_color: BSS Color settings
1341  * @he_bss_color_valid: indicates whether bss color
1342  *	attribute is present in beacon data or not.
1343  */
1344 struct cfg80211_beacon_data {
1345 	unsigned int link_id;
1346 
1347 	const u8 *head, *tail;
1348 	const u8 *beacon_ies;
1349 	const u8 *proberesp_ies;
1350 	const u8 *assocresp_ies;
1351 	const u8 *probe_resp;
1352 	const u8 *lci;
1353 	const u8 *civicloc;
1354 	struct cfg80211_mbssid_elems *mbssid_ies;
1355 	struct cfg80211_rnr_elems *rnr_ies;
1356 	s8 ftm_responder;
1357 
1358 	size_t head_len, tail_len;
1359 	size_t beacon_ies_len;
1360 	size_t proberesp_ies_len;
1361 	size_t assocresp_ies_len;
1362 	size_t probe_resp_len;
1363 	size_t lci_len;
1364 	size_t civicloc_len;
1365 	struct cfg80211_he_bss_color he_bss_color;
1366 	bool he_bss_color_valid;
1367 };
1368 
1369 struct mac_address {
1370 	u8 addr[ETH_ALEN];
1371 };
1372 
1373 /**
1374  * struct cfg80211_acl_data - Access control list data
1375  *
1376  * @acl_policy: ACL policy to be applied on the station's
1377  *	entry specified by mac_addr
1378  * @n_acl_entries: Number of MAC address entries passed
1379  * @mac_addrs: List of MAC addresses of stations to be used for ACL
1380  */
1381 struct cfg80211_acl_data {
1382 	enum nl80211_acl_policy acl_policy;
1383 	int n_acl_entries;
1384 
1385 	/* Keep it last */
1386 	struct mac_address mac_addrs[] __counted_by(n_acl_entries);
1387 };
1388 
1389 /**
1390  * struct cfg80211_fils_discovery - FILS discovery parameters from
1391  * IEEE Std 802.11ai-2016, Annex C.3 MIB detail.
1392  *
1393  * @update: Set to true if the feature configuration should be updated.
1394  * @min_interval: Minimum packet interval in TUs (0 - 10000)
1395  * @max_interval: Maximum packet interval in TUs (0 - 10000)
1396  * @tmpl_len: Template length
1397  * @tmpl: Template data for FILS discovery frame including the action
1398  *	frame headers.
1399  */
1400 struct cfg80211_fils_discovery {
1401 	bool update;
1402 	u32 min_interval;
1403 	u32 max_interval;
1404 	size_t tmpl_len;
1405 	const u8 *tmpl;
1406 };
1407 
1408 /**
1409  * struct cfg80211_unsol_bcast_probe_resp - Unsolicited broadcast probe
1410  *	response parameters in 6GHz.
1411  *
1412  * @update: Set to true if the feature configuration should be updated.
1413  * @interval: Packet interval in TUs. Maximum allowed is 20 TU, as mentioned
1414  *	in IEEE P802.11ax/D6.0 26.17.2.3.2 - AP behavior for fast passive
1415  *	scanning
1416  * @tmpl_len: Template length
1417  * @tmpl: Template data for probe response
1418  */
1419 struct cfg80211_unsol_bcast_probe_resp {
1420 	bool update;
1421 	u32 interval;
1422 	size_t tmpl_len;
1423 	const u8 *tmpl;
1424 };
1425 
1426 /**
1427  * struct cfg80211_s1g_short_beacon - S1G short beacon data.
1428  *
1429  * @update: Set to true if the feature configuration should be updated.
1430  * @short_head: Short beacon head.
1431  * @short_tail: Short beacon tail.
1432  * @short_head_len: Short beacon head len.
1433  * @short_tail_len: Short beacon tail len.
1434  */
1435 struct cfg80211_s1g_short_beacon {
1436 	bool update;
1437 	const u8 *short_head;
1438 	const u8 *short_tail;
1439 	size_t short_head_len;
1440 	size_t short_tail_len;
1441 };
1442 
1443 /**
1444  * struct cfg80211_ap_settings - AP configuration
1445  *
1446  * Used to configure an AP interface.
1447  *
1448  * @chandef: defines the channel to use
1449  * @beacon: beacon data
1450  * @beacon_interval: beacon interval
1451  * @dtim_period: DTIM period
1452  * @ssid: SSID to be used in the BSS (note: may be %NULL if not provided from
1453  *	user space)
1454  * @ssid_len: length of @ssid
1455  * @hidden_ssid: whether to hide the SSID in Beacon/Probe Response frames
1456  * @crypto: crypto settings
1457  * @privacy: the BSS uses privacy
1458  * @auth_type: Authentication type (algorithm)
1459  * @inactivity_timeout: time in seconds to determine station's inactivity.
1460  * @p2p_ctwindow: P2P CT Window
1461  * @p2p_opp_ps: P2P opportunistic PS
1462  * @acl: ACL configuration used by the drivers which has support for
1463  *	MAC address based access control
1464  * @pbss: If set, start as a PCP instead of AP. Relevant for DMG
1465  *	networks.
1466  * @beacon_rate: bitrate to be used for beacons
1467  * @ht_cap: HT capabilities (or %NULL if HT isn't enabled)
1468  * @vht_cap: VHT capabilities (or %NULL if VHT isn't enabled)
1469  * @he_cap: HE capabilities (or %NULL if HE isn't enabled)
1470  * @eht_cap: EHT capabilities (or %NULL if EHT isn't enabled)
1471  * @eht_oper: EHT operation IE (or %NULL if EHT isn't enabled)
1472  * @ht_required: stations must support HT
1473  * @vht_required: stations must support VHT
1474  * @twt_responder: Enable Target Wait Time
1475  * @he_required: stations must support HE
1476  * @sae_h2e_required: stations must support direct H2E technique in SAE
1477  * @flags: flags, as defined in &enum nl80211_ap_settings_flags
1478  * @he_obss_pd: OBSS Packet Detection settings
1479  * @he_oper: HE operation IE (or %NULL if HE isn't enabled)
1480  * @fils_discovery: FILS discovery transmission parameters
1481  * @unsol_bcast_probe_resp: Unsolicited broadcast probe response parameters
1482  * @mbssid_config: AP settings for multiple bssid
1483  * @s1g_long_beacon_period: S1G long beacon period
1484  * @s1g_short_beacon: S1G short beacon data
1485  */
1486 struct cfg80211_ap_settings {
1487 	struct cfg80211_chan_def chandef;
1488 
1489 	struct cfg80211_beacon_data beacon;
1490 
1491 	int beacon_interval, dtim_period;
1492 	const u8 *ssid;
1493 	size_t ssid_len;
1494 	enum nl80211_hidden_ssid hidden_ssid;
1495 	struct cfg80211_crypto_settings crypto;
1496 	bool privacy;
1497 	enum nl80211_auth_type auth_type;
1498 	int inactivity_timeout;
1499 	u8 p2p_ctwindow;
1500 	bool p2p_opp_ps;
1501 	const struct cfg80211_acl_data *acl;
1502 	bool pbss;
1503 	struct cfg80211_bitrate_mask beacon_rate;
1504 
1505 	const struct ieee80211_ht_cap *ht_cap;
1506 	const struct ieee80211_vht_cap *vht_cap;
1507 	const struct ieee80211_he_cap_elem *he_cap;
1508 	const struct ieee80211_he_operation *he_oper;
1509 	const struct ieee80211_eht_cap_elem *eht_cap;
1510 	const struct ieee80211_eht_operation *eht_oper;
1511 	bool ht_required, vht_required, he_required, sae_h2e_required;
1512 	bool twt_responder;
1513 	u32 flags;
1514 	struct ieee80211_he_obss_pd he_obss_pd;
1515 	struct cfg80211_fils_discovery fils_discovery;
1516 	struct cfg80211_unsol_bcast_probe_resp unsol_bcast_probe_resp;
1517 	struct cfg80211_mbssid_config mbssid_config;
1518 	u8 s1g_long_beacon_period;
1519 	struct cfg80211_s1g_short_beacon s1g_short_beacon;
1520 };
1521 
1522 
1523 /**
1524  * struct cfg80211_ap_update - AP configuration update
1525  *
1526  * Subset of &struct cfg80211_ap_settings, for updating a running AP.
1527  *
1528  * @beacon: beacon data
1529  * @fils_discovery: FILS discovery transmission parameters
1530  * @unsol_bcast_probe_resp: Unsolicited broadcast probe response parameters
1531  * @s1g_short_beacon: S1G short beacon data
1532  */
1533 struct cfg80211_ap_update {
1534 	struct cfg80211_beacon_data beacon;
1535 	struct cfg80211_fils_discovery fils_discovery;
1536 	struct cfg80211_unsol_bcast_probe_resp unsol_bcast_probe_resp;
1537 	struct cfg80211_s1g_short_beacon s1g_short_beacon;
1538 };
1539 
1540 /**
1541  * struct cfg80211_csa_settings - channel switch settings
1542  *
1543  * Used for channel switch
1544  *
1545  * @chandef: defines the channel to use after the switch
1546  * @beacon_csa: beacon data while performing the switch
1547  * @counter_offsets_beacon: offsets of the counters within the beacon (tail)
1548  * @counter_offsets_presp: offsets of the counters within the probe response
1549  * @n_counter_offsets_beacon: number of csa counters the beacon (tail)
1550  * @n_counter_offsets_presp: number of csa counters in the probe response
1551  * @beacon_after: beacon data to be used on the new channel
1552  * @unsol_bcast_probe_resp: Unsolicited broadcast probe response parameters
1553  * @radar_required: whether radar detection is required on the new channel
1554  * @block_tx: whether transmissions should be blocked while changing
1555  * @count: number of beacons until switch
1556  * @link_id: defines the link on which channel switch is expected during
1557  *	MLO. 0 in case of non-MLO.
1558  */
1559 struct cfg80211_csa_settings {
1560 	struct cfg80211_chan_def chandef;
1561 	struct cfg80211_beacon_data beacon_csa;
1562 	const u16 *counter_offsets_beacon;
1563 	const u16 *counter_offsets_presp;
1564 	unsigned int n_counter_offsets_beacon;
1565 	unsigned int n_counter_offsets_presp;
1566 	struct cfg80211_beacon_data beacon_after;
1567 	struct cfg80211_unsol_bcast_probe_resp unsol_bcast_probe_resp;
1568 	bool radar_required;
1569 	bool block_tx;
1570 	u8 count;
1571 	u8 link_id;
1572 };
1573 
1574 /**
1575  * struct cfg80211_color_change_settings - color change settings
1576  *
1577  * Used for bss color change
1578  *
1579  * @beacon_color_change: beacon data while performing the color countdown
1580  * @counter_offset_beacon: offsets of the counters within the beacon (tail)
1581  * @counter_offset_presp: offsets of the counters within the probe response
1582  * @beacon_next: beacon data to be used after the color change
1583  * @unsol_bcast_probe_resp: Unsolicited broadcast probe response parameters
1584  * @count: number of beacons until the color change
1585  * @color: the color used after the change
1586  * @link_id: defines the link on which color change is expected during MLO.
1587  *	0 in case of non-MLO.
1588  */
1589 struct cfg80211_color_change_settings {
1590 	struct cfg80211_beacon_data beacon_color_change;
1591 	u16 counter_offset_beacon;
1592 	u16 counter_offset_presp;
1593 	struct cfg80211_beacon_data beacon_next;
1594 	struct cfg80211_unsol_bcast_probe_resp unsol_bcast_probe_resp;
1595 	u8 count;
1596 	u8 color;
1597 	u8 link_id;
1598 };
1599 
1600 /**
1601  * struct iface_combination_params - input parameters for interface combinations
1602  *
1603  * Used to pass interface combination parameters
1604  *
1605  * @radio_idx: wiphy radio index or -1 for global
1606  * @num_different_channels: the number of different channels we want
1607  *	to use for verification
1608  * @radar_detect: a bitmap where each bit corresponds to a channel
1609  *	width where radar detection is needed, as in the definition of
1610  *	&struct ieee80211_iface_combination.@radar_detect_widths
1611  * @iftype_num: array with the number of interfaces of each interface
1612  *	type.  The index is the interface type as specified in &enum
1613  *	nl80211_iftype.
1614  * @new_beacon_int: set this to the beacon interval of a new interface
1615  *	that's not operating yet, if such is to be checked as part of
1616  *	the verification
1617  */
1618 struct iface_combination_params {
1619 	int radio_idx;
1620 	int num_different_channels;
1621 	u8 radar_detect;
1622 	int iftype_num[NUM_NL80211_IFTYPES];
1623 	u32 new_beacon_int;
1624 };
1625 
1626 /**
1627  * enum station_parameters_apply_mask - station parameter values to apply
1628  * @STATION_PARAM_APPLY_UAPSD: apply new uAPSD parameters (uapsd_queues, max_sp)
1629  * @STATION_PARAM_APPLY_CAPABILITY: apply new capability
1630  * @STATION_PARAM_APPLY_PLINK_STATE: apply new plink state
1631  *
1632  * Not all station parameters have in-band "no change" signalling,
1633  * for those that don't these flags will are used.
1634  */
1635 enum station_parameters_apply_mask {
1636 	STATION_PARAM_APPLY_UAPSD = BIT(0),
1637 	STATION_PARAM_APPLY_CAPABILITY = BIT(1),
1638 	STATION_PARAM_APPLY_PLINK_STATE = BIT(2),
1639 };
1640 
1641 /**
1642  * struct sta_txpwr - station txpower configuration
1643  *
1644  * Used to configure txpower for station.
1645  *
1646  * @power: tx power (in dBm) to be used for sending data traffic. If tx power
1647  *	is not provided, the default per-interface tx power setting will be
1648  *	overriding. Driver should be picking up the lowest tx power, either tx
1649  *	power per-interface or per-station.
1650  * @type: In particular if TPC %type is NL80211_TX_POWER_LIMITED then tx power
1651  *	will be less than or equal to specified from userspace, whereas if TPC
1652  *	%type is NL80211_TX_POWER_AUTOMATIC then it indicates default tx power.
1653  *	NL80211_TX_POWER_FIXED is not a valid configuration option for
1654  *	per peer TPC.
1655  */
1656 struct sta_txpwr {
1657 	s16 power;
1658 	enum nl80211_tx_power_setting type;
1659 };
1660 
1661 /**
1662  * struct link_station_parameters - link station parameters
1663  *
1664  * Used to change and create a new link station.
1665  *
1666  * @mld_mac: MAC address of the station
1667  * @link_id: the link id (-1 for non-MLD station)
1668  * @link_mac: MAC address of the link
1669  * @supported_rates: supported rates in IEEE 802.11 format
1670  *	(or NULL for no change)
1671  * @supported_rates_len: number of supported rates
1672  * @ht_capa: HT capabilities of station
1673  * @vht_capa: VHT capabilities of station
1674  * @opmode_notif: operating mode field from Operating Mode Notification
1675  * @opmode_notif_used: information if operating mode field is used
1676  * @he_capa: HE capabilities of station
1677  * @he_capa_len: the length of the HE capabilities
1678  * @txpwr: transmit power for an associated station
1679  * @txpwr_set: txpwr field is set
1680  * @he_6ghz_capa: HE 6 GHz Band capabilities of station
1681  * @eht_capa: EHT capabilities of station
1682  * @eht_capa_len: the length of the EHT capabilities
1683  * @s1g_capa: S1G capabilities of station
1684  */
1685 struct link_station_parameters {
1686 	const u8 *mld_mac;
1687 	int link_id;
1688 	const u8 *link_mac;
1689 	const u8 *supported_rates;
1690 	u8 supported_rates_len;
1691 	const struct ieee80211_ht_cap *ht_capa;
1692 	const struct ieee80211_vht_cap *vht_capa;
1693 	u8 opmode_notif;
1694 	bool opmode_notif_used;
1695 	const struct ieee80211_he_cap_elem *he_capa;
1696 	u8 he_capa_len;
1697 	struct sta_txpwr txpwr;
1698 	bool txpwr_set;
1699 	const struct ieee80211_he_6ghz_capa *he_6ghz_capa;
1700 	const struct ieee80211_eht_cap_elem *eht_capa;
1701 	u8 eht_capa_len;
1702 	const struct ieee80211_s1g_cap *s1g_capa;
1703 };
1704 
1705 /**
1706  * struct link_station_del_parameters - link station deletion parameters
1707  *
1708  * Used to delete a link station entry (or all stations).
1709  *
1710  * @mld_mac: MAC address of the station
1711  * @link_id: the link id
1712  */
1713 struct link_station_del_parameters {
1714 	const u8 *mld_mac;
1715 	u32 link_id;
1716 };
1717 
1718 /**
1719  * struct cfg80211_ttlm_params: TID to link mapping parameters
1720  *
1721  * Used for setting a TID to link mapping.
1722  *
1723  * @dlink: Downlink TID to link mapping, as defined in section 9.4.2.314
1724  *     (TID-To-Link Mapping element) in Draft P802.11be_D4.0.
1725  * @ulink: Uplink TID to link mapping, as defined in section 9.4.2.314
1726  *     (TID-To-Link Mapping element) in Draft P802.11be_D4.0.
1727  */
1728 struct cfg80211_ttlm_params {
1729 	u16 dlink[8];
1730 	u16 ulink[8];
1731 };
1732 
1733 /**
1734  * struct station_parameters - station parameters
1735  *
1736  * Used to change and create a new station.
1737  *
1738  * @vlan: vlan interface station should belong to
1739  * @sta_flags_mask: station flags that changed
1740  *	(bitmask of BIT(%NL80211_STA_FLAG_...))
1741  * @sta_flags_set: station flags values
1742  *	(bitmask of BIT(%NL80211_STA_FLAG_...))
1743  * @listen_interval: listen interval or -1 for no change
1744  * @aid: AID or zero for no change
1745  * @vlan_id: VLAN ID for station (if nonzero)
1746  * @peer_aid: mesh peer AID or zero for no change
1747  * @plink_action: plink action to take
1748  * @plink_state: set the peer link state for a station
1749  * @uapsd_queues: bitmap of queues configured for uapsd. same format
1750  *	as the AC bitmap in the QoS info field
1751  * @max_sp: max Service Period. same format as the MAX_SP in the
1752  *	QoS info field (but already shifted down)
1753  * @sta_modify_mask: bitmap indicating which parameters changed
1754  *	(for those that don't have a natural "no change" value),
1755  *	see &enum station_parameters_apply_mask
1756  * @local_pm: local link-specific mesh power save mode (no change when set
1757  *	to unknown)
1758  * @capability: station capability
1759  * @ext_capab: extended capabilities of the station
1760  * @ext_capab_len: number of extended capabilities
1761  * @supported_channels: supported channels in IEEE 802.11 format
1762  * @supported_channels_len: number of supported channels
1763  * @supported_oper_classes: supported oper classes in IEEE 802.11 format
1764  * @supported_oper_classes_len: number of supported operating classes
1765  * @support_p2p_ps: information if station supports P2P PS mechanism
1766  * @airtime_weight: airtime scheduler weight for this station
1767  * @eml_cap_present: Specifies if EML capabilities field (@eml_cap) is
1768  *	present/updated
1769  * @eml_cap: EML capabilities of this station
1770  * @link_sta_params: link related params.
1771  */
1772 struct station_parameters {
1773 	struct net_device *vlan;
1774 	u32 sta_flags_mask, sta_flags_set;
1775 	u32 sta_modify_mask;
1776 	int listen_interval;
1777 	u16 aid;
1778 	u16 vlan_id;
1779 	u16 peer_aid;
1780 	u8 plink_action;
1781 	u8 plink_state;
1782 	u8 uapsd_queues;
1783 	u8 max_sp;
1784 	enum nl80211_mesh_power_mode local_pm;
1785 	u16 capability;
1786 	const u8 *ext_capab;
1787 	u8 ext_capab_len;
1788 	const u8 *supported_channels;
1789 	u8 supported_channels_len;
1790 	const u8 *supported_oper_classes;
1791 	u8 supported_oper_classes_len;
1792 	int support_p2p_ps;
1793 	u16 airtime_weight;
1794 	bool eml_cap_present;
1795 	u16 eml_cap;
1796 	struct link_station_parameters link_sta_params;
1797 };
1798 
1799 /**
1800  * struct station_del_parameters - station deletion parameters
1801  *
1802  * Used to delete a station entry (or all stations).
1803  *
1804  * @mac: MAC address of the station to remove or NULL to remove all stations
1805  * @subtype: Management frame subtype to use for indicating removal
1806  *	(10 = Disassociation, 12 = Deauthentication)
1807  * @reason_code: Reason code for the Disassociation/Deauthentication frame
1808  * @link_id: Link ID indicating a link that stations to be flushed must be
1809  *	using; valid only for MLO, but can also be -1 for MLO to really
1810  *	remove all stations.
1811  */
1812 struct station_del_parameters {
1813 	const u8 *mac;
1814 	u8 subtype;
1815 	u16 reason_code;
1816 	int link_id;
1817 };
1818 
1819 /**
1820  * enum cfg80211_station_type - the type of station being modified
1821  * @CFG80211_STA_AP_CLIENT: client of an AP interface
1822  * @CFG80211_STA_AP_CLIENT_UNASSOC: client of an AP interface that is still
1823  *	unassociated (update properties for this type of client is permitted)
1824  * @CFG80211_STA_AP_MLME_CLIENT: client of an AP interface that has
1825  *	the AP MLME in the device
1826  * @CFG80211_STA_AP_STA: AP station on managed interface
1827  * @CFG80211_STA_IBSS: IBSS station
1828  * @CFG80211_STA_TDLS_PEER_SETUP: TDLS peer on managed interface (dummy entry
1829  *	while TDLS setup is in progress, it moves out of this state when
1830  *	being marked authorized; use this only if TDLS with external setup is
1831  *	supported/used)
1832  * @CFG80211_STA_TDLS_PEER_ACTIVE: TDLS peer on managed interface (active
1833  *	entry that is operating, has been marked authorized by userspace)
1834  * @CFG80211_STA_MESH_PEER_KERNEL: peer on mesh interface (kernel managed)
1835  * @CFG80211_STA_MESH_PEER_USER: peer on mesh interface (user managed)
1836  */
1837 enum cfg80211_station_type {
1838 	CFG80211_STA_AP_CLIENT,
1839 	CFG80211_STA_AP_CLIENT_UNASSOC,
1840 	CFG80211_STA_AP_MLME_CLIENT,
1841 	CFG80211_STA_AP_STA,
1842 	CFG80211_STA_IBSS,
1843 	CFG80211_STA_TDLS_PEER_SETUP,
1844 	CFG80211_STA_TDLS_PEER_ACTIVE,
1845 	CFG80211_STA_MESH_PEER_KERNEL,
1846 	CFG80211_STA_MESH_PEER_USER,
1847 };
1848 
1849 /**
1850  * cfg80211_check_station_change - validate parameter changes
1851  * @wiphy: the wiphy this operates on
1852  * @params: the new parameters for a station
1853  * @statype: the type of station being modified
1854  *
1855  * Utility function for the @change_station driver method. Call this function
1856  * with the appropriate station type looking up the station (and checking that
1857  * it exists). It will verify whether the station change is acceptable.
1858  *
1859  * Return: 0 if the change is acceptable, otherwise an error code. Note that
1860  * it may modify the parameters for backward compatibility reasons, so don't
1861  * use them before calling this.
1862  */
1863 int cfg80211_check_station_change(struct wiphy *wiphy,
1864 				  struct station_parameters *params,
1865 				  enum cfg80211_station_type statype);
1866 
1867 /**
1868  * enum rate_info_flags - bitrate info flags
1869  *
1870  * Used by the driver to indicate the specific rate transmission
1871  * type for 802.11n transmissions.
1872  *
1873  * @RATE_INFO_FLAGS_MCS: mcs field filled with HT MCS
1874  * @RATE_INFO_FLAGS_VHT_MCS: mcs field filled with VHT MCS
1875  * @RATE_INFO_FLAGS_SHORT_GI: 400ns guard interval
1876  * @RATE_INFO_FLAGS_DMG: 60GHz MCS
1877  * @RATE_INFO_FLAGS_HE_MCS: HE MCS information
1878  * @RATE_INFO_FLAGS_EDMG: 60GHz MCS in EDMG mode
1879  * @RATE_INFO_FLAGS_EXTENDED_SC_DMG: 60GHz extended SC MCS
1880  * @RATE_INFO_FLAGS_EHT_MCS: EHT MCS information
1881  * @RATE_INFO_FLAGS_S1G_MCS: MCS field filled with S1G MCS
1882  */
1883 enum rate_info_flags {
1884 	RATE_INFO_FLAGS_MCS			= BIT(0),
1885 	RATE_INFO_FLAGS_VHT_MCS			= BIT(1),
1886 	RATE_INFO_FLAGS_SHORT_GI		= BIT(2),
1887 	RATE_INFO_FLAGS_DMG			= BIT(3),
1888 	RATE_INFO_FLAGS_HE_MCS			= BIT(4),
1889 	RATE_INFO_FLAGS_EDMG			= BIT(5),
1890 	RATE_INFO_FLAGS_EXTENDED_SC_DMG		= BIT(6),
1891 	RATE_INFO_FLAGS_EHT_MCS			= BIT(7),
1892 	RATE_INFO_FLAGS_S1G_MCS			= BIT(8),
1893 };
1894 
1895 /**
1896  * enum rate_info_bw - rate bandwidth information
1897  *
1898  * Used by the driver to indicate the rate bandwidth.
1899  *
1900  * @RATE_INFO_BW_5: 5 MHz bandwidth
1901  * @RATE_INFO_BW_10: 10 MHz bandwidth
1902  * @RATE_INFO_BW_20: 20 MHz bandwidth
1903  * @RATE_INFO_BW_40: 40 MHz bandwidth
1904  * @RATE_INFO_BW_80: 80 MHz bandwidth
1905  * @RATE_INFO_BW_160: 160 MHz bandwidth
1906  * @RATE_INFO_BW_HE_RU: bandwidth determined by HE RU allocation
1907  * @RATE_INFO_BW_320: 320 MHz bandwidth
1908  * @RATE_INFO_BW_EHT_RU: bandwidth determined by EHT RU allocation
1909  * @RATE_INFO_BW_1: 1 MHz bandwidth
1910  * @RATE_INFO_BW_2: 2 MHz bandwidth
1911  * @RATE_INFO_BW_4: 4 MHz bandwidth
1912  * @RATE_INFO_BW_8: 8 MHz bandwidth
1913  * @RATE_INFO_BW_16: 16 MHz bandwidth
1914  */
1915 enum rate_info_bw {
1916 	RATE_INFO_BW_20 = 0,
1917 	RATE_INFO_BW_5,
1918 	RATE_INFO_BW_10,
1919 	RATE_INFO_BW_40,
1920 	RATE_INFO_BW_80,
1921 	RATE_INFO_BW_160,
1922 	RATE_INFO_BW_HE_RU,
1923 	RATE_INFO_BW_320,
1924 	RATE_INFO_BW_EHT_RU,
1925 	RATE_INFO_BW_1,
1926 	RATE_INFO_BW_2,
1927 	RATE_INFO_BW_4,
1928 	RATE_INFO_BW_8,
1929 	RATE_INFO_BW_16,
1930 };
1931 
1932 /**
1933  * struct rate_info - bitrate information
1934  *
1935  * Information about a receiving or transmitting bitrate
1936  *
1937  * @flags: bitflag of flags from &enum rate_info_flags
1938  * @legacy: bitrate in 100kbit/s for 802.11abg
1939  * @mcs: mcs index if struct describes an HT/VHT/HE/EHT/S1G rate
1940  * @nss: number of streams (VHT & HE only)
1941  * @bw: bandwidth (from &enum rate_info_bw)
1942  * @he_gi: HE guard interval (from &enum nl80211_he_gi)
1943  * @he_dcm: HE DCM value
1944  * @he_ru_alloc: HE RU allocation (from &enum nl80211_he_ru_alloc,
1945  *	only valid if bw is %RATE_INFO_BW_HE_RU)
1946  * @n_bonded_ch: In case of EDMG the number of bonded channels (1-4)
1947  * @eht_gi: EHT guard interval (from &enum nl80211_eht_gi)
1948  * @eht_ru_alloc: EHT RU allocation (from &enum nl80211_eht_ru_alloc,
1949  *	only valid if bw is %RATE_INFO_BW_EHT_RU)
1950  */
1951 struct rate_info {
1952 	u16 flags;
1953 	u16 legacy;
1954 	u8 mcs;
1955 	u8 nss;
1956 	u8 bw;
1957 	u8 he_gi;
1958 	u8 he_dcm;
1959 	u8 he_ru_alloc;
1960 	u8 n_bonded_ch;
1961 	u8 eht_gi;
1962 	u8 eht_ru_alloc;
1963 };
1964 
1965 /**
1966  * enum bss_param_flags - bitrate info flags
1967  *
1968  * Used by the driver to indicate the specific rate transmission
1969  * type for 802.11n transmissions.
1970  *
1971  * @BSS_PARAM_FLAGS_CTS_PROT: whether CTS protection is enabled
1972  * @BSS_PARAM_FLAGS_SHORT_PREAMBLE: whether short preamble is enabled
1973  * @BSS_PARAM_FLAGS_SHORT_SLOT_TIME: whether short slot time is enabled
1974  */
1975 enum bss_param_flags {
1976 	BSS_PARAM_FLAGS_CTS_PROT	= BIT(0),
1977 	BSS_PARAM_FLAGS_SHORT_PREAMBLE	= BIT(1),
1978 	BSS_PARAM_FLAGS_SHORT_SLOT_TIME	= BIT(2),
1979 };
1980 
1981 /**
1982  * struct sta_bss_parameters - BSS parameters for the attached station
1983  *
1984  * Information about the currently associated BSS
1985  *
1986  * @flags: bitflag of flags from &enum bss_param_flags
1987  * @dtim_period: DTIM period for the BSS
1988  * @beacon_interval: beacon interval
1989  */
1990 struct sta_bss_parameters {
1991 	u8 flags;
1992 	u8 dtim_period;
1993 	u16 beacon_interval;
1994 };
1995 
1996 /**
1997  * struct cfg80211_txq_stats - TXQ statistics for this TID
1998  * @filled: bitmap of flags using the bits of &enum nl80211_txq_stats to
1999  *	indicate the relevant values in this struct are filled
2000  * @backlog_bytes: total number of bytes currently backlogged
2001  * @backlog_packets: total number of packets currently backlogged
2002  * @flows: number of new flows seen
2003  * @drops: total number of packets dropped
2004  * @ecn_marks: total number of packets marked with ECN CE
2005  * @overlimit: number of drops due to queue space overflow
2006  * @overmemory: number of drops due to memory limit overflow
2007  * @collisions: number of hash collisions
2008  * @tx_bytes: total number of bytes dequeued
2009  * @tx_packets: total number of packets dequeued
2010  * @max_flows: maximum number of flows supported
2011  */
2012 struct cfg80211_txq_stats {
2013 	u32 filled;
2014 	u32 backlog_bytes;
2015 	u32 backlog_packets;
2016 	u32 flows;
2017 	u32 drops;
2018 	u32 ecn_marks;
2019 	u32 overlimit;
2020 	u32 overmemory;
2021 	u32 collisions;
2022 	u32 tx_bytes;
2023 	u32 tx_packets;
2024 	u32 max_flows;
2025 };
2026 
2027 /**
2028  * struct cfg80211_tid_stats - per-TID statistics
2029  * @filled: bitmap of flags using the bits of &enum nl80211_tid_stats to
2030  *	indicate the relevant values in this struct are filled
2031  * @rx_msdu: number of received MSDUs
2032  * @tx_msdu: number of (attempted) transmitted MSDUs
2033  * @tx_msdu_retries: number of retries (not counting the first) for
2034  *	transmitted MSDUs
2035  * @tx_msdu_failed: number of failed transmitted MSDUs
2036  * @txq_stats: TXQ statistics
2037  */
2038 struct cfg80211_tid_stats {
2039 	u32 filled;
2040 	u64 rx_msdu;
2041 	u64 tx_msdu;
2042 	u64 tx_msdu_retries;
2043 	u64 tx_msdu_failed;
2044 	struct cfg80211_txq_stats txq_stats;
2045 };
2046 
2047 #define IEEE80211_MAX_CHAINS	4
2048 
2049 /**
2050  * struct link_station_info - link station information
2051  *
2052  * Link station information filled by driver for get_station() and
2053  *	dump_station().
2054  * @filled: bit flag of flags using the bits of &enum nl80211_sta_info to
2055  *	indicate the relevant values in this struct for them
2056  * @connected_time: time(in secs) since a link of station is last connected
2057  * @inactive_time: time since last activity for link station(tx/rx)
2058  *	in milliseconds
2059  * @assoc_at: bootime (ns) of the last association of link of station
2060  * @rx_bytes: bytes (size of MPDUs) received from this link of station
2061  * @tx_bytes: bytes (size of MPDUs) transmitted to this link of station
2062  * @signal: The signal strength, type depends on the wiphy's signal_type.
2063  *	For CFG80211_SIGNAL_TYPE_MBM, value is expressed in _dBm_.
2064  * @signal_avg: Average signal strength, type depends on the wiphy's
2065  *	signal_type. For CFG80211_SIGNAL_TYPE_MBM, value is expressed in _dBm_
2066  * @chains: bitmask for filled values in @chain_signal, @chain_signal_avg
2067  * @chain_signal: per-chain signal strength of last received packet in dBm
2068  * @chain_signal_avg: per-chain signal strength average in dBm
2069  * @txrate: current unicast bitrate from this link of station
2070  * @rxrate: current unicast bitrate to this link of station
2071  * @rx_packets: packets (MSDUs & MMPDUs) received from this link of station
2072  * @tx_packets: packets (MSDUs & MMPDUs) transmitted to this link of station
2073  * @tx_retries: cumulative retry counts (MPDUs) for this link of station
2074  * @tx_failed: number of failed transmissions (MPDUs) (retries exceeded, no ACK)
2075  * @rx_dropped_misc:  Dropped for un-specified reason.
2076  * @bss_param: current BSS parameters
2077  * @beacon_loss_count: Number of times beacon loss event has triggered.
2078  * @expected_throughput: expected throughput in kbps (including 802.11 headers)
2079  *	towards this station.
2080  * @rx_beacon: number of beacons received from this peer
2081  * @rx_beacon_signal_avg: signal strength average (in dBm) for beacons received
2082  *	from this peer
2083  * @rx_duration: aggregate PPDU duration(usecs) for all the frames from a peer
2084  * @tx_duration: aggregate PPDU duration(usecs) for all the frames to a peer
2085  * @airtime_weight: current airtime scheduling weight
2086  * @pertid: per-TID statistics, see &struct cfg80211_tid_stats, using the last
2087  *	(IEEE80211_NUM_TIDS) index for MSDUs not encapsulated in QoS-MPDUs.
2088  *	Note that this doesn't use the @filled bit, but is used if non-NULL.
2089  * @ack_signal: signal strength (in dBm) of the last ACK frame.
2090  * @avg_ack_signal: average rssi value of ack packet for the no of msdu's has
2091  *	been sent.
2092  * @rx_mpdu_count: number of MPDUs received from this station
2093  * @fcs_err_count: number of packets (MPDUs) received from this station with
2094  *	an FCS error. This counter should be incremented only when TA of the
2095  *	received packet with an FCS error matches the peer MAC address.
2096  * @addr: For MLO STA connection, filled with address of the link of station.
2097  */
2098 struct link_station_info {
2099 	u64 filled;
2100 	u32 connected_time;
2101 	u32 inactive_time;
2102 	u64 assoc_at;
2103 	u64 rx_bytes;
2104 	u64 tx_bytes;
2105 	s8 signal;
2106 	s8 signal_avg;
2107 
2108 	u8 chains;
2109 	s8 chain_signal[IEEE80211_MAX_CHAINS];
2110 	s8 chain_signal_avg[IEEE80211_MAX_CHAINS];
2111 
2112 	struct rate_info txrate;
2113 	struct rate_info rxrate;
2114 	u32 rx_packets;
2115 	u32 tx_packets;
2116 	u32 tx_retries;
2117 	u32 tx_failed;
2118 	u32 rx_dropped_misc;
2119 	struct sta_bss_parameters bss_param;
2120 
2121 	u32 beacon_loss_count;
2122 
2123 	u32 expected_throughput;
2124 
2125 	u64 tx_duration;
2126 	u64 rx_duration;
2127 	u64 rx_beacon;
2128 	u8 rx_beacon_signal_avg;
2129 
2130 	u16 airtime_weight;
2131 
2132 	s8 ack_signal;
2133 	s8 avg_ack_signal;
2134 	struct cfg80211_tid_stats *pertid;
2135 
2136 	u32 rx_mpdu_count;
2137 	u32 fcs_err_count;
2138 
2139 	u8 addr[ETH_ALEN] __aligned(2);
2140 };
2141 
2142 /**
2143  * struct station_info - station information
2144  *
2145  * Station information filled by driver for get_station() and dump_station.
2146  *
2147  * @filled: bitflag of flags using the bits of &enum nl80211_sta_info to
2148  *	indicate the relevant values in this struct for them
2149  * @connected_time: time(in secs) since a station is last connected
2150  * @inactive_time: time since last station activity (tx/rx) in milliseconds
2151  * @assoc_at: bootime (ns) of the last association
2152  * @rx_bytes: bytes (size of MPDUs) received from this station
2153  * @tx_bytes: bytes (size of MPDUs) transmitted to this station
2154  * @signal: The signal strength, type depends on the wiphy's signal_type.
2155  *	For CFG80211_SIGNAL_TYPE_MBM, value is expressed in _dBm_.
2156  * @signal_avg: Average signal strength, type depends on the wiphy's signal_type.
2157  *	For CFG80211_SIGNAL_TYPE_MBM, value is expressed in _dBm_.
2158  * @chains: bitmask for filled values in @chain_signal, @chain_signal_avg
2159  * @chain_signal: per-chain signal strength of last received packet in dBm
2160  * @chain_signal_avg: per-chain signal strength average in dBm
2161  * @txrate: current unicast bitrate from this station
2162  * @rxrate: current unicast bitrate to this station
2163  * @rx_packets: packets (MSDUs & MMPDUs) received from this station
2164  * @tx_packets: packets (MSDUs & MMPDUs) transmitted to this station
2165  * @tx_retries: cumulative retry counts (MPDUs)
2166  * @tx_failed: number of failed transmissions (MPDUs) (retries exceeded, no ACK)
2167  * @rx_dropped_misc:  Dropped for un-specified reason.
2168  * @bss_param: current BSS parameters
2169  * @generation: generation number for nl80211 dumps.
2170  *	This number should increase every time the list of stations
2171  *	changes, i.e. when a station is added or removed, so that
2172  *	userspace can tell whether it got a consistent snapshot.
2173  * @beacon_loss_count: Number of times beacon loss event has triggered.
2174  * @assoc_req_ies: IEs from (Re)Association Request.
2175  *	This is used only when in AP mode with drivers that do not use
2176  *	user space MLME/SME implementation. The information is provided for
2177  *	the cfg80211_new_sta() calls to notify user space of the IEs.
2178  * @assoc_req_ies_len: Length of assoc_req_ies buffer in octets.
2179  * @sta_flags: station flags mask & values
2180  * @t_offset: Time offset of the station relative to this host.
2181  * @llid: mesh local link id
2182  * @plid: mesh peer link id
2183  * @plink_state: mesh peer link state
2184  * @connected_to_gate: true if mesh STA has a path to mesh gate
2185  * @connected_to_as: true if mesh STA has a path to authentication server
2186  * @airtime_link_metric: mesh airtime link metric.
2187  * @local_pm: local mesh STA power save mode
2188  * @peer_pm: peer mesh STA power save mode
2189  * @nonpeer_pm: non-peer mesh STA power save mode
2190  * @expected_throughput: expected throughput in kbps (including 802.11 headers)
2191  *	towards this station.
2192  * @rx_beacon: number of beacons received from this peer
2193  * @rx_beacon_signal_avg: signal strength average (in dBm) for beacons received
2194  *	from this peer
2195  * @rx_duration: aggregate PPDU duration(usecs) for all the frames from a peer
2196  * @tx_duration: aggregate PPDU duration(usecs) for all the frames to a peer
2197  * @airtime_weight: current airtime scheduling weight
2198  * @pertid: per-TID statistics, see &struct cfg80211_tid_stats, using the last
2199  *	(IEEE80211_NUM_TIDS) index for MSDUs not encapsulated in QoS-MPDUs.
2200  *	Note that this doesn't use the @filled bit, but is used if non-NULL.
2201  * @ack_signal: signal strength (in dBm) of the last ACK frame.
2202  * @avg_ack_signal: average rssi value of ack packet for the no of msdu's has
2203  *	been sent.
2204  * @rx_mpdu_count: number of MPDUs received from this station
2205  * @fcs_err_count: number of packets (MPDUs) received from this station with
2206  *	an FCS error. This counter should be incremented only when TA of the
2207  *	received packet with an FCS error matches the peer MAC address.
2208  * @mlo_params_valid: Indicates @assoc_link_id and @mld_addr fields are filled
2209  *	by driver. Drivers use this only in cfg80211_new_sta() calls when AP
2210  *	MLD's MLME/SME is offload to driver. Drivers won't fill this
2211  *	information in cfg80211_del_sta_sinfo(), get_station() and
2212  *	dump_station() callbacks.
2213  * @assoc_link_id: Indicates MLO link ID of the AP, with which the station
2214  *	completed (re)association. This information filled for both MLO
2215  *	and non-MLO STA connections when the AP affiliated with an MLD.
2216  * @mld_addr: For MLO STA connection, filled with MLD address of the station.
2217  *	For non-MLO STA connection, filled with all zeros.
2218  * @assoc_resp_ies: IEs from (Re)Association Response.
2219  *	This is used only when in AP mode with drivers that do not use user
2220  *	space MLME/SME implementation. The information is provided only for the
2221  *	cfg80211_new_sta() calls to notify user space of the IEs. Drivers won't
2222  *	fill this information in cfg80211_del_sta_sinfo(), get_station() and
2223  *	dump_station() callbacks. User space needs this information to determine
2224  *	the accepted and rejected affiliated links of the connected station.
2225  * @assoc_resp_ies_len: Length of @assoc_resp_ies buffer in octets.
2226  * @valid_links: bitmap of valid links, or 0 for non-MLO. Drivers fill this
2227  *	information in cfg80211_new_sta(), cfg80211_del_sta_sinfo(),
2228  *	get_station() and dump_station() callbacks.
2229  * @links: reference to Link sta entries for MLO STA, all link specific
2230  *	information is accessed through links[link_id].
2231  */
2232 struct station_info {
2233 	u64 filled;
2234 	u32 connected_time;
2235 	u32 inactive_time;
2236 	u64 assoc_at;
2237 	u64 rx_bytes;
2238 	u64 tx_bytes;
2239 	s8 signal;
2240 	s8 signal_avg;
2241 
2242 	u8 chains;
2243 	s8 chain_signal[IEEE80211_MAX_CHAINS];
2244 	s8 chain_signal_avg[IEEE80211_MAX_CHAINS];
2245 
2246 	struct rate_info txrate;
2247 	struct rate_info rxrate;
2248 	u32 rx_packets;
2249 	u32 tx_packets;
2250 	u32 tx_retries;
2251 	u32 tx_failed;
2252 	u32 rx_dropped_misc;
2253 	struct sta_bss_parameters bss_param;
2254 	struct nl80211_sta_flag_update sta_flags;
2255 
2256 	int generation;
2257 
2258 	u32 beacon_loss_count;
2259 
2260 	const u8 *assoc_req_ies;
2261 	size_t assoc_req_ies_len;
2262 
2263 	s64 t_offset;
2264 	u16 llid;
2265 	u16 plid;
2266 	u8 plink_state;
2267 	u8 connected_to_gate;
2268 	u8 connected_to_as;
2269 	u32 airtime_link_metric;
2270 	enum nl80211_mesh_power_mode local_pm;
2271 	enum nl80211_mesh_power_mode peer_pm;
2272 	enum nl80211_mesh_power_mode nonpeer_pm;
2273 
2274 	u32 expected_throughput;
2275 
2276 	u16 airtime_weight;
2277 
2278 	s8 ack_signal;
2279 	s8 avg_ack_signal;
2280 	struct cfg80211_tid_stats *pertid;
2281 
2282 	u64 tx_duration;
2283 	u64 rx_duration;
2284 	u64 rx_beacon;
2285 	u8 rx_beacon_signal_avg;
2286 
2287 	u32 rx_mpdu_count;
2288 	u32 fcs_err_count;
2289 
2290 	bool mlo_params_valid;
2291 	u8 assoc_link_id;
2292 	u8 mld_addr[ETH_ALEN] __aligned(2);
2293 	const u8 *assoc_resp_ies;
2294 	size_t assoc_resp_ies_len;
2295 
2296 	u16 valid_links;
2297 	struct link_station_info *links[IEEE80211_MLD_MAX_NUM_LINKS];
2298 };
2299 
2300 /**
2301  * struct cfg80211_sar_sub_specs - sub specs limit
2302  * @power: power limitation in 0.25dbm
2303  * @freq_range_index: index the power limitation applies to
2304  */
2305 struct cfg80211_sar_sub_specs {
2306 	s32 power;
2307 	u32 freq_range_index;
2308 };
2309 
2310 /**
2311  * struct cfg80211_sar_specs - sar limit specs
2312  * @type: it's set with power in 0.25dbm or other types
2313  * @num_sub_specs: number of sar sub specs
2314  * @sub_specs: memory to hold the sar sub specs
2315  */
2316 struct cfg80211_sar_specs {
2317 	enum nl80211_sar_type type;
2318 	u32 num_sub_specs;
2319 	struct cfg80211_sar_sub_specs sub_specs[] __counted_by(num_sub_specs);
2320 };
2321 
2322 
2323 /**
2324  * struct cfg80211_sar_freq_ranges - sar frequency ranges
2325  * @start_freq:  start range edge frequency
2326  * @end_freq:    end range edge frequency
2327  */
2328 struct cfg80211_sar_freq_ranges {
2329 	u32 start_freq;
2330 	u32 end_freq;
2331 };
2332 
2333 /**
2334  * struct cfg80211_sar_capa - sar limit capability
2335  * @type: it's set via power in 0.25dbm or other types
2336  * @num_freq_ranges: number of frequency ranges
2337  * @freq_ranges: memory to hold the freq ranges.
2338  *
2339  * Note: WLAN driver may append new ranges or split an existing
2340  * range to small ones and then append them.
2341  */
2342 struct cfg80211_sar_capa {
2343 	enum nl80211_sar_type type;
2344 	u32 num_freq_ranges;
2345 	const struct cfg80211_sar_freq_ranges *freq_ranges;
2346 };
2347 
2348 #if IS_ENABLED(CONFIG_CFG80211)
2349 /**
2350  * cfg80211_get_station - retrieve information about a given station
2351  * @dev: the device where the station is supposed to be connected to
2352  * @mac_addr: the mac address of the station of interest
2353  * @sinfo: pointer to the structure to fill with the information
2354  *
2355  * Return: 0 on success and sinfo is filled with the available information
2356  * otherwise returns a negative error code and the content of sinfo has to be
2357  * considered undefined.
2358  */
2359 int cfg80211_get_station(struct net_device *dev, const u8 *mac_addr,
2360 			 struct station_info *sinfo);
2361 #else
cfg80211_get_station(struct net_device * dev,const u8 * mac_addr,struct station_info * sinfo)2362 static inline int cfg80211_get_station(struct net_device *dev,
2363 				       const u8 *mac_addr,
2364 				       struct station_info *sinfo)
2365 {
2366 	return -ENOENT;
2367 }
2368 #endif
2369 
2370 /**
2371  * enum monitor_flags - monitor flags
2372  *
2373  * Monitor interface configuration flags. Note that these must be the bits
2374  * according to the nl80211 flags.
2375  *
2376  * @MONITOR_FLAG_CHANGED: set if the flags were changed
2377  * @MONITOR_FLAG_FCSFAIL: pass frames with bad FCS
2378  * @MONITOR_FLAG_PLCPFAIL: pass frames with bad PLCP
2379  * @MONITOR_FLAG_CONTROL: pass control frames
2380  * @MONITOR_FLAG_OTHER_BSS: disable BSSID filtering
2381  * @MONITOR_FLAG_COOK_FRAMES: deprecated, will unconditionally be refused
2382  * @MONITOR_FLAG_ACTIVE: active monitor, ACKs frames on its MAC address
2383  * @MONITOR_FLAG_SKIP_TX: do not pass locally transmitted frames
2384  */
2385 enum monitor_flags {
2386 	MONITOR_FLAG_CHANGED		= BIT(__NL80211_MNTR_FLAG_INVALID),
2387 	MONITOR_FLAG_FCSFAIL		= BIT(NL80211_MNTR_FLAG_FCSFAIL),
2388 	MONITOR_FLAG_PLCPFAIL		= BIT(NL80211_MNTR_FLAG_PLCPFAIL),
2389 	MONITOR_FLAG_CONTROL		= BIT(NL80211_MNTR_FLAG_CONTROL),
2390 	MONITOR_FLAG_OTHER_BSS		= BIT(NL80211_MNTR_FLAG_OTHER_BSS),
2391 	MONITOR_FLAG_COOK_FRAMES	= BIT(NL80211_MNTR_FLAG_COOK_FRAMES),
2392 	MONITOR_FLAG_ACTIVE		= BIT(NL80211_MNTR_FLAG_ACTIVE),
2393 	MONITOR_FLAG_SKIP_TX		= BIT(NL80211_MNTR_FLAG_SKIP_TX),
2394 };
2395 
2396 /**
2397  * enum mpath_info_flags -  mesh path information flags
2398  *
2399  * Used by the driver to indicate which info in &struct mpath_info it has filled
2400  * in during get_station() or dump_station().
2401  *
2402  * @MPATH_INFO_FRAME_QLEN: @frame_qlen filled
2403  * @MPATH_INFO_SN: @sn filled
2404  * @MPATH_INFO_METRIC: @metric filled
2405  * @MPATH_INFO_EXPTIME: @exptime filled
2406  * @MPATH_INFO_DISCOVERY_TIMEOUT: @discovery_timeout filled
2407  * @MPATH_INFO_DISCOVERY_RETRIES: @discovery_retries filled
2408  * @MPATH_INFO_FLAGS: @flags filled
2409  * @MPATH_INFO_HOP_COUNT: @hop_count filled
2410  * @MPATH_INFO_PATH_CHANGE: @path_change_count filled
2411  */
2412 enum mpath_info_flags {
2413 	MPATH_INFO_FRAME_QLEN		= BIT(0),
2414 	MPATH_INFO_SN			= BIT(1),
2415 	MPATH_INFO_METRIC		= BIT(2),
2416 	MPATH_INFO_EXPTIME		= BIT(3),
2417 	MPATH_INFO_DISCOVERY_TIMEOUT	= BIT(4),
2418 	MPATH_INFO_DISCOVERY_RETRIES	= BIT(5),
2419 	MPATH_INFO_FLAGS		= BIT(6),
2420 	MPATH_INFO_HOP_COUNT		= BIT(7),
2421 	MPATH_INFO_PATH_CHANGE		= BIT(8),
2422 };
2423 
2424 /**
2425  * struct mpath_info - mesh path information
2426  *
2427  * Mesh path information filled by driver for get_mpath() and dump_mpath().
2428  *
2429  * @filled: bitfield of flags from &enum mpath_info_flags
2430  * @frame_qlen: number of queued frames for this destination
2431  * @sn: target sequence number
2432  * @metric: metric (cost) of this mesh path
2433  * @exptime: expiration time for the mesh path from now, in msecs
2434  * @flags: mesh path flags from &enum mesh_path_flags
2435  * @discovery_timeout: total mesh path discovery timeout, in msecs
2436  * @discovery_retries: mesh path discovery retries
2437  * @generation: generation number for nl80211 dumps.
2438  *	This number should increase every time the list of mesh paths
2439  *	changes, i.e. when a station is added or removed, so that
2440  *	userspace can tell whether it got a consistent snapshot.
2441  * @hop_count: hops to destination
2442  * @path_change_count: total number of path changes to destination
2443  */
2444 struct mpath_info {
2445 	u32 filled;
2446 	u32 frame_qlen;
2447 	u32 sn;
2448 	u32 metric;
2449 	u32 exptime;
2450 	u32 discovery_timeout;
2451 	u8 discovery_retries;
2452 	u8 flags;
2453 	u8 hop_count;
2454 	u32 path_change_count;
2455 
2456 	int generation;
2457 };
2458 
2459 /**
2460  * struct bss_parameters - BSS parameters
2461  *
2462  * Used to change BSS parameters (mainly for AP mode).
2463  *
2464  * @link_id: link_id or -1 for non-MLD
2465  * @use_cts_prot: Whether to use CTS protection
2466  *	(0 = no, 1 = yes, -1 = do not change)
2467  * @use_short_preamble: Whether the use of short preambles is allowed
2468  *	(0 = no, 1 = yes, -1 = do not change)
2469  * @use_short_slot_time: Whether the use of short slot time is allowed
2470  *	(0 = no, 1 = yes, -1 = do not change)
2471  * @basic_rates: basic rates in IEEE 802.11 format
2472  *	(or NULL for no change)
2473  * @basic_rates_len: number of basic rates
2474  * @ap_isolate: do not forward packets between connected stations
2475  *	(0 = no, 1 = yes, -1 = do not change)
2476  * @ht_opmode: HT Operation mode
2477  *	(u16 = opmode, -1 = do not change)
2478  * @p2p_ctwindow: P2P CT Window (-1 = no change)
2479  * @p2p_opp_ps: P2P opportunistic PS (-1 = no change)
2480  */
2481 struct bss_parameters {
2482 	int link_id;
2483 	int use_cts_prot;
2484 	int use_short_preamble;
2485 	int use_short_slot_time;
2486 	const u8 *basic_rates;
2487 	u8 basic_rates_len;
2488 	int ap_isolate;
2489 	int ht_opmode;
2490 	s8 p2p_ctwindow, p2p_opp_ps;
2491 };
2492 
2493 /**
2494  * struct mesh_config - 802.11s mesh configuration
2495  *
2496  * These parameters can be changed while the mesh is active.
2497  *
2498  * @dot11MeshRetryTimeout: the initial retry timeout in millisecond units used
2499  *	by the Mesh Peering Open message
2500  * @dot11MeshConfirmTimeout: the initial retry timeout in millisecond units
2501  *	used by the Mesh Peering Open message
2502  * @dot11MeshHoldingTimeout: the confirm timeout in millisecond units used by
2503  *	the mesh peering management to close a mesh peering
2504  * @dot11MeshMaxPeerLinks: the maximum number of peer links allowed on this
2505  *	mesh interface
2506  * @dot11MeshMaxRetries: the maximum number of peer link open retries that can
2507  *	be sent to establish a new peer link instance in a mesh
2508  * @dot11MeshTTL: the value of TTL field set at a source mesh STA
2509  * @element_ttl: the value of TTL field set at a mesh STA for path selection
2510  *	elements
2511  * @auto_open_plinks: whether we should automatically open peer links when we
2512  *	detect compatible mesh peers
2513  * @dot11MeshNbrOffsetMaxNeighbor: the maximum number of neighbors to
2514  *	synchronize to for 11s default synchronization method
2515  * @dot11MeshHWMPmaxPREQretries: the number of action frames containing a PREQ
2516  *	that an originator mesh STA can send to a particular path target
2517  * @path_refresh_time: how frequently to refresh mesh paths in milliseconds
2518  * @min_discovery_timeout: the minimum length of time to wait until giving up on
2519  *	a path discovery in milliseconds
2520  * @dot11MeshHWMPactivePathTimeout: the time (in TUs) for which mesh STAs
2521  *	receiving a PREQ shall consider the forwarding information from the
2522  *	root to be valid. (TU = time unit)
2523  * @dot11MeshHWMPpreqMinInterval: the minimum interval of time (in TUs) during
2524  *	which a mesh STA can send only one action frame containing a PREQ
2525  *	element
2526  * @dot11MeshHWMPperrMinInterval: the minimum interval of time (in TUs) during
2527  *	which a mesh STA can send only one Action frame containing a PERR
2528  *	element
2529  * @dot11MeshHWMPnetDiameterTraversalTime: the interval of time (in TUs) that
2530  *	it takes for an HWMP information element to propagate across the mesh
2531  * @dot11MeshHWMPRootMode: the configuration of a mesh STA as root mesh STA
2532  * @dot11MeshHWMPRannInterval: the interval of time (in TUs) between root
2533  *	announcements are transmitted
2534  * @dot11MeshGateAnnouncementProtocol: whether to advertise that this mesh
2535  *	station has access to a broader network beyond the MBSS. (This is
2536  *	missnamed in draft 12.0: dot11MeshGateAnnouncementProtocol set to true
2537  *	only means that the station will announce others it's a mesh gate, but
2538  *	not necessarily using the gate announcement protocol. Still keeping the
2539  *	same nomenclature to be in sync with the spec)
2540  * @dot11MeshForwarding: whether the Mesh STA is forwarding or non-forwarding
2541  *	entity (default is TRUE - forwarding entity)
2542  * @rssi_threshold: the threshold for average signal strength of candidate
2543  *	station to establish a peer link
2544  * @ht_opmode: mesh HT protection mode
2545  *
2546  * @dot11MeshHWMPactivePathToRootTimeout: The time (in TUs) for which mesh STAs
2547  *	receiving a proactive PREQ shall consider the forwarding information to
2548  *	the root mesh STA to be valid.
2549  *
2550  * @dot11MeshHWMProotInterval: The interval of time (in TUs) between proactive
2551  *	PREQs are transmitted.
2552  * @dot11MeshHWMPconfirmationInterval: The minimum interval of time (in TUs)
2553  *	during which a mesh STA can send only one Action frame containing
2554  *	a PREQ element for root path confirmation.
2555  * @power_mode: The default mesh power save mode which will be the initial
2556  *	setting for new peer links.
2557  * @dot11MeshAwakeWindowDuration: The duration in TUs the STA will remain awake
2558  *	after transmitting its beacon.
2559  * @plink_timeout: If no tx activity is seen from a STA we've established
2560  *	peering with for longer than this time (in seconds), then remove it
2561  *	from the STA's list of peers.  Default is 30 minutes.
2562  * @dot11MeshConnectedToAuthServer: if set to true then this mesh STA
2563  *	will advertise that it is connected to a authentication server
2564  *	in the mesh formation field.
2565  * @dot11MeshConnectedToMeshGate: if set to true, advertise that this STA is
2566  *      connected to a mesh gate in mesh formation info.  If false, the
2567  *      value in mesh formation is determined by the presence of root paths
2568  *      in the mesh path table
2569  * @dot11MeshNolearn: Try to avoid multi-hop path discovery (e.g. PREQ/PREP
2570  *      for HWMP) if the destination is a direct neighbor. Note that this might
2571  *      not be the optimal decision as a multi-hop route might be better. So
2572  *      if using this setting you will likely also want to disable
2573  *      dot11MeshForwarding and use another mesh routing protocol on top.
2574  */
2575 struct mesh_config {
2576 	u16 dot11MeshRetryTimeout;
2577 	u16 dot11MeshConfirmTimeout;
2578 	u16 dot11MeshHoldingTimeout;
2579 	u16 dot11MeshMaxPeerLinks;
2580 	u8 dot11MeshMaxRetries;
2581 	u8 dot11MeshTTL;
2582 	u8 element_ttl;
2583 	bool auto_open_plinks;
2584 	u32 dot11MeshNbrOffsetMaxNeighbor;
2585 	u8 dot11MeshHWMPmaxPREQretries;
2586 	u32 path_refresh_time;
2587 	u16 min_discovery_timeout;
2588 	u32 dot11MeshHWMPactivePathTimeout;
2589 	u16 dot11MeshHWMPpreqMinInterval;
2590 	u16 dot11MeshHWMPperrMinInterval;
2591 	u16 dot11MeshHWMPnetDiameterTraversalTime;
2592 	u8 dot11MeshHWMPRootMode;
2593 	bool dot11MeshConnectedToMeshGate;
2594 	bool dot11MeshConnectedToAuthServer;
2595 	u16 dot11MeshHWMPRannInterval;
2596 	bool dot11MeshGateAnnouncementProtocol;
2597 	bool dot11MeshForwarding;
2598 	s32 rssi_threshold;
2599 	u16 ht_opmode;
2600 	u32 dot11MeshHWMPactivePathToRootTimeout;
2601 	u16 dot11MeshHWMProotInterval;
2602 	u16 dot11MeshHWMPconfirmationInterval;
2603 	enum nl80211_mesh_power_mode power_mode;
2604 	u16 dot11MeshAwakeWindowDuration;
2605 	u32 plink_timeout;
2606 	bool dot11MeshNolearn;
2607 };
2608 
2609 /**
2610  * struct mesh_setup - 802.11s mesh setup configuration
2611  * @chandef: defines the channel to use
2612  * @mesh_id: the mesh ID
2613  * @mesh_id_len: length of the mesh ID, at least 1 and at most 32 bytes
2614  * @sync_method: which synchronization method to use
2615  * @path_sel_proto: which path selection protocol to use
2616  * @path_metric: which metric to use
2617  * @auth_id: which authentication method this mesh is using
2618  * @ie: vendor information elements (optional)
2619  * @ie_len: length of vendor information elements
2620  * @is_authenticated: this mesh requires authentication
2621  * @is_secure: this mesh uses security
2622  * @user_mpm: userspace handles all MPM functions
2623  * @dtim_period: DTIM period to use
2624  * @beacon_interval: beacon interval to use
2625  * @mcast_rate: multicast rate for Mesh Node [6Mbps is the default for 802.11a]
2626  * @basic_rates: basic rates to use when creating the mesh
2627  * @beacon_rate: bitrate to be used for beacons
2628  * @userspace_handles_dfs: whether user space controls DFS operation, i.e.
2629  *	changes the channel when a radar is detected. This is required
2630  *	to operate on DFS channels.
2631  * @control_port_over_nl80211: TRUE if userspace expects to exchange control
2632  *	port frames over NL80211 instead of the network interface.
2633  *
2634  * These parameters are fixed when the mesh is created.
2635  */
2636 struct mesh_setup {
2637 	struct cfg80211_chan_def chandef;
2638 	const u8 *mesh_id;
2639 	u8 mesh_id_len;
2640 	u8 sync_method;
2641 	u8 path_sel_proto;
2642 	u8 path_metric;
2643 	u8 auth_id;
2644 	const u8 *ie;
2645 	u8 ie_len;
2646 	bool is_authenticated;
2647 	bool is_secure;
2648 	bool user_mpm;
2649 	u8 dtim_period;
2650 	u16 beacon_interval;
2651 	int mcast_rate[NUM_NL80211_BANDS];
2652 	u32 basic_rates;
2653 	struct cfg80211_bitrate_mask beacon_rate;
2654 	bool userspace_handles_dfs;
2655 	bool control_port_over_nl80211;
2656 };
2657 
2658 /**
2659  * struct ocb_setup - 802.11p OCB mode setup configuration
2660  * @chandef: defines the channel to use
2661  *
2662  * These parameters are fixed when connecting to the network
2663  */
2664 struct ocb_setup {
2665 	struct cfg80211_chan_def chandef;
2666 };
2667 
2668 /**
2669  * struct ieee80211_txq_params - TX queue parameters
2670  * @ac: AC identifier
2671  * @txop: Maximum burst time in units of 32 usecs, 0 meaning disabled
2672  * @cwmin: Minimum contention window [a value of the form 2^n-1 in the range
2673  *	1..32767]
2674  * @cwmax: Maximum contention window [a value of the form 2^n-1 in the range
2675  *	1..32767]
2676  * @aifs: Arbitration interframe space [0..255]
2677  * @link_id: link_id or -1 for non-MLD
2678  */
2679 struct ieee80211_txq_params {
2680 	enum nl80211_ac ac;
2681 	u16 txop;
2682 	u16 cwmin;
2683 	u16 cwmax;
2684 	u8 aifs;
2685 	int link_id;
2686 };
2687 
2688 /**
2689  * DOC: Scanning and BSS list handling
2690  *
2691  * The scanning process itself is fairly simple, but cfg80211 offers quite
2692  * a bit of helper functionality. To start a scan, the scan operation will
2693  * be invoked with a scan definition. This scan definition contains the
2694  * channels to scan, and the SSIDs to send probe requests for (including the
2695  * wildcard, if desired). A passive scan is indicated by having no SSIDs to
2696  * probe. Additionally, a scan request may contain extra information elements
2697  * that should be added to the probe request. The IEs are guaranteed to be
2698  * well-formed, and will not exceed the maximum length the driver advertised
2699  * in the wiphy structure.
2700  *
2701  * When scanning finds a BSS, cfg80211 needs to be notified of that, because
2702  * it is responsible for maintaining the BSS list; the driver should not
2703  * maintain a list itself. For this notification, various functions exist.
2704  *
2705  * Since drivers do not maintain a BSS list, there are also a number of
2706  * functions to search for a BSS and obtain information about it from the
2707  * BSS structure cfg80211 maintains. The BSS list is also made available
2708  * to userspace.
2709  */
2710 
2711 /**
2712  * struct cfg80211_ssid - SSID description
2713  * @ssid: the SSID
2714  * @ssid_len: length of the ssid
2715  */
2716 struct cfg80211_ssid {
2717 	u8 ssid[IEEE80211_MAX_SSID_LEN];
2718 	u8 ssid_len;
2719 };
2720 
2721 /**
2722  * struct cfg80211_scan_info - information about completed scan
2723  * @scan_start_tsf: scan start time in terms of the TSF of the BSS that the
2724  *	wireless device that requested the scan is connected to. If this
2725  *	information is not available, this field is left zero.
2726  * @tsf_bssid: the BSSID according to which %scan_start_tsf is set.
2727  * @aborted: set to true if the scan was aborted for any reason,
2728  *	userspace will be notified of that
2729  */
2730 struct cfg80211_scan_info {
2731 	u64 scan_start_tsf;
2732 	u8 tsf_bssid[ETH_ALEN] __aligned(2);
2733 	bool aborted;
2734 };
2735 
2736 /**
2737  * struct cfg80211_scan_6ghz_params - relevant for 6 GHz only
2738  *
2739  * @short_ssid: short ssid to scan for
2740  * @bssid: bssid to scan for
2741  * @channel_idx: idx of the channel in the channel array in the scan request
2742  *	 which the above info is relevant to
2743  * @unsolicited_probe: the AP transmits unsolicited probe response every 20 TU
2744  * @short_ssid_valid: @short_ssid is valid and can be used
2745  * @psc_no_listen: when set, and the channel is a PSC channel, no need to wait
2746  *       20 TUs before starting to send probe requests.
2747  * @psd_20: The AP's 20 MHz PSD value.
2748  */
2749 struct cfg80211_scan_6ghz_params {
2750 	u32 short_ssid;
2751 	u32 channel_idx;
2752 	u8 bssid[ETH_ALEN];
2753 	bool unsolicited_probe;
2754 	bool short_ssid_valid;
2755 	bool psc_no_listen;
2756 	s8 psd_20;
2757 };
2758 
2759 /**
2760  * struct cfg80211_scan_request - scan request description
2761  *
2762  * @ssids: SSIDs to scan for (active scan only)
2763  * @n_ssids: number of SSIDs
2764  * @channels: channels to scan on.
2765  * @n_channels: total number of channels to scan
2766  * @ie: optional information element(s) to add into Probe Request or %NULL
2767  * @ie_len: length of ie in octets
2768  * @duration: how long to listen on each channel, in TUs. If
2769  *	%duration_mandatory is not set, this is the maximum dwell time and
2770  *	the actual dwell time may be shorter.
2771  * @duration_mandatory: if set, the scan duration must be as specified by the
2772  *	%duration field.
2773  * @flags: control flags from &enum nl80211_scan_flags
2774  * @rates: bitmap of rates to advertise for each band
2775  * @wiphy: the wiphy this was for
2776  * @scan_start: time (in jiffies) when the scan started
2777  * @wdev: the wireless device to scan for
2778  * @no_cck: used to send probe requests at non CCK rate in 2GHz band
2779  * @mac_addr: MAC address used with randomisation
2780  * @mac_addr_mask: MAC address mask used with randomisation, bits that
2781  *	are 0 in the mask should be randomised, bits that are 1 should
2782  *	be taken from the @mac_addr
2783  * @scan_6ghz: relevant for split scan request only,
2784  *	true if this is a 6 GHz scan request
2785  * @first_part: %true if this is the first part of a split scan request or a
2786  *	scan that was not split. May be %true for a @scan_6ghz scan if no other
2787  *	channels were requested
2788  * @n_6ghz_params: number of 6 GHz params
2789  * @scan_6ghz_params: 6 GHz params
2790  * @bssid: BSSID to scan for (most commonly, the wildcard BSSID)
2791  * @tsf_report_link_id: for MLO, indicates the link ID of the BSS that should be
2792  *      used for TSF reporting. Can be set to -1 to indicate no preference.
2793  */
2794 struct cfg80211_scan_request {
2795 	struct cfg80211_ssid *ssids;
2796 	int n_ssids;
2797 	u32 n_channels;
2798 	const u8 *ie;
2799 	size_t ie_len;
2800 	u16 duration;
2801 	bool duration_mandatory;
2802 	u32 flags;
2803 
2804 	u32 rates[NUM_NL80211_BANDS];
2805 
2806 	struct wireless_dev *wdev;
2807 
2808 	u8 mac_addr[ETH_ALEN] __aligned(2);
2809 	u8 mac_addr_mask[ETH_ALEN] __aligned(2);
2810 	u8 bssid[ETH_ALEN] __aligned(2);
2811 	struct wiphy *wiphy;
2812 	unsigned long scan_start;
2813 	bool no_cck;
2814 	bool scan_6ghz;
2815 	bool first_part;
2816 	u32 n_6ghz_params;
2817 	struct cfg80211_scan_6ghz_params *scan_6ghz_params;
2818 	s8 tsf_report_link_id;
2819 
2820 	/* keep last */
2821 	struct ieee80211_channel *channels[];
2822 };
2823 
get_random_mask_addr(u8 * buf,const u8 * addr,const u8 * mask)2824 static inline void get_random_mask_addr(u8 *buf, const u8 *addr, const u8 *mask)
2825 {
2826 	int i;
2827 
2828 	get_random_bytes(buf, ETH_ALEN);
2829 	for (i = 0; i < ETH_ALEN; i++) {
2830 		buf[i] &= ~mask[i];
2831 		buf[i] |= addr[i] & mask[i];
2832 	}
2833 }
2834 
2835 /**
2836  * struct cfg80211_match_set - sets of attributes to match
2837  *
2838  * @ssid: SSID to be matched; may be zero-length in case of BSSID match
2839  *	or no match (RSSI only)
2840  * @bssid: BSSID to be matched; may be all-zero BSSID in case of SSID match
2841  *	or no match (RSSI only)
2842  * @rssi_thold: don't report scan results below this threshold (in s32 dBm)
2843  */
2844 struct cfg80211_match_set {
2845 	struct cfg80211_ssid ssid;
2846 	u8 bssid[ETH_ALEN];
2847 	s32 rssi_thold;
2848 };
2849 
2850 /**
2851  * struct cfg80211_sched_scan_plan - scan plan for scheduled scan
2852  *
2853  * @interval: interval between scheduled scan iterations. In seconds.
2854  * @iterations: number of scan iterations in this scan plan. Zero means
2855  *	infinite loop.
2856  *	The last scan plan will always have this parameter set to zero,
2857  *	all other scan plans will have a finite number of iterations.
2858  */
2859 struct cfg80211_sched_scan_plan {
2860 	u32 interval;
2861 	u32 iterations;
2862 };
2863 
2864 /**
2865  * struct cfg80211_bss_select_adjust - BSS selection with RSSI adjustment.
2866  *
2867  * @band: band of BSS which should match for RSSI level adjustment.
2868  * @delta: value of RSSI level adjustment.
2869  */
2870 struct cfg80211_bss_select_adjust {
2871 	enum nl80211_band band;
2872 	s8 delta;
2873 };
2874 
2875 /**
2876  * struct cfg80211_sched_scan_request - scheduled scan request description
2877  *
2878  * @reqid: identifies this request.
2879  * @ssids: SSIDs to scan for (passed in the probe_reqs in active scans)
2880  * @n_ssids: number of SSIDs
2881  * @n_channels: total number of channels to scan
2882  * @ie: optional information element(s) to add into Probe Request or %NULL
2883  * @ie_len: length of ie in octets
2884  * @flags: control flags from &enum nl80211_scan_flags
2885  * @match_sets: sets of parameters to be matched for a scan result
2886  *	entry to be considered valid and to be passed to the host
2887  *	(others are filtered out).
2888  *	If omitted, all results are passed.
2889  * @n_match_sets: number of match sets
2890  * @report_results: indicates that results were reported for this request
2891  * @wiphy: the wiphy this was for
2892  * @dev: the interface
2893  * @scan_start: start time of the scheduled scan
2894  * @channels: channels to scan
2895  * @min_rssi_thold: for drivers only supporting a single threshold, this
2896  *	contains the minimum over all matchsets
2897  * @mac_addr: MAC address used with randomisation
2898  * @mac_addr_mask: MAC address mask used with randomisation, bits that
2899  *	are 0 in the mask should be randomised, bits that are 1 should
2900  *	be taken from the @mac_addr
2901  * @scan_plans: scan plans to be executed in this scheduled scan. Lowest
2902  *	index must be executed first.
2903  * @n_scan_plans: number of scan plans, at least 1.
2904  * @rcu_head: RCU callback used to free the struct
2905  * @owner_nlportid: netlink portid of owner (if this should is a request
2906  *	owned by a particular socket)
2907  * @nl_owner_dead: netlink owner socket was closed - this request be freed
2908  * @list: for keeping list of requests.
2909  * @delay: delay in seconds to use before starting the first scan
2910  *	cycle.  The driver may ignore this parameter and start
2911  *	immediately (or at any other time), if this feature is not
2912  *	supported.
2913  * @relative_rssi_set: Indicates whether @relative_rssi is set or not.
2914  * @relative_rssi: Relative RSSI threshold in dB to restrict scan result
2915  *	reporting in connected state to cases where a matching BSS is determined
2916  *	to have better or slightly worse RSSI than the current connected BSS.
2917  *	The relative RSSI threshold values are ignored in disconnected state.
2918  * @rssi_adjust: delta dB of RSSI preference to be given to the BSSs that belong
2919  *	to the specified band while deciding whether a better BSS is reported
2920  *	using @relative_rssi. If delta is a negative number, the BSSs that
2921  *	belong to the specified band will be penalized by delta dB in relative
2922  *	comparisons.
2923  */
2924 struct cfg80211_sched_scan_request {
2925 	u64 reqid;
2926 	struct cfg80211_ssid *ssids;
2927 	int n_ssids;
2928 	u32 n_channels;
2929 	const u8 *ie;
2930 	size_t ie_len;
2931 	u32 flags;
2932 	struct cfg80211_match_set *match_sets;
2933 	int n_match_sets;
2934 	s32 min_rssi_thold;
2935 	u32 delay;
2936 	struct cfg80211_sched_scan_plan *scan_plans;
2937 	int n_scan_plans;
2938 
2939 	u8 mac_addr[ETH_ALEN] __aligned(2);
2940 	u8 mac_addr_mask[ETH_ALEN] __aligned(2);
2941 
2942 	bool relative_rssi_set;
2943 	s8 relative_rssi;
2944 	struct cfg80211_bss_select_adjust rssi_adjust;
2945 
2946 	/* internal */
2947 	struct wiphy *wiphy;
2948 	struct net_device *dev;
2949 	unsigned long scan_start;
2950 	bool report_results;
2951 	struct rcu_head rcu_head;
2952 	u32 owner_nlportid;
2953 	bool nl_owner_dead;
2954 	struct list_head list;
2955 
2956 	/* keep last */
2957 	struct ieee80211_channel *channels[] __counted_by(n_channels);
2958 };
2959 
2960 /**
2961  * enum cfg80211_signal_type - signal type
2962  *
2963  * @CFG80211_SIGNAL_TYPE_NONE: no signal strength information available
2964  * @CFG80211_SIGNAL_TYPE_MBM: signal strength in mBm (100*dBm)
2965  * @CFG80211_SIGNAL_TYPE_UNSPEC: signal strength, increasing from 0 through 100
2966  */
2967 enum cfg80211_signal_type {
2968 	CFG80211_SIGNAL_TYPE_NONE,
2969 	CFG80211_SIGNAL_TYPE_MBM,
2970 	CFG80211_SIGNAL_TYPE_UNSPEC,
2971 };
2972 
2973 /**
2974  * struct cfg80211_inform_bss - BSS inform data
2975  * @chan: channel the frame was received on
2976  * @signal: signal strength value, according to the wiphy's
2977  *	signal type
2978  * @boottime_ns: timestamp (CLOCK_BOOTTIME) when the information was
2979  *	received; should match the time when the frame was actually
2980  *	received by the device (not just by the host, in case it was
2981  *	buffered on the device) and be accurate to about 10ms.
2982  *	If the frame isn't buffered, just passing the return value of
2983  *	ktime_get_boottime_ns() is likely appropriate.
2984  * @parent_tsf: the time at the start of reception of the first octet of the
2985  *	timestamp field of the frame. The time is the TSF of the BSS specified
2986  *	by %parent_bssid.
2987  * @parent_bssid: the BSS according to which %parent_tsf is set. This is set to
2988  *	the BSS that requested the scan in which the beacon/probe was received.
2989  * @chains: bitmask for filled values in @chain_signal.
2990  * @chain_signal: per-chain signal strength of last received BSS in dBm.
2991  * @restrict_use: restrict usage, if not set, assume @use_for is
2992  *	%NL80211_BSS_USE_FOR_NORMAL.
2993  * @use_for: bitmap of possible usage for this BSS, see
2994  *	&enum nl80211_bss_use_for
2995  * @cannot_use_reasons: the reasons (bitmap) for not being able to connect,
2996  *	if @restrict_use is set and @use_for is zero (empty); may be 0 for
2997  *	unspecified reasons; see &enum nl80211_bss_cannot_use_reasons
2998  * @drv_data: Data to be passed through to @inform_bss
2999  */
3000 struct cfg80211_inform_bss {
3001 	struct ieee80211_channel *chan;
3002 	s32 signal;
3003 	u64 boottime_ns;
3004 	u64 parent_tsf;
3005 	u8 parent_bssid[ETH_ALEN] __aligned(2);
3006 	u8 chains;
3007 	s8 chain_signal[IEEE80211_MAX_CHAINS];
3008 
3009 	u8 restrict_use:1, use_for:7;
3010 	u8 cannot_use_reasons;
3011 
3012 	void *drv_data;
3013 };
3014 
3015 /**
3016  * struct cfg80211_bss_ies - BSS entry IE data
3017  * @tsf: TSF contained in the frame that carried these IEs
3018  * @rcu_head: internal use, for freeing
3019  * @len: length of the IEs
3020  * @from_beacon: these IEs are known to come from a beacon
3021  * @data: IE data
3022  */
3023 struct cfg80211_bss_ies {
3024 	u64 tsf;
3025 	struct rcu_head rcu_head;
3026 	int len;
3027 	bool from_beacon;
3028 	u8 data[];
3029 };
3030 
3031 /**
3032  * struct cfg80211_bss - BSS description
3033  *
3034  * This structure describes a BSS (which may also be a mesh network)
3035  * for use in scan results and similar.
3036  *
3037  * @channel: channel this BSS is on
3038  * @bssid: BSSID of the BSS
3039  * @beacon_interval: the beacon interval as from the frame
3040  * @capability: the capability field in host byte order
3041  * @ies: the information elements (Note that there is no guarantee that these
3042  *	are well-formed!); this is a pointer to either the beacon_ies or
3043  *	proberesp_ies depending on whether Probe Response frame has been
3044  *	received. It is always non-%NULL.
3045  * @beacon_ies: the information elements from the last Beacon frame
3046  *	(implementation note: if @hidden_beacon_bss is set this struct doesn't
3047  *	own the beacon_ies, but they're just pointers to the ones from the
3048  *	@hidden_beacon_bss struct)
3049  * @proberesp_ies: the information elements from the last Probe Response frame
3050  * @proberesp_ecsa_stuck: ECSA element is stuck in the Probe Response frame,
3051  *	cannot rely on it having valid data
3052  * @hidden_beacon_bss: in case this BSS struct represents a probe response from
3053  *	a BSS that hides the SSID in its beacon, this points to the BSS struct
3054  *	that holds the beacon data. @beacon_ies is still valid, of course, and
3055  *	points to the same data as hidden_beacon_bss->beacon_ies in that case.
3056  * @transmitted_bss: pointer to the transmitted BSS, if this is a
3057  *	non-transmitted one (multi-BSSID support)
3058  * @nontrans_list: list of non-transmitted BSS, if this is a transmitted one
3059  *	(multi-BSSID support)
3060  * @signal: signal strength value (type depends on the wiphy's signal_type)
3061  * @ts_boottime: timestamp of the last BSS update in nanoseconds since boot
3062  * @chains: bitmask for filled values in @chain_signal.
3063  * @chain_signal: per-chain signal strength of last received BSS in dBm.
3064  * @bssid_index: index in the multiple BSS set
3065  * @max_bssid_indicator: max number of members in the BSS set
3066  * @use_for: bitmap of possible usage for this BSS, see
3067  *	&enum nl80211_bss_use_for
3068  * @cannot_use_reasons: the reasons (bitmap) for not being able to connect,
3069  *	if @restrict_use is set and @use_for is zero (empty); may be 0 for
3070  *	unspecified reasons; see &enum nl80211_bss_cannot_use_reasons
3071  * @priv: private area for driver use, has at least wiphy->bss_priv_size bytes
3072  */
3073 struct cfg80211_bss {
3074 	struct ieee80211_channel *channel;
3075 
3076 	const struct cfg80211_bss_ies __rcu *ies;
3077 	const struct cfg80211_bss_ies __rcu *beacon_ies;
3078 	const struct cfg80211_bss_ies __rcu *proberesp_ies;
3079 
3080 	struct cfg80211_bss *hidden_beacon_bss;
3081 	struct cfg80211_bss *transmitted_bss;
3082 	struct list_head nontrans_list;
3083 
3084 	s32 signal;
3085 
3086 	u64 ts_boottime;
3087 
3088 	u16 beacon_interval;
3089 	u16 capability;
3090 
3091 	u8 bssid[ETH_ALEN];
3092 	u8 chains;
3093 	s8 chain_signal[IEEE80211_MAX_CHAINS];
3094 
3095 	u8 proberesp_ecsa_stuck:1;
3096 
3097 	u8 bssid_index;
3098 	u8 max_bssid_indicator;
3099 
3100 	u8 use_for;
3101 	u8 cannot_use_reasons;
3102 
3103 	u8 priv[] __aligned(sizeof(void *));
3104 };
3105 
3106 /**
3107  * ieee80211_bss_get_elem - find element with given ID
3108  * @bss: the bss to search
3109  * @id: the element ID
3110  *
3111  * Note that the return value is an RCU-protected pointer, so
3112  * rcu_read_lock() must be held when calling this function.
3113  * Return: %NULL if not found.
3114  */
3115 const struct element *ieee80211_bss_get_elem(struct cfg80211_bss *bss, u8 id);
3116 
3117 /**
3118  * ieee80211_bss_get_ie - find IE with given ID
3119  * @bss: the bss to search
3120  * @id: the element ID
3121  *
3122  * Note that the return value is an RCU-protected pointer, so
3123  * rcu_read_lock() must be held when calling this function.
3124  * Return: %NULL if not found.
3125  */
ieee80211_bss_get_ie(struct cfg80211_bss * bss,u8 id)3126 static inline const u8 *ieee80211_bss_get_ie(struct cfg80211_bss *bss, u8 id)
3127 {
3128 	return (const void *)ieee80211_bss_get_elem(bss, id);
3129 }
3130 
3131 
3132 /**
3133  * struct cfg80211_auth_request - Authentication request data
3134  *
3135  * This structure provides information needed to complete IEEE 802.11
3136  * authentication.
3137  *
3138  * @bss: The BSS to authenticate with, the callee must obtain a reference
3139  *	to it if it needs to keep it.
3140  * @supported_selectors: List of selectors that should be assumed to be
3141  *	supported by the station.
3142  *	SAE_H2E must be assumed supported if set to %NULL.
3143  * @supported_selectors_len: Length of supported_selectors in octets.
3144  * @auth_type: Authentication type (algorithm)
3145  * @ie: Extra IEs to add to Authentication frame or %NULL
3146  * @ie_len: Length of ie buffer in octets
3147  * @key_len: length of WEP key for shared key authentication
3148  * @key_idx: index of WEP key for shared key authentication
3149  * @key: WEP key for shared key authentication
3150  * @auth_data: Fields and elements in Authentication frames. This contains
3151  *	the authentication frame body (non-IE and IE data), excluding the
3152  *	Authentication algorithm number, i.e., starting at the Authentication
3153  *	transaction sequence number field.
3154  * @auth_data_len: Length of auth_data buffer in octets
3155  * @link_id: if >= 0, indicates authentication should be done as an MLD,
3156  *	the interface address is included as the MLD address and the
3157  *	necessary link (with the given link_id) will be created (and
3158  *	given an MLD address) by the driver
3159  * @ap_mld_addr: AP MLD address in case of authentication request with
3160  *	an AP MLD, valid iff @link_id >= 0
3161  */
3162 struct cfg80211_auth_request {
3163 	struct cfg80211_bss *bss;
3164 	const u8 *ie;
3165 	size_t ie_len;
3166 	const u8 *supported_selectors;
3167 	u8 supported_selectors_len;
3168 	enum nl80211_auth_type auth_type;
3169 	const u8 *key;
3170 	u8 key_len;
3171 	s8 key_idx;
3172 	const u8 *auth_data;
3173 	size_t auth_data_len;
3174 	s8 link_id;
3175 	const u8 *ap_mld_addr;
3176 };
3177 
3178 /**
3179  * struct cfg80211_assoc_link - per-link information for MLO association
3180  * @bss: the BSS pointer, see also &struct cfg80211_assoc_request::bss;
3181  *	if this is %NULL for a link, that link is not requested
3182  * @elems: extra elements for the per-STA profile for this link
3183  * @elems_len: length of the elements
3184  * @disabled: If set this link should be included during association etc. but it
3185  *	should not be used until enabled by the AP MLD.
3186  * @error: per-link error code, must be <= 0. If there is an error, then the
3187  *	operation as a whole must fail.
3188  */
3189 struct cfg80211_assoc_link {
3190 	struct cfg80211_bss *bss;
3191 	const u8 *elems;
3192 	size_t elems_len;
3193 	bool disabled;
3194 	int error;
3195 };
3196 
3197 /**
3198  * struct cfg80211_ml_reconf_req - MLO link reconfiguration request
3199  * @add_links: data for links to add, see &struct cfg80211_assoc_link
3200  * @rem_links: bitmap of links to remove
3201  * @ext_mld_capa_ops: extended MLD capabilities and operations set by
3202  *	userspace for the ML reconfiguration action frame
3203  */
3204 struct cfg80211_ml_reconf_req {
3205 	struct cfg80211_assoc_link add_links[IEEE80211_MLD_MAX_NUM_LINKS];
3206 	u16 rem_links;
3207 	u16 ext_mld_capa_ops;
3208 };
3209 
3210 /**
3211  * enum cfg80211_assoc_req_flags - Over-ride default behaviour in association.
3212  *
3213  * @ASSOC_REQ_DISABLE_HT:  Disable HT (802.11n)
3214  * @ASSOC_REQ_DISABLE_VHT:  Disable VHT
3215  * @ASSOC_REQ_USE_RRM: Declare RRM capability in this association
3216  * @CONNECT_REQ_EXTERNAL_AUTH_SUPPORT: User space indicates external
3217  *	authentication capability. Drivers can offload authentication to
3218  *	userspace if this flag is set. Only applicable for cfg80211_connect()
3219  *	request (connect callback).
3220  * @ASSOC_REQ_DISABLE_HE:  Disable HE
3221  * @ASSOC_REQ_DISABLE_EHT:  Disable EHT
3222  * @CONNECT_REQ_MLO_SUPPORT: Userspace indicates support for handling MLD links.
3223  *	Drivers shall disable MLO features for the current association if this
3224  *	flag is not set.
3225  * @ASSOC_REQ_SPP_AMSDU: SPP A-MSDUs will be used on this connection (if any)
3226  */
3227 enum cfg80211_assoc_req_flags {
3228 	ASSOC_REQ_DISABLE_HT			= BIT(0),
3229 	ASSOC_REQ_DISABLE_VHT			= BIT(1),
3230 	ASSOC_REQ_USE_RRM			= BIT(2),
3231 	CONNECT_REQ_EXTERNAL_AUTH_SUPPORT	= BIT(3),
3232 	ASSOC_REQ_DISABLE_HE			= BIT(4),
3233 	ASSOC_REQ_DISABLE_EHT			= BIT(5),
3234 	CONNECT_REQ_MLO_SUPPORT			= BIT(6),
3235 	ASSOC_REQ_SPP_AMSDU			= BIT(7),
3236 };
3237 
3238 /**
3239  * struct cfg80211_assoc_request - (Re)Association request data
3240  *
3241  * This structure provides information needed to complete IEEE 802.11
3242  * (re)association.
3243  * @bss: The BSS to associate with. If the call is successful the driver is
3244  *	given a reference that it must give back to cfg80211_send_rx_assoc()
3245  *	or to cfg80211_assoc_timeout(). To ensure proper refcounting, new
3246  *	association requests while already associating must be rejected.
3247  *	This also applies to the @links.bss parameter, which is used instead
3248  *	of this one (it is %NULL) for MLO associations.
3249  * @ie: Extra IEs to add to (Re)Association Request frame or %NULL
3250  * @ie_len: Length of ie buffer in octets
3251  * @use_mfp: Use management frame protection (IEEE 802.11w) in this association
3252  * @crypto: crypto settings
3253  * @prev_bssid: previous BSSID, if not %NULL use reassociate frame. This is used
3254  *	to indicate a request to reassociate within the ESS instead of a request
3255  *	do the initial association with the ESS. When included, this is set to
3256  *	the BSSID of the current association, i.e., to the value that is
3257  *	included in the Current AP address field of the Reassociation Request
3258  *	frame.
3259  * @flags:  See &enum cfg80211_assoc_req_flags
3260  * @supported_selectors: supported BSS selectors in IEEE 802.11 format
3261  *	(or %NULL for no change).
3262  *	If %NULL, then support for SAE_H2E should be assumed.
3263  * @supported_selectors_len: number of supported BSS selectors
3264  * @ht_capa:  HT Capabilities over-rides.  Values set in ht_capa_mask
3265  *	will be used in ht_capa.  Un-supported values will be ignored.
3266  * @ht_capa_mask:  The bits of ht_capa which are to be used.
3267  * @vht_capa: VHT capability override
3268  * @vht_capa_mask: VHT capability mask indicating which fields to use
3269  * @fils_kek: FILS KEK for protecting (Re)Association Request/Response frame or
3270  *	%NULL if FILS is not used.
3271  * @fils_kek_len: Length of fils_kek in octets
3272  * @fils_nonces: FILS nonces (part of AAD) for protecting (Re)Association
3273  *	Request/Response frame or %NULL if FILS is not used. This field starts
3274  *	with 16 octets of STA Nonce followed by 16 octets of AP Nonce.
3275  * @s1g_capa: S1G capability override
3276  * @s1g_capa_mask: S1G capability override mask
3277  * @links: per-link information for MLO connections
3278  * @link_id: >= 0 for MLO connections, where links are given, and indicates
3279  *	the link on which the association request should be sent
3280  * @ap_mld_addr: AP MLD address in case of MLO association request,
3281  *	valid iff @link_id >= 0
3282  * @ext_mld_capa_ops: extended MLD capabilities and operations set by
3283  *	userspace for the association
3284  */
3285 struct cfg80211_assoc_request {
3286 	struct cfg80211_bss *bss;
3287 	const u8 *ie, *prev_bssid;
3288 	size_t ie_len;
3289 	struct cfg80211_crypto_settings crypto;
3290 	bool use_mfp;
3291 	u32 flags;
3292 	const u8 *supported_selectors;
3293 	u8 supported_selectors_len;
3294 	struct ieee80211_ht_cap ht_capa;
3295 	struct ieee80211_ht_cap ht_capa_mask;
3296 	struct ieee80211_vht_cap vht_capa, vht_capa_mask;
3297 	const u8 *fils_kek;
3298 	size_t fils_kek_len;
3299 	const u8 *fils_nonces;
3300 	struct ieee80211_s1g_cap s1g_capa, s1g_capa_mask;
3301 	struct cfg80211_assoc_link links[IEEE80211_MLD_MAX_NUM_LINKS];
3302 	const u8 *ap_mld_addr;
3303 	s8 link_id;
3304 	u16 ext_mld_capa_ops;
3305 };
3306 
3307 /**
3308  * struct cfg80211_deauth_request - Deauthentication request data
3309  *
3310  * This structure provides information needed to complete IEEE 802.11
3311  * deauthentication.
3312  *
3313  * @bssid: the BSSID or AP MLD address to deauthenticate from
3314  * @ie: Extra IEs to add to Deauthentication frame or %NULL
3315  * @ie_len: Length of ie buffer in octets
3316  * @reason_code: The reason code for the deauthentication
3317  * @local_state_change: if set, change local state only and
3318  *	do not set a deauth frame
3319  */
3320 struct cfg80211_deauth_request {
3321 	const u8 *bssid;
3322 	const u8 *ie;
3323 	size_t ie_len;
3324 	u16 reason_code;
3325 	bool local_state_change;
3326 };
3327 
3328 /**
3329  * struct cfg80211_disassoc_request - Disassociation request data
3330  *
3331  * This structure provides information needed to complete IEEE 802.11
3332  * disassociation.
3333  *
3334  * @ap_addr: the BSSID or AP MLD address to disassociate from
3335  * @ie: Extra IEs to add to Disassociation frame or %NULL
3336  * @ie_len: Length of ie buffer in octets
3337  * @reason_code: The reason code for the disassociation
3338  * @local_state_change: This is a request for a local state only, i.e., no
3339  *	Disassociation frame is to be transmitted.
3340  */
3341 struct cfg80211_disassoc_request {
3342 	const u8 *ap_addr;
3343 	const u8 *ie;
3344 	size_t ie_len;
3345 	u16 reason_code;
3346 	bool local_state_change;
3347 };
3348 
3349 /**
3350  * struct cfg80211_ibss_params - IBSS parameters
3351  *
3352  * This structure defines the IBSS parameters for the join_ibss()
3353  * method.
3354  *
3355  * @ssid: The SSID, will always be non-null.
3356  * @ssid_len: The length of the SSID, will always be non-zero.
3357  * @bssid: Fixed BSSID requested, maybe be %NULL, if set do not
3358  *	search for IBSSs with a different BSSID.
3359  * @chandef: defines the channel to use if no other IBSS to join can be found
3360  * @channel_fixed: The channel should be fixed -- do not search for
3361  *	IBSSs to join on other channels.
3362  * @ie: information element(s) to include in the beacon
3363  * @ie_len: length of that
3364  * @beacon_interval: beacon interval to use
3365  * @privacy: this is a protected network, keys will be configured
3366  *	after joining
3367  * @control_port: whether user space controls IEEE 802.1X port, i.e.,
3368  *	sets/clears %NL80211_STA_FLAG_AUTHORIZED. If true, the driver is
3369  *	required to assume that the port is unauthorized until authorized by
3370  *	user space. Otherwise, port is marked authorized by default.
3371  * @control_port_over_nl80211: TRUE if userspace expects to exchange control
3372  *	port frames over NL80211 instead of the network interface.
3373  * @userspace_handles_dfs: whether user space controls DFS operation, i.e.
3374  *	changes the channel when a radar is detected. This is required
3375  *	to operate on DFS channels.
3376  * @basic_rates: bitmap of basic rates to use when creating the IBSS
3377  * @mcast_rate: per-band multicast rate index + 1 (0: disabled)
3378  * @ht_capa:  HT Capabilities over-rides.  Values set in ht_capa_mask
3379  *	will be used in ht_capa.  Un-supported values will be ignored.
3380  * @ht_capa_mask:  The bits of ht_capa which are to be used.
3381  * @wep_keys: static WEP keys, if not NULL points to an array of
3382  *	CFG80211_MAX_WEP_KEYS WEP keys
3383  * @wep_tx_key: key index (0..3) of the default TX static WEP key
3384  */
3385 struct cfg80211_ibss_params {
3386 	const u8 *ssid;
3387 	const u8 *bssid;
3388 	struct cfg80211_chan_def chandef;
3389 	const u8 *ie;
3390 	u8 ssid_len, ie_len;
3391 	u16 beacon_interval;
3392 	u32 basic_rates;
3393 	bool channel_fixed;
3394 	bool privacy;
3395 	bool control_port;
3396 	bool control_port_over_nl80211;
3397 	bool userspace_handles_dfs;
3398 	int mcast_rate[NUM_NL80211_BANDS];
3399 	struct ieee80211_ht_cap ht_capa;
3400 	struct ieee80211_ht_cap ht_capa_mask;
3401 	struct key_params *wep_keys;
3402 	int wep_tx_key;
3403 };
3404 
3405 /**
3406  * struct cfg80211_bss_selection - connection parameters for BSS selection.
3407  *
3408  * @behaviour: requested BSS selection behaviour.
3409  * @param: parameters for requestion behaviour.
3410  * @param.band_pref: preferred band for %NL80211_BSS_SELECT_ATTR_BAND_PREF.
3411  * @param.adjust: parameters for %NL80211_BSS_SELECT_ATTR_RSSI_ADJUST.
3412  */
3413 struct cfg80211_bss_selection {
3414 	enum nl80211_bss_select_attr behaviour;
3415 	union {
3416 		enum nl80211_band band_pref;
3417 		struct cfg80211_bss_select_adjust adjust;
3418 	} param;
3419 };
3420 
3421 /**
3422  * struct cfg80211_connect_params - Connection parameters
3423  *
3424  * This structure provides information needed to complete IEEE 802.11
3425  * authentication and association.
3426  *
3427  * @channel: The channel to use or %NULL if not specified (auto-select based
3428  *	on scan results)
3429  * @channel_hint: The channel of the recommended BSS for initial connection or
3430  *	%NULL if not specified
3431  * @bssid: The AP BSSID or %NULL if not specified (auto-select based on scan
3432  *	results)
3433  * @bssid_hint: The recommended AP BSSID for initial connection to the BSS or
3434  *	%NULL if not specified. Unlike the @bssid parameter, the driver is
3435  *	allowed to ignore this @bssid_hint if it has knowledge of a better BSS
3436  *	to use.
3437  * @ssid: SSID
3438  * @ssid_len: Length of ssid in octets
3439  * @auth_type: Authentication type (algorithm)
3440  * @ie: IEs for association request
3441  * @ie_len: Length of assoc_ie in octets
3442  * @privacy: indicates whether privacy-enabled APs should be used
3443  * @mfp: indicate whether management frame protection is used
3444  * @crypto: crypto settings
3445  * @key_len: length of WEP key for shared key authentication
3446  * @key_idx: index of WEP key for shared key authentication
3447  * @key: WEP key for shared key authentication
3448  * @flags:  See &enum cfg80211_assoc_req_flags
3449  * @bg_scan_period:  Background scan period in seconds
3450  *	or -1 to indicate that default value is to be used.
3451  * @ht_capa:  HT Capabilities over-rides.  Values set in ht_capa_mask
3452  *	will be used in ht_capa.  Un-supported values will be ignored.
3453  * @ht_capa_mask:  The bits of ht_capa which are to be used.
3454  * @vht_capa:  VHT Capability overrides
3455  * @vht_capa_mask: The bits of vht_capa which are to be used.
3456  * @pbss: if set, connect to a PCP instead of AP. Valid for DMG
3457  *	networks.
3458  * @bss_select: criteria to be used for BSS selection.
3459  * @prev_bssid: previous BSSID, if not %NULL use reassociate frame. This is used
3460  *	to indicate a request to reassociate within the ESS instead of a request
3461  *	do the initial association with the ESS. When included, this is set to
3462  *	the BSSID of the current association, i.e., to the value that is
3463  *	included in the Current AP address field of the Reassociation Request
3464  *	frame.
3465  * @fils_erp_username: EAP re-authentication protocol (ERP) username part of the
3466  *	NAI or %NULL if not specified. This is used to construct FILS wrapped
3467  *	data IE.
3468  * @fils_erp_username_len: Length of @fils_erp_username in octets.
3469  * @fils_erp_realm: EAP re-authentication protocol (ERP) realm part of NAI or
3470  *	%NULL if not specified. This specifies the domain name of ER server and
3471  *	is used to construct FILS wrapped data IE.
3472  * @fils_erp_realm_len: Length of @fils_erp_realm in octets.
3473  * @fils_erp_next_seq_num: The next sequence number to use in the FILS ERP
3474  *	messages. This is also used to construct FILS wrapped data IE.
3475  * @fils_erp_rrk: ERP re-authentication Root Key (rRK) used to derive additional
3476  *	keys in FILS or %NULL if not specified.
3477  * @fils_erp_rrk_len: Length of @fils_erp_rrk in octets.
3478  * @want_1x: indicates user-space supports and wants to use 802.1X driver
3479  *	offload of 4-way handshake.
3480  * @edmg: define the EDMG channels.
3481  *	This may specify multiple channels and bonding options for the driver
3482  *	to choose from, based on BSS configuration.
3483  */
3484 struct cfg80211_connect_params {
3485 	struct ieee80211_channel *channel;
3486 	struct ieee80211_channel *channel_hint;
3487 	const u8 *bssid;
3488 	const u8 *bssid_hint;
3489 	const u8 *ssid;
3490 	size_t ssid_len;
3491 	enum nl80211_auth_type auth_type;
3492 	const u8 *ie;
3493 	size_t ie_len;
3494 	bool privacy;
3495 	enum nl80211_mfp mfp;
3496 	struct cfg80211_crypto_settings crypto;
3497 	const u8 *key;
3498 	u8 key_len, key_idx;
3499 	u32 flags;
3500 	int bg_scan_period;
3501 	struct ieee80211_ht_cap ht_capa;
3502 	struct ieee80211_ht_cap ht_capa_mask;
3503 	struct ieee80211_vht_cap vht_capa;
3504 	struct ieee80211_vht_cap vht_capa_mask;
3505 	bool pbss;
3506 	struct cfg80211_bss_selection bss_select;
3507 	const u8 *prev_bssid;
3508 	const u8 *fils_erp_username;
3509 	size_t fils_erp_username_len;
3510 	const u8 *fils_erp_realm;
3511 	size_t fils_erp_realm_len;
3512 	u16 fils_erp_next_seq_num;
3513 	const u8 *fils_erp_rrk;
3514 	size_t fils_erp_rrk_len;
3515 	bool want_1x;
3516 	struct ieee80211_edmg edmg;
3517 };
3518 
3519 /**
3520  * enum cfg80211_connect_params_changed - Connection parameters being updated
3521  *
3522  * This enum provides information of all connect parameters that
3523  * have to be updated as part of update_connect_params() call.
3524  *
3525  * @UPDATE_ASSOC_IES: Indicates whether association request IEs are updated
3526  * @UPDATE_FILS_ERP_INFO: Indicates that FILS connection parameters (realm,
3527  *	username, erp sequence number and rrk) are updated
3528  * @UPDATE_AUTH_TYPE: Indicates that authentication type is updated
3529  */
3530 enum cfg80211_connect_params_changed {
3531 	UPDATE_ASSOC_IES		= BIT(0),
3532 	UPDATE_FILS_ERP_INFO		= BIT(1),
3533 	UPDATE_AUTH_TYPE		= BIT(2),
3534 };
3535 
3536 /**
3537  * enum wiphy_params_flags - set_wiphy_params bitfield values
3538  * @WIPHY_PARAM_RETRY_SHORT: wiphy->retry_short has changed
3539  * @WIPHY_PARAM_RETRY_LONG: wiphy->retry_long has changed
3540  * @WIPHY_PARAM_FRAG_THRESHOLD: wiphy->frag_threshold has changed
3541  * @WIPHY_PARAM_RTS_THRESHOLD: wiphy->rts_threshold has changed
3542  * @WIPHY_PARAM_COVERAGE_CLASS: coverage class changed
3543  * @WIPHY_PARAM_DYN_ACK: dynack has been enabled
3544  * @WIPHY_PARAM_TXQ_LIMIT: TXQ packet limit has been changed
3545  * @WIPHY_PARAM_TXQ_MEMORY_LIMIT: TXQ memory limit has been changed
3546  * @WIPHY_PARAM_TXQ_QUANTUM: TXQ scheduler quantum
3547  */
3548 enum wiphy_params_flags {
3549 	WIPHY_PARAM_RETRY_SHORT		= BIT(0),
3550 	WIPHY_PARAM_RETRY_LONG		= BIT(1),
3551 	WIPHY_PARAM_FRAG_THRESHOLD	= BIT(2),
3552 	WIPHY_PARAM_RTS_THRESHOLD	= BIT(3),
3553 	WIPHY_PARAM_COVERAGE_CLASS	= BIT(4),
3554 	WIPHY_PARAM_DYN_ACK		= BIT(5),
3555 	WIPHY_PARAM_TXQ_LIMIT		= BIT(6),
3556 	WIPHY_PARAM_TXQ_MEMORY_LIMIT	= BIT(7),
3557 	WIPHY_PARAM_TXQ_QUANTUM		= BIT(8),
3558 };
3559 
3560 #define IEEE80211_DEFAULT_AIRTIME_WEIGHT	256
3561 
3562 /* The per TXQ device queue limit in airtime */
3563 #define IEEE80211_DEFAULT_AQL_TXQ_LIMIT_L	5000
3564 #define IEEE80211_DEFAULT_AQL_TXQ_LIMIT_H	12000
3565 
3566 /* The per interface airtime threshold to switch to lower queue limit */
3567 #define IEEE80211_AQL_THRESHOLD			24000
3568 
3569 /**
3570  * struct cfg80211_pmksa - PMK Security Association
3571  *
3572  * This structure is passed to the set/del_pmksa() method for PMKSA
3573  * caching.
3574  *
3575  * @bssid: The AP's BSSID (may be %NULL).
3576  * @pmkid: The identifier to refer a PMKSA.
3577  * @pmk: The PMK for the PMKSA identified by @pmkid. This is used for key
3578  *	derivation by a FILS STA. Otherwise, %NULL.
3579  * @pmk_len: Length of the @pmk. The length of @pmk can differ depending on
3580  *	the hash algorithm used to generate this.
3581  * @ssid: SSID to specify the ESS within which a PMKSA is valid when using FILS
3582  *	cache identifier (may be %NULL).
3583  * @ssid_len: Length of the @ssid in octets.
3584  * @cache_id: 2-octet cache identifier advertized by a FILS AP identifying the
3585  *	scope of PMKSA. This is valid only if @ssid_len is non-zero (may be
3586  *	%NULL).
3587  * @pmk_lifetime: Maximum lifetime for PMKSA in seconds
3588  *	(dot11RSNAConfigPMKLifetime) or 0 if not specified.
3589  *	The configured PMKSA must not be used for PMKSA caching after
3590  *	expiration and any keys derived from this PMK become invalid on
3591  *	expiration, i.e., the current association must be dropped if the PMK
3592  *	used for it expires.
3593  * @pmk_reauth_threshold: Threshold time for reauthentication (percentage of
3594  *	PMK lifetime, dot11RSNAConfigPMKReauthThreshold) or 0 if not specified.
3595  *	Drivers are expected to trigger a full authentication instead of using
3596  *	this PMKSA for caching when reassociating to a new BSS after this
3597  *	threshold to generate a new PMK before the current one expires.
3598  */
3599 struct cfg80211_pmksa {
3600 	const u8 *bssid;
3601 	const u8 *pmkid;
3602 	const u8 *pmk;
3603 	size_t pmk_len;
3604 	const u8 *ssid;
3605 	size_t ssid_len;
3606 	const u8 *cache_id;
3607 	u32 pmk_lifetime;
3608 	u8 pmk_reauth_threshold;
3609 };
3610 
3611 /**
3612  * struct cfg80211_pkt_pattern - packet pattern
3613  * @mask: bitmask where to match pattern and where to ignore bytes,
3614  *	one bit per byte, in same format as nl80211
3615  * @pattern: bytes to match where bitmask is 1
3616  * @pattern_len: length of pattern (in bytes)
3617  * @pkt_offset: packet offset (in bytes)
3618  *
3619  * Internal note: @mask and @pattern are allocated in one chunk of
3620  * memory, free @mask only!
3621  */
3622 struct cfg80211_pkt_pattern {
3623 	const u8 *mask, *pattern;
3624 	int pattern_len;
3625 	int pkt_offset;
3626 };
3627 
3628 /**
3629  * struct cfg80211_wowlan_tcp - TCP connection parameters
3630  *
3631  * @sock: (internal) socket for source port allocation
3632  * @src: source IP address
3633  * @dst: destination IP address
3634  * @dst_mac: destination MAC address
3635  * @src_port: source port
3636  * @dst_port: destination port
3637  * @payload_len: data payload length
3638  * @payload: data payload buffer
3639  * @payload_seq: payload sequence stamping configuration
3640  * @data_interval: interval at which to send data packets
3641  * @wake_len: wakeup payload match length
3642  * @wake_data: wakeup payload match data
3643  * @wake_mask: wakeup payload match mask
3644  * @tokens_size: length of the tokens buffer
3645  * @payload_tok: payload token usage configuration
3646  */
3647 struct cfg80211_wowlan_tcp {
3648 	struct socket *sock;
3649 	__be32 src, dst;
3650 	u16 src_port, dst_port;
3651 	u8 dst_mac[ETH_ALEN];
3652 	int payload_len;
3653 	const u8 *payload;
3654 	struct nl80211_wowlan_tcp_data_seq payload_seq;
3655 	u32 data_interval;
3656 	u32 wake_len;
3657 	const u8 *wake_data, *wake_mask;
3658 	u32 tokens_size;
3659 	/* must be last, variable member */
3660 	struct nl80211_wowlan_tcp_data_token payload_tok;
3661 };
3662 
3663 /**
3664  * struct cfg80211_wowlan - Wake on Wireless-LAN support info
3665  *
3666  * This structure defines the enabled WoWLAN triggers for the device.
3667  * @any: wake up on any activity -- special trigger if device continues
3668  *	operating as normal during suspend
3669  * @disconnect: wake up if getting disconnected
3670  * @magic_pkt: wake up on receiving magic packet
3671  * @patterns: wake up on receiving packet matching a pattern
3672  * @n_patterns: number of patterns
3673  * @gtk_rekey_failure: wake up on GTK rekey failure
3674  * @eap_identity_req: wake up on EAP identity request packet
3675  * @four_way_handshake: wake up on 4-way handshake
3676  * @rfkill_release: wake up when rfkill is released
3677  * @tcp: TCP connection establishment/wakeup parameters, see nl80211.h.
3678  *	NULL if not configured.
3679  * @nd_config: configuration for the scan to be used for net detect wake.
3680  */
3681 struct cfg80211_wowlan {
3682 	bool any, disconnect, magic_pkt, gtk_rekey_failure,
3683 	     eap_identity_req, four_way_handshake,
3684 	     rfkill_release;
3685 	struct cfg80211_pkt_pattern *patterns;
3686 	struct cfg80211_wowlan_tcp *tcp;
3687 	int n_patterns;
3688 	struct cfg80211_sched_scan_request *nd_config;
3689 };
3690 
3691 /**
3692  * struct cfg80211_coalesce_rules - Coalesce rule parameters
3693  *
3694  * This structure defines coalesce rule for the device.
3695  * @delay: maximum coalescing delay in msecs.
3696  * @condition: condition for packet coalescence.
3697  *	see &enum nl80211_coalesce_condition.
3698  * @patterns: array of packet patterns
3699  * @n_patterns: number of patterns
3700  */
3701 struct cfg80211_coalesce_rules {
3702 	int delay;
3703 	enum nl80211_coalesce_condition condition;
3704 	struct cfg80211_pkt_pattern *patterns;
3705 	int n_patterns;
3706 };
3707 
3708 /**
3709  * struct cfg80211_coalesce - Packet coalescing settings
3710  *
3711  * This structure defines coalescing settings.
3712  * @rules: array of coalesce rules
3713  * @n_rules: number of rules
3714  */
3715 struct cfg80211_coalesce {
3716 	int n_rules;
3717 	struct cfg80211_coalesce_rules rules[] __counted_by(n_rules);
3718 };
3719 
3720 /**
3721  * struct cfg80211_wowlan_nd_match - information about the match
3722  *
3723  * @ssid: SSID of the match that triggered the wake up
3724  * @n_channels: Number of channels where the match occurred.  This
3725  *	value may be zero if the driver can't report the channels.
3726  * @channels: center frequencies of the channels where a match
3727  *	occurred (in MHz)
3728  */
3729 struct cfg80211_wowlan_nd_match {
3730 	struct cfg80211_ssid ssid;
3731 	int n_channels;
3732 	u32 channels[] __counted_by(n_channels);
3733 };
3734 
3735 /**
3736  * struct cfg80211_wowlan_nd_info - net detect wake up information
3737  *
3738  * @n_matches: Number of match information instances provided in
3739  *	@matches.  This value may be zero if the driver can't provide
3740  *	match information.
3741  * @matches: Array of pointers to matches containing information about
3742  *	the matches that triggered the wake up.
3743  */
3744 struct cfg80211_wowlan_nd_info {
3745 	int n_matches;
3746 	struct cfg80211_wowlan_nd_match *matches[] __counted_by(n_matches);
3747 };
3748 
3749 /**
3750  * struct cfg80211_wowlan_wakeup - wakeup report
3751  * @disconnect: woke up by getting disconnected
3752  * @magic_pkt: woke up by receiving magic packet
3753  * @gtk_rekey_failure: woke up by GTK rekey failure
3754  * @eap_identity_req: woke up by EAP identity request packet
3755  * @four_way_handshake: woke up by 4-way handshake
3756  * @rfkill_release: woke up by rfkill being released
3757  * @pattern_idx: pattern that caused wakeup, -1 if not due to pattern
3758  * @packet_present_len: copied wakeup packet data
3759  * @packet_len: original wakeup packet length
3760  * @packet: The packet causing the wakeup, if any.
3761  * @packet_80211:  For pattern match, magic packet and other data
3762  *	frame triggers an 802.3 frame should be reported, for
3763  *	disconnect due to deauth 802.11 frame. This indicates which
3764  *	it is.
3765  * @tcp_match: TCP wakeup packet received
3766  * @tcp_connlost: TCP connection lost or failed to establish
3767  * @tcp_nomoretokens: TCP data ran out of tokens
3768  * @net_detect: if not %NULL, woke up because of net detect
3769  * @unprot_deauth_disassoc: woke up due to unprotected deauth or
3770  *	disassoc frame (in MFP).
3771  */
3772 struct cfg80211_wowlan_wakeup {
3773 	bool disconnect, magic_pkt, gtk_rekey_failure,
3774 	     eap_identity_req, four_way_handshake,
3775 	     rfkill_release, packet_80211,
3776 	     tcp_match, tcp_connlost, tcp_nomoretokens,
3777 	     unprot_deauth_disassoc;
3778 	s32 pattern_idx;
3779 	u32 packet_present_len, packet_len;
3780 	const void *packet;
3781 	struct cfg80211_wowlan_nd_info *net_detect;
3782 };
3783 
3784 /**
3785  * struct cfg80211_gtk_rekey_data - rekey data
3786  * @kek: key encryption key (@kek_len bytes)
3787  * @kck: key confirmation key (@kck_len bytes)
3788  * @replay_ctr: replay counter (NL80211_REPLAY_CTR_LEN bytes)
3789  * @kek_len: length of kek
3790  * @kck_len: length of kck
3791  * @akm: akm (oui, id)
3792  */
3793 struct cfg80211_gtk_rekey_data {
3794 	const u8 *kek, *kck, *replay_ctr;
3795 	u32 akm;
3796 	u8 kek_len, kck_len;
3797 };
3798 
3799 /**
3800  * struct cfg80211_update_ft_ies_params - FT IE Information
3801  *
3802  * This structure provides information needed to update the fast transition IE
3803  *
3804  * @md: The Mobility Domain ID, 2 Octet value
3805  * @ie: Fast Transition IEs
3806  * @ie_len: Length of ft_ie in octets
3807  */
3808 struct cfg80211_update_ft_ies_params {
3809 	u16 md;
3810 	const u8 *ie;
3811 	size_t ie_len;
3812 };
3813 
3814 /**
3815  * struct cfg80211_mgmt_tx_params - mgmt tx parameters
3816  *
3817  * This structure provides information needed to transmit a mgmt frame
3818  *
3819  * @chan: channel to use
3820  * @offchan: indicates whether off channel operation is required
3821  * @wait: duration for ROC
3822  * @buf: buffer to transmit
3823  * @len: buffer length
3824  * @no_cck: don't use cck rates for this frame
3825  * @dont_wait_for_ack: tells the low level not to wait for an ack
3826  * @n_csa_offsets: length of csa_offsets array
3827  * @csa_offsets: array of all the csa offsets in the frame
3828  * @link_id: for MLO, the link ID to transmit on, -1 if not given; note
3829  *	that the link ID isn't validated (much), it's in range but the
3830  *	link might not exist (or be used by the receiver STA)
3831  */
3832 struct cfg80211_mgmt_tx_params {
3833 	struct ieee80211_channel *chan;
3834 	bool offchan;
3835 	unsigned int wait;
3836 	const u8 *buf;
3837 	size_t len;
3838 	bool no_cck;
3839 	bool dont_wait_for_ack;
3840 	int n_csa_offsets;
3841 	const u16 *csa_offsets;
3842 	int link_id;
3843 };
3844 
3845 /**
3846  * struct cfg80211_dscp_exception - DSCP exception
3847  *
3848  * @dscp: DSCP value that does not adhere to the user priority range definition
3849  * @up: user priority value to which the corresponding DSCP value belongs
3850  */
3851 struct cfg80211_dscp_exception {
3852 	u8 dscp;
3853 	u8 up;
3854 };
3855 
3856 /**
3857  * struct cfg80211_dscp_range - DSCP range definition for user priority
3858  *
3859  * @low: lowest DSCP value of this user priority range, inclusive
3860  * @high: highest DSCP value of this user priority range, inclusive
3861  */
3862 struct cfg80211_dscp_range {
3863 	u8 low;
3864 	u8 high;
3865 };
3866 
3867 /* QoS Map Set element length defined in IEEE Std 802.11-2012, 8.4.2.97 */
3868 #define IEEE80211_QOS_MAP_MAX_EX	21
3869 #define IEEE80211_QOS_MAP_LEN_MIN	16
3870 #define IEEE80211_QOS_MAP_LEN_MAX \
3871 	(IEEE80211_QOS_MAP_LEN_MIN + 2 * IEEE80211_QOS_MAP_MAX_EX)
3872 
3873 /**
3874  * struct cfg80211_qos_map - QoS Map Information
3875  *
3876  * This struct defines the Interworking QoS map setting for DSCP values
3877  *
3878  * @num_des: number of DSCP exceptions (0..21)
3879  * @dscp_exception: optionally up to maximum of 21 DSCP exceptions from
3880  *	the user priority DSCP range definition
3881  * @up: DSCP range definition for a particular user priority
3882  */
3883 struct cfg80211_qos_map {
3884 	u8 num_des;
3885 	struct cfg80211_dscp_exception dscp_exception[IEEE80211_QOS_MAP_MAX_EX];
3886 	struct cfg80211_dscp_range up[8];
3887 };
3888 
3889 /**
3890  * struct cfg80211_nan_conf - NAN configuration
3891  *
3892  * This struct defines NAN configuration parameters
3893  *
3894  * @master_pref: master preference (1 - 255)
3895  * @bands: operating bands, a bitmap of &enum nl80211_band values.
3896  *	For instance, for NL80211_BAND_2GHZ, bit 0 would be set
3897  *	(i.e. BIT(NL80211_BAND_2GHZ)).
3898  */
3899 struct cfg80211_nan_conf {
3900 	u8 master_pref;
3901 	u8 bands;
3902 };
3903 
3904 /**
3905  * enum cfg80211_nan_conf_changes - indicates changed fields in NAN
3906  * configuration
3907  *
3908  * @CFG80211_NAN_CONF_CHANGED_PREF: master preference
3909  * @CFG80211_NAN_CONF_CHANGED_BANDS: operating bands
3910  */
3911 enum cfg80211_nan_conf_changes {
3912 	CFG80211_NAN_CONF_CHANGED_PREF = BIT(0),
3913 	CFG80211_NAN_CONF_CHANGED_BANDS = BIT(1),
3914 };
3915 
3916 /**
3917  * struct cfg80211_nan_func_filter - a NAN function Rx / Tx filter
3918  *
3919  * @filter: the content of the filter
3920  * @len: the length of the filter
3921  */
3922 struct cfg80211_nan_func_filter {
3923 	const u8 *filter;
3924 	u8 len;
3925 };
3926 
3927 /**
3928  * struct cfg80211_nan_func - a NAN function
3929  *
3930  * @type: &enum nl80211_nan_function_type
3931  * @service_id: the service ID of the function
3932  * @publish_type: &nl80211_nan_publish_type
3933  * @close_range: if true, the range should be limited. Threshold is
3934  *	implementation specific.
3935  * @publish_bcast: if true, the solicited publish should be broadcasted
3936  * @subscribe_active: if true, the subscribe is active
3937  * @followup_id: the instance ID for follow up
3938  * @followup_reqid: the requester instance ID for follow up
3939  * @followup_dest: MAC address of the recipient of the follow up
3940  * @ttl: time to live counter in DW.
3941  * @serv_spec_info: Service Specific Info
3942  * @serv_spec_info_len: Service Specific Info length
3943  * @srf_include: if true, SRF is inclusive
3944  * @srf_bf: Bloom Filter
3945  * @srf_bf_len: Bloom Filter length
3946  * @srf_bf_idx: Bloom Filter index
3947  * @srf_macs: SRF MAC addresses
3948  * @srf_num_macs: number of MAC addresses in SRF
3949  * @rx_filters: rx filters that are matched with corresponding peer's tx_filter
3950  * @tx_filters: filters that should be transmitted in the SDF.
3951  * @num_rx_filters: length of &rx_filters.
3952  * @num_tx_filters: length of &tx_filters.
3953  * @instance_id: driver allocated id of the function.
3954  * @cookie: unique NAN function identifier.
3955  */
3956 struct cfg80211_nan_func {
3957 	enum nl80211_nan_function_type type;
3958 	u8 service_id[NL80211_NAN_FUNC_SERVICE_ID_LEN];
3959 	u8 publish_type;
3960 	bool close_range;
3961 	bool publish_bcast;
3962 	bool subscribe_active;
3963 	u8 followup_id;
3964 	u8 followup_reqid;
3965 	struct mac_address followup_dest;
3966 	u32 ttl;
3967 	const u8 *serv_spec_info;
3968 	u8 serv_spec_info_len;
3969 	bool srf_include;
3970 	const u8 *srf_bf;
3971 	u8 srf_bf_len;
3972 	u8 srf_bf_idx;
3973 	struct mac_address *srf_macs;
3974 	int srf_num_macs;
3975 	struct cfg80211_nan_func_filter *rx_filters;
3976 	struct cfg80211_nan_func_filter *tx_filters;
3977 	u8 num_tx_filters;
3978 	u8 num_rx_filters;
3979 	u8 instance_id;
3980 	u64 cookie;
3981 };
3982 
3983 /**
3984  * struct cfg80211_pmk_conf - PMK configuration
3985  *
3986  * @aa: authenticator address
3987  * @pmk_len: PMK length in bytes.
3988  * @pmk: the PMK material
3989  * @pmk_r0_name: PMK-R0 Name. NULL if not applicable (i.e., the PMK
3990  *	is not PMK-R0). When pmk_r0_name is not NULL, the pmk field
3991  *	holds PMK-R0.
3992  */
3993 struct cfg80211_pmk_conf {
3994 	const u8 *aa;
3995 	u8 pmk_len;
3996 	const u8 *pmk;
3997 	const u8 *pmk_r0_name;
3998 };
3999 
4000 /**
4001  * struct cfg80211_external_auth_params - Trigger External authentication.
4002  *
4003  * Commonly used across the external auth request and event interfaces.
4004  *
4005  * @action: action type / trigger for external authentication. Only significant
4006  *	for the authentication request event interface (driver to user space).
4007  * @bssid: BSSID of the peer with which the authentication has
4008  *	to happen. Used by both the authentication request event and
4009  *	authentication response command interface.
4010  * @ssid: SSID of the AP.  Used by both the authentication request event and
4011  *	authentication response command interface.
4012  * @key_mgmt_suite: AKM suite of the respective authentication. Used by the
4013  *	authentication request event interface.
4014  * @status: status code, %WLAN_STATUS_SUCCESS for successful authentication,
4015  *	use %WLAN_STATUS_UNSPECIFIED_FAILURE if user space cannot give you
4016  *	the real status code for failures. Used only for the authentication
4017  *	response command interface (user space to driver).
4018  * @pmkid: The identifier to refer a PMKSA.
4019  * @mld_addr: MLD address of the peer. Used by the authentication request event
4020  *	interface. Driver indicates this to enable MLO during the authentication
4021  *	offload to user space. Driver shall look at %NL80211_ATTR_MLO_SUPPORT
4022  *	flag capability in NL80211_CMD_CONNECT to know whether the user space
4023  *	supports enabling MLO during the authentication offload.
4024  *	User space should use the address of the interface (on which the
4025  *	authentication request event reported) as self MLD address. User space
4026  *	and driver should use MLD addresses in RA, TA and BSSID fields of
4027  *	authentication frames sent or received via cfg80211. The driver
4028  *	translates the MLD addresses to/from link addresses based on the link
4029  *	chosen for the authentication.
4030  */
4031 struct cfg80211_external_auth_params {
4032 	enum nl80211_external_auth_action action;
4033 	u8 bssid[ETH_ALEN] __aligned(2);
4034 	struct cfg80211_ssid ssid;
4035 	unsigned int key_mgmt_suite;
4036 	u16 status;
4037 	const u8 *pmkid;
4038 	u8 mld_addr[ETH_ALEN] __aligned(2);
4039 };
4040 
4041 /**
4042  * struct cfg80211_ftm_responder_stats - FTM responder statistics
4043  *
4044  * @filled: bitflag of flags using the bits of &enum nl80211_ftm_stats to
4045  *	indicate the relevant values in this struct for them
4046  * @success_num: number of FTM sessions in which all frames were successfully
4047  *	answered
4048  * @partial_num: number of FTM sessions in which part of frames were
4049  *	successfully answered
4050  * @failed_num: number of failed FTM sessions
4051  * @asap_num: number of ASAP FTM sessions
4052  * @non_asap_num: number of  non-ASAP FTM sessions
4053  * @total_duration_ms: total sessions durations - gives an indication
4054  *	of how much time the responder was busy
4055  * @unknown_triggers_num: number of unknown FTM triggers - triggers from
4056  *	initiators that didn't finish successfully the negotiation phase with
4057  *	the responder
4058  * @reschedule_requests_num: number of FTM reschedule requests - initiator asks
4059  *	for a new scheduling although it already has scheduled FTM slot
4060  * @out_of_window_triggers_num: total FTM triggers out of scheduled window
4061  */
4062 struct cfg80211_ftm_responder_stats {
4063 	u32 filled;
4064 	u32 success_num;
4065 	u32 partial_num;
4066 	u32 failed_num;
4067 	u32 asap_num;
4068 	u32 non_asap_num;
4069 	u64 total_duration_ms;
4070 	u32 unknown_triggers_num;
4071 	u32 reschedule_requests_num;
4072 	u32 out_of_window_triggers_num;
4073 };
4074 
4075 /**
4076  * struct cfg80211_pmsr_ftm_result - FTM result
4077  * @failure_reason: if this measurement failed (PMSR status is
4078  *	%NL80211_PMSR_STATUS_FAILURE), this gives a more precise
4079  *	reason than just "failure"
4080  * @burst_index: if reporting partial results, this is the index
4081  *	in [0 .. num_bursts-1] of the burst that's being reported
4082  * @num_ftmr_attempts: number of FTM request frames transmitted
4083  * @num_ftmr_successes: number of FTM request frames acked
4084  * @busy_retry_time: if failure_reason is %NL80211_PMSR_FTM_FAILURE_PEER_BUSY,
4085  *	fill this to indicate in how many seconds a retry is deemed possible
4086  *	by the responder
4087  * @num_bursts_exp: actual number of bursts exponent negotiated
4088  * @burst_duration: actual burst duration negotiated
4089  * @ftms_per_burst: actual FTMs per burst negotiated
4090  * @lci_len: length of LCI information (if present)
4091  * @civicloc_len: length of civic location information (if present)
4092  * @lci: LCI data (may be %NULL)
4093  * @civicloc: civic location data (may be %NULL)
4094  * @rssi_avg: average RSSI over FTM action frames reported
4095  * @rssi_spread: spread of the RSSI over FTM action frames reported
4096  * @tx_rate: bitrate for transmitted FTM action frame response
4097  * @rx_rate: bitrate of received FTM action frame
4098  * @rtt_avg: average of RTTs measured (must have either this or @dist_avg)
4099  * @rtt_variance: variance of RTTs measured (note that standard deviation is
4100  *	the square root of the variance)
4101  * @rtt_spread: spread of the RTTs measured
4102  * @dist_avg: average of distances (mm) measured
4103  *	(must have either this or @rtt_avg)
4104  * @dist_variance: variance of distances measured (see also @rtt_variance)
4105  * @dist_spread: spread of distances measured (see also @rtt_spread)
4106  * @num_ftmr_attempts_valid: @num_ftmr_attempts is valid
4107  * @num_ftmr_successes_valid: @num_ftmr_successes is valid
4108  * @rssi_avg_valid: @rssi_avg is valid
4109  * @rssi_spread_valid: @rssi_spread is valid
4110  * @tx_rate_valid: @tx_rate is valid
4111  * @rx_rate_valid: @rx_rate is valid
4112  * @rtt_avg_valid: @rtt_avg is valid
4113  * @rtt_variance_valid: @rtt_variance is valid
4114  * @rtt_spread_valid: @rtt_spread is valid
4115  * @dist_avg_valid: @dist_avg is valid
4116  * @dist_variance_valid: @dist_variance is valid
4117  * @dist_spread_valid: @dist_spread is valid
4118  */
4119 struct cfg80211_pmsr_ftm_result {
4120 	const u8 *lci;
4121 	const u8 *civicloc;
4122 	unsigned int lci_len;
4123 	unsigned int civicloc_len;
4124 	enum nl80211_peer_measurement_ftm_failure_reasons failure_reason;
4125 	u32 num_ftmr_attempts, num_ftmr_successes;
4126 	s16 burst_index;
4127 	u8 busy_retry_time;
4128 	u8 num_bursts_exp;
4129 	u8 burst_duration;
4130 	u8 ftms_per_burst;
4131 	s32 rssi_avg;
4132 	s32 rssi_spread;
4133 	struct rate_info tx_rate, rx_rate;
4134 	s64 rtt_avg;
4135 	s64 rtt_variance;
4136 	s64 rtt_spread;
4137 	s64 dist_avg;
4138 	s64 dist_variance;
4139 	s64 dist_spread;
4140 
4141 	u16 num_ftmr_attempts_valid:1,
4142 	    num_ftmr_successes_valid:1,
4143 	    rssi_avg_valid:1,
4144 	    rssi_spread_valid:1,
4145 	    tx_rate_valid:1,
4146 	    rx_rate_valid:1,
4147 	    rtt_avg_valid:1,
4148 	    rtt_variance_valid:1,
4149 	    rtt_spread_valid:1,
4150 	    dist_avg_valid:1,
4151 	    dist_variance_valid:1,
4152 	    dist_spread_valid:1;
4153 };
4154 
4155 /**
4156  * struct cfg80211_pmsr_result - peer measurement result
4157  * @addr: address of the peer
4158  * @host_time: host time (use ktime_get_boottime() adjust to the time when the
4159  *	measurement was made)
4160  * @ap_tsf: AP's TSF at measurement time
4161  * @status: status of the measurement
4162  * @final: if reporting partial results, mark this as the last one; if not
4163  *	reporting partial results always set this flag
4164  * @ap_tsf_valid: indicates the @ap_tsf value is valid
4165  * @type: type of the measurement reported, note that we only support reporting
4166  *	one type at a time, but you can report multiple results separately and
4167  *	they're all aggregated for userspace.
4168  * @ftm: FTM result
4169  */
4170 struct cfg80211_pmsr_result {
4171 	u64 host_time, ap_tsf;
4172 	enum nl80211_peer_measurement_status status;
4173 
4174 	u8 addr[ETH_ALEN];
4175 
4176 	u8 final:1,
4177 	   ap_tsf_valid:1;
4178 
4179 	enum nl80211_peer_measurement_type type;
4180 
4181 	union {
4182 		struct cfg80211_pmsr_ftm_result ftm;
4183 	};
4184 };
4185 
4186 /**
4187  * struct cfg80211_pmsr_ftm_request_peer - FTM request data
4188  * @requested: indicates FTM is requested
4189  * @preamble: frame preamble to use
4190  * @burst_period: burst period to use
4191  * @asap: indicates to use ASAP mode
4192  * @num_bursts_exp: number of bursts exponent
4193  * @burst_duration: burst duration
4194  * @ftms_per_burst: number of FTMs per burst
4195  * @ftmr_retries: number of retries for FTM request
4196  * @request_lci: request LCI information
4197  * @request_civicloc: request civic location information
4198  * @trigger_based: use trigger based ranging for the measurement
4199  *		 If neither @trigger_based nor @non_trigger_based is set,
4200  *		 EDCA based ranging will be used.
4201  * @non_trigger_based: use non trigger based ranging for the measurement
4202  *		 If neither @trigger_based nor @non_trigger_based is set,
4203  *		 EDCA based ranging will be used.
4204  * @lmr_feedback: negotiate for I2R LMR feedback. Only valid if either
4205  *		 @trigger_based or @non_trigger_based is set.
4206  * @bss_color: the bss color of the responder. Optional. Set to zero to
4207  *	indicate the driver should set the BSS color. Only valid if
4208  *	@non_trigger_based or @trigger_based is set.
4209  *
4210  * See also nl80211 for the respective attribute documentation.
4211  */
4212 struct cfg80211_pmsr_ftm_request_peer {
4213 	enum nl80211_preamble preamble;
4214 	u16 burst_period;
4215 	u8 requested:1,
4216 	   asap:1,
4217 	   request_lci:1,
4218 	   request_civicloc:1,
4219 	   trigger_based:1,
4220 	   non_trigger_based:1,
4221 	   lmr_feedback:1;
4222 	u8 num_bursts_exp;
4223 	u8 burst_duration;
4224 	u8 ftms_per_burst;
4225 	u8 ftmr_retries;
4226 	u8 bss_color;
4227 };
4228 
4229 /**
4230  * struct cfg80211_pmsr_request_peer - peer data for a peer measurement request
4231  * @addr: MAC address
4232  * @chandef: channel to use
4233  * @report_ap_tsf: report the associated AP's TSF
4234  * @ftm: FTM data, see &struct cfg80211_pmsr_ftm_request_peer
4235  */
4236 struct cfg80211_pmsr_request_peer {
4237 	u8 addr[ETH_ALEN];
4238 	struct cfg80211_chan_def chandef;
4239 	u8 report_ap_tsf:1;
4240 	struct cfg80211_pmsr_ftm_request_peer ftm;
4241 };
4242 
4243 /**
4244  * struct cfg80211_pmsr_request - peer measurement request
4245  * @cookie: cookie, set by cfg80211
4246  * @nl_portid: netlink portid - used by cfg80211
4247  * @drv_data: driver data for this request, if required for aborting,
4248  *	not otherwise freed or anything by cfg80211
4249  * @mac_addr: MAC address used for (randomised) request
4250  * @mac_addr_mask: MAC address mask used for randomisation, bits that
4251  *	are 0 in the mask should be randomised, bits that are 1 should
4252  *	be taken from the @mac_addr
4253  * @list: used by cfg80211 to hold on to the request
4254  * @timeout: timeout (in milliseconds) for the whole operation, if
4255  *	zero it means there's no timeout
4256  * @n_peers: number of peers to do measurements with
4257  * @peers: per-peer measurement request data
4258  */
4259 struct cfg80211_pmsr_request {
4260 	u64 cookie;
4261 	void *drv_data;
4262 	u32 n_peers;
4263 	u32 nl_portid;
4264 
4265 	u32 timeout;
4266 
4267 	u8 mac_addr[ETH_ALEN] __aligned(2);
4268 	u8 mac_addr_mask[ETH_ALEN] __aligned(2);
4269 
4270 	struct list_head list;
4271 
4272 	struct cfg80211_pmsr_request_peer peers[] __counted_by(n_peers);
4273 };
4274 
4275 /**
4276  * struct cfg80211_update_owe_info - OWE Information
4277  *
4278  * This structure provides information needed for the drivers to offload OWE
4279  * (Opportunistic Wireless Encryption) processing to the user space.
4280  *
4281  * Commonly used across update_owe_info request and event interfaces.
4282  *
4283  * @peer: MAC address of the peer device for which the OWE processing
4284  *	has to be done.
4285  * @status: status code, %WLAN_STATUS_SUCCESS for successful OWE info
4286  *	processing, use %WLAN_STATUS_UNSPECIFIED_FAILURE if user space
4287  *	cannot give you the real status code for failures. Used only for
4288  *	OWE update request command interface (user space to driver).
4289  * @ie: IEs obtained from the peer or constructed by the user space. These are
4290  *	the IEs of the remote peer in the event from the host driver and
4291  *	the constructed IEs by the user space in the request interface.
4292  * @ie_len: Length of IEs in octets.
4293  * @assoc_link_id: MLO link ID of the AP, with which (re)association requested
4294  *	by peer. This will be filled by driver for both MLO and non-MLO station
4295  *	connections when the AP affiliated with an MLD. For non-MLD AP mode, it
4296  *	will be -1. Used only with OWE update event (driver to user space).
4297  * @peer_mld_addr: For MLO connection, MLD address of the peer. For non-MLO
4298  *	connection, it will be all zeros. This is applicable only when
4299  *	@assoc_link_id is not -1, i.e., the AP affiliated with an MLD. Used only
4300  *	with OWE update event (driver to user space).
4301  */
4302 struct cfg80211_update_owe_info {
4303 	u8 peer[ETH_ALEN] __aligned(2);
4304 	u16 status;
4305 	const u8 *ie;
4306 	size_t ie_len;
4307 	int assoc_link_id;
4308 	u8 peer_mld_addr[ETH_ALEN] __aligned(2);
4309 };
4310 
4311 /**
4312  * struct mgmt_frame_regs - management frame registrations data
4313  * @global_stypes: bitmap of management frame subtypes registered
4314  *	for the entire device
4315  * @interface_stypes: bitmap of management frame subtypes registered
4316  *	for the given interface
4317  * @global_mcast_stypes: mcast RX is needed globally for these subtypes
4318  * @interface_mcast_stypes: mcast RX is needed on this interface
4319  *	for these subtypes
4320  */
4321 struct mgmt_frame_regs {
4322 	u32 global_stypes, interface_stypes;
4323 	u32 global_mcast_stypes, interface_mcast_stypes;
4324 };
4325 
4326 /**
4327  * struct cfg80211_ops - backend description for wireless configuration
4328  *
4329  * This struct is registered by fullmac card drivers and/or wireless stacks
4330  * in order to handle configuration requests on their interfaces.
4331  *
4332  * All callbacks except where otherwise noted should return 0
4333  * on success or a negative error code.
4334  *
4335  * All operations are invoked with the wiphy mutex held. The RTNL may be
4336  * held in addition (due to wireless extensions) but this cannot be relied
4337  * upon except in cases where documented below. Note that due to ordering,
4338  * the RTNL also cannot be acquired in any handlers.
4339  *
4340  * @suspend: wiphy device needs to be suspended. The variable @wow will
4341  *	be %NULL or contain the enabled Wake-on-Wireless triggers that are
4342  *	configured for the device.
4343  * @resume: wiphy device needs to be resumed
4344  * @set_wakeup: Called when WoWLAN is enabled/disabled, use this callback
4345  *	to call device_set_wakeup_enable() to enable/disable wakeup from
4346  *	the device.
4347  *
4348  * @add_virtual_intf: create a new virtual interface with the given name,
4349  *	must set the struct wireless_dev's iftype. Beware: You must create
4350  *	the new netdev in the wiphy's network namespace! Returns the struct
4351  *	wireless_dev, or an ERR_PTR. For P2P device wdevs, the driver must
4352  *	also set the address member in the wdev.
4353  *	This additionally holds the RTNL to be able to do netdev changes.
4354  *
4355  * @del_virtual_intf: remove the virtual interface
4356  *	This additionally holds the RTNL to be able to do netdev changes.
4357  *
4358  * @change_virtual_intf: change type/configuration of virtual interface,
4359  *	keep the struct wireless_dev's iftype updated.
4360  *	This additionally holds the RTNL to be able to do netdev changes.
4361  *
4362  * @add_intf_link: Add a new MLO link to the given interface. Note that
4363  *	the wdev->link[] data structure has been updated, so the new link
4364  *	address is available.
4365  * @del_intf_link: Remove an MLO link from the given interface.
4366  *
4367  * @add_key: add a key with the given parameters. @mac_addr will be %NULL
4368  *	when adding a group key. @link_id will be -1 for non-MLO connection.
4369  *	For MLO connection, @link_id will be >= 0 for group key and -1 for
4370  *	pairwise key, @mac_addr will be peer's MLD address for MLO pairwise key.
4371  *
4372  * @get_key: get information about the key with the given parameters.
4373  *	@mac_addr will be %NULL when requesting information for a group
4374  *	key. All pointers given to the @callback function need not be valid
4375  *	after it returns. This function should return an error if it is
4376  *	not possible to retrieve the key, -ENOENT if it doesn't exist.
4377  *	@link_id will be -1 for non-MLO connection. For MLO connection,
4378  *	@link_id will be >= 0 for group key and -1 for pairwise key, @mac_addr
4379  *	will be peer's MLD address for MLO pairwise key.
4380  *
4381  * @del_key: remove a key given the @mac_addr (%NULL for a group key)
4382  *	and @key_index, return -ENOENT if the key doesn't exist. @link_id will
4383  *	be -1 for non-MLO connection. For MLO connection, @link_id will be >= 0
4384  *	for group key and -1 for pairwise key, @mac_addr will be peer's MLD
4385  *	address for MLO pairwise key.
4386  *
4387  * @set_default_key: set the default key on an interface. @link_id will be >= 0
4388  *	for MLO connection and -1 for non-MLO connection.
4389  *
4390  * @set_default_mgmt_key: set the default management frame key on an interface.
4391  *	@link_id will be >= 0 for MLO connection and -1 for non-MLO connection.
4392  *
4393  * @set_default_beacon_key: set the default Beacon frame key on an interface.
4394  *	@link_id will be >= 0 for MLO connection and -1 for non-MLO connection.
4395  *
4396  * @set_rekey_data: give the data necessary for GTK rekeying to the driver
4397  *
4398  * @start_ap: Start acting in AP mode defined by the parameters.
4399  * @change_beacon: Change the beacon parameters for an access point mode
4400  *	interface. This should reject the call when AP mode wasn't started.
4401  * @stop_ap: Stop being an AP, including stopping beaconing.
4402  *
4403  * @add_station: Add a new station.
4404  * @del_station: Remove a station
4405  * @change_station: Modify a given station. Note that flags changes are not much
4406  *	validated in cfg80211, in particular the auth/assoc/authorized flags
4407  *	might come to the driver in invalid combinations -- make sure to check
4408  *	them, also against the existing state! Drivers must call
4409  *	cfg80211_check_station_change() to validate the information.
4410  * @get_station: get station information for the station identified by @mac
4411  * @dump_station: dump station callback -- resume dump at index @idx
4412  *
4413  * @add_mpath: add a fixed mesh path
4414  * @del_mpath: delete a given mesh path
4415  * @change_mpath: change a given mesh path
4416  * @get_mpath: get a mesh path for the given parameters
4417  * @dump_mpath: dump mesh path callback -- resume dump at index @idx
4418  * @get_mpp: get a mesh proxy path for the given parameters
4419  * @dump_mpp: dump mesh proxy path callback -- resume dump at index @idx
4420  * @join_mesh: join the mesh network with the specified parameters
4421  *	(invoked with the wireless_dev mutex held)
4422  * @leave_mesh: leave the current mesh network
4423  *	(invoked with the wireless_dev mutex held)
4424  *
4425  * @get_mesh_config: Get the current mesh configuration
4426  *
4427  * @update_mesh_config: Update mesh parameters on a running mesh.
4428  *	The mask is a bitfield which tells us which parameters to
4429  *	set, and which to leave alone.
4430  *
4431  * @change_bss: Modify parameters for a given BSS.
4432  *
4433  * @inform_bss: Called by cfg80211 while being informed about new BSS data
4434  *	for every BSS found within the reported data or frame. This is called
4435  *	from within the cfg8011 inform_bss handlers while holding the bss_lock.
4436  *	The data parameter is passed through from drv_data inside
4437  *	struct cfg80211_inform_bss.
4438  *	The new IE data for the BSS is explicitly passed.
4439  *
4440  * @set_txq_params: Set TX queue parameters
4441  *
4442  * @libertas_set_mesh_channel: Only for backward compatibility for libertas,
4443  *	as it doesn't implement join_mesh and needs to set the channel to
4444  *	join the mesh instead.
4445  *
4446  * @set_monitor_channel: Set the monitor mode channel for the device. If other
4447  *	interfaces are active this callback should reject the configuration.
4448  *	If no interfaces are active or the device is down, the channel should
4449  *	be stored for when a monitor interface becomes active.
4450  *
4451  * @scan: Request to do a scan. If returning zero, the scan request is given
4452  *	the driver, and will be valid until passed to cfg80211_scan_done().
4453  *	For scan results, call cfg80211_inform_bss(); you can call this outside
4454  *	the scan/scan_done bracket too.
4455  * @abort_scan: Tell the driver to abort an ongoing scan. The driver shall
4456  *	indicate the status of the scan through cfg80211_scan_done().
4457  *
4458  * @auth: Request to authenticate with the specified peer
4459  *	(invoked with the wireless_dev mutex held)
4460  * @assoc: Request to (re)associate with the specified peer
4461  *	(invoked with the wireless_dev mutex held)
4462  * @deauth: Request to deauthenticate from the specified peer
4463  *	(invoked with the wireless_dev mutex held)
4464  * @disassoc: Request to disassociate from the specified peer
4465  *	(invoked with the wireless_dev mutex held)
4466  *
4467  * @connect: Connect to the ESS with the specified parameters. When connected,
4468  *	call cfg80211_connect_result()/cfg80211_connect_bss() with status code
4469  *	%WLAN_STATUS_SUCCESS. If the connection fails for some reason, call
4470  *	cfg80211_connect_result()/cfg80211_connect_bss() with the status code
4471  *	from the AP or cfg80211_connect_timeout() if no frame with status code
4472  *	was received.
4473  *	The driver is allowed to roam to other BSSes within the ESS when the
4474  *	other BSS matches the connect parameters. When such roaming is initiated
4475  *	by the driver, the driver is expected to verify that the target matches
4476  *	the configured security parameters and to use Reassociation Request
4477  *	frame instead of Association Request frame.
4478  *	The connect function can also be used to request the driver to perform a
4479  *	specific roam when connected to an ESS. In that case, the prev_bssid
4480  *	parameter is set to the BSSID of the currently associated BSS as an
4481  *	indication of requesting reassociation.
4482  *	In both the driver-initiated and new connect() call initiated roaming
4483  *	cases, the result of roaming is indicated with a call to
4484  *	cfg80211_roamed(). (invoked with the wireless_dev mutex held)
4485  * @update_connect_params: Update the connect parameters while connected to a
4486  *	BSS. The updated parameters can be used by driver/firmware for
4487  *	subsequent BSS selection (roaming) decisions and to form the
4488  *	Authentication/(Re)Association Request frames. This call does not
4489  *	request an immediate disassociation or reassociation with the current
4490  *	BSS, i.e., this impacts only subsequent (re)associations. The bits in
4491  *	changed are defined in &enum cfg80211_connect_params_changed.
4492  *	(invoked with the wireless_dev mutex held)
4493  * @disconnect: Disconnect from the BSS/ESS or stop connection attempts if
4494  *      connection is in progress. Once done, call cfg80211_disconnected() in
4495  *      case connection was already established (invoked with the
4496  *      wireless_dev mutex held), otherwise call cfg80211_connect_timeout().
4497  *
4498  * @join_ibss: Join the specified IBSS (or create if necessary). Once done, call
4499  *	cfg80211_ibss_joined(), also call that function when changing BSSID due
4500  *	to a merge.
4501  *	(invoked with the wireless_dev mutex held)
4502  * @leave_ibss: Leave the IBSS.
4503  *	(invoked with the wireless_dev mutex held)
4504  *
4505  * @set_mcast_rate: Set the specified multicast rate (only if vif is in ADHOC or
4506  *	MESH mode)
4507  *
4508  * @set_wiphy_params: Notify that wiphy parameters have changed;
4509  *	@changed bitfield (see &enum wiphy_params_flags) describes which values
4510  *	have changed. The actual parameter values are available in
4511  *	struct wiphy. If returning an error, no value should be changed.
4512  *
4513  * @set_tx_power: set the transmit power according to the parameters,
4514  *	the power passed is in mBm, to get dBm use MBM_TO_DBM(). The
4515  *	wdev may be %NULL if power was set for the wiphy, and will
4516  *	always be %NULL unless the driver supports per-vif TX power
4517  *	(as advertised by the nl80211 feature flag.)
4518  * @get_tx_power: store the current TX power into the dbm variable;
4519  *	return 0 if successful
4520  *
4521  * @rfkill_poll: polls the hw rfkill line, use cfg80211 reporting
4522  *	functions to adjust rfkill hw state
4523  *
4524  * @dump_survey: get site survey information.
4525  *
4526  * @remain_on_channel: Request the driver to remain awake on the specified
4527  *	channel for the specified duration to complete an off-channel
4528  *	operation (e.g., public action frame exchange). When the driver is
4529  *	ready on the requested channel, it must indicate this with an event
4530  *	notification by calling cfg80211_ready_on_channel().
4531  * @cancel_remain_on_channel: Cancel an on-going remain-on-channel operation.
4532  *	This allows the operation to be terminated prior to timeout based on
4533  *	the duration value.
4534  * @mgmt_tx: Transmit a management frame.
4535  * @mgmt_tx_cancel_wait: Cancel the wait time from transmitting a management
4536  *	frame on another channel
4537  *
4538  * @testmode_cmd: run a test mode command; @wdev may be %NULL
4539  * @testmode_dump: Implement a test mode dump. The cb->args[2] and up may be
4540  *	used by the function, but 0 and 1 must not be touched. Additionally,
4541  *	return error codes other than -ENOBUFS and -ENOENT will terminate the
4542  *	dump and return to userspace with an error, so be careful. If any data
4543  *	was passed in from userspace then the data/len arguments will be present
4544  *	and point to the data contained in %NL80211_ATTR_TESTDATA.
4545  *
4546  * @set_bitrate_mask: set the bitrate mask configuration
4547  *
4548  * @set_pmksa: Cache a PMKID for a BSSID. This is mostly useful for fullmac
4549  *	devices running firmwares capable of generating the (re) association
4550  *	RSN IE. It allows for faster roaming between WPA2 BSSIDs.
4551  * @del_pmksa: Delete a cached PMKID.
4552  * @flush_pmksa: Flush all cached PMKIDs.
4553  * @set_power_mgmt: Configure WLAN power management. A timeout value of -1
4554  *	allows the driver to adjust the dynamic ps timeout value.
4555  * @set_cqm_rssi_config: Configure connection quality monitor RSSI threshold.
4556  *	After configuration, the driver should (soon) send an event indicating
4557  *	the current level is above/below the configured threshold; this may
4558  *	need some care when the configuration is changed (without first being
4559  *	disabled.)
4560  * @set_cqm_rssi_range_config: Configure two RSSI thresholds in the
4561  *	connection quality monitor.  An event is to be sent only when the
4562  *	signal level is found to be outside the two values.  The driver should
4563  *	set %NL80211_EXT_FEATURE_CQM_RSSI_LIST if this method is implemented.
4564  *	If it is provided then there's no point providing @set_cqm_rssi_config.
4565  * @set_cqm_txe_config: Configure connection quality monitor TX error
4566  *	thresholds.
4567  * @sched_scan_start: Tell the driver to start a scheduled scan.
4568  * @sched_scan_stop: Tell the driver to stop an ongoing scheduled scan with
4569  *	given request id. This call must stop the scheduled scan and be ready
4570  *	for starting a new one before it returns, i.e. @sched_scan_start may be
4571  *	called immediately after that again and should not fail in that case.
4572  *	The driver should not call cfg80211_sched_scan_stopped() for a requested
4573  *	stop (when this method returns 0).
4574  *
4575  * @update_mgmt_frame_registrations: Notify the driver that management frame
4576  *	registrations were updated. The callback is allowed to sleep.
4577  *
4578  * @set_antenna: Set antenna configuration (tx_ant, rx_ant) on the device.
4579  *	Parameters are bitmaps of allowed antennas to use for TX/RX. Drivers may
4580  *	reject TX/RX mask combinations they cannot support by returning -EINVAL
4581  *	(also see nl80211.h @NL80211_ATTR_WIPHY_ANTENNA_TX).
4582  *
4583  * @get_antenna: Get current antenna configuration from device (tx_ant, rx_ant).
4584  *
4585  * @tdls_mgmt: Transmit a TDLS management frame.
4586  * @tdls_oper: Perform a high-level TDLS operation (e.g. TDLS link setup).
4587  *
4588  * @probe_client: probe an associated client, must return a cookie that it
4589  *	later passes to cfg80211_probe_status().
4590  *
4591  * @set_noack_map: Set the NoAck Map for the TIDs.
4592  *
4593  * @get_channel: Get the current operating channel for the virtual interface.
4594  *	For monitor interfaces, it should return %NULL unless there's a single
4595  *	current monitoring channel.
4596  *
4597  * @start_p2p_device: Start the given P2P device.
4598  * @stop_p2p_device: Stop the given P2P device.
4599  *
4600  * @set_mac_acl: Sets MAC address control list in AP and P2P GO mode.
4601  *	Parameters include ACL policy, an array of MAC address of stations
4602  *	and the number of MAC addresses. If there is already a list in driver
4603  *	this new list replaces the existing one. Driver has to clear its ACL
4604  *	when number of MAC addresses entries is passed as 0. Drivers which
4605  *	advertise the support for MAC based ACL have to implement this callback.
4606  *
4607  * @start_radar_detection: Start radar detection in the driver.
4608  *
4609  * @end_cac: End running CAC, probably because a related CAC
4610  *	was finished on another phy.
4611  *
4612  * @update_ft_ies: Provide updated Fast BSS Transition information to the
4613  *	driver. If the SME is in the driver/firmware, this information can be
4614  *	used in building Authentication and Reassociation Request frames.
4615  *
4616  * @crit_proto_start: Indicates a critical protocol needs more link reliability
4617  *	for a given duration (milliseconds). The protocol is provided so the
4618  *	driver can take the most appropriate actions.
4619  * @crit_proto_stop: Indicates critical protocol no longer needs increased link
4620  *	reliability. This operation can not fail.
4621  * @set_coalesce: Set coalesce parameters.
4622  *
4623  * @channel_switch: initiate channel-switch procedure (with CSA). Driver is
4624  *	responsible for veryfing if the switch is possible. Since this is
4625  *	inherently tricky driver may decide to disconnect an interface later
4626  *	with cfg80211_stop_iface(). This doesn't mean driver can accept
4627  *	everything. It should do it's best to verify requests and reject them
4628  *	as soon as possible.
4629  *
4630  * @set_qos_map: Set QoS mapping information to the driver
4631  *
4632  * @set_ap_chanwidth: Set the AP (including P2P GO) mode channel width for the
4633  *	given interface This is used e.g. for dynamic HT 20/40 MHz channel width
4634  *	changes during the lifetime of the BSS.
4635  *
4636  * @add_tx_ts: validate (if admitted_time is 0) or add a TX TS to the device
4637  *	with the given parameters; action frame exchange has been handled by
4638  *	userspace so this just has to modify the TX path to take the TS into
4639  *	account.
4640  *	If the admitted time is 0 just validate the parameters to make sure
4641  *	the session can be created at all; it is valid to just always return
4642  *	success for that but that may result in inefficient behaviour (handshake
4643  *	with the peer followed by immediate teardown when the addition is later
4644  *	rejected)
4645  * @del_tx_ts: remove an existing TX TS
4646  *
4647  * @join_ocb: join the OCB network with the specified parameters
4648  *	(invoked with the wireless_dev mutex held)
4649  * @leave_ocb: leave the current OCB network
4650  *	(invoked with the wireless_dev mutex held)
4651  *
4652  * @tdls_channel_switch: Start channel-switching with a TDLS peer. The driver
4653  *	is responsible for continually initiating channel-switching operations
4654  *	and returning to the base channel for communication with the AP.
4655  * @tdls_cancel_channel_switch: Stop channel-switching with a TDLS peer. Both
4656  *	peers must be on the base channel when the call completes.
4657  * @start_nan: Start the NAN interface.
4658  * @stop_nan: Stop the NAN interface.
4659  * @add_nan_func: Add a NAN function. Returns negative value on failure.
4660  *	On success @nan_func ownership is transferred to the driver and
4661  *	it may access it outside of the scope of this function. The driver
4662  *	should free the @nan_func when no longer needed by calling
4663  *	cfg80211_free_nan_func().
4664  *	On success the driver should assign an instance_id in the
4665  *	provided @nan_func.
4666  * @del_nan_func: Delete a NAN function.
4667  * @nan_change_conf: changes NAN configuration. The changed parameters must
4668  *	be specified in @changes (using &enum cfg80211_nan_conf_changes);
4669  *	All other parameters must be ignored.
4670  *
4671  * @set_multicast_to_unicast: configure multicast to unicast conversion for BSS
4672  *
4673  * @get_txq_stats: Get TXQ stats for interface or phy. If wdev is %NULL, this
4674  *      function should return phy stats, and interface stats otherwise.
4675  *
4676  * @set_pmk: configure the PMK to be used for offloaded 802.1X 4-Way handshake.
4677  *	If not deleted through @del_pmk the PMK remains valid until disconnect
4678  *	upon which the driver should clear it.
4679  *	(invoked with the wireless_dev mutex held)
4680  * @del_pmk: delete the previously configured PMK for the given authenticator.
4681  *	(invoked with the wireless_dev mutex held)
4682  *
4683  * @external_auth: indicates result of offloaded authentication processing from
4684  *     user space
4685  *
4686  * @tx_control_port: TX a control port frame (EAPoL).  The noencrypt parameter
4687  *	tells the driver that the frame should not be encrypted.
4688  *
4689  * @get_ftm_responder_stats: Retrieve FTM responder statistics, if available.
4690  *	Statistics should be cumulative, currently no way to reset is provided.
4691  * @start_pmsr: start peer measurement (e.g. FTM)
4692  * @abort_pmsr: abort peer measurement
4693  *
4694  * @update_owe_info: Provide updated OWE info to driver. Driver implementing SME
4695  *	but offloading OWE processing to the user space will get the updated
4696  *	DH IE through this interface.
4697  *
4698  * @probe_mesh_link: Probe direct Mesh peer's link quality by sending data frame
4699  *	and overrule HWMP path selection algorithm.
4700  * @set_tid_config: TID specific configuration, this can be peer or BSS specific
4701  *	This callback may sleep.
4702  * @reset_tid_config: Reset TID specific configuration for the peer, for the
4703  *	given TIDs. This callback may sleep.
4704  *
4705  * @set_sar_specs: Update the SAR (TX power) settings.
4706  *
4707  * @color_change: Initiate a color change.
4708  *
4709  * @set_fils_aad: Set FILS AAD data to the AP driver so that the driver can use
4710  *	those to decrypt (Re)Association Request and encrypt (Re)Association
4711  *	Response frame.
4712  *
4713  * @set_radar_background: Configure dedicated offchannel chain available for
4714  *	radar/CAC detection on some hw. This chain can't be used to transmit
4715  *	or receive frames and it is bounded to a running wdev.
4716  *	Background radar/CAC detection allows to avoid the CAC downtime
4717  *	switching to a different channel during CAC detection on the selected
4718  *	radar channel.
4719  *	The caller is expected to set chandef pointer to NULL in order to
4720  *	disable background CAC/radar detection.
4721  * @add_link_station: Add a link to a station.
4722  * @mod_link_station: Modify a link of a station.
4723  * @del_link_station: Remove a link of a station.
4724  *
4725  * @set_hw_timestamp: Enable/disable HW timestamping of TM/FTM frames.
4726  * @set_ttlm: set the TID to link mapping.
4727  * @set_epcs: Enable/Disable EPCS for station mode.
4728  * @get_radio_mask: get bitmask of radios in use.
4729  *	(invoked with the wiphy mutex held)
4730  * @assoc_ml_reconf: Request a non-AP MLO connection to perform ML
4731  *	reconfiguration, i.e., add and/or remove links to/from the
4732  *	association using ML reconfiguration action frames. Successfully added
4733  *	links will be added to the set of valid links. Successfully removed
4734  *	links will be removed from the set of valid links. The driver must
4735  *	indicate removed links by calling cfg80211_links_removed() and added
4736  *	links by calling cfg80211_mlo_reconf_add_done(). When calling
4737  *	cfg80211_mlo_reconf_add_done() the bss pointer must be given for each
4738  *	link for which MLO reconfiguration 'add' operation was requested.
4739  */
4740 struct cfg80211_ops {
4741 	int	(*suspend)(struct wiphy *wiphy, struct cfg80211_wowlan *wow);
4742 	int	(*resume)(struct wiphy *wiphy);
4743 	void	(*set_wakeup)(struct wiphy *wiphy, bool enabled);
4744 
4745 	struct wireless_dev * (*add_virtual_intf)(struct wiphy *wiphy,
4746 						  const char *name,
4747 						  unsigned char name_assign_type,
4748 						  enum nl80211_iftype type,
4749 						  struct vif_params *params);
4750 	int	(*del_virtual_intf)(struct wiphy *wiphy,
4751 				    struct wireless_dev *wdev);
4752 	int	(*change_virtual_intf)(struct wiphy *wiphy,
4753 				       struct net_device *dev,
4754 				       enum nl80211_iftype type,
4755 				       struct vif_params *params);
4756 
4757 	int	(*add_intf_link)(struct wiphy *wiphy,
4758 				 struct wireless_dev *wdev,
4759 				 unsigned int link_id);
4760 	void	(*del_intf_link)(struct wiphy *wiphy,
4761 				 struct wireless_dev *wdev,
4762 				 unsigned int link_id);
4763 
4764 	int	(*add_key)(struct wiphy *wiphy, struct net_device *netdev,
4765 			   int link_id, u8 key_index, bool pairwise,
4766 			   const u8 *mac_addr, struct key_params *params);
4767 	int	(*get_key)(struct wiphy *wiphy, struct net_device *netdev,
4768 			   int link_id, u8 key_index, bool pairwise,
4769 			   const u8 *mac_addr, void *cookie,
4770 			   void (*callback)(void *cookie, struct key_params*));
4771 	int	(*del_key)(struct wiphy *wiphy, struct net_device *netdev,
4772 			   int link_id, u8 key_index, bool pairwise,
4773 			   const u8 *mac_addr);
4774 	int	(*set_default_key)(struct wiphy *wiphy,
4775 				   struct net_device *netdev, int link_id,
4776 				   u8 key_index, bool unicast, bool multicast);
4777 	int	(*set_default_mgmt_key)(struct wiphy *wiphy,
4778 					struct net_device *netdev, int link_id,
4779 					u8 key_index);
4780 	int	(*set_default_beacon_key)(struct wiphy *wiphy,
4781 					  struct net_device *netdev,
4782 					  int link_id,
4783 					  u8 key_index);
4784 
4785 	int	(*start_ap)(struct wiphy *wiphy, struct net_device *dev,
4786 			    struct cfg80211_ap_settings *settings);
4787 	int	(*change_beacon)(struct wiphy *wiphy, struct net_device *dev,
4788 				 struct cfg80211_ap_update *info);
4789 	int	(*stop_ap)(struct wiphy *wiphy, struct net_device *dev,
4790 			   unsigned int link_id);
4791 
4792 
4793 	int	(*add_station)(struct wiphy *wiphy, struct net_device *dev,
4794 			       const u8 *mac,
4795 			       struct station_parameters *params);
4796 	int	(*del_station)(struct wiphy *wiphy, struct net_device *dev,
4797 			       struct station_del_parameters *params);
4798 	int	(*change_station)(struct wiphy *wiphy, struct net_device *dev,
4799 				  const u8 *mac,
4800 				  struct station_parameters *params);
4801 	int	(*get_station)(struct wiphy *wiphy, struct net_device *dev,
4802 			       const u8 *mac, struct station_info *sinfo);
4803 	int	(*dump_station)(struct wiphy *wiphy, struct net_device *dev,
4804 				int idx, u8 *mac, struct station_info *sinfo);
4805 
4806 	int	(*add_mpath)(struct wiphy *wiphy, struct net_device *dev,
4807 			       const u8 *dst, const u8 *next_hop);
4808 	int	(*del_mpath)(struct wiphy *wiphy, struct net_device *dev,
4809 			       const u8 *dst);
4810 	int	(*change_mpath)(struct wiphy *wiphy, struct net_device *dev,
4811 				  const u8 *dst, const u8 *next_hop);
4812 	int	(*get_mpath)(struct wiphy *wiphy, struct net_device *dev,
4813 			     u8 *dst, u8 *next_hop, struct mpath_info *pinfo);
4814 	int	(*dump_mpath)(struct wiphy *wiphy, struct net_device *dev,
4815 			      int idx, u8 *dst, u8 *next_hop,
4816 			      struct mpath_info *pinfo);
4817 	int	(*get_mpp)(struct wiphy *wiphy, struct net_device *dev,
4818 			   u8 *dst, u8 *mpp, struct mpath_info *pinfo);
4819 	int	(*dump_mpp)(struct wiphy *wiphy, struct net_device *dev,
4820 			    int idx, u8 *dst, u8 *mpp,
4821 			    struct mpath_info *pinfo);
4822 	int	(*get_mesh_config)(struct wiphy *wiphy,
4823 				struct net_device *dev,
4824 				struct mesh_config *conf);
4825 	int	(*update_mesh_config)(struct wiphy *wiphy,
4826 				      struct net_device *dev, u32 mask,
4827 				      const struct mesh_config *nconf);
4828 	int	(*join_mesh)(struct wiphy *wiphy, struct net_device *dev,
4829 			     const struct mesh_config *conf,
4830 			     const struct mesh_setup *setup);
4831 	int	(*leave_mesh)(struct wiphy *wiphy, struct net_device *dev);
4832 
4833 	int	(*join_ocb)(struct wiphy *wiphy, struct net_device *dev,
4834 			    struct ocb_setup *setup);
4835 	int	(*leave_ocb)(struct wiphy *wiphy, struct net_device *dev);
4836 
4837 	int	(*change_bss)(struct wiphy *wiphy, struct net_device *dev,
4838 			      struct bss_parameters *params);
4839 
4840 	void	(*inform_bss)(struct wiphy *wiphy, struct cfg80211_bss *bss,
4841 			      const struct cfg80211_bss_ies *ies, void *data);
4842 
4843 	int	(*set_txq_params)(struct wiphy *wiphy, struct net_device *dev,
4844 				  struct ieee80211_txq_params *params);
4845 
4846 	int	(*libertas_set_mesh_channel)(struct wiphy *wiphy,
4847 					     struct net_device *dev,
4848 					     struct ieee80211_channel *chan);
4849 
4850 	int	(*set_monitor_channel)(struct wiphy *wiphy,
4851 				       struct net_device *dev,
4852 				       struct cfg80211_chan_def *chandef);
4853 
4854 	int	(*scan)(struct wiphy *wiphy,
4855 			struct cfg80211_scan_request *request);
4856 	void	(*abort_scan)(struct wiphy *wiphy, struct wireless_dev *wdev);
4857 
4858 	int	(*auth)(struct wiphy *wiphy, struct net_device *dev,
4859 			struct cfg80211_auth_request *req);
4860 	int	(*assoc)(struct wiphy *wiphy, struct net_device *dev,
4861 			 struct cfg80211_assoc_request *req);
4862 	int	(*deauth)(struct wiphy *wiphy, struct net_device *dev,
4863 			  struct cfg80211_deauth_request *req);
4864 	int	(*disassoc)(struct wiphy *wiphy, struct net_device *dev,
4865 			    struct cfg80211_disassoc_request *req);
4866 
4867 	int	(*connect)(struct wiphy *wiphy, struct net_device *dev,
4868 			   struct cfg80211_connect_params *sme);
4869 	int	(*update_connect_params)(struct wiphy *wiphy,
4870 					 struct net_device *dev,
4871 					 struct cfg80211_connect_params *sme,
4872 					 u32 changed);
4873 	int	(*disconnect)(struct wiphy *wiphy, struct net_device *dev,
4874 			      u16 reason_code);
4875 
4876 	int	(*join_ibss)(struct wiphy *wiphy, struct net_device *dev,
4877 			     struct cfg80211_ibss_params *params);
4878 	int	(*leave_ibss)(struct wiphy *wiphy, struct net_device *dev);
4879 
4880 	int	(*set_mcast_rate)(struct wiphy *wiphy, struct net_device *dev,
4881 				  int rate[NUM_NL80211_BANDS]);
4882 
4883 	int	(*set_wiphy_params)(struct wiphy *wiphy, int radio_idx,
4884 				    u32 changed);
4885 
4886 	int	(*set_tx_power)(struct wiphy *wiphy, struct wireless_dev *wdev,
4887 				int radio_idx,
4888 				enum nl80211_tx_power_setting type, int mbm);
4889 	int	(*get_tx_power)(struct wiphy *wiphy, struct wireless_dev *wdev,
4890 				int radio_idx, unsigned int link_id, int *dbm);
4891 
4892 	void	(*rfkill_poll)(struct wiphy *wiphy);
4893 
4894 #ifdef CONFIG_NL80211_TESTMODE
4895 	int	(*testmode_cmd)(struct wiphy *wiphy, struct wireless_dev *wdev,
4896 				void *data, int len);
4897 	int	(*testmode_dump)(struct wiphy *wiphy, struct sk_buff *skb,
4898 				 struct netlink_callback *cb,
4899 				 void *data, int len);
4900 #endif
4901 
4902 	int	(*set_bitrate_mask)(struct wiphy *wiphy,
4903 				    struct net_device *dev,
4904 				    unsigned int link_id,
4905 				    const u8 *peer,
4906 				    const struct cfg80211_bitrate_mask *mask);
4907 
4908 	int	(*dump_survey)(struct wiphy *wiphy, struct net_device *netdev,
4909 			int idx, struct survey_info *info);
4910 
4911 	int	(*set_pmksa)(struct wiphy *wiphy, struct net_device *netdev,
4912 			     struct cfg80211_pmksa *pmksa);
4913 	int	(*del_pmksa)(struct wiphy *wiphy, struct net_device *netdev,
4914 			     struct cfg80211_pmksa *pmksa);
4915 	int	(*flush_pmksa)(struct wiphy *wiphy, struct net_device *netdev);
4916 
4917 	int	(*remain_on_channel)(struct wiphy *wiphy,
4918 				     struct wireless_dev *wdev,
4919 				     struct ieee80211_channel *chan,
4920 				     unsigned int duration,
4921 				     u64 *cookie);
4922 	int	(*cancel_remain_on_channel)(struct wiphy *wiphy,
4923 					    struct wireless_dev *wdev,
4924 					    u64 cookie);
4925 
4926 	int	(*mgmt_tx)(struct wiphy *wiphy, struct wireless_dev *wdev,
4927 			   struct cfg80211_mgmt_tx_params *params,
4928 			   u64 *cookie);
4929 	int	(*mgmt_tx_cancel_wait)(struct wiphy *wiphy,
4930 				       struct wireless_dev *wdev,
4931 				       u64 cookie);
4932 
4933 	int	(*set_power_mgmt)(struct wiphy *wiphy, struct net_device *dev,
4934 				  bool enabled, int timeout);
4935 
4936 	int	(*set_cqm_rssi_config)(struct wiphy *wiphy,
4937 				       struct net_device *dev,
4938 				       s32 rssi_thold, u32 rssi_hyst);
4939 
4940 	int	(*set_cqm_rssi_range_config)(struct wiphy *wiphy,
4941 					     struct net_device *dev,
4942 					     s32 rssi_low, s32 rssi_high);
4943 
4944 	int	(*set_cqm_txe_config)(struct wiphy *wiphy,
4945 				      struct net_device *dev,
4946 				      u32 rate, u32 pkts, u32 intvl);
4947 
4948 	void	(*update_mgmt_frame_registrations)(struct wiphy *wiphy,
4949 						   struct wireless_dev *wdev,
4950 						   struct mgmt_frame_regs *upd);
4951 
4952 	int	(*set_antenna)(struct wiphy *wiphy, int radio_idx,
4953 			       u32 tx_ant, u32 rx_ant);
4954 	int	(*get_antenna)(struct wiphy *wiphy, int radio_idx,
4955 			       u32 *tx_ant, u32 *rx_ant);
4956 
4957 	int	(*sched_scan_start)(struct wiphy *wiphy,
4958 				struct net_device *dev,
4959 				struct cfg80211_sched_scan_request *request);
4960 	int	(*sched_scan_stop)(struct wiphy *wiphy, struct net_device *dev,
4961 				   u64 reqid);
4962 
4963 	int	(*set_rekey_data)(struct wiphy *wiphy, struct net_device *dev,
4964 				  struct cfg80211_gtk_rekey_data *data);
4965 
4966 	int	(*tdls_mgmt)(struct wiphy *wiphy, struct net_device *dev,
4967 			     const u8 *peer, int link_id,
4968 			     u8 action_code, u8 dialog_token, u16 status_code,
4969 			     u32 peer_capability, bool initiator,
4970 			     const u8 *buf, size_t len);
4971 	int	(*tdls_oper)(struct wiphy *wiphy, struct net_device *dev,
4972 			     const u8 *peer, enum nl80211_tdls_operation oper);
4973 
4974 	int	(*probe_client)(struct wiphy *wiphy, struct net_device *dev,
4975 				const u8 *peer, u64 *cookie);
4976 
4977 	int	(*set_noack_map)(struct wiphy *wiphy,
4978 				  struct net_device *dev,
4979 				  u16 noack_map);
4980 
4981 	int	(*get_channel)(struct wiphy *wiphy,
4982 			       struct wireless_dev *wdev,
4983 			       unsigned int link_id,
4984 			       struct cfg80211_chan_def *chandef);
4985 
4986 	int	(*start_p2p_device)(struct wiphy *wiphy,
4987 				    struct wireless_dev *wdev);
4988 	void	(*stop_p2p_device)(struct wiphy *wiphy,
4989 				   struct wireless_dev *wdev);
4990 
4991 	int	(*set_mac_acl)(struct wiphy *wiphy, struct net_device *dev,
4992 			       const struct cfg80211_acl_data *params);
4993 
4994 	int	(*start_radar_detection)(struct wiphy *wiphy,
4995 					 struct net_device *dev,
4996 					 struct cfg80211_chan_def *chandef,
4997 					 u32 cac_time_ms, int link_id);
4998 	void	(*end_cac)(struct wiphy *wiphy,
4999 			   struct net_device *dev, unsigned int link_id);
5000 	int	(*update_ft_ies)(struct wiphy *wiphy, struct net_device *dev,
5001 				 struct cfg80211_update_ft_ies_params *ftie);
5002 	int	(*crit_proto_start)(struct wiphy *wiphy,
5003 				    struct wireless_dev *wdev,
5004 				    enum nl80211_crit_proto_id protocol,
5005 				    u16 duration);
5006 	void	(*crit_proto_stop)(struct wiphy *wiphy,
5007 				   struct wireless_dev *wdev);
5008 	int	(*set_coalesce)(struct wiphy *wiphy,
5009 				struct cfg80211_coalesce *coalesce);
5010 
5011 	int	(*channel_switch)(struct wiphy *wiphy,
5012 				  struct net_device *dev,
5013 				  struct cfg80211_csa_settings *params);
5014 
5015 	int     (*set_qos_map)(struct wiphy *wiphy,
5016 			       struct net_device *dev,
5017 			       struct cfg80211_qos_map *qos_map);
5018 
5019 	int	(*set_ap_chanwidth)(struct wiphy *wiphy, struct net_device *dev,
5020 				    unsigned int link_id,
5021 				    struct cfg80211_chan_def *chandef);
5022 
5023 	int	(*add_tx_ts)(struct wiphy *wiphy, struct net_device *dev,
5024 			     u8 tsid, const u8 *peer, u8 user_prio,
5025 			     u16 admitted_time);
5026 	int	(*del_tx_ts)(struct wiphy *wiphy, struct net_device *dev,
5027 			     u8 tsid, const u8 *peer);
5028 
5029 	int	(*tdls_channel_switch)(struct wiphy *wiphy,
5030 				       struct net_device *dev,
5031 				       const u8 *addr, u8 oper_class,
5032 				       struct cfg80211_chan_def *chandef);
5033 	void	(*tdls_cancel_channel_switch)(struct wiphy *wiphy,
5034 					      struct net_device *dev,
5035 					      const u8 *addr);
5036 	int	(*start_nan)(struct wiphy *wiphy, struct wireless_dev *wdev,
5037 			     struct cfg80211_nan_conf *conf);
5038 	void	(*stop_nan)(struct wiphy *wiphy, struct wireless_dev *wdev);
5039 	int	(*add_nan_func)(struct wiphy *wiphy, struct wireless_dev *wdev,
5040 				struct cfg80211_nan_func *nan_func);
5041 	void	(*del_nan_func)(struct wiphy *wiphy, struct wireless_dev *wdev,
5042 			       u64 cookie);
5043 	int	(*nan_change_conf)(struct wiphy *wiphy,
5044 				   struct wireless_dev *wdev,
5045 				   struct cfg80211_nan_conf *conf,
5046 				   u32 changes);
5047 
5048 	int	(*set_multicast_to_unicast)(struct wiphy *wiphy,
5049 					    struct net_device *dev,
5050 					    const bool enabled);
5051 
5052 	int	(*get_txq_stats)(struct wiphy *wiphy,
5053 				 struct wireless_dev *wdev,
5054 				 struct cfg80211_txq_stats *txqstats);
5055 
5056 	int	(*set_pmk)(struct wiphy *wiphy, struct net_device *dev,
5057 			   const struct cfg80211_pmk_conf *conf);
5058 	int	(*del_pmk)(struct wiphy *wiphy, struct net_device *dev,
5059 			   const u8 *aa);
5060 	int     (*external_auth)(struct wiphy *wiphy, struct net_device *dev,
5061 				 struct cfg80211_external_auth_params *params);
5062 
5063 	int	(*tx_control_port)(struct wiphy *wiphy,
5064 				   struct net_device *dev,
5065 				   const u8 *buf, size_t len,
5066 				   const u8 *dest, const __be16 proto,
5067 				   const bool noencrypt, int link_id,
5068 				   u64 *cookie);
5069 
5070 	int	(*get_ftm_responder_stats)(struct wiphy *wiphy,
5071 				struct net_device *dev,
5072 				struct cfg80211_ftm_responder_stats *ftm_stats);
5073 
5074 	int	(*start_pmsr)(struct wiphy *wiphy, struct wireless_dev *wdev,
5075 			      struct cfg80211_pmsr_request *request);
5076 	void	(*abort_pmsr)(struct wiphy *wiphy, struct wireless_dev *wdev,
5077 			      struct cfg80211_pmsr_request *request);
5078 	int	(*update_owe_info)(struct wiphy *wiphy, struct net_device *dev,
5079 				   struct cfg80211_update_owe_info *owe_info);
5080 	int	(*probe_mesh_link)(struct wiphy *wiphy, struct net_device *dev,
5081 				   const u8 *buf, size_t len);
5082 	int     (*set_tid_config)(struct wiphy *wiphy, struct net_device *dev,
5083 				  struct cfg80211_tid_config *tid_conf);
5084 	int	(*reset_tid_config)(struct wiphy *wiphy, struct net_device *dev,
5085 				    const u8 *peer, u8 tids);
5086 	int	(*set_sar_specs)(struct wiphy *wiphy,
5087 				 struct cfg80211_sar_specs *sar);
5088 	int	(*color_change)(struct wiphy *wiphy,
5089 				struct net_device *dev,
5090 				struct cfg80211_color_change_settings *params);
5091 	int     (*set_fils_aad)(struct wiphy *wiphy, struct net_device *dev,
5092 				struct cfg80211_fils_aad *fils_aad);
5093 	int	(*set_radar_background)(struct wiphy *wiphy,
5094 					struct cfg80211_chan_def *chandef);
5095 	int	(*add_link_station)(struct wiphy *wiphy, struct net_device *dev,
5096 				    struct link_station_parameters *params);
5097 	int	(*mod_link_station)(struct wiphy *wiphy, struct net_device *dev,
5098 				    struct link_station_parameters *params);
5099 	int	(*del_link_station)(struct wiphy *wiphy, struct net_device *dev,
5100 				    struct link_station_del_parameters *params);
5101 	int	(*set_hw_timestamp)(struct wiphy *wiphy, struct net_device *dev,
5102 				    struct cfg80211_set_hw_timestamp *hwts);
5103 	int	(*set_ttlm)(struct wiphy *wiphy, struct net_device *dev,
5104 			    struct cfg80211_ttlm_params *params);
5105 	u32	(*get_radio_mask)(struct wiphy *wiphy, struct net_device *dev);
5106 	int     (*assoc_ml_reconf)(struct wiphy *wiphy, struct net_device *dev,
5107 				   struct cfg80211_ml_reconf_req *req);
5108 	int	(*set_epcs)(struct wiphy *wiphy, struct net_device *dev,
5109 			    bool val);
5110 };
5111 
5112 /*
5113  * wireless hardware and networking interfaces structures
5114  * and registration/helper functions
5115  */
5116 
5117 /**
5118  * enum wiphy_flags - wiphy capability flags
5119  *
5120  * @WIPHY_FLAG_SPLIT_SCAN_6GHZ: if set to true, the scan request will be split
5121  *	 into two, first for legacy bands and second for 6 GHz.
5122  * @WIPHY_FLAG_NETNS_OK: if not set, do not allow changing the netns of this
5123  *	wiphy at all
5124  * @WIPHY_FLAG_PS_ON_BY_DEFAULT: if set to true, powersave will be enabled
5125  *	by default -- this flag will be set depending on the kernel's default
5126  *	on wiphy_new(), but can be changed by the driver if it has a good
5127  *	reason to override the default
5128  * @WIPHY_FLAG_4ADDR_AP: supports 4addr mode even on AP (with a single station
5129  *	on a VLAN interface). This flag also serves an extra purpose of
5130  *	supporting 4ADDR AP mode on devices which do not support AP/VLAN iftype.
5131  * @WIPHY_FLAG_4ADDR_STATION: supports 4addr mode even as a station
5132  * @WIPHY_FLAG_CONTROL_PORT_PROTOCOL: This device supports setting the
5133  *	control port protocol ethertype. The device also honours the
5134  *	control_port_no_encrypt flag.
5135  * @WIPHY_FLAG_IBSS_RSN: The device supports IBSS RSN.
5136  * @WIPHY_FLAG_MESH_AUTH: The device supports mesh authentication by routing
5137  *	auth frames to userspace. See @NL80211_MESH_SETUP_USERSPACE_AUTH.
5138  * @WIPHY_FLAG_SUPPORTS_FW_ROAM: The device supports roaming feature in the
5139  *	firmware.
5140  * @WIPHY_FLAG_AP_UAPSD: The device supports uapsd on AP.
5141  * @WIPHY_FLAG_SUPPORTS_TDLS: The device supports TDLS (802.11z) operation.
5142  * @WIPHY_FLAG_TDLS_EXTERNAL_SETUP: The device does not handle TDLS (802.11z)
5143  *	link setup/discovery operations internally. Setup, discovery and
5144  *	teardown packets should be sent through the @NL80211_CMD_TDLS_MGMT
5145  *	command. When this flag is not set, @NL80211_CMD_TDLS_OPER should be
5146  *	used for asking the driver/firmware to perform a TDLS operation.
5147  * @WIPHY_FLAG_HAVE_AP_SME: device integrates AP SME
5148  * @WIPHY_FLAG_REPORTS_OBSS: the device will report beacons from other BSSes
5149  *	when there are virtual interfaces in AP mode by calling
5150  *	cfg80211_report_obss_beacon().
5151  * @WIPHY_FLAG_AP_PROBE_RESP_OFFLOAD: When operating as an AP, the device
5152  *	responds to probe-requests in hardware.
5153  * @WIPHY_FLAG_OFFCHAN_TX: Device supports direct off-channel TX.
5154  * @WIPHY_FLAG_HAS_REMAIN_ON_CHANNEL: Device supports remain-on-channel call.
5155  * @WIPHY_FLAG_SUPPORTS_5_10_MHZ: Device supports 5 MHz and 10 MHz channels.
5156  * @WIPHY_FLAG_HAS_CHANNEL_SWITCH: Device supports channel switch in
5157  *	beaconing mode (AP, IBSS, Mesh, ...).
5158  * @WIPHY_FLAG_SUPPORTS_EXT_KEK_KCK: The device supports bigger kek and kck keys
5159  * @WIPHY_FLAG_SUPPORTS_MLO: This is a temporary flag gating the MLO APIs,
5160  *	in order to not have them reachable in normal drivers, until we have
5161  *	complete feature/interface combinations/etc. advertisement. No driver
5162  *	should set this flag for now.
5163  * @WIPHY_FLAG_SUPPORTS_EXT_KCK_32: The device supports 32-byte KCK keys.
5164  * @WIPHY_FLAG_NOTIFY_REGDOM_BY_DRIVER: The device could handle reg notify for
5165  *	NL80211_REGDOM_SET_BY_DRIVER.
5166  * @WIPHY_FLAG_CHANNEL_CHANGE_ON_BEACON: reg_call_notifier() is called if driver
5167  *	set this flag to update channels on beacon hints.
5168  * @WIPHY_FLAG_SUPPORTS_NSTR_NONPRIMARY: support connection to non-primary link
5169  *	of an NSTR mobile AP MLD.
5170  * @WIPHY_FLAG_DISABLE_WEXT: disable wireless extensions for this device
5171  */
5172 enum wiphy_flags {
5173 	WIPHY_FLAG_SUPPORTS_EXT_KEK_KCK		= BIT(0),
5174 	WIPHY_FLAG_SUPPORTS_MLO			= BIT(1),
5175 	WIPHY_FLAG_SPLIT_SCAN_6GHZ		= BIT(2),
5176 	WIPHY_FLAG_NETNS_OK			= BIT(3),
5177 	WIPHY_FLAG_PS_ON_BY_DEFAULT		= BIT(4),
5178 	WIPHY_FLAG_4ADDR_AP			= BIT(5),
5179 	WIPHY_FLAG_4ADDR_STATION		= BIT(6),
5180 	WIPHY_FLAG_CONTROL_PORT_PROTOCOL	= BIT(7),
5181 	WIPHY_FLAG_IBSS_RSN			= BIT(8),
5182 	WIPHY_FLAG_DISABLE_WEXT			= BIT(9),
5183 	WIPHY_FLAG_MESH_AUTH			= BIT(10),
5184 	WIPHY_FLAG_SUPPORTS_EXT_KCK_32          = BIT(11),
5185 	WIPHY_FLAG_SUPPORTS_NSTR_NONPRIMARY	= BIT(12),
5186 	WIPHY_FLAG_SUPPORTS_FW_ROAM		= BIT(13),
5187 	WIPHY_FLAG_AP_UAPSD			= BIT(14),
5188 	WIPHY_FLAG_SUPPORTS_TDLS		= BIT(15),
5189 	WIPHY_FLAG_TDLS_EXTERNAL_SETUP		= BIT(16),
5190 	WIPHY_FLAG_HAVE_AP_SME			= BIT(17),
5191 	WIPHY_FLAG_REPORTS_OBSS			= BIT(18),
5192 	WIPHY_FLAG_AP_PROBE_RESP_OFFLOAD	= BIT(19),
5193 	WIPHY_FLAG_OFFCHAN_TX			= BIT(20),
5194 	WIPHY_FLAG_HAS_REMAIN_ON_CHANNEL	= BIT(21),
5195 	WIPHY_FLAG_SUPPORTS_5_10_MHZ		= BIT(22),
5196 	WIPHY_FLAG_HAS_CHANNEL_SWITCH		= BIT(23),
5197 	WIPHY_FLAG_NOTIFY_REGDOM_BY_DRIVER	= BIT(24),
5198 	WIPHY_FLAG_CHANNEL_CHANGE_ON_BEACON     = BIT(25),
5199 };
5200 
5201 /**
5202  * struct ieee80211_iface_limit - limit on certain interface types
5203  * @max: maximum number of interfaces of these types
5204  * @types: interface types (bits)
5205  */
5206 struct ieee80211_iface_limit {
5207 	u16 max;
5208 	u16 types;
5209 };
5210 
5211 /**
5212  * struct ieee80211_iface_combination - possible interface combination
5213  *
5214  * With this structure the driver can describe which interface
5215  * combinations it supports concurrently. When set in a struct wiphy_radio,
5216  * the combinations refer to combinations of interfaces currently active on
5217  * that radio.
5218  *
5219  * Examples:
5220  *
5221  * 1. Allow #STA <= 1, #AP <= 1, matching BI, channels = 1, 2 total:
5222  *
5223  *    .. code-block:: c
5224  *
5225  *	struct ieee80211_iface_limit limits1[] = {
5226  *		{ .max = 1, .types = BIT(NL80211_IFTYPE_STATION), },
5227  *		{ .max = 1, .types = BIT(NL80211_IFTYPE_AP), },
5228  *	};
5229  *	struct ieee80211_iface_combination combination1 = {
5230  *		.limits = limits1,
5231  *		.n_limits = ARRAY_SIZE(limits1),
5232  *		.max_interfaces = 2,
5233  *		.beacon_int_infra_match = true,
5234  *	};
5235  *
5236  *
5237  * 2. Allow #{AP, P2P-GO} <= 8, channels = 1, 8 total:
5238  *
5239  *    .. code-block:: c
5240  *
5241  *	struct ieee80211_iface_limit limits2[] = {
5242  *		{ .max = 8, .types = BIT(NL80211_IFTYPE_AP) |
5243  *				     BIT(NL80211_IFTYPE_P2P_GO), },
5244  *	};
5245  *	struct ieee80211_iface_combination combination2 = {
5246  *		.limits = limits2,
5247  *		.n_limits = ARRAY_SIZE(limits2),
5248  *		.max_interfaces = 8,
5249  *		.num_different_channels = 1,
5250  *	};
5251  *
5252  *
5253  * 3. Allow #STA <= 1, #{P2P-client,P2P-GO} <= 3 on two channels, 4 total.
5254  *
5255  *    This allows for an infrastructure connection and three P2P connections.
5256  *
5257  *    .. code-block:: c
5258  *
5259  *	struct ieee80211_iface_limit limits3[] = {
5260  *		{ .max = 1, .types = BIT(NL80211_IFTYPE_STATION), },
5261  *		{ .max = 3, .types = BIT(NL80211_IFTYPE_P2P_GO) |
5262  *				     BIT(NL80211_IFTYPE_P2P_CLIENT), },
5263  *	};
5264  *	struct ieee80211_iface_combination combination3 = {
5265  *		.limits = limits3,
5266  *		.n_limits = ARRAY_SIZE(limits3),
5267  *		.max_interfaces = 4,
5268  *		.num_different_channels = 2,
5269  *	};
5270  *
5271  */
5272 struct ieee80211_iface_combination {
5273 	/**
5274 	 * @limits:
5275 	 * limits for the given interface types
5276 	 */
5277 	const struct ieee80211_iface_limit *limits;
5278 
5279 	/**
5280 	 * @num_different_channels:
5281 	 * can use up to this many different channels
5282 	 */
5283 	u32 num_different_channels;
5284 
5285 	/**
5286 	 * @max_interfaces:
5287 	 * maximum number of interfaces in total allowed in this group
5288 	 */
5289 	u16 max_interfaces;
5290 
5291 	/**
5292 	 * @n_limits:
5293 	 * number of limitations
5294 	 */
5295 	u8 n_limits;
5296 
5297 	/**
5298 	 * @beacon_int_infra_match:
5299 	 * In this combination, the beacon intervals between infrastructure
5300 	 * and AP types must match. This is required only in special cases.
5301 	 */
5302 	bool beacon_int_infra_match;
5303 
5304 	/**
5305 	 * @radar_detect_widths:
5306 	 * bitmap of channel widths supported for radar detection
5307 	 */
5308 	u8 radar_detect_widths;
5309 
5310 	/**
5311 	 * @radar_detect_regions:
5312 	 * bitmap of regions supported for radar detection
5313 	 */
5314 	u8 radar_detect_regions;
5315 
5316 	/**
5317 	 * @beacon_int_min_gcd:
5318 	 * This interface combination supports different beacon intervals.
5319 	 *
5320 	 * = 0
5321 	 *   all beacon intervals for different interface must be same.
5322 	 * > 0
5323 	 *   any beacon interval for the interface part of this combination AND
5324 	 *   GCD of all beacon intervals from beaconing interfaces of this
5325 	 *   combination must be greater or equal to this value.
5326 	 */
5327 	u32 beacon_int_min_gcd;
5328 };
5329 
5330 struct ieee80211_txrx_stypes {
5331 	u16 tx, rx;
5332 };
5333 
5334 /**
5335  * enum wiphy_wowlan_support_flags - WoWLAN support flags
5336  * @WIPHY_WOWLAN_ANY: supports wakeup for the special "any"
5337  *	trigger that keeps the device operating as-is and
5338  *	wakes up the host on any activity, for example a
5339  *	received packet that passed filtering; note that the
5340  *	packet should be preserved in that case
5341  * @WIPHY_WOWLAN_MAGIC_PKT: supports wakeup on magic packet
5342  *	(see nl80211.h)
5343  * @WIPHY_WOWLAN_DISCONNECT: supports wakeup on disconnect
5344  * @WIPHY_WOWLAN_SUPPORTS_GTK_REKEY: supports GTK rekeying while asleep
5345  * @WIPHY_WOWLAN_GTK_REKEY_FAILURE: supports wakeup on GTK rekey failure
5346  * @WIPHY_WOWLAN_EAP_IDENTITY_REQ: supports wakeup on EAP identity request
5347  * @WIPHY_WOWLAN_4WAY_HANDSHAKE: supports wakeup on 4-way handshake failure
5348  * @WIPHY_WOWLAN_RFKILL_RELEASE: supports wakeup on RF-kill release
5349  * @WIPHY_WOWLAN_NET_DETECT: supports wakeup on network detection
5350  */
5351 enum wiphy_wowlan_support_flags {
5352 	WIPHY_WOWLAN_ANY		= BIT(0),
5353 	WIPHY_WOWLAN_MAGIC_PKT		= BIT(1),
5354 	WIPHY_WOWLAN_DISCONNECT		= BIT(2),
5355 	WIPHY_WOWLAN_SUPPORTS_GTK_REKEY	= BIT(3),
5356 	WIPHY_WOWLAN_GTK_REKEY_FAILURE	= BIT(4),
5357 	WIPHY_WOWLAN_EAP_IDENTITY_REQ	= BIT(5),
5358 	WIPHY_WOWLAN_4WAY_HANDSHAKE	= BIT(6),
5359 	WIPHY_WOWLAN_RFKILL_RELEASE	= BIT(7),
5360 	WIPHY_WOWLAN_NET_DETECT		= BIT(8),
5361 };
5362 
5363 struct wiphy_wowlan_tcp_support {
5364 	const struct nl80211_wowlan_tcp_data_token_feature *tok;
5365 	u32 data_payload_max;
5366 	u32 data_interval_max;
5367 	u32 wake_payload_max;
5368 	bool seq;
5369 };
5370 
5371 /**
5372  * struct wiphy_wowlan_support - WoWLAN support data
5373  * @flags: see &enum wiphy_wowlan_support_flags
5374  * @n_patterns: number of supported wakeup patterns
5375  *	(see nl80211.h for the pattern definition)
5376  * @pattern_max_len: maximum length of each pattern
5377  * @pattern_min_len: minimum length of each pattern
5378  * @max_pkt_offset: maximum Rx packet offset
5379  * @max_nd_match_sets: maximum number of matchsets for net-detect,
5380  *	similar, but not necessarily identical, to max_match_sets for
5381  *	scheduled scans.
5382  *	See &struct cfg80211_sched_scan_request.@match_sets for more
5383  *	details.
5384  * @tcp: TCP wakeup support information
5385  */
5386 struct wiphy_wowlan_support {
5387 	u32 flags;
5388 	int n_patterns;
5389 	int pattern_max_len;
5390 	int pattern_min_len;
5391 	int max_pkt_offset;
5392 	int max_nd_match_sets;
5393 	const struct wiphy_wowlan_tcp_support *tcp;
5394 };
5395 
5396 /**
5397  * struct wiphy_coalesce_support - coalesce support data
5398  * @n_rules: maximum number of coalesce rules
5399  * @max_delay: maximum supported coalescing delay in msecs
5400  * @n_patterns: number of supported patterns in a rule
5401  *	(see nl80211.h for the pattern definition)
5402  * @pattern_max_len: maximum length of each pattern
5403  * @pattern_min_len: minimum length of each pattern
5404  * @max_pkt_offset: maximum Rx packet offset
5405  */
5406 struct wiphy_coalesce_support {
5407 	int n_rules;
5408 	int max_delay;
5409 	int n_patterns;
5410 	int pattern_max_len;
5411 	int pattern_min_len;
5412 	int max_pkt_offset;
5413 };
5414 
5415 /**
5416  * enum wiphy_vendor_command_flags - validation flags for vendor commands
5417  * @WIPHY_VENDOR_CMD_NEED_WDEV: vendor command requires wdev
5418  * @WIPHY_VENDOR_CMD_NEED_NETDEV: vendor command requires netdev
5419  * @WIPHY_VENDOR_CMD_NEED_RUNNING: interface/wdev must be up & running
5420  *	(must be combined with %_WDEV or %_NETDEV)
5421  */
5422 enum wiphy_vendor_command_flags {
5423 	WIPHY_VENDOR_CMD_NEED_WDEV = BIT(0),
5424 	WIPHY_VENDOR_CMD_NEED_NETDEV = BIT(1),
5425 	WIPHY_VENDOR_CMD_NEED_RUNNING = BIT(2),
5426 };
5427 
5428 /**
5429  * enum wiphy_opmode_flag - Station's ht/vht operation mode information flags
5430  *
5431  * @STA_OPMODE_MAX_BW_CHANGED: Max Bandwidth changed
5432  * @STA_OPMODE_SMPS_MODE_CHANGED: SMPS mode changed
5433  * @STA_OPMODE_N_SS_CHANGED: max N_SS (number of spatial streams) changed
5434  *
5435  */
5436 enum wiphy_opmode_flag {
5437 	STA_OPMODE_MAX_BW_CHANGED	= BIT(0),
5438 	STA_OPMODE_SMPS_MODE_CHANGED	= BIT(1),
5439 	STA_OPMODE_N_SS_CHANGED		= BIT(2),
5440 };
5441 
5442 /**
5443  * struct sta_opmode_info - Station's ht/vht operation mode information
5444  * @changed: contains value from &enum wiphy_opmode_flag
5445  * @smps_mode: New SMPS mode value from &enum nl80211_smps_mode of a station
5446  * @bw: new max bandwidth value from &enum nl80211_chan_width of a station
5447  * @rx_nss: new rx_nss value of a station
5448  */
5449 
5450 struct sta_opmode_info {
5451 	u32 changed;
5452 	enum nl80211_smps_mode smps_mode;
5453 	enum nl80211_chan_width bw;
5454 	u8 rx_nss;
5455 };
5456 
5457 #define VENDOR_CMD_RAW_DATA ((const struct nla_policy *)(long)(-ENODATA))
5458 
5459 /**
5460  * struct wiphy_vendor_command - vendor command definition
5461  * @info: vendor command identifying information, as used in nl80211
5462  * @flags: flags, see &enum wiphy_vendor_command_flags
5463  * @doit: callback for the operation, note that wdev is %NULL if the
5464  *	flags didn't ask for a wdev and non-%NULL otherwise; the data
5465  *	pointer may be %NULL if userspace provided no data at all
5466  * @dumpit: dump callback, for transferring bigger/multiple items. The
5467  *	@storage points to cb->args[5], ie. is preserved over the multiple
5468  *	dumpit calls.
5469  * @policy: policy pointer for attributes within %NL80211_ATTR_VENDOR_DATA.
5470  *	Set this to %VENDOR_CMD_RAW_DATA if no policy can be given and the
5471  *	attribute is just raw data (e.g. a firmware command).
5472  * @maxattr: highest attribute number in policy
5473  * It's recommended to not have the same sub command with both @doit and
5474  * @dumpit, so that userspace can assume certain ones are get and others
5475  * are used with dump requests.
5476  */
5477 struct wiphy_vendor_command {
5478 	struct nl80211_vendor_cmd_info info;
5479 	u32 flags;
5480 	int (*doit)(struct wiphy *wiphy, struct wireless_dev *wdev,
5481 		    const void *data, int data_len);
5482 	int (*dumpit)(struct wiphy *wiphy, struct wireless_dev *wdev,
5483 		      struct sk_buff *skb, const void *data, int data_len,
5484 		      unsigned long *storage);
5485 	const struct nla_policy *policy;
5486 	unsigned int maxattr;
5487 };
5488 
5489 /**
5490  * struct wiphy_iftype_ext_capab - extended capabilities per interface type
5491  * @iftype: interface type
5492  * @extended_capabilities: extended capabilities supported by the driver,
5493  *	additional capabilities might be supported by userspace; these are the
5494  *	802.11 extended capabilities ("Extended Capabilities element") and are
5495  *	in the same format as in the information element. See IEEE Std
5496  *	802.11-2012 8.4.2.29 for the defined fields.
5497  * @extended_capabilities_mask: mask of the valid values
5498  * @extended_capabilities_len: length of the extended capabilities
5499  * @eml_capabilities: EML capabilities (for MLO)
5500  * @mld_capa_and_ops: MLD capabilities and operations (for MLO)
5501  */
5502 struct wiphy_iftype_ext_capab {
5503 	enum nl80211_iftype iftype;
5504 	const u8 *extended_capabilities;
5505 	const u8 *extended_capabilities_mask;
5506 	u8 extended_capabilities_len;
5507 	u16 eml_capabilities;
5508 	u16 mld_capa_and_ops;
5509 };
5510 
5511 /**
5512  * cfg80211_get_iftype_ext_capa - lookup interface type extended capability
5513  * @wiphy: the wiphy to look up from
5514  * @type: the interface type to look up
5515  *
5516  * Return: The extended capability for the given interface @type, may be %NULL
5517  */
5518 const struct wiphy_iftype_ext_capab *
5519 cfg80211_get_iftype_ext_capa(struct wiphy *wiphy, enum nl80211_iftype type);
5520 
5521 /**
5522  * struct cfg80211_pmsr_capabilities - cfg80211 peer measurement capabilities
5523  * @max_peers: maximum number of peers in a single measurement
5524  * @report_ap_tsf: can report assoc AP's TSF for radio resource measurement
5525  * @randomize_mac_addr: can randomize MAC address for measurement
5526  * @ftm: FTM measurement data
5527  * @ftm.supported: FTM measurement is supported
5528  * @ftm.asap: ASAP-mode is supported
5529  * @ftm.non_asap: non-ASAP-mode is supported
5530  * @ftm.request_lci: can request LCI data
5531  * @ftm.request_civicloc: can request civic location data
5532  * @ftm.preambles: bitmap of preambles supported (&enum nl80211_preamble)
5533  * @ftm.bandwidths: bitmap of bandwidths supported (&enum nl80211_chan_width)
5534  * @ftm.max_bursts_exponent: maximum burst exponent supported
5535  *	(set to -1 if not limited; note that setting this will necessarily
5536  *	forbid using the value 15 to let the responder pick)
5537  * @ftm.max_ftms_per_burst: maximum FTMs per burst supported (set to 0 if
5538  *	not limited)
5539  * @ftm.trigger_based: trigger based ranging measurement is supported
5540  * @ftm.non_trigger_based: non trigger based ranging measurement is supported
5541  */
5542 struct cfg80211_pmsr_capabilities {
5543 	unsigned int max_peers;
5544 	u8 report_ap_tsf:1,
5545 	   randomize_mac_addr:1;
5546 
5547 	struct {
5548 		u32 preambles;
5549 		u32 bandwidths;
5550 		s8 max_bursts_exponent;
5551 		u8 max_ftms_per_burst;
5552 		u8 supported:1,
5553 		   asap:1,
5554 		   non_asap:1,
5555 		   request_lci:1,
5556 		   request_civicloc:1,
5557 		   trigger_based:1,
5558 		   non_trigger_based:1;
5559 	} ftm;
5560 };
5561 
5562 /**
5563  * struct wiphy_iftype_akm_suites - This structure encapsulates supported akm
5564  * suites for interface types defined in @iftypes_mask. Each type in the
5565  * @iftypes_mask must be unique across all instances of iftype_akm_suites.
5566  *
5567  * @iftypes_mask: bitmask of interfaces types
5568  * @akm_suites: points to an array of supported akm suites
5569  * @n_akm_suites: number of supported AKM suites
5570  */
5571 struct wiphy_iftype_akm_suites {
5572 	u16 iftypes_mask;
5573 	const u32 *akm_suites;
5574 	int n_akm_suites;
5575 };
5576 
5577 /**
5578  * struct wiphy_radio_cfg - physical radio config of a wiphy
5579  * This structure describes the configurations of a physical radio in a
5580  * wiphy. It is used to denote per-radio attributes belonging to a wiphy.
5581  *
5582  * @rts_threshold: RTS threshold (dot11RTSThreshold);
5583  *	-1 (default) = RTS/CTS disabled
5584  */
5585 struct wiphy_radio_cfg {
5586 	u32 rts_threshold;
5587 };
5588 
5589 /**
5590  * struct wiphy_radio_freq_range - wiphy frequency range
5591  * @start_freq:  start range edge frequency (kHz)
5592  * @end_freq:    end range edge frequency (kHz)
5593  */
5594 struct wiphy_radio_freq_range {
5595 	u32 start_freq;
5596 	u32 end_freq;
5597 };
5598 
5599 
5600 /**
5601  * struct wiphy_radio - physical radio of a wiphy
5602  * This structure describes a physical radio belonging to a wiphy.
5603  * It is used to describe concurrent-channel capabilities. Only one channel
5604  * can be active on the radio described by struct wiphy_radio.
5605  *
5606  * @freq_range: frequency range that the radio can operate on.
5607  * @n_freq_range: number of elements in @freq_range
5608  *
5609  * @iface_combinations: Valid interface combinations array, should not
5610  *	list single interface types.
5611  * @n_iface_combinations: number of entries in @iface_combinations array.
5612  *
5613  * @antenna_mask: bitmask of antennas connected to this radio.
5614  */
5615 struct wiphy_radio {
5616 	const struct wiphy_radio_freq_range *freq_range;
5617 	int n_freq_range;
5618 
5619 	const struct ieee80211_iface_combination *iface_combinations;
5620 	int n_iface_combinations;
5621 
5622 	u32 antenna_mask;
5623 };
5624 
5625 #define CFG80211_HW_TIMESTAMP_ALL_PEERS	0xffff
5626 
5627 /**
5628  * struct wiphy - wireless hardware description
5629  * @mtx: mutex for the data (structures) of this device
5630  * @reg_notifier: the driver's regulatory notification callback,
5631  *	note that if your driver uses wiphy_apply_custom_regulatory()
5632  *	the reg_notifier's request can be passed as NULL
5633  * @regd: the driver's regulatory domain, if one was requested via
5634  *	the regulatory_hint() API. This can be used by the driver
5635  *	on the reg_notifier() if it chooses to ignore future
5636  *	regulatory domain changes caused by other drivers.
5637  * @signal_type: signal type reported in &struct cfg80211_bss.
5638  * @cipher_suites: supported cipher suites
5639  * @n_cipher_suites: number of supported cipher suites
5640  * @akm_suites: supported AKM suites. These are the default AKMs supported if
5641  *	the supported AKMs not advertized for a specific interface type in
5642  *	iftype_akm_suites.
5643  * @n_akm_suites: number of supported AKM suites
5644  * @iftype_akm_suites: array of supported akm suites info per interface type.
5645  *	Note that the bits in @iftypes_mask inside this structure cannot
5646  *	overlap (i.e. only one occurrence of each type is allowed across all
5647  *	instances of iftype_akm_suites).
5648  * @num_iftype_akm_suites: number of interface types for which supported akm
5649  *	suites are specified separately.
5650  * @retry_short: Retry limit for short frames (dot11ShortRetryLimit)
5651  * @retry_long: Retry limit for long frames (dot11LongRetryLimit)
5652  * @frag_threshold: Fragmentation threshold (dot11FragmentationThreshold);
5653  *	-1 = fragmentation disabled, only odd values >= 256 used
5654  * @rts_threshold: RTS threshold (dot11RTSThreshold); -1 = RTS/CTS disabled
5655  * @_net: the network namespace this wiphy currently lives in
5656  * @perm_addr: permanent MAC address of this device
5657  * @addr_mask: If the device supports multiple MAC addresses by masking,
5658  *	set this to a mask with variable bits set to 1, e.g. if the last
5659  *	four bits are variable then set it to 00-00-00-00-00-0f. The actual
5660  *	variable bits shall be determined by the interfaces added, with
5661  *	interfaces not matching the mask being rejected to be brought up.
5662  * @n_addresses: number of addresses in @addresses.
5663  * @addresses: If the device has more than one address, set this pointer
5664  *	to a list of addresses (6 bytes each). The first one will be used
5665  *	by default for perm_addr. In this case, the mask should be set to
5666  *	all-zeroes. In this case it is assumed that the device can handle
5667  *	the same number of arbitrary MAC addresses.
5668  * @registered: protects ->resume and ->suspend sysfs callbacks against
5669  *	unregister hardware
5670  * @debugfsdir: debugfs directory used for this wiphy (ieee80211/<wiphyname>).
5671  *	It will be renamed automatically on wiphy renames
5672  * @dev: (virtual) struct device for this wiphy. The item in
5673  *	/sys/class/ieee80211/ points to this. You need use set_wiphy_dev()
5674  *	(see below).
5675  * @wext: wireless extension handlers
5676  * @priv: driver private data (sized according to wiphy_new() parameter)
5677  * @interface_modes: bitmask of interfaces types valid for this wiphy,
5678  *	must be set by driver
5679  * @iface_combinations: Valid interface combinations array, should not
5680  *	list single interface types.
5681  * @n_iface_combinations: number of entries in @iface_combinations array.
5682  * @software_iftypes: bitmask of software interface types, these are not
5683  *	subject to any restrictions since they are purely managed in SW.
5684  * @flags: wiphy flags, see &enum wiphy_flags
5685  * @regulatory_flags: wiphy regulatory flags, see
5686  *	&enum ieee80211_regulatory_flags
5687  * @features: features advertised to nl80211, see &enum nl80211_feature_flags.
5688  * @ext_features: extended features advertised to nl80211, see
5689  *	&enum nl80211_ext_feature_index.
5690  * @bss_priv_size: each BSS struct has private data allocated with it,
5691  *	this variable determines its size
5692  * @max_scan_ssids: maximum number of SSIDs the device can scan for in
5693  *	any given scan
5694  * @max_sched_scan_reqs: maximum number of scheduled scan requests that
5695  *	the device can run concurrently.
5696  * @max_sched_scan_ssids: maximum number of SSIDs the device can scan
5697  *	for in any given scheduled scan
5698  * @max_match_sets: maximum number of match sets the device can handle
5699  *	when performing a scheduled scan, 0 if filtering is not
5700  *	supported.
5701  * @max_scan_ie_len: maximum length of user-controlled IEs device can
5702  *	add to probe request frames transmitted during a scan, must not
5703  *	include fixed IEs like supported rates
5704  * @max_sched_scan_ie_len: same as max_scan_ie_len, but for scheduled
5705  *	scans
5706  * @max_sched_scan_plans: maximum number of scan plans (scan interval and number
5707  *	of iterations) for scheduled scan supported by the device.
5708  * @max_sched_scan_plan_interval: maximum interval (in seconds) for a
5709  *	single scan plan supported by the device.
5710  * @max_sched_scan_plan_iterations: maximum number of iterations for a single
5711  *	scan plan supported by the device.
5712  * @coverage_class: current coverage class
5713  * @fw_version: firmware version for ethtool reporting
5714  * @hw_version: hardware version for ethtool reporting
5715  * @max_num_pmkids: maximum number of PMKIDs supported by device
5716  * @privid: a pointer that drivers can use to identify if an arbitrary
5717  *	wiphy is theirs, e.g. in global notifiers
5718  * @bands: information about bands/channels supported by this device
5719  *
5720  * @mgmt_stypes: bitmasks of frame subtypes that can be subscribed to or
5721  *	transmitted through nl80211, points to an array indexed by interface
5722  *	type
5723  *
5724  * @available_antennas_tx: bitmap of antennas which are available to be
5725  *	configured as TX antennas. Antenna configuration commands will be
5726  *	rejected unless this or @available_antennas_rx is set.
5727  *
5728  * @available_antennas_rx: bitmap of antennas which are available to be
5729  *	configured as RX antennas. Antenna configuration commands will be
5730  *	rejected unless this or @available_antennas_tx is set.
5731  *
5732  * @probe_resp_offload:
5733  *	 Bitmap of supported protocols for probe response offloading.
5734  *	 See &enum nl80211_probe_resp_offload_support_attr. Only valid
5735  *	 when the wiphy flag @WIPHY_FLAG_AP_PROBE_RESP_OFFLOAD is set.
5736  *
5737  * @max_remain_on_channel_duration: Maximum time a remain-on-channel operation
5738  *	may request, if implemented.
5739  *
5740  * @wowlan: WoWLAN support information
5741  * @wowlan_config: current WoWLAN configuration; this should usually not be
5742  *	used since access to it is necessarily racy, use the parameter passed
5743  *	to the suspend() operation instead.
5744  *
5745  * @ap_sme_capa: AP SME capabilities, flags from &enum nl80211_ap_sme_features.
5746  * @ht_capa_mod_mask:  Specify what ht_cap values can be over-ridden.
5747  *	If null, then none can be over-ridden.
5748  * @vht_capa_mod_mask:  Specify what VHT capabilities can be over-ridden.
5749  *	If null, then none can be over-ridden.
5750  *
5751  * @wdev_list: the list of associated (virtual) interfaces; this list must
5752  *	not be modified by the driver, but can be read with RTNL/RCU protection.
5753  *
5754  * @max_acl_mac_addrs: Maximum number of MAC addresses that the device
5755  *	supports for ACL.
5756  *
5757  * @extended_capabilities: extended capabilities supported by the driver,
5758  *	additional capabilities might be supported by userspace; these are
5759  *	the 802.11 extended capabilities ("Extended Capabilities element")
5760  *	and are in the same format as in the information element. See
5761  *	802.11-2012 8.4.2.29 for the defined fields. These are the default
5762  *	extended capabilities to be used if the capabilities are not specified
5763  *	for a specific interface type in iftype_ext_capab.
5764  * @extended_capabilities_mask: mask of the valid values
5765  * @extended_capabilities_len: length of the extended capabilities
5766  * @iftype_ext_capab: array of extended capabilities per interface type
5767  * @num_iftype_ext_capab: number of interface types for which extended
5768  *	capabilities are specified separately.
5769  * @coalesce: packet coalescing support information
5770  *
5771  * @vendor_commands: array of vendor commands supported by the hardware
5772  * @n_vendor_commands: number of vendor commands
5773  * @vendor_events: array of vendor events supported by the hardware
5774  * @n_vendor_events: number of vendor events
5775  *
5776  * @max_ap_assoc_sta: maximum number of associated stations supported in AP mode
5777  *	(including P2P GO) or 0 to indicate no such limit is advertised. The
5778  *	driver is allowed to advertise a theoretical limit that it can reach in
5779  *	some cases, but may not always reach.
5780  *
5781  * @max_num_csa_counters: Number of supported csa_counters in beacons
5782  *	and probe responses.  This value should be set if the driver
5783  *	wishes to limit the number of csa counters. Default (0) means
5784  *	infinite.
5785  * @bss_select_support: bitmask indicating the BSS selection criteria supported
5786  *	by the driver in the .connect() callback. The bit position maps to the
5787  *	attribute indices defined in &enum nl80211_bss_select_attr.
5788  *
5789  * @nan_supported_bands: bands supported by the device in NAN mode, a
5790  *	bitmap of &enum nl80211_band values.  For instance, for
5791  *	NL80211_BAND_2GHZ, bit 0 would be set
5792  *	(i.e. BIT(NL80211_BAND_2GHZ)).
5793  *
5794  * @txq_limit: configuration of internal TX queue frame limit
5795  * @txq_memory_limit: configuration internal TX queue memory limit
5796  * @txq_quantum: configuration of internal TX queue scheduler quantum
5797  *
5798  * @tx_queue_len: allow setting transmit queue len for drivers not using
5799  *	wake_tx_queue
5800  *
5801  * @support_mbssid: can HW support association with nontransmitted AP
5802  * @support_only_he_mbssid: don't parse MBSSID elements if it is not
5803  *	HE AP, in order to avoid compatibility issues.
5804  *	@support_mbssid must be set for this to have any effect.
5805  *
5806  * @pmsr_capa: peer measurement capabilities
5807  *
5808  * @tid_config_support: describes the per-TID config support that the
5809  *	device has
5810  * @tid_config_support.vif: bitmap of attributes (configurations)
5811  *	supported by the driver for each vif
5812  * @tid_config_support.peer: bitmap of attributes (configurations)
5813  *	supported by the driver for each peer
5814  * @tid_config_support.max_retry: maximum supported retry count for
5815  *	long/short retry configuration
5816  *
5817  * @max_data_retry_count: maximum supported per TID retry count for
5818  *	configuration through the %NL80211_TID_CONFIG_ATTR_RETRY_SHORT and
5819  *	%NL80211_TID_CONFIG_ATTR_RETRY_LONG attributes
5820  * @sar_capa: SAR control capabilities
5821  * @rfkill: a pointer to the rfkill structure
5822  *
5823  * @mbssid_max_interfaces: maximum number of interfaces supported by the driver
5824  *	in a multiple BSSID set. This field must be set to a non-zero value
5825  *	by the driver to advertise MBSSID support.
5826  * @ema_max_profile_periodicity: maximum profile periodicity supported by
5827  *	the driver. Setting this field to a non-zero value indicates that the
5828  *	driver supports enhanced multi-BSSID advertisements (EMA AP).
5829  * @max_num_akm_suites: maximum number of AKM suites allowed for
5830  *	configuration through %NL80211_CMD_CONNECT, %NL80211_CMD_ASSOCIATE and
5831  *	%NL80211_CMD_START_AP. Set to NL80211_MAX_NR_AKM_SUITES if not set by
5832  *	driver. If set by driver minimum allowed value is
5833  *	NL80211_MAX_NR_AKM_SUITES in order to avoid compatibility issues with
5834  *	legacy userspace and maximum allowed value is
5835  *	CFG80211_MAX_NUM_AKM_SUITES.
5836  *
5837  * @hw_timestamp_max_peers: maximum number of peers that the driver supports
5838  *	enabling HW timestamping for concurrently. Setting this field to a
5839  *	non-zero value indicates that the driver supports HW timestamping.
5840  *	A value of %CFG80211_HW_TIMESTAMP_ALL_PEERS indicates the driver
5841  *	supports enabling HW timestamping for all peers (i.e. no need to
5842  *	specify a mac address).
5843  *
5844  * @radio_cfg: configuration of radios belonging to a muli-radio wiphy. This
5845  *	struct contains a list of all radio specific attributes and should be
5846  *	used only for multi-radio wiphy.
5847  *
5848  * @radio: radios belonging to this wiphy
5849  * @n_radio: number of radios
5850  */
5851 struct wiphy {
5852 	struct mutex mtx;
5853 
5854 	/* assign these fields before you register the wiphy */
5855 
5856 	u8 perm_addr[ETH_ALEN];
5857 	u8 addr_mask[ETH_ALEN];
5858 
5859 	struct mac_address *addresses;
5860 
5861 	const struct ieee80211_txrx_stypes *mgmt_stypes;
5862 
5863 	const struct ieee80211_iface_combination *iface_combinations;
5864 	int n_iface_combinations;
5865 	u16 software_iftypes;
5866 
5867 	u16 n_addresses;
5868 
5869 	/* Supported interface modes, OR together BIT(NL80211_IFTYPE_...) */
5870 	u16 interface_modes;
5871 
5872 	u16 max_acl_mac_addrs;
5873 
5874 	u32 flags, regulatory_flags, features;
5875 	u8 ext_features[DIV_ROUND_UP(NUM_NL80211_EXT_FEATURES, 8)];
5876 
5877 	u32 ap_sme_capa;
5878 
5879 	enum cfg80211_signal_type signal_type;
5880 
5881 	int bss_priv_size;
5882 	u8 max_scan_ssids;
5883 	u8 max_sched_scan_reqs;
5884 	u8 max_sched_scan_ssids;
5885 	u8 max_match_sets;
5886 	u16 max_scan_ie_len;
5887 	u16 max_sched_scan_ie_len;
5888 	u32 max_sched_scan_plans;
5889 	u32 max_sched_scan_plan_interval;
5890 	u32 max_sched_scan_plan_iterations;
5891 
5892 	int n_cipher_suites;
5893 	const u32 *cipher_suites;
5894 
5895 	int n_akm_suites;
5896 	const u32 *akm_suites;
5897 
5898 	const struct wiphy_iftype_akm_suites *iftype_akm_suites;
5899 	unsigned int num_iftype_akm_suites;
5900 
5901 	u8 retry_short;
5902 	u8 retry_long;
5903 	u32 frag_threshold;
5904 	u32 rts_threshold;
5905 	u8 coverage_class;
5906 
5907 	char fw_version[ETHTOOL_FWVERS_LEN];
5908 	u32 hw_version;
5909 
5910 #ifdef CONFIG_PM
5911 	const struct wiphy_wowlan_support *wowlan;
5912 	struct cfg80211_wowlan *wowlan_config;
5913 #endif
5914 
5915 	u16 max_remain_on_channel_duration;
5916 
5917 	u8 max_num_pmkids;
5918 
5919 	u32 available_antennas_tx;
5920 	u32 available_antennas_rx;
5921 
5922 	u32 probe_resp_offload;
5923 
5924 	const u8 *extended_capabilities, *extended_capabilities_mask;
5925 	u8 extended_capabilities_len;
5926 
5927 	const struct wiphy_iftype_ext_capab *iftype_ext_capab;
5928 	unsigned int num_iftype_ext_capab;
5929 
5930 	const void *privid;
5931 
5932 	struct ieee80211_supported_band *bands[NUM_NL80211_BANDS];
5933 
5934 	void (*reg_notifier)(struct wiphy *wiphy,
5935 			     struct regulatory_request *request);
5936 
5937 	struct wiphy_radio_cfg *radio_cfg;
5938 
5939 	/* fields below are read-only, assigned by cfg80211 */
5940 
5941 	const struct ieee80211_regdomain __rcu *regd;
5942 
5943 	struct device dev;
5944 
5945 	bool registered;
5946 
5947 	struct dentry *debugfsdir;
5948 
5949 	const struct ieee80211_ht_cap *ht_capa_mod_mask;
5950 	const struct ieee80211_vht_cap *vht_capa_mod_mask;
5951 
5952 	struct list_head wdev_list;
5953 
5954 	possible_net_t _net;
5955 
5956 #ifdef CONFIG_CFG80211_WEXT
5957 	const struct iw_handler_def *wext;
5958 #endif
5959 
5960 	const struct wiphy_coalesce_support *coalesce;
5961 
5962 	const struct wiphy_vendor_command *vendor_commands;
5963 	const struct nl80211_vendor_cmd_info *vendor_events;
5964 	int n_vendor_commands, n_vendor_events;
5965 
5966 	u16 max_ap_assoc_sta;
5967 
5968 	u8 max_num_csa_counters;
5969 
5970 	u32 bss_select_support;
5971 
5972 	u8 nan_supported_bands;
5973 
5974 	u32 txq_limit;
5975 	u32 txq_memory_limit;
5976 	u32 txq_quantum;
5977 
5978 	unsigned long tx_queue_len;
5979 
5980 	u8 support_mbssid:1,
5981 	   support_only_he_mbssid:1;
5982 
5983 	const struct cfg80211_pmsr_capabilities *pmsr_capa;
5984 
5985 	struct {
5986 		u64 peer, vif;
5987 		u8 max_retry;
5988 	} tid_config_support;
5989 
5990 	u8 max_data_retry_count;
5991 
5992 	const struct cfg80211_sar_capa *sar_capa;
5993 
5994 	struct rfkill *rfkill;
5995 
5996 	u8 mbssid_max_interfaces;
5997 	u8 ema_max_profile_periodicity;
5998 	u16 max_num_akm_suites;
5999 
6000 	u16 hw_timestamp_max_peers;
6001 
6002 	int n_radio;
6003 	const struct wiphy_radio *radio;
6004 
6005 	char priv[] __aligned(NETDEV_ALIGN);
6006 };
6007 
wiphy_net(struct wiphy * wiphy)6008 static inline struct net *wiphy_net(struct wiphy *wiphy)
6009 {
6010 	return read_pnet(&wiphy->_net);
6011 }
6012 
wiphy_net_set(struct wiphy * wiphy,struct net * net)6013 static inline void wiphy_net_set(struct wiphy *wiphy, struct net *net)
6014 {
6015 	write_pnet(&wiphy->_net, net);
6016 }
6017 
6018 /**
6019  * wiphy_priv - return priv from wiphy
6020  *
6021  * @wiphy: the wiphy whose priv pointer to return
6022  * Return: The priv of @wiphy.
6023  */
wiphy_priv(struct wiphy * wiphy)6024 static inline void *wiphy_priv(struct wiphy *wiphy)
6025 {
6026 	BUG_ON(!wiphy);
6027 	return &wiphy->priv;
6028 }
6029 
6030 /**
6031  * priv_to_wiphy - return the wiphy containing the priv
6032  *
6033  * @priv: a pointer previously returned by wiphy_priv
6034  * Return: The wiphy of @priv.
6035  */
priv_to_wiphy(void * priv)6036 static inline struct wiphy *priv_to_wiphy(void *priv)
6037 {
6038 	BUG_ON(!priv);
6039 	return container_of(priv, struct wiphy, priv);
6040 }
6041 
6042 /**
6043  * set_wiphy_dev - set device pointer for wiphy
6044  *
6045  * @wiphy: The wiphy whose device to bind
6046  * @dev: The device to parent it to
6047  */
set_wiphy_dev(struct wiphy * wiphy,struct device * dev)6048 static inline void set_wiphy_dev(struct wiphy *wiphy, struct device *dev)
6049 {
6050 	wiphy->dev.parent = dev;
6051 }
6052 
6053 /**
6054  * wiphy_dev - get wiphy dev pointer
6055  *
6056  * @wiphy: The wiphy whose device struct to look up
6057  * Return: The dev of @wiphy.
6058  */
wiphy_dev(struct wiphy * wiphy)6059 static inline struct device *wiphy_dev(struct wiphy *wiphy)
6060 {
6061 	return wiphy->dev.parent;
6062 }
6063 
6064 /**
6065  * wiphy_name - get wiphy name
6066  *
6067  * @wiphy: The wiphy whose name to return
6068  * Return: The name of @wiphy.
6069  */
wiphy_name(const struct wiphy * wiphy)6070 static inline const char *wiphy_name(const struct wiphy *wiphy)
6071 {
6072 	return dev_name(&wiphy->dev);
6073 }
6074 
6075 /**
6076  * wiphy_new_nm - create a new wiphy for use with cfg80211
6077  *
6078  * @ops: The configuration operations for this device
6079  * @sizeof_priv: The size of the private area to allocate
6080  * @requested_name: Request a particular name.
6081  *	NULL is valid value, and means use the default phy%d naming.
6082  *
6083  * Create a new wiphy and associate the given operations with it.
6084  * @sizeof_priv bytes are allocated for private use.
6085  *
6086  * Return: A pointer to the new wiphy. This pointer must be
6087  * assigned to each netdev's ieee80211_ptr for proper operation.
6088  */
6089 struct wiphy *wiphy_new_nm(const struct cfg80211_ops *ops, int sizeof_priv,
6090 			   const char *requested_name);
6091 
6092 /**
6093  * wiphy_new - create a new wiphy for use with cfg80211
6094  *
6095  * @ops: The configuration operations for this device
6096  * @sizeof_priv: The size of the private area to allocate
6097  *
6098  * Create a new wiphy and associate the given operations with it.
6099  * @sizeof_priv bytes are allocated for private use.
6100  *
6101  * Return: A pointer to the new wiphy. This pointer must be
6102  * assigned to each netdev's ieee80211_ptr for proper operation.
6103  */
wiphy_new(const struct cfg80211_ops * ops,int sizeof_priv)6104 static inline struct wiphy *wiphy_new(const struct cfg80211_ops *ops,
6105 				      int sizeof_priv)
6106 {
6107 	return wiphy_new_nm(ops, sizeof_priv, NULL);
6108 }
6109 
6110 /**
6111  * wiphy_register - register a wiphy with cfg80211
6112  *
6113  * @wiphy: The wiphy to register.
6114  *
6115  * Return: A non-negative wiphy index or a negative error code.
6116  */
6117 int wiphy_register(struct wiphy *wiphy);
6118 
6119 /* this is a define for better error reporting (file/line) */
6120 #define lockdep_assert_wiphy(wiphy) lockdep_assert_held(&(wiphy)->mtx)
6121 
6122 /**
6123  * rcu_dereference_wiphy - rcu_dereference with debug checking
6124  * @wiphy: the wiphy to check the locking on
6125  * @p: The pointer to read, prior to dereferencing
6126  *
6127  * Do an rcu_dereference(p), but check caller either holds rcu_read_lock()
6128  * or RTNL. Note: Please prefer wiphy_dereference() or rcu_dereference().
6129  */
6130 #define rcu_dereference_wiphy(wiphy, p)				\
6131         rcu_dereference_check(p, lockdep_is_held(&wiphy->mtx))
6132 
6133 /**
6134  * wiphy_dereference - fetch RCU pointer when updates are prevented by wiphy mtx
6135  * @wiphy: the wiphy to check the locking on
6136  * @p: The pointer to read, prior to dereferencing
6137  *
6138  * Return: the value of the specified RCU-protected pointer, but omit the
6139  * READ_ONCE(), because caller holds the wiphy mutex used for updates.
6140  */
6141 #define wiphy_dereference(wiphy, p)				\
6142         rcu_dereference_protected(p, lockdep_is_held(&wiphy->mtx))
6143 
6144 /**
6145  * get_wiphy_regdom - get custom regdomain for the given wiphy
6146  * @wiphy: the wiphy to get the regdomain from
6147  *
6148  * Context: Requires any of RTNL, wiphy mutex or RCU protection.
6149  *
6150  * Return: pointer to the regulatory domain associated with the wiphy
6151  */
6152 const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy);
6153 
6154 /**
6155  * wiphy_unregister - deregister a wiphy from cfg80211
6156  *
6157  * @wiphy: The wiphy to unregister.
6158  *
6159  * After this call, no more requests can be made with this priv
6160  * pointer, but the call may sleep to wait for an outstanding
6161  * request that is being handled.
6162  */
6163 void wiphy_unregister(struct wiphy *wiphy);
6164 
6165 /**
6166  * wiphy_free - free wiphy
6167  *
6168  * @wiphy: The wiphy to free
6169  */
6170 void wiphy_free(struct wiphy *wiphy);
6171 
6172 /* internal structs */
6173 struct cfg80211_conn;
6174 struct cfg80211_internal_bss;
6175 struct cfg80211_cached_keys;
6176 struct cfg80211_cqm_config;
6177 
6178 /**
6179  * wiphy_lock - lock the wiphy
6180  * @wiphy: the wiphy to lock
6181  *
6182  * This is needed around registering and unregistering netdevs that
6183  * aren't created through cfg80211 calls, since that requires locking
6184  * in cfg80211 when the notifiers is called, but that cannot
6185  * differentiate which way it's called.
6186  *
6187  * It can also be used by drivers for their own purposes.
6188  *
6189  * When cfg80211 ops are called, the wiphy is already locked.
6190  *
6191  * Note that this makes sure that no workers that have been queued
6192  * with wiphy_queue_work() are running.
6193  */
wiphy_lock(struct wiphy * wiphy)6194 static inline void wiphy_lock(struct wiphy *wiphy)
6195 	__acquires(&wiphy->mtx)
6196 {
6197 	mutex_lock(&wiphy->mtx);
6198 	__acquire(&wiphy->mtx);
6199 }
6200 
6201 /**
6202  * wiphy_unlock - unlock the wiphy again
6203  * @wiphy: the wiphy to unlock
6204  */
wiphy_unlock(struct wiphy * wiphy)6205 static inline void wiphy_unlock(struct wiphy *wiphy)
6206 	__releases(&wiphy->mtx)
6207 {
6208 	__release(&wiphy->mtx);
6209 	mutex_unlock(&wiphy->mtx);
6210 }
6211 
6212 DEFINE_GUARD(wiphy, struct wiphy *,
6213 	     mutex_lock(&_T->mtx),
6214 	     mutex_unlock(&_T->mtx))
6215 
6216 struct wiphy_work;
6217 typedef void (*wiphy_work_func_t)(struct wiphy *, struct wiphy_work *);
6218 
6219 struct wiphy_work {
6220 	struct list_head entry;
6221 	wiphy_work_func_t func;
6222 };
6223 
wiphy_work_init(struct wiphy_work * work,wiphy_work_func_t func)6224 static inline void wiphy_work_init(struct wiphy_work *work,
6225 				   wiphy_work_func_t func)
6226 {
6227 	INIT_LIST_HEAD(&work->entry);
6228 	work->func = func;
6229 }
6230 
6231 /**
6232  * wiphy_work_queue - queue work for the wiphy
6233  * @wiphy: the wiphy to queue for
6234  * @work: the work item
6235  *
6236  * This is useful for work that must be done asynchronously, and work
6237  * queued here has the special property that the wiphy mutex will be
6238  * held as if wiphy_lock() was called, and that it cannot be running
6239  * after wiphy_lock() was called. Therefore, wiphy_cancel_work() can
6240  * use just cancel_work() instead of cancel_work_sync(), it requires
6241  * being in a section protected by wiphy_lock().
6242  */
6243 void wiphy_work_queue(struct wiphy *wiphy, struct wiphy_work *work);
6244 
6245 /**
6246  * wiphy_work_cancel - cancel previously queued work
6247  * @wiphy: the wiphy, for debug purposes
6248  * @work: the work to cancel
6249  *
6250  * Cancel the work *without* waiting for it, this assumes being
6251  * called under the wiphy mutex acquired by wiphy_lock().
6252  */
6253 void wiphy_work_cancel(struct wiphy *wiphy, struct wiphy_work *work);
6254 
6255 /**
6256  * wiphy_work_flush - flush previously queued work
6257  * @wiphy: the wiphy, for debug purposes
6258  * @work: the work to flush, this can be %NULL to flush all work
6259  *
6260  * Flush the work (i.e. run it if pending). This must be called
6261  * under the wiphy mutex acquired by wiphy_lock().
6262  */
6263 void wiphy_work_flush(struct wiphy *wiphy, struct wiphy_work *work);
6264 
6265 struct wiphy_delayed_work {
6266 	struct wiphy_work work;
6267 	struct wiphy *wiphy;
6268 	struct timer_list timer;
6269 };
6270 
6271 void wiphy_delayed_work_timer(struct timer_list *t);
6272 
wiphy_delayed_work_init(struct wiphy_delayed_work * dwork,wiphy_work_func_t func)6273 static inline void wiphy_delayed_work_init(struct wiphy_delayed_work *dwork,
6274 					   wiphy_work_func_t func)
6275 {
6276 	timer_setup(&dwork->timer, wiphy_delayed_work_timer, 0);
6277 	wiphy_work_init(&dwork->work, func);
6278 }
6279 
6280 /**
6281  * wiphy_delayed_work_queue - queue delayed work for the wiphy
6282  * @wiphy: the wiphy to queue for
6283  * @dwork: the delayable worker
6284  * @delay: number of jiffies to wait before queueing
6285  *
6286  * This is useful for work that must be done asynchronously, and work
6287  * queued here has the special property that the wiphy mutex will be
6288  * held as if wiphy_lock() was called, and that it cannot be running
6289  * after wiphy_lock() was called. Therefore, wiphy_cancel_work() can
6290  * use just cancel_work() instead of cancel_work_sync(), it requires
6291  * being in a section protected by wiphy_lock().
6292  */
6293 void wiphy_delayed_work_queue(struct wiphy *wiphy,
6294 			      struct wiphy_delayed_work *dwork,
6295 			      unsigned long delay);
6296 
6297 /**
6298  * wiphy_delayed_work_cancel - cancel previously queued delayed work
6299  * @wiphy: the wiphy, for debug purposes
6300  * @dwork: the delayed work to cancel
6301  *
6302  * Cancel the work *without* waiting for it, this assumes being
6303  * called under the wiphy mutex acquired by wiphy_lock().
6304  */
6305 void wiphy_delayed_work_cancel(struct wiphy *wiphy,
6306 			       struct wiphy_delayed_work *dwork);
6307 
6308 /**
6309  * wiphy_delayed_work_flush - flush previously queued delayed work
6310  * @wiphy: the wiphy, for debug purposes
6311  * @dwork: the delayed work to flush
6312  *
6313  * Flush the work (i.e. run it if pending). This must be called
6314  * under the wiphy mutex acquired by wiphy_lock().
6315  */
6316 void wiphy_delayed_work_flush(struct wiphy *wiphy,
6317 			      struct wiphy_delayed_work *dwork);
6318 
6319 /**
6320  * wiphy_delayed_work_pending - Find out whether a wiphy delayable
6321  * work item is currently pending.
6322  *
6323  * @wiphy: the wiphy, for debug purposes
6324  * @dwork: the delayed work in question
6325  *
6326  * Return: true if timer is pending, false otherwise
6327  *
6328  * How wiphy_delayed_work_queue() works is by setting a timer which
6329  * when it expires calls wiphy_work_queue() to queue the wiphy work.
6330  * Because wiphy_delayed_work_queue() uses mod_timer(), if it is
6331  * called twice and the second call happens before the first call
6332  * deadline, the work will rescheduled for the second deadline and
6333  * won't run before that.
6334  *
6335  * wiphy_delayed_work_pending() can be used to detect if calling
6336  * wiphy_work_delayed_work_queue() would start a new work schedule
6337  * or delayed a previous one. As seen below it cannot be used to
6338  * detect precisely if the work has finished to execute nor if it
6339  * is currently executing.
6340  *
6341  *      CPU0                                CPU1
6342  * wiphy_delayed_work_queue(wk)
6343  *  mod_timer(wk->timer)
6344  *                                     wiphy_delayed_work_pending(wk) -> true
6345  *
6346  * [...]
6347  * expire_timers(wk->timer)
6348  *  detach_timer(wk->timer)
6349  *                                     wiphy_delayed_work_pending(wk) -> false
6350  *  wk->timer->function()                          |
6351  *   wiphy_work_queue(wk)                          | delayed work pending
6352  *    list_add_tail()                              | returns false but
6353  *    queue_work(cfg80211_wiphy_work)              | wk->func() has not
6354  *                                                 | been run yet
6355  * [...]                                           |
6356  *  cfg80211_wiphy_work()                          |
6357  *   wk->func()                                    V
6358  *
6359  */
6360 bool wiphy_delayed_work_pending(struct wiphy *wiphy,
6361 				struct wiphy_delayed_work *dwork);
6362 
6363 /**
6364  * enum ieee80211_ap_reg_power - regulatory power for an Access Point
6365  *
6366  * @IEEE80211_REG_UNSET_AP: Access Point has no regulatory power mode
6367  * @IEEE80211_REG_LPI_AP: Indoor Access Point
6368  * @IEEE80211_REG_SP_AP: Standard power Access Point
6369  * @IEEE80211_REG_VLP_AP: Very low power Access Point
6370  */
6371 enum ieee80211_ap_reg_power {
6372 	IEEE80211_REG_UNSET_AP,
6373 	IEEE80211_REG_LPI_AP,
6374 	IEEE80211_REG_SP_AP,
6375 	IEEE80211_REG_VLP_AP,
6376 };
6377 
6378 /**
6379  * struct wireless_dev - wireless device state
6380  *
6381  * For netdevs, this structure must be allocated by the driver
6382  * that uses the ieee80211_ptr field in struct net_device (this
6383  * is intentional so it can be allocated along with the netdev.)
6384  * It need not be registered then as netdev registration will
6385  * be intercepted by cfg80211 to see the new wireless device,
6386  * however, drivers must lock the wiphy before registering or
6387  * unregistering netdevs if they pre-create any netdevs (in ops
6388  * called from cfg80211, the wiphy is already locked.)
6389  *
6390  * For non-netdev uses, it must also be allocated by the driver
6391  * in response to the cfg80211 callbacks that require it, as
6392  * there's no netdev registration in that case it may not be
6393  * allocated outside of callback operations that return it.
6394  *
6395  * @wiphy: pointer to hardware description
6396  * @iftype: interface type
6397  * @registered: is this wdev already registered with cfg80211
6398  * @registering: indicates we're doing registration under wiphy lock
6399  *	for the notifier
6400  * @list: (private) Used to collect the interfaces
6401  * @netdev: (private) Used to reference back to the netdev, may be %NULL
6402  * @identifier: (private) Identifier used in nl80211 to identify this
6403  *	wireless device if it has no netdev
6404  * @u: union containing data specific to @iftype
6405  * @connected: indicates if connected or not (STA mode)
6406  * @wext: (private) Used by the internal wireless extensions compat code
6407  * @wext.ibss: (private) IBSS data part of wext handling
6408  * @wext.connect: (private) connection handling data
6409  * @wext.keys: (private) (WEP) key data
6410  * @wext.ie: (private) extra elements for association
6411  * @wext.ie_len: (private) length of extra elements
6412  * @wext.bssid: (private) selected network BSSID
6413  * @wext.ssid: (private) selected network SSID
6414  * @wext.default_key: (private) selected default key index
6415  * @wext.default_mgmt_key: (private) selected default management key index
6416  * @wext.prev_bssid: (private) previous BSSID for reassociation
6417  * @wext.prev_bssid_valid: (private) previous BSSID validity
6418  * @use_4addr: indicates 4addr mode is used on this interface, must be
6419  *	set by driver (if supported) on add_interface BEFORE registering the
6420  *	netdev and may otherwise be used by driver read-only, will be update
6421  *	by cfg80211 on change_interface
6422  * @mgmt_registrations: list of registrations for management frames
6423  * @mgmt_registrations_need_update: mgmt registrations were updated,
6424  *	need to propagate the update to the driver
6425  * @address: The address for this device, valid only if @netdev is %NULL
6426  * @is_running: true if this is a non-netdev device that has been started, e.g.
6427  *	the P2P Device.
6428  * @ps: powersave mode is enabled
6429  * @ps_timeout: dynamic powersave timeout
6430  * @ap_unexpected_nlportid: (private) netlink port ID of application
6431  *	registered for unexpected class 3 frames (AP mode)
6432  * @conn: (private) cfg80211 software SME connection state machine data
6433  * @connect_keys: (private) keys to set after connection is established
6434  * @conn_bss_type: connecting/connected BSS type
6435  * @conn_owner_nlportid: (private) connection owner socket port ID
6436  * @disconnect_wk: (private) auto-disconnect work
6437  * @disconnect_bssid: (private) the BSSID to use for auto-disconnect
6438  * @event_list: (private) list for internal event processing
6439  * @event_lock: (private) lock for event list
6440  * @owner_nlportid: (private) owner socket port ID
6441  * @nl_owner_dead: (private) owner socket went away
6442  * @cqm_rssi_work: (private) CQM RSSI reporting work
6443  * @cqm_config: (private) nl80211 RSSI monitor state
6444  * @pmsr_list: (private) peer measurement requests
6445  * @pmsr_lock: (private) peer measurements requests/results lock
6446  * @pmsr_free_wk: (private) peer measurements cleanup work
6447  * @unprot_beacon_reported: (private) timestamp of last
6448  *	unprotected beacon report
6449  * @links: array of %IEEE80211_MLD_MAX_NUM_LINKS elements containing @addr
6450  *	@ap and @client for each link
6451  * @links.cac_started: true if DFS channel availability check has been
6452  *	started
6453  * @links.cac_start_time: timestamp (jiffies) when the dfs state was
6454  *	entered.
6455  * @links.cac_time_ms: CAC time in ms
6456  * @valid_links: bitmap describing what elements of @links are valid
6457  * @radio_mask: Bitmask of radios that this interface is allowed to operate on.
6458  */
6459 struct wireless_dev {
6460 	struct wiphy *wiphy;
6461 	enum nl80211_iftype iftype;
6462 
6463 	/* the remainder of this struct should be private to cfg80211 */
6464 	struct list_head list;
6465 	struct net_device *netdev;
6466 
6467 	u32 identifier;
6468 
6469 	struct list_head mgmt_registrations;
6470 	u8 mgmt_registrations_need_update:1;
6471 
6472 	bool use_4addr, is_running, registered, registering;
6473 
6474 	u8 address[ETH_ALEN] __aligned(sizeof(u16));
6475 
6476 	/* currently used for IBSS and SME - might be rearranged later */
6477 	struct cfg80211_conn *conn;
6478 	struct cfg80211_cached_keys *connect_keys;
6479 	enum ieee80211_bss_type conn_bss_type;
6480 	u32 conn_owner_nlportid;
6481 
6482 	struct work_struct disconnect_wk;
6483 	u8 disconnect_bssid[ETH_ALEN];
6484 
6485 	struct list_head event_list;
6486 	spinlock_t event_lock;
6487 
6488 	u8 connected:1;
6489 
6490 	bool ps;
6491 	int ps_timeout;
6492 
6493 	u32 ap_unexpected_nlportid;
6494 
6495 	u32 owner_nlportid;
6496 	bool nl_owner_dead;
6497 
6498 #ifdef CONFIG_CFG80211_WEXT
6499 	/* wext data */
6500 	struct {
6501 		struct cfg80211_ibss_params ibss;
6502 		struct cfg80211_connect_params connect;
6503 		struct cfg80211_cached_keys *keys;
6504 		const u8 *ie;
6505 		size_t ie_len;
6506 		u8 bssid[ETH_ALEN];
6507 		u8 prev_bssid[ETH_ALEN];
6508 		u8 ssid[IEEE80211_MAX_SSID_LEN];
6509 		s8 default_key, default_mgmt_key;
6510 		bool prev_bssid_valid;
6511 	} wext;
6512 #endif
6513 
6514 	struct wiphy_work cqm_rssi_work;
6515 	struct cfg80211_cqm_config __rcu *cqm_config;
6516 
6517 	struct list_head pmsr_list;
6518 	spinlock_t pmsr_lock;
6519 	struct work_struct pmsr_free_wk;
6520 
6521 	unsigned long unprot_beacon_reported;
6522 
6523 	union {
6524 		struct {
6525 			u8 connected_addr[ETH_ALEN] __aligned(2);
6526 			u8 ssid[IEEE80211_MAX_SSID_LEN];
6527 			u8 ssid_len;
6528 		} client;
6529 		struct {
6530 			int beacon_interval;
6531 			struct cfg80211_chan_def preset_chandef;
6532 			struct cfg80211_chan_def chandef;
6533 			u8 id[IEEE80211_MAX_MESH_ID_LEN];
6534 			u8 id_len, id_up_len;
6535 		} mesh;
6536 		struct {
6537 			struct cfg80211_chan_def preset_chandef;
6538 			u8 ssid[IEEE80211_MAX_SSID_LEN];
6539 			u8 ssid_len;
6540 		} ap;
6541 		struct {
6542 			struct cfg80211_internal_bss *current_bss;
6543 			struct cfg80211_chan_def chandef;
6544 			int beacon_interval;
6545 			u8 ssid[IEEE80211_MAX_SSID_LEN];
6546 			u8 ssid_len;
6547 		} ibss;
6548 		struct {
6549 			struct cfg80211_chan_def chandef;
6550 		} ocb;
6551 	} u;
6552 
6553 	struct {
6554 		u8 addr[ETH_ALEN] __aligned(2);
6555 		union {
6556 			struct {
6557 				unsigned int beacon_interval;
6558 				struct cfg80211_chan_def chandef;
6559 			} ap;
6560 			struct {
6561 				struct cfg80211_internal_bss *current_bss;
6562 			} client;
6563 		};
6564 
6565 		bool cac_started;
6566 		unsigned long cac_start_time;
6567 		unsigned int cac_time_ms;
6568 	} links[IEEE80211_MLD_MAX_NUM_LINKS];
6569 	u16 valid_links;
6570 
6571 	u32 radio_mask;
6572 };
6573 
wdev_address(struct wireless_dev * wdev)6574 static inline const u8 *wdev_address(struct wireless_dev *wdev)
6575 {
6576 	if (wdev->netdev)
6577 		return wdev->netdev->dev_addr;
6578 	return wdev->address;
6579 }
6580 
wdev_running(struct wireless_dev * wdev)6581 static inline bool wdev_running(struct wireless_dev *wdev)
6582 {
6583 	if (wdev->netdev)
6584 		return netif_running(wdev->netdev);
6585 	return wdev->is_running;
6586 }
6587 
6588 /**
6589  * wdev_priv - return wiphy priv from wireless_dev
6590  *
6591  * @wdev: The wireless device whose wiphy's priv pointer to return
6592  * Return: The wiphy priv of @wdev.
6593  */
wdev_priv(struct wireless_dev * wdev)6594 static inline void *wdev_priv(struct wireless_dev *wdev)
6595 {
6596 	BUG_ON(!wdev);
6597 	return wiphy_priv(wdev->wiphy);
6598 }
6599 
6600 /**
6601  * wdev_chandef - return chandef pointer from wireless_dev
6602  * @wdev: the wdev
6603  * @link_id: the link ID for MLO
6604  *
6605  * Return: The chandef depending on the mode, or %NULL.
6606  */
6607 struct cfg80211_chan_def *wdev_chandef(struct wireless_dev *wdev,
6608 				       unsigned int link_id);
6609 
WARN_INVALID_LINK_ID(struct wireless_dev * wdev,unsigned int link_id)6610 static inline void WARN_INVALID_LINK_ID(struct wireless_dev *wdev,
6611 					unsigned int link_id)
6612 {
6613 	WARN_ON(link_id && !wdev->valid_links);
6614 	WARN_ON(wdev->valid_links &&
6615 		!(wdev->valid_links & BIT(link_id)));
6616 }
6617 
6618 #define for_each_valid_link(link_info, link_id)			\
6619 	for (link_id = 0;					\
6620 	     link_id < ((link_info)->valid_links ?		\
6621 			ARRAY_SIZE((link_info)->links) : 1);	\
6622 	     link_id++)						\
6623 		if (!(link_info)->valid_links ||		\
6624 		    ((link_info)->valid_links & BIT(link_id)))
6625 
6626 /**
6627  * DOC: Utility functions
6628  *
6629  * cfg80211 offers a number of utility functions that can be useful.
6630  */
6631 
6632 /**
6633  * ieee80211_channel_equal - compare two struct ieee80211_channel
6634  *
6635  * @a: 1st struct ieee80211_channel
6636  * @b: 2nd struct ieee80211_channel
6637  * Return: true if center frequency of @a == @b
6638  */
6639 static inline bool
ieee80211_channel_equal(struct ieee80211_channel * a,struct ieee80211_channel * b)6640 ieee80211_channel_equal(struct ieee80211_channel *a,
6641 			struct ieee80211_channel *b)
6642 {
6643 	return (a->center_freq == b->center_freq &&
6644 		a->freq_offset == b->freq_offset);
6645 }
6646 
6647 /**
6648  * ieee80211_channel_to_khz - convert ieee80211_channel to frequency in KHz
6649  * @chan: struct ieee80211_channel to convert
6650  * Return: The corresponding frequency (in KHz)
6651  */
6652 static inline u32
ieee80211_channel_to_khz(const struct ieee80211_channel * chan)6653 ieee80211_channel_to_khz(const struct ieee80211_channel *chan)
6654 {
6655 	return MHZ_TO_KHZ(chan->center_freq) + chan->freq_offset;
6656 }
6657 
6658 /**
6659  * ieee80211_s1g_channel_width - get allowed channel width from @chan
6660  *
6661  * Only allowed for band NL80211_BAND_S1GHZ
6662  * @chan: channel
6663  * Return: The allowed channel width for this center_freq
6664  */
6665 enum nl80211_chan_width
6666 ieee80211_s1g_channel_width(const struct ieee80211_channel *chan);
6667 
6668 /**
6669  * ieee80211_channel_to_freq_khz - convert channel number to frequency
6670  * @chan: channel number
6671  * @band: band, necessary due to channel number overlap
6672  * Return: The corresponding frequency (in KHz), or 0 if the conversion failed.
6673  */
6674 u32 ieee80211_channel_to_freq_khz(int chan, enum nl80211_band band);
6675 
6676 /**
6677  * ieee80211_channel_to_frequency - convert channel number to frequency
6678  * @chan: channel number
6679  * @band: band, necessary due to channel number overlap
6680  * Return: The corresponding frequency (in MHz), or 0 if the conversion failed.
6681  */
6682 static inline int
ieee80211_channel_to_frequency(int chan,enum nl80211_band band)6683 ieee80211_channel_to_frequency(int chan, enum nl80211_band band)
6684 {
6685 	return KHZ_TO_MHZ(ieee80211_channel_to_freq_khz(chan, band));
6686 }
6687 
6688 /**
6689  * ieee80211_freq_khz_to_channel - convert frequency to channel number
6690  * @freq: center frequency in KHz
6691  * Return: The corresponding channel, or 0 if the conversion failed.
6692  */
6693 int ieee80211_freq_khz_to_channel(u32 freq);
6694 
6695 /**
6696  * ieee80211_frequency_to_channel - convert frequency to channel number
6697  * @freq: center frequency in MHz
6698  * Return: The corresponding channel, or 0 if the conversion failed.
6699  */
6700 static inline int
ieee80211_frequency_to_channel(int freq)6701 ieee80211_frequency_to_channel(int freq)
6702 {
6703 	return ieee80211_freq_khz_to_channel(MHZ_TO_KHZ(freq));
6704 }
6705 
6706 /**
6707  * ieee80211_get_channel_khz - get channel struct from wiphy for specified
6708  * frequency
6709  * @wiphy: the struct wiphy to get the channel for
6710  * @freq: the center frequency (in KHz) of the channel
6711  * Return: The channel struct from @wiphy at @freq.
6712  */
6713 struct ieee80211_channel *
6714 ieee80211_get_channel_khz(struct wiphy *wiphy, u32 freq);
6715 
6716 /**
6717  * ieee80211_get_channel - get channel struct from wiphy for specified frequency
6718  *
6719  * @wiphy: the struct wiphy to get the channel for
6720  * @freq: the center frequency (in MHz) of the channel
6721  * Return: The channel struct from @wiphy at @freq.
6722  */
6723 static inline struct ieee80211_channel *
ieee80211_get_channel(struct wiphy * wiphy,int freq)6724 ieee80211_get_channel(struct wiphy *wiphy, int freq)
6725 {
6726 	return ieee80211_get_channel_khz(wiphy, MHZ_TO_KHZ(freq));
6727 }
6728 
6729 /**
6730  * cfg80211_channel_is_psc - Check if the channel is a 6 GHz PSC
6731  * @chan: control channel to check
6732  *
6733  * The Preferred Scanning Channels (PSC) are defined in
6734  * Draft IEEE P802.11ax/D5.0, 26.17.2.3.3
6735  *
6736  * Return: %true if channel is a PSC, %false otherwise
6737  */
cfg80211_channel_is_psc(struct ieee80211_channel * chan)6738 static inline bool cfg80211_channel_is_psc(struct ieee80211_channel *chan)
6739 {
6740 	if (chan->band != NL80211_BAND_6GHZ)
6741 		return false;
6742 
6743 	return ieee80211_frequency_to_channel(chan->center_freq) % 16 == 5;
6744 }
6745 
6746 /**
6747  * cfg80211_radio_chandef_valid - Check if the radio supports the chandef
6748  *
6749  * @radio: wiphy radio
6750  * @chandef: chandef for current channel
6751  *
6752  * Return: whether or not the given chandef is valid for the given radio
6753  */
6754 bool cfg80211_radio_chandef_valid(const struct wiphy_radio *radio,
6755 				  const struct cfg80211_chan_def *chandef);
6756 
6757 /**
6758  * cfg80211_wdev_channel_allowed - Check if the wdev may use the channel
6759  *
6760  * @wdev: the wireless device
6761  * @chan: channel to check
6762  *
6763  * Return: whether or not the wdev may use the channel
6764  */
6765 bool cfg80211_wdev_channel_allowed(struct wireless_dev *wdev,
6766 				   struct ieee80211_channel *chan);
6767 
6768 /**
6769  * ieee80211_get_response_rate - get basic rate for a given rate
6770  *
6771  * @sband: the band to look for rates in
6772  * @basic_rates: bitmap of basic rates
6773  * @bitrate: the bitrate for which to find the basic rate
6774  *
6775  * Return: The basic rate corresponding to a given bitrate, that
6776  * is the next lower bitrate contained in the basic rate map,
6777  * which is, for this function, given as a bitmap of indices of
6778  * rates in the band's bitrate table.
6779  */
6780 const struct ieee80211_rate *
6781 ieee80211_get_response_rate(struct ieee80211_supported_band *sband,
6782 			    u32 basic_rates, int bitrate);
6783 
6784 /**
6785  * ieee80211_mandatory_rates - get mandatory rates for a given band
6786  * @sband: the band to look for rates in
6787  *
6788  * Return: a bitmap of the mandatory rates for the given band, bits
6789  * are set according to the rate position in the bitrates array.
6790  */
6791 u32 ieee80211_mandatory_rates(struct ieee80211_supported_band *sband);
6792 
6793 /*
6794  * Radiotap parsing functions -- for controlled injection support
6795  *
6796  * Implemented in net/wireless/radiotap.c
6797  * Documentation in Documentation/networking/radiotap-headers.rst
6798  */
6799 
6800 struct radiotap_align_size {
6801 	uint8_t align:4, size:4;
6802 };
6803 
6804 struct ieee80211_radiotap_namespace {
6805 	const struct radiotap_align_size *align_size;
6806 	int n_bits;
6807 	uint32_t oui;
6808 	uint8_t subns;
6809 };
6810 
6811 struct ieee80211_radiotap_vendor_namespaces {
6812 	const struct ieee80211_radiotap_namespace *ns;
6813 	int n_ns;
6814 };
6815 
6816 /**
6817  * struct ieee80211_radiotap_iterator - tracks walk thru present radiotap args
6818  * @this_arg_index: index of current arg, valid after each successful call
6819  *	to ieee80211_radiotap_iterator_next()
6820  * @this_arg: pointer to current radiotap arg; it is valid after each
6821  *	call to ieee80211_radiotap_iterator_next() but also after
6822  *	ieee80211_radiotap_iterator_init() where it will point to
6823  *	the beginning of the actual data portion
6824  * @this_arg_size: length of the current arg, for convenience
6825  * @current_namespace: pointer to the current namespace definition
6826  *	(or internally %NULL if the current namespace is unknown)
6827  * @is_radiotap_ns: indicates whether the current namespace is the default
6828  *	radiotap namespace or not
6829  *
6830  * @_rtheader: pointer to the radiotap header we are walking through
6831  * @_max_length: length of radiotap header in cpu byte ordering
6832  * @_arg_index: next argument index
6833  * @_arg: next argument pointer
6834  * @_next_bitmap: internal pointer to next present u32
6835  * @_bitmap_shifter: internal shifter for curr u32 bitmap, b0 set == arg present
6836  * @_vns: vendor namespace definitions
6837  * @_next_ns_data: beginning of the next namespace's data
6838  * @_reset_on_ext: internal; reset the arg index to 0 when going to the
6839  *	next bitmap word
6840  *
6841  * Describes the radiotap parser state. Fields prefixed with an underscore
6842  * must not be used by users of the parser, only by the parser internally.
6843  */
6844 
6845 struct ieee80211_radiotap_iterator {
6846 	struct ieee80211_radiotap_header *_rtheader;
6847 	const struct ieee80211_radiotap_vendor_namespaces *_vns;
6848 	const struct ieee80211_radiotap_namespace *current_namespace;
6849 
6850 	unsigned char *_arg, *_next_ns_data;
6851 	__le32 *_next_bitmap;
6852 
6853 	unsigned char *this_arg;
6854 	int this_arg_index;
6855 	int this_arg_size;
6856 
6857 	int is_radiotap_ns;
6858 
6859 	int _max_length;
6860 	int _arg_index;
6861 	uint32_t _bitmap_shifter;
6862 	int _reset_on_ext;
6863 };
6864 
6865 int
6866 ieee80211_radiotap_iterator_init(struct ieee80211_radiotap_iterator *iterator,
6867 				 struct ieee80211_radiotap_header *radiotap_header,
6868 				 int max_length,
6869 				 const struct ieee80211_radiotap_vendor_namespaces *vns);
6870 
6871 int
6872 ieee80211_radiotap_iterator_next(struct ieee80211_radiotap_iterator *iterator);
6873 
6874 
6875 extern const unsigned char rfc1042_header[6];
6876 extern const unsigned char bridge_tunnel_header[6];
6877 
6878 /**
6879  * ieee80211_get_hdrlen_from_skb - get header length from data
6880  *
6881  * @skb: the frame
6882  *
6883  * Given an skb with a raw 802.11 header at the data pointer this function
6884  * returns the 802.11 header length.
6885  *
6886  * Return: The 802.11 header length in bytes (not including encryption
6887  * headers). Or 0 if the data in the sk_buff is too short to contain a valid
6888  * 802.11 header.
6889  */
6890 unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb);
6891 
6892 /**
6893  * ieee80211_hdrlen - get header length in bytes from frame control
6894  * @fc: frame control field in little-endian format
6895  * Return: The header length in bytes.
6896  */
6897 unsigned int __attribute_const__ ieee80211_hdrlen(__le16 fc);
6898 
6899 /**
6900  * ieee80211_get_mesh_hdrlen - get mesh extension header length
6901  * @meshhdr: the mesh extension header, only the flags field
6902  *	(first byte) will be accessed
6903  * Return: The length of the extension header, which is always at
6904  * least 6 bytes and at most 18 if address 5 and 6 are present.
6905  */
6906 unsigned int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr);
6907 
6908 /**
6909  * DOC: Data path helpers
6910  *
6911  * In addition to generic utilities, cfg80211 also offers
6912  * functions that help implement the data path for devices
6913  * that do not do the 802.11/802.3 conversion on the device.
6914  */
6915 
6916 /**
6917  * ieee80211_data_to_8023_exthdr - convert an 802.11 data frame to 802.3
6918  * @skb: the 802.11 data frame
6919  * @ehdr: pointer to a &struct ethhdr that will get the header, instead
6920  *	of it being pushed into the SKB
6921  * @addr: the device MAC address
6922  * @iftype: the virtual interface type
6923  * @data_offset: offset of payload after the 802.11 header
6924  * @is_amsdu: true if the 802.11 header is A-MSDU
6925  * Return: 0 on success. Non-zero on error.
6926  */
6927 int ieee80211_data_to_8023_exthdr(struct sk_buff *skb, struct ethhdr *ehdr,
6928 				  const u8 *addr, enum nl80211_iftype iftype,
6929 				  u8 data_offset, bool is_amsdu);
6930 
6931 /**
6932  * ieee80211_data_to_8023 - convert an 802.11 data frame to 802.3
6933  * @skb: the 802.11 data frame
6934  * @addr: the device MAC address
6935  * @iftype: the virtual interface type
6936  * Return: 0 on success. Non-zero on error.
6937  */
ieee80211_data_to_8023(struct sk_buff * skb,const u8 * addr,enum nl80211_iftype iftype)6938 static inline int ieee80211_data_to_8023(struct sk_buff *skb, const u8 *addr,
6939 					 enum nl80211_iftype iftype)
6940 {
6941 	return ieee80211_data_to_8023_exthdr(skb, NULL, addr, iftype, 0, false);
6942 }
6943 
6944 /**
6945  * ieee80211_is_valid_amsdu - check if subframe lengths of an A-MSDU are valid
6946  *
6947  * This is used to detect non-standard A-MSDU frames, e.g. the ones generated
6948  * by ath10k and ath11k, where the subframe length includes the length of the
6949  * mesh control field.
6950  *
6951  * @skb: The input A-MSDU frame without any headers.
6952  * @mesh_hdr: the type of mesh header to test
6953  *	0: non-mesh A-MSDU length field
6954  *	1: big-endian mesh A-MSDU length field
6955  *	2: little-endian mesh A-MSDU length field
6956  * Returns: true if subframe header lengths are valid for the @mesh_hdr mode
6957  */
6958 bool ieee80211_is_valid_amsdu(struct sk_buff *skb, u8 mesh_hdr);
6959 
6960 /**
6961  * ieee80211_amsdu_to_8023s - decode an IEEE 802.11n A-MSDU frame
6962  *
6963  * Decode an IEEE 802.11 A-MSDU and convert it to a list of 802.3 frames.
6964  * The @list will be empty if the decode fails. The @skb must be fully
6965  * header-less before being passed in here; it is freed in this function.
6966  *
6967  * @skb: The input A-MSDU frame without any headers.
6968  * @list: The output list of 802.3 frames. It must be allocated and
6969  *	initialized by the caller.
6970  * @addr: The device MAC address.
6971  * @iftype: The device interface type.
6972  * @extra_headroom: The hardware extra headroom for SKBs in the @list.
6973  * @check_da: DA to check in the inner ethernet header, or NULL
6974  * @check_sa: SA to check in the inner ethernet header, or NULL
6975  * @mesh_control: see mesh_hdr in ieee80211_is_valid_amsdu
6976  */
6977 void ieee80211_amsdu_to_8023s(struct sk_buff *skb, struct sk_buff_head *list,
6978 			      const u8 *addr, enum nl80211_iftype iftype,
6979 			      const unsigned int extra_headroom,
6980 			      const u8 *check_da, const u8 *check_sa,
6981 			      u8 mesh_control);
6982 
6983 /**
6984  * ieee80211_get_8023_tunnel_proto - get RFC1042 or bridge tunnel encap protocol
6985  *
6986  * Check for RFC1042 or bridge tunnel header and fetch the encapsulated
6987  * protocol.
6988  *
6989  * @hdr: pointer to the MSDU payload
6990  * @proto: destination pointer to store the protocol
6991  * Return: true if encapsulation was found
6992  */
6993 bool ieee80211_get_8023_tunnel_proto(const void *hdr, __be16 *proto);
6994 
6995 /**
6996  * ieee80211_strip_8023_mesh_hdr - strip mesh header from converted 802.3 frames
6997  *
6998  * Strip the mesh header, which was left in by ieee80211_data_to_8023 as part
6999  * of the MSDU data. Also move any source/destination addresses from the mesh
7000  * header to the ethernet header (if present).
7001  *
7002  * @skb: The 802.3 frame with embedded mesh header
7003  *
7004  * Return: 0 on success. Non-zero on error.
7005  */
7006 int ieee80211_strip_8023_mesh_hdr(struct sk_buff *skb);
7007 
7008 /**
7009  * cfg80211_classify8021d - determine the 802.1p/1d tag for a data frame
7010  * @skb: the data frame
7011  * @qos_map: Interworking QoS mapping or %NULL if not in use
7012  * Return: The 802.1p/1d tag.
7013  */
7014 unsigned int cfg80211_classify8021d(struct sk_buff *skb,
7015 				    struct cfg80211_qos_map *qos_map);
7016 
7017 /**
7018  * cfg80211_find_elem_match - match information element and byte array in data
7019  *
7020  * @eid: element ID
7021  * @ies: data consisting of IEs
7022  * @len: length of data
7023  * @match: byte array to match
7024  * @match_len: number of bytes in the match array
7025  * @match_offset: offset in the IE data where the byte array should match.
7026  *	Note the difference to cfg80211_find_ie_match() which considers
7027  *	the offset to start from the element ID byte, but here we take
7028  *	the data portion instead.
7029  *
7030  * Return: %NULL if the element ID could not be found or if
7031  * the element is invalid (claims to be longer than the given
7032  * data) or if the byte array doesn't match; otherwise return the
7033  * requested element struct.
7034  *
7035  * Note: There are no checks on the element length other than
7036  * having to fit into the given data and being large enough for the
7037  * byte array to match.
7038  */
7039 const struct element *
7040 cfg80211_find_elem_match(u8 eid, const u8 *ies, unsigned int len,
7041 			 const u8 *match, unsigned int match_len,
7042 			 unsigned int match_offset);
7043 
7044 /**
7045  * cfg80211_find_ie_match - match information element and byte array in data
7046  *
7047  * @eid: element ID
7048  * @ies: data consisting of IEs
7049  * @len: length of data
7050  * @match: byte array to match
7051  * @match_len: number of bytes in the match array
7052  * @match_offset: offset in the IE where the byte array should match.
7053  *	If match_len is zero, this must also be set to zero.
7054  *	Otherwise this must be set to 2 or more, because the first
7055  *	byte is the element id, which is already compared to eid, and
7056  *	the second byte is the IE length.
7057  *
7058  * Return: %NULL if the element ID could not be found or if
7059  * the element is invalid (claims to be longer than the given
7060  * data) or if the byte array doesn't match, or a pointer to the first
7061  * byte of the requested element, that is the byte containing the
7062  * element ID.
7063  *
7064  * Note: There are no checks on the element length other than
7065  * having to fit into the given data and being large enough for the
7066  * byte array to match.
7067  */
7068 static inline const u8 *
cfg80211_find_ie_match(u8 eid,const u8 * ies,unsigned int len,const u8 * match,unsigned int match_len,unsigned int match_offset)7069 cfg80211_find_ie_match(u8 eid, const u8 *ies, unsigned int len,
7070 		       const u8 *match, unsigned int match_len,
7071 		       unsigned int match_offset)
7072 {
7073 	/* match_offset can't be smaller than 2, unless match_len is
7074 	 * zero, in which case match_offset must be zero as well.
7075 	 */
7076 	if (WARN_ON((match_len && match_offset < 2) ||
7077 		    (!match_len && match_offset)))
7078 		return NULL;
7079 
7080 	return (const void *)cfg80211_find_elem_match(eid, ies, len,
7081 						      match, match_len,
7082 						      match_offset ?
7083 							match_offset - 2 : 0);
7084 }
7085 
7086 /**
7087  * cfg80211_find_elem - find information element in data
7088  *
7089  * @eid: element ID
7090  * @ies: data consisting of IEs
7091  * @len: length of data
7092  *
7093  * Return: %NULL if the element ID could not be found or if
7094  * the element is invalid (claims to be longer than the given
7095  * data) or if the byte array doesn't match; otherwise return the
7096  * requested element struct.
7097  *
7098  * Note: There are no checks on the element length other than
7099  * having to fit into the given data.
7100  */
7101 static inline const struct element *
cfg80211_find_elem(u8 eid,const u8 * ies,int len)7102 cfg80211_find_elem(u8 eid, const u8 *ies, int len)
7103 {
7104 	return cfg80211_find_elem_match(eid, ies, len, NULL, 0, 0);
7105 }
7106 
7107 /**
7108  * cfg80211_find_ie - find information element in data
7109  *
7110  * @eid: element ID
7111  * @ies: data consisting of IEs
7112  * @len: length of data
7113  *
7114  * Return: %NULL if the element ID could not be found or if
7115  * the element is invalid (claims to be longer than the given
7116  * data), or a pointer to the first byte of the requested
7117  * element, that is the byte containing the element ID.
7118  *
7119  * Note: There are no checks on the element length other than
7120  * having to fit into the given data.
7121  */
cfg80211_find_ie(u8 eid,const u8 * ies,int len)7122 static inline const u8 *cfg80211_find_ie(u8 eid, const u8 *ies, int len)
7123 {
7124 	return cfg80211_find_ie_match(eid, ies, len, NULL, 0, 0);
7125 }
7126 
7127 /**
7128  * cfg80211_find_ext_elem - find information element with EID Extension in data
7129  *
7130  * @ext_eid: element ID Extension
7131  * @ies: data consisting of IEs
7132  * @len: length of data
7133  *
7134  * Return: %NULL if the extended element could not be found or if
7135  * the element is invalid (claims to be longer than the given
7136  * data) or if the byte array doesn't match; otherwise return the
7137  * requested element struct.
7138  *
7139  * Note: There are no checks on the element length other than
7140  * having to fit into the given data.
7141  */
7142 static inline const struct element *
cfg80211_find_ext_elem(u8 ext_eid,const u8 * ies,int len)7143 cfg80211_find_ext_elem(u8 ext_eid, const u8 *ies, int len)
7144 {
7145 	return cfg80211_find_elem_match(WLAN_EID_EXTENSION, ies, len,
7146 					&ext_eid, 1, 0);
7147 }
7148 
7149 /**
7150  * cfg80211_find_ext_ie - find information element with EID Extension in data
7151  *
7152  * @ext_eid: element ID Extension
7153  * @ies: data consisting of IEs
7154  * @len: length of data
7155  *
7156  * Return: %NULL if the extended element ID could not be found or if
7157  * the element is invalid (claims to be longer than the given
7158  * data), or a pointer to the first byte of the requested
7159  * element, that is the byte containing the element ID.
7160  *
7161  * Note: There are no checks on the element length other than
7162  * having to fit into the given data.
7163  */
cfg80211_find_ext_ie(u8 ext_eid,const u8 * ies,int len)7164 static inline const u8 *cfg80211_find_ext_ie(u8 ext_eid, const u8 *ies, int len)
7165 {
7166 	return cfg80211_find_ie_match(WLAN_EID_EXTENSION, ies, len,
7167 				      &ext_eid, 1, 2);
7168 }
7169 
7170 /**
7171  * cfg80211_find_vendor_elem - find vendor specific information element in data
7172  *
7173  * @oui: vendor OUI
7174  * @oui_type: vendor-specific OUI type (must be < 0xff), negative means any
7175  * @ies: data consisting of IEs
7176  * @len: length of data
7177  *
7178  * Return: %NULL if the vendor specific element ID could not be found or if the
7179  * element is invalid (claims to be longer than the given data); otherwise
7180  * return the element structure for the requested element.
7181  *
7182  * Note: There are no checks on the element length other than having to fit into
7183  * the given data.
7184  */
7185 const struct element *cfg80211_find_vendor_elem(unsigned int oui, int oui_type,
7186 						const u8 *ies,
7187 						unsigned int len);
7188 
7189 /**
7190  * cfg80211_find_vendor_ie - find vendor specific information element in data
7191  *
7192  * @oui: vendor OUI
7193  * @oui_type: vendor-specific OUI type (must be < 0xff), negative means any
7194  * @ies: data consisting of IEs
7195  * @len: length of data
7196  *
7197  * Return: %NULL if the vendor specific element ID could not be found or if the
7198  * element is invalid (claims to be longer than the given data), or a pointer to
7199  * the first byte of the requested element, that is the byte containing the
7200  * element ID.
7201  *
7202  * Note: There are no checks on the element length other than having to fit into
7203  * the given data.
7204  */
7205 static inline const u8 *
cfg80211_find_vendor_ie(unsigned int oui,int oui_type,const u8 * ies,unsigned int len)7206 cfg80211_find_vendor_ie(unsigned int oui, int oui_type,
7207 			const u8 *ies, unsigned int len)
7208 {
7209 	return (const void *)cfg80211_find_vendor_elem(oui, oui_type, ies, len);
7210 }
7211 
7212 /**
7213  * enum cfg80211_rnr_iter_ret - reduced neighbor report iteration state
7214  * @RNR_ITER_CONTINUE: continue iterating with the next entry
7215  * @RNR_ITER_BREAK: break iteration and return success
7216  * @RNR_ITER_ERROR: break iteration and return error
7217  */
7218 enum cfg80211_rnr_iter_ret {
7219 	RNR_ITER_CONTINUE,
7220 	RNR_ITER_BREAK,
7221 	RNR_ITER_ERROR,
7222 };
7223 
7224 /**
7225  * cfg80211_iter_rnr - iterate reduced neighbor report entries
7226  * @elems: the frame elements to iterate RNR elements and then
7227  *	their entries in
7228  * @elems_len: length of the elements
7229  * @iter: iteration function, see also &enum cfg80211_rnr_iter_ret
7230  *	for the return value
7231  * @iter_data: additional data passed to the iteration function
7232  * Return: %true on success (after successfully iterating all entries
7233  *	or if the iteration function returned %RNR_ITER_BREAK),
7234  *	%false on error (iteration function returned %RNR_ITER_ERROR
7235  *	or elements were malformed.)
7236  */
7237 bool cfg80211_iter_rnr(const u8 *elems, size_t elems_len,
7238 		       enum cfg80211_rnr_iter_ret
7239 		       (*iter)(void *data, u8 type,
7240 			       const struct ieee80211_neighbor_ap_info *info,
7241 			       const u8 *tbtt_info, u8 tbtt_info_len),
7242 		       void *iter_data);
7243 
7244 /**
7245  * cfg80211_defragment_element - Defrag the given element data into a buffer
7246  *
7247  * @elem: the element to defragment
7248  * @ies: elements where @elem is contained
7249  * @ieslen: length of @ies
7250  * @data: buffer to store element data, or %NULL to just determine size
7251  * @data_len: length of @data, or 0
7252  * @frag_id: the element ID of fragments
7253  *
7254  * Return: length of @data, or -EINVAL on error
7255  *
7256  * Copy out all data from an element that may be fragmented into @data, while
7257  * skipping all headers.
7258  *
7259  * The function uses memmove() internally. It is acceptable to defragment an
7260  * element in-place.
7261  */
7262 ssize_t cfg80211_defragment_element(const struct element *elem, const u8 *ies,
7263 				    size_t ieslen, u8 *data, size_t data_len,
7264 				    u8 frag_id);
7265 
7266 /**
7267  * cfg80211_send_layer2_update - send layer 2 update frame
7268  *
7269  * @dev: network device
7270  * @addr: STA MAC address
7271  *
7272  * Wireless drivers can use this function to update forwarding tables in bridge
7273  * devices upon STA association.
7274  */
7275 void cfg80211_send_layer2_update(struct net_device *dev, const u8 *addr);
7276 
7277 /**
7278  * DOC: Regulatory enforcement infrastructure
7279  *
7280  * TODO
7281  */
7282 
7283 /**
7284  * regulatory_hint - driver hint to the wireless core a regulatory domain
7285  * @wiphy: the wireless device giving the hint (used only for reporting
7286  *	conflicts)
7287  * @alpha2: the ISO/IEC 3166 alpha2 the driver claims its regulatory domain
7288  *	should be in. If @rd is set this should be NULL. Note that if you
7289  *	set this to NULL you should still set rd->alpha2 to some accepted
7290  *	alpha2.
7291  *
7292  * Wireless drivers can use this function to hint to the wireless core
7293  * what it believes should be the current regulatory domain by
7294  * giving it an ISO/IEC 3166 alpha2 country code it knows its regulatory
7295  * domain should be in or by providing a completely build regulatory domain.
7296  * If the driver provides an ISO/IEC 3166 alpha2 userspace will be queried
7297  * for a regulatory domain structure for the respective country.
7298  *
7299  * The wiphy must have been registered to cfg80211 prior to this call.
7300  * For cfg80211 drivers this means you must first use wiphy_register(),
7301  * for mac80211 drivers you must first use ieee80211_register_hw().
7302  *
7303  * Drivers should check the return value, its possible you can get
7304  * an -ENOMEM.
7305  *
7306  * Return: 0 on success. -ENOMEM.
7307  */
7308 int regulatory_hint(struct wiphy *wiphy, const char *alpha2);
7309 
7310 /**
7311  * regulatory_set_wiphy_regd - set regdom info for self managed drivers
7312  * @wiphy: the wireless device we want to process the regulatory domain on
7313  * @rd: the regulatory domain information to use for this wiphy
7314  *
7315  * Set the regulatory domain information for self-managed wiphys, only they
7316  * may use this function. See %REGULATORY_WIPHY_SELF_MANAGED for more
7317  * information.
7318  *
7319  * Return: 0 on success. -EINVAL, -EPERM
7320  */
7321 int regulatory_set_wiphy_regd(struct wiphy *wiphy,
7322 			      struct ieee80211_regdomain *rd);
7323 
7324 /**
7325  * regulatory_set_wiphy_regd_sync - set regdom for self-managed drivers
7326  * @wiphy: the wireless device we want to process the regulatory domain on
7327  * @rd: the regulatory domain information to use for this wiphy
7328  *
7329  * This functions requires the RTNL and the wiphy mutex to be held and
7330  * applies the new regdomain synchronously to this wiphy. For more details
7331  * see regulatory_set_wiphy_regd().
7332  *
7333  * Return: 0 on success. -EINVAL, -EPERM
7334  */
7335 int regulatory_set_wiphy_regd_sync(struct wiphy *wiphy,
7336 				   struct ieee80211_regdomain *rd);
7337 
7338 /**
7339  * wiphy_apply_custom_regulatory - apply a custom driver regulatory domain
7340  * @wiphy: the wireless device we want to process the regulatory domain on
7341  * @regd: the custom regulatory domain to use for this wiphy
7342  *
7343  * Drivers can sometimes have custom regulatory domains which do not apply
7344  * to a specific country. Drivers can use this to apply such custom regulatory
7345  * domains. This routine must be called prior to wiphy registration. The
7346  * custom regulatory domain will be trusted completely and as such previous
7347  * default channel settings will be disregarded. If no rule is found for a
7348  * channel on the regulatory domain the channel will be disabled.
7349  * Drivers using this for a wiphy should also set the wiphy flag
7350  * REGULATORY_CUSTOM_REG or cfg80211 will set it for the wiphy
7351  * that called this helper.
7352  */
7353 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
7354 				   const struct ieee80211_regdomain *regd);
7355 
7356 /**
7357  * freq_reg_info - get regulatory information for the given frequency
7358  * @wiphy: the wiphy for which we want to process this rule for
7359  * @center_freq: Frequency in KHz for which we want regulatory information for
7360  *
7361  * Use this function to get the regulatory rule for a specific frequency on
7362  * a given wireless device. If the device has a specific regulatory domain
7363  * it wants to follow we respect that unless a country IE has been received
7364  * and processed already.
7365  *
7366  * Return: A valid pointer, or, when an error occurs, for example if no rule
7367  * can be found, the return value is encoded using ERR_PTR(). Use IS_ERR() to
7368  * check and PTR_ERR() to obtain the numeric return value. The numeric return
7369  * value will be -ERANGE if we determine the given center_freq does not even
7370  * have a regulatory rule for a frequency range in the center_freq's band.
7371  * See freq_in_rule_band() for our current definition of a band -- this is
7372  * purely subjective and right now it's 802.11 specific.
7373  */
7374 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
7375 					       u32 center_freq);
7376 
7377 /**
7378  * reg_initiator_name - map regulatory request initiator enum to name
7379  * @initiator: the regulatory request initiator
7380  *
7381  * You can use this to map the regulatory request initiator enum to a
7382  * proper string representation.
7383  *
7384  * Return: pointer to string representation of the initiator
7385  */
7386 const char *reg_initiator_name(enum nl80211_reg_initiator initiator);
7387 
7388 /**
7389  * regulatory_pre_cac_allowed - check if pre-CAC allowed in the current regdom
7390  * @wiphy: wiphy for which pre-CAC capability is checked.
7391  *
7392  * Pre-CAC is allowed only in some regdomains (notable ETSI).
7393  *
7394  * Return: %true if allowed, %false otherwise
7395  */
7396 bool regulatory_pre_cac_allowed(struct wiphy *wiphy);
7397 
7398 /**
7399  * DOC: Internal regulatory db functions
7400  *
7401  */
7402 
7403 /**
7404  * reg_query_regdb_wmm -  Query internal regulatory db for wmm rule
7405  * Regulatory self-managed driver can use it to proactively
7406  *
7407  * @alpha2: the ISO/IEC 3166 alpha2 wmm rule to be queried.
7408  * @freq: the frequency (in MHz) to be queried.
7409  * @rule: pointer to store the wmm rule from the regulatory db.
7410  *
7411  * Self-managed wireless drivers can use this function to  query
7412  * the internal regulatory database to check whether the given
7413  * ISO/IEC 3166 alpha2 country and freq have wmm rule limitations.
7414  *
7415  * Drivers should check the return value, its possible you can get
7416  * an -ENODATA.
7417  *
7418  * Return: 0 on success. -ENODATA.
7419  */
7420 int reg_query_regdb_wmm(char *alpha2, int freq,
7421 			struct ieee80211_reg_rule *rule);
7422 
7423 /*
7424  * callbacks for asynchronous cfg80211 methods, notification
7425  * functions and BSS handling helpers
7426  */
7427 
7428 /**
7429  * cfg80211_scan_done - notify that scan finished
7430  *
7431  * @request: the corresponding scan request
7432  * @info: information about the completed scan
7433  */
7434 void cfg80211_scan_done(struct cfg80211_scan_request *request,
7435 			struct cfg80211_scan_info *info);
7436 
7437 /**
7438  * cfg80211_sched_scan_results - notify that new scan results are available
7439  *
7440  * @wiphy: the wiphy which got scheduled scan results
7441  * @reqid: identifier for the related scheduled scan request
7442  */
7443 void cfg80211_sched_scan_results(struct wiphy *wiphy, u64 reqid);
7444 
7445 /**
7446  * cfg80211_sched_scan_stopped - notify that the scheduled scan has stopped
7447  *
7448  * @wiphy: the wiphy on which the scheduled scan stopped
7449  * @reqid: identifier for the related scheduled scan request
7450  *
7451  * The driver can call this function to inform cfg80211 that the
7452  * scheduled scan had to be stopped, for whatever reason.  The driver
7453  * is then called back via the sched_scan_stop operation when done.
7454  */
7455 void cfg80211_sched_scan_stopped(struct wiphy *wiphy, u64 reqid);
7456 
7457 /**
7458  * cfg80211_sched_scan_stopped_locked - notify that the scheduled scan has stopped
7459  *
7460  * @wiphy: the wiphy on which the scheduled scan stopped
7461  * @reqid: identifier for the related scheduled scan request
7462  *
7463  * The driver can call this function to inform cfg80211 that the
7464  * scheduled scan had to be stopped, for whatever reason.  The driver
7465  * is then called back via the sched_scan_stop operation when done.
7466  * This function should be called with the wiphy mutex held.
7467  */
7468 void cfg80211_sched_scan_stopped_locked(struct wiphy *wiphy, u64 reqid);
7469 
7470 /**
7471  * cfg80211_inform_bss_frame_data - inform cfg80211 of a received BSS frame
7472  * @wiphy: the wiphy reporting the BSS
7473  * @data: the BSS metadata
7474  * @mgmt: the management frame (probe response or beacon)
7475  * @len: length of the management frame
7476  * @gfp: context flags
7477  *
7478  * This informs cfg80211 that BSS information was found and
7479  * the BSS should be updated/added.
7480  *
7481  * Return: A referenced struct, must be released with cfg80211_put_bss()!
7482  * Or %NULL on error.
7483  */
7484 struct cfg80211_bss * __must_check
7485 cfg80211_inform_bss_frame_data(struct wiphy *wiphy,
7486 			       struct cfg80211_inform_bss *data,
7487 			       struct ieee80211_mgmt *mgmt, size_t len,
7488 			       gfp_t gfp);
7489 
7490 static inline struct cfg80211_bss * __must_check
cfg80211_inform_bss_frame(struct wiphy * wiphy,struct ieee80211_channel * rx_channel,struct ieee80211_mgmt * mgmt,size_t len,s32 signal,gfp_t gfp)7491 cfg80211_inform_bss_frame(struct wiphy *wiphy,
7492 			  struct ieee80211_channel *rx_channel,
7493 			  struct ieee80211_mgmt *mgmt, size_t len,
7494 			  s32 signal, gfp_t gfp)
7495 {
7496 	struct cfg80211_inform_bss data = {
7497 		.chan = rx_channel,
7498 		.signal = signal,
7499 	};
7500 
7501 	return cfg80211_inform_bss_frame_data(wiphy, &data, mgmt, len, gfp);
7502 }
7503 
7504 /**
7505  * cfg80211_gen_new_bssid - generate a nontransmitted BSSID for multi-BSSID
7506  * @bssid: transmitter BSSID
7507  * @max_bssid: max BSSID indicator, taken from Multiple BSSID element
7508  * @mbssid_index: BSSID index, taken from Multiple BSSID index element
7509  * @new_bssid: calculated nontransmitted BSSID
7510  */
cfg80211_gen_new_bssid(const u8 * bssid,u8 max_bssid,u8 mbssid_index,u8 * new_bssid)7511 static inline void cfg80211_gen_new_bssid(const u8 *bssid, u8 max_bssid,
7512 					  u8 mbssid_index, u8 *new_bssid)
7513 {
7514 	u64 bssid_u64 = ether_addr_to_u64(bssid);
7515 	u64 mask = GENMASK_ULL(max_bssid - 1, 0);
7516 	u64 new_bssid_u64;
7517 
7518 	new_bssid_u64 = bssid_u64 & ~mask;
7519 
7520 	new_bssid_u64 |= ((bssid_u64 & mask) + mbssid_index) & mask;
7521 
7522 	u64_to_ether_addr(new_bssid_u64, new_bssid);
7523 }
7524 
7525 /**
7526  * cfg80211_is_element_inherited - returns if element ID should be inherited
7527  * @element: element to check
7528  * @non_inherit_element: non inheritance element
7529  *
7530  * Return: %true if should be inherited, %false otherwise
7531  */
7532 bool cfg80211_is_element_inherited(const struct element *element,
7533 				   const struct element *non_inherit_element);
7534 
7535 /**
7536  * cfg80211_merge_profile - merges a MBSSID profile if it is split between IEs
7537  * @ie: ies
7538  * @ielen: length of IEs
7539  * @mbssid_elem: current MBSSID element
7540  * @sub_elem: current MBSSID subelement (profile)
7541  * @merged_ie: location of the merged profile
7542  * @max_copy_len: max merged profile length
7543  *
7544  * Return: the number of bytes merged
7545  */
7546 size_t cfg80211_merge_profile(const u8 *ie, size_t ielen,
7547 			      const struct element *mbssid_elem,
7548 			      const struct element *sub_elem,
7549 			      u8 *merged_ie, size_t max_copy_len);
7550 
7551 /**
7552  * enum cfg80211_bss_frame_type - frame type that the BSS data came from
7553  * @CFG80211_BSS_FTYPE_UNKNOWN: driver doesn't know whether the data is
7554  *	from a beacon or probe response
7555  * @CFG80211_BSS_FTYPE_BEACON: data comes from a beacon
7556  * @CFG80211_BSS_FTYPE_PRESP: data comes from a probe response
7557  * @CFG80211_BSS_FTYPE_S1G_BEACON: data comes from an S1G beacon
7558  */
7559 enum cfg80211_bss_frame_type {
7560 	CFG80211_BSS_FTYPE_UNKNOWN,
7561 	CFG80211_BSS_FTYPE_BEACON,
7562 	CFG80211_BSS_FTYPE_PRESP,
7563 	CFG80211_BSS_FTYPE_S1G_BEACON,
7564 };
7565 
7566 /**
7567  * cfg80211_get_ies_channel_number - returns the channel number from ies
7568  * @ie: IEs
7569  * @ielen: length of IEs
7570  * @band: enum nl80211_band of the channel
7571  *
7572  * Return: the channel number, or -1 if none could be determined.
7573  */
7574 int cfg80211_get_ies_channel_number(const u8 *ie, size_t ielen,
7575 				    enum nl80211_band band);
7576 
7577 /**
7578  * cfg80211_ssid_eq - compare two SSIDs
7579  * @a: first SSID
7580  * @b: second SSID
7581  *
7582  * Return: %true if SSIDs are equal, %false otherwise.
7583  */
7584 static inline bool
cfg80211_ssid_eq(struct cfg80211_ssid * a,struct cfg80211_ssid * b)7585 cfg80211_ssid_eq(struct cfg80211_ssid *a, struct cfg80211_ssid *b)
7586 {
7587 	if (WARN_ON(!a || !b))
7588 		return false;
7589 	if (a->ssid_len != b->ssid_len)
7590 		return false;
7591 	return memcmp(a->ssid, b->ssid, a->ssid_len) ? false : true;
7592 }
7593 
7594 /**
7595  * cfg80211_inform_bss_data - inform cfg80211 of a new BSS
7596  *
7597  * @wiphy: the wiphy reporting the BSS
7598  * @data: the BSS metadata
7599  * @ftype: frame type (if known)
7600  * @bssid: the BSSID of the BSS
7601  * @tsf: the TSF sent by the peer in the beacon/probe response (or 0)
7602  * @capability: the capability field sent by the peer
7603  * @beacon_interval: the beacon interval announced by the peer
7604  * @ie: additional IEs sent by the peer
7605  * @ielen: length of the additional IEs
7606  * @gfp: context flags
7607  *
7608  * This informs cfg80211 that BSS information was found and
7609  * the BSS should be updated/added.
7610  *
7611  * Return: A referenced struct, must be released with cfg80211_put_bss()!
7612  * Or %NULL on error.
7613  */
7614 struct cfg80211_bss * __must_check
7615 cfg80211_inform_bss_data(struct wiphy *wiphy,
7616 			 struct cfg80211_inform_bss *data,
7617 			 enum cfg80211_bss_frame_type ftype,
7618 			 const u8 *bssid, u64 tsf, u16 capability,
7619 			 u16 beacon_interval, const u8 *ie, size_t ielen,
7620 			 gfp_t gfp);
7621 
7622 static inline struct cfg80211_bss * __must_check
cfg80211_inform_bss(struct wiphy * wiphy,struct ieee80211_channel * rx_channel,enum cfg80211_bss_frame_type ftype,const u8 * bssid,u64 tsf,u16 capability,u16 beacon_interval,const u8 * ie,size_t ielen,s32 signal,gfp_t gfp)7623 cfg80211_inform_bss(struct wiphy *wiphy,
7624 		    struct ieee80211_channel *rx_channel,
7625 		    enum cfg80211_bss_frame_type ftype,
7626 		    const u8 *bssid, u64 tsf, u16 capability,
7627 		    u16 beacon_interval, const u8 *ie, size_t ielen,
7628 		    s32 signal, gfp_t gfp)
7629 {
7630 	struct cfg80211_inform_bss data = {
7631 		.chan = rx_channel,
7632 		.signal = signal,
7633 	};
7634 
7635 	return cfg80211_inform_bss_data(wiphy, &data, ftype, bssid, tsf,
7636 					capability, beacon_interval, ie, ielen,
7637 					gfp);
7638 }
7639 
7640 /**
7641  * __cfg80211_get_bss - get a BSS reference
7642  * @wiphy: the wiphy this BSS struct belongs to
7643  * @channel: the channel to search on (or %NULL)
7644  * @bssid: the desired BSSID (or %NULL)
7645  * @ssid: the desired SSID (or %NULL)
7646  * @ssid_len: length of the SSID (or 0)
7647  * @bss_type: type of BSS, see &enum ieee80211_bss_type
7648  * @privacy: privacy filter, see &enum ieee80211_privacy
7649  * @use_for: indicates which use is intended
7650  *
7651  * Return: Reference-counted BSS on success. %NULL on error.
7652  */
7653 struct cfg80211_bss *__cfg80211_get_bss(struct wiphy *wiphy,
7654 					struct ieee80211_channel *channel,
7655 					const u8 *bssid,
7656 					const u8 *ssid, size_t ssid_len,
7657 					enum ieee80211_bss_type bss_type,
7658 					enum ieee80211_privacy privacy,
7659 					u32 use_for);
7660 
7661 /**
7662  * cfg80211_get_bss - get a BSS reference
7663  * @wiphy: the wiphy this BSS struct belongs to
7664  * @channel: the channel to search on (or %NULL)
7665  * @bssid: the desired BSSID (or %NULL)
7666  * @ssid: the desired SSID (or %NULL)
7667  * @ssid_len: length of the SSID (or 0)
7668  * @bss_type: type of BSS, see &enum ieee80211_bss_type
7669  * @privacy: privacy filter, see &enum ieee80211_privacy
7670  *
7671  * This version implies regular usage, %NL80211_BSS_USE_FOR_NORMAL.
7672  *
7673  * Return: Reference-counted BSS on success. %NULL on error.
7674  */
7675 static inline struct cfg80211_bss *
cfg80211_get_bss(struct wiphy * wiphy,struct ieee80211_channel * channel,const u8 * bssid,const u8 * ssid,size_t ssid_len,enum ieee80211_bss_type bss_type,enum ieee80211_privacy privacy)7676 cfg80211_get_bss(struct wiphy *wiphy, struct ieee80211_channel *channel,
7677 		 const u8 *bssid, const u8 *ssid, size_t ssid_len,
7678 		 enum ieee80211_bss_type bss_type,
7679 		 enum ieee80211_privacy privacy)
7680 {
7681 	return __cfg80211_get_bss(wiphy, channel, bssid, ssid, ssid_len,
7682 				  bss_type, privacy,
7683 				  NL80211_BSS_USE_FOR_NORMAL);
7684 }
7685 
7686 static inline struct cfg80211_bss *
cfg80211_get_ibss(struct wiphy * wiphy,struct ieee80211_channel * channel,const u8 * ssid,size_t ssid_len)7687 cfg80211_get_ibss(struct wiphy *wiphy,
7688 		  struct ieee80211_channel *channel,
7689 		  const u8 *ssid, size_t ssid_len)
7690 {
7691 	return cfg80211_get_bss(wiphy, channel, NULL, ssid, ssid_len,
7692 				IEEE80211_BSS_TYPE_IBSS,
7693 				IEEE80211_PRIVACY_ANY);
7694 }
7695 
7696 /**
7697  * cfg80211_ref_bss - reference BSS struct
7698  * @wiphy: the wiphy this BSS struct belongs to
7699  * @bss: the BSS struct to reference
7700  *
7701  * Increments the refcount of the given BSS struct.
7702  */
7703 void cfg80211_ref_bss(struct wiphy *wiphy, struct cfg80211_bss *bss);
7704 
7705 /**
7706  * cfg80211_put_bss - unref BSS struct
7707  * @wiphy: the wiphy this BSS struct belongs to
7708  * @bss: the BSS struct
7709  *
7710  * Decrements the refcount of the given BSS struct.
7711  */
7712 void cfg80211_put_bss(struct wiphy *wiphy, struct cfg80211_bss *bss);
7713 
7714 /**
7715  * cfg80211_unlink_bss - unlink BSS from internal data structures
7716  * @wiphy: the wiphy
7717  * @bss: the bss to remove
7718  *
7719  * This function removes the given BSS from the internal data structures
7720  * thereby making it no longer show up in scan results etc. Use this
7721  * function when you detect a BSS is gone. Normally BSSes will also time
7722  * out, so it is not necessary to use this function at all.
7723  */
7724 void cfg80211_unlink_bss(struct wiphy *wiphy, struct cfg80211_bss *bss);
7725 
7726 /**
7727  * cfg80211_bss_iter - iterate all BSS entries
7728  *
7729  * This function iterates over the BSS entries associated with the given wiphy
7730  * and calls the callback for the iterated BSS. The iterator function is not
7731  * allowed to call functions that might modify the internal state of the BSS DB.
7732  *
7733  * @wiphy: the wiphy
7734  * @chandef: if given, the iterator function will be called only if the channel
7735  *     of the currently iterated BSS is a subset of the given channel.
7736  * @iter: the iterator function to call
7737  * @iter_data: an argument to the iterator function
7738  */
7739 void cfg80211_bss_iter(struct wiphy *wiphy,
7740 		       struct cfg80211_chan_def *chandef,
7741 		       void (*iter)(struct wiphy *wiphy,
7742 				    struct cfg80211_bss *bss,
7743 				    void *data),
7744 		       void *iter_data);
7745 
7746 /**
7747  * cfg80211_rx_mlme_mgmt - notification of processed MLME management frame
7748  * @dev: network device
7749  * @buf: authentication frame (header + body)
7750  * @len: length of the frame data
7751  *
7752  * This function is called whenever an authentication, disassociation or
7753  * deauthentication frame has been received and processed in station mode.
7754  * After being asked to authenticate via cfg80211_ops::auth() the driver must
7755  * call either this function or cfg80211_auth_timeout().
7756  * After being asked to associate via cfg80211_ops::assoc() the driver must
7757  * call either this function or cfg80211_auth_timeout().
7758  * While connected, the driver must calls this for received and processed
7759  * disassociation and deauthentication frames. If the frame couldn't be used
7760  * because it was unprotected, the driver must call the function
7761  * cfg80211_rx_unprot_mlme_mgmt() instead.
7762  *
7763  * This function may sleep. The caller must hold the corresponding wdev's mutex.
7764  */
7765 void cfg80211_rx_mlme_mgmt(struct net_device *dev, const u8 *buf, size_t len);
7766 
7767 /**
7768  * cfg80211_auth_timeout - notification of timed out authentication
7769  * @dev: network device
7770  * @addr: The MAC address of the device with which the authentication timed out
7771  *
7772  * This function may sleep. The caller must hold the corresponding wdev's
7773  * mutex.
7774  */
7775 void cfg80211_auth_timeout(struct net_device *dev, const u8 *addr);
7776 
7777 /**
7778  * struct cfg80211_rx_assoc_resp_data - association response data
7779  * @buf: (Re)Association Response frame (header + body)
7780  * @len: length of the frame data
7781  * @uapsd_queues: bitmap of queues configured for uapsd. Same format
7782  *	as the AC bitmap in the QoS info field
7783  * @req_ies: information elements from the (Re)Association Request frame
7784  * @req_ies_len: length of req_ies data
7785  * @ap_mld_addr: AP MLD address (in case of MLO)
7786  * @links: per-link information indexed by link ID, use links[0] for
7787  *	non-MLO connections
7788  * @links.bss: the BSS that association was requested with, ownership of the
7789  *      pointer moves to cfg80211 in the call to cfg80211_rx_assoc_resp()
7790  * @links.status: Set this (along with a BSS pointer) for links that
7791  *	were rejected by the AP.
7792  */
7793 struct cfg80211_rx_assoc_resp_data {
7794 	const u8 *buf;
7795 	size_t len;
7796 	const u8 *req_ies;
7797 	size_t req_ies_len;
7798 	int uapsd_queues;
7799 	const u8 *ap_mld_addr;
7800 	struct {
7801 		u8 addr[ETH_ALEN] __aligned(2);
7802 		struct cfg80211_bss *bss;
7803 		u16 status;
7804 	} links[IEEE80211_MLD_MAX_NUM_LINKS];
7805 };
7806 
7807 /**
7808  * cfg80211_rx_assoc_resp - notification of processed association response
7809  * @dev: network device
7810  * @data: association response data, &struct cfg80211_rx_assoc_resp_data
7811  *
7812  * After being asked to associate via cfg80211_ops::assoc() the driver must
7813  * call either this function or cfg80211_auth_timeout().
7814  *
7815  * This function may sleep. The caller must hold the corresponding wdev's mutex.
7816  */
7817 void cfg80211_rx_assoc_resp(struct net_device *dev,
7818 			    const struct cfg80211_rx_assoc_resp_data *data);
7819 
7820 /**
7821  * struct cfg80211_assoc_failure - association failure data
7822  * @ap_mld_addr: AP MLD address, or %NULL
7823  * @bss: list of BSSes, must use entry 0 for non-MLO connections
7824  *	(@ap_mld_addr is %NULL)
7825  * @timeout: indicates the association failed due to timeout, otherwise
7826  *	the association was abandoned for a reason reported through some
7827  *	other API (e.g. deauth RX)
7828  */
7829 struct cfg80211_assoc_failure {
7830 	const u8 *ap_mld_addr;
7831 	struct cfg80211_bss *bss[IEEE80211_MLD_MAX_NUM_LINKS];
7832 	bool timeout;
7833 };
7834 
7835 /**
7836  * cfg80211_assoc_failure - notification of association failure
7837  * @dev: network device
7838  * @data: data describing the association failure
7839  *
7840  * This function may sleep. The caller must hold the corresponding wdev's mutex.
7841  */
7842 void cfg80211_assoc_failure(struct net_device *dev,
7843 			    struct cfg80211_assoc_failure *data);
7844 
7845 /**
7846  * cfg80211_tx_mlme_mgmt - notification of transmitted deauth/disassoc frame
7847  * @dev: network device
7848  * @buf: 802.11 frame (header + body)
7849  * @len: length of the frame data
7850  * @reconnect: immediate reconnect is desired (include the nl80211 attribute)
7851  *
7852  * This function is called whenever deauthentication has been processed in
7853  * station mode. This includes both received deauthentication frames and
7854  * locally generated ones. This function may sleep. The caller must hold the
7855  * corresponding wdev's mutex.
7856  */
7857 void cfg80211_tx_mlme_mgmt(struct net_device *dev, const u8 *buf, size_t len,
7858 			   bool reconnect);
7859 
7860 /**
7861  * cfg80211_rx_unprot_mlme_mgmt - notification of unprotected mlme mgmt frame
7862  * @dev: network device
7863  * @buf: received management frame (header + body)
7864  * @len: length of the frame data
7865  *
7866  * This function is called whenever a received deauthentication or dissassoc
7867  * frame has been dropped in station mode because of MFP being used but the
7868  * frame was not protected. This is also used to notify reception of a Beacon
7869  * frame that was dropped because it did not include a valid MME MIC while
7870  * beacon protection was enabled (BIGTK configured in station mode).
7871  *
7872  * This function may sleep.
7873  */
7874 void cfg80211_rx_unprot_mlme_mgmt(struct net_device *dev,
7875 				  const u8 *buf, size_t len);
7876 
7877 /**
7878  * cfg80211_michael_mic_failure - notification of Michael MIC failure (TKIP)
7879  * @dev: network device
7880  * @addr: The source MAC address of the frame
7881  * @key_type: The key type that the received frame used
7882  * @key_id: Key identifier (0..3). Can be -1 if missing.
7883  * @tsc: The TSC value of the frame that generated the MIC failure (6 octets)
7884  * @gfp: allocation flags
7885  *
7886  * This function is called whenever the local MAC detects a MIC failure in a
7887  * received frame. This matches with MLME-MICHAELMICFAILURE.indication()
7888  * primitive.
7889  */
7890 void cfg80211_michael_mic_failure(struct net_device *dev, const u8 *addr,
7891 				  enum nl80211_key_type key_type, int key_id,
7892 				  const u8 *tsc, gfp_t gfp);
7893 
7894 /**
7895  * cfg80211_ibss_joined - notify cfg80211 that device joined an IBSS
7896  *
7897  * @dev: network device
7898  * @bssid: the BSSID of the IBSS joined
7899  * @channel: the channel of the IBSS joined
7900  * @gfp: allocation flags
7901  *
7902  * This function notifies cfg80211 that the device joined an IBSS or
7903  * switched to a different BSSID. Before this function can be called,
7904  * either a beacon has to have been received from the IBSS, or one of
7905  * the cfg80211_inform_bss{,_frame} functions must have been called
7906  * with the locally generated beacon -- this guarantees that there is
7907  * always a scan result for this IBSS. cfg80211 will handle the rest.
7908  */
7909 void cfg80211_ibss_joined(struct net_device *dev, const u8 *bssid,
7910 			  struct ieee80211_channel *channel, gfp_t gfp);
7911 
7912 /**
7913  * cfg80211_notify_new_peer_candidate - notify cfg80211 of a new mesh peer
7914  * 					candidate
7915  *
7916  * @dev: network device
7917  * @macaddr: the MAC address of the new candidate
7918  * @ie: information elements advertised by the peer candidate
7919  * @ie_len: length of the information elements buffer
7920  * @sig_dbm: signal level in dBm
7921  * @gfp: allocation flags
7922  *
7923  * This function notifies cfg80211 that the mesh peer candidate has been
7924  * detected, most likely via a beacon or, less likely, via a probe response.
7925  * cfg80211 then sends a notification to userspace.
7926  */
7927 void cfg80211_notify_new_peer_candidate(struct net_device *dev,
7928 		const u8 *macaddr, const u8 *ie, u8 ie_len,
7929 		int sig_dbm, gfp_t gfp);
7930 
7931 /**
7932  * DOC: RFkill integration
7933  *
7934  * RFkill integration in cfg80211 is almost invisible to drivers,
7935  * as cfg80211 automatically registers an rfkill instance for each
7936  * wireless device it knows about. Soft kill is also translated
7937  * into disconnecting and turning all interfaces off. Drivers are
7938  * expected to turn off the device when all interfaces are down.
7939  *
7940  * However, devices may have a hard RFkill line, in which case they
7941  * also need to interact with the rfkill subsystem, via cfg80211.
7942  * They can do this with a few helper functions documented here.
7943  */
7944 
7945 /**
7946  * wiphy_rfkill_set_hw_state_reason - notify cfg80211 about hw block state
7947  * @wiphy: the wiphy
7948  * @blocked: block status
7949  * @reason: one of reasons in &enum rfkill_hard_block_reasons
7950  */
7951 void wiphy_rfkill_set_hw_state_reason(struct wiphy *wiphy, bool blocked,
7952 				      enum rfkill_hard_block_reasons reason);
7953 
wiphy_rfkill_set_hw_state(struct wiphy * wiphy,bool blocked)7954 static inline void wiphy_rfkill_set_hw_state(struct wiphy *wiphy, bool blocked)
7955 {
7956 	wiphy_rfkill_set_hw_state_reason(wiphy, blocked,
7957 					 RFKILL_HARD_BLOCK_SIGNAL);
7958 }
7959 
7960 /**
7961  * wiphy_rfkill_start_polling - start polling rfkill
7962  * @wiphy: the wiphy
7963  */
7964 void wiphy_rfkill_start_polling(struct wiphy *wiphy);
7965 
7966 /**
7967  * wiphy_rfkill_stop_polling - stop polling rfkill
7968  * @wiphy: the wiphy
7969  */
wiphy_rfkill_stop_polling(struct wiphy * wiphy)7970 static inline void wiphy_rfkill_stop_polling(struct wiphy *wiphy)
7971 {
7972 	rfkill_pause_polling(wiphy->rfkill);
7973 }
7974 
7975 /**
7976  * DOC: Vendor commands
7977  *
7978  * Occasionally, there are special protocol or firmware features that
7979  * can't be implemented very openly. For this and similar cases, the
7980  * vendor command functionality allows implementing the features with
7981  * (typically closed-source) userspace and firmware, using nl80211 as
7982  * the configuration mechanism.
7983  *
7984  * A driver supporting vendor commands must register them as an array
7985  * in struct wiphy, with handlers for each one. Each command has an
7986  * OUI and sub command ID to identify it.
7987  *
7988  * Note that this feature should not be (ab)used to implement protocol
7989  * features that could openly be shared across drivers. In particular,
7990  * it must never be required to use vendor commands to implement any
7991  * "normal" functionality that higher-level userspace like connection
7992  * managers etc. need.
7993  */
7994 
7995 struct sk_buff *__cfg80211_alloc_reply_skb(struct wiphy *wiphy,
7996 					   enum nl80211_commands cmd,
7997 					   enum nl80211_attrs attr,
7998 					   int approxlen);
7999 
8000 struct sk_buff *__cfg80211_alloc_event_skb(struct wiphy *wiphy,
8001 					   struct wireless_dev *wdev,
8002 					   enum nl80211_commands cmd,
8003 					   enum nl80211_attrs attr,
8004 					   unsigned int portid,
8005 					   int vendor_event_idx,
8006 					   int approxlen, gfp_t gfp);
8007 
8008 void __cfg80211_send_event_skb(struct sk_buff *skb, gfp_t gfp);
8009 
8010 /**
8011  * cfg80211_vendor_cmd_alloc_reply_skb - allocate vendor command reply
8012  * @wiphy: the wiphy
8013  * @approxlen: an upper bound of the length of the data that will
8014  *	be put into the skb
8015  *
8016  * This function allocates and pre-fills an skb for a reply to
8017  * a vendor command. Since it is intended for a reply, calling
8018  * it outside of a vendor command's doit() operation is invalid.
8019  *
8020  * The returned skb is pre-filled with some identifying data in
8021  * a way that any data that is put into the skb (with skb_put(),
8022  * nla_put() or similar) will end up being within the
8023  * %NL80211_ATTR_VENDOR_DATA attribute, so all that needs to be done
8024  * with the skb is adding data for the corresponding userspace tool
8025  * which can then read that data out of the vendor data attribute.
8026  * You must not modify the skb in any other way.
8027  *
8028  * When done, call cfg80211_vendor_cmd_reply() with the skb and return
8029  * its error code as the result of the doit() operation.
8030  *
8031  * Return: An allocated and pre-filled skb. %NULL if any errors happen.
8032  */
8033 static inline struct sk_buff *
cfg80211_vendor_cmd_alloc_reply_skb(struct wiphy * wiphy,int approxlen)8034 cfg80211_vendor_cmd_alloc_reply_skb(struct wiphy *wiphy, int approxlen)
8035 {
8036 	return __cfg80211_alloc_reply_skb(wiphy, NL80211_CMD_VENDOR,
8037 					  NL80211_ATTR_VENDOR_DATA, approxlen);
8038 }
8039 
8040 /**
8041  * cfg80211_vendor_cmd_reply - send the reply skb
8042  * @skb: The skb, must have been allocated with
8043  *	cfg80211_vendor_cmd_alloc_reply_skb()
8044  *
8045  * Since calling this function will usually be the last thing
8046  * before returning from the vendor command doit() you should
8047  * return the error code.  Note that this function consumes the
8048  * skb regardless of the return value.
8049  *
8050  * Return: An error code or 0 on success.
8051  */
8052 int cfg80211_vendor_cmd_reply(struct sk_buff *skb);
8053 
8054 /**
8055  * cfg80211_vendor_cmd_get_sender - get the current sender netlink ID
8056  * @wiphy: the wiphy
8057  *
8058  * Return: the current netlink port ID in a vendor command handler.
8059  *
8060  * Context: May only be called from a vendor command handler
8061  */
8062 unsigned int cfg80211_vendor_cmd_get_sender(struct wiphy *wiphy);
8063 
8064 /**
8065  * cfg80211_vendor_event_alloc - allocate vendor-specific event skb
8066  * @wiphy: the wiphy
8067  * @wdev: the wireless device
8068  * @event_idx: index of the vendor event in the wiphy's vendor_events
8069  * @approxlen: an upper bound of the length of the data that will
8070  *	be put into the skb
8071  * @gfp: allocation flags
8072  *
8073  * This function allocates and pre-fills an skb for an event on the
8074  * vendor-specific multicast group.
8075  *
8076  * If wdev != NULL, both the ifindex and identifier of the specified
8077  * wireless device are added to the event message before the vendor data
8078  * attribute.
8079  *
8080  * When done filling the skb, call cfg80211_vendor_event() with the
8081  * skb to send the event.
8082  *
8083  * Return: An allocated and pre-filled skb. %NULL if any errors happen.
8084  */
8085 static inline struct sk_buff *
cfg80211_vendor_event_alloc(struct wiphy * wiphy,struct wireless_dev * wdev,int approxlen,int event_idx,gfp_t gfp)8086 cfg80211_vendor_event_alloc(struct wiphy *wiphy, struct wireless_dev *wdev,
8087 			     int approxlen, int event_idx, gfp_t gfp)
8088 {
8089 	return __cfg80211_alloc_event_skb(wiphy, wdev, NL80211_CMD_VENDOR,
8090 					  NL80211_ATTR_VENDOR_DATA,
8091 					  0, event_idx, approxlen, gfp);
8092 }
8093 
8094 /**
8095  * cfg80211_vendor_event_alloc_ucast - alloc unicast vendor-specific event skb
8096  * @wiphy: the wiphy
8097  * @wdev: the wireless device
8098  * @event_idx: index of the vendor event in the wiphy's vendor_events
8099  * @portid: port ID of the receiver
8100  * @approxlen: an upper bound of the length of the data that will
8101  *	be put into the skb
8102  * @gfp: allocation flags
8103  *
8104  * This function allocates and pre-fills an skb for an event to send to
8105  * a specific (userland) socket. This socket would previously have been
8106  * obtained by cfg80211_vendor_cmd_get_sender(), and the caller MUST take
8107  * care to register a netlink notifier to see when the socket closes.
8108  *
8109  * If wdev != NULL, both the ifindex and identifier of the specified
8110  * wireless device are added to the event message before the vendor data
8111  * attribute.
8112  *
8113  * When done filling the skb, call cfg80211_vendor_event() with the
8114  * skb to send the event.
8115  *
8116  * Return: An allocated and pre-filled skb. %NULL if any errors happen.
8117  */
8118 static inline struct sk_buff *
cfg80211_vendor_event_alloc_ucast(struct wiphy * wiphy,struct wireless_dev * wdev,unsigned int portid,int approxlen,int event_idx,gfp_t gfp)8119 cfg80211_vendor_event_alloc_ucast(struct wiphy *wiphy,
8120 				  struct wireless_dev *wdev,
8121 				  unsigned int portid, int approxlen,
8122 				  int event_idx, gfp_t gfp)
8123 {
8124 	return __cfg80211_alloc_event_skb(wiphy, wdev, NL80211_CMD_VENDOR,
8125 					  NL80211_ATTR_VENDOR_DATA,
8126 					  portid, event_idx, approxlen, gfp);
8127 }
8128 
8129 /**
8130  * cfg80211_vendor_event - send the event
8131  * @skb: The skb, must have been allocated with cfg80211_vendor_event_alloc()
8132  * @gfp: allocation flags
8133  *
8134  * This function sends the given @skb, which must have been allocated
8135  * by cfg80211_vendor_event_alloc(), as an event. It always consumes it.
8136  */
cfg80211_vendor_event(struct sk_buff * skb,gfp_t gfp)8137 static inline void cfg80211_vendor_event(struct sk_buff *skb, gfp_t gfp)
8138 {
8139 	__cfg80211_send_event_skb(skb, gfp);
8140 }
8141 
8142 #ifdef CONFIG_NL80211_TESTMODE
8143 /**
8144  * DOC: Test mode
8145  *
8146  * Test mode is a set of utility functions to allow drivers to
8147  * interact with driver-specific tools to aid, for instance,
8148  * factory programming.
8149  *
8150  * This chapter describes how drivers interact with it. For more
8151  * information see the nl80211 book's chapter on it.
8152  */
8153 
8154 /**
8155  * cfg80211_testmode_alloc_reply_skb - allocate testmode reply
8156  * @wiphy: the wiphy
8157  * @approxlen: an upper bound of the length of the data that will
8158  *	be put into the skb
8159  *
8160  * This function allocates and pre-fills an skb for a reply to
8161  * the testmode command. Since it is intended for a reply, calling
8162  * it outside of the @testmode_cmd operation is invalid.
8163  *
8164  * The returned skb is pre-filled with the wiphy index and set up in
8165  * a way that any data that is put into the skb (with skb_put(),
8166  * nla_put() or similar) will end up being within the
8167  * %NL80211_ATTR_TESTDATA attribute, so all that needs to be done
8168  * with the skb is adding data for the corresponding userspace tool
8169  * which can then read that data out of the testdata attribute. You
8170  * must not modify the skb in any other way.
8171  *
8172  * When done, call cfg80211_testmode_reply() with the skb and return
8173  * its error code as the result of the @testmode_cmd operation.
8174  *
8175  * Return: An allocated and pre-filled skb. %NULL if any errors happen.
8176  */
8177 static inline struct sk_buff *
cfg80211_testmode_alloc_reply_skb(struct wiphy * wiphy,int approxlen)8178 cfg80211_testmode_alloc_reply_skb(struct wiphy *wiphy, int approxlen)
8179 {
8180 	return __cfg80211_alloc_reply_skb(wiphy, NL80211_CMD_TESTMODE,
8181 					  NL80211_ATTR_TESTDATA, approxlen);
8182 }
8183 
8184 /**
8185  * cfg80211_testmode_reply - send the reply skb
8186  * @skb: The skb, must have been allocated with
8187  *	cfg80211_testmode_alloc_reply_skb()
8188  *
8189  * Since calling this function will usually be the last thing
8190  * before returning from the @testmode_cmd you should return
8191  * the error code.  Note that this function consumes the skb
8192  * regardless of the return value.
8193  *
8194  * Return: An error code or 0 on success.
8195  */
cfg80211_testmode_reply(struct sk_buff * skb)8196 static inline int cfg80211_testmode_reply(struct sk_buff *skb)
8197 {
8198 	return cfg80211_vendor_cmd_reply(skb);
8199 }
8200 
8201 /**
8202  * cfg80211_testmode_alloc_event_skb - allocate testmode event
8203  * @wiphy: the wiphy
8204  * @approxlen: an upper bound of the length of the data that will
8205  *	be put into the skb
8206  * @gfp: allocation flags
8207  *
8208  * This function allocates and pre-fills an skb for an event on the
8209  * testmode multicast group.
8210  *
8211  * The returned skb is set up in the same way as with
8212  * cfg80211_testmode_alloc_reply_skb() but prepared for an event. As
8213  * there, you should simply add data to it that will then end up in the
8214  * %NL80211_ATTR_TESTDATA attribute. Again, you must not modify the skb
8215  * in any other way.
8216  *
8217  * When done filling the skb, call cfg80211_testmode_event() with the
8218  * skb to send the event.
8219  *
8220  * Return: An allocated and pre-filled skb. %NULL if any errors happen.
8221  */
8222 static inline struct sk_buff *
cfg80211_testmode_alloc_event_skb(struct wiphy * wiphy,int approxlen,gfp_t gfp)8223 cfg80211_testmode_alloc_event_skb(struct wiphy *wiphy, int approxlen, gfp_t gfp)
8224 {
8225 	return __cfg80211_alloc_event_skb(wiphy, NULL, NL80211_CMD_TESTMODE,
8226 					  NL80211_ATTR_TESTDATA, 0, -1,
8227 					  approxlen, gfp);
8228 }
8229 
8230 /**
8231  * cfg80211_testmode_event - send the event
8232  * @skb: The skb, must have been allocated with
8233  *	cfg80211_testmode_alloc_event_skb()
8234  * @gfp: allocation flags
8235  *
8236  * This function sends the given @skb, which must have been allocated
8237  * by cfg80211_testmode_alloc_event_skb(), as an event. It always
8238  * consumes it.
8239  */
cfg80211_testmode_event(struct sk_buff * skb,gfp_t gfp)8240 static inline void cfg80211_testmode_event(struct sk_buff *skb, gfp_t gfp)
8241 {
8242 	__cfg80211_send_event_skb(skb, gfp);
8243 }
8244 
8245 #define CFG80211_TESTMODE_CMD(cmd)	.testmode_cmd = (cmd),
8246 #define CFG80211_TESTMODE_DUMP(cmd)	.testmode_dump = (cmd),
8247 #else
8248 #define CFG80211_TESTMODE_CMD(cmd)
8249 #define CFG80211_TESTMODE_DUMP(cmd)
8250 #endif
8251 
8252 /**
8253  * struct cfg80211_fils_resp_params - FILS connection response params
8254  * @kek: KEK derived from a successful FILS connection (may be %NULL)
8255  * @kek_len: Length of @fils_kek in octets
8256  * @update_erp_next_seq_num: Boolean value to specify whether the value in
8257  *	@erp_next_seq_num is valid.
8258  * @erp_next_seq_num: The next sequence number to use in ERP message in
8259  *	FILS Authentication. This value should be specified irrespective of the
8260  *	status for a FILS connection.
8261  * @pmk: A new PMK if derived from a successful FILS connection (may be %NULL).
8262  * @pmk_len: Length of @pmk in octets
8263  * @pmkid: A new PMKID if derived from a successful FILS connection or the PMKID
8264  *	used for this FILS connection (may be %NULL).
8265  */
8266 struct cfg80211_fils_resp_params {
8267 	const u8 *kek;
8268 	size_t kek_len;
8269 	bool update_erp_next_seq_num;
8270 	u16 erp_next_seq_num;
8271 	const u8 *pmk;
8272 	size_t pmk_len;
8273 	const u8 *pmkid;
8274 };
8275 
8276 /**
8277  * struct cfg80211_connect_resp_params - Connection response params
8278  * @status: Status code, %WLAN_STATUS_SUCCESS for successful connection, use
8279  *	%WLAN_STATUS_UNSPECIFIED_FAILURE if your device cannot give you
8280  *	the real status code for failures. If this call is used to report a
8281  *	failure due to a timeout (e.g., not receiving an Authentication frame
8282  *	from the AP) instead of an explicit rejection by the AP, -1 is used to
8283  *	indicate that this is a failure, but without a status code.
8284  *	@timeout_reason is used to report the reason for the timeout in that
8285  *	case.
8286  * @req_ie: Association request IEs (may be %NULL)
8287  * @req_ie_len: Association request IEs length
8288  * @resp_ie: Association response IEs (may be %NULL)
8289  * @resp_ie_len: Association response IEs length
8290  * @fils: FILS connection response parameters.
8291  * @timeout_reason: Reason for connection timeout. This is used when the
8292  *	connection fails due to a timeout instead of an explicit rejection from
8293  *	the AP. %NL80211_TIMEOUT_UNSPECIFIED is used when the timeout reason is
8294  *	not known. This value is used only if @status < 0 to indicate that the
8295  *	failure is due to a timeout and not due to explicit rejection by the AP.
8296  *	This value is ignored in other cases (@status >= 0).
8297  * @valid_links: For MLO connection, BIT mask of the valid link ids. Otherwise
8298  *	zero.
8299  * @ap_mld_addr: For MLO connection, MLD address of the AP. Otherwise %NULL.
8300  * @links : For MLO connection, contains link info for the valid links indicated
8301  *	using @valid_links. For non-MLO connection, links[0] contains the
8302  *	connected AP info.
8303  * @links.addr: For MLO connection, MAC address of the STA link. Otherwise
8304  *	%NULL.
8305  * @links.bssid: For MLO connection, MAC address of the AP link. For non-MLO
8306  *	connection, links[0].bssid points to the BSSID of the AP (may be %NULL).
8307  * @links.bss: For MLO connection, entry of bss to which STA link is connected.
8308  *	For non-MLO connection, links[0].bss points to entry of bss to which STA
8309  *	is connected. It can be obtained through cfg80211_get_bss() (may be
8310  *	%NULL). It is recommended to store the bss from the connect_request and
8311  *	hold a reference to it and return through this param to avoid a warning
8312  *	if the bss is expired during the connection, esp. for those drivers
8313  *	implementing connect op. Only one parameter among @bssid and @bss needs
8314  *	to be specified.
8315  * @links.status: per-link status code, to report a status code that's not
8316  *	%WLAN_STATUS_SUCCESS for a given link, it must also be in the
8317  *	@valid_links bitmap and may have a BSS pointer (which is then released)
8318  */
8319 struct cfg80211_connect_resp_params {
8320 	int status;
8321 	const u8 *req_ie;
8322 	size_t req_ie_len;
8323 	const u8 *resp_ie;
8324 	size_t resp_ie_len;
8325 	struct cfg80211_fils_resp_params fils;
8326 	enum nl80211_timeout_reason timeout_reason;
8327 
8328 	const u8 *ap_mld_addr;
8329 	u16 valid_links;
8330 	struct {
8331 		const u8 *addr;
8332 		const u8 *bssid;
8333 		struct cfg80211_bss *bss;
8334 		u16 status;
8335 	} links[IEEE80211_MLD_MAX_NUM_LINKS];
8336 };
8337 
8338 /**
8339  * cfg80211_connect_done - notify cfg80211 of connection result
8340  *
8341  * @dev: network device
8342  * @params: connection response parameters
8343  * @gfp: allocation flags
8344  *
8345  * It should be called by the underlying driver once execution of the connection
8346  * request from connect() has been completed. This is similar to
8347  * cfg80211_connect_bss(), but takes a structure pointer for connection response
8348  * parameters. Only one of the functions among cfg80211_connect_bss(),
8349  * cfg80211_connect_result(), cfg80211_connect_timeout(),
8350  * and cfg80211_connect_done() should be called.
8351  */
8352 void cfg80211_connect_done(struct net_device *dev,
8353 			   struct cfg80211_connect_resp_params *params,
8354 			   gfp_t gfp);
8355 
8356 /**
8357  * cfg80211_connect_bss - notify cfg80211 of connection result
8358  *
8359  * @dev: network device
8360  * @bssid: the BSSID of the AP
8361  * @bss: Entry of bss to which STA got connected to, can be obtained through
8362  *	cfg80211_get_bss() (may be %NULL). But it is recommended to store the
8363  *	bss from the connect_request and hold a reference to it and return
8364  *	through this param to avoid a warning if the bss is expired during the
8365  *	connection, esp. for those drivers implementing connect op.
8366  *	Only one parameter among @bssid and @bss needs to be specified.
8367  * @req_ie: association request IEs (maybe be %NULL)
8368  * @req_ie_len: association request IEs length
8369  * @resp_ie: association response IEs (may be %NULL)
8370  * @resp_ie_len: assoc response IEs length
8371  * @status: status code, %WLAN_STATUS_SUCCESS for successful connection, use
8372  *	%WLAN_STATUS_UNSPECIFIED_FAILURE if your device cannot give you
8373  *	the real status code for failures. If this call is used to report a
8374  *	failure due to a timeout (e.g., not receiving an Authentication frame
8375  *	from the AP) instead of an explicit rejection by the AP, -1 is used to
8376  *	indicate that this is a failure, but without a status code.
8377  *	@timeout_reason is used to report the reason for the timeout in that
8378  *	case.
8379  * @gfp: allocation flags
8380  * @timeout_reason: reason for connection timeout. This is used when the
8381  *	connection fails due to a timeout instead of an explicit rejection from
8382  *	the AP. %NL80211_TIMEOUT_UNSPECIFIED is used when the timeout reason is
8383  *	not known. This value is used only if @status < 0 to indicate that the
8384  *	failure is due to a timeout and not due to explicit rejection by the AP.
8385  *	This value is ignored in other cases (@status >= 0).
8386  *
8387  * It should be called by the underlying driver once execution of the connection
8388  * request from connect() has been completed. This is similar to
8389  * cfg80211_connect_result(), but with the option of identifying the exact bss
8390  * entry for the connection. Only one of the functions among
8391  * cfg80211_connect_bss(), cfg80211_connect_result(),
8392  * cfg80211_connect_timeout(), and cfg80211_connect_done() should be called.
8393  */
8394 static inline void
cfg80211_connect_bss(struct net_device * dev,const u8 * bssid,struct cfg80211_bss * bss,const u8 * req_ie,size_t req_ie_len,const u8 * resp_ie,size_t resp_ie_len,int status,gfp_t gfp,enum nl80211_timeout_reason timeout_reason)8395 cfg80211_connect_bss(struct net_device *dev, const u8 *bssid,
8396 		     struct cfg80211_bss *bss, const u8 *req_ie,
8397 		     size_t req_ie_len, const u8 *resp_ie,
8398 		     size_t resp_ie_len, int status, gfp_t gfp,
8399 		     enum nl80211_timeout_reason timeout_reason)
8400 {
8401 	struct cfg80211_connect_resp_params params;
8402 
8403 	memset(&params, 0, sizeof(params));
8404 	params.status = status;
8405 	params.links[0].bssid = bssid;
8406 	params.links[0].bss = bss;
8407 	params.req_ie = req_ie;
8408 	params.req_ie_len = req_ie_len;
8409 	params.resp_ie = resp_ie;
8410 	params.resp_ie_len = resp_ie_len;
8411 	params.timeout_reason = timeout_reason;
8412 
8413 	cfg80211_connect_done(dev, &params, gfp);
8414 }
8415 
8416 /**
8417  * cfg80211_connect_result - notify cfg80211 of connection result
8418  *
8419  * @dev: network device
8420  * @bssid: the BSSID of the AP
8421  * @req_ie: association request IEs (maybe be %NULL)
8422  * @req_ie_len: association request IEs length
8423  * @resp_ie: association response IEs (may be %NULL)
8424  * @resp_ie_len: assoc response IEs length
8425  * @status: status code, %WLAN_STATUS_SUCCESS for successful connection, use
8426  *	%WLAN_STATUS_UNSPECIFIED_FAILURE if your device cannot give you
8427  *	the real status code for failures.
8428  * @gfp: allocation flags
8429  *
8430  * It should be called by the underlying driver once execution of the connection
8431  * request from connect() has been completed. This is similar to
8432  * cfg80211_connect_bss() which allows the exact bss entry to be specified. Only
8433  * one of the functions among cfg80211_connect_bss(), cfg80211_connect_result(),
8434  * cfg80211_connect_timeout(), and cfg80211_connect_done() should be called.
8435  */
8436 static inline void
cfg80211_connect_result(struct net_device * dev,const u8 * bssid,const u8 * req_ie,size_t req_ie_len,const u8 * resp_ie,size_t resp_ie_len,u16 status,gfp_t gfp)8437 cfg80211_connect_result(struct net_device *dev, const u8 *bssid,
8438 			const u8 *req_ie, size_t req_ie_len,
8439 			const u8 *resp_ie, size_t resp_ie_len,
8440 			u16 status, gfp_t gfp)
8441 {
8442 	cfg80211_connect_bss(dev, bssid, NULL, req_ie, req_ie_len, resp_ie,
8443 			     resp_ie_len, status, gfp,
8444 			     NL80211_TIMEOUT_UNSPECIFIED);
8445 }
8446 
8447 /**
8448  * cfg80211_connect_timeout - notify cfg80211 of connection timeout
8449  *
8450  * @dev: network device
8451  * @bssid: the BSSID of the AP
8452  * @req_ie: association request IEs (maybe be %NULL)
8453  * @req_ie_len: association request IEs length
8454  * @gfp: allocation flags
8455  * @timeout_reason: reason for connection timeout.
8456  *
8457  * It should be called by the underlying driver whenever connect() has failed
8458  * in a sequence where no explicit authentication/association rejection was
8459  * received from the AP. This could happen, e.g., due to not being able to send
8460  * out the Authentication or Association Request frame or timing out while
8461  * waiting for the response. Only one of the functions among
8462  * cfg80211_connect_bss(), cfg80211_connect_result(),
8463  * cfg80211_connect_timeout(), and cfg80211_connect_done() should be called.
8464  */
8465 static inline void
cfg80211_connect_timeout(struct net_device * dev,const u8 * bssid,const u8 * req_ie,size_t req_ie_len,gfp_t gfp,enum nl80211_timeout_reason timeout_reason)8466 cfg80211_connect_timeout(struct net_device *dev, const u8 *bssid,
8467 			 const u8 *req_ie, size_t req_ie_len, gfp_t gfp,
8468 			 enum nl80211_timeout_reason timeout_reason)
8469 {
8470 	cfg80211_connect_bss(dev, bssid, NULL, req_ie, req_ie_len, NULL, 0, -1,
8471 			     gfp, timeout_reason);
8472 }
8473 
8474 /**
8475  * struct cfg80211_roam_info - driver initiated roaming information
8476  *
8477  * @req_ie: association request IEs (maybe be %NULL)
8478  * @req_ie_len: association request IEs length
8479  * @resp_ie: association response IEs (may be %NULL)
8480  * @resp_ie_len: assoc response IEs length
8481  * @fils: FILS related roaming information.
8482  * @valid_links: For MLO roaming, BIT mask of the new valid links is set.
8483  *	Otherwise zero.
8484  * @ap_mld_addr: For MLO roaming, MLD address of the new AP. Otherwise %NULL.
8485  * @links : For MLO roaming, contains new link info for the valid links set in
8486  *	@valid_links. For non-MLO roaming, links[0] contains the new AP info.
8487  * @links.addr: For MLO roaming, MAC address of the STA link. Otherwise %NULL.
8488  * @links.bssid: For MLO roaming, MAC address of the new AP link. For non-MLO
8489  *	roaming, links[0].bssid points to the BSSID of the new AP. May be
8490  *	%NULL if %links.bss is set.
8491  * @links.channel: the channel of the new AP.
8492  * @links.bss: For MLO roaming, entry of new bss to which STA link got
8493  *	roamed. For non-MLO roaming, links[0].bss points to entry of bss to
8494  *	which STA got roamed (may be %NULL if %links.bssid is set)
8495  */
8496 struct cfg80211_roam_info {
8497 	const u8 *req_ie;
8498 	size_t req_ie_len;
8499 	const u8 *resp_ie;
8500 	size_t resp_ie_len;
8501 	struct cfg80211_fils_resp_params fils;
8502 
8503 	const u8 *ap_mld_addr;
8504 	u16 valid_links;
8505 	struct {
8506 		const u8 *addr;
8507 		const u8 *bssid;
8508 		struct ieee80211_channel *channel;
8509 		struct cfg80211_bss *bss;
8510 	} links[IEEE80211_MLD_MAX_NUM_LINKS];
8511 };
8512 
8513 /**
8514  * cfg80211_roamed - notify cfg80211 of roaming
8515  *
8516  * @dev: network device
8517  * @info: information about the new BSS. struct &cfg80211_roam_info.
8518  * @gfp: allocation flags
8519  *
8520  * This function may be called with the driver passing either the BSSID of the
8521  * new AP or passing the bss entry to avoid a race in timeout of the bss entry.
8522  * It should be called by the underlying driver whenever it roamed from one AP
8523  * to another while connected. Drivers which have roaming implemented in
8524  * firmware should pass the bss entry to avoid a race in bss entry timeout where
8525  * the bss entry of the new AP is seen in the driver, but gets timed out by the
8526  * time it is accessed in __cfg80211_roamed() due to delay in scheduling
8527  * rdev->event_work. In case of any failures, the reference is released
8528  * either in cfg80211_roamed() or in __cfg80211_romed(), Otherwise, it will be
8529  * released while disconnecting from the current bss.
8530  */
8531 void cfg80211_roamed(struct net_device *dev, struct cfg80211_roam_info *info,
8532 		     gfp_t gfp);
8533 
8534 /**
8535  * cfg80211_port_authorized - notify cfg80211 of successful security association
8536  *
8537  * @dev: network device
8538  * @peer_addr: BSSID of the AP/P2P GO in case of STA/GC or STA/GC MAC address
8539  *	in case of AP/P2P GO
8540  * @td_bitmap: transition disable policy
8541  * @td_bitmap_len: Length of transition disable policy
8542  * @gfp: allocation flags
8543  *
8544  * This function should be called by a driver that supports 4 way handshake
8545  * offload after a security association was successfully established (i.e.,
8546  * the 4 way handshake was completed successfully). The call to this function
8547  * should be preceded with a call to cfg80211_connect_result(),
8548  * cfg80211_connect_done(), cfg80211_connect_bss() or cfg80211_roamed() to
8549  * indicate the 802.11 association.
8550  * This function can also be called by AP/P2P GO driver that supports
8551  * authentication offload. In this case the peer_mac passed is that of
8552  * associated STA/GC.
8553  */
8554 void cfg80211_port_authorized(struct net_device *dev, const u8 *peer_addr,
8555 			      const u8* td_bitmap, u8 td_bitmap_len, gfp_t gfp);
8556 
8557 /**
8558  * cfg80211_disconnected - notify cfg80211 that connection was dropped
8559  *
8560  * @dev: network device
8561  * @ie: information elements of the deauth/disassoc frame (may be %NULL)
8562  * @ie_len: length of IEs
8563  * @reason: reason code for the disconnection, set it to 0 if unknown
8564  * @locally_generated: disconnection was requested locally
8565  * @gfp: allocation flags
8566  *
8567  * After it calls this function, the driver should enter an idle state
8568  * and not try to connect to any AP any more.
8569  */
8570 void cfg80211_disconnected(struct net_device *dev, u16 reason,
8571 			   const u8 *ie, size_t ie_len,
8572 			   bool locally_generated, gfp_t gfp);
8573 
8574 /**
8575  * cfg80211_ready_on_channel - notification of remain_on_channel start
8576  * @wdev: wireless device
8577  * @cookie: the request cookie
8578  * @chan: The current channel (from remain_on_channel request)
8579  * @duration: Duration in milliseconds that the driver intents to remain on the
8580  *	channel
8581  * @gfp: allocation flags
8582  */
8583 void cfg80211_ready_on_channel(struct wireless_dev *wdev, u64 cookie,
8584 			       struct ieee80211_channel *chan,
8585 			       unsigned int duration, gfp_t gfp);
8586 
8587 /**
8588  * cfg80211_remain_on_channel_expired - remain_on_channel duration expired
8589  * @wdev: wireless device
8590  * @cookie: the request cookie
8591  * @chan: The current channel (from remain_on_channel request)
8592  * @gfp: allocation flags
8593  */
8594 void cfg80211_remain_on_channel_expired(struct wireless_dev *wdev, u64 cookie,
8595 					struct ieee80211_channel *chan,
8596 					gfp_t gfp);
8597 
8598 /**
8599  * cfg80211_tx_mgmt_expired - tx_mgmt duration expired
8600  * @wdev: wireless device
8601  * @cookie: the requested cookie
8602  * @chan: The current channel (from tx_mgmt request)
8603  * @gfp: allocation flags
8604  */
8605 void cfg80211_tx_mgmt_expired(struct wireless_dev *wdev, u64 cookie,
8606 			      struct ieee80211_channel *chan, gfp_t gfp);
8607 
8608 /**
8609  * cfg80211_sinfo_alloc_tid_stats - allocate per-tid statistics.
8610  *
8611  * @sinfo: the station information
8612  * @gfp: allocation flags
8613  *
8614  * Return: 0 on success. Non-zero on error.
8615  */
8616 int cfg80211_sinfo_alloc_tid_stats(struct station_info *sinfo, gfp_t gfp);
8617 
8618 /**
8619  * cfg80211_link_sinfo_alloc_tid_stats - allocate per-tid statistics.
8620  *
8621  * @link_sinfo: the link station information
8622  * @gfp: allocation flags
8623  *
8624  * Return: 0 on success. Non-zero on error.
8625  */
8626 int cfg80211_link_sinfo_alloc_tid_stats(struct link_station_info *link_sinfo,
8627 					gfp_t gfp);
8628 
8629 /**
8630  * cfg80211_sinfo_release_content - release contents of station info
8631  * @sinfo: the station information
8632  *
8633  * Releases any potentially allocated sub-information of the station
8634  * information, but not the struct itself (since it's typically on
8635  * the stack.)
8636  */
cfg80211_sinfo_release_content(struct station_info * sinfo)8637 static inline void cfg80211_sinfo_release_content(struct station_info *sinfo)
8638 {
8639 	kfree(sinfo->pertid);
8640 
8641 	for (int link_id = 0; link_id < ARRAY_SIZE(sinfo->links); link_id++) {
8642 		if (sinfo->links[link_id]) {
8643 			kfree(sinfo->links[link_id]->pertid);
8644 			kfree(sinfo->links[link_id]);
8645 		}
8646 	}
8647 }
8648 
8649 /**
8650  * cfg80211_new_sta - notify userspace about station
8651  *
8652  * @dev: the netdev
8653  * @mac_addr: the station's address
8654  * @sinfo: the station information
8655  * @gfp: allocation flags
8656  */
8657 void cfg80211_new_sta(struct net_device *dev, const u8 *mac_addr,
8658 		      struct station_info *sinfo, gfp_t gfp);
8659 
8660 /**
8661  * cfg80211_del_sta_sinfo - notify userspace about deletion of a station
8662  * @dev: the netdev
8663  * @mac_addr: the station's address. For MLD station, MLD address is used.
8664  * @sinfo: the station information/statistics
8665  * @gfp: allocation flags
8666  */
8667 void cfg80211_del_sta_sinfo(struct net_device *dev, const u8 *mac_addr,
8668 			    struct station_info *sinfo, gfp_t gfp);
8669 
8670 /**
8671  * cfg80211_del_sta - notify userspace about deletion of a station
8672  *
8673  * @dev: the netdev
8674  * @mac_addr: the station's address. For MLD station, MLD address is used.
8675  * @gfp: allocation flags
8676  */
cfg80211_del_sta(struct net_device * dev,const u8 * mac_addr,gfp_t gfp)8677 static inline void cfg80211_del_sta(struct net_device *dev,
8678 				    const u8 *mac_addr, gfp_t gfp)
8679 {
8680 	cfg80211_del_sta_sinfo(dev, mac_addr, NULL, gfp);
8681 }
8682 
8683 /**
8684  * cfg80211_conn_failed - connection request failed notification
8685  *
8686  * @dev: the netdev
8687  * @mac_addr: the station's address
8688  * @reason: the reason for connection failure
8689  * @gfp: allocation flags
8690  *
8691  * Whenever a station tries to connect to an AP and if the station
8692  * could not connect to the AP as the AP has rejected the connection
8693  * for some reasons, this function is called.
8694  *
8695  * The reason for connection failure can be any of the value from
8696  * nl80211_connect_failed_reason enum
8697  */
8698 void cfg80211_conn_failed(struct net_device *dev, const u8 *mac_addr,
8699 			  enum nl80211_connect_failed_reason reason,
8700 			  gfp_t gfp);
8701 
8702 /**
8703  * struct cfg80211_rx_info - received management frame info
8704  *
8705  * @freq: Frequency on which the frame was received in kHz
8706  * @sig_dbm: signal strength in dBm, or 0 if unknown
8707  * @have_link_id: indicates the frame was received on a link of
8708  *	an MLD, i.e. the @link_id field is valid
8709  * @link_id: the ID of the link the frame was received	on
8710  * @buf: Management frame (header + body)
8711  * @len: length of the frame data
8712  * @flags: flags, as defined in &enum nl80211_rxmgmt_flags
8713  * @rx_tstamp: Hardware timestamp of frame RX in nanoseconds
8714  * @ack_tstamp: Hardware timestamp of ack TX in nanoseconds
8715  */
8716 struct cfg80211_rx_info {
8717 	int freq;
8718 	int sig_dbm;
8719 	bool have_link_id;
8720 	u8 link_id;
8721 	const u8 *buf;
8722 	size_t len;
8723 	u32 flags;
8724 	u64 rx_tstamp;
8725 	u64 ack_tstamp;
8726 };
8727 
8728 /**
8729  * cfg80211_rx_mgmt_ext - management frame notification with extended info
8730  * @wdev: wireless device receiving the frame
8731  * @info: RX info as defined in struct cfg80211_rx_info
8732  *
8733  * This function is called whenever an Action frame is received for a station
8734  * mode interface, but is not processed in kernel.
8735  *
8736  * Return: %true if a user space application has registered for this frame.
8737  * For action frames, that makes it responsible for rejecting unrecognized
8738  * action frames; %false otherwise, in which case for action frames the
8739  * driver is responsible for rejecting the frame.
8740  */
8741 bool cfg80211_rx_mgmt_ext(struct wireless_dev *wdev,
8742 			  struct cfg80211_rx_info *info);
8743 
8744 /**
8745  * cfg80211_rx_mgmt_khz - notification of received, unprocessed management frame
8746  * @wdev: wireless device receiving the frame
8747  * @freq: Frequency on which the frame was received in KHz
8748  * @sig_dbm: signal strength in dBm, or 0 if unknown
8749  * @buf: Management frame (header + body)
8750  * @len: length of the frame data
8751  * @flags: flags, as defined in enum nl80211_rxmgmt_flags
8752  *
8753  * This function is called whenever an Action frame is received for a station
8754  * mode interface, but is not processed in kernel.
8755  *
8756  * Return: %true if a user space application has registered for this frame.
8757  * For action frames, that makes it responsible for rejecting unrecognized
8758  * action frames; %false otherwise, in which case for action frames the
8759  * driver is responsible for rejecting the frame.
8760  */
cfg80211_rx_mgmt_khz(struct wireless_dev * wdev,int freq,int sig_dbm,const u8 * buf,size_t len,u32 flags)8761 static inline bool cfg80211_rx_mgmt_khz(struct wireless_dev *wdev, int freq,
8762 					int sig_dbm, const u8 *buf, size_t len,
8763 					u32 flags)
8764 {
8765 	struct cfg80211_rx_info info = {
8766 		.freq = freq,
8767 		.sig_dbm = sig_dbm,
8768 		.buf = buf,
8769 		.len = len,
8770 		.flags = flags
8771 	};
8772 
8773 	return cfg80211_rx_mgmt_ext(wdev, &info);
8774 }
8775 
8776 /**
8777  * cfg80211_rx_mgmt - notification of received, unprocessed management frame
8778  * @wdev: wireless device receiving the frame
8779  * @freq: Frequency on which the frame was received in MHz
8780  * @sig_dbm: signal strength in dBm, or 0 if unknown
8781  * @buf: Management frame (header + body)
8782  * @len: length of the frame data
8783  * @flags: flags, as defined in enum nl80211_rxmgmt_flags
8784  *
8785  * This function is called whenever an Action frame is received for a station
8786  * mode interface, but is not processed in kernel.
8787  *
8788  * Return: %true if a user space application has registered for this frame.
8789  * For action frames, that makes it responsible for rejecting unrecognized
8790  * action frames; %false otherwise, in which case for action frames the
8791  * driver is responsible for rejecting the frame.
8792  */
cfg80211_rx_mgmt(struct wireless_dev * wdev,int freq,int sig_dbm,const u8 * buf,size_t len,u32 flags)8793 static inline bool cfg80211_rx_mgmt(struct wireless_dev *wdev, int freq,
8794 				    int sig_dbm, const u8 *buf, size_t len,
8795 				    u32 flags)
8796 {
8797 	struct cfg80211_rx_info info = {
8798 		.freq = MHZ_TO_KHZ(freq),
8799 		.sig_dbm = sig_dbm,
8800 		.buf = buf,
8801 		.len = len,
8802 		.flags = flags
8803 	};
8804 
8805 	return cfg80211_rx_mgmt_ext(wdev, &info);
8806 }
8807 
8808 /**
8809  * struct cfg80211_tx_status - TX status for management frame information
8810  *
8811  * @cookie: Cookie returned by cfg80211_ops::mgmt_tx()
8812  * @tx_tstamp: hardware TX timestamp in nanoseconds
8813  * @ack_tstamp: hardware ack RX timestamp in nanoseconds
8814  * @buf: Management frame (header + body)
8815  * @len: length of the frame data
8816  * @ack: Whether frame was acknowledged
8817  */
8818 struct cfg80211_tx_status {
8819 	u64 cookie;
8820 	u64 tx_tstamp;
8821 	u64 ack_tstamp;
8822 	const u8 *buf;
8823 	size_t len;
8824 	bool ack;
8825 };
8826 
8827 /**
8828  * cfg80211_mgmt_tx_status_ext - TX status notification with extended info
8829  * @wdev: wireless device receiving the frame
8830  * @status: TX status data
8831  * @gfp: context flags
8832  *
8833  * This function is called whenever a management frame was requested to be
8834  * transmitted with cfg80211_ops::mgmt_tx() to report the TX status of the
8835  * transmission attempt with extended info.
8836  */
8837 void cfg80211_mgmt_tx_status_ext(struct wireless_dev *wdev,
8838 				 struct cfg80211_tx_status *status, gfp_t gfp);
8839 
8840 /**
8841  * cfg80211_mgmt_tx_status - notification of TX status for management frame
8842  * @wdev: wireless device receiving the frame
8843  * @cookie: Cookie returned by cfg80211_ops::mgmt_tx()
8844  * @buf: Management frame (header + body)
8845  * @len: length of the frame data
8846  * @ack: Whether frame was acknowledged
8847  * @gfp: context flags
8848  *
8849  * This function is called whenever a management frame was requested to be
8850  * transmitted with cfg80211_ops::mgmt_tx() to report the TX status of the
8851  * transmission attempt.
8852  */
cfg80211_mgmt_tx_status(struct wireless_dev * wdev,u64 cookie,const u8 * buf,size_t len,bool ack,gfp_t gfp)8853 static inline void cfg80211_mgmt_tx_status(struct wireless_dev *wdev,
8854 					   u64 cookie, const u8 *buf,
8855 					   size_t len, bool ack, gfp_t gfp)
8856 {
8857 	struct cfg80211_tx_status status = {
8858 		.cookie = cookie,
8859 		.buf = buf,
8860 		.len = len,
8861 		.ack = ack
8862 	};
8863 
8864 	cfg80211_mgmt_tx_status_ext(wdev, &status, gfp);
8865 }
8866 
8867 /**
8868  * cfg80211_control_port_tx_status - notification of TX status for control
8869  *                                   port frames
8870  * @wdev: wireless device receiving the frame
8871  * @cookie: Cookie returned by cfg80211_ops::tx_control_port()
8872  * @buf: Data frame (header + body)
8873  * @len: length of the frame data
8874  * @ack: Whether frame was acknowledged
8875  * @gfp: context flags
8876  *
8877  * This function is called whenever a control port frame was requested to be
8878  * transmitted with cfg80211_ops::tx_control_port() to report the TX status of
8879  * the transmission attempt.
8880  */
8881 void cfg80211_control_port_tx_status(struct wireless_dev *wdev, u64 cookie,
8882 				     const u8 *buf, size_t len, bool ack,
8883 				     gfp_t gfp);
8884 
8885 /**
8886  * cfg80211_rx_control_port - notification about a received control port frame
8887  * @dev: The device the frame matched to
8888  * @skb: The skbuf with the control port frame.  It is assumed that the skbuf
8889  *	is 802.3 formatted (with 802.3 header).  The skb can be non-linear.
8890  *	This function does not take ownership of the skb, so the caller is
8891  *	responsible for any cleanup.  The caller must also ensure that
8892  *	skb->protocol is set appropriately.
8893  * @unencrypted: Whether the frame was received unencrypted
8894  * @link_id: the link the frame was received on, -1 if not applicable or unknown
8895  *
8896  * This function is used to inform userspace about a received control port
8897  * frame.  It should only be used if userspace indicated it wants to receive
8898  * control port frames over nl80211.
8899  *
8900  * The frame is the data portion of the 802.3 or 802.11 data frame with all
8901  * network layer headers removed (e.g. the raw EAPoL frame).
8902  *
8903  * Return: %true if the frame was passed to userspace
8904  */
8905 bool cfg80211_rx_control_port(struct net_device *dev, struct sk_buff *skb,
8906 			      bool unencrypted, int link_id);
8907 
8908 /**
8909  * cfg80211_cqm_rssi_notify - connection quality monitoring rssi event
8910  * @dev: network device
8911  * @rssi_event: the triggered RSSI event
8912  * @rssi_level: new RSSI level value or 0 if not available
8913  * @gfp: context flags
8914  *
8915  * This function is called when a configured connection quality monitoring
8916  * rssi threshold reached event occurs.
8917  */
8918 void cfg80211_cqm_rssi_notify(struct net_device *dev,
8919 			      enum nl80211_cqm_rssi_threshold_event rssi_event,
8920 			      s32 rssi_level, gfp_t gfp);
8921 
8922 /**
8923  * cfg80211_cqm_pktloss_notify - notify userspace about packetloss to peer
8924  * @dev: network device
8925  * @peer: peer's MAC address
8926  * @num_packets: how many packets were lost -- should be a fixed threshold
8927  *	but probably no less than maybe 50, or maybe a throughput dependent
8928  *	threshold (to account for temporary interference)
8929  * @gfp: context flags
8930  */
8931 void cfg80211_cqm_pktloss_notify(struct net_device *dev,
8932 				 const u8 *peer, u32 num_packets, gfp_t gfp);
8933 
8934 /**
8935  * cfg80211_cqm_txe_notify - TX error rate event
8936  * @dev: network device
8937  * @peer: peer's MAC address
8938  * @num_packets: how many packets were lost
8939  * @rate: % of packets which failed transmission
8940  * @intvl: interval (in s) over which the TX failure threshold was breached.
8941  * @gfp: context flags
8942  *
8943  * Notify userspace when configured % TX failures over number of packets in a
8944  * given interval is exceeded.
8945  */
8946 void cfg80211_cqm_txe_notify(struct net_device *dev, const u8 *peer,
8947 			     u32 num_packets, u32 rate, u32 intvl, gfp_t gfp);
8948 
8949 /**
8950  * cfg80211_cqm_beacon_loss_notify - beacon loss event
8951  * @dev: network device
8952  * @gfp: context flags
8953  *
8954  * Notify userspace about beacon loss from the connected AP.
8955  */
8956 void cfg80211_cqm_beacon_loss_notify(struct net_device *dev, gfp_t gfp);
8957 
8958 /**
8959  * __cfg80211_radar_event - radar detection event
8960  * @wiphy: the wiphy
8961  * @chandef: chandef for the current channel
8962  * @offchan: the radar has been detected on the offchannel chain
8963  * @gfp: context flags
8964  *
8965  * This function is called when a radar is detected on the current chanenl.
8966  */
8967 void __cfg80211_radar_event(struct wiphy *wiphy,
8968 			    struct cfg80211_chan_def *chandef,
8969 			    bool offchan, gfp_t gfp);
8970 
8971 static inline void
cfg80211_radar_event(struct wiphy * wiphy,struct cfg80211_chan_def * chandef,gfp_t gfp)8972 cfg80211_radar_event(struct wiphy *wiphy,
8973 		     struct cfg80211_chan_def *chandef,
8974 		     gfp_t gfp)
8975 {
8976 	__cfg80211_radar_event(wiphy, chandef, false, gfp);
8977 }
8978 
8979 static inline void
cfg80211_background_radar_event(struct wiphy * wiphy,struct cfg80211_chan_def * chandef,gfp_t gfp)8980 cfg80211_background_radar_event(struct wiphy *wiphy,
8981 				struct cfg80211_chan_def *chandef,
8982 				gfp_t gfp)
8983 {
8984 	__cfg80211_radar_event(wiphy, chandef, true, gfp);
8985 }
8986 
8987 /**
8988  * cfg80211_sta_opmode_change_notify - STA's ht/vht operation mode change event
8989  * @dev: network device
8990  * @mac: MAC address of a station which opmode got modified
8991  * @sta_opmode: station's current opmode value
8992  * @gfp: context flags
8993  *
8994  * Driver should call this function when station's opmode modified via action
8995  * frame.
8996  */
8997 void cfg80211_sta_opmode_change_notify(struct net_device *dev, const u8 *mac,
8998 				       struct sta_opmode_info *sta_opmode,
8999 				       gfp_t gfp);
9000 
9001 /**
9002  * cfg80211_cac_event - Channel availability check (CAC) event
9003  * @netdev: network device
9004  * @chandef: chandef for the current channel
9005  * @event: type of event
9006  * @gfp: context flags
9007  * @link_id: valid link_id for MLO operation or 0 otherwise.
9008  *
9009  * This function is called when a Channel availability check (CAC) is finished
9010  * or aborted. This must be called to notify the completion of a CAC process,
9011  * also by full-MAC drivers.
9012  */
9013 void cfg80211_cac_event(struct net_device *netdev,
9014 			const struct cfg80211_chan_def *chandef,
9015 			enum nl80211_radar_event event, gfp_t gfp,
9016 			unsigned int link_id);
9017 
9018 /**
9019  * cfg80211_background_cac_abort - Channel Availability Check offchan abort event
9020  * @wiphy: the wiphy
9021  *
9022  * This function is called by the driver when a Channel Availability Check
9023  * (CAC) is aborted by a offchannel dedicated chain.
9024  */
9025 void cfg80211_background_cac_abort(struct wiphy *wiphy);
9026 
9027 /**
9028  * cfg80211_gtk_rekey_notify - notify userspace about driver rekeying
9029  * @dev: network device
9030  * @bssid: BSSID of AP (to avoid races)
9031  * @replay_ctr: new replay counter
9032  * @gfp: allocation flags
9033  */
9034 void cfg80211_gtk_rekey_notify(struct net_device *dev, const u8 *bssid,
9035 			       const u8 *replay_ctr, gfp_t gfp);
9036 
9037 /**
9038  * cfg80211_pmksa_candidate_notify - notify about PMKSA caching candidate
9039  * @dev: network device
9040  * @index: candidate index (the smaller the index, the higher the priority)
9041  * @bssid: BSSID of AP
9042  * @preauth: Whether AP advertises support for RSN pre-authentication
9043  * @gfp: allocation flags
9044  */
9045 void cfg80211_pmksa_candidate_notify(struct net_device *dev, int index,
9046 				     const u8 *bssid, bool preauth, gfp_t gfp);
9047 
9048 /**
9049  * cfg80211_rx_spurious_frame - inform userspace about a spurious frame
9050  * @dev: The device the frame matched to
9051  * @link_id: the link the frame was received on, -1 if not applicable or unknown
9052  * @addr: the transmitter address
9053  * @gfp: context flags
9054  *
9055  * This function is used in AP mode (only!) to inform userspace that
9056  * a spurious class 3 frame was received, to be able to deauth the
9057  * sender.
9058  * Return: %true if the frame was passed to userspace (or this failed
9059  * for a reason other than not having a subscription.)
9060  */
9061 bool cfg80211_rx_spurious_frame(struct net_device *dev, const u8 *addr,
9062 				int link_id, gfp_t gfp);
9063 
9064 /**
9065  * cfg80211_rx_unexpected_4addr_frame - inform about unexpected WDS frame
9066  * @dev: The device the frame matched to
9067  * @addr: the transmitter address
9068  * @link_id: the link the frame was received on, -1 if not applicable or unknown
9069  * @gfp: context flags
9070  *
9071  * This function is used in AP mode (only!) to inform userspace that
9072  * an associated station sent a 4addr frame but that wasn't expected.
9073  * It is allowed and desirable to send this event only once for each
9074  * station to avoid event flooding.
9075  * Return: %true if the frame was passed to userspace (or this failed
9076  * for a reason other than not having a subscription.)
9077  */
9078 bool cfg80211_rx_unexpected_4addr_frame(struct net_device *dev, const u8 *addr,
9079 					int link_id, gfp_t gfp);
9080 
9081 /**
9082  * cfg80211_probe_status - notify userspace about probe status
9083  * @dev: the device the probe was sent on
9084  * @addr: the address of the peer
9085  * @cookie: the cookie filled in @probe_client previously
9086  * @acked: indicates whether probe was acked or not
9087  * @ack_signal: signal strength (in dBm) of the ACK frame.
9088  * @is_valid_ack_signal: indicates the ack_signal is valid or not.
9089  * @gfp: allocation flags
9090  */
9091 void cfg80211_probe_status(struct net_device *dev, const u8 *addr,
9092 			   u64 cookie, bool acked, s32 ack_signal,
9093 			   bool is_valid_ack_signal, gfp_t gfp);
9094 
9095 /**
9096  * cfg80211_report_obss_beacon_khz - report beacon from other APs
9097  * @wiphy: The wiphy that received the beacon
9098  * @frame: the frame
9099  * @len: length of the frame
9100  * @freq: frequency the frame was received on in KHz
9101  * @sig_dbm: signal strength in dBm, or 0 if unknown
9102  *
9103  * Use this function to report to userspace when a beacon was
9104  * received. It is not useful to call this when there is no
9105  * netdev that is in AP/GO mode.
9106  */
9107 void cfg80211_report_obss_beacon_khz(struct wiphy *wiphy, const u8 *frame,
9108 				     size_t len, int freq, int sig_dbm);
9109 
9110 /**
9111  * cfg80211_report_obss_beacon - report beacon from other APs
9112  * @wiphy: The wiphy that received the beacon
9113  * @frame: the frame
9114  * @len: length of the frame
9115  * @freq: frequency the frame was received on
9116  * @sig_dbm: signal strength in dBm, or 0 if unknown
9117  *
9118  * Use this function to report to userspace when a beacon was
9119  * received. It is not useful to call this when there is no
9120  * netdev that is in AP/GO mode.
9121  */
cfg80211_report_obss_beacon(struct wiphy * wiphy,const u8 * frame,size_t len,int freq,int sig_dbm)9122 static inline void cfg80211_report_obss_beacon(struct wiphy *wiphy,
9123 					       const u8 *frame, size_t len,
9124 					       int freq, int sig_dbm)
9125 {
9126 	cfg80211_report_obss_beacon_khz(wiphy, frame, len, MHZ_TO_KHZ(freq),
9127 					sig_dbm);
9128 }
9129 
9130 /**
9131  * struct cfg80211_beaconing_check_config - beacon check configuration
9132  * @iftype: the interface type to check for
9133  * @relax: allow IR-relaxation conditions to apply (e.g. another
9134  *	interface connected already on the same channel)
9135  *	NOTE: If this is set, wiphy mutex must be held.
9136  * @reg_power: &enum ieee80211_ap_reg_power value indicating the
9137  *	advertised/used 6 GHz regulatory power setting
9138  */
9139 struct cfg80211_beaconing_check_config {
9140 	enum nl80211_iftype iftype;
9141 	enum ieee80211_ap_reg_power reg_power;
9142 	bool relax;
9143 };
9144 
9145 /**
9146  * cfg80211_reg_check_beaconing - check if beaconing is allowed
9147  * @wiphy: the wiphy
9148  * @chandef: the channel definition
9149  * @cfg: additional parameters for the checking
9150  *
9151  * Return: %true if there is no secondary channel or the secondary channel(s)
9152  * can be used for beaconing (i.e. is not a radar channel etc.)
9153  */
9154 bool cfg80211_reg_check_beaconing(struct wiphy *wiphy,
9155 				  struct cfg80211_chan_def *chandef,
9156 				  struct cfg80211_beaconing_check_config *cfg);
9157 
9158 /**
9159  * cfg80211_reg_can_beacon - check if beaconing is allowed
9160  * @wiphy: the wiphy
9161  * @chandef: the channel definition
9162  * @iftype: interface type
9163  *
9164  * Return: %true if there is no secondary channel or the secondary channel(s)
9165  * can be used for beaconing (i.e. is not a radar channel etc.)
9166  */
9167 static inline bool
cfg80211_reg_can_beacon(struct wiphy * wiphy,struct cfg80211_chan_def * chandef,enum nl80211_iftype iftype)9168 cfg80211_reg_can_beacon(struct wiphy *wiphy,
9169 			struct cfg80211_chan_def *chandef,
9170 			enum nl80211_iftype iftype)
9171 {
9172 	struct cfg80211_beaconing_check_config config = {
9173 		.iftype = iftype,
9174 	};
9175 
9176 	return cfg80211_reg_check_beaconing(wiphy, chandef, &config);
9177 }
9178 
9179 /**
9180  * cfg80211_reg_can_beacon_relax - check if beaconing is allowed with relaxation
9181  * @wiphy: the wiphy
9182  * @chandef: the channel definition
9183  * @iftype: interface type
9184  *
9185  * Return: %true if there is no secondary channel or the secondary channel(s)
9186  * can be used for beaconing (i.e. is not a radar channel etc.). This version
9187  * also checks if IR-relaxation conditions apply, to allow beaconing under
9188  * more permissive conditions.
9189  *
9190  * Context: Requires the wiphy mutex to be held.
9191  */
9192 static inline bool
cfg80211_reg_can_beacon_relax(struct wiphy * wiphy,struct cfg80211_chan_def * chandef,enum nl80211_iftype iftype)9193 cfg80211_reg_can_beacon_relax(struct wiphy *wiphy,
9194 			      struct cfg80211_chan_def *chandef,
9195 			      enum nl80211_iftype iftype)
9196 {
9197 	struct cfg80211_beaconing_check_config config = {
9198 		.iftype = iftype,
9199 		.relax = true,
9200 	};
9201 
9202 	return cfg80211_reg_check_beaconing(wiphy, chandef, &config);
9203 }
9204 
9205 /**
9206  * cfg80211_ch_switch_notify - update wdev channel and notify userspace
9207  * @dev: the device which switched channels
9208  * @chandef: the new channel definition
9209  * @link_id: the link ID for MLO, must be 0 for non-MLO
9210  *
9211  * Caller must hold wiphy mutex, therefore must only be called from sleepable
9212  * driver context!
9213  */
9214 void cfg80211_ch_switch_notify(struct net_device *dev,
9215 			       struct cfg80211_chan_def *chandef,
9216 			       unsigned int link_id);
9217 
9218 /**
9219  * cfg80211_ch_switch_started_notify - notify channel switch start
9220  * @dev: the device on which the channel switch started
9221  * @chandef: the future channel definition
9222  * @link_id: the link ID for MLO, must be 0 for non-MLO
9223  * @count: the number of TBTTs until the channel switch happens
9224  * @quiet: whether or not immediate quiet was requested by the AP
9225  *
9226  * Inform the userspace about the channel switch that has just
9227  * started, so that it can take appropriate actions (eg. starting
9228  * channel switch on other vifs), if necessary.
9229  */
9230 void cfg80211_ch_switch_started_notify(struct net_device *dev,
9231 				       struct cfg80211_chan_def *chandef,
9232 				       unsigned int link_id, u8 count,
9233 				       bool quiet);
9234 
9235 /**
9236  * ieee80211_operating_class_to_band - convert operating class to band
9237  *
9238  * @operating_class: the operating class to convert
9239  * @band: band pointer to fill
9240  *
9241  * Return: %true if the conversion was successful, %false otherwise.
9242  */
9243 bool ieee80211_operating_class_to_band(u8 operating_class,
9244 				       enum nl80211_band *band);
9245 
9246 /**
9247  * ieee80211_operating_class_to_chandef - convert operating class to chandef
9248  *
9249  * @operating_class: the operating class to convert
9250  * @chan: the ieee80211_channel to convert
9251  * @chandef: a pointer to the resulting chandef
9252  *
9253  * Return: %true if the conversion was successful, %false otherwise.
9254  */
9255 bool ieee80211_operating_class_to_chandef(u8 operating_class,
9256 					  struct ieee80211_channel *chan,
9257 					  struct cfg80211_chan_def *chandef);
9258 
9259 /**
9260  * ieee80211_chandef_to_operating_class - convert chandef to operation class
9261  *
9262  * @chandef: the chandef to convert
9263  * @op_class: a pointer to the resulting operating class
9264  *
9265  * Return: %true if the conversion was successful, %false otherwise.
9266  */
9267 bool ieee80211_chandef_to_operating_class(struct cfg80211_chan_def *chandef,
9268 					  u8 *op_class);
9269 
9270 /**
9271  * ieee80211_chandef_to_khz - convert chandef to frequency in KHz
9272  *
9273  * @chandef: the chandef to convert
9274  *
9275  * Return: the center frequency of chandef (1st segment) in KHz.
9276  */
9277 static inline u32
ieee80211_chandef_to_khz(const struct cfg80211_chan_def * chandef)9278 ieee80211_chandef_to_khz(const struct cfg80211_chan_def *chandef)
9279 {
9280 	return MHZ_TO_KHZ(chandef->center_freq1) + chandef->freq1_offset;
9281 }
9282 
9283 /**
9284  * cfg80211_tdls_oper_request - request userspace to perform TDLS operation
9285  * @dev: the device on which the operation is requested
9286  * @peer: the MAC address of the peer device
9287  * @oper: the requested TDLS operation (NL80211_TDLS_SETUP or
9288  *	NL80211_TDLS_TEARDOWN)
9289  * @reason_code: the reason code for teardown request
9290  * @gfp: allocation flags
9291  *
9292  * This function is used to request userspace to perform TDLS operation that
9293  * requires knowledge of keys, i.e., link setup or teardown when the AP
9294  * connection uses encryption. This is optional mechanism for the driver to use
9295  * if it can automatically determine when a TDLS link could be useful (e.g.,
9296  * based on traffic and signal strength for a peer).
9297  */
9298 void cfg80211_tdls_oper_request(struct net_device *dev, const u8 *peer,
9299 				enum nl80211_tdls_operation oper,
9300 				u16 reason_code, gfp_t gfp);
9301 
9302 /**
9303  * cfg80211_calculate_bitrate - calculate actual bitrate (in 100Kbps units)
9304  * @rate: given rate_info to calculate bitrate from
9305  *
9306  * Return: calculated bitrate
9307  */
9308 u32 cfg80211_calculate_bitrate(struct rate_info *rate);
9309 
9310 /**
9311  * cfg80211_unregister_wdev - remove the given wdev
9312  * @wdev: struct wireless_dev to remove
9313  *
9314  * This function removes the device so it can no longer be used. It is necessary
9315  * to call this function even when cfg80211 requests the removal of the device
9316  * by calling the del_virtual_intf() callback. The function must also be called
9317  * when the driver wishes to unregister the wdev, e.g. when the hardware device
9318  * is unbound from the driver.
9319  *
9320  * Context: Requires the RTNL and wiphy mutex to be held.
9321  */
9322 void cfg80211_unregister_wdev(struct wireless_dev *wdev);
9323 
9324 /**
9325  * cfg80211_register_netdevice - register the given netdev
9326  * @dev: the netdev to register
9327  *
9328  * Note: In contexts coming from cfg80211 callbacks, you must call this rather
9329  * than register_netdevice(), unregister_netdev() is impossible as the RTNL is
9330  * held. Otherwise, both register_netdevice() and register_netdev() are usable
9331  * instead as well.
9332  *
9333  * Context: Requires the RTNL and wiphy mutex to be held.
9334  *
9335  * Return: 0 on success. Non-zero on error.
9336  */
9337 int cfg80211_register_netdevice(struct net_device *dev);
9338 
9339 /**
9340  * cfg80211_unregister_netdevice - unregister the given netdev
9341  * @dev: the netdev to register
9342  *
9343  * Note: In contexts coming from cfg80211 callbacks, you must call this rather
9344  * than unregister_netdevice(), unregister_netdev() is impossible as the RTNL
9345  * is held. Otherwise, both unregister_netdevice() and unregister_netdev() are
9346  * usable instead as well.
9347  *
9348  * Context: Requires the RTNL and wiphy mutex to be held.
9349  */
cfg80211_unregister_netdevice(struct net_device * dev)9350 static inline void cfg80211_unregister_netdevice(struct net_device *dev)
9351 {
9352 #if IS_ENABLED(CONFIG_CFG80211)
9353 	cfg80211_unregister_wdev(dev->ieee80211_ptr);
9354 #endif
9355 }
9356 
9357 /**
9358  * struct cfg80211_ft_event_params - FT Information Elements
9359  * @ies: FT IEs
9360  * @ies_len: length of the FT IE in bytes
9361  * @target_ap: target AP's MAC address
9362  * @ric_ies: RIC IE
9363  * @ric_ies_len: length of the RIC IE in bytes
9364  */
9365 struct cfg80211_ft_event_params {
9366 	const u8 *ies;
9367 	size_t ies_len;
9368 	const u8 *target_ap;
9369 	const u8 *ric_ies;
9370 	size_t ric_ies_len;
9371 };
9372 
9373 /**
9374  * cfg80211_ft_event - notify userspace about FT IE and RIC IE
9375  * @netdev: network device
9376  * @ft_event: IE information
9377  */
9378 void cfg80211_ft_event(struct net_device *netdev,
9379 		       struct cfg80211_ft_event_params *ft_event);
9380 
9381 /**
9382  * cfg80211_get_p2p_attr - find and copy a P2P attribute from IE buffer
9383  * @ies: the input IE buffer
9384  * @len: the input length
9385  * @attr: the attribute ID to find
9386  * @buf: output buffer, can be %NULL if the data isn't needed, e.g.
9387  *	if the function is only called to get the needed buffer size
9388  * @bufsize: size of the output buffer
9389  *
9390  * The function finds a given P2P attribute in the (vendor) IEs and
9391  * copies its contents to the given buffer.
9392  *
9393  * Return: A negative error code (-%EILSEQ or -%ENOENT) if the data is
9394  * malformed or the attribute can't be found (respectively), or the
9395  * length of the found attribute (which can be zero).
9396  */
9397 int cfg80211_get_p2p_attr(const u8 *ies, unsigned int len,
9398 			  enum ieee80211_p2p_attr_id attr,
9399 			  u8 *buf, unsigned int bufsize);
9400 
9401 /**
9402  * ieee80211_ie_split_ric - split an IE buffer according to ordering (with RIC)
9403  * @ies: the IE buffer
9404  * @ielen: the length of the IE buffer
9405  * @ids: an array with element IDs that are allowed before
9406  *	the split. A WLAN_EID_EXTENSION value means that the next
9407  *	EID in the list is a sub-element of the EXTENSION IE.
9408  * @n_ids: the size of the element ID array
9409  * @after_ric: array IE types that come after the RIC element
9410  * @n_after_ric: size of the @after_ric array
9411  * @offset: offset where to start splitting in the buffer
9412  *
9413  * This function splits an IE buffer by updating the @offset
9414  * variable to point to the location where the buffer should be
9415  * split.
9416  *
9417  * It assumes that the given IE buffer is well-formed, this
9418  * has to be guaranteed by the caller!
9419  *
9420  * It also assumes that the IEs in the buffer are ordered
9421  * correctly, if not the result of using this function will not
9422  * be ordered correctly either, i.e. it does no reordering.
9423  *
9424  * Return: The offset where the next part of the buffer starts, which
9425  * may be @ielen if the entire (remainder) of the buffer should be
9426  * used.
9427  */
9428 size_t ieee80211_ie_split_ric(const u8 *ies, size_t ielen,
9429 			      const u8 *ids, int n_ids,
9430 			      const u8 *after_ric, int n_after_ric,
9431 			      size_t offset);
9432 
9433 /**
9434  * ieee80211_ie_split - split an IE buffer according to ordering
9435  * @ies: the IE buffer
9436  * @ielen: the length of the IE buffer
9437  * @ids: an array with element IDs that are allowed before
9438  *	the split. A WLAN_EID_EXTENSION value means that the next
9439  *	EID in the list is a sub-element of the EXTENSION IE.
9440  * @n_ids: the size of the element ID array
9441  * @offset: offset where to start splitting in the buffer
9442  *
9443  * This function splits an IE buffer by updating the @offset
9444  * variable to point to the location where the buffer should be
9445  * split.
9446  *
9447  * It assumes that the given IE buffer is well-formed, this
9448  * has to be guaranteed by the caller!
9449  *
9450  * It also assumes that the IEs in the buffer are ordered
9451  * correctly, if not the result of using this function will not
9452  * be ordered correctly either, i.e. it does no reordering.
9453  *
9454  * Return: The offset where the next part of the buffer starts, which
9455  * may be @ielen if the entire (remainder) of the buffer should be
9456  * used.
9457  */
ieee80211_ie_split(const u8 * ies,size_t ielen,const u8 * ids,int n_ids,size_t offset)9458 static inline size_t ieee80211_ie_split(const u8 *ies, size_t ielen,
9459 					const u8 *ids, int n_ids, size_t offset)
9460 {
9461 	return ieee80211_ie_split_ric(ies, ielen, ids, n_ids, NULL, 0, offset);
9462 }
9463 
9464 /**
9465  * ieee80211_fragment_element - fragment the last element in skb
9466  * @skb: The skbuf that the element was added to
9467  * @len_pos: Pointer to length of the element to fragment
9468  * @frag_id: The element ID to use for fragments
9469  *
9470  * This function fragments all data after @len_pos, adding fragmentation
9471  * elements with the given ID as appropriate. The SKB will grow in size
9472  * accordingly.
9473  */
9474 void ieee80211_fragment_element(struct sk_buff *skb, u8 *len_pos, u8 frag_id);
9475 
9476 /**
9477  * cfg80211_report_wowlan_wakeup - report wakeup from WoWLAN
9478  * @wdev: the wireless device reporting the wakeup
9479  * @wakeup: the wakeup report
9480  * @gfp: allocation flags
9481  *
9482  * This function reports that the given device woke up. If it
9483  * caused the wakeup, report the reason(s), otherwise you may
9484  * pass %NULL as the @wakeup parameter to advertise that something
9485  * else caused the wakeup.
9486  */
9487 void cfg80211_report_wowlan_wakeup(struct wireless_dev *wdev,
9488 				   struct cfg80211_wowlan_wakeup *wakeup,
9489 				   gfp_t gfp);
9490 
9491 /**
9492  * cfg80211_crit_proto_stopped() - indicate critical protocol stopped by driver.
9493  *
9494  * @wdev: the wireless device for which critical protocol is stopped.
9495  * @gfp: allocation flags
9496  *
9497  * This function can be called by the driver to indicate it has reverted
9498  * operation back to normal. One reason could be that the duration given
9499  * by .crit_proto_start() has expired.
9500  */
9501 void cfg80211_crit_proto_stopped(struct wireless_dev *wdev, gfp_t gfp);
9502 
9503 /**
9504  * ieee80211_get_num_supported_channels - get number of channels device has
9505  * @wiphy: the wiphy
9506  *
9507  * Return: the number of channels supported by the device.
9508  */
9509 unsigned int ieee80211_get_num_supported_channels(struct wiphy *wiphy);
9510 
9511 /**
9512  * cfg80211_check_combinations - check interface combinations
9513  *
9514  * @wiphy: the wiphy
9515  * @params: the interface combinations parameter
9516  *
9517  * This function can be called by the driver to check whether a
9518  * combination of interfaces and their types are allowed according to
9519  * the interface combinations.
9520  *
9521  * Return: 0 if combinations are allowed. Non-zero on error.
9522  */
9523 int cfg80211_check_combinations(struct wiphy *wiphy,
9524 				struct iface_combination_params *params);
9525 
9526 /**
9527  * cfg80211_iter_combinations - iterate over matching combinations
9528  *
9529  * @wiphy: the wiphy
9530  * @params: the interface combinations parameter
9531  * @iter: function to call for each matching combination
9532  * @data: pointer to pass to iter function
9533  *
9534  * This function can be called by the driver to check what possible
9535  * combinations it fits in at a given moment, e.g. for channel switching
9536  * purposes.
9537  *
9538  * Return: 0 on success. Non-zero on error.
9539  */
9540 int cfg80211_iter_combinations(struct wiphy *wiphy,
9541 			       struct iface_combination_params *params,
9542 			       void (*iter)(const struct ieee80211_iface_combination *c,
9543 					    void *data),
9544 			       void *data);
9545 /**
9546  * cfg80211_get_radio_idx_by_chan - get the radio index by the channel
9547  *
9548  * @wiphy: the wiphy
9549  * @chan: channel for which the supported radio index is required
9550  *
9551  * Return: radio index on success or a negative error code
9552  */
9553 int cfg80211_get_radio_idx_by_chan(struct wiphy *wiphy,
9554 				   const struct ieee80211_channel *chan);
9555 
9556 
9557 /**
9558  * cfg80211_stop_iface - trigger interface disconnection
9559  *
9560  * @wiphy: the wiphy
9561  * @wdev: wireless device
9562  * @gfp: context flags
9563  *
9564  * Trigger interface to be stopped as if AP was stopped, IBSS/mesh left, STA
9565  * disconnected.
9566  *
9567  * Note: This doesn't need any locks and is asynchronous.
9568  */
9569 void cfg80211_stop_iface(struct wiphy *wiphy, struct wireless_dev *wdev,
9570 			 gfp_t gfp);
9571 
9572 /**
9573  * cfg80211_shutdown_all_interfaces - shut down all interfaces for a wiphy
9574  * @wiphy: the wiphy to shut down
9575  *
9576  * This function shuts down all interfaces belonging to this wiphy by
9577  * calling dev_close() (and treating non-netdev interfaces as needed).
9578  * It shouldn't really be used unless there are some fatal device errors
9579  * that really can't be recovered in any other way.
9580  *
9581  * Callers must hold the RTNL and be able to deal with callbacks into
9582  * the driver while the function is running.
9583  */
9584 void cfg80211_shutdown_all_interfaces(struct wiphy *wiphy);
9585 
9586 /**
9587  * wiphy_ext_feature_set - set the extended feature flag
9588  *
9589  * @wiphy: the wiphy to modify.
9590  * @ftidx: extended feature bit index.
9591  *
9592  * The extended features are flagged in multiple bytes (see
9593  * &struct wiphy.@ext_features)
9594  */
wiphy_ext_feature_set(struct wiphy * wiphy,enum nl80211_ext_feature_index ftidx)9595 static inline void wiphy_ext_feature_set(struct wiphy *wiphy,
9596 					 enum nl80211_ext_feature_index ftidx)
9597 {
9598 	u8 *ft_byte;
9599 
9600 	ft_byte = &wiphy->ext_features[ftidx / 8];
9601 	*ft_byte |= BIT(ftidx % 8);
9602 }
9603 
9604 /**
9605  * wiphy_ext_feature_isset - check the extended feature flag
9606  *
9607  * @wiphy: the wiphy to modify.
9608  * @ftidx: extended feature bit index.
9609  *
9610  * The extended features are flagged in multiple bytes (see
9611  * &struct wiphy.@ext_features)
9612  *
9613  * Return: %true if extended feature flag is set, %false otherwise
9614  */
9615 static inline bool
wiphy_ext_feature_isset(struct wiphy * wiphy,enum nl80211_ext_feature_index ftidx)9616 wiphy_ext_feature_isset(struct wiphy *wiphy,
9617 			enum nl80211_ext_feature_index ftidx)
9618 {
9619 	u8 ft_byte;
9620 
9621 	ft_byte = wiphy->ext_features[ftidx / 8];
9622 	return (ft_byte & BIT(ftidx % 8)) != 0;
9623 }
9624 
9625 /**
9626  * cfg80211_free_nan_func - free NAN function
9627  * @f: NAN function that should be freed
9628  *
9629  * Frees all the NAN function and all it's allocated members.
9630  */
9631 void cfg80211_free_nan_func(struct cfg80211_nan_func *f);
9632 
9633 /**
9634  * struct cfg80211_nan_match_params - NAN match parameters
9635  * @type: the type of the function that triggered a match. If it is
9636  *	 %NL80211_NAN_FUNC_SUBSCRIBE it means that we replied to a subscriber.
9637  *	 If it is %NL80211_NAN_FUNC_PUBLISH, it means that we got a discovery
9638  *	 result.
9639  *	 If it is %NL80211_NAN_FUNC_FOLLOW_UP, we received a follow up.
9640  * @inst_id: the local instance id
9641  * @peer_inst_id: the instance id of the peer's function
9642  * @addr: the MAC address of the peer
9643  * @info_len: the length of the &info
9644  * @info: the Service Specific Info from the peer (if any)
9645  * @cookie: unique identifier of the corresponding function
9646  */
9647 struct cfg80211_nan_match_params {
9648 	enum nl80211_nan_function_type type;
9649 	u8 inst_id;
9650 	u8 peer_inst_id;
9651 	const u8 *addr;
9652 	u8 info_len;
9653 	const u8 *info;
9654 	u64 cookie;
9655 };
9656 
9657 /**
9658  * cfg80211_nan_match - report a match for a NAN function.
9659  * @wdev: the wireless device reporting the match
9660  * @match: match notification parameters
9661  * @gfp: allocation flags
9662  *
9663  * This function reports that the a NAN function had a match. This
9664  * can be a subscribe that had a match or a solicited publish that
9665  * was sent. It can also be a follow up that was received.
9666  */
9667 void cfg80211_nan_match(struct wireless_dev *wdev,
9668 			struct cfg80211_nan_match_params *match, gfp_t gfp);
9669 
9670 /**
9671  * cfg80211_nan_func_terminated - notify about NAN function termination.
9672  *
9673  * @wdev: the wireless device reporting the match
9674  * @inst_id: the local instance id
9675  * @reason: termination reason (one of the NL80211_NAN_FUNC_TERM_REASON_*)
9676  * @cookie: unique NAN function identifier
9677  * @gfp: allocation flags
9678  *
9679  * This function reports that the a NAN function is terminated.
9680  */
9681 void cfg80211_nan_func_terminated(struct wireless_dev *wdev,
9682 				  u8 inst_id,
9683 				  enum nl80211_nan_func_term_reason reason,
9684 				  u64 cookie, gfp_t gfp);
9685 
9686 /* ethtool helper */
9687 void cfg80211_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info);
9688 
9689 /**
9690  * cfg80211_external_auth_request - userspace request for authentication
9691  * @netdev: network device
9692  * @params: External authentication parameters
9693  * @gfp: allocation flags
9694  * Returns: 0 on success, < 0 on error
9695  */
9696 int cfg80211_external_auth_request(struct net_device *netdev,
9697 				   struct cfg80211_external_auth_params *params,
9698 				   gfp_t gfp);
9699 
9700 /**
9701  * cfg80211_pmsr_report - report peer measurement result data
9702  * @wdev: the wireless device reporting the measurement
9703  * @req: the original measurement request
9704  * @result: the result data
9705  * @gfp: allocation flags
9706  */
9707 void cfg80211_pmsr_report(struct wireless_dev *wdev,
9708 			  struct cfg80211_pmsr_request *req,
9709 			  struct cfg80211_pmsr_result *result,
9710 			  gfp_t gfp);
9711 
9712 /**
9713  * cfg80211_pmsr_complete - report peer measurement completed
9714  * @wdev: the wireless device reporting the measurement
9715  * @req: the original measurement request
9716  * @gfp: allocation flags
9717  *
9718  * Report that the entire measurement completed, after this
9719  * the request pointer will no longer be valid.
9720  */
9721 void cfg80211_pmsr_complete(struct wireless_dev *wdev,
9722 			    struct cfg80211_pmsr_request *req,
9723 			    gfp_t gfp);
9724 
9725 /**
9726  * cfg80211_iftype_allowed - check whether the interface can be allowed
9727  * @wiphy: the wiphy
9728  * @iftype: interface type
9729  * @is_4addr: use_4addr flag, must be '0' when check_swif is '1'
9730  * @check_swif: check iftype against software interfaces
9731  *
9732  * Check whether the interface is allowed to operate; additionally, this API
9733  * can be used to check iftype against the software interfaces when
9734  * check_swif is '1'.
9735  *
9736  * Return: %true if allowed, %false otherwise
9737  */
9738 bool cfg80211_iftype_allowed(struct wiphy *wiphy, enum nl80211_iftype iftype,
9739 			     bool is_4addr, u8 check_swif);
9740 
9741 
9742 /**
9743  * cfg80211_assoc_comeback - notification of association that was
9744  * temporarily rejected with a comeback
9745  * @netdev: network device
9746  * @ap_addr: AP (MLD) address that rejected the association
9747  * @timeout: timeout interval value TUs.
9748  *
9749  * this function may sleep. the caller must hold the corresponding wdev's mutex.
9750  */
9751 void cfg80211_assoc_comeback(struct net_device *netdev,
9752 			     const u8 *ap_addr, u32 timeout);
9753 
9754 /* Logging, debugging and troubleshooting/diagnostic helpers. */
9755 
9756 /* wiphy_printk helpers, similar to dev_printk */
9757 
9758 #define wiphy_printk(level, wiphy, format, args...)		\
9759 	dev_printk(level, &(wiphy)->dev, format, ##args)
9760 #define wiphy_emerg(wiphy, format, args...)			\
9761 	dev_emerg(&(wiphy)->dev, format, ##args)
9762 #define wiphy_alert(wiphy, format, args...)			\
9763 	dev_alert(&(wiphy)->dev, format, ##args)
9764 #define wiphy_crit(wiphy, format, args...)			\
9765 	dev_crit(&(wiphy)->dev, format, ##args)
9766 #define wiphy_err(wiphy, format, args...)			\
9767 	dev_err(&(wiphy)->dev, format, ##args)
9768 #define wiphy_warn(wiphy, format, args...)			\
9769 	dev_warn(&(wiphy)->dev, format, ##args)
9770 #define wiphy_notice(wiphy, format, args...)			\
9771 	dev_notice(&(wiphy)->dev, format, ##args)
9772 #define wiphy_info(wiphy, format, args...)			\
9773 	dev_info(&(wiphy)->dev, format, ##args)
9774 #define wiphy_info_once(wiphy, format, args...)			\
9775 	dev_info_once(&(wiphy)->dev, format, ##args)
9776 
9777 #define wiphy_err_ratelimited(wiphy, format, args...)		\
9778 	dev_err_ratelimited(&(wiphy)->dev, format, ##args)
9779 #define wiphy_warn_ratelimited(wiphy, format, args...)		\
9780 	dev_warn_ratelimited(&(wiphy)->dev, format, ##args)
9781 
9782 #define wiphy_debug(wiphy, format, args...)			\
9783 	wiphy_printk(KERN_DEBUG, wiphy, format, ##args)
9784 
9785 #define wiphy_dbg(wiphy, format, args...)			\
9786 	dev_dbg(&(wiphy)->dev, format, ##args)
9787 
9788 #if defined(VERBOSE_DEBUG)
9789 #define wiphy_vdbg	wiphy_dbg
9790 #else
9791 #define wiphy_vdbg(wiphy, format, args...)				\
9792 ({									\
9793 	if (0)								\
9794 		wiphy_printk(KERN_DEBUG, wiphy, format, ##args);	\
9795 	0;								\
9796 })
9797 #endif
9798 
9799 /*
9800  * wiphy_WARN() acts like wiphy_printk(), but with the key difference
9801  * of using a WARN/WARN_ON to get the message out, including the
9802  * file/line information and a backtrace.
9803  */
9804 #define wiphy_WARN(wiphy, format, args...)			\
9805 	WARN(1, "wiphy: %s\n" format, wiphy_name(wiphy), ##args);
9806 
9807 /**
9808  * cfg80211_update_owe_info_event - Notify the peer's OWE info to user space
9809  * @netdev: network device
9810  * @owe_info: peer's owe info
9811  * @gfp: allocation flags
9812  */
9813 void cfg80211_update_owe_info_event(struct net_device *netdev,
9814 				    struct cfg80211_update_owe_info *owe_info,
9815 				    gfp_t gfp);
9816 
9817 /**
9818  * cfg80211_bss_flush - resets all the scan entries
9819  * @wiphy: the wiphy
9820  */
9821 void cfg80211_bss_flush(struct wiphy *wiphy);
9822 
9823 /**
9824  * cfg80211_bss_color_notify - notify about bss color event
9825  * @dev: network device
9826  * @cmd: the actual event we want to notify
9827  * @count: the number of TBTTs until the color change happens
9828  * @color_bitmap: representations of the colors that the local BSS is aware of
9829  * @link_id: valid link_id in case of MLO or 0 for non-MLO.
9830  *
9831  * Return: 0 on success. Non-zero on error.
9832  */
9833 int cfg80211_bss_color_notify(struct net_device *dev,
9834 			      enum nl80211_commands cmd, u8 count,
9835 			      u64 color_bitmap, u8 link_id);
9836 
9837 /**
9838  * cfg80211_obss_color_collision_notify - notify about bss color collision
9839  * @dev: network device
9840  * @color_bitmap: representations of the colors that the local BSS is aware of
9841  * @link_id: valid link_id in case of MLO or 0 for non-MLO.
9842  *
9843  * Return: 0 on success. Non-zero on error.
9844  */
cfg80211_obss_color_collision_notify(struct net_device * dev,u64 color_bitmap,u8 link_id)9845 static inline int cfg80211_obss_color_collision_notify(struct net_device *dev,
9846 						       u64 color_bitmap,
9847 						       u8 link_id)
9848 {
9849 	return cfg80211_bss_color_notify(dev, NL80211_CMD_OBSS_COLOR_COLLISION,
9850 					 0, color_bitmap, link_id);
9851 }
9852 
9853 /**
9854  * cfg80211_color_change_started_notify - notify color change start
9855  * @dev: the device on which the color is switched
9856  * @count: the number of TBTTs until the color change happens
9857  * @link_id: valid link_id in case of MLO or 0 for non-MLO.
9858  *
9859  * Inform the userspace about the color change that has started.
9860  *
9861  * Return: 0 on success. Non-zero on error.
9862  */
cfg80211_color_change_started_notify(struct net_device * dev,u8 count,u8 link_id)9863 static inline int cfg80211_color_change_started_notify(struct net_device *dev,
9864 						       u8 count, u8 link_id)
9865 {
9866 	return cfg80211_bss_color_notify(dev, NL80211_CMD_COLOR_CHANGE_STARTED,
9867 					 count, 0, link_id);
9868 }
9869 
9870 /**
9871  * cfg80211_color_change_aborted_notify - notify color change abort
9872  * @dev: the device on which the color is switched
9873  * @link_id: valid link_id in case of MLO or 0 for non-MLO.
9874  *
9875  * Inform the userspace about the color change that has aborted.
9876  *
9877  * Return: 0 on success. Non-zero on error.
9878  */
cfg80211_color_change_aborted_notify(struct net_device * dev,u8 link_id)9879 static inline int cfg80211_color_change_aborted_notify(struct net_device *dev,
9880 						       u8 link_id)
9881 {
9882 	return cfg80211_bss_color_notify(dev, NL80211_CMD_COLOR_CHANGE_ABORTED,
9883 					 0, 0, link_id);
9884 }
9885 
9886 /**
9887  * cfg80211_color_change_notify - notify color change completion
9888  * @dev: the device on which the color was switched
9889  * @link_id: valid link_id in case of MLO or 0 for non-MLO.
9890  *
9891  * Inform the userspace about the color change that has completed.
9892  *
9893  * Return: 0 on success. Non-zero on error.
9894  */
cfg80211_color_change_notify(struct net_device * dev,u8 link_id)9895 static inline int cfg80211_color_change_notify(struct net_device *dev,
9896 					       u8 link_id)
9897 {
9898 	return cfg80211_bss_color_notify(dev,
9899 					 NL80211_CMD_COLOR_CHANGE_COMPLETED,
9900 					 0, 0, link_id);
9901 }
9902 
9903 /**
9904  * cfg80211_links_removed - Notify about removed STA MLD setup links.
9905  * @dev: network device.
9906  * @link_mask: BIT mask of removed STA MLD setup link IDs.
9907  *
9908  * Inform cfg80211 and the userspace about removed STA MLD setup links due to
9909  * AP MLD removing the corresponding affiliated APs with Multi-Link
9910  * reconfiguration. Note that it's not valid to remove all links, in this
9911  * case disconnect instead.
9912  * Also note that the wdev mutex must be held.
9913  */
9914 void cfg80211_links_removed(struct net_device *dev, u16 link_mask);
9915 
9916 /**
9917  * struct cfg80211_mlo_reconf_done_data - MLO reconfiguration data
9918  * @buf: MLO Reconfiguration Response frame (header + body)
9919  * @len: length of the frame data
9920  * @driver_initiated: Indicates whether the add links request is initiated by
9921  *	driver. This is set to true when the link reconfiguration request
9922  *	initiated by driver due to AP link recommendation requests
9923  *	(Ex: BTM (BSS Transition Management) request) handling offloaded to
9924  *	driver.
9925  * @added_links: BIT mask of links successfully added to the association
9926  * @links: per-link information indexed by link ID
9927  * @links.bss: the BSS that MLO reconfiguration was requested for, ownership of
9928  *      the pointer moves to cfg80211 in the call to
9929  *      cfg80211_mlo_reconf_add_done().
9930  *
9931  * The BSS pointer must be set for each link for which 'add' operation was
9932  * requested in the assoc_ml_reconf callback.
9933  */
9934 struct cfg80211_mlo_reconf_done_data {
9935 	const u8 *buf;
9936 	size_t len;
9937 	bool driver_initiated;
9938 	u16 added_links;
9939 	struct {
9940 		struct cfg80211_bss *bss;
9941 		u8 *addr;
9942 	} links[IEEE80211_MLD_MAX_NUM_LINKS];
9943 };
9944 
9945 /**
9946  * cfg80211_mlo_reconf_add_done - Notify about MLO reconfiguration result
9947  * @dev: network device.
9948  * @data: MLO reconfiguration done data, &struct cfg80211_mlo_reconf_done_data
9949  *
9950  * Inform cfg80211 and the userspace that processing of ML reconfiguration
9951  * request to add links to the association is done.
9952  */
9953 void cfg80211_mlo_reconf_add_done(struct net_device *dev,
9954 				  struct cfg80211_mlo_reconf_done_data *data);
9955 
9956 /**
9957  * cfg80211_schedule_channels_check - schedule regulatory check if needed
9958  * @wdev: the wireless device to check
9959  *
9960  * In case the device supports NO_IR or DFS relaxations, schedule regulatory
9961  * channels check, as previous concurrent operation conditions may not
9962  * hold anymore.
9963  */
9964 void cfg80211_schedule_channels_check(struct wireless_dev *wdev);
9965 
9966 /**
9967  * cfg80211_epcs_changed - Notify about a change in EPCS state
9968  * @netdev: the wireless device whose EPCS state changed
9969  * @enabled: set to true if EPCS was enabled, otherwise set to false.
9970  */
9971 void cfg80211_epcs_changed(struct net_device *netdev, bool enabled);
9972 
9973 #ifdef CONFIG_CFG80211_DEBUGFS
9974 /**
9975  * wiphy_locked_debugfs_read - do a locked read in debugfs
9976  * @wiphy: the wiphy to use
9977  * @file: the file being read
9978  * @buf: the buffer to fill and then read from
9979  * @bufsize: size of the buffer
9980  * @userbuf: the user buffer to copy to
9981  * @count: read count
9982  * @ppos: read position
9983  * @handler: the read handler to call (under wiphy lock)
9984  * @data: additional data to pass to the read handler
9985  *
9986  * Return: the number of characters read, or a negative errno
9987  */
9988 ssize_t wiphy_locked_debugfs_read(struct wiphy *wiphy, struct file *file,
9989 				  char *buf, size_t bufsize,
9990 				  char __user *userbuf, size_t count,
9991 				  loff_t *ppos,
9992 				  ssize_t (*handler)(struct wiphy *wiphy,
9993 						     struct file *file,
9994 						     char *buf,
9995 						     size_t bufsize,
9996 						     void *data),
9997 				  void *data);
9998 
9999 /**
10000  * wiphy_locked_debugfs_write - do a locked write in debugfs
10001  * @wiphy: the wiphy to use
10002  * @file: the file being written to
10003  * @buf: the buffer to copy the user data to
10004  * @bufsize: size of the buffer
10005  * @userbuf: the user buffer to copy from
10006  * @count: read count
10007  * @handler: the write handler to call (under wiphy lock)
10008  * @data: additional data to pass to the write handler
10009  *
10010  * Return: the number of characters written, or a negative errno
10011  */
10012 ssize_t wiphy_locked_debugfs_write(struct wiphy *wiphy, struct file *file,
10013 				   char *buf, size_t bufsize,
10014 				   const char __user *userbuf, size_t count,
10015 				   ssize_t (*handler)(struct wiphy *wiphy,
10016 						      struct file *file,
10017 						      char *buf,
10018 						      size_t count,
10019 						      void *data),
10020 				   void *data);
10021 #endif
10022 
10023 #endif /* __NET_CFG80211_H */
10024