//===-- SystemZCallingConv.h - Calling conventions for SystemZ --*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #ifndef LLVM_LIB_TARGET_SYSTEMZ_SYSTEMZCALLINGCONV_H #define LLVM_LIB_TARGET_SYSTEMZ_SYSTEMZCALLINGCONV_H #include "SystemZSubtarget.h" #include "llvm/ADT/SmallVector.h" #include "llvm/CodeGen/CallingConvLower.h" #include "llvm/MC/MCRegisterInfo.h" namespace llvm { namespace SystemZ { const unsigned ELFNumArgGPRs = 5; extern const MCPhysReg ELFArgGPRs[ELFNumArgGPRs]; const unsigned ELFNumArgFPRs = 4; extern const MCPhysReg ELFArgFPRs[ELFNumArgFPRs]; const unsigned XPLINK64NumArgGPRs = 3; extern const MCPhysReg XPLINK64ArgGPRs[XPLINK64NumArgGPRs]; const unsigned XPLINK64NumArgFPRs = 4; extern const MCPhysReg XPLINK64ArgFPRs[XPLINK64NumArgFPRs]; } // end namespace SystemZ class SystemZCCState : public CCState { private: /// Records whether the value was a fixed argument. /// See ISD::OutputArg::IsFixed. SmallVector ArgIsFixed; /// Records whether the value was widened from a short vector type. SmallVector ArgIsShortVector; // Check whether ArgVT is a short vector type. bool IsShortVectorType(EVT ArgVT) { return ArgVT.isVector() && ArgVT.getStoreSize() <= 8; } public: SystemZCCState(CallingConv::ID CC, bool isVarArg, MachineFunction &MF, SmallVectorImpl &locs, LLVMContext &C) : CCState(CC, isVarArg, MF, locs, C) {} void AnalyzeFormalArguments(const SmallVectorImpl &Ins, CCAssignFn Fn) { // Formal arguments are always fixed. ArgIsFixed.clear(); for (unsigned i = 0; i < Ins.size(); ++i) ArgIsFixed.push_back(true); // Record whether the call operand was a short vector. ArgIsShortVector.clear(); for (unsigned i = 0; i < Ins.size(); ++i) ArgIsShortVector.push_back(IsShortVectorType(Ins[i].ArgVT)); CCState::AnalyzeFormalArguments(Ins, Fn); } void AnalyzeCallOperands(const SmallVectorImpl &Outs, CCAssignFn Fn) { // Record whether the call operand was a fixed argument. ArgIsFixed.clear(); for (unsigned i = 0; i < Outs.size(); ++i) ArgIsFixed.push_back(Outs[i].IsFixed); // Record whether the call operand was a short vector. ArgIsShortVector.clear(); for (unsigned i = 0; i < Outs.size(); ++i) ArgIsShortVector.push_back(IsShortVectorType(Outs[i].ArgVT)); CCState::AnalyzeCallOperands(Outs, Fn); } // This version of AnalyzeCallOperands in the base class is not usable // since we must provide a means of accessing ISD::OutputArg::IsFixed. void AnalyzeCallOperands(const SmallVectorImpl &Outs, SmallVectorImpl &Flags, CCAssignFn Fn) = delete; bool IsFixed(unsigned ValNo) { return ArgIsFixed[ValNo]; } bool IsShortVector(unsigned ValNo) { return ArgIsShortVector[ValNo]; } }; // Handle i128 argument types. These need to be passed by implicit // reference. This could be as simple as the following .td line: // CCIfType<[i128], CCPassIndirect>, // except that i128 is not a legal type, and therefore gets split by // common code into a pair of i64 arguments. inline bool CC_SystemZ_I128Indirect(unsigned &ValNo, MVT &ValVT, MVT &LocVT, CCValAssign::LocInfo &LocInfo, ISD::ArgFlagsTy &ArgFlags, CCState &State) { SmallVectorImpl &PendingMembers = State.getPendingLocs(); // ArgFlags.isSplit() is true on the first part of a i128 argument; // PendingMembers.empty() is false on all subsequent parts. if (!ArgFlags.isSplit() && PendingMembers.empty()) return false; // Push a pending Indirect value location for each part. LocVT = MVT::i64; LocInfo = CCValAssign::Indirect; PendingMembers.push_back(CCValAssign::getPending(ValNo, ValVT, LocVT, LocInfo)); if (!ArgFlags.isSplitEnd()) return true; // OK, we've collected all parts in the pending list. Allocate // the location (register or stack slot) for the indirect pointer. // (This duplicates the usual i64 calling convention rules.) unsigned Reg; const SystemZSubtarget &Subtarget = State.getMachineFunction().getSubtarget(); if (Subtarget.isTargetELF()) Reg = State.AllocateReg(SystemZ::ELFArgGPRs); else if (Subtarget.isTargetXPLINK64()) Reg = State.AllocateReg(SystemZ::XPLINK64ArgGPRs); else llvm_unreachable("Unknown Calling Convention!"); unsigned Offset = Reg && !Subtarget.isTargetXPLINK64() ? 0 : State.AllocateStack(8, Align(8)); // Use that same location for all the pending parts. for (auto &It : PendingMembers) { if (Reg) It.convertToReg(Reg); else It.convertToMem(Offset); State.addLoc(It); } PendingMembers.clear(); return true; } inline bool CC_XPLINK64_Shadow_Reg(unsigned &ValNo, MVT &ValVT, MVT &LocVT, CCValAssign::LocInfo &LocInfo, ISD::ArgFlagsTy &ArgFlags, CCState &State) { if (LocVT == MVT::f32 || LocVT == MVT::f64) { State.AllocateReg(SystemZ::XPLINK64ArgGPRs); } if (LocVT == MVT::f128 || LocVT.is128BitVector()) { // Shadow next two GPRs, if available. State.AllocateReg(SystemZ::XPLINK64ArgGPRs); State.AllocateReg(SystemZ::XPLINK64ArgGPRs); // Quad precision floating point needs to // go inside pre-defined FPR pair. if (LocVT == MVT::f128) { for (unsigned I = 0; I < SystemZ::XPLINK64NumArgFPRs; I += 2) if (State.isAllocated(SystemZ::XPLINK64ArgFPRs[I])) State.AllocateReg(SystemZ::XPLINK64ArgFPRs[I + 1]); } } return false; } inline bool CC_XPLINK64_Allocate128BitVararg(unsigned &ValNo, MVT &ValVT, MVT &LocVT, CCValAssign::LocInfo &LocInfo, ISD::ArgFlagsTy &ArgFlags, CCState &State) { // For any C or C++ program, this should always be // false, since it is illegal to have a function // where the first argument is variadic. Therefore // the first fixed argument should already have // allocated GPR1 either through shadowing it or // using it for parameter passing. State.AllocateReg(SystemZ::R1D); bool AllocGPR2 = State.AllocateReg(SystemZ::R2D); bool AllocGPR3 = State.AllocateReg(SystemZ::R3D); // If GPR2 and GPR3 are available, then we may pass vararg in R2Q. // If only GPR3 is available, we need to set custom handling to copy // hi bits into GPR3. // Either way, we allocate on the stack. if (AllocGPR3) { // For f128 and vector var arg case, set the bitcast flag to bitcast to // i128. LocVT = MVT::i128; LocInfo = CCValAssign::BCvt; auto Offset = State.AllocateStack(16, Align(8)); if (AllocGPR2) State.addLoc( CCValAssign::getReg(ValNo, ValVT, SystemZ::R2Q, LocVT, LocInfo)); else State.addLoc( CCValAssign::getCustomMem(ValNo, ValVT, Offset, LocVT, LocInfo)); return true; } return false; } inline bool RetCC_SystemZ_Error(unsigned &, MVT &, MVT &, CCValAssign::LocInfo &, ISD::ArgFlagsTy &, CCState &) { llvm_unreachable("Return value calling convention currently unsupported."); } inline bool CC_SystemZ_Error(unsigned &, MVT &, MVT &, CCValAssign::LocInfo &, ISD::ArgFlagsTy &, CCState &) { llvm_unreachable("Argument calling convention currently unsupported."); } inline bool CC_SystemZ_GHC_Error(unsigned &, MVT &, MVT &, CCValAssign::LocInfo &, ISD::ArgFlagsTy &, CCState &) { report_fatal_error("No registers left in GHC calling convention"); return false; } } // end namespace llvm #endif