1 //===-- SystemZCallingConv.h - Calling conventions for SystemZ --*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8
9 #ifndef LLVM_LIB_TARGET_SYSTEMZ_SYSTEMZCALLINGCONV_H
10 #define LLVM_LIB_TARGET_SYSTEMZ_SYSTEMZCALLINGCONV_H
11
12 #include "SystemZSubtarget.h"
13 #include "llvm/ADT/SmallVector.h"
14 #include "llvm/CodeGen/CallingConvLower.h"
15 #include "llvm/MC/MCRegisterInfo.h"
16
17 namespace llvm {
18 namespace SystemZ {
19 const unsigned ELFNumArgGPRs = 5;
20 extern const MCPhysReg ELFArgGPRs[ELFNumArgGPRs];
21
22 const unsigned ELFNumArgFPRs = 4;
23 extern const MCPhysReg ELFArgFPRs[ELFNumArgFPRs];
24
25 const unsigned XPLINK64NumArgGPRs = 3;
26 extern const MCPhysReg XPLINK64ArgGPRs[XPLINK64NumArgGPRs];
27
28 const unsigned XPLINK64NumArgFPRs = 4;
29 extern const MCPhysReg XPLINK64ArgFPRs[XPLINK64NumArgFPRs];
30 } // end namespace SystemZ
31
32 class SystemZCCState : public CCState {
33 private:
34 /// Records whether the value was a fixed argument.
35 /// See ISD::OutputArg::IsFixed.
36 SmallVector<bool, 4> ArgIsFixed;
37
38 /// Records whether the value was widened from a short vector type.
39 SmallVector<bool, 4> ArgIsShortVector;
40
41 // Check whether ArgVT is a short vector type.
IsShortVectorType(EVT ArgVT)42 bool IsShortVectorType(EVT ArgVT) {
43 return ArgVT.isVector() && ArgVT.getStoreSize() <= 8;
44 }
45
46 public:
SystemZCCState(CallingConv::ID CC,bool isVarArg,MachineFunction & MF,SmallVectorImpl<CCValAssign> & locs,LLVMContext & C)47 SystemZCCState(CallingConv::ID CC, bool isVarArg, MachineFunction &MF,
48 SmallVectorImpl<CCValAssign> &locs, LLVMContext &C)
49 : CCState(CC, isVarArg, MF, locs, C) {}
50
AnalyzeFormalArguments(const SmallVectorImpl<ISD::InputArg> & Ins,CCAssignFn Fn)51 void AnalyzeFormalArguments(const SmallVectorImpl<ISD::InputArg> &Ins,
52 CCAssignFn Fn) {
53 // Formal arguments are always fixed.
54 ArgIsFixed.clear();
55 for (unsigned i = 0; i < Ins.size(); ++i)
56 ArgIsFixed.push_back(true);
57 // Record whether the call operand was a short vector.
58 ArgIsShortVector.clear();
59 for (unsigned i = 0; i < Ins.size(); ++i)
60 ArgIsShortVector.push_back(IsShortVectorType(Ins[i].ArgVT));
61
62 CCState::AnalyzeFormalArguments(Ins, Fn);
63 }
64
AnalyzeCallOperands(const SmallVectorImpl<ISD::OutputArg> & Outs,CCAssignFn Fn)65 void AnalyzeCallOperands(const SmallVectorImpl<ISD::OutputArg> &Outs,
66 CCAssignFn Fn) {
67 // Record whether the call operand was a fixed argument.
68 ArgIsFixed.clear();
69 for (unsigned i = 0; i < Outs.size(); ++i)
70 ArgIsFixed.push_back(Outs[i].IsFixed);
71 // Record whether the call operand was a short vector.
72 ArgIsShortVector.clear();
73 for (unsigned i = 0; i < Outs.size(); ++i)
74 ArgIsShortVector.push_back(IsShortVectorType(Outs[i].ArgVT));
75
76 CCState::AnalyzeCallOperands(Outs, Fn);
77 }
78
79 // This version of AnalyzeCallOperands in the base class is not usable
80 // since we must provide a means of accessing ISD::OutputArg::IsFixed.
81 void AnalyzeCallOperands(const SmallVectorImpl<MVT> &Outs,
82 SmallVectorImpl<ISD::ArgFlagsTy> &Flags,
83 CCAssignFn Fn) = delete;
84
IsFixed(unsigned ValNo)85 bool IsFixed(unsigned ValNo) { return ArgIsFixed[ValNo]; }
IsShortVector(unsigned ValNo)86 bool IsShortVector(unsigned ValNo) { return ArgIsShortVector[ValNo]; }
87 };
88
89 // Handle i128 argument types. These need to be passed by implicit
90 // reference. This could be as simple as the following .td line:
91 // CCIfType<[i128], CCPassIndirect<i64>>,
92 // except that i128 is not a legal type, and therefore gets split by
93 // common code into a pair of i64 arguments.
CC_SystemZ_I128Indirect(unsigned & ValNo,MVT & ValVT,MVT & LocVT,CCValAssign::LocInfo & LocInfo,ISD::ArgFlagsTy & ArgFlags,CCState & State)94 inline bool CC_SystemZ_I128Indirect(unsigned &ValNo, MVT &ValVT,
95 MVT &LocVT,
96 CCValAssign::LocInfo &LocInfo,
97 ISD::ArgFlagsTy &ArgFlags,
98 CCState &State) {
99 SmallVectorImpl<CCValAssign> &PendingMembers = State.getPendingLocs();
100
101 // ArgFlags.isSplit() is true on the first part of a i128 argument;
102 // PendingMembers.empty() is false on all subsequent parts.
103 if (!ArgFlags.isSplit() && PendingMembers.empty())
104 return false;
105
106 // Push a pending Indirect value location for each part.
107 LocVT = MVT::i64;
108 LocInfo = CCValAssign::Indirect;
109 PendingMembers.push_back(CCValAssign::getPending(ValNo, ValVT,
110 LocVT, LocInfo));
111 if (!ArgFlags.isSplitEnd())
112 return true;
113
114 // OK, we've collected all parts in the pending list. Allocate
115 // the location (register or stack slot) for the indirect pointer.
116 // (This duplicates the usual i64 calling convention rules.)
117 unsigned Reg;
118 const SystemZSubtarget &Subtarget =
119 State.getMachineFunction().getSubtarget<SystemZSubtarget>();
120 if (Subtarget.isTargetELF())
121 Reg = State.AllocateReg(SystemZ::ELFArgGPRs);
122 else if (Subtarget.isTargetXPLINK64())
123 Reg = State.AllocateReg(SystemZ::XPLINK64ArgGPRs);
124 else
125 llvm_unreachable("Unknown Calling Convention!");
126
127 unsigned Offset = Reg && !Subtarget.isTargetXPLINK64()
128 ? 0
129 : State.AllocateStack(8, Align(8));
130
131 // Use that same location for all the pending parts.
132 for (auto &It : PendingMembers) {
133 if (Reg)
134 It.convertToReg(Reg);
135 else
136 It.convertToMem(Offset);
137 State.addLoc(It);
138 }
139
140 PendingMembers.clear();
141
142 return true;
143 }
144
CC_XPLINK64_Shadow_Reg(unsigned & ValNo,MVT & ValVT,MVT & LocVT,CCValAssign::LocInfo & LocInfo,ISD::ArgFlagsTy & ArgFlags,CCState & State)145 inline bool CC_XPLINK64_Shadow_Reg(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
146 CCValAssign::LocInfo &LocInfo,
147 ISD::ArgFlagsTy &ArgFlags, CCState &State) {
148 if (LocVT == MVT::f32 || LocVT == MVT::f64) {
149 State.AllocateReg(SystemZ::XPLINK64ArgGPRs);
150 }
151 if (LocVT == MVT::f128 || LocVT.is128BitVector()) {
152 // Shadow next two GPRs, if available.
153 State.AllocateReg(SystemZ::XPLINK64ArgGPRs);
154 State.AllocateReg(SystemZ::XPLINK64ArgGPRs);
155
156 // Quad precision floating point needs to
157 // go inside pre-defined FPR pair.
158 if (LocVT == MVT::f128) {
159 for (unsigned I = 0; I < SystemZ::XPLINK64NumArgFPRs; I += 2)
160 if (State.isAllocated(SystemZ::XPLINK64ArgFPRs[I]))
161 State.AllocateReg(SystemZ::XPLINK64ArgFPRs[I + 1]);
162 }
163 }
164 return false;
165 }
166
CC_XPLINK64_Allocate128BitVararg(unsigned & ValNo,MVT & ValVT,MVT & LocVT,CCValAssign::LocInfo & LocInfo,ISD::ArgFlagsTy & ArgFlags,CCState & State)167 inline bool CC_XPLINK64_Allocate128BitVararg(unsigned &ValNo, MVT &ValVT,
168 MVT &LocVT,
169 CCValAssign::LocInfo &LocInfo,
170 ISD::ArgFlagsTy &ArgFlags,
171 CCState &State) {
172 // For any C or C++ program, this should always be
173 // false, since it is illegal to have a function
174 // where the first argument is variadic. Therefore
175 // the first fixed argument should already have
176 // allocated GPR1 either through shadowing it or
177 // using it for parameter passing.
178 State.AllocateReg(SystemZ::R1D);
179
180 bool AllocGPR2 = State.AllocateReg(SystemZ::R2D);
181 bool AllocGPR3 = State.AllocateReg(SystemZ::R3D);
182
183 // If GPR2 and GPR3 are available, then we may pass vararg in R2Q.
184 // If only GPR3 is available, we need to set custom handling to copy
185 // hi bits into GPR3.
186 // Either way, we allocate on the stack.
187 if (AllocGPR3) {
188 // For f128 and vector var arg case, set the bitcast flag to bitcast to
189 // i128.
190 LocVT = MVT::i128;
191 LocInfo = CCValAssign::BCvt;
192 auto Offset = State.AllocateStack(16, Align(8));
193 if (AllocGPR2)
194 State.addLoc(
195 CCValAssign::getReg(ValNo, ValVT, SystemZ::R2Q, LocVT, LocInfo));
196 else
197 State.addLoc(
198 CCValAssign::getCustomMem(ValNo, ValVT, Offset, LocVT, LocInfo));
199 return true;
200 }
201
202 return false;
203 }
204
RetCC_SystemZ_Error(unsigned &,MVT &,MVT &,CCValAssign::LocInfo &,ISD::ArgFlagsTy &,CCState &)205 inline bool RetCC_SystemZ_Error(unsigned &, MVT &, MVT &,
206 CCValAssign::LocInfo &, ISD::ArgFlagsTy &,
207 CCState &) {
208 llvm_unreachable("Return value calling convention currently unsupported.");
209 }
210
CC_SystemZ_Error(unsigned &,MVT &,MVT &,CCValAssign::LocInfo &,ISD::ArgFlagsTy &,CCState &)211 inline bool CC_SystemZ_Error(unsigned &, MVT &, MVT &, CCValAssign::LocInfo &,
212 ISD::ArgFlagsTy &, CCState &) {
213 llvm_unreachable("Argument calling convention currently unsupported.");
214 }
215
CC_SystemZ_GHC_Error(unsigned &,MVT &,MVT &,CCValAssign::LocInfo &,ISD::ArgFlagsTy &,CCState &)216 inline bool CC_SystemZ_GHC_Error(unsigned &, MVT &, MVT &,
217 CCValAssign::LocInfo &, ISD::ArgFlagsTy &,
218 CCState &) {
219 report_fatal_error("No registers left in GHC calling convention");
220 return false;
221 }
222
223 } // end namespace llvm
224
225 #endif
226