xref: /linux/net/sched/sch_cake.c (revision 8be4d31cb8aaeea27bde4b7ddb26e28a89062ebf)
1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2 
3 /* COMMON Applications Kept Enhanced (CAKE) discipline
4  *
5  * Copyright (C) 2014-2018 Jonathan Morton <chromatix99@gmail.com>
6  * Copyright (C) 2015-2018 Toke Høiland-Jørgensen <toke@toke.dk>
7  * Copyright (C) 2014-2018 Dave Täht <dave.taht@gmail.com>
8  * Copyright (C) 2015-2018 Sebastian Moeller <moeller0@gmx.de>
9  * (C) 2015-2018 Kevin Darbyshire-Bryant <kevin@darbyshire-bryant.me.uk>
10  * Copyright (C) 2017-2018 Ryan Mounce <ryan@mounce.com.au>
11  *
12  * The CAKE Principles:
13  *		   (or, how to have your cake and eat it too)
14  *
15  * This is a combination of several shaping, AQM and FQ techniques into one
16  * easy-to-use package:
17  *
18  * - An overall bandwidth shaper, to move the bottleneck away from dumb CPE
19  *   equipment and bloated MACs.  This operates in deficit mode (as in sch_fq),
20  *   eliminating the need for any sort of burst parameter (eg. token bucket
21  *   depth).  Burst support is limited to that necessary to overcome scheduling
22  *   latency.
23  *
24  * - A Diffserv-aware priority queue, giving more priority to certain classes,
25  *   up to a specified fraction of bandwidth.  Above that bandwidth threshold,
26  *   the priority is reduced to avoid starving other tins.
27  *
28  * - Each priority tin has a separate Flow Queue system, to isolate traffic
29  *   flows from each other.  This prevents a burst on one flow from increasing
30  *   the delay to another.  Flows are distributed to queues using a
31  *   set-associative hash function.
32  *
33  * - Each queue is actively managed by Cobalt, which is a combination of the
34  *   Codel and Blue AQM algorithms.  This serves flows fairly, and signals
35  *   congestion early via ECN (if available) and/or packet drops, to keep
36  *   latency low.  The codel parameters are auto-tuned based on the bandwidth
37  *   setting, as is necessary at low bandwidths.
38  *
39  * The configuration parameters are kept deliberately simple for ease of use.
40  * Everything has sane defaults.  Complete generality of configuration is *not*
41  * a goal.
42  *
43  * The priority queue operates according to a weighted DRR scheme, combined with
44  * a bandwidth tracker which reuses the shaper logic to detect which side of the
45  * bandwidth sharing threshold the tin is operating.  This determines whether a
46  * priority-based weight (high) or a bandwidth-based weight (low) is used for
47  * that tin in the current pass.
48  *
49  * This qdisc was inspired by Eric Dumazet's fq_codel code, which he kindly
50  * granted us permission to leverage.
51  */
52 
53 #include <linux/module.h>
54 #include <linux/types.h>
55 #include <linux/kernel.h>
56 #include <linux/jiffies.h>
57 #include <linux/string.h>
58 #include <linux/in.h>
59 #include <linux/errno.h>
60 #include <linux/init.h>
61 #include <linux/skbuff.h>
62 #include <linux/jhash.h>
63 #include <linux/slab.h>
64 #include <linux/vmalloc.h>
65 #include <linux/reciprocal_div.h>
66 #include <net/netlink.h>
67 #include <linux/if_vlan.h>
68 #include <net/gso.h>
69 #include <net/pkt_sched.h>
70 #include <net/pkt_cls.h>
71 #include <net/tcp.h>
72 #include <net/flow_dissector.h>
73 
74 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
75 #include <net/netfilter/nf_conntrack_core.h>
76 #endif
77 
78 #define CAKE_SET_WAYS (8)
79 #define CAKE_MAX_TINS (8)
80 #define CAKE_QUEUES (1024)
81 #define CAKE_FLOW_MASK 63
82 #define CAKE_FLOW_NAT_FLAG 64
83 
84 /* struct cobalt_params - contains codel and blue parameters
85  * @interval:	codel initial drop rate
86  * @target:     maximum persistent sojourn time & blue update rate
87  * @mtu_time:   serialisation delay of maximum-size packet
88  * @p_inc:      increment of blue drop probability (0.32 fxp)
89  * @p_dec:      decrement of blue drop probability (0.32 fxp)
90  */
91 struct cobalt_params {
92 	u64	interval;
93 	u64	target;
94 	u64	mtu_time;
95 	u32	p_inc;
96 	u32	p_dec;
97 };
98 
99 /* struct cobalt_vars - contains codel and blue variables
100  * @count:		codel dropping frequency
101  * @rec_inv_sqrt:	reciprocal value of sqrt(count) >> 1
102  * @drop_next:		time to drop next packet, or when we dropped last
103  * @blue_timer:		Blue time to next drop
104  * @p_drop:		BLUE drop probability (0.32 fxp)
105  * @dropping:		set if in dropping state
106  * @ecn_marked:		set if marked
107  */
108 struct cobalt_vars {
109 	u32	count;
110 	u32	rec_inv_sqrt;
111 	ktime_t	drop_next;
112 	ktime_t	blue_timer;
113 	u32     p_drop;
114 	bool	dropping;
115 	bool    ecn_marked;
116 };
117 
118 enum {
119 	CAKE_SET_NONE = 0,
120 	CAKE_SET_SPARSE,
121 	CAKE_SET_SPARSE_WAIT, /* counted in SPARSE, actually in BULK */
122 	CAKE_SET_BULK,
123 	CAKE_SET_DECAYING
124 };
125 
126 struct cake_flow {
127 	/* this stuff is all needed per-flow at dequeue time */
128 	struct sk_buff	  *head;
129 	struct sk_buff	  *tail;
130 	struct list_head  flowchain;
131 	s32		  deficit;
132 	u32		  dropped;
133 	struct cobalt_vars cvars;
134 	u16		  srchost; /* index into cake_host table */
135 	u16		  dsthost;
136 	u8		  set;
137 }; /* please try to keep this structure <= 64 bytes */
138 
139 struct cake_host {
140 	u32 srchost_tag;
141 	u32 dsthost_tag;
142 	u16 srchost_bulk_flow_count;
143 	u16 dsthost_bulk_flow_count;
144 };
145 
146 struct cake_heap_entry {
147 	u16 t:3, b:10;
148 };
149 
150 struct cake_tin_data {
151 	struct cake_flow flows[CAKE_QUEUES];
152 	u32	backlogs[CAKE_QUEUES];
153 	u32	tags[CAKE_QUEUES]; /* for set association */
154 	u16	overflow_idx[CAKE_QUEUES];
155 	struct cake_host hosts[CAKE_QUEUES]; /* for triple isolation */
156 	u16	flow_quantum;
157 
158 	struct cobalt_params cparams;
159 	u32	drop_overlimit;
160 	u16	bulk_flow_count;
161 	u16	sparse_flow_count;
162 	u16	decaying_flow_count;
163 	u16	unresponsive_flow_count;
164 
165 	u32	max_skblen;
166 
167 	struct list_head new_flows;
168 	struct list_head old_flows;
169 	struct list_head decaying_flows;
170 
171 	/* time_next = time_this + ((len * rate_ns) >> rate_shft) */
172 	ktime_t	time_next_packet;
173 	u64	tin_rate_ns;
174 	u64	tin_rate_bps;
175 	u16	tin_rate_shft;
176 
177 	u16	tin_quantum;
178 	s32	tin_deficit;
179 	u32	tin_backlog;
180 	u32	tin_dropped;
181 	u32	tin_ecn_mark;
182 
183 	u32	packets;
184 	u64	bytes;
185 
186 	u32	ack_drops;
187 
188 	/* moving averages */
189 	u64 avge_delay;
190 	u64 peak_delay;
191 	u64 base_delay;
192 
193 	/* hash function stats */
194 	u32	way_directs;
195 	u32	way_hits;
196 	u32	way_misses;
197 	u32	way_collisions;
198 }; /* number of tins is small, so size of this struct doesn't matter much */
199 
200 struct cake_sched_data {
201 	struct tcf_proto __rcu *filter_list; /* optional external classifier */
202 	struct tcf_block *block;
203 	struct cake_tin_data *tins;
204 
205 	struct cake_heap_entry overflow_heap[CAKE_QUEUES * CAKE_MAX_TINS];
206 	u16		overflow_timeout;
207 
208 	u16		tin_cnt;
209 	u8		tin_mode;
210 	u8		flow_mode;
211 	u8		ack_filter;
212 	u8		atm_mode;
213 
214 	u32		fwmark_mask;
215 	u16		fwmark_shft;
216 
217 	/* time_next = time_this + ((len * rate_ns) >> rate_shft) */
218 	u16		rate_shft;
219 	ktime_t		time_next_packet;
220 	ktime_t		failsafe_next_packet;
221 	u64		rate_ns;
222 	u64		rate_bps;
223 	u16		rate_flags;
224 	s16		rate_overhead;
225 	u16		rate_mpu;
226 	u64		interval;
227 	u64		target;
228 
229 	/* resource tracking */
230 	u32		buffer_used;
231 	u32		buffer_max_used;
232 	u32		buffer_limit;
233 	u32		buffer_config_limit;
234 
235 	/* indices for dequeue */
236 	u16		cur_tin;
237 	u16		cur_flow;
238 
239 	struct qdisc_watchdog watchdog;
240 	const u8	*tin_index;
241 	const u8	*tin_order;
242 
243 	/* bandwidth capacity estimate */
244 	ktime_t		last_packet_time;
245 	ktime_t		avg_window_begin;
246 	u64		avg_packet_interval;
247 	u64		avg_window_bytes;
248 	u64		avg_peak_bandwidth;
249 	ktime_t		last_reconfig_time;
250 
251 	/* packet length stats */
252 	u32		avg_netoff;
253 	u16		max_netlen;
254 	u16		max_adjlen;
255 	u16		min_netlen;
256 	u16		min_adjlen;
257 };
258 
259 enum {
260 	CAKE_FLAG_OVERHEAD	   = BIT(0),
261 	CAKE_FLAG_AUTORATE_INGRESS = BIT(1),
262 	CAKE_FLAG_INGRESS	   = BIT(2),
263 	CAKE_FLAG_WASH		   = BIT(3),
264 	CAKE_FLAG_SPLIT_GSO	   = BIT(4)
265 };
266 
267 /* COBALT operates the Codel and BLUE algorithms in parallel, in order to
268  * obtain the best features of each.  Codel is excellent on flows which
269  * respond to congestion signals in a TCP-like way.  BLUE is more effective on
270  * unresponsive flows.
271  */
272 
273 struct cobalt_skb_cb {
274 	ktime_t enqueue_time;
275 	u32     adjusted_len;
276 };
277 
us_to_ns(u64 us)278 static u64 us_to_ns(u64 us)
279 {
280 	return us * NSEC_PER_USEC;
281 }
282 
get_cobalt_cb(const struct sk_buff * skb)283 static struct cobalt_skb_cb *get_cobalt_cb(const struct sk_buff *skb)
284 {
285 	qdisc_cb_private_validate(skb, sizeof(struct cobalt_skb_cb));
286 	return (struct cobalt_skb_cb *)qdisc_skb_cb(skb)->data;
287 }
288 
cobalt_get_enqueue_time(const struct sk_buff * skb)289 static ktime_t cobalt_get_enqueue_time(const struct sk_buff *skb)
290 {
291 	return get_cobalt_cb(skb)->enqueue_time;
292 }
293 
cobalt_set_enqueue_time(struct sk_buff * skb,ktime_t now)294 static void cobalt_set_enqueue_time(struct sk_buff *skb,
295 				    ktime_t now)
296 {
297 	get_cobalt_cb(skb)->enqueue_time = now;
298 }
299 
300 static u16 quantum_div[CAKE_QUEUES + 1] = {0};
301 
302 /* Diffserv lookup tables */
303 
304 static const u8 precedence[] = {
305 	0, 0, 0, 0, 0, 0, 0, 0,
306 	1, 1, 1, 1, 1, 1, 1, 1,
307 	2, 2, 2, 2, 2, 2, 2, 2,
308 	3, 3, 3, 3, 3, 3, 3, 3,
309 	4, 4, 4, 4, 4, 4, 4, 4,
310 	5, 5, 5, 5, 5, 5, 5, 5,
311 	6, 6, 6, 6, 6, 6, 6, 6,
312 	7, 7, 7, 7, 7, 7, 7, 7,
313 };
314 
315 static const u8 diffserv8[] = {
316 	2, 0, 1, 2, 4, 2, 2, 2,
317 	1, 2, 1, 2, 1, 2, 1, 2,
318 	5, 2, 4, 2, 4, 2, 4, 2,
319 	3, 2, 3, 2, 3, 2, 3, 2,
320 	6, 2, 3, 2, 3, 2, 3, 2,
321 	6, 2, 2, 2, 6, 2, 6, 2,
322 	7, 2, 2, 2, 2, 2, 2, 2,
323 	7, 2, 2, 2, 2, 2, 2, 2,
324 };
325 
326 static const u8 diffserv4[] = {
327 	0, 1, 0, 0, 2, 0, 0, 0,
328 	1, 0, 0, 0, 0, 0, 0, 0,
329 	2, 0, 2, 0, 2, 0, 2, 0,
330 	2, 0, 2, 0, 2, 0, 2, 0,
331 	3, 0, 2, 0, 2, 0, 2, 0,
332 	3, 0, 0, 0, 3, 0, 3, 0,
333 	3, 0, 0, 0, 0, 0, 0, 0,
334 	3, 0, 0, 0, 0, 0, 0, 0,
335 };
336 
337 static const u8 diffserv3[] = {
338 	0, 1, 0, 0, 2, 0, 0, 0,
339 	1, 0, 0, 0, 0, 0, 0, 0,
340 	0, 0, 0, 0, 0, 0, 0, 0,
341 	0, 0, 0, 0, 0, 0, 0, 0,
342 	0, 0, 0, 0, 0, 0, 0, 0,
343 	0, 0, 0, 0, 2, 0, 2, 0,
344 	2, 0, 0, 0, 0, 0, 0, 0,
345 	2, 0, 0, 0, 0, 0, 0, 0,
346 };
347 
348 static const u8 besteffort[] = {
349 	0, 0, 0, 0, 0, 0, 0, 0,
350 	0, 0, 0, 0, 0, 0, 0, 0,
351 	0, 0, 0, 0, 0, 0, 0, 0,
352 	0, 0, 0, 0, 0, 0, 0, 0,
353 	0, 0, 0, 0, 0, 0, 0, 0,
354 	0, 0, 0, 0, 0, 0, 0, 0,
355 	0, 0, 0, 0, 0, 0, 0, 0,
356 	0, 0, 0, 0, 0, 0, 0, 0,
357 };
358 
359 /* tin priority order for stats dumping */
360 
361 static const u8 normal_order[] = {0, 1, 2, 3, 4, 5, 6, 7};
362 static const u8 bulk_order[] = {1, 0, 2, 3};
363 
364 /* There is a big difference in timing between the accurate values placed in the
365  * cache and the approximations given by a single Newton step for small count
366  * values, particularly when stepping from count 1 to 2 or vice versa. Hence,
367  * these values are calculated using eight Newton steps, using the
368  * implementation below. Above 16, a single Newton step gives sufficient
369  * accuracy in either direction, given the precision stored.
370  *
371  * The magnitude of the error when stepping up to count 2 is such as to give the
372  * value that *should* have been produced at count 4.
373  */
374 
375 #define REC_INV_SQRT_CACHE (16)
376 static const u32 inv_sqrt_cache[REC_INV_SQRT_CACHE] = {
377 		~0,         ~0, 3037000500, 2479700525,
378 	2147483647, 1920767767, 1753413056, 1623345051,
379 	1518500250, 1431655765, 1358187914, 1294981364,
380 	1239850263, 1191209601, 1147878294, 1108955788
381 };
382 
383 /* http://en.wikipedia.org/wiki/Methods_of_computing_square_roots
384  * new_invsqrt = (invsqrt / 2) * (3 - count * invsqrt^2)
385  *
386  * Here, invsqrt is a fixed point number (< 1.0), 32bit mantissa, aka Q0.32
387  */
388 
cobalt_newton_step(struct cobalt_vars * vars)389 static void cobalt_newton_step(struct cobalt_vars *vars)
390 {
391 	u32 invsqrt, invsqrt2;
392 	u64 val;
393 
394 	invsqrt = vars->rec_inv_sqrt;
395 	invsqrt2 = ((u64)invsqrt * invsqrt) >> 32;
396 	val = (3LL << 32) - ((u64)vars->count * invsqrt2);
397 
398 	val >>= 2; /* avoid overflow in following multiply */
399 	val = (val * invsqrt) >> (32 - 2 + 1);
400 
401 	vars->rec_inv_sqrt = val;
402 }
403 
cobalt_invsqrt(struct cobalt_vars * vars)404 static void cobalt_invsqrt(struct cobalt_vars *vars)
405 {
406 	if (vars->count < REC_INV_SQRT_CACHE)
407 		vars->rec_inv_sqrt = inv_sqrt_cache[vars->count];
408 	else
409 		cobalt_newton_step(vars);
410 }
411 
cobalt_vars_init(struct cobalt_vars * vars)412 static void cobalt_vars_init(struct cobalt_vars *vars)
413 {
414 	memset(vars, 0, sizeof(*vars));
415 }
416 
417 /* CoDel control_law is t + interval/sqrt(count)
418  * We maintain in rec_inv_sqrt the reciprocal value of sqrt(count) to avoid
419  * both sqrt() and divide operation.
420  */
cobalt_control(ktime_t t,u64 interval,u32 rec_inv_sqrt)421 static ktime_t cobalt_control(ktime_t t,
422 			      u64 interval,
423 			      u32 rec_inv_sqrt)
424 {
425 	return ktime_add_ns(t, reciprocal_scale(interval,
426 						rec_inv_sqrt));
427 }
428 
429 /* Call this when a packet had to be dropped due to queue overflow.  Returns
430  * true if the BLUE state was quiescent before but active after this call.
431  */
cobalt_queue_full(struct cobalt_vars * vars,struct cobalt_params * p,ktime_t now)432 static bool cobalt_queue_full(struct cobalt_vars *vars,
433 			      struct cobalt_params *p,
434 			      ktime_t now)
435 {
436 	bool up = false;
437 
438 	if (ktime_to_ns(ktime_sub(now, vars->blue_timer)) > p->target) {
439 		up = !vars->p_drop;
440 		vars->p_drop += p->p_inc;
441 		if (vars->p_drop < p->p_inc)
442 			vars->p_drop = ~0;
443 		vars->blue_timer = now;
444 	}
445 	vars->dropping = true;
446 	vars->drop_next = now;
447 	if (!vars->count)
448 		vars->count = 1;
449 
450 	return up;
451 }
452 
453 /* Call this when the queue was serviced but turned out to be empty.  Returns
454  * true if the BLUE state was active before but quiescent after this call.
455  */
cobalt_queue_empty(struct cobalt_vars * vars,struct cobalt_params * p,ktime_t now)456 static bool cobalt_queue_empty(struct cobalt_vars *vars,
457 			       struct cobalt_params *p,
458 			       ktime_t now)
459 {
460 	bool down = false;
461 
462 	if (vars->p_drop &&
463 	    ktime_to_ns(ktime_sub(now, vars->blue_timer)) > p->target) {
464 		if (vars->p_drop < p->p_dec)
465 			vars->p_drop = 0;
466 		else
467 			vars->p_drop -= p->p_dec;
468 		vars->blue_timer = now;
469 		down = !vars->p_drop;
470 	}
471 	vars->dropping = false;
472 
473 	if (vars->count && ktime_to_ns(ktime_sub(now, vars->drop_next)) >= 0) {
474 		vars->count--;
475 		cobalt_invsqrt(vars);
476 		vars->drop_next = cobalt_control(vars->drop_next,
477 						 p->interval,
478 						 vars->rec_inv_sqrt);
479 	}
480 
481 	return down;
482 }
483 
484 /* Call this with a freshly dequeued packet for possible congestion marking.
485  * Returns true as an instruction to drop the packet, false for delivery.
486  */
cobalt_should_drop(struct cobalt_vars * vars,struct cobalt_params * p,ktime_t now,struct sk_buff * skb,u32 bulk_flows)487 static enum skb_drop_reason cobalt_should_drop(struct cobalt_vars *vars,
488 					       struct cobalt_params *p,
489 					       ktime_t now,
490 					       struct sk_buff *skb,
491 					       u32 bulk_flows)
492 {
493 	enum skb_drop_reason reason = SKB_NOT_DROPPED_YET;
494 	bool next_due, over_target;
495 	ktime_t schedule;
496 	u64 sojourn;
497 
498 /* The 'schedule' variable records, in its sign, whether 'now' is before or
499  * after 'drop_next'.  This allows 'drop_next' to be updated before the next
500  * scheduling decision is actually branched, without destroying that
501  * information.  Similarly, the first 'schedule' value calculated is preserved
502  * in the boolean 'next_due'.
503  *
504  * As for 'drop_next', we take advantage of the fact that 'interval' is both
505  * the delay between first exceeding 'target' and the first signalling event,
506  * *and* the scaling factor for the signalling frequency.  It's therefore very
507  * natural to use a single mechanism for both purposes, and eliminates a
508  * significant amount of reference Codel's spaghetti code.  To help with this,
509  * both the '0' and '1' entries in the invsqrt cache are 0xFFFFFFFF, as close
510  * as possible to 1.0 in fixed-point.
511  */
512 
513 	sojourn = ktime_to_ns(ktime_sub(now, cobalt_get_enqueue_time(skb)));
514 	schedule = ktime_sub(now, vars->drop_next);
515 	over_target = sojourn > p->target &&
516 		      sojourn > p->mtu_time * bulk_flows * 2 &&
517 		      sojourn > p->mtu_time * 4;
518 	next_due = vars->count && ktime_to_ns(schedule) >= 0;
519 
520 	vars->ecn_marked = false;
521 
522 	if (over_target) {
523 		if (!vars->dropping) {
524 			vars->dropping = true;
525 			vars->drop_next = cobalt_control(now,
526 							 p->interval,
527 							 vars->rec_inv_sqrt);
528 		}
529 		if (!vars->count)
530 			vars->count = 1;
531 	} else if (vars->dropping) {
532 		vars->dropping = false;
533 	}
534 
535 	if (next_due && vars->dropping) {
536 		/* Use ECN mark if possible, otherwise drop */
537 		if (!(vars->ecn_marked = INET_ECN_set_ce(skb)))
538 			reason = SKB_DROP_REASON_QDISC_CONGESTED;
539 
540 		vars->count++;
541 		if (!vars->count)
542 			vars->count--;
543 		cobalt_invsqrt(vars);
544 		vars->drop_next = cobalt_control(vars->drop_next,
545 						 p->interval,
546 						 vars->rec_inv_sqrt);
547 		schedule = ktime_sub(now, vars->drop_next);
548 	} else {
549 		while (next_due) {
550 			vars->count--;
551 			cobalt_invsqrt(vars);
552 			vars->drop_next = cobalt_control(vars->drop_next,
553 							 p->interval,
554 							 vars->rec_inv_sqrt);
555 			schedule = ktime_sub(now, vars->drop_next);
556 			next_due = vars->count && ktime_to_ns(schedule) >= 0;
557 		}
558 	}
559 
560 	/* Simple BLUE implementation.  Lack of ECN is deliberate. */
561 	if (vars->p_drop && reason == SKB_NOT_DROPPED_YET &&
562 	    get_random_u32() < vars->p_drop)
563 		reason = SKB_DROP_REASON_CAKE_FLOOD;
564 
565 	/* Overload the drop_next field as an activity timeout */
566 	if (!vars->count)
567 		vars->drop_next = ktime_add_ns(now, p->interval);
568 	else if (ktime_to_ns(schedule) > 0 && reason == SKB_NOT_DROPPED_YET)
569 		vars->drop_next = now;
570 
571 	return reason;
572 }
573 
cake_update_flowkeys(struct flow_keys * keys,const struct sk_buff * skb)574 static bool cake_update_flowkeys(struct flow_keys *keys,
575 				 const struct sk_buff *skb)
576 {
577 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
578 	struct nf_conntrack_tuple tuple = {};
579 	bool rev = !skb->_nfct, upd = false;
580 	__be32 ip;
581 
582 	if (skb_protocol(skb, true) != htons(ETH_P_IP))
583 		return false;
584 
585 	if (!nf_ct_get_tuple_skb(&tuple, skb))
586 		return false;
587 
588 	ip = rev ? tuple.dst.u3.ip : tuple.src.u3.ip;
589 	if (ip != keys->addrs.v4addrs.src) {
590 		keys->addrs.v4addrs.src = ip;
591 		upd = true;
592 	}
593 	ip = rev ? tuple.src.u3.ip : tuple.dst.u3.ip;
594 	if (ip != keys->addrs.v4addrs.dst) {
595 		keys->addrs.v4addrs.dst = ip;
596 		upd = true;
597 	}
598 
599 	if (keys->ports.ports) {
600 		__be16 port;
601 
602 		port = rev ? tuple.dst.u.all : tuple.src.u.all;
603 		if (port != keys->ports.src) {
604 			keys->ports.src = port;
605 			upd = true;
606 		}
607 		port = rev ? tuple.src.u.all : tuple.dst.u.all;
608 		if (port != keys->ports.dst) {
609 			port = keys->ports.dst;
610 			upd = true;
611 		}
612 	}
613 	return upd;
614 #else
615 	return false;
616 #endif
617 }
618 
619 /* Cake has several subtle multiple bit settings. In these cases you
620  *  would be matching triple isolate mode as well.
621  */
622 
cake_dsrc(int flow_mode)623 static bool cake_dsrc(int flow_mode)
624 {
625 	return (flow_mode & CAKE_FLOW_DUAL_SRC) == CAKE_FLOW_DUAL_SRC;
626 }
627 
cake_ddst(int flow_mode)628 static bool cake_ddst(int flow_mode)
629 {
630 	return (flow_mode & CAKE_FLOW_DUAL_DST) == CAKE_FLOW_DUAL_DST;
631 }
632 
cake_dec_srchost_bulk_flow_count(struct cake_tin_data * q,struct cake_flow * flow,int flow_mode)633 static void cake_dec_srchost_bulk_flow_count(struct cake_tin_data *q,
634 					     struct cake_flow *flow,
635 					     int flow_mode)
636 {
637 	if (likely(cake_dsrc(flow_mode) &&
638 		   q->hosts[flow->srchost].srchost_bulk_flow_count))
639 		q->hosts[flow->srchost].srchost_bulk_flow_count--;
640 }
641 
cake_inc_srchost_bulk_flow_count(struct cake_tin_data * q,struct cake_flow * flow,int flow_mode)642 static void cake_inc_srchost_bulk_flow_count(struct cake_tin_data *q,
643 					     struct cake_flow *flow,
644 					     int flow_mode)
645 {
646 	if (likely(cake_dsrc(flow_mode) &&
647 		   q->hosts[flow->srchost].srchost_bulk_flow_count < CAKE_QUEUES))
648 		q->hosts[flow->srchost].srchost_bulk_flow_count++;
649 }
650 
cake_dec_dsthost_bulk_flow_count(struct cake_tin_data * q,struct cake_flow * flow,int flow_mode)651 static void cake_dec_dsthost_bulk_flow_count(struct cake_tin_data *q,
652 					     struct cake_flow *flow,
653 					     int flow_mode)
654 {
655 	if (likely(cake_ddst(flow_mode) &&
656 		   q->hosts[flow->dsthost].dsthost_bulk_flow_count))
657 		q->hosts[flow->dsthost].dsthost_bulk_flow_count--;
658 }
659 
cake_inc_dsthost_bulk_flow_count(struct cake_tin_data * q,struct cake_flow * flow,int flow_mode)660 static void cake_inc_dsthost_bulk_flow_count(struct cake_tin_data *q,
661 					     struct cake_flow *flow,
662 					     int flow_mode)
663 {
664 	if (likely(cake_ddst(flow_mode) &&
665 		   q->hosts[flow->dsthost].dsthost_bulk_flow_count < CAKE_QUEUES))
666 		q->hosts[flow->dsthost].dsthost_bulk_flow_count++;
667 }
668 
cake_get_flow_quantum(struct cake_tin_data * q,struct cake_flow * flow,int flow_mode)669 static u16 cake_get_flow_quantum(struct cake_tin_data *q,
670 				 struct cake_flow *flow,
671 				 int flow_mode)
672 {
673 	u16 host_load = 1;
674 
675 	if (cake_dsrc(flow_mode))
676 		host_load = max(host_load,
677 				q->hosts[flow->srchost].srchost_bulk_flow_count);
678 
679 	if (cake_ddst(flow_mode))
680 		host_load = max(host_load,
681 				q->hosts[flow->dsthost].dsthost_bulk_flow_count);
682 
683 	/* The get_random_u16() is a way to apply dithering to avoid
684 	 * accumulating roundoff errors
685 	 */
686 	return (q->flow_quantum * quantum_div[host_load] +
687 		get_random_u16()) >> 16;
688 }
689 
cake_hash(struct cake_tin_data * q,const struct sk_buff * skb,int flow_mode,u16 flow_override,u16 host_override)690 static u32 cake_hash(struct cake_tin_data *q, const struct sk_buff *skb,
691 		     int flow_mode, u16 flow_override, u16 host_override)
692 {
693 	bool hash_flows = (!flow_override && !!(flow_mode & CAKE_FLOW_FLOWS));
694 	bool hash_hosts = (!host_override && !!(flow_mode & CAKE_FLOW_HOSTS));
695 	bool nat_enabled = !!(flow_mode & CAKE_FLOW_NAT_FLAG);
696 	u32 flow_hash = 0, srchost_hash = 0, dsthost_hash = 0;
697 	u16 reduced_hash, srchost_idx, dsthost_idx;
698 	struct flow_keys keys, host_keys;
699 	bool use_skbhash = skb->l4_hash;
700 
701 	if (unlikely(flow_mode == CAKE_FLOW_NONE))
702 		return 0;
703 
704 	/* If both overrides are set, or we can use the SKB hash and nat mode is
705 	 * disabled, we can skip packet dissection entirely. If nat mode is
706 	 * enabled there's another check below after doing the conntrack lookup.
707 	 */
708 	if ((!hash_flows || (use_skbhash && !nat_enabled)) && !hash_hosts)
709 		goto skip_hash;
710 
711 	skb_flow_dissect_flow_keys(skb, &keys,
712 				   FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL);
713 
714 	/* Don't use the SKB hash if we change the lookup keys from conntrack */
715 	if (nat_enabled && cake_update_flowkeys(&keys, skb))
716 		use_skbhash = false;
717 
718 	/* If we can still use the SKB hash and don't need the host hash, we can
719 	 * skip the rest of the hashing procedure
720 	 */
721 	if (use_skbhash && !hash_hosts)
722 		goto skip_hash;
723 
724 	/* flow_hash_from_keys() sorts the addresses by value, so we have
725 	 * to preserve their order in a separate data structure to treat
726 	 * src and dst host addresses as independently selectable.
727 	 */
728 	host_keys = keys;
729 	host_keys.ports.ports     = 0;
730 	host_keys.basic.ip_proto  = 0;
731 	host_keys.keyid.keyid     = 0;
732 	host_keys.tags.flow_label = 0;
733 
734 	switch (host_keys.control.addr_type) {
735 	case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
736 		host_keys.addrs.v4addrs.src = 0;
737 		dsthost_hash = flow_hash_from_keys(&host_keys);
738 		host_keys.addrs.v4addrs.src = keys.addrs.v4addrs.src;
739 		host_keys.addrs.v4addrs.dst = 0;
740 		srchost_hash = flow_hash_from_keys(&host_keys);
741 		break;
742 
743 	case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
744 		memset(&host_keys.addrs.v6addrs.src, 0,
745 		       sizeof(host_keys.addrs.v6addrs.src));
746 		dsthost_hash = flow_hash_from_keys(&host_keys);
747 		host_keys.addrs.v6addrs.src = keys.addrs.v6addrs.src;
748 		memset(&host_keys.addrs.v6addrs.dst, 0,
749 		       sizeof(host_keys.addrs.v6addrs.dst));
750 		srchost_hash = flow_hash_from_keys(&host_keys);
751 		break;
752 
753 	default:
754 		dsthost_hash = 0;
755 		srchost_hash = 0;
756 	}
757 
758 	/* This *must* be after the above switch, since as a
759 	 * side-effect it sorts the src and dst addresses.
760 	 */
761 	if (hash_flows && !use_skbhash)
762 		flow_hash = flow_hash_from_keys(&keys);
763 
764 skip_hash:
765 	if (flow_override)
766 		flow_hash = flow_override - 1;
767 	else if (use_skbhash && (flow_mode & CAKE_FLOW_FLOWS))
768 		flow_hash = skb->hash;
769 	if (host_override) {
770 		dsthost_hash = host_override - 1;
771 		srchost_hash = host_override - 1;
772 	}
773 
774 	if (!(flow_mode & CAKE_FLOW_FLOWS)) {
775 		if (flow_mode & CAKE_FLOW_SRC_IP)
776 			flow_hash ^= srchost_hash;
777 
778 		if (flow_mode & CAKE_FLOW_DST_IP)
779 			flow_hash ^= dsthost_hash;
780 	}
781 
782 	reduced_hash = flow_hash % CAKE_QUEUES;
783 
784 	/* set-associative hashing */
785 	/* fast path if no hash collision (direct lookup succeeds) */
786 	if (likely(q->tags[reduced_hash] == flow_hash &&
787 		   q->flows[reduced_hash].set)) {
788 		q->way_directs++;
789 	} else {
790 		u32 inner_hash = reduced_hash % CAKE_SET_WAYS;
791 		u32 outer_hash = reduced_hash - inner_hash;
792 		bool allocate_src = false;
793 		bool allocate_dst = false;
794 		u32 i, k;
795 
796 		/* check if any active queue in the set is reserved for
797 		 * this flow.
798 		 */
799 		for (i = 0, k = inner_hash; i < CAKE_SET_WAYS;
800 		     i++, k = (k + 1) % CAKE_SET_WAYS) {
801 			if (q->tags[outer_hash + k] == flow_hash) {
802 				if (i)
803 					q->way_hits++;
804 
805 				if (!q->flows[outer_hash + k].set) {
806 					/* need to increment host refcnts */
807 					allocate_src = cake_dsrc(flow_mode);
808 					allocate_dst = cake_ddst(flow_mode);
809 				}
810 
811 				goto found;
812 			}
813 		}
814 
815 		/* no queue is reserved for this flow, look for an
816 		 * empty one.
817 		 */
818 		for (i = 0; i < CAKE_SET_WAYS;
819 			 i++, k = (k + 1) % CAKE_SET_WAYS) {
820 			if (!q->flows[outer_hash + k].set) {
821 				q->way_misses++;
822 				allocate_src = cake_dsrc(flow_mode);
823 				allocate_dst = cake_ddst(flow_mode);
824 				goto found;
825 			}
826 		}
827 
828 		/* With no empty queues, default to the original
829 		 * queue, accept the collision, update the host tags.
830 		 */
831 		q->way_collisions++;
832 		allocate_src = cake_dsrc(flow_mode);
833 		allocate_dst = cake_ddst(flow_mode);
834 
835 		if (q->flows[outer_hash + k].set == CAKE_SET_BULK) {
836 			cake_dec_srchost_bulk_flow_count(q, &q->flows[outer_hash + k], flow_mode);
837 			cake_dec_dsthost_bulk_flow_count(q, &q->flows[outer_hash + k], flow_mode);
838 		}
839 found:
840 		/* reserve queue for future packets in same flow */
841 		reduced_hash = outer_hash + k;
842 		q->tags[reduced_hash] = flow_hash;
843 
844 		if (allocate_src) {
845 			srchost_idx = srchost_hash % CAKE_QUEUES;
846 			inner_hash = srchost_idx % CAKE_SET_WAYS;
847 			outer_hash = srchost_idx - inner_hash;
848 			for (i = 0, k = inner_hash; i < CAKE_SET_WAYS;
849 				i++, k = (k + 1) % CAKE_SET_WAYS) {
850 				if (q->hosts[outer_hash + k].srchost_tag ==
851 				    srchost_hash)
852 					goto found_src;
853 			}
854 			for (i = 0; i < CAKE_SET_WAYS;
855 				i++, k = (k + 1) % CAKE_SET_WAYS) {
856 				if (!q->hosts[outer_hash + k].srchost_bulk_flow_count)
857 					break;
858 			}
859 			q->hosts[outer_hash + k].srchost_tag = srchost_hash;
860 found_src:
861 			srchost_idx = outer_hash + k;
862 			q->flows[reduced_hash].srchost = srchost_idx;
863 
864 			if (q->flows[reduced_hash].set == CAKE_SET_BULK)
865 				cake_inc_srchost_bulk_flow_count(q, &q->flows[reduced_hash], flow_mode);
866 		}
867 
868 		if (allocate_dst) {
869 			dsthost_idx = dsthost_hash % CAKE_QUEUES;
870 			inner_hash = dsthost_idx % CAKE_SET_WAYS;
871 			outer_hash = dsthost_idx - inner_hash;
872 			for (i = 0, k = inner_hash; i < CAKE_SET_WAYS;
873 			     i++, k = (k + 1) % CAKE_SET_WAYS) {
874 				if (q->hosts[outer_hash + k].dsthost_tag ==
875 				    dsthost_hash)
876 					goto found_dst;
877 			}
878 			for (i = 0; i < CAKE_SET_WAYS;
879 			     i++, k = (k + 1) % CAKE_SET_WAYS) {
880 				if (!q->hosts[outer_hash + k].dsthost_bulk_flow_count)
881 					break;
882 			}
883 			q->hosts[outer_hash + k].dsthost_tag = dsthost_hash;
884 found_dst:
885 			dsthost_idx = outer_hash + k;
886 			q->flows[reduced_hash].dsthost = dsthost_idx;
887 
888 			if (q->flows[reduced_hash].set == CAKE_SET_BULK)
889 				cake_inc_dsthost_bulk_flow_count(q, &q->flows[reduced_hash], flow_mode);
890 		}
891 	}
892 
893 	return reduced_hash;
894 }
895 
896 /* helper functions : might be changed when/if skb use a standard list_head */
897 /* remove one skb from head of slot queue */
898 
dequeue_head(struct cake_flow * flow)899 static struct sk_buff *dequeue_head(struct cake_flow *flow)
900 {
901 	struct sk_buff *skb = flow->head;
902 
903 	if (skb) {
904 		flow->head = skb->next;
905 		skb_mark_not_on_list(skb);
906 	}
907 
908 	return skb;
909 }
910 
911 /* add skb to flow queue (tail add) */
912 
flow_queue_add(struct cake_flow * flow,struct sk_buff * skb)913 static void flow_queue_add(struct cake_flow *flow, struct sk_buff *skb)
914 {
915 	if (!flow->head)
916 		flow->head = skb;
917 	else
918 		flow->tail->next = skb;
919 	flow->tail = skb;
920 	skb->next = NULL;
921 }
922 
cake_get_iphdr(const struct sk_buff * skb,struct ipv6hdr * buf)923 static struct iphdr *cake_get_iphdr(const struct sk_buff *skb,
924 				    struct ipv6hdr *buf)
925 {
926 	unsigned int offset = skb_network_offset(skb);
927 	struct iphdr *iph;
928 
929 	iph = skb_header_pointer(skb, offset, sizeof(struct iphdr), buf);
930 
931 	if (!iph)
932 		return NULL;
933 
934 	if (iph->version == 4 && iph->protocol == IPPROTO_IPV6)
935 		return skb_header_pointer(skb, offset + iph->ihl * 4,
936 					  sizeof(struct ipv6hdr), buf);
937 
938 	else if (iph->version == 4)
939 		return iph;
940 
941 	else if (iph->version == 6)
942 		return skb_header_pointer(skb, offset, sizeof(struct ipv6hdr),
943 					  buf);
944 
945 	return NULL;
946 }
947 
cake_get_tcphdr(const struct sk_buff * skb,void * buf,unsigned int bufsize)948 static struct tcphdr *cake_get_tcphdr(const struct sk_buff *skb,
949 				      void *buf, unsigned int bufsize)
950 {
951 	unsigned int offset = skb_network_offset(skb);
952 	const struct ipv6hdr *ipv6h;
953 	const struct tcphdr *tcph;
954 	const struct iphdr *iph;
955 	struct ipv6hdr _ipv6h;
956 	struct tcphdr _tcph;
957 
958 	ipv6h = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
959 
960 	if (!ipv6h)
961 		return NULL;
962 
963 	if (ipv6h->version == 4) {
964 		iph = (struct iphdr *)ipv6h;
965 		offset += iph->ihl * 4;
966 
967 		/* special-case 6in4 tunnelling, as that is a common way to get
968 		 * v6 connectivity in the home
969 		 */
970 		if (iph->protocol == IPPROTO_IPV6) {
971 			ipv6h = skb_header_pointer(skb, offset,
972 						   sizeof(_ipv6h), &_ipv6h);
973 
974 			if (!ipv6h || ipv6h->nexthdr != IPPROTO_TCP)
975 				return NULL;
976 
977 			offset += sizeof(struct ipv6hdr);
978 
979 		} else if (iph->protocol != IPPROTO_TCP) {
980 			return NULL;
981 		}
982 
983 	} else if (ipv6h->version == 6) {
984 		if (ipv6h->nexthdr != IPPROTO_TCP)
985 			return NULL;
986 
987 		offset += sizeof(struct ipv6hdr);
988 	} else {
989 		return NULL;
990 	}
991 
992 	tcph = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
993 	if (!tcph || tcph->doff < 5)
994 		return NULL;
995 
996 	return skb_header_pointer(skb, offset,
997 				  min(__tcp_hdrlen(tcph), bufsize), buf);
998 }
999 
cake_get_tcpopt(const struct tcphdr * tcph,int code,int * oplen)1000 static const void *cake_get_tcpopt(const struct tcphdr *tcph,
1001 				   int code, int *oplen)
1002 {
1003 	/* inspired by tcp_parse_options in tcp_input.c */
1004 	int length = __tcp_hdrlen(tcph) - sizeof(struct tcphdr);
1005 	const u8 *ptr = (const u8 *)(tcph + 1);
1006 
1007 	while (length > 0) {
1008 		int opcode = *ptr++;
1009 		int opsize;
1010 
1011 		if (opcode == TCPOPT_EOL)
1012 			break;
1013 		if (opcode == TCPOPT_NOP) {
1014 			length--;
1015 			continue;
1016 		}
1017 		if (length < 2)
1018 			break;
1019 		opsize = *ptr++;
1020 		if (opsize < 2 || opsize > length)
1021 			break;
1022 
1023 		if (opcode == code) {
1024 			*oplen = opsize;
1025 			return ptr;
1026 		}
1027 
1028 		ptr += opsize - 2;
1029 		length -= opsize;
1030 	}
1031 
1032 	return NULL;
1033 }
1034 
1035 /* Compare two SACK sequences. A sequence is considered greater if it SACKs more
1036  * bytes than the other. In the case where both sequences ACKs bytes that the
1037  * other doesn't, A is considered greater. DSACKs in A also makes A be
1038  * considered greater.
1039  *
1040  * @return -1, 0 or 1 as normal compare functions
1041  */
cake_tcph_sack_compare(const struct tcphdr * tcph_a,const struct tcphdr * tcph_b)1042 static int cake_tcph_sack_compare(const struct tcphdr *tcph_a,
1043 				  const struct tcphdr *tcph_b)
1044 {
1045 	const struct tcp_sack_block_wire *sack_a, *sack_b;
1046 	u32 ack_seq_a = ntohl(tcph_a->ack_seq);
1047 	u32 bytes_a = 0, bytes_b = 0;
1048 	int oplen_a, oplen_b;
1049 	bool first = true;
1050 
1051 	sack_a = cake_get_tcpopt(tcph_a, TCPOPT_SACK, &oplen_a);
1052 	sack_b = cake_get_tcpopt(tcph_b, TCPOPT_SACK, &oplen_b);
1053 
1054 	/* pointers point to option contents */
1055 	oplen_a -= TCPOLEN_SACK_BASE;
1056 	oplen_b -= TCPOLEN_SACK_BASE;
1057 
1058 	if (sack_a && oplen_a >= sizeof(*sack_a) &&
1059 	    (!sack_b || oplen_b < sizeof(*sack_b)))
1060 		return -1;
1061 	else if (sack_b && oplen_b >= sizeof(*sack_b) &&
1062 		 (!sack_a || oplen_a < sizeof(*sack_a)))
1063 		return 1;
1064 	else if ((!sack_a || oplen_a < sizeof(*sack_a)) &&
1065 		 (!sack_b || oplen_b < sizeof(*sack_b)))
1066 		return 0;
1067 
1068 	while (oplen_a >= sizeof(*sack_a)) {
1069 		const struct tcp_sack_block_wire *sack_tmp = sack_b;
1070 		u32 start_a = get_unaligned_be32(&sack_a->start_seq);
1071 		u32 end_a = get_unaligned_be32(&sack_a->end_seq);
1072 		int oplen_tmp = oplen_b;
1073 		bool found = false;
1074 
1075 		/* DSACK; always considered greater to prevent dropping */
1076 		if (before(start_a, ack_seq_a))
1077 			return -1;
1078 
1079 		bytes_a += end_a - start_a;
1080 
1081 		while (oplen_tmp >= sizeof(*sack_tmp)) {
1082 			u32 start_b = get_unaligned_be32(&sack_tmp->start_seq);
1083 			u32 end_b = get_unaligned_be32(&sack_tmp->end_seq);
1084 
1085 			/* first time through we count the total size */
1086 			if (first)
1087 				bytes_b += end_b - start_b;
1088 
1089 			if (!after(start_b, start_a) && !before(end_b, end_a)) {
1090 				found = true;
1091 				if (!first)
1092 					break;
1093 			}
1094 			oplen_tmp -= sizeof(*sack_tmp);
1095 			sack_tmp++;
1096 		}
1097 
1098 		if (!found)
1099 			return -1;
1100 
1101 		oplen_a -= sizeof(*sack_a);
1102 		sack_a++;
1103 		first = false;
1104 	}
1105 
1106 	/* If we made it this far, all ranges SACKed by A are covered by B, so
1107 	 * either the SACKs are equal, or B SACKs more bytes.
1108 	 */
1109 	return bytes_b > bytes_a ? 1 : 0;
1110 }
1111 
cake_tcph_get_tstamp(const struct tcphdr * tcph,u32 * tsval,u32 * tsecr)1112 static void cake_tcph_get_tstamp(const struct tcphdr *tcph,
1113 				 u32 *tsval, u32 *tsecr)
1114 {
1115 	const u8 *ptr;
1116 	int opsize;
1117 
1118 	ptr = cake_get_tcpopt(tcph, TCPOPT_TIMESTAMP, &opsize);
1119 
1120 	if (ptr && opsize == TCPOLEN_TIMESTAMP) {
1121 		*tsval = get_unaligned_be32(ptr);
1122 		*tsecr = get_unaligned_be32(ptr + 4);
1123 	}
1124 }
1125 
cake_tcph_may_drop(const struct tcphdr * tcph,u32 tstamp_new,u32 tsecr_new)1126 static bool cake_tcph_may_drop(const struct tcphdr *tcph,
1127 			       u32 tstamp_new, u32 tsecr_new)
1128 {
1129 	/* inspired by tcp_parse_options in tcp_input.c */
1130 	int length = __tcp_hdrlen(tcph) - sizeof(struct tcphdr);
1131 	const u8 *ptr = (const u8 *)(tcph + 1);
1132 	u32 tstamp, tsecr;
1133 
1134 	/* 3 reserved flags must be unset to avoid future breakage
1135 	 * ACK must be set
1136 	 * ECE/CWR are handled separately
1137 	 * All other flags URG/PSH/RST/SYN/FIN must be unset
1138 	 * 0x0FFF0000 = all TCP flags (confirm ACK=1, others zero)
1139 	 * 0x00C00000 = CWR/ECE (handled separately)
1140 	 * 0x0F3F0000 = 0x0FFF0000 & ~0x00C00000
1141 	 */
1142 	if (((tcp_flag_word(tcph) &
1143 	      cpu_to_be32(0x0F3F0000)) != TCP_FLAG_ACK))
1144 		return false;
1145 
1146 	while (length > 0) {
1147 		int opcode = *ptr++;
1148 		int opsize;
1149 
1150 		if (opcode == TCPOPT_EOL)
1151 			break;
1152 		if (opcode == TCPOPT_NOP) {
1153 			length--;
1154 			continue;
1155 		}
1156 		if (length < 2)
1157 			break;
1158 		opsize = *ptr++;
1159 		if (opsize < 2 || opsize > length)
1160 			break;
1161 
1162 		switch (opcode) {
1163 		case TCPOPT_MD5SIG: /* doesn't influence state */
1164 			break;
1165 
1166 		case TCPOPT_SACK: /* stricter checking performed later */
1167 			if (opsize % 8 != 2)
1168 				return false;
1169 			break;
1170 
1171 		case TCPOPT_TIMESTAMP:
1172 			/* only drop timestamps lower than new */
1173 			if (opsize != TCPOLEN_TIMESTAMP)
1174 				return false;
1175 			tstamp = get_unaligned_be32(ptr);
1176 			tsecr = get_unaligned_be32(ptr + 4);
1177 			if (after(tstamp, tstamp_new) ||
1178 			    after(tsecr, tsecr_new))
1179 				return false;
1180 			break;
1181 
1182 		case TCPOPT_MSS:  /* these should only be set on SYN */
1183 		case TCPOPT_WINDOW:
1184 		case TCPOPT_SACK_PERM:
1185 		case TCPOPT_FASTOPEN:
1186 		case TCPOPT_EXP:
1187 		default: /* don't drop if any unknown options are present */
1188 			return false;
1189 		}
1190 
1191 		ptr += opsize - 2;
1192 		length -= opsize;
1193 	}
1194 
1195 	return true;
1196 }
1197 
cake_ack_filter(struct cake_sched_data * q,struct cake_flow * flow)1198 static struct sk_buff *cake_ack_filter(struct cake_sched_data *q,
1199 				       struct cake_flow *flow)
1200 {
1201 	bool aggressive = q->ack_filter == CAKE_ACK_AGGRESSIVE;
1202 	struct sk_buff *elig_ack = NULL, *elig_ack_prev = NULL;
1203 	struct sk_buff *skb_check, *skb_prev = NULL;
1204 	const struct ipv6hdr *ipv6h, *ipv6h_check;
1205 	unsigned char _tcph[64], _tcph_check[64];
1206 	const struct tcphdr *tcph, *tcph_check;
1207 	const struct iphdr *iph, *iph_check;
1208 	struct ipv6hdr _iph, _iph_check;
1209 	const struct sk_buff *skb;
1210 	int seglen, num_found = 0;
1211 	u32 tstamp = 0, tsecr = 0;
1212 	__be32 elig_flags = 0;
1213 	int sack_comp;
1214 
1215 	/* no other possible ACKs to filter */
1216 	if (flow->head == flow->tail)
1217 		return NULL;
1218 
1219 	skb = flow->tail;
1220 	tcph = cake_get_tcphdr(skb, _tcph, sizeof(_tcph));
1221 	iph = cake_get_iphdr(skb, &_iph);
1222 	if (!tcph)
1223 		return NULL;
1224 
1225 	cake_tcph_get_tstamp(tcph, &tstamp, &tsecr);
1226 
1227 	/* the 'triggering' packet need only have the ACK flag set.
1228 	 * also check that SYN is not set, as there won't be any previous ACKs.
1229 	 */
1230 	if ((tcp_flag_word(tcph) &
1231 	     (TCP_FLAG_ACK | TCP_FLAG_SYN)) != TCP_FLAG_ACK)
1232 		return NULL;
1233 
1234 	/* the 'triggering' ACK is at the tail of the queue, we have already
1235 	 * returned if it is the only packet in the flow. loop through the rest
1236 	 * of the queue looking for pure ACKs with the same 5-tuple as the
1237 	 * triggering one.
1238 	 */
1239 	for (skb_check = flow->head;
1240 	     skb_check && skb_check != skb;
1241 	     skb_prev = skb_check, skb_check = skb_check->next) {
1242 		iph_check = cake_get_iphdr(skb_check, &_iph_check);
1243 		tcph_check = cake_get_tcphdr(skb_check, &_tcph_check,
1244 					     sizeof(_tcph_check));
1245 
1246 		/* only TCP packets with matching 5-tuple are eligible, and only
1247 		 * drop safe headers
1248 		 */
1249 		if (!tcph_check || iph->version != iph_check->version ||
1250 		    tcph_check->source != tcph->source ||
1251 		    tcph_check->dest != tcph->dest)
1252 			continue;
1253 
1254 		if (iph_check->version == 4) {
1255 			if (iph_check->saddr != iph->saddr ||
1256 			    iph_check->daddr != iph->daddr)
1257 				continue;
1258 
1259 			seglen = iph_totlen(skb, iph_check) -
1260 				       (4 * iph_check->ihl);
1261 		} else if (iph_check->version == 6) {
1262 			ipv6h = (struct ipv6hdr *)iph;
1263 			ipv6h_check = (struct ipv6hdr *)iph_check;
1264 
1265 			if (ipv6_addr_cmp(&ipv6h_check->saddr, &ipv6h->saddr) ||
1266 			    ipv6_addr_cmp(&ipv6h_check->daddr, &ipv6h->daddr))
1267 				continue;
1268 
1269 			seglen = ntohs(ipv6h_check->payload_len);
1270 		} else {
1271 			WARN_ON(1);  /* shouldn't happen */
1272 			continue;
1273 		}
1274 
1275 		/* If the ECE/CWR flags changed from the previous eligible
1276 		 * packet in the same flow, we should no longer be dropping that
1277 		 * previous packet as this would lose information.
1278 		 */
1279 		if (elig_ack && (tcp_flag_word(tcph_check) &
1280 				 (TCP_FLAG_ECE | TCP_FLAG_CWR)) != elig_flags) {
1281 			elig_ack = NULL;
1282 			elig_ack_prev = NULL;
1283 			num_found--;
1284 		}
1285 
1286 		/* Check TCP options and flags, don't drop ACKs with segment
1287 		 * data, and don't drop ACKs with a higher cumulative ACK
1288 		 * counter than the triggering packet. Check ACK seqno here to
1289 		 * avoid parsing SACK options of packets we are going to exclude
1290 		 * anyway.
1291 		 */
1292 		if (!cake_tcph_may_drop(tcph_check, tstamp, tsecr) ||
1293 		    (seglen - __tcp_hdrlen(tcph_check)) != 0 ||
1294 		    after(ntohl(tcph_check->ack_seq), ntohl(tcph->ack_seq)))
1295 			continue;
1296 
1297 		/* Check SACK options. The triggering packet must SACK more data
1298 		 * than the ACK under consideration, or SACK the same range but
1299 		 * have a larger cumulative ACK counter. The latter is a
1300 		 * pathological case, but is contained in the following check
1301 		 * anyway, just to be safe.
1302 		 */
1303 		sack_comp = cake_tcph_sack_compare(tcph_check, tcph);
1304 
1305 		if (sack_comp < 0 ||
1306 		    (ntohl(tcph_check->ack_seq) == ntohl(tcph->ack_seq) &&
1307 		     sack_comp == 0))
1308 			continue;
1309 
1310 		/* At this point we have found an eligible pure ACK to drop; if
1311 		 * we are in aggressive mode, we are done. Otherwise, keep
1312 		 * searching unless this is the second eligible ACK we
1313 		 * found.
1314 		 *
1315 		 * Since we want to drop ACK closest to the head of the queue,
1316 		 * save the first eligible ACK we find, even if we need to loop
1317 		 * again.
1318 		 */
1319 		if (!elig_ack) {
1320 			elig_ack = skb_check;
1321 			elig_ack_prev = skb_prev;
1322 			elig_flags = (tcp_flag_word(tcph_check)
1323 				      & (TCP_FLAG_ECE | TCP_FLAG_CWR));
1324 		}
1325 
1326 		if (num_found++ > 0)
1327 			goto found;
1328 	}
1329 
1330 	/* We made it through the queue without finding two eligible ACKs . If
1331 	 * we found a single eligible ACK we can drop it in aggressive mode if
1332 	 * we can guarantee that this does not interfere with ECN flag
1333 	 * information. We ensure this by dropping it only if the enqueued
1334 	 * packet is consecutive with the eligible ACK, and their flags match.
1335 	 */
1336 	if (elig_ack && aggressive && elig_ack->next == skb &&
1337 	    (elig_flags == (tcp_flag_word(tcph) &
1338 			    (TCP_FLAG_ECE | TCP_FLAG_CWR))))
1339 		goto found;
1340 
1341 	return NULL;
1342 
1343 found:
1344 	if (elig_ack_prev)
1345 		elig_ack_prev->next = elig_ack->next;
1346 	else
1347 		flow->head = elig_ack->next;
1348 
1349 	skb_mark_not_on_list(elig_ack);
1350 
1351 	return elig_ack;
1352 }
1353 
cake_ewma(u64 avg,u64 sample,u32 shift)1354 static u64 cake_ewma(u64 avg, u64 sample, u32 shift)
1355 {
1356 	avg -= avg >> shift;
1357 	avg += sample >> shift;
1358 	return avg;
1359 }
1360 
cake_calc_overhead(struct cake_sched_data * q,u32 len,u32 off)1361 static u32 cake_calc_overhead(struct cake_sched_data *q, u32 len, u32 off)
1362 {
1363 	if (q->rate_flags & CAKE_FLAG_OVERHEAD)
1364 		len -= off;
1365 
1366 	if (q->max_netlen < len)
1367 		q->max_netlen = len;
1368 	if (q->min_netlen > len)
1369 		q->min_netlen = len;
1370 
1371 	len += q->rate_overhead;
1372 
1373 	if (len < q->rate_mpu)
1374 		len = q->rate_mpu;
1375 
1376 	if (q->atm_mode == CAKE_ATM_ATM) {
1377 		len += 47;
1378 		len /= 48;
1379 		len *= 53;
1380 	} else if (q->atm_mode == CAKE_ATM_PTM) {
1381 		/* Add one byte per 64 bytes or part thereof.
1382 		 * This is conservative and easier to calculate than the
1383 		 * precise value.
1384 		 */
1385 		len += (len + 63) / 64;
1386 	}
1387 
1388 	if (q->max_adjlen < len)
1389 		q->max_adjlen = len;
1390 	if (q->min_adjlen > len)
1391 		q->min_adjlen = len;
1392 
1393 	return len;
1394 }
1395 
cake_overhead(struct cake_sched_data * q,const struct sk_buff * skb)1396 static u32 cake_overhead(struct cake_sched_data *q, const struct sk_buff *skb)
1397 {
1398 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
1399 	unsigned int hdr_len, last_len = 0;
1400 	u32 off = skb_network_offset(skb);
1401 	u32 len = qdisc_pkt_len(skb);
1402 	u16 segs = 1;
1403 
1404 	q->avg_netoff = cake_ewma(q->avg_netoff, off << 16, 8);
1405 
1406 	if (!shinfo->gso_size)
1407 		return cake_calc_overhead(q, len, off);
1408 
1409 	/* borrowed from qdisc_pkt_len_init() */
1410 	if (!skb->encapsulation)
1411 		hdr_len = skb_transport_offset(skb);
1412 	else
1413 		hdr_len = skb_inner_transport_offset(skb);
1414 
1415 	/* + transport layer */
1416 	if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 |
1417 						SKB_GSO_TCPV6))) {
1418 		const struct tcphdr *th;
1419 		struct tcphdr _tcphdr;
1420 
1421 		th = skb_header_pointer(skb, hdr_len,
1422 					sizeof(_tcphdr), &_tcphdr);
1423 		if (likely(th))
1424 			hdr_len += __tcp_hdrlen(th);
1425 	} else {
1426 		struct udphdr _udphdr;
1427 
1428 		if (skb_header_pointer(skb, hdr_len,
1429 				       sizeof(_udphdr), &_udphdr))
1430 			hdr_len += sizeof(struct udphdr);
1431 	}
1432 
1433 	if (unlikely(shinfo->gso_type & SKB_GSO_DODGY))
1434 		segs = DIV_ROUND_UP(skb->len - hdr_len,
1435 				    shinfo->gso_size);
1436 	else
1437 		segs = shinfo->gso_segs;
1438 
1439 	len = shinfo->gso_size + hdr_len;
1440 	last_len = skb->len - shinfo->gso_size * (segs - 1);
1441 
1442 	return (cake_calc_overhead(q, len, off) * (segs - 1) +
1443 		cake_calc_overhead(q, last_len, off));
1444 }
1445 
cake_heap_swap(struct cake_sched_data * q,u16 i,u16 j)1446 static void cake_heap_swap(struct cake_sched_data *q, u16 i, u16 j)
1447 {
1448 	struct cake_heap_entry ii = q->overflow_heap[i];
1449 	struct cake_heap_entry jj = q->overflow_heap[j];
1450 
1451 	q->overflow_heap[i] = jj;
1452 	q->overflow_heap[j] = ii;
1453 
1454 	q->tins[ii.t].overflow_idx[ii.b] = j;
1455 	q->tins[jj.t].overflow_idx[jj.b] = i;
1456 }
1457 
cake_heap_get_backlog(const struct cake_sched_data * q,u16 i)1458 static u32 cake_heap_get_backlog(const struct cake_sched_data *q, u16 i)
1459 {
1460 	struct cake_heap_entry ii = q->overflow_heap[i];
1461 
1462 	return q->tins[ii.t].backlogs[ii.b];
1463 }
1464 
cake_heapify(struct cake_sched_data * q,u16 i)1465 static void cake_heapify(struct cake_sched_data *q, u16 i)
1466 {
1467 	static const u32 a = CAKE_MAX_TINS * CAKE_QUEUES;
1468 	u32 mb = cake_heap_get_backlog(q, i);
1469 	u32 m = i;
1470 
1471 	while (m < a) {
1472 		u32 l = m + m + 1;
1473 		u32 r = l + 1;
1474 
1475 		if (l < a) {
1476 			u32 lb = cake_heap_get_backlog(q, l);
1477 
1478 			if (lb > mb) {
1479 				m  = l;
1480 				mb = lb;
1481 			}
1482 		}
1483 
1484 		if (r < a) {
1485 			u32 rb = cake_heap_get_backlog(q, r);
1486 
1487 			if (rb > mb) {
1488 				m  = r;
1489 				mb = rb;
1490 			}
1491 		}
1492 
1493 		if (m != i) {
1494 			cake_heap_swap(q, i, m);
1495 			i = m;
1496 		} else {
1497 			break;
1498 		}
1499 	}
1500 }
1501 
cake_heapify_up(struct cake_sched_data * q,u16 i)1502 static void cake_heapify_up(struct cake_sched_data *q, u16 i)
1503 {
1504 	while (i > 0 && i < CAKE_MAX_TINS * CAKE_QUEUES) {
1505 		u16 p = (i - 1) >> 1;
1506 		u32 ib = cake_heap_get_backlog(q, i);
1507 		u32 pb = cake_heap_get_backlog(q, p);
1508 
1509 		if (ib > pb) {
1510 			cake_heap_swap(q, i, p);
1511 			i = p;
1512 		} else {
1513 			break;
1514 		}
1515 	}
1516 }
1517 
cake_advance_shaper(struct cake_sched_data * q,struct cake_tin_data * b,struct sk_buff * skb,ktime_t now,bool drop)1518 static int cake_advance_shaper(struct cake_sched_data *q,
1519 			       struct cake_tin_data *b,
1520 			       struct sk_buff *skb,
1521 			       ktime_t now, bool drop)
1522 {
1523 	u32 len = get_cobalt_cb(skb)->adjusted_len;
1524 
1525 	/* charge packet bandwidth to this tin
1526 	 * and to the global shaper.
1527 	 */
1528 	if (q->rate_ns) {
1529 		u64 tin_dur = (len * b->tin_rate_ns) >> b->tin_rate_shft;
1530 		u64 global_dur = (len * q->rate_ns) >> q->rate_shft;
1531 		u64 failsafe_dur = global_dur + (global_dur >> 1);
1532 
1533 		if (ktime_before(b->time_next_packet, now))
1534 			b->time_next_packet = ktime_add_ns(b->time_next_packet,
1535 							   tin_dur);
1536 
1537 		else if (ktime_before(b->time_next_packet,
1538 				      ktime_add_ns(now, tin_dur)))
1539 			b->time_next_packet = ktime_add_ns(now, tin_dur);
1540 
1541 		q->time_next_packet = ktime_add_ns(q->time_next_packet,
1542 						   global_dur);
1543 		if (!drop)
1544 			q->failsafe_next_packet = \
1545 				ktime_add_ns(q->failsafe_next_packet,
1546 					     failsafe_dur);
1547 	}
1548 	return len;
1549 }
1550 
cake_drop(struct Qdisc * sch,struct sk_buff ** to_free)1551 static unsigned int cake_drop(struct Qdisc *sch, struct sk_buff **to_free)
1552 {
1553 	struct cake_sched_data *q = qdisc_priv(sch);
1554 	ktime_t now = ktime_get();
1555 	u32 idx = 0, tin = 0, len;
1556 	struct cake_heap_entry qq;
1557 	struct cake_tin_data *b;
1558 	struct cake_flow *flow;
1559 	struct sk_buff *skb;
1560 
1561 	if (!q->overflow_timeout) {
1562 		int i;
1563 		/* Build fresh max-heap */
1564 		for (i = CAKE_MAX_TINS * CAKE_QUEUES / 2 - 1; i >= 0; i--)
1565 			cake_heapify(q, i);
1566 	}
1567 	q->overflow_timeout = 65535;
1568 
1569 	/* select longest queue for pruning */
1570 	qq  = q->overflow_heap[0];
1571 	tin = qq.t;
1572 	idx = qq.b;
1573 
1574 	b = &q->tins[tin];
1575 	flow = &b->flows[idx];
1576 	skb = dequeue_head(flow);
1577 	if (unlikely(!skb)) {
1578 		/* heap has gone wrong, rebuild it next time */
1579 		q->overflow_timeout = 0;
1580 		return idx + (tin << 16);
1581 	}
1582 
1583 	if (cobalt_queue_full(&flow->cvars, &b->cparams, now))
1584 		b->unresponsive_flow_count++;
1585 
1586 	len = qdisc_pkt_len(skb);
1587 	q->buffer_used      -= skb->truesize;
1588 	b->backlogs[idx]    -= len;
1589 	b->tin_backlog      -= len;
1590 	sch->qstats.backlog -= len;
1591 
1592 	flow->dropped++;
1593 	b->tin_dropped++;
1594 
1595 	if (q->rate_flags & CAKE_FLAG_INGRESS)
1596 		cake_advance_shaper(q, b, skb, now, true);
1597 
1598 	qdisc_drop_reason(skb, sch, to_free, SKB_DROP_REASON_QDISC_OVERLIMIT);
1599 	sch->q.qlen--;
1600 	qdisc_tree_reduce_backlog(sch, 1, len);
1601 
1602 	cake_heapify(q, 0);
1603 
1604 	return idx + (tin << 16);
1605 }
1606 
cake_handle_diffserv(struct sk_buff * skb,bool wash)1607 static u8 cake_handle_diffserv(struct sk_buff *skb, bool wash)
1608 {
1609 	const int offset = skb_network_offset(skb);
1610 	u16 *buf, buf_;
1611 	u8 dscp;
1612 
1613 	switch (skb_protocol(skb, true)) {
1614 	case htons(ETH_P_IP):
1615 		buf = skb_header_pointer(skb, offset, sizeof(buf_), &buf_);
1616 		if (unlikely(!buf))
1617 			return 0;
1618 
1619 		/* ToS is in the second byte of iphdr */
1620 		dscp = ipv4_get_dsfield((struct iphdr *)buf) >> 2;
1621 
1622 		if (wash && dscp) {
1623 			const int wlen = offset + sizeof(struct iphdr);
1624 
1625 			if (!pskb_may_pull(skb, wlen) ||
1626 			    skb_try_make_writable(skb, wlen))
1627 				return 0;
1628 
1629 			ipv4_change_dsfield(ip_hdr(skb), INET_ECN_MASK, 0);
1630 		}
1631 
1632 		return dscp;
1633 
1634 	case htons(ETH_P_IPV6):
1635 		buf = skb_header_pointer(skb, offset, sizeof(buf_), &buf_);
1636 		if (unlikely(!buf))
1637 			return 0;
1638 
1639 		/* Traffic class is in the first and second bytes of ipv6hdr */
1640 		dscp = ipv6_get_dsfield((struct ipv6hdr *)buf) >> 2;
1641 
1642 		if (wash && dscp) {
1643 			const int wlen = offset + sizeof(struct ipv6hdr);
1644 
1645 			if (!pskb_may_pull(skb, wlen) ||
1646 			    skb_try_make_writable(skb, wlen))
1647 				return 0;
1648 
1649 			ipv6_change_dsfield(ipv6_hdr(skb), INET_ECN_MASK, 0);
1650 		}
1651 
1652 		return dscp;
1653 
1654 	case htons(ETH_P_ARP):
1655 		return 0x38;  /* CS7 - Net Control */
1656 
1657 	default:
1658 		/* If there is no Diffserv field, treat as best-effort */
1659 		return 0;
1660 	}
1661 }
1662 
cake_select_tin(struct Qdisc * sch,struct sk_buff * skb)1663 static struct cake_tin_data *cake_select_tin(struct Qdisc *sch,
1664 					     struct sk_buff *skb)
1665 {
1666 	struct cake_sched_data *q = qdisc_priv(sch);
1667 	u32 tin, mark;
1668 	bool wash;
1669 	u8 dscp;
1670 
1671 	/* Tin selection: Default to diffserv-based selection, allow overriding
1672 	 * using firewall marks or skb->priority. Call DSCP parsing early if
1673 	 * wash is enabled, otherwise defer to below to skip unneeded parsing.
1674 	 */
1675 	mark = (skb->mark & q->fwmark_mask) >> q->fwmark_shft;
1676 	wash = !!(q->rate_flags & CAKE_FLAG_WASH);
1677 	if (wash)
1678 		dscp = cake_handle_diffserv(skb, wash);
1679 
1680 	if (q->tin_mode == CAKE_DIFFSERV_BESTEFFORT)
1681 		tin = 0;
1682 
1683 	else if (mark && mark <= q->tin_cnt)
1684 		tin = q->tin_order[mark - 1];
1685 
1686 	else if (TC_H_MAJ(skb->priority) == sch->handle &&
1687 		 TC_H_MIN(skb->priority) > 0 &&
1688 		 TC_H_MIN(skb->priority) <= q->tin_cnt)
1689 		tin = q->tin_order[TC_H_MIN(skb->priority) - 1];
1690 
1691 	else {
1692 		if (!wash)
1693 			dscp = cake_handle_diffserv(skb, wash);
1694 		tin = q->tin_index[dscp];
1695 
1696 		if (unlikely(tin >= q->tin_cnt))
1697 			tin = 0;
1698 	}
1699 
1700 	return &q->tins[tin];
1701 }
1702 
cake_classify(struct Qdisc * sch,struct cake_tin_data ** t,struct sk_buff * skb,int flow_mode,int * qerr)1703 static u32 cake_classify(struct Qdisc *sch, struct cake_tin_data **t,
1704 			 struct sk_buff *skb, int flow_mode, int *qerr)
1705 {
1706 	struct cake_sched_data *q = qdisc_priv(sch);
1707 	struct tcf_proto *filter;
1708 	struct tcf_result res;
1709 	u16 flow = 0, host = 0;
1710 	int result;
1711 
1712 	filter = rcu_dereference_bh(q->filter_list);
1713 	if (!filter)
1714 		goto hash;
1715 
1716 	*qerr = NET_XMIT_SUCCESS | __NET_XMIT_BYPASS;
1717 	result = tcf_classify(skb, NULL, filter, &res, false);
1718 
1719 	if (result >= 0) {
1720 #ifdef CONFIG_NET_CLS_ACT
1721 		switch (result) {
1722 		case TC_ACT_STOLEN:
1723 		case TC_ACT_QUEUED:
1724 		case TC_ACT_TRAP:
1725 			*qerr = NET_XMIT_SUCCESS | __NET_XMIT_STOLEN;
1726 			fallthrough;
1727 		case TC_ACT_SHOT:
1728 			return 0;
1729 		}
1730 #endif
1731 		if (TC_H_MIN(res.classid) <= CAKE_QUEUES)
1732 			flow = TC_H_MIN(res.classid);
1733 		if (TC_H_MAJ(res.classid) <= (CAKE_QUEUES << 16))
1734 			host = TC_H_MAJ(res.classid) >> 16;
1735 	}
1736 hash:
1737 	*t = cake_select_tin(sch, skb);
1738 	return cake_hash(*t, skb, flow_mode, flow, host) + 1;
1739 }
1740 
1741 static void cake_reconfigure(struct Qdisc *sch);
1742 
cake_enqueue(struct sk_buff * skb,struct Qdisc * sch,struct sk_buff ** to_free)1743 static s32 cake_enqueue(struct sk_buff *skb, struct Qdisc *sch,
1744 			struct sk_buff **to_free)
1745 {
1746 	struct cake_sched_data *q = qdisc_priv(sch);
1747 	int len = qdisc_pkt_len(skb);
1748 	int ret;
1749 	struct sk_buff *ack = NULL;
1750 	ktime_t now = ktime_get();
1751 	struct cake_tin_data *b;
1752 	struct cake_flow *flow;
1753 	u32 idx;
1754 
1755 	/* choose flow to insert into */
1756 	idx = cake_classify(sch, &b, skb, q->flow_mode, &ret);
1757 	if (idx == 0) {
1758 		if (ret & __NET_XMIT_BYPASS)
1759 			qdisc_qstats_drop(sch);
1760 		__qdisc_drop(skb, to_free);
1761 		return ret;
1762 	}
1763 	idx--;
1764 	flow = &b->flows[idx];
1765 
1766 	/* ensure shaper state isn't stale */
1767 	if (!b->tin_backlog) {
1768 		if (ktime_before(b->time_next_packet, now))
1769 			b->time_next_packet = now;
1770 
1771 		if (!sch->q.qlen) {
1772 			if (ktime_before(q->time_next_packet, now)) {
1773 				q->failsafe_next_packet = now;
1774 				q->time_next_packet = now;
1775 			} else if (ktime_after(q->time_next_packet, now) &&
1776 				   ktime_after(q->failsafe_next_packet, now)) {
1777 				u64 next = \
1778 					min(ktime_to_ns(q->time_next_packet),
1779 					    ktime_to_ns(
1780 						   q->failsafe_next_packet));
1781 				sch->qstats.overlimits++;
1782 				qdisc_watchdog_schedule_ns(&q->watchdog, next);
1783 			}
1784 		}
1785 	}
1786 
1787 	if (unlikely(len > b->max_skblen))
1788 		b->max_skblen = len;
1789 
1790 	if (skb_is_gso(skb) && q->rate_flags & CAKE_FLAG_SPLIT_GSO) {
1791 		struct sk_buff *segs, *nskb;
1792 		netdev_features_t features = netif_skb_features(skb);
1793 		unsigned int slen = 0, numsegs = 0;
1794 
1795 		segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK);
1796 		if (IS_ERR_OR_NULL(segs))
1797 			return qdisc_drop(skb, sch, to_free);
1798 
1799 		skb_list_walk_safe(segs, segs, nskb) {
1800 			skb_mark_not_on_list(segs);
1801 			qdisc_skb_cb(segs)->pkt_len = segs->len;
1802 			cobalt_set_enqueue_time(segs, now);
1803 			get_cobalt_cb(segs)->adjusted_len = cake_overhead(q,
1804 									  segs);
1805 			flow_queue_add(flow, segs);
1806 
1807 			sch->q.qlen++;
1808 			numsegs++;
1809 			slen += segs->len;
1810 			q->buffer_used += segs->truesize;
1811 			b->packets++;
1812 		}
1813 
1814 		/* stats */
1815 		b->bytes	    += slen;
1816 		b->backlogs[idx]    += slen;
1817 		b->tin_backlog      += slen;
1818 		sch->qstats.backlog += slen;
1819 		q->avg_window_bytes += slen;
1820 
1821 		qdisc_tree_reduce_backlog(sch, 1-numsegs, len-slen);
1822 		consume_skb(skb);
1823 	} else {
1824 		/* not splitting */
1825 		cobalt_set_enqueue_time(skb, now);
1826 		get_cobalt_cb(skb)->adjusted_len = cake_overhead(q, skb);
1827 		flow_queue_add(flow, skb);
1828 
1829 		if (q->ack_filter)
1830 			ack = cake_ack_filter(q, flow);
1831 
1832 		if (ack) {
1833 			b->ack_drops++;
1834 			sch->qstats.drops++;
1835 			b->bytes += qdisc_pkt_len(ack);
1836 			len -= qdisc_pkt_len(ack);
1837 			q->buffer_used += skb->truesize - ack->truesize;
1838 			if (q->rate_flags & CAKE_FLAG_INGRESS)
1839 				cake_advance_shaper(q, b, ack, now, true);
1840 
1841 			qdisc_tree_reduce_backlog(sch, 1, qdisc_pkt_len(ack));
1842 			consume_skb(ack);
1843 		} else {
1844 			sch->q.qlen++;
1845 			q->buffer_used      += skb->truesize;
1846 		}
1847 
1848 		/* stats */
1849 		b->packets++;
1850 		b->bytes	    += len;
1851 		b->backlogs[idx]    += len;
1852 		b->tin_backlog      += len;
1853 		sch->qstats.backlog += len;
1854 		q->avg_window_bytes += len;
1855 	}
1856 
1857 	if (q->overflow_timeout)
1858 		cake_heapify_up(q, b->overflow_idx[idx]);
1859 
1860 	/* incoming bandwidth capacity estimate */
1861 	if (q->rate_flags & CAKE_FLAG_AUTORATE_INGRESS) {
1862 		u64 packet_interval = \
1863 			ktime_to_ns(ktime_sub(now, q->last_packet_time));
1864 
1865 		if (packet_interval > NSEC_PER_SEC)
1866 			packet_interval = NSEC_PER_SEC;
1867 
1868 		/* filter out short-term bursts, eg. wifi aggregation */
1869 		q->avg_packet_interval = \
1870 			cake_ewma(q->avg_packet_interval,
1871 				  packet_interval,
1872 				  (packet_interval > q->avg_packet_interval ?
1873 					  2 : 8));
1874 
1875 		q->last_packet_time = now;
1876 
1877 		if (packet_interval > q->avg_packet_interval) {
1878 			u64 window_interval = \
1879 				ktime_to_ns(ktime_sub(now,
1880 						      q->avg_window_begin));
1881 			u64 b = q->avg_window_bytes * (u64)NSEC_PER_SEC;
1882 
1883 			b = div64_u64(b, window_interval);
1884 			q->avg_peak_bandwidth =
1885 				cake_ewma(q->avg_peak_bandwidth, b,
1886 					  b > q->avg_peak_bandwidth ? 2 : 8);
1887 			q->avg_window_bytes = 0;
1888 			q->avg_window_begin = now;
1889 
1890 			if (ktime_after(now,
1891 					ktime_add_ms(q->last_reconfig_time,
1892 						     250))) {
1893 				q->rate_bps = (q->avg_peak_bandwidth * 15) >> 4;
1894 				cake_reconfigure(sch);
1895 			}
1896 		}
1897 	} else {
1898 		q->avg_window_bytes = 0;
1899 		q->last_packet_time = now;
1900 	}
1901 
1902 	/* flowchain */
1903 	if (!flow->set || flow->set == CAKE_SET_DECAYING) {
1904 		if (!flow->set) {
1905 			list_add_tail(&flow->flowchain, &b->new_flows);
1906 		} else {
1907 			b->decaying_flow_count--;
1908 			list_move_tail(&flow->flowchain, &b->new_flows);
1909 		}
1910 		flow->set = CAKE_SET_SPARSE;
1911 		b->sparse_flow_count++;
1912 
1913 		flow->deficit = cake_get_flow_quantum(b, flow, q->flow_mode);
1914 	} else if (flow->set == CAKE_SET_SPARSE_WAIT) {
1915 		/* this flow was empty, accounted as a sparse flow, but actually
1916 		 * in the bulk rotation.
1917 		 */
1918 		flow->set = CAKE_SET_BULK;
1919 		b->sparse_flow_count--;
1920 		b->bulk_flow_count++;
1921 
1922 		cake_inc_srchost_bulk_flow_count(b, flow, q->flow_mode);
1923 		cake_inc_dsthost_bulk_flow_count(b, flow, q->flow_mode);
1924 	}
1925 
1926 	if (q->buffer_used > q->buffer_max_used)
1927 		q->buffer_max_used = q->buffer_used;
1928 
1929 	if (q->buffer_used > q->buffer_limit) {
1930 		u32 dropped = 0;
1931 
1932 		while (q->buffer_used > q->buffer_limit) {
1933 			dropped++;
1934 			cake_drop(sch, to_free);
1935 		}
1936 		b->drop_overlimit += dropped;
1937 	}
1938 	return NET_XMIT_SUCCESS;
1939 }
1940 
cake_dequeue_one(struct Qdisc * sch)1941 static struct sk_buff *cake_dequeue_one(struct Qdisc *sch)
1942 {
1943 	struct cake_sched_data *q = qdisc_priv(sch);
1944 	struct cake_tin_data *b = &q->tins[q->cur_tin];
1945 	struct cake_flow *flow = &b->flows[q->cur_flow];
1946 	struct sk_buff *skb = NULL;
1947 	u32 len;
1948 
1949 	if (flow->head) {
1950 		skb = dequeue_head(flow);
1951 		len = qdisc_pkt_len(skb);
1952 		b->backlogs[q->cur_flow] -= len;
1953 		b->tin_backlog		 -= len;
1954 		sch->qstats.backlog      -= len;
1955 		q->buffer_used		 -= skb->truesize;
1956 		sch->q.qlen--;
1957 
1958 		if (q->overflow_timeout)
1959 			cake_heapify(q, b->overflow_idx[q->cur_flow]);
1960 	}
1961 	return skb;
1962 }
1963 
1964 /* Discard leftover packets from a tin no longer in use. */
cake_clear_tin(struct Qdisc * sch,u16 tin)1965 static void cake_clear_tin(struct Qdisc *sch, u16 tin)
1966 {
1967 	struct cake_sched_data *q = qdisc_priv(sch);
1968 	struct sk_buff *skb;
1969 
1970 	q->cur_tin = tin;
1971 	for (q->cur_flow = 0; q->cur_flow < CAKE_QUEUES; q->cur_flow++)
1972 		while (!!(skb = cake_dequeue_one(sch)))
1973 			kfree_skb_reason(skb, SKB_DROP_REASON_QUEUE_PURGE);
1974 }
1975 
cake_dequeue(struct Qdisc * sch)1976 static struct sk_buff *cake_dequeue(struct Qdisc *sch)
1977 {
1978 	struct cake_sched_data *q = qdisc_priv(sch);
1979 	struct cake_tin_data *b = &q->tins[q->cur_tin];
1980 	enum skb_drop_reason reason;
1981 	ktime_t now = ktime_get();
1982 	struct cake_flow *flow;
1983 	struct list_head *head;
1984 	bool first_flow = true;
1985 	struct sk_buff *skb;
1986 	u64 delay;
1987 	u32 len;
1988 
1989 begin:
1990 	if (!sch->q.qlen)
1991 		return NULL;
1992 
1993 	/* global hard shaper */
1994 	if (ktime_after(q->time_next_packet, now) &&
1995 	    ktime_after(q->failsafe_next_packet, now)) {
1996 		u64 next = min(ktime_to_ns(q->time_next_packet),
1997 			       ktime_to_ns(q->failsafe_next_packet));
1998 
1999 		sch->qstats.overlimits++;
2000 		qdisc_watchdog_schedule_ns(&q->watchdog, next);
2001 		return NULL;
2002 	}
2003 
2004 	/* Choose a class to work on. */
2005 	if (!q->rate_ns) {
2006 		/* In unlimited mode, can't rely on shaper timings, just balance
2007 		 * with DRR
2008 		 */
2009 		bool wrapped = false, empty = true;
2010 
2011 		while (b->tin_deficit < 0 ||
2012 		       !(b->sparse_flow_count + b->bulk_flow_count)) {
2013 			if (b->tin_deficit <= 0)
2014 				b->tin_deficit += b->tin_quantum;
2015 			if (b->sparse_flow_count + b->bulk_flow_count)
2016 				empty = false;
2017 
2018 			q->cur_tin++;
2019 			b++;
2020 			if (q->cur_tin >= q->tin_cnt) {
2021 				q->cur_tin = 0;
2022 				b = q->tins;
2023 
2024 				if (wrapped) {
2025 					/* It's possible for q->qlen to be
2026 					 * nonzero when we actually have no
2027 					 * packets anywhere.
2028 					 */
2029 					if (empty)
2030 						return NULL;
2031 				} else {
2032 					wrapped = true;
2033 				}
2034 			}
2035 		}
2036 	} else {
2037 		/* In shaped mode, choose:
2038 		 * - Highest-priority tin with queue and meeting schedule, or
2039 		 * - The earliest-scheduled tin with queue.
2040 		 */
2041 		ktime_t best_time = KTIME_MAX;
2042 		int tin, best_tin = 0;
2043 
2044 		for (tin = 0; tin < q->tin_cnt; tin++) {
2045 			b = q->tins + tin;
2046 			if ((b->sparse_flow_count + b->bulk_flow_count) > 0) {
2047 				ktime_t time_to_pkt = \
2048 					ktime_sub(b->time_next_packet, now);
2049 
2050 				if (ktime_to_ns(time_to_pkt) <= 0 ||
2051 				    ktime_compare(time_to_pkt,
2052 						  best_time) <= 0) {
2053 					best_time = time_to_pkt;
2054 					best_tin = tin;
2055 				}
2056 			}
2057 		}
2058 
2059 		q->cur_tin = best_tin;
2060 		b = q->tins + best_tin;
2061 
2062 		/* No point in going further if no packets to deliver. */
2063 		if (unlikely(!(b->sparse_flow_count + b->bulk_flow_count)))
2064 			return NULL;
2065 	}
2066 
2067 retry:
2068 	/* service this class */
2069 	head = &b->decaying_flows;
2070 	if (!first_flow || list_empty(head)) {
2071 		head = &b->new_flows;
2072 		if (list_empty(head)) {
2073 			head = &b->old_flows;
2074 			if (unlikely(list_empty(head))) {
2075 				head = &b->decaying_flows;
2076 				if (unlikely(list_empty(head)))
2077 					goto begin;
2078 			}
2079 		}
2080 	}
2081 	flow = list_first_entry(head, struct cake_flow, flowchain);
2082 	q->cur_flow = flow - b->flows;
2083 	first_flow = false;
2084 
2085 	/* flow isolation (DRR++) */
2086 	if (flow->deficit <= 0) {
2087 		/* Keep all flows with deficits out of the sparse and decaying
2088 		 * rotations.  No non-empty flow can go into the decaying
2089 		 * rotation, so they can't get deficits
2090 		 */
2091 		if (flow->set == CAKE_SET_SPARSE) {
2092 			if (flow->head) {
2093 				b->sparse_flow_count--;
2094 				b->bulk_flow_count++;
2095 
2096 				cake_inc_srchost_bulk_flow_count(b, flow, q->flow_mode);
2097 				cake_inc_dsthost_bulk_flow_count(b, flow, q->flow_mode);
2098 
2099 				flow->set = CAKE_SET_BULK;
2100 			} else {
2101 				/* we've moved it to the bulk rotation for
2102 				 * correct deficit accounting but we still want
2103 				 * to count it as a sparse flow, not a bulk one.
2104 				 */
2105 				flow->set = CAKE_SET_SPARSE_WAIT;
2106 			}
2107 		}
2108 
2109 		flow->deficit += cake_get_flow_quantum(b, flow, q->flow_mode);
2110 		list_move_tail(&flow->flowchain, &b->old_flows);
2111 
2112 		goto retry;
2113 	}
2114 
2115 	/* Retrieve a packet via the AQM */
2116 	while (1) {
2117 		skb = cake_dequeue_one(sch);
2118 		if (!skb) {
2119 			/* this queue was actually empty */
2120 			if (cobalt_queue_empty(&flow->cvars, &b->cparams, now))
2121 				b->unresponsive_flow_count--;
2122 
2123 			if (flow->cvars.p_drop || flow->cvars.count ||
2124 			    ktime_before(now, flow->cvars.drop_next)) {
2125 				/* keep in the flowchain until the state has
2126 				 * decayed to rest
2127 				 */
2128 				list_move_tail(&flow->flowchain,
2129 					       &b->decaying_flows);
2130 				if (flow->set == CAKE_SET_BULK) {
2131 					b->bulk_flow_count--;
2132 
2133 					cake_dec_srchost_bulk_flow_count(b, flow, q->flow_mode);
2134 					cake_dec_dsthost_bulk_flow_count(b, flow, q->flow_mode);
2135 
2136 					b->decaying_flow_count++;
2137 				} else if (flow->set == CAKE_SET_SPARSE ||
2138 					   flow->set == CAKE_SET_SPARSE_WAIT) {
2139 					b->sparse_flow_count--;
2140 					b->decaying_flow_count++;
2141 				}
2142 				flow->set = CAKE_SET_DECAYING;
2143 			} else {
2144 				/* remove empty queue from the flowchain */
2145 				list_del_init(&flow->flowchain);
2146 				if (flow->set == CAKE_SET_SPARSE ||
2147 				    flow->set == CAKE_SET_SPARSE_WAIT)
2148 					b->sparse_flow_count--;
2149 				else if (flow->set == CAKE_SET_BULK) {
2150 					b->bulk_flow_count--;
2151 
2152 					cake_dec_srchost_bulk_flow_count(b, flow, q->flow_mode);
2153 					cake_dec_dsthost_bulk_flow_count(b, flow, q->flow_mode);
2154 				} else
2155 					b->decaying_flow_count--;
2156 
2157 				flow->set = CAKE_SET_NONE;
2158 			}
2159 			goto begin;
2160 		}
2161 
2162 		reason = cobalt_should_drop(&flow->cvars, &b->cparams, now, skb,
2163 					    (b->bulk_flow_count *
2164 					     !!(q->rate_flags &
2165 						CAKE_FLAG_INGRESS)));
2166 		/* Last packet in queue may be marked, shouldn't be dropped */
2167 		if (reason == SKB_NOT_DROPPED_YET || !flow->head)
2168 			break;
2169 
2170 		/* drop this packet, get another one */
2171 		if (q->rate_flags & CAKE_FLAG_INGRESS) {
2172 			len = cake_advance_shaper(q, b, skb,
2173 						  now, true);
2174 			flow->deficit -= len;
2175 			b->tin_deficit -= len;
2176 		}
2177 		flow->dropped++;
2178 		b->tin_dropped++;
2179 		qdisc_tree_reduce_backlog(sch, 1, qdisc_pkt_len(skb));
2180 		qdisc_qstats_drop(sch);
2181 		kfree_skb_reason(skb, reason);
2182 		if (q->rate_flags & CAKE_FLAG_INGRESS)
2183 			goto retry;
2184 	}
2185 
2186 	b->tin_ecn_mark += !!flow->cvars.ecn_marked;
2187 	qdisc_bstats_update(sch, skb);
2188 
2189 	/* collect delay stats */
2190 	delay = ktime_to_ns(ktime_sub(now, cobalt_get_enqueue_time(skb)));
2191 	b->avge_delay = cake_ewma(b->avge_delay, delay, 8);
2192 	b->peak_delay = cake_ewma(b->peak_delay, delay,
2193 				  delay > b->peak_delay ? 2 : 8);
2194 	b->base_delay = cake_ewma(b->base_delay, delay,
2195 				  delay < b->base_delay ? 2 : 8);
2196 
2197 	len = cake_advance_shaper(q, b, skb, now, false);
2198 	flow->deficit -= len;
2199 	b->tin_deficit -= len;
2200 
2201 	if (ktime_after(q->time_next_packet, now) && sch->q.qlen) {
2202 		u64 next = min(ktime_to_ns(q->time_next_packet),
2203 			       ktime_to_ns(q->failsafe_next_packet));
2204 
2205 		qdisc_watchdog_schedule_ns(&q->watchdog, next);
2206 	} else if (!sch->q.qlen) {
2207 		int i;
2208 
2209 		for (i = 0; i < q->tin_cnt; i++) {
2210 			if (q->tins[i].decaying_flow_count) {
2211 				ktime_t next = \
2212 					ktime_add_ns(now,
2213 						     q->tins[i].cparams.target);
2214 
2215 				qdisc_watchdog_schedule_ns(&q->watchdog,
2216 							   ktime_to_ns(next));
2217 				break;
2218 			}
2219 		}
2220 	}
2221 
2222 	if (q->overflow_timeout)
2223 		q->overflow_timeout--;
2224 
2225 	return skb;
2226 }
2227 
cake_reset(struct Qdisc * sch)2228 static void cake_reset(struct Qdisc *sch)
2229 {
2230 	struct cake_sched_data *q = qdisc_priv(sch);
2231 	u32 c;
2232 
2233 	if (!q->tins)
2234 		return;
2235 
2236 	for (c = 0; c < CAKE_MAX_TINS; c++)
2237 		cake_clear_tin(sch, c);
2238 }
2239 
2240 static const struct nla_policy cake_policy[TCA_CAKE_MAX + 1] = {
2241 	[TCA_CAKE_BASE_RATE64]   = { .type = NLA_U64 },
2242 	[TCA_CAKE_DIFFSERV_MODE] = { .type = NLA_U32 },
2243 	[TCA_CAKE_ATM]		 = { .type = NLA_U32 },
2244 	[TCA_CAKE_FLOW_MODE]     = { .type = NLA_U32 },
2245 	[TCA_CAKE_OVERHEAD]      = { .type = NLA_S32 },
2246 	[TCA_CAKE_RTT]		 = { .type = NLA_U32 },
2247 	[TCA_CAKE_TARGET]	 = { .type = NLA_U32 },
2248 	[TCA_CAKE_AUTORATE]      = { .type = NLA_U32 },
2249 	[TCA_CAKE_MEMORY]	 = { .type = NLA_U32 },
2250 	[TCA_CAKE_NAT]		 = { .type = NLA_U32 },
2251 	[TCA_CAKE_RAW]		 = { .type = NLA_U32 },
2252 	[TCA_CAKE_WASH]		 = { .type = NLA_U32 },
2253 	[TCA_CAKE_MPU]		 = { .type = NLA_U32 },
2254 	[TCA_CAKE_INGRESS]	 = { .type = NLA_U32 },
2255 	[TCA_CAKE_ACK_FILTER]	 = { .type = NLA_U32 },
2256 	[TCA_CAKE_SPLIT_GSO]	 = { .type = NLA_U32 },
2257 	[TCA_CAKE_FWMARK]	 = { .type = NLA_U32 },
2258 };
2259 
cake_set_rate(struct cake_tin_data * b,u64 rate,u32 mtu,u64 target_ns,u64 rtt_est_ns)2260 static void cake_set_rate(struct cake_tin_data *b, u64 rate, u32 mtu,
2261 			  u64 target_ns, u64 rtt_est_ns)
2262 {
2263 	/* convert byte-rate into time-per-byte
2264 	 * so it will always unwedge in reasonable time.
2265 	 */
2266 	static const u64 MIN_RATE = 64;
2267 	u32 byte_target = mtu;
2268 	u64 byte_target_ns;
2269 	u8  rate_shft = 0;
2270 	u64 rate_ns = 0;
2271 
2272 	b->flow_quantum = 1514;
2273 	if (rate) {
2274 		b->flow_quantum = max(min(rate >> 12, 1514ULL), 300ULL);
2275 		rate_shft = 34;
2276 		rate_ns = ((u64)NSEC_PER_SEC) << rate_shft;
2277 		rate_ns = div64_u64(rate_ns, max(MIN_RATE, rate));
2278 		while (!!(rate_ns >> 34)) {
2279 			rate_ns >>= 1;
2280 			rate_shft--;
2281 		}
2282 	} /* else unlimited, ie. zero delay */
2283 
2284 	b->tin_rate_bps  = rate;
2285 	b->tin_rate_ns   = rate_ns;
2286 	b->tin_rate_shft = rate_shft;
2287 
2288 	byte_target_ns = (byte_target * rate_ns) >> rate_shft;
2289 
2290 	b->cparams.target = max((byte_target_ns * 3) / 2, target_ns);
2291 	b->cparams.interval = max(rtt_est_ns +
2292 				     b->cparams.target - target_ns,
2293 				     b->cparams.target * 2);
2294 	b->cparams.mtu_time = byte_target_ns;
2295 	b->cparams.p_inc = 1 << 24; /* 1/256 */
2296 	b->cparams.p_dec = 1 << 20; /* 1/4096 */
2297 }
2298 
cake_config_besteffort(struct Qdisc * sch)2299 static int cake_config_besteffort(struct Qdisc *sch)
2300 {
2301 	struct cake_sched_data *q = qdisc_priv(sch);
2302 	struct cake_tin_data *b = &q->tins[0];
2303 	u32 mtu = psched_mtu(qdisc_dev(sch));
2304 	u64 rate = q->rate_bps;
2305 
2306 	q->tin_cnt = 1;
2307 
2308 	q->tin_index = besteffort;
2309 	q->tin_order = normal_order;
2310 
2311 	cake_set_rate(b, rate, mtu,
2312 		      us_to_ns(q->target), us_to_ns(q->interval));
2313 	b->tin_quantum = 65535;
2314 
2315 	return 0;
2316 }
2317 
cake_config_precedence(struct Qdisc * sch)2318 static int cake_config_precedence(struct Qdisc *sch)
2319 {
2320 	/* convert high-level (user visible) parameters into internal format */
2321 	struct cake_sched_data *q = qdisc_priv(sch);
2322 	u32 mtu = psched_mtu(qdisc_dev(sch));
2323 	u64 rate = q->rate_bps;
2324 	u32 quantum = 256;
2325 	u32 i;
2326 
2327 	q->tin_cnt = 8;
2328 	q->tin_index = precedence;
2329 	q->tin_order = normal_order;
2330 
2331 	for (i = 0; i < q->tin_cnt; i++) {
2332 		struct cake_tin_data *b = &q->tins[i];
2333 
2334 		cake_set_rate(b, rate, mtu, us_to_ns(q->target),
2335 			      us_to_ns(q->interval));
2336 
2337 		b->tin_quantum = max_t(u16, 1U, quantum);
2338 
2339 		/* calculate next class's parameters */
2340 		rate  *= 7;
2341 		rate >>= 3;
2342 
2343 		quantum  *= 7;
2344 		quantum >>= 3;
2345 	}
2346 
2347 	return 0;
2348 }
2349 
2350 /*	List of known Diffserv codepoints:
2351  *
2352  *	Default Forwarding (DF/CS0) - Best Effort
2353  *	Max Throughput (TOS2)
2354  *	Min Delay (TOS4)
2355  *	LLT "La" (TOS5)
2356  *	Assured Forwarding 1 (AF1x) - x3
2357  *	Assured Forwarding 2 (AF2x) - x3
2358  *	Assured Forwarding 3 (AF3x) - x3
2359  *	Assured Forwarding 4 (AF4x) - x3
2360  *	Precedence Class 1 (CS1)
2361  *	Precedence Class 2 (CS2)
2362  *	Precedence Class 3 (CS3)
2363  *	Precedence Class 4 (CS4)
2364  *	Precedence Class 5 (CS5)
2365  *	Precedence Class 6 (CS6)
2366  *	Precedence Class 7 (CS7)
2367  *	Voice Admit (VA)
2368  *	Expedited Forwarding (EF)
2369  *	Lower Effort (LE)
2370  *
2371  *	Total 26 codepoints.
2372  */
2373 
2374 /*	List of traffic classes in RFC 4594, updated by RFC 8622:
2375  *		(roughly descending order of contended priority)
2376  *		(roughly ascending order of uncontended throughput)
2377  *
2378  *	Network Control (CS6,CS7)      - routing traffic
2379  *	Telephony (EF,VA)         - aka. VoIP streams
2380  *	Signalling (CS5)               - VoIP setup
2381  *	Multimedia Conferencing (AF4x) - aka. video calls
2382  *	Realtime Interactive (CS4)     - eg. games
2383  *	Multimedia Streaming (AF3x)    - eg. YouTube, NetFlix, Twitch
2384  *	Broadcast Video (CS3)
2385  *	Low-Latency Data (AF2x,TOS4)      - eg. database
2386  *	Ops, Admin, Management (CS2)      - eg. ssh
2387  *	Standard Service (DF & unrecognised codepoints)
2388  *	High-Throughput Data (AF1x,TOS2)  - eg. web traffic
2389  *	Low-Priority Data (LE,CS1)        - eg. BitTorrent
2390  *
2391  *	Total 12 traffic classes.
2392  */
2393 
cake_config_diffserv8(struct Qdisc * sch)2394 static int cake_config_diffserv8(struct Qdisc *sch)
2395 {
2396 /*	Pruned list of traffic classes for typical applications:
2397  *
2398  *		Network Control          (CS6, CS7)
2399  *		Minimum Latency          (EF, VA, CS5, CS4)
2400  *		Interactive Shell        (CS2)
2401  *		Low Latency Transactions (AF2x, TOS4)
2402  *		Video Streaming          (AF4x, AF3x, CS3)
2403  *		Bog Standard             (DF etc.)
2404  *		High Throughput          (AF1x, TOS2, CS1)
2405  *		Background Traffic       (LE)
2406  *
2407  *		Total 8 traffic classes.
2408  */
2409 
2410 	struct cake_sched_data *q = qdisc_priv(sch);
2411 	u32 mtu = psched_mtu(qdisc_dev(sch));
2412 	u64 rate = q->rate_bps;
2413 	u32 quantum = 256;
2414 	u32 i;
2415 
2416 	q->tin_cnt = 8;
2417 
2418 	/* codepoint to class mapping */
2419 	q->tin_index = diffserv8;
2420 	q->tin_order = normal_order;
2421 
2422 	/* class characteristics */
2423 	for (i = 0; i < q->tin_cnt; i++) {
2424 		struct cake_tin_data *b = &q->tins[i];
2425 
2426 		cake_set_rate(b, rate, mtu, us_to_ns(q->target),
2427 			      us_to_ns(q->interval));
2428 
2429 		b->tin_quantum = max_t(u16, 1U, quantum);
2430 
2431 		/* calculate next class's parameters */
2432 		rate  *= 7;
2433 		rate >>= 3;
2434 
2435 		quantum  *= 7;
2436 		quantum >>= 3;
2437 	}
2438 
2439 	return 0;
2440 }
2441 
cake_config_diffserv4(struct Qdisc * sch)2442 static int cake_config_diffserv4(struct Qdisc *sch)
2443 {
2444 /*  Further pruned list of traffic classes for four-class system:
2445  *
2446  *	    Latency Sensitive  (CS7, CS6, EF, VA, CS5, CS4)
2447  *	    Streaming Media    (AF4x, AF3x, CS3, AF2x, TOS4, CS2)
2448  *	    Best Effort        (DF, AF1x, TOS2, and those not specified)
2449  *	    Background Traffic (LE, CS1)
2450  *
2451  *		Total 4 traffic classes.
2452  */
2453 
2454 	struct cake_sched_data *q = qdisc_priv(sch);
2455 	u32 mtu = psched_mtu(qdisc_dev(sch));
2456 	u64 rate = q->rate_bps;
2457 	u32 quantum = 1024;
2458 
2459 	q->tin_cnt = 4;
2460 
2461 	/* codepoint to class mapping */
2462 	q->tin_index = diffserv4;
2463 	q->tin_order = bulk_order;
2464 
2465 	/* class characteristics */
2466 	cake_set_rate(&q->tins[0], rate, mtu,
2467 		      us_to_ns(q->target), us_to_ns(q->interval));
2468 	cake_set_rate(&q->tins[1], rate >> 4, mtu,
2469 		      us_to_ns(q->target), us_to_ns(q->interval));
2470 	cake_set_rate(&q->tins[2], rate >> 1, mtu,
2471 		      us_to_ns(q->target), us_to_ns(q->interval));
2472 	cake_set_rate(&q->tins[3], rate >> 2, mtu,
2473 		      us_to_ns(q->target), us_to_ns(q->interval));
2474 
2475 	/* bandwidth-sharing weights */
2476 	q->tins[0].tin_quantum = quantum;
2477 	q->tins[1].tin_quantum = quantum >> 4;
2478 	q->tins[2].tin_quantum = quantum >> 1;
2479 	q->tins[3].tin_quantum = quantum >> 2;
2480 
2481 	return 0;
2482 }
2483 
cake_config_diffserv3(struct Qdisc * sch)2484 static int cake_config_diffserv3(struct Qdisc *sch)
2485 {
2486 /*  Simplified Diffserv structure with 3 tins.
2487  *		Latency Sensitive	(CS7, CS6, EF, VA, TOS4)
2488  *		Best Effort
2489  *		Low Priority		(LE, CS1)
2490  */
2491 	struct cake_sched_data *q = qdisc_priv(sch);
2492 	u32 mtu = psched_mtu(qdisc_dev(sch));
2493 	u64 rate = q->rate_bps;
2494 	u32 quantum = 1024;
2495 
2496 	q->tin_cnt = 3;
2497 
2498 	/* codepoint to class mapping */
2499 	q->tin_index = diffserv3;
2500 	q->tin_order = bulk_order;
2501 
2502 	/* class characteristics */
2503 	cake_set_rate(&q->tins[0], rate, mtu,
2504 		      us_to_ns(q->target), us_to_ns(q->interval));
2505 	cake_set_rate(&q->tins[1], rate >> 4, mtu,
2506 		      us_to_ns(q->target), us_to_ns(q->interval));
2507 	cake_set_rate(&q->tins[2], rate >> 2, mtu,
2508 		      us_to_ns(q->target), us_to_ns(q->interval));
2509 
2510 	/* bandwidth-sharing weights */
2511 	q->tins[0].tin_quantum = quantum;
2512 	q->tins[1].tin_quantum = quantum >> 4;
2513 	q->tins[2].tin_quantum = quantum >> 2;
2514 
2515 	return 0;
2516 }
2517 
cake_reconfigure(struct Qdisc * sch)2518 static void cake_reconfigure(struct Qdisc *sch)
2519 {
2520 	struct cake_sched_data *q = qdisc_priv(sch);
2521 	int c, ft;
2522 
2523 	switch (q->tin_mode) {
2524 	case CAKE_DIFFSERV_BESTEFFORT:
2525 		ft = cake_config_besteffort(sch);
2526 		break;
2527 
2528 	case CAKE_DIFFSERV_PRECEDENCE:
2529 		ft = cake_config_precedence(sch);
2530 		break;
2531 
2532 	case CAKE_DIFFSERV_DIFFSERV8:
2533 		ft = cake_config_diffserv8(sch);
2534 		break;
2535 
2536 	case CAKE_DIFFSERV_DIFFSERV4:
2537 		ft = cake_config_diffserv4(sch);
2538 		break;
2539 
2540 	case CAKE_DIFFSERV_DIFFSERV3:
2541 	default:
2542 		ft = cake_config_diffserv3(sch);
2543 		break;
2544 	}
2545 
2546 	for (c = q->tin_cnt; c < CAKE_MAX_TINS; c++) {
2547 		cake_clear_tin(sch, c);
2548 		q->tins[c].cparams.mtu_time = q->tins[ft].cparams.mtu_time;
2549 	}
2550 
2551 	q->rate_ns   = q->tins[ft].tin_rate_ns;
2552 	q->rate_shft = q->tins[ft].tin_rate_shft;
2553 
2554 	if (q->buffer_config_limit) {
2555 		q->buffer_limit = q->buffer_config_limit;
2556 	} else if (q->rate_bps) {
2557 		u64 t = q->rate_bps * q->interval;
2558 
2559 		do_div(t, USEC_PER_SEC / 4);
2560 		q->buffer_limit = max_t(u32, t, 4U << 20);
2561 	} else {
2562 		q->buffer_limit = ~0;
2563 	}
2564 
2565 	sch->flags &= ~TCQ_F_CAN_BYPASS;
2566 
2567 	q->buffer_limit = min(q->buffer_limit,
2568 			      max(sch->limit * psched_mtu(qdisc_dev(sch)),
2569 				  q->buffer_config_limit));
2570 }
2571 
cake_change(struct Qdisc * sch,struct nlattr * opt,struct netlink_ext_ack * extack)2572 static int cake_change(struct Qdisc *sch, struct nlattr *opt,
2573 		       struct netlink_ext_ack *extack)
2574 {
2575 	struct cake_sched_data *q = qdisc_priv(sch);
2576 	struct nlattr *tb[TCA_CAKE_MAX + 1];
2577 	u16 rate_flags;
2578 	u8 flow_mode;
2579 	int err;
2580 
2581 	err = nla_parse_nested_deprecated(tb, TCA_CAKE_MAX, opt, cake_policy,
2582 					  extack);
2583 	if (err < 0)
2584 		return err;
2585 
2586 	flow_mode = q->flow_mode;
2587 	if (tb[TCA_CAKE_NAT]) {
2588 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
2589 		flow_mode &= ~CAKE_FLOW_NAT_FLAG;
2590 		flow_mode |= CAKE_FLOW_NAT_FLAG *
2591 			!!nla_get_u32(tb[TCA_CAKE_NAT]);
2592 #else
2593 		NL_SET_ERR_MSG_ATTR(extack, tb[TCA_CAKE_NAT],
2594 				    "No conntrack support in kernel");
2595 		return -EOPNOTSUPP;
2596 #endif
2597 	}
2598 
2599 	if (tb[TCA_CAKE_BASE_RATE64])
2600 		WRITE_ONCE(q->rate_bps,
2601 			   nla_get_u64(tb[TCA_CAKE_BASE_RATE64]));
2602 
2603 	if (tb[TCA_CAKE_DIFFSERV_MODE])
2604 		WRITE_ONCE(q->tin_mode,
2605 			   nla_get_u32(tb[TCA_CAKE_DIFFSERV_MODE]));
2606 
2607 	rate_flags = q->rate_flags;
2608 	if (tb[TCA_CAKE_WASH]) {
2609 		if (!!nla_get_u32(tb[TCA_CAKE_WASH]))
2610 			rate_flags |= CAKE_FLAG_WASH;
2611 		else
2612 			rate_flags &= ~CAKE_FLAG_WASH;
2613 	}
2614 
2615 	if (tb[TCA_CAKE_FLOW_MODE])
2616 		flow_mode = ((flow_mode & CAKE_FLOW_NAT_FLAG) |
2617 				(nla_get_u32(tb[TCA_CAKE_FLOW_MODE]) &
2618 					CAKE_FLOW_MASK));
2619 
2620 	if (tb[TCA_CAKE_ATM])
2621 		WRITE_ONCE(q->atm_mode,
2622 			   nla_get_u32(tb[TCA_CAKE_ATM]));
2623 
2624 	if (tb[TCA_CAKE_OVERHEAD]) {
2625 		WRITE_ONCE(q->rate_overhead,
2626 			   nla_get_s32(tb[TCA_CAKE_OVERHEAD]));
2627 		rate_flags |= CAKE_FLAG_OVERHEAD;
2628 
2629 		q->max_netlen = 0;
2630 		q->max_adjlen = 0;
2631 		q->min_netlen = ~0;
2632 		q->min_adjlen = ~0;
2633 	}
2634 
2635 	if (tb[TCA_CAKE_RAW]) {
2636 		rate_flags &= ~CAKE_FLAG_OVERHEAD;
2637 
2638 		q->max_netlen = 0;
2639 		q->max_adjlen = 0;
2640 		q->min_netlen = ~0;
2641 		q->min_adjlen = ~0;
2642 	}
2643 
2644 	if (tb[TCA_CAKE_MPU])
2645 		WRITE_ONCE(q->rate_mpu,
2646 			   nla_get_u32(tb[TCA_CAKE_MPU]));
2647 
2648 	if (tb[TCA_CAKE_RTT]) {
2649 		u32 interval = nla_get_u32(tb[TCA_CAKE_RTT]);
2650 
2651 		WRITE_ONCE(q->interval, max(interval, 1U));
2652 	}
2653 
2654 	if (tb[TCA_CAKE_TARGET]) {
2655 		u32 target = nla_get_u32(tb[TCA_CAKE_TARGET]);
2656 
2657 		WRITE_ONCE(q->target, max(target, 1U));
2658 	}
2659 
2660 	if (tb[TCA_CAKE_AUTORATE]) {
2661 		if (!!nla_get_u32(tb[TCA_CAKE_AUTORATE]))
2662 			rate_flags |= CAKE_FLAG_AUTORATE_INGRESS;
2663 		else
2664 			rate_flags &= ~CAKE_FLAG_AUTORATE_INGRESS;
2665 	}
2666 
2667 	if (tb[TCA_CAKE_INGRESS]) {
2668 		if (!!nla_get_u32(tb[TCA_CAKE_INGRESS]))
2669 			rate_flags |= CAKE_FLAG_INGRESS;
2670 		else
2671 			rate_flags &= ~CAKE_FLAG_INGRESS;
2672 	}
2673 
2674 	if (tb[TCA_CAKE_ACK_FILTER])
2675 		WRITE_ONCE(q->ack_filter,
2676 			   nla_get_u32(tb[TCA_CAKE_ACK_FILTER]));
2677 
2678 	if (tb[TCA_CAKE_MEMORY])
2679 		WRITE_ONCE(q->buffer_config_limit,
2680 			   nla_get_u32(tb[TCA_CAKE_MEMORY]));
2681 
2682 	if (tb[TCA_CAKE_SPLIT_GSO]) {
2683 		if (!!nla_get_u32(tb[TCA_CAKE_SPLIT_GSO]))
2684 			rate_flags |= CAKE_FLAG_SPLIT_GSO;
2685 		else
2686 			rate_flags &= ~CAKE_FLAG_SPLIT_GSO;
2687 	}
2688 
2689 	if (tb[TCA_CAKE_FWMARK]) {
2690 		WRITE_ONCE(q->fwmark_mask, nla_get_u32(tb[TCA_CAKE_FWMARK]));
2691 		WRITE_ONCE(q->fwmark_shft,
2692 			   q->fwmark_mask ? __ffs(q->fwmark_mask) : 0);
2693 	}
2694 
2695 	WRITE_ONCE(q->rate_flags, rate_flags);
2696 	WRITE_ONCE(q->flow_mode, flow_mode);
2697 	if (q->tins) {
2698 		sch_tree_lock(sch);
2699 		cake_reconfigure(sch);
2700 		sch_tree_unlock(sch);
2701 	}
2702 
2703 	return 0;
2704 }
2705 
cake_destroy(struct Qdisc * sch)2706 static void cake_destroy(struct Qdisc *sch)
2707 {
2708 	struct cake_sched_data *q = qdisc_priv(sch);
2709 
2710 	qdisc_watchdog_cancel(&q->watchdog);
2711 	tcf_block_put(q->block);
2712 	kvfree(q->tins);
2713 }
2714 
cake_init(struct Qdisc * sch,struct nlattr * opt,struct netlink_ext_ack * extack)2715 static int cake_init(struct Qdisc *sch, struct nlattr *opt,
2716 		     struct netlink_ext_ack *extack)
2717 {
2718 	struct cake_sched_data *q = qdisc_priv(sch);
2719 	int i, j, err;
2720 
2721 	sch->limit = 10240;
2722 	q->tin_mode = CAKE_DIFFSERV_DIFFSERV3;
2723 	q->flow_mode  = CAKE_FLOW_TRIPLE;
2724 
2725 	q->rate_bps = 0; /* unlimited by default */
2726 
2727 	q->interval = 100000; /* 100ms default */
2728 	q->target   =   5000; /* 5ms: codel RFC argues
2729 			       * for 5 to 10% of interval
2730 			       */
2731 	q->rate_flags |= CAKE_FLAG_SPLIT_GSO;
2732 	q->cur_tin = 0;
2733 	q->cur_flow  = 0;
2734 
2735 	qdisc_watchdog_init(&q->watchdog, sch);
2736 
2737 	if (opt) {
2738 		err = cake_change(sch, opt, extack);
2739 
2740 		if (err)
2741 			return err;
2742 	}
2743 
2744 	err = tcf_block_get(&q->block, &q->filter_list, sch, extack);
2745 	if (err)
2746 		return err;
2747 
2748 	quantum_div[0] = ~0;
2749 	for (i = 1; i <= CAKE_QUEUES; i++)
2750 		quantum_div[i] = 65535 / i;
2751 
2752 	q->tins = kvcalloc(CAKE_MAX_TINS, sizeof(struct cake_tin_data),
2753 			   GFP_KERNEL);
2754 	if (!q->tins)
2755 		return -ENOMEM;
2756 
2757 	for (i = 0; i < CAKE_MAX_TINS; i++) {
2758 		struct cake_tin_data *b = q->tins + i;
2759 
2760 		INIT_LIST_HEAD(&b->new_flows);
2761 		INIT_LIST_HEAD(&b->old_flows);
2762 		INIT_LIST_HEAD(&b->decaying_flows);
2763 		b->sparse_flow_count = 0;
2764 		b->bulk_flow_count = 0;
2765 		b->decaying_flow_count = 0;
2766 
2767 		for (j = 0; j < CAKE_QUEUES; j++) {
2768 			struct cake_flow *flow = b->flows + j;
2769 			u32 k = j * CAKE_MAX_TINS + i;
2770 
2771 			INIT_LIST_HEAD(&flow->flowchain);
2772 			cobalt_vars_init(&flow->cvars);
2773 
2774 			q->overflow_heap[k].t = i;
2775 			q->overflow_heap[k].b = j;
2776 			b->overflow_idx[j] = k;
2777 		}
2778 	}
2779 
2780 	cake_reconfigure(sch);
2781 	q->avg_peak_bandwidth = q->rate_bps;
2782 	q->min_netlen = ~0;
2783 	q->min_adjlen = ~0;
2784 	return 0;
2785 }
2786 
cake_dump(struct Qdisc * sch,struct sk_buff * skb)2787 static int cake_dump(struct Qdisc *sch, struct sk_buff *skb)
2788 {
2789 	struct cake_sched_data *q = qdisc_priv(sch);
2790 	struct nlattr *opts;
2791 	u16 rate_flags;
2792 	u8 flow_mode;
2793 
2794 	opts = nla_nest_start_noflag(skb, TCA_OPTIONS);
2795 	if (!opts)
2796 		goto nla_put_failure;
2797 
2798 	if (nla_put_u64_64bit(skb, TCA_CAKE_BASE_RATE64,
2799 			      READ_ONCE(q->rate_bps), TCA_CAKE_PAD))
2800 		goto nla_put_failure;
2801 
2802 	flow_mode = READ_ONCE(q->flow_mode);
2803 	if (nla_put_u32(skb, TCA_CAKE_FLOW_MODE, flow_mode & CAKE_FLOW_MASK))
2804 		goto nla_put_failure;
2805 
2806 	if (nla_put_u32(skb, TCA_CAKE_RTT, READ_ONCE(q->interval)))
2807 		goto nla_put_failure;
2808 
2809 	if (nla_put_u32(skb, TCA_CAKE_TARGET, READ_ONCE(q->target)))
2810 		goto nla_put_failure;
2811 
2812 	if (nla_put_u32(skb, TCA_CAKE_MEMORY,
2813 			READ_ONCE(q->buffer_config_limit)))
2814 		goto nla_put_failure;
2815 
2816 	rate_flags = READ_ONCE(q->rate_flags);
2817 	if (nla_put_u32(skb, TCA_CAKE_AUTORATE,
2818 			!!(rate_flags & CAKE_FLAG_AUTORATE_INGRESS)))
2819 		goto nla_put_failure;
2820 
2821 	if (nla_put_u32(skb, TCA_CAKE_INGRESS,
2822 			!!(rate_flags & CAKE_FLAG_INGRESS)))
2823 		goto nla_put_failure;
2824 
2825 	if (nla_put_u32(skb, TCA_CAKE_ACK_FILTER, READ_ONCE(q->ack_filter)))
2826 		goto nla_put_failure;
2827 
2828 	if (nla_put_u32(skb, TCA_CAKE_NAT,
2829 			!!(flow_mode & CAKE_FLOW_NAT_FLAG)))
2830 		goto nla_put_failure;
2831 
2832 	if (nla_put_u32(skb, TCA_CAKE_DIFFSERV_MODE, READ_ONCE(q->tin_mode)))
2833 		goto nla_put_failure;
2834 
2835 	if (nla_put_u32(skb, TCA_CAKE_WASH,
2836 			!!(rate_flags & CAKE_FLAG_WASH)))
2837 		goto nla_put_failure;
2838 
2839 	if (nla_put_u32(skb, TCA_CAKE_OVERHEAD, READ_ONCE(q->rate_overhead)))
2840 		goto nla_put_failure;
2841 
2842 	if (!(rate_flags & CAKE_FLAG_OVERHEAD))
2843 		if (nla_put_u32(skb, TCA_CAKE_RAW, 0))
2844 			goto nla_put_failure;
2845 
2846 	if (nla_put_u32(skb, TCA_CAKE_ATM, READ_ONCE(q->atm_mode)))
2847 		goto nla_put_failure;
2848 
2849 	if (nla_put_u32(skb, TCA_CAKE_MPU, READ_ONCE(q->rate_mpu)))
2850 		goto nla_put_failure;
2851 
2852 	if (nla_put_u32(skb, TCA_CAKE_SPLIT_GSO,
2853 			!!(rate_flags & CAKE_FLAG_SPLIT_GSO)))
2854 		goto nla_put_failure;
2855 
2856 	if (nla_put_u32(skb, TCA_CAKE_FWMARK, READ_ONCE(q->fwmark_mask)))
2857 		goto nla_put_failure;
2858 
2859 	return nla_nest_end(skb, opts);
2860 
2861 nla_put_failure:
2862 	return -1;
2863 }
2864 
cake_dump_stats(struct Qdisc * sch,struct gnet_dump * d)2865 static int cake_dump_stats(struct Qdisc *sch, struct gnet_dump *d)
2866 {
2867 	struct nlattr *stats = nla_nest_start_noflag(d->skb, TCA_STATS_APP);
2868 	struct cake_sched_data *q = qdisc_priv(sch);
2869 	struct nlattr *tstats, *ts;
2870 	int i;
2871 
2872 	if (!stats)
2873 		return -1;
2874 
2875 #define PUT_STAT_U32(attr, data) do {				       \
2876 		if (nla_put_u32(d->skb, TCA_CAKE_STATS_ ## attr, data)) \
2877 			goto nla_put_failure;			       \
2878 	} while (0)
2879 #define PUT_STAT_U64(attr, data) do {				       \
2880 		if (nla_put_u64_64bit(d->skb, TCA_CAKE_STATS_ ## attr, \
2881 					data, TCA_CAKE_STATS_PAD)) \
2882 			goto nla_put_failure;			       \
2883 	} while (0)
2884 
2885 	PUT_STAT_U64(CAPACITY_ESTIMATE64, q->avg_peak_bandwidth);
2886 	PUT_STAT_U32(MEMORY_LIMIT, q->buffer_limit);
2887 	PUT_STAT_U32(MEMORY_USED, q->buffer_max_used);
2888 	PUT_STAT_U32(AVG_NETOFF, ((q->avg_netoff + 0x8000) >> 16));
2889 	PUT_STAT_U32(MAX_NETLEN, q->max_netlen);
2890 	PUT_STAT_U32(MAX_ADJLEN, q->max_adjlen);
2891 	PUT_STAT_U32(MIN_NETLEN, q->min_netlen);
2892 	PUT_STAT_U32(MIN_ADJLEN, q->min_adjlen);
2893 
2894 #undef PUT_STAT_U32
2895 #undef PUT_STAT_U64
2896 
2897 	tstats = nla_nest_start_noflag(d->skb, TCA_CAKE_STATS_TIN_STATS);
2898 	if (!tstats)
2899 		goto nla_put_failure;
2900 
2901 #define PUT_TSTAT_U32(attr, data) do {					\
2902 		if (nla_put_u32(d->skb, TCA_CAKE_TIN_STATS_ ## attr, data)) \
2903 			goto nla_put_failure;				\
2904 	} while (0)
2905 #define PUT_TSTAT_U64(attr, data) do {					\
2906 		if (nla_put_u64_64bit(d->skb, TCA_CAKE_TIN_STATS_ ## attr, \
2907 					data, TCA_CAKE_TIN_STATS_PAD))	\
2908 			goto nla_put_failure;				\
2909 	} while (0)
2910 
2911 	for (i = 0; i < q->tin_cnt; i++) {
2912 		struct cake_tin_data *b = &q->tins[q->tin_order[i]];
2913 
2914 		ts = nla_nest_start_noflag(d->skb, i + 1);
2915 		if (!ts)
2916 			goto nla_put_failure;
2917 
2918 		PUT_TSTAT_U64(THRESHOLD_RATE64, b->tin_rate_bps);
2919 		PUT_TSTAT_U64(SENT_BYTES64, b->bytes);
2920 		PUT_TSTAT_U32(BACKLOG_BYTES, b->tin_backlog);
2921 
2922 		PUT_TSTAT_U32(TARGET_US,
2923 			      ktime_to_us(ns_to_ktime(b->cparams.target)));
2924 		PUT_TSTAT_U32(INTERVAL_US,
2925 			      ktime_to_us(ns_to_ktime(b->cparams.interval)));
2926 
2927 		PUT_TSTAT_U32(SENT_PACKETS, b->packets);
2928 		PUT_TSTAT_U32(DROPPED_PACKETS, b->tin_dropped);
2929 		PUT_TSTAT_U32(ECN_MARKED_PACKETS, b->tin_ecn_mark);
2930 		PUT_TSTAT_U32(ACKS_DROPPED_PACKETS, b->ack_drops);
2931 
2932 		PUT_TSTAT_U32(PEAK_DELAY_US,
2933 			      ktime_to_us(ns_to_ktime(b->peak_delay)));
2934 		PUT_TSTAT_U32(AVG_DELAY_US,
2935 			      ktime_to_us(ns_to_ktime(b->avge_delay)));
2936 		PUT_TSTAT_U32(BASE_DELAY_US,
2937 			      ktime_to_us(ns_to_ktime(b->base_delay)));
2938 
2939 		PUT_TSTAT_U32(WAY_INDIRECT_HITS, b->way_hits);
2940 		PUT_TSTAT_U32(WAY_MISSES, b->way_misses);
2941 		PUT_TSTAT_U32(WAY_COLLISIONS, b->way_collisions);
2942 
2943 		PUT_TSTAT_U32(SPARSE_FLOWS, b->sparse_flow_count +
2944 					    b->decaying_flow_count);
2945 		PUT_TSTAT_U32(BULK_FLOWS, b->bulk_flow_count);
2946 		PUT_TSTAT_U32(UNRESPONSIVE_FLOWS, b->unresponsive_flow_count);
2947 		PUT_TSTAT_U32(MAX_SKBLEN, b->max_skblen);
2948 
2949 		PUT_TSTAT_U32(FLOW_QUANTUM, b->flow_quantum);
2950 		nla_nest_end(d->skb, ts);
2951 	}
2952 
2953 #undef PUT_TSTAT_U32
2954 #undef PUT_TSTAT_U64
2955 
2956 	nla_nest_end(d->skb, tstats);
2957 	return nla_nest_end(d->skb, stats);
2958 
2959 nla_put_failure:
2960 	nla_nest_cancel(d->skb, stats);
2961 	return -1;
2962 }
2963 
cake_leaf(struct Qdisc * sch,unsigned long arg)2964 static struct Qdisc *cake_leaf(struct Qdisc *sch, unsigned long arg)
2965 {
2966 	return NULL;
2967 }
2968 
cake_find(struct Qdisc * sch,u32 classid)2969 static unsigned long cake_find(struct Qdisc *sch, u32 classid)
2970 {
2971 	return 0;
2972 }
2973 
cake_bind(struct Qdisc * sch,unsigned long parent,u32 classid)2974 static unsigned long cake_bind(struct Qdisc *sch, unsigned long parent,
2975 			       u32 classid)
2976 {
2977 	return 0;
2978 }
2979 
cake_unbind(struct Qdisc * q,unsigned long cl)2980 static void cake_unbind(struct Qdisc *q, unsigned long cl)
2981 {
2982 }
2983 
cake_tcf_block(struct Qdisc * sch,unsigned long cl,struct netlink_ext_ack * extack)2984 static struct tcf_block *cake_tcf_block(struct Qdisc *sch, unsigned long cl,
2985 					struct netlink_ext_ack *extack)
2986 {
2987 	struct cake_sched_data *q = qdisc_priv(sch);
2988 
2989 	if (cl)
2990 		return NULL;
2991 	return q->block;
2992 }
2993 
cake_dump_class(struct Qdisc * sch,unsigned long cl,struct sk_buff * skb,struct tcmsg * tcm)2994 static int cake_dump_class(struct Qdisc *sch, unsigned long cl,
2995 			   struct sk_buff *skb, struct tcmsg *tcm)
2996 {
2997 	tcm->tcm_handle |= TC_H_MIN(cl);
2998 	return 0;
2999 }
3000 
cake_dump_class_stats(struct Qdisc * sch,unsigned long cl,struct gnet_dump * d)3001 static int cake_dump_class_stats(struct Qdisc *sch, unsigned long cl,
3002 				 struct gnet_dump *d)
3003 {
3004 	struct cake_sched_data *q = qdisc_priv(sch);
3005 	const struct cake_flow *flow = NULL;
3006 	struct gnet_stats_queue qs = { 0 };
3007 	struct nlattr *stats;
3008 	u32 idx = cl - 1;
3009 
3010 	if (idx < CAKE_QUEUES * q->tin_cnt) {
3011 		const struct cake_tin_data *b = \
3012 			&q->tins[q->tin_order[idx / CAKE_QUEUES]];
3013 		const struct sk_buff *skb;
3014 
3015 		flow = &b->flows[idx % CAKE_QUEUES];
3016 
3017 		if (flow->head) {
3018 			sch_tree_lock(sch);
3019 			skb = flow->head;
3020 			while (skb) {
3021 				qs.qlen++;
3022 				skb = skb->next;
3023 			}
3024 			sch_tree_unlock(sch);
3025 		}
3026 		qs.backlog = b->backlogs[idx % CAKE_QUEUES];
3027 		qs.drops = flow->dropped;
3028 	}
3029 	if (gnet_stats_copy_queue(d, NULL, &qs, qs.qlen) < 0)
3030 		return -1;
3031 	if (flow) {
3032 		ktime_t now = ktime_get();
3033 
3034 		stats = nla_nest_start_noflag(d->skb, TCA_STATS_APP);
3035 		if (!stats)
3036 			return -1;
3037 
3038 #define PUT_STAT_U32(attr, data) do {				       \
3039 		if (nla_put_u32(d->skb, TCA_CAKE_STATS_ ## attr, data)) \
3040 			goto nla_put_failure;			       \
3041 	} while (0)
3042 #define PUT_STAT_S32(attr, data) do {				       \
3043 		if (nla_put_s32(d->skb, TCA_CAKE_STATS_ ## attr, data)) \
3044 			goto nla_put_failure;			       \
3045 	} while (0)
3046 
3047 		PUT_STAT_S32(DEFICIT, flow->deficit);
3048 		PUT_STAT_U32(DROPPING, flow->cvars.dropping);
3049 		PUT_STAT_U32(COBALT_COUNT, flow->cvars.count);
3050 		PUT_STAT_U32(P_DROP, flow->cvars.p_drop);
3051 		if (flow->cvars.p_drop) {
3052 			PUT_STAT_S32(BLUE_TIMER_US,
3053 				     ktime_to_us(
3054 					     ktime_sub(now,
3055 						       flow->cvars.blue_timer)));
3056 		}
3057 		if (flow->cvars.dropping) {
3058 			PUT_STAT_S32(DROP_NEXT_US,
3059 				     ktime_to_us(
3060 					     ktime_sub(now,
3061 						       flow->cvars.drop_next)));
3062 		}
3063 
3064 		if (nla_nest_end(d->skb, stats) < 0)
3065 			return -1;
3066 	}
3067 
3068 	return 0;
3069 
3070 nla_put_failure:
3071 	nla_nest_cancel(d->skb, stats);
3072 	return -1;
3073 }
3074 
cake_walk(struct Qdisc * sch,struct qdisc_walker * arg)3075 static void cake_walk(struct Qdisc *sch, struct qdisc_walker *arg)
3076 {
3077 	struct cake_sched_data *q = qdisc_priv(sch);
3078 	unsigned int i, j;
3079 
3080 	if (arg->stop)
3081 		return;
3082 
3083 	for (i = 0; i < q->tin_cnt; i++) {
3084 		struct cake_tin_data *b = &q->tins[q->tin_order[i]];
3085 
3086 		for (j = 0; j < CAKE_QUEUES; j++) {
3087 			if (list_empty(&b->flows[j].flowchain)) {
3088 				arg->count++;
3089 				continue;
3090 			}
3091 			if (!tc_qdisc_stats_dump(sch, i * CAKE_QUEUES + j + 1,
3092 						 arg))
3093 				break;
3094 		}
3095 	}
3096 }
3097 
3098 static const struct Qdisc_class_ops cake_class_ops = {
3099 	.leaf		=	cake_leaf,
3100 	.find		=	cake_find,
3101 	.tcf_block	=	cake_tcf_block,
3102 	.bind_tcf	=	cake_bind,
3103 	.unbind_tcf	=	cake_unbind,
3104 	.dump		=	cake_dump_class,
3105 	.dump_stats	=	cake_dump_class_stats,
3106 	.walk		=	cake_walk,
3107 };
3108 
3109 static struct Qdisc_ops cake_qdisc_ops __read_mostly = {
3110 	.cl_ops		=	&cake_class_ops,
3111 	.id		=	"cake",
3112 	.priv_size	=	sizeof(struct cake_sched_data),
3113 	.enqueue	=	cake_enqueue,
3114 	.dequeue	=	cake_dequeue,
3115 	.peek		=	qdisc_peek_dequeued,
3116 	.init		=	cake_init,
3117 	.reset		=	cake_reset,
3118 	.destroy	=	cake_destroy,
3119 	.change		=	cake_change,
3120 	.dump		=	cake_dump,
3121 	.dump_stats	=	cake_dump_stats,
3122 	.owner		=	THIS_MODULE,
3123 };
3124 MODULE_ALIAS_NET_SCH("cake");
3125 
cake_module_init(void)3126 static int __init cake_module_init(void)
3127 {
3128 	return register_qdisc(&cake_qdisc_ops);
3129 }
3130 
cake_module_exit(void)3131 static void __exit cake_module_exit(void)
3132 {
3133 	unregister_qdisc(&cake_qdisc_ops);
3134 }
3135 
3136 module_init(cake_module_init)
3137 module_exit(cake_module_exit)
3138 MODULE_AUTHOR("Jonathan Morton");
3139 MODULE_LICENSE("Dual BSD/GPL");
3140 MODULE_DESCRIPTION("The CAKE shaper.");
3141