1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2
3 /* COMMON Applications Kept Enhanced (CAKE) discipline
4 *
5 * Copyright (C) 2014-2018 Jonathan Morton <chromatix99@gmail.com>
6 * Copyright (C) 2015-2018 Toke Høiland-Jørgensen <toke@toke.dk>
7 * Copyright (C) 2014-2018 Dave Täht <dave.taht@gmail.com>
8 * Copyright (C) 2015-2018 Sebastian Moeller <moeller0@gmx.de>
9 * (C) 2015-2018 Kevin Darbyshire-Bryant <kevin@darbyshire-bryant.me.uk>
10 * Copyright (C) 2017-2018 Ryan Mounce <ryan@mounce.com.au>
11 *
12 * The CAKE Principles:
13 * (or, how to have your cake and eat it too)
14 *
15 * This is a combination of several shaping, AQM and FQ techniques into one
16 * easy-to-use package:
17 *
18 * - An overall bandwidth shaper, to move the bottleneck away from dumb CPE
19 * equipment and bloated MACs. This operates in deficit mode (as in sch_fq),
20 * eliminating the need for any sort of burst parameter (eg. token bucket
21 * depth). Burst support is limited to that necessary to overcome scheduling
22 * latency.
23 *
24 * - A Diffserv-aware priority queue, giving more priority to certain classes,
25 * up to a specified fraction of bandwidth. Above that bandwidth threshold,
26 * the priority is reduced to avoid starving other tins.
27 *
28 * - Each priority tin has a separate Flow Queue system, to isolate traffic
29 * flows from each other. This prevents a burst on one flow from increasing
30 * the delay to another. Flows are distributed to queues using a
31 * set-associative hash function.
32 *
33 * - Each queue is actively managed by Cobalt, which is a combination of the
34 * Codel and Blue AQM algorithms. This serves flows fairly, and signals
35 * congestion early via ECN (if available) and/or packet drops, to keep
36 * latency low. The codel parameters are auto-tuned based on the bandwidth
37 * setting, as is necessary at low bandwidths.
38 *
39 * The configuration parameters are kept deliberately simple for ease of use.
40 * Everything has sane defaults. Complete generality of configuration is *not*
41 * a goal.
42 *
43 * The priority queue operates according to a weighted DRR scheme, combined with
44 * a bandwidth tracker which reuses the shaper logic to detect which side of the
45 * bandwidth sharing threshold the tin is operating. This determines whether a
46 * priority-based weight (high) or a bandwidth-based weight (low) is used for
47 * that tin in the current pass.
48 *
49 * This qdisc was inspired by Eric Dumazet's fq_codel code, which he kindly
50 * granted us permission to leverage.
51 */
52
53 #include <linux/module.h>
54 #include <linux/types.h>
55 #include <linux/kernel.h>
56 #include <linux/jiffies.h>
57 #include <linux/string.h>
58 #include <linux/in.h>
59 #include <linux/errno.h>
60 #include <linux/init.h>
61 #include <linux/skbuff.h>
62 #include <linux/jhash.h>
63 #include <linux/slab.h>
64 #include <linux/vmalloc.h>
65 #include <linux/reciprocal_div.h>
66 #include <net/netlink.h>
67 #include <linux/if_vlan.h>
68 #include <net/gso.h>
69 #include <net/pkt_sched.h>
70 #include <net/pkt_cls.h>
71 #include <net/tcp.h>
72 #include <net/flow_dissector.h>
73
74 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
75 #include <net/netfilter/nf_conntrack_core.h>
76 #endif
77
78 #define CAKE_SET_WAYS (8)
79 #define CAKE_MAX_TINS (8)
80 #define CAKE_QUEUES (1024)
81 #define CAKE_FLOW_MASK 63
82 #define CAKE_FLOW_NAT_FLAG 64
83
84 /* struct cobalt_params - contains codel and blue parameters
85 * @interval: codel initial drop rate
86 * @target: maximum persistent sojourn time & blue update rate
87 * @mtu_time: serialisation delay of maximum-size packet
88 * @p_inc: increment of blue drop probability (0.32 fxp)
89 * @p_dec: decrement of blue drop probability (0.32 fxp)
90 */
91 struct cobalt_params {
92 u64 interval;
93 u64 target;
94 u64 mtu_time;
95 u32 p_inc;
96 u32 p_dec;
97 };
98
99 /* struct cobalt_vars - contains codel and blue variables
100 * @count: codel dropping frequency
101 * @rec_inv_sqrt: reciprocal value of sqrt(count) >> 1
102 * @drop_next: time to drop next packet, or when we dropped last
103 * @blue_timer: Blue time to next drop
104 * @p_drop: BLUE drop probability (0.32 fxp)
105 * @dropping: set if in dropping state
106 * @ecn_marked: set if marked
107 */
108 struct cobalt_vars {
109 u32 count;
110 u32 rec_inv_sqrt;
111 ktime_t drop_next;
112 ktime_t blue_timer;
113 u32 p_drop;
114 bool dropping;
115 bool ecn_marked;
116 };
117
118 enum {
119 CAKE_SET_NONE = 0,
120 CAKE_SET_SPARSE,
121 CAKE_SET_SPARSE_WAIT, /* counted in SPARSE, actually in BULK */
122 CAKE_SET_BULK,
123 CAKE_SET_DECAYING
124 };
125
126 struct cake_flow {
127 /* this stuff is all needed per-flow at dequeue time */
128 struct sk_buff *head;
129 struct sk_buff *tail;
130 struct list_head flowchain;
131 s32 deficit;
132 u32 dropped;
133 struct cobalt_vars cvars;
134 u16 srchost; /* index into cake_host table */
135 u16 dsthost;
136 u8 set;
137 }; /* please try to keep this structure <= 64 bytes */
138
139 struct cake_host {
140 u32 srchost_tag;
141 u32 dsthost_tag;
142 u16 srchost_bulk_flow_count;
143 u16 dsthost_bulk_flow_count;
144 };
145
146 struct cake_heap_entry {
147 u16 t:3, b:10;
148 };
149
150 struct cake_tin_data {
151 struct cake_flow flows[CAKE_QUEUES];
152 u32 backlogs[CAKE_QUEUES];
153 u32 tags[CAKE_QUEUES]; /* for set association */
154 u16 overflow_idx[CAKE_QUEUES];
155 struct cake_host hosts[CAKE_QUEUES]; /* for triple isolation */
156 u16 flow_quantum;
157
158 struct cobalt_params cparams;
159 u32 drop_overlimit;
160 u16 bulk_flow_count;
161 u16 sparse_flow_count;
162 u16 decaying_flow_count;
163 u16 unresponsive_flow_count;
164
165 u32 max_skblen;
166
167 struct list_head new_flows;
168 struct list_head old_flows;
169 struct list_head decaying_flows;
170
171 /* time_next = time_this + ((len * rate_ns) >> rate_shft) */
172 ktime_t time_next_packet;
173 u64 tin_rate_ns;
174 u64 tin_rate_bps;
175 u16 tin_rate_shft;
176
177 u16 tin_quantum;
178 s32 tin_deficit;
179 u32 tin_backlog;
180 u32 tin_dropped;
181 u32 tin_ecn_mark;
182
183 u32 packets;
184 u64 bytes;
185
186 u32 ack_drops;
187
188 /* moving averages */
189 u64 avge_delay;
190 u64 peak_delay;
191 u64 base_delay;
192
193 /* hash function stats */
194 u32 way_directs;
195 u32 way_hits;
196 u32 way_misses;
197 u32 way_collisions;
198 }; /* number of tins is small, so size of this struct doesn't matter much */
199
200 struct cake_sched_data {
201 struct tcf_proto __rcu *filter_list; /* optional external classifier */
202 struct tcf_block *block;
203 struct cake_tin_data *tins;
204
205 struct cake_heap_entry overflow_heap[CAKE_QUEUES * CAKE_MAX_TINS];
206 u16 overflow_timeout;
207
208 u16 tin_cnt;
209 u8 tin_mode;
210 u8 flow_mode;
211 u8 ack_filter;
212 u8 atm_mode;
213
214 u32 fwmark_mask;
215 u16 fwmark_shft;
216
217 /* time_next = time_this + ((len * rate_ns) >> rate_shft) */
218 u16 rate_shft;
219 ktime_t time_next_packet;
220 ktime_t failsafe_next_packet;
221 u64 rate_ns;
222 u64 rate_bps;
223 u16 rate_flags;
224 s16 rate_overhead;
225 u16 rate_mpu;
226 u64 interval;
227 u64 target;
228
229 /* resource tracking */
230 u32 buffer_used;
231 u32 buffer_max_used;
232 u32 buffer_limit;
233 u32 buffer_config_limit;
234
235 /* indices for dequeue */
236 u16 cur_tin;
237 u16 cur_flow;
238
239 struct qdisc_watchdog watchdog;
240 const u8 *tin_index;
241 const u8 *tin_order;
242
243 /* bandwidth capacity estimate */
244 ktime_t last_packet_time;
245 ktime_t avg_window_begin;
246 u64 avg_packet_interval;
247 u64 avg_window_bytes;
248 u64 avg_peak_bandwidth;
249 ktime_t last_reconfig_time;
250
251 /* packet length stats */
252 u32 avg_netoff;
253 u16 max_netlen;
254 u16 max_adjlen;
255 u16 min_netlen;
256 u16 min_adjlen;
257 };
258
259 enum {
260 CAKE_FLAG_OVERHEAD = BIT(0),
261 CAKE_FLAG_AUTORATE_INGRESS = BIT(1),
262 CAKE_FLAG_INGRESS = BIT(2),
263 CAKE_FLAG_WASH = BIT(3),
264 CAKE_FLAG_SPLIT_GSO = BIT(4)
265 };
266
267 /* COBALT operates the Codel and BLUE algorithms in parallel, in order to
268 * obtain the best features of each. Codel is excellent on flows which
269 * respond to congestion signals in a TCP-like way. BLUE is more effective on
270 * unresponsive flows.
271 */
272
273 struct cobalt_skb_cb {
274 ktime_t enqueue_time;
275 u32 adjusted_len;
276 };
277
us_to_ns(u64 us)278 static u64 us_to_ns(u64 us)
279 {
280 return us * NSEC_PER_USEC;
281 }
282
get_cobalt_cb(const struct sk_buff * skb)283 static struct cobalt_skb_cb *get_cobalt_cb(const struct sk_buff *skb)
284 {
285 qdisc_cb_private_validate(skb, sizeof(struct cobalt_skb_cb));
286 return (struct cobalt_skb_cb *)qdisc_skb_cb(skb)->data;
287 }
288
cobalt_get_enqueue_time(const struct sk_buff * skb)289 static ktime_t cobalt_get_enqueue_time(const struct sk_buff *skb)
290 {
291 return get_cobalt_cb(skb)->enqueue_time;
292 }
293
cobalt_set_enqueue_time(struct sk_buff * skb,ktime_t now)294 static void cobalt_set_enqueue_time(struct sk_buff *skb,
295 ktime_t now)
296 {
297 get_cobalt_cb(skb)->enqueue_time = now;
298 }
299
300 static u16 quantum_div[CAKE_QUEUES + 1] = {0};
301
302 /* Diffserv lookup tables */
303
304 static const u8 precedence[] = {
305 0, 0, 0, 0, 0, 0, 0, 0,
306 1, 1, 1, 1, 1, 1, 1, 1,
307 2, 2, 2, 2, 2, 2, 2, 2,
308 3, 3, 3, 3, 3, 3, 3, 3,
309 4, 4, 4, 4, 4, 4, 4, 4,
310 5, 5, 5, 5, 5, 5, 5, 5,
311 6, 6, 6, 6, 6, 6, 6, 6,
312 7, 7, 7, 7, 7, 7, 7, 7,
313 };
314
315 static const u8 diffserv8[] = {
316 2, 0, 1, 2, 4, 2, 2, 2,
317 1, 2, 1, 2, 1, 2, 1, 2,
318 5, 2, 4, 2, 4, 2, 4, 2,
319 3, 2, 3, 2, 3, 2, 3, 2,
320 6, 2, 3, 2, 3, 2, 3, 2,
321 6, 2, 2, 2, 6, 2, 6, 2,
322 7, 2, 2, 2, 2, 2, 2, 2,
323 7, 2, 2, 2, 2, 2, 2, 2,
324 };
325
326 static const u8 diffserv4[] = {
327 0, 1, 0, 0, 2, 0, 0, 0,
328 1, 0, 0, 0, 0, 0, 0, 0,
329 2, 0, 2, 0, 2, 0, 2, 0,
330 2, 0, 2, 0, 2, 0, 2, 0,
331 3, 0, 2, 0, 2, 0, 2, 0,
332 3, 0, 0, 0, 3, 0, 3, 0,
333 3, 0, 0, 0, 0, 0, 0, 0,
334 3, 0, 0, 0, 0, 0, 0, 0,
335 };
336
337 static const u8 diffserv3[] = {
338 0, 1, 0, 0, 2, 0, 0, 0,
339 1, 0, 0, 0, 0, 0, 0, 0,
340 0, 0, 0, 0, 0, 0, 0, 0,
341 0, 0, 0, 0, 0, 0, 0, 0,
342 0, 0, 0, 0, 0, 0, 0, 0,
343 0, 0, 0, 0, 2, 0, 2, 0,
344 2, 0, 0, 0, 0, 0, 0, 0,
345 2, 0, 0, 0, 0, 0, 0, 0,
346 };
347
348 static const u8 besteffort[] = {
349 0, 0, 0, 0, 0, 0, 0, 0,
350 0, 0, 0, 0, 0, 0, 0, 0,
351 0, 0, 0, 0, 0, 0, 0, 0,
352 0, 0, 0, 0, 0, 0, 0, 0,
353 0, 0, 0, 0, 0, 0, 0, 0,
354 0, 0, 0, 0, 0, 0, 0, 0,
355 0, 0, 0, 0, 0, 0, 0, 0,
356 0, 0, 0, 0, 0, 0, 0, 0,
357 };
358
359 /* tin priority order for stats dumping */
360
361 static const u8 normal_order[] = {0, 1, 2, 3, 4, 5, 6, 7};
362 static const u8 bulk_order[] = {1, 0, 2, 3};
363
364 /* There is a big difference in timing between the accurate values placed in the
365 * cache and the approximations given by a single Newton step for small count
366 * values, particularly when stepping from count 1 to 2 or vice versa. Hence,
367 * these values are calculated using eight Newton steps, using the
368 * implementation below. Above 16, a single Newton step gives sufficient
369 * accuracy in either direction, given the precision stored.
370 *
371 * The magnitude of the error when stepping up to count 2 is such as to give the
372 * value that *should* have been produced at count 4.
373 */
374
375 #define REC_INV_SQRT_CACHE (16)
376 static const u32 inv_sqrt_cache[REC_INV_SQRT_CACHE] = {
377 ~0, ~0, 3037000500, 2479700525,
378 2147483647, 1920767767, 1753413056, 1623345051,
379 1518500250, 1431655765, 1358187914, 1294981364,
380 1239850263, 1191209601, 1147878294, 1108955788
381 };
382
383 /* http://en.wikipedia.org/wiki/Methods_of_computing_square_roots
384 * new_invsqrt = (invsqrt / 2) * (3 - count * invsqrt^2)
385 *
386 * Here, invsqrt is a fixed point number (< 1.0), 32bit mantissa, aka Q0.32
387 */
388
cobalt_newton_step(struct cobalt_vars * vars)389 static void cobalt_newton_step(struct cobalt_vars *vars)
390 {
391 u32 invsqrt, invsqrt2;
392 u64 val;
393
394 invsqrt = vars->rec_inv_sqrt;
395 invsqrt2 = ((u64)invsqrt * invsqrt) >> 32;
396 val = (3LL << 32) - ((u64)vars->count * invsqrt2);
397
398 val >>= 2; /* avoid overflow in following multiply */
399 val = (val * invsqrt) >> (32 - 2 + 1);
400
401 vars->rec_inv_sqrt = val;
402 }
403
cobalt_invsqrt(struct cobalt_vars * vars)404 static void cobalt_invsqrt(struct cobalt_vars *vars)
405 {
406 if (vars->count < REC_INV_SQRT_CACHE)
407 vars->rec_inv_sqrt = inv_sqrt_cache[vars->count];
408 else
409 cobalt_newton_step(vars);
410 }
411
cobalt_vars_init(struct cobalt_vars * vars)412 static void cobalt_vars_init(struct cobalt_vars *vars)
413 {
414 memset(vars, 0, sizeof(*vars));
415 }
416
417 /* CoDel control_law is t + interval/sqrt(count)
418 * We maintain in rec_inv_sqrt the reciprocal value of sqrt(count) to avoid
419 * both sqrt() and divide operation.
420 */
cobalt_control(ktime_t t,u64 interval,u32 rec_inv_sqrt)421 static ktime_t cobalt_control(ktime_t t,
422 u64 interval,
423 u32 rec_inv_sqrt)
424 {
425 return ktime_add_ns(t, reciprocal_scale(interval,
426 rec_inv_sqrt));
427 }
428
429 /* Call this when a packet had to be dropped due to queue overflow. Returns
430 * true if the BLUE state was quiescent before but active after this call.
431 */
cobalt_queue_full(struct cobalt_vars * vars,struct cobalt_params * p,ktime_t now)432 static bool cobalt_queue_full(struct cobalt_vars *vars,
433 struct cobalt_params *p,
434 ktime_t now)
435 {
436 bool up = false;
437
438 if (ktime_to_ns(ktime_sub(now, vars->blue_timer)) > p->target) {
439 up = !vars->p_drop;
440 vars->p_drop += p->p_inc;
441 if (vars->p_drop < p->p_inc)
442 vars->p_drop = ~0;
443 vars->blue_timer = now;
444 }
445 vars->dropping = true;
446 vars->drop_next = now;
447 if (!vars->count)
448 vars->count = 1;
449
450 return up;
451 }
452
453 /* Call this when the queue was serviced but turned out to be empty. Returns
454 * true if the BLUE state was active before but quiescent after this call.
455 */
cobalt_queue_empty(struct cobalt_vars * vars,struct cobalt_params * p,ktime_t now)456 static bool cobalt_queue_empty(struct cobalt_vars *vars,
457 struct cobalt_params *p,
458 ktime_t now)
459 {
460 bool down = false;
461
462 if (vars->p_drop &&
463 ktime_to_ns(ktime_sub(now, vars->blue_timer)) > p->target) {
464 if (vars->p_drop < p->p_dec)
465 vars->p_drop = 0;
466 else
467 vars->p_drop -= p->p_dec;
468 vars->blue_timer = now;
469 down = !vars->p_drop;
470 }
471 vars->dropping = false;
472
473 if (vars->count && ktime_to_ns(ktime_sub(now, vars->drop_next)) >= 0) {
474 vars->count--;
475 cobalt_invsqrt(vars);
476 vars->drop_next = cobalt_control(vars->drop_next,
477 p->interval,
478 vars->rec_inv_sqrt);
479 }
480
481 return down;
482 }
483
484 /* Call this with a freshly dequeued packet for possible congestion marking.
485 * Returns true as an instruction to drop the packet, false for delivery.
486 */
cobalt_should_drop(struct cobalt_vars * vars,struct cobalt_params * p,ktime_t now,struct sk_buff * skb,u32 bulk_flows)487 static enum skb_drop_reason cobalt_should_drop(struct cobalt_vars *vars,
488 struct cobalt_params *p,
489 ktime_t now,
490 struct sk_buff *skb,
491 u32 bulk_flows)
492 {
493 enum skb_drop_reason reason = SKB_NOT_DROPPED_YET;
494 bool next_due, over_target;
495 ktime_t schedule;
496 u64 sojourn;
497
498 /* The 'schedule' variable records, in its sign, whether 'now' is before or
499 * after 'drop_next'. This allows 'drop_next' to be updated before the next
500 * scheduling decision is actually branched, without destroying that
501 * information. Similarly, the first 'schedule' value calculated is preserved
502 * in the boolean 'next_due'.
503 *
504 * As for 'drop_next', we take advantage of the fact that 'interval' is both
505 * the delay between first exceeding 'target' and the first signalling event,
506 * *and* the scaling factor for the signalling frequency. It's therefore very
507 * natural to use a single mechanism for both purposes, and eliminates a
508 * significant amount of reference Codel's spaghetti code. To help with this,
509 * both the '0' and '1' entries in the invsqrt cache are 0xFFFFFFFF, as close
510 * as possible to 1.0 in fixed-point.
511 */
512
513 sojourn = ktime_to_ns(ktime_sub(now, cobalt_get_enqueue_time(skb)));
514 schedule = ktime_sub(now, vars->drop_next);
515 over_target = sojourn > p->target &&
516 sojourn > p->mtu_time * bulk_flows * 2 &&
517 sojourn > p->mtu_time * 4;
518 next_due = vars->count && ktime_to_ns(schedule) >= 0;
519
520 vars->ecn_marked = false;
521
522 if (over_target) {
523 if (!vars->dropping) {
524 vars->dropping = true;
525 vars->drop_next = cobalt_control(now,
526 p->interval,
527 vars->rec_inv_sqrt);
528 }
529 if (!vars->count)
530 vars->count = 1;
531 } else if (vars->dropping) {
532 vars->dropping = false;
533 }
534
535 if (next_due && vars->dropping) {
536 /* Use ECN mark if possible, otherwise drop */
537 if (!(vars->ecn_marked = INET_ECN_set_ce(skb)))
538 reason = SKB_DROP_REASON_QDISC_CONGESTED;
539
540 vars->count++;
541 if (!vars->count)
542 vars->count--;
543 cobalt_invsqrt(vars);
544 vars->drop_next = cobalt_control(vars->drop_next,
545 p->interval,
546 vars->rec_inv_sqrt);
547 schedule = ktime_sub(now, vars->drop_next);
548 } else {
549 while (next_due) {
550 vars->count--;
551 cobalt_invsqrt(vars);
552 vars->drop_next = cobalt_control(vars->drop_next,
553 p->interval,
554 vars->rec_inv_sqrt);
555 schedule = ktime_sub(now, vars->drop_next);
556 next_due = vars->count && ktime_to_ns(schedule) >= 0;
557 }
558 }
559
560 /* Simple BLUE implementation. Lack of ECN is deliberate. */
561 if (vars->p_drop && reason == SKB_NOT_DROPPED_YET &&
562 get_random_u32() < vars->p_drop)
563 reason = SKB_DROP_REASON_CAKE_FLOOD;
564
565 /* Overload the drop_next field as an activity timeout */
566 if (!vars->count)
567 vars->drop_next = ktime_add_ns(now, p->interval);
568 else if (ktime_to_ns(schedule) > 0 && reason == SKB_NOT_DROPPED_YET)
569 vars->drop_next = now;
570
571 return reason;
572 }
573
cake_update_flowkeys(struct flow_keys * keys,const struct sk_buff * skb)574 static bool cake_update_flowkeys(struct flow_keys *keys,
575 const struct sk_buff *skb)
576 {
577 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
578 struct nf_conntrack_tuple tuple = {};
579 bool rev = !skb->_nfct, upd = false;
580 __be32 ip;
581
582 if (skb_protocol(skb, true) != htons(ETH_P_IP))
583 return false;
584
585 if (!nf_ct_get_tuple_skb(&tuple, skb))
586 return false;
587
588 ip = rev ? tuple.dst.u3.ip : tuple.src.u3.ip;
589 if (ip != keys->addrs.v4addrs.src) {
590 keys->addrs.v4addrs.src = ip;
591 upd = true;
592 }
593 ip = rev ? tuple.src.u3.ip : tuple.dst.u3.ip;
594 if (ip != keys->addrs.v4addrs.dst) {
595 keys->addrs.v4addrs.dst = ip;
596 upd = true;
597 }
598
599 if (keys->ports.ports) {
600 __be16 port;
601
602 port = rev ? tuple.dst.u.all : tuple.src.u.all;
603 if (port != keys->ports.src) {
604 keys->ports.src = port;
605 upd = true;
606 }
607 port = rev ? tuple.src.u.all : tuple.dst.u.all;
608 if (port != keys->ports.dst) {
609 port = keys->ports.dst;
610 upd = true;
611 }
612 }
613 return upd;
614 #else
615 return false;
616 #endif
617 }
618
619 /* Cake has several subtle multiple bit settings. In these cases you
620 * would be matching triple isolate mode as well.
621 */
622
cake_dsrc(int flow_mode)623 static bool cake_dsrc(int flow_mode)
624 {
625 return (flow_mode & CAKE_FLOW_DUAL_SRC) == CAKE_FLOW_DUAL_SRC;
626 }
627
cake_ddst(int flow_mode)628 static bool cake_ddst(int flow_mode)
629 {
630 return (flow_mode & CAKE_FLOW_DUAL_DST) == CAKE_FLOW_DUAL_DST;
631 }
632
cake_dec_srchost_bulk_flow_count(struct cake_tin_data * q,struct cake_flow * flow,int flow_mode)633 static void cake_dec_srchost_bulk_flow_count(struct cake_tin_data *q,
634 struct cake_flow *flow,
635 int flow_mode)
636 {
637 if (likely(cake_dsrc(flow_mode) &&
638 q->hosts[flow->srchost].srchost_bulk_flow_count))
639 q->hosts[flow->srchost].srchost_bulk_flow_count--;
640 }
641
cake_inc_srchost_bulk_flow_count(struct cake_tin_data * q,struct cake_flow * flow,int flow_mode)642 static void cake_inc_srchost_bulk_flow_count(struct cake_tin_data *q,
643 struct cake_flow *flow,
644 int flow_mode)
645 {
646 if (likely(cake_dsrc(flow_mode) &&
647 q->hosts[flow->srchost].srchost_bulk_flow_count < CAKE_QUEUES))
648 q->hosts[flow->srchost].srchost_bulk_flow_count++;
649 }
650
cake_dec_dsthost_bulk_flow_count(struct cake_tin_data * q,struct cake_flow * flow,int flow_mode)651 static void cake_dec_dsthost_bulk_flow_count(struct cake_tin_data *q,
652 struct cake_flow *flow,
653 int flow_mode)
654 {
655 if (likely(cake_ddst(flow_mode) &&
656 q->hosts[flow->dsthost].dsthost_bulk_flow_count))
657 q->hosts[flow->dsthost].dsthost_bulk_flow_count--;
658 }
659
cake_inc_dsthost_bulk_flow_count(struct cake_tin_data * q,struct cake_flow * flow,int flow_mode)660 static void cake_inc_dsthost_bulk_flow_count(struct cake_tin_data *q,
661 struct cake_flow *flow,
662 int flow_mode)
663 {
664 if (likely(cake_ddst(flow_mode) &&
665 q->hosts[flow->dsthost].dsthost_bulk_flow_count < CAKE_QUEUES))
666 q->hosts[flow->dsthost].dsthost_bulk_flow_count++;
667 }
668
cake_get_flow_quantum(struct cake_tin_data * q,struct cake_flow * flow,int flow_mode)669 static u16 cake_get_flow_quantum(struct cake_tin_data *q,
670 struct cake_flow *flow,
671 int flow_mode)
672 {
673 u16 host_load = 1;
674
675 if (cake_dsrc(flow_mode))
676 host_load = max(host_load,
677 q->hosts[flow->srchost].srchost_bulk_flow_count);
678
679 if (cake_ddst(flow_mode))
680 host_load = max(host_load,
681 q->hosts[flow->dsthost].dsthost_bulk_flow_count);
682
683 /* The get_random_u16() is a way to apply dithering to avoid
684 * accumulating roundoff errors
685 */
686 return (q->flow_quantum * quantum_div[host_load] +
687 get_random_u16()) >> 16;
688 }
689
cake_hash(struct cake_tin_data * q,const struct sk_buff * skb,int flow_mode,u16 flow_override,u16 host_override)690 static u32 cake_hash(struct cake_tin_data *q, const struct sk_buff *skb,
691 int flow_mode, u16 flow_override, u16 host_override)
692 {
693 bool hash_flows = (!flow_override && !!(flow_mode & CAKE_FLOW_FLOWS));
694 bool hash_hosts = (!host_override && !!(flow_mode & CAKE_FLOW_HOSTS));
695 bool nat_enabled = !!(flow_mode & CAKE_FLOW_NAT_FLAG);
696 u32 flow_hash = 0, srchost_hash = 0, dsthost_hash = 0;
697 u16 reduced_hash, srchost_idx, dsthost_idx;
698 struct flow_keys keys, host_keys;
699 bool use_skbhash = skb->l4_hash;
700
701 if (unlikely(flow_mode == CAKE_FLOW_NONE))
702 return 0;
703
704 /* If both overrides are set, or we can use the SKB hash and nat mode is
705 * disabled, we can skip packet dissection entirely. If nat mode is
706 * enabled there's another check below after doing the conntrack lookup.
707 */
708 if ((!hash_flows || (use_skbhash && !nat_enabled)) && !hash_hosts)
709 goto skip_hash;
710
711 skb_flow_dissect_flow_keys(skb, &keys,
712 FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL);
713
714 /* Don't use the SKB hash if we change the lookup keys from conntrack */
715 if (nat_enabled && cake_update_flowkeys(&keys, skb))
716 use_skbhash = false;
717
718 /* If we can still use the SKB hash and don't need the host hash, we can
719 * skip the rest of the hashing procedure
720 */
721 if (use_skbhash && !hash_hosts)
722 goto skip_hash;
723
724 /* flow_hash_from_keys() sorts the addresses by value, so we have
725 * to preserve their order in a separate data structure to treat
726 * src and dst host addresses as independently selectable.
727 */
728 host_keys = keys;
729 host_keys.ports.ports = 0;
730 host_keys.basic.ip_proto = 0;
731 host_keys.keyid.keyid = 0;
732 host_keys.tags.flow_label = 0;
733
734 switch (host_keys.control.addr_type) {
735 case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
736 host_keys.addrs.v4addrs.src = 0;
737 dsthost_hash = flow_hash_from_keys(&host_keys);
738 host_keys.addrs.v4addrs.src = keys.addrs.v4addrs.src;
739 host_keys.addrs.v4addrs.dst = 0;
740 srchost_hash = flow_hash_from_keys(&host_keys);
741 break;
742
743 case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
744 memset(&host_keys.addrs.v6addrs.src, 0,
745 sizeof(host_keys.addrs.v6addrs.src));
746 dsthost_hash = flow_hash_from_keys(&host_keys);
747 host_keys.addrs.v6addrs.src = keys.addrs.v6addrs.src;
748 memset(&host_keys.addrs.v6addrs.dst, 0,
749 sizeof(host_keys.addrs.v6addrs.dst));
750 srchost_hash = flow_hash_from_keys(&host_keys);
751 break;
752
753 default:
754 dsthost_hash = 0;
755 srchost_hash = 0;
756 }
757
758 /* This *must* be after the above switch, since as a
759 * side-effect it sorts the src and dst addresses.
760 */
761 if (hash_flows && !use_skbhash)
762 flow_hash = flow_hash_from_keys(&keys);
763
764 skip_hash:
765 if (flow_override)
766 flow_hash = flow_override - 1;
767 else if (use_skbhash && (flow_mode & CAKE_FLOW_FLOWS))
768 flow_hash = skb->hash;
769 if (host_override) {
770 dsthost_hash = host_override - 1;
771 srchost_hash = host_override - 1;
772 }
773
774 if (!(flow_mode & CAKE_FLOW_FLOWS)) {
775 if (flow_mode & CAKE_FLOW_SRC_IP)
776 flow_hash ^= srchost_hash;
777
778 if (flow_mode & CAKE_FLOW_DST_IP)
779 flow_hash ^= dsthost_hash;
780 }
781
782 reduced_hash = flow_hash % CAKE_QUEUES;
783
784 /* set-associative hashing */
785 /* fast path if no hash collision (direct lookup succeeds) */
786 if (likely(q->tags[reduced_hash] == flow_hash &&
787 q->flows[reduced_hash].set)) {
788 q->way_directs++;
789 } else {
790 u32 inner_hash = reduced_hash % CAKE_SET_WAYS;
791 u32 outer_hash = reduced_hash - inner_hash;
792 bool allocate_src = false;
793 bool allocate_dst = false;
794 u32 i, k;
795
796 /* check if any active queue in the set is reserved for
797 * this flow.
798 */
799 for (i = 0, k = inner_hash; i < CAKE_SET_WAYS;
800 i++, k = (k + 1) % CAKE_SET_WAYS) {
801 if (q->tags[outer_hash + k] == flow_hash) {
802 if (i)
803 q->way_hits++;
804
805 if (!q->flows[outer_hash + k].set) {
806 /* need to increment host refcnts */
807 allocate_src = cake_dsrc(flow_mode);
808 allocate_dst = cake_ddst(flow_mode);
809 }
810
811 goto found;
812 }
813 }
814
815 /* no queue is reserved for this flow, look for an
816 * empty one.
817 */
818 for (i = 0; i < CAKE_SET_WAYS;
819 i++, k = (k + 1) % CAKE_SET_WAYS) {
820 if (!q->flows[outer_hash + k].set) {
821 q->way_misses++;
822 allocate_src = cake_dsrc(flow_mode);
823 allocate_dst = cake_ddst(flow_mode);
824 goto found;
825 }
826 }
827
828 /* With no empty queues, default to the original
829 * queue, accept the collision, update the host tags.
830 */
831 q->way_collisions++;
832 allocate_src = cake_dsrc(flow_mode);
833 allocate_dst = cake_ddst(flow_mode);
834
835 if (q->flows[outer_hash + k].set == CAKE_SET_BULK) {
836 cake_dec_srchost_bulk_flow_count(q, &q->flows[outer_hash + k], flow_mode);
837 cake_dec_dsthost_bulk_flow_count(q, &q->flows[outer_hash + k], flow_mode);
838 }
839 found:
840 /* reserve queue for future packets in same flow */
841 reduced_hash = outer_hash + k;
842 q->tags[reduced_hash] = flow_hash;
843
844 if (allocate_src) {
845 srchost_idx = srchost_hash % CAKE_QUEUES;
846 inner_hash = srchost_idx % CAKE_SET_WAYS;
847 outer_hash = srchost_idx - inner_hash;
848 for (i = 0, k = inner_hash; i < CAKE_SET_WAYS;
849 i++, k = (k + 1) % CAKE_SET_WAYS) {
850 if (q->hosts[outer_hash + k].srchost_tag ==
851 srchost_hash)
852 goto found_src;
853 }
854 for (i = 0; i < CAKE_SET_WAYS;
855 i++, k = (k + 1) % CAKE_SET_WAYS) {
856 if (!q->hosts[outer_hash + k].srchost_bulk_flow_count)
857 break;
858 }
859 q->hosts[outer_hash + k].srchost_tag = srchost_hash;
860 found_src:
861 srchost_idx = outer_hash + k;
862 q->flows[reduced_hash].srchost = srchost_idx;
863
864 if (q->flows[reduced_hash].set == CAKE_SET_BULK)
865 cake_inc_srchost_bulk_flow_count(q, &q->flows[reduced_hash], flow_mode);
866 }
867
868 if (allocate_dst) {
869 dsthost_idx = dsthost_hash % CAKE_QUEUES;
870 inner_hash = dsthost_idx % CAKE_SET_WAYS;
871 outer_hash = dsthost_idx - inner_hash;
872 for (i = 0, k = inner_hash; i < CAKE_SET_WAYS;
873 i++, k = (k + 1) % CAKE_SET_WAYS) {
874 if (q->hosts[outer_hash + k].dsthost_tag ==
875 dsthost_hash)
876 goto found_dst;
877 }
878 for (i = 0; i < CAKE_SET_WAYS;
879 i++, k = (k + 1) % CAKE_SET_WAYS) {
880 if (!q->hosts[outer_hash + k].dsthost_bulk_flow_count)
881 break;
882 }
883 q->hosts[outer_hash + k].dsthost_tag = dsthost_hash;
884 found_dst:
885 dsthost_idx = outer_hash + k;
886 q->flows[reduced_hash].dsthost = dsthost_idx;
887
888 if (q->flows[reduced_hash].set == CAKE_SET_BULK)
889 cake_inc_dsthost_bulk_flow_count(q, &q->flows[reduced_hash], flow_mode);
890 }
891 }
892
893 return reduced_hash;
894 }
895
896 /* helper functions : might be changed when/if skb use a standard list_head */
897 /* remove one skb from head of slot queue */
898
dequeue_head(struct cake_flow * flow)899 static struct sk_buff *dequeue_head(struct cake_flow *flow)
900 {
901 struct sk_buff *skb = flow->head;
902
903 if (skb) {
904 flow->head = skb->next;
905 skb_mark_not_on_list(skb);
906 }
907
908 return skb;
909 }
910
911 /* add skb to flow queue (tail add) */
912
flow_queue_add(struct cake_flow * flow,struct sk_buff * skb)913 static void flow_queue_add(struct cake_flow *flow, struct sk_buff *skb)
914 {
915 if (!flow->head)
916 flow->head = skb;
917 else
918 flow->tail->next = skb;
919 flow->tail = skb;
920 skb->next = NULL;
921 }
922
cake_get_iphdr(const struct sk_buff * skb,struct ipv6hdr * buf)923 static struct iphdr *cake_get_iphdr(const struct sk_buff *skb,
924 struct ipv6hdr *buf)
925 {
926 unsigned int offset = skb_network_offset(skb);
927 struct iphdr *iph;
928
929 iph = skb_header_pointer(skb, offset, sizeof(struct iphdr), buf);
930
931 if (!iph)
932 return NULL;
933
934 if (iph->version == 4 && iph->protocol == IPPROTO_IPV6)
935 return skb_header_pointer(skb, offset + iph->ihl * 4,
936 sizeof(struct ipv6hdr), buf);
937
938 else if (iph->version == 4)
939 return iph;
940
941 else if (iph->version == 6)
942 return skb_header_pointer(skb, offset, sizeof(struct ipv6hdr),
943 buf);
944
945 return NULL;
946 }
947
cake_get_tcphdr(const struct sk_buff * skb,void * buf,unsigned int bufsize)948 static struct tcphdr *cake_get_tcphdr(const struct sk_buff *skb,
949 void *buf, unsigned int bufsize)
950 {
951 unsigned int offset = skb_network_offset(skb);
952 const struct ipv6hdr *ipv6h;
953 const struct tcphdr *tcph;
954 const struct iphdr *iph;
955 struct ipv6hdr _ipv6h;
956 struct tcphdr _tcph;
957
958 ipv6h = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
959
960 if (!ipv6h)
961 return NULL;
962
963 if (ipv6h->version == 4) {
964 iph = (struct iphdr *)ipv6h;
965 offset += iph->ihl * 4;
966
967 /* special-case 6in4 tunnelling, as that is a common way to get
968 * v6 connectivity in the home
969 */
970 if (iph->protocol == IPPROTO_IPV6) {
971 ipv6h = skb_header_pointer(skb, offset,
972 sizeof(_ipv6h), &_ipv6h);
973
974 if (!ipv6h || ipv6h->nexthdr != IPPROTO_TCP)
975 return NULL;
976
977 offset += sizeof(struct ipv6hdr);
978
979 } else if (iph->protocol != IPPROTO_TCP) {
980 return NULL;
981 }
982
983 } else if (ipv6h->version == 6) {
984 if (ipv6h->nexthdr != IPPROTO_TCP)
985 return NULL;
986
987 offset += sizeof(struct ipv6hdr);
988 } else {
989 return NULL;
990 }
991
992 tcph = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
993 if (!tcph || tcph->doff < 5)
994 return NULL;
995
996 return skb_header_pointer(skb, offset,
997 min(__tcp_hdrlen(tcph), bufsize), buf);
998 }
999
cake_get_tcpopt(const struct tcphdr * tcph,int code,int * oplen)1000 static const void *cake_get_tcpopt(const struct tcphdr *tcph,
1001 int code, int *oplen)
1002 {
1003 /* inspired by tcp_parse_options in tcp_input.c */
1004 int length = __tcp_hdrlen(tcph) - sizeof(struct tcphdr);
1005 const u8 *ptr = (const u8 *)(tcph + 1);
1006
1007 while (length > 0) {
1008 int opcode = *ptr++;
1009 int opsize;
1010
1011 if (opcode == TCPOPT_EOL)
1012 break;
1013 if (opcode == TCPOPT_NOP) {
1014 length--;
1015 continue;
1016 }
1017 if (length < 2)
1018 break;
1019 opsize = *ptr++;
1020 if (opsize < 2 || opsize > length)
1021 break;
1022
1023 if (opcode == code) {
1024 *oplen = opsize;
1025 return ptr;
1026 }
1027
1028 ptr += opsize - 2;
1029 length -= opsize;
1030 }
1031
1032 return NULL;
1033 }
1034
1035 /* Compare two SACK sequences. A sequence is considered greater if it SACKs more
1036 * bytes than the other. In the case where both sequences ACKs bytes that the
1037 * other doesn't, A is considered greater. DSACKs in A also makes A be
1038 * considered greater.
1039 *
1040 * @return -1, 0 or 1 as normal compare functions
1041 */
cake_tcph_sack_compare(const struct tcphdr * tcph_a,const struct tcphdr * tcph_b)1042 static int cake_tcph_sack_compare(const struct tcphdr *tcph_a,
1043 const struct tcphdr *tcph_b)
1044 {
1045 const struct tcp_sack_block_wire *sack_a, *sack_b;
1046 u32 ack_seq_a = ntohl(tcph_a->ack_seq);
1047 u32 bytes_a = 0, bytes_b = 0;
1048 int oplen_a, oplen_b;
1049 bool first = true;
1050
1051 sack_a = cake_get_tcpopt(tcph_a, TCPOPT_SACK, &oplen_a);
1052 sack_b = cake_get_tcpopt(tcph_b, TCPOPT_SACK, &oplen_b);
1053
1054 /* pointers point to option contents */
1055 oplen_a -= TCPOLEN_SACK_BASE;
1056 oplen_b -= TCPOLEN_SACK_BASE;
1057
1058 if (sack_a && oplen_a >= sizeof(*sack_a) &&
1059 (!sack_b || oplen_b < sizeof(*sack_b)))
1060 return -1;
1061 else if (sack_b && oplen_b >= sizeof(*sack_b) &&
1062 (!sack_a || oplen_a < sizeof(*sack_a)))
1063 return 1;
1064 else if ((!sack_a || oplen_a < sizeof(*sack_a)) &&
1065 (!sack_b || oplen_b < sizeof(*sack_b)))
1066 return 0;
1067
1068 while (oplen_a >= sizeof(*sack_a)) {
1069 const struct tcp_sack_block_wire *sack_tmp = sack_b;
1070 u32 start_a = get_unaligned_be32(&sack_a->start_seq);
1071 u32 end_a = get_unaligned_be32(&sack_a->end_seq);
1072 int oplen_tmp = oplen_b;
1073 bool found = false;
1074
1075 /* DSACK; always considered greater to prevent dropping */
1076 if (before(start_a, ack_seq_a))
1077 return -1;
1078
1079 bytes_a += end_a - start_a;
1080
1081 while (oplen_tmp >= sizeof(*sack_tmp)) {
1082 u32 start_b = get_unaligned_be32(&sack_tmp->start_seq);
1083 u32 end_b = get_unaligned_be32(&sack_tmp->end_seq);
1084
1085 /* first time through we count the total size */
1086 if (first)
1087 bytes_b += end_b - start_b;
1088
1089 if (!after(start_b, start_a) && !before(end_b, end_a)) {
1090 found = true;
1091 if (!first)
1092 break;
1093 }
1094 oplen_tmp -= sizeof(*sack_tmp);
1095 sack_tmp++;
1096 }
1097
1098 if (!found)
1099 return -1;
1100
1101 oplen_a -= sizeof(*sack_a);
1102 sack_a++;
1103 first = false;
1104 }
1105
1106 /* If we made it this far, all ranges SACKed by A are covered by B, so
1107 * either the SACKs are equal, or B SACKs more bytes.
1108 */
1109 return bytes_b > bytes_a ? 1 : 0;
1110 }
1111
cake_tcph_get_tstamp(const struct tcphdr * tcph,u32 * tsval,u32 * tsecr)1112 static void cake_tcph_get_tstamp(const struct tcphdr *tcph,
1113 u32 *tsval, u32 *tsecr)
1114 {
1115 const u8 *ptr;
1116 int opsize;
1117
1118 ptr = cake_get_tcpopt(tcph, TCPOPT_TIMESTAMP, &opsize);
1119
1120 if (ptr && opsize == TCPOLEN_TIMESTAMP) {
1121 *tsval = get_unaligned_be32(ptr);
1122 *tsecr = get_unaligned_be32(ptr + 4);
1123 }
1124 }
1125
cake_tcph_may_drop(const struct tcphdr * tcph,u32 tstamp_new,u32 tsecr_new)1126 static bool cake_tcph_may_drop(const struct tcphdr *tcph,
1127 u32 tstamp_new, u32 tsecr_new)
1128 {
1129 /* inspired by tcp_parse_options in tcp_input.c */
1130 int length = __tcp_hdrlen(tcph) - sizeof(struct tcphdr);
1131 const u8 *ptr = (const u8 *)(tcph + 1);
1132 u32 tstamp, tsecr;
1133
1134 /* 3 reserved flags must be unset to avoid future breakage
1135 * ACK must be set
1136 * ECE/CWR are handled separately
1137 * All other flags URG/PSH/RST/SYN/FIN must be unset
1138 * 0x0FFF0000 = all TCP flags (confirm ACK=1, others zero)
1139 * 0x00C00000 = CWR/ECE (handled separately)
1140 * 0x0F3F0000 = 0x0FFF0000 & ~0x00C00000
1141 */
1142 if (((tcp_flag_word(tcph) &
1143 cpu_to_be32(0x0F3F0000)) != TCP_FLAG_ACK))
1144 return false;
1145
1146 while (length > 0) {
1147 int opcode = *ptr++;
1148 int opsize;
1149
1150 if (opcode == TCPOPT_EOL)
1151 break;
1152 if (opcode == TCPOPT_NOP) {
1153 length--;
1154 continue;
1155 }
1156 if (length < 2)
1157 break;
1158 opsize = *ptr++;
1159 if (opsize < 2 || opsize > length)
1160 break;
1161
1162 switch (opcode) {
1163 case TCPOPT_MD5SIG: /* doesn't influence state */
1164 break;
1165
1166 case TCPOPT_SACK: /* stricter checking performed later */
1167 if (opsize % 8 != 2)
1168 return false;
1169 break;
1170
1171 case TCPOPT_TIMESTAMP:
1172 /* only drop timestamps lower than new */
1173 if (opsize != TCPOLEN_TIMESTAMP)
1174 return false;
1175 tstamp = get_unaligned_be32(ptr);
1176 tsecr = get_unaligned_be32(ptr + 4);
1177 if (after(tstamp, tstamp_new) ||
1178 after(tsecr, tsecr_new))
1179 return false;
1180 break;
1181
1182 case TCPOPT_MSS: /* these should only be set on SYN */
1183 case TCPOPT_WINDOW:
1184 case TCPOPT_SACK_PERM:
1185 case TCPOPT_FASTOPEN:
1186 case TCPOPT_EXP:
1187 default: /* don't drop if any unknown options are present */
1188 return false;
1189 }
1190
1191 ptr += opsize - 2;
1192 length -= opsize;
1193 }
1194
1195 return true;
1196 }
1197
cake_ack_filter(struct cake_sched_data * q,struct cake_flow * flow)1198 static struct sk_buff *cake_ack_filter(struct cake_sched_data *q,
1199 struct cake_flow *flow)
1200 {
1201 bool aggressive = q->ack_filter == CAKE_ACK_AGGRESSIVE;
1202 struct sk_buff *elig_ack = NULL, *elig_ack_prev = NULL;
1203 struct sk_buff *skb_check, *skb_prev = NULL;
1204 const struct ipv6hdr *ipv6h, *ipv6h_check;
1205 unsigned char _tcph[64], _tcph_check[64];
1206 const struct tcphdr *tcph, *tcph_check;
1207 const struct iphdr *iph, *iph_check;
1208 struct ipv6hdr _iph, _iph_check;
1209 const struct sk_buff *skb;
1210 int seglen, num_found = 0;
1211 u32 tstamp = 0, tsecr = 0;
1212 __be32 elig_flags = 0;
1213 int sack_comp;
1214
1215 /* no other possible ACKs to filter */
1216 if (flow->head == flow->tail)
1217 return NULL;
1218
1219 skb = flow->tail;
1220 tcph = cake_get_tcphdr(skb, _tcph, sizeof(_tcph));
1221 iph = cake_get_iphdr(skb, &_iph);
1222 if (!tcph)
1223 return NULL;
1224
1225 cake_tcph_get_tstamp(tcph, &tstamp, &tsecr);
1226
1227 /* the 'triggering' packet need only have the ACK flag set.
1228 * also check that SYN is not set, as there won't be any previous ACKs.
1229 */
1230 if ((tcp_flag_word(tcph) &
1231 (TCP_FLAG_ACK | TCP_FLAG_SYN)) != TCP_FLAG_ACK)
1232 return NULL;
1233
1234 /* the 'triggering' ACK is at the tail of the queue, we have already
1235 * returned if it is the only packet in the flow. loop through the rest
1236 * of the queue looking for pure ACKs with the same 5-tuple as the
1237 * triggering one.
1238 */
1239 for (skb_check = flow->head;
1240 skb_check && skb_check != skb;
1241 skb_prev = skb_check, skb_check = skb_check->next) {
1242 iph_check = cake_get_iphdr(skb_check, &_iph_check);
1243 tcph_check = cake_get_tcphdr(skb_check, &_tcph_check,
1244 sizeof(_tcph_check));
1245
1246 /* only TCP packets with matching 5-tuple are eligible, and only
1247 * drop safe headers
1248 */
1249 if (!tcph_check || iph->version != iph_check->version ||
1250 tcph_check->source != tcph->source ||
1251 tcph_check->dest != tcph->dest)
1252 continue;
1253
1254 if (iph_check->version == 4) {
1255 if (iph_check->saddr != iph->saddr ||
1256 iph_check->daddr != iph->daddr)
1257 continue;
1258
1259 seglen = iph_totlen(skb, iph_check) -
1260 (4 * iph_check->ihl);
1261 } else if (iph_check->version == 6) {
1262 ipv6h = (struct ipv6hdr *)iph;
1263 ipv6h_check = (struct ipv6hdr *)iph_check;
1264
1265 if (ipv6_addr_cmp(&ipv6h_check->saddr, &ipv6h->saddr) ||
1266 ipv6_addr_cmp(&ipv6h_check->daddr, &ipv6h->daddr))
1267 continue;
1268
1269 seglen = ntohs(ipv6h_check->payload_len);
1270 } else {
1271 WARN_ON(1); /* shouldn't happen */
1272 continue;
1273 }
1274
1275 /* If the ECE/CWR flags changed from the previous eligible
1276 * packet in the same flow, we should no longer be dropping that
1277 * previous packet as this would lose information.
1278 */
1279 if (elig_ack && (tcp_flag_word(tcph_check) &
1280 (TCP_FLAG_ECE | TCP_FLAG_CWR)) != elig_flags) {
1281 elig_ack = NULL;
1282 elig_ack_prev = NULL;
1283 num_found--;
1284 }
1285
1286 /* Check TCP options and flags, don't drop ACKs with segment
1287 * data, and don't drop ACKs with a higher cumulative ACK
1288 * counter than the triggering packet. Check ACK seqno here to
1289 * avoid parsing SACK options of packets we are going to exclude
1290 * anyway.
1291 */
1292 if (!cake_tcph_may_drop(tcph_check, tstamp, tsecr) ||
1293 (seglen - __tcp_hdrlen(tcph_check)) != 0 ||
1294 after(ntohl(tcph_check->ack_seq), ntohl(tcph->ack_seq)))
1295 continue;
1296
1297 /* Check SACK options. The triggering packet must SACK more data
1298 * than the ACK under consideration, or SACK the same range but
1299 * have a larger cumulative ACK counter. The latter is a
1300 * pathological case, but is contained in the following check
1301 * anyway, just to be safe.
1302 */
1303 sack_comp = cake_tcph_sack_compare(tcph_check, tcph);
1304
1305 if (sack_comp < 0 ||
1306 (ntohl(tcph_check->ack_seq) == ntohl(tcph->ack_seq) &&
1307 sack_comp == 0))
1308 continue;
1309
1310 /* At this point we have found an eligible pure ACK to drop; if
1311 * we are in aggressive mode, we are done. Otherwise, keep
1312 * searching unless this is the second eligible ACK we
1313 * found.
1314 *
1315 * Since we want to drop ACK closest to the head of the queue,
1316 * save the first eligible ACK we find, even if we need to loop
1317 * again.
1318 */
1319 if (!elig_ack) {
1320 elig_ack = skb_check;
1321 elig_ack_prev = skb_prev;
1322 elig_flags = (tcp_flag_word(tcph_check)
1323 & (TCP_FLAG_ECE | TCP_FLAG_CWR));
1324 }
1325
1326 if (num_found++ > 0)
1327 goto found;
1328 }
1329
1330 /* We made it through the queue without finding two eligible ACKs . If
1331 * we found a single eligible ACK we can drop it in aggressive mode if
1332 * we can guarantee that this does not interfere with ECN flag
1333 * information. We ensure this by dropping it only if the enqueued
1334 * packet is consecutive with the eligible ACK, and their flags match.
1335 */
1336 if (elig_ack && aggressive && elig_ack->next == skb &&
1337 (elig_flags == (tcp_flag_word(tcph) &
1338 (TCP_FLAG_ECE | TCP_FLAG_CWR))))
1339 goto found;
1340
1341 return NULL;
1342
1343 found:
1344 if (elig_ack_prev)
1345 elig_ack_prev->next = elig_ack->next;
1346 else
1347 flow->head = elig_ack->next;
1348
1349 skb_mark_not_on_list(elig_ack);
1350
1351 return elig_ack;
1352 }
1353
cake_ewma(u64 avg,u64 sample,u32 shift)1354 static u64 cake_ewma(u64 avg, u64 sample, u32 shift)
1355 {
1356 avg -= avg >> shift;
1357 avg += sample >> shift;
1358 return avg;
1359 }
1360
cake_calc_overhead(struct cake_sched_data * q,u32 len,u32 off)1361 static u32 cake_calc_overhead(struct cake_sched_data *q, u32 len, u32 off)
1362 {
1363 if (q->rate_flags & CAKE_FLAG_OVERHEAD)
1364 len -= off;
1365
1366 if (q->max_netlen < len)
1367 q->max_netlen = len;
1368 if (q->min_netlen > len)
1369 q->min_netlen = len;
1370
1371 len += q->rate_overhead;
1372
1373 if (len < q->rate_mpu)
1374 len = q->rate_mpu;
1375
1376 if (q->atm_mode == CAKE_ATM_ATM) {
1377 len += 47;
1378 len /= 48;
1379 len *= 53;
1380 } else if (q->atm_mode == CAKE_ATM_PTM) {
1381 /* Add one byte per 64 bytes or part thereof.
1382 * This is conservative and easier to calculate than the
1383 * precise value.
1384 */
1385 len += (len + 63) / 64;
1386 }
1387
1388 if (q->max_adjlen < len)
1389 q->max_adjlen = len;
1390 if (q->min_adjlen > len)
1391 q->min_adjlen = len;
1392
1393 return len;
1394 }
1395
cake_overhead(struct cake_sched_data * q,const struct sk_buff * skb)1396 static u32 cake_overhead(struct cake_sched_data *q, const struct sk_buff *skb)
1397 {
1398 const struct skb_shared_info *shinfo = skb_shinfo(skb);
1399 unsigned int hdr_len, last_len = 0;
1400 u32 off = skb_network_offset(skb);
1401 u32 len = qdisc_pkt_len(skb);
1402 u16 segs = 1;
1403
1404 q->avg_netoff = cake_ewma(q->avg_netoff, off << 16, 8);
1405
1406 if (!shinfo->gso_size)
1407 return cake_calc_overhead(q, len, off);
1408
1409 /* borrowed from qdisc_pkt_len_init() */
1410 if (!skb->encapsulation)
1411 hdr_len = skb_transport_offset(skb);
1412 else
1413 hdr_len = skb_inner_transport_offset(skb);
1414
1415 /* + transport layer */
1416 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 |
1417 SKB_GSO_TCPV6))) {
1418 const struct tcphdr *th;
1419 struct tcphdr _tcphdr;
1420
1421 th = skb_header_pointer(skb, hdr_len,
1422 sizeof(_tcphdr), &_tcphdr);
1423 if (likely(th))
1424 hdr_len += __tcp_hdrlen(th);
1425 } else {
1426 struct udphdr _udphdr;
1427
1428 if (skb_header_pointer(skb, hdr_len,
1429 sizeof(_udphdr), &_udphdr))
1430 hdr_len += sizeof(struct udphdr);
1431 }
1432
1433 if (unlikely(shinfo->gso_type & SKB_GSO_DODGY))
1434 segs = DIV_ROUND_UP(skb->len - hdr_len,
1435 shinfo->gso_size);
1436 else
1437 segs = shinfo->gso_segs;
1438
1439 len = shinfo->gso_size + hdr_len;
1440 last_len = skb->len - shinfo->gso_size * (segs - 1);
1441
1442 return (cake_calc_overhead(q, len, off) * (segs - 1) +
1443 cake_calc_overhead(q, last_len, off));
1444 }
1445
cake_heap_swap(struct cake_sched_data * q,u16 i,u16 j)1446 static void cake_heap_swap(struct cake_sched_data *q, u16 i, u16 j)
1447 {
1448 struct cake_heap_entry ii = q->overflow_heap[i];
1449 struct cake_heap_entry jj = q->overflow_heap[j];
1450
1451 q->overflow_heap[i] = jj;
1452 q->overflow_heap[j] = ii;
1453
1454 q->tins[ii.t].overflow_idx[ii.b] = j;
1455 q->tins[jj.t].overflow_idx[jj.b] = i;
1456 }
1457
cake_heap_get_backlog(const struct cake_sched_data * q,u16 i)1458 static u32 cake_heap_get_backlog(const struct cake_sched_data *q, u16 i)
1459 {
1460 struct cake_heap_entry ii = q->overflow_heap[i];
1461
1462 return q->tins[ii.t].backlogs[ii.b];
1463 }
1464
cake_heapify(struct cake_sched_data * q,u16 i)1465 static void cake_heapify(struct cake_sched_data *q, u16 i)
1466 {
1467 static const u32 a = CAKE_MAX_TINS * CAKE_QUEUES;
1468 u32 mb = cake_heap_get_backlog(q, i);
1469 u32 m = i;
1470
1471 while (m < a) {
1472 u32 l = m + m + 1;
1473 u32 r = l + 1;
1474
1475 if (l < a) {
1476 u32 lb = cake_heap_get_backlog(q, l);
1477
1478 if (lb > mb) {
1479 m = l;
1480 mb = lb;
1481 }
1482 }
1483
1484 if (r < a) {
1485 u32 rb = cake_heap_get_backlog(q, r);
1486
1487 if (rb > mb) {
1488 m = r;
1489 mb = rb;
1490 }
1491 }
1492
1493 if (m != i) {
1494 cake_heap_swap(q, i, m);
1495 i = m;
1496 } else {
1497 break;
1498 }
1499 }
1500 }
1501
cake_heapify_up(struct cake_sched_data * q,u16 i)1502 static void cake_heapify_up(struct cake_sched_data *q, u16 i)
1503 {
1504 while (i > 0 && i < CAKE_MAX_TINS * CAKE_QUEUES) {
1505 u16 p = (i - 1) >> 1;
1506 u32 ib = cake_heap_get_backlog(q, i);
1507 u32 pb = cake_heap_get_backlog(q, p);
1508
1509 if (ib > pb) {
1510 cake_heap_swap(q, i, p);
1511 i = p;
1512 } else {
1513 break;
1514 }
1515 }
1516 }
1517
cake_advance_shaper(struct cake_sched_data * q,struct cake_tin_data * b,struct sk_buff * skb,ktime_t now,bool drop)1518 static int cake_advance_shaper(struct cake_sched_data *q,
1519 struct cake_tin_data *b,
1520 struct sk_buff *skb,
1521 ktime_t now, bool drop)
1522 {
1523 u32 len = get_cobalt_cb(skb)->adjusted_len;
1524
1525 /* charge packet bandwidth to this tin
1526 * and to the global shaper.
1527 */
1528 if (q->rate_ns) {
1529 u64 tin_dur = (len * b->tin_rate_ns) >> b->tin_rate_shft;
1530 u64 global_dur = (len * q->rate_ns) >> q->rate_shft;
1531 u64 failsafe_dur = global_dur + (global_dur >> 1);
1532
1533 if (ktime_before(b->time_next_packet, now))
1534 b->time_next_packet = ktime_add_ns(b->time_next_packet,
1535 tin_dur);
1536
1537 else if (ktime_before(b->time_next_packet,
1538 ktime_add_ns(now, tin_dur)))
1539 b->time_next_packet = ktime_add_ns(now, tin_dur);
1540
1541 q->time_next_packet = ktime_add_ns(q->time_next_packet,
1542 global_dur);
1543 if (!drop)
1544 q->failsafe_next_packet = \
1545 ktime_add_ns(q->failsafe_next_packet,
1546 failsafe_dur);
1547 }
1548 return len;
1549 }
1550
cake_drop(struct Qdisc * sch,struct sk_buff ** to_free)1551 static unsigned int cake_drop(struct Qdisc *sch, struct sk_buff **to_free)
1552 {
1553 struct cake_sched_data *q = qdisc_priv(sch);
1554 ktime_t now = ktime_get();
1555 u32 idx = 0, tin = 0, len;
1556 struct cake_heap_entry qq;
1557 struct cake_tin_data *b;
1558 struct cake_flow *flow;
1559 struct sk_buff *skb;
1560
1561 if (!q->overflow_timeout) {
1562 int i;
1563 /* Build fresh max-heap */
1564 for (i = CAKE_MAX_TINS * CAKE_QUEUES / 2 - 1; i >= 0; i--)
1565 cake_heapify(q, i);
1566 }
1567 q->overflow_timeout = 65535;
1568
1569 /* select longest queue for pruning */
1570 qq = q->overflow_heap[0];
1571 tin = qq.t;
1572 idx = qq.b;
1573
1574 b = &q->tins[tin];
1575 flow = &b->flows[idx];
1576 skb = dequeue_head(flow);
1577 if (unlikely(!skb)) {
1578 /* heap has gone wrong, rebuild it next time */
1579 q->overflow_timeout = 0;
1580 return idx + (tin << 16);
1581 }
1582
1583 if (cobalt_queue_full(&flow->cvars, &b->cparams, now))
1584 b->unresponsive_flow_count++;
1585
1586 len = qdisc_pkt_len(skb);
1587 q->buffer_used -= skb->truesize;
1588 b->backlogs[idx] -= len;
1589 b->tin_backlog -= len;
1590 sch->qstats.backlog -= len;
1591
1592 flow->dropped++;
1593 b->tin_dropped++;
1594
1595 if (q->rate_flags & CAKE_FLAG_INGRESS)
1596 cake_advance_shaper(q, b, skb, now, true);
1597
1598 qdisc_drop_reason(skb, sch, to_free, SKB_DROP_REASON_QDISC_OVERLIMIT);
1599 sch->q.qlen--;
1600 qdisc_tree_reduce_backlog(sch, 1, len);
1601
1602 cake_heapify(q, 0);
1603
1604 return idx + (tin << 16);
1605 }
1606
cake_handle_diffserv(struct sk_buff * skb,bool wash)1607 static u8 cake_handle_diffserv(struct sk_buff *skb, bool wash)
1608 {
1609 const int offset = skb_network_offset(skb);
1610 u16 *buf, buf_;
1611 u8 dscp;
1612
1613 switch (skb_protocol(skb, true)) {
1614 case htons(ETH_P_IP):
1615 buf = skb_header_pointer(skb, offset, sizeof(buf_), &buf_);
1616 if (unlikely(!buf))
1617 return 0;
1618
1619 /* ToS is in the second byte of iphdr */
1620 dscp = ipv4_get_dsfield((struct iphdr *)buf) >> 2;
1621
1622 if (wash && dscp) {
1623 const int wlen = offset + sizeof(struct iphdr);
1624
1625 if (!pskb_may_pull(skb, wlen) ||
1626 skb_try_make_writable(skb, wlen))
1627 return 0;
1628
1629 ipv4_change_dsfield(ip_hdr(skb), INET_ECN_MASK, 0);
1630 }
1631
1632 return dscp;
1633
1634 case htons(ETH_P_IPV6):
1635 buf = skb_header_pointer(skb, offset, sizeof(buf_), &buf_);
1636 if (unlikely(!buf))
1637 return 0;
1638
1639 /* Traffic class is in the first and second bytes of ipv6hdr */
1640 dscp = ipv6_get_dsfield((struct ipv6hdr *)buf) >> 2;
1641
1642 if (wash && dscp) {
1643 const int wlen = offset + sizeof(struct ipv6hdr);
1644
1645 if (!pskb_may_pull(skb, wlen) ||
1646 skb_try_make_writable(skb, wlen))
1647 return 0;
1648
1649 ipv6_change_dsfield(ipv6_hdr(skb), INET_ECN_MASK, 0);
1650 }
1651
1652 return dscp;
1653
1654 case htons(ETH_P_ARP):
1655 return 0x38; /* CS7 - Net Control */
1656
1657 default:
1658 /* If there is no Diffserv field, treat as best-effort */
1659 return 0;
1660 }
1661 }
1662
cake_select_tin(struct Qdisc * sch,struct sk_buff * skb)1663 static struct cake_tin_data *cake_select_tin(struct Qdisc *sch,
1664 struct sk_buff *skb)
1665 {
1666 struct cake_sched_data *q = qdisc_priv(sch);
1667 u32 tin, mark;
1668 bool wash;
1669 u8 dscp;
1670
1671 /* Tin selection: Default to diffserv-based selection, allow overriding
1672 * using firewall marks or skb->priority. Call DSCP parsing early if
1673 * wash is enabled, otherwise defer to below to skip unneeded parsing.
1674 */
1675 mark = (skb->mark & q->fwmark_mask) >> q->fwmark_shft;
1676 wash = !!(q->rate_flags & CAKE_FLAG_WASH);
1677 if (wash)
1678 dscp = cake_handle_diffserv(skb, wash);
1679
1680 if (q->tin_mode == CAKE_DIFFSERV_BESTEFFORT)
1681 tin = 0;
1682
1683 else if (mark && mark <= q->tin_cnt)
1684 tin = q->tin_order[mark - 1];
1685
1686 else if (TC_H_MAJ(skb->priority) == sch->handle &&
1687 TC_H_MIN(skb->priority) > 0 &&
1688 TC_H_MIN(skb->priority) <= q->tin_cnt)
1689 tin = q->tin_order[TC_H_MIN(skb->priority) - 1];
1690
1691 else {
1692 if (!wash)
1693 dscp = cake_handle_diffserv(skb, wash);
1694 tin = q->tin_index[dscp];
1695
1696 if (unlikely(tin >= q->tin_cnt))
1697 tin = 0;
1698 }
1699
1700 return &q->tins[tin];
1701 }
1702
cake_classify(struct Qdisc * sch,struct cake_tin_data ** t,struct sk_buff * skb,int flow_mode,int * qerr)1703 static u32 cake_classify(struct Qdisc *sch, struct cake_tin_data **t,
1704 struct sk_buff *skb, int flow_mode, int *qerr)
1705 {
1706 struct cake_sched_data *q = qdisc_priv(sch);
1707 struct tcf_proto *filter;
1708 struct tcf_result res;
1709 u16 flow = 0, host = 0;
1710 int result;
1711
1712 filter = rcu_dereference_bh(q->filter_list);
1713 if (!filter)
1714 goto hash;
1715
1716 *qerr = NET_XMIT_SUCCESS | __NET_XMIT_BYPASS;
1717 result = tcf_classify(skb, NULL, filter, &res, false);
1718
1719 if (result >= 0) {
1720 #ifdef CONFIG_NET_CLS_ACT
1721 switch (result) {
1722 case TC_ACT_STOLEN:
1723 case TC_ACT_QUEUED:
1724 case TC_ACT_TRAP:
1725 *qerr = NET_XMIT_SUCCESS | __NET_XMIT_STOLEN;
1726 fallthrough;
1727 case TC_ACT_SHOT:
1728 return 0;
1729 }
1730 #endif
1731 if (TC_H_MIN(res.classid) <= CAKE_QUEUES)
1732 flow = TC_H_MIN(res.classid);
1733 if (TC_H_MAJ(res.classid) <= (CAKE_QUEUES << 16))
1734 host = TC_H_MAJ(res.classid) >> 16;
1735 }
1736 hash:
1737 *t = cake_select_tin(sch, skb);
1738 return cake_hash(*t, skb, flow_mode, flow, host) + 1;
1739 }
1740
1741 static void cake_reconfigure(struct Qdisc *sch);
1742
cake_enqueue(struct sk_buff * skb,struct Qdisc * sch,struct sk_buff ** to_free)1743 static s32 cake_enqueue(struct sk_buff *skb, struct Qdisc *sch,
1744 struct sk_buff **to_free)
1745 {
1746 struct cake_sched_data *q = qdisc_priv(sch);
1747 int len = qdisc_pkt_len(skb);
1748 int ret;
1749 struct sk_buff *ack = NULL;
1750 ktime_t now = ktime_get();
1751 struct cake_tin_data *b;
1752 struct cake_flow *flow;
1753 u32 idx;
1754
1755 /* choose flow to insert into */
1756 idx = cake_classify(sch, &b, skb, q->flow_mode, &ret);
1757 if (idx == 0) {
1758 if (ret & __NET_XMIT_BYPASS)
1759 qdisc_qstats_drop(sch);
1760 __qdisc_drop(skb, to_free);
1761 return ret;
1762 }
1763 idx--;
1764 flow = &b->flows[idx];
1765
1766 /* ensure shaper state isn't stale */
1767 if (!b->tin_backlog) {
1768 if (ktime_before(b->time_next_packet, now))
1769 b->time_next_packet = now;
1770
1771 if (!sch->q.qlen) {
1772 if (ktime_before(q->time_next_packet, now)) {
1773 q->failsafe_next_packet = now;
1774 q->time_next_packet = now;
1775 } else if (ktime_after(q->time_next_packet, now) &&
1776 ktime_after(q->failsafe_next_packet, now)) {
1777 u64 next = \
1778 min(ktime_to_ns(q->time_next_packet),
1779 ktime_to_ns(
1780 q->failsafe_next_packet));
1781 sch->qstats.overlimits++;
1782 qdisc_watchdog_schedule_ns(&q->watchdog, next);
1783 }
1784 }
1785 }
1786
1787 if (unlikely(len > b->max_skblen))
1788 b->max_skblen = len;
1789
1790 if (skb_is_gso(skb) && q->rate_flags & CAKE_FLAG_SPLIT_GSO) {
1791 struct sk_buff *segs, *nskb;
1792 netdev_features_t features = netif_skb_features(skb);
1793 unsigned int slen = 0, numsegs = 0;
1794
1795 segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK);
1796 if (IS_ERR_OR_NULL(segs))
1797 return qdisc_drop(skb, sch, to_free);
1798
1799 skb_list_walk_safe(segs, segs, nskb) {
1800 skb_mark_not_on_list(segs);
1801 qdisc_skb_cb(segs)->pkt_len = segs->len;
1802 cobalt_set_enqueue_time(segs, now);
1803 get_cobalt_cb(segs)->adjusted_len = cake_overhead(q,
1804 segs);
1805 flow_queue_add(flow, segs);
1806
1807 sch->q.qlen++;
1808 numsegs++;
1809 slen += segs->len;
1810 q->buffer_used += segs->truesize;
1811 b->packets++;
1812 }
1813
1814 /* stats */
1815 b->bytes += slen;
1816 b->backlogs[idx] += slen;
1817 b->tin_backlog += slen;
1818 sch->qstats.backlog += slen;
1819 q->avg_window_bytes += slen;
1820
1821 qdisc_tree_reduce_backlog(sch, 1-numsegs, len-slen);
1822 consume_skb(skb);
1823 } else {
1824 /* not splitting */
1825 cobalt_set_enqueue_time(skb, now);
1826 get_cobalt_cb(skb)->adjusted_len = cake_overhead(q, skb);
1827 flow_queue_add(flow, skb);
1828
1829 if (q->ack_filter)
1830 ack = cake_ack_filter(q, flow);
1831
1832 if (ack) {
1833 b->ack_drops++;
1834 sch->qstats.drops++;
1835 b->bytes += qdisc_pkt_len(ack);
1836 len -= qdisc_pkt_len(ack);
1837 q->buffer_used += skb->truesize - ack->truesize;
1838 if (q->rate_flags & CAKE_FLAG_INGRESS)
1839 cake_advance_shaper(q, b, ack, now, true);
1840
1841 qdisc_tree_reduce_backlog(sch, 1, qdisc_pkt_len(ack));
1842 consume_skb(ack);
1843 } else {
1844 sch->q.qlen++;
1845 q->buffer_used += skb->truesize;
1846 }
1847
1848 /* stats */
1849 b->packets++;
1850 b->bytes += len;
1851 b->backlogs[idx] += len;
1852 b->tin_backlog += len;
1853 sch->qstats.backlog += len;
1854 q->avg_window_bytes += len;
1855 }
1856
1857 if (q->overflow_timeout)
1858 cake_heapify_up(q, b->overflow_idx[idx]);
1859
1860 /* incoming bandwidth capacity estimate */
1861 if (q->rate_flags & CAKE_FLAG_AUTORATE_INGRESS) {
1862 u64 packet_interval = \
1863 ktime_to_ns(ktime_sub(now, q->last_packet_time));
1864
1865 if (packet_interval > NSEC_PER_SEC)
1866 packet_interval = NSEC_PER_SEC;
1867
1868 /* filter out short-term bursts, eg. wifi aggregation */
1869 q->avg_packet_interval = \
1870 cake_ewma(q->avg_packet_interval,
1871 packet_interval,
1872 (packet_interval > q->avg_packet_interval ?
1873 2 : 8));
1874
1875 q->last_packet_time = now;
1876
1877 if (packet_interval > q->avg_packet_interval) {
1878 u64 window_interval = \
1879 ktime_to_ns(ktime_sub(now,
1880 q->avg_window_begin));
1881 u64 b = q->avg_window_bytes * (u64)NSEC_PER_SEC;
1882
1883 b = div64_u64(b, window_interval);
1884 q->avg_peak_bandwidth =
1885 cake_ewma(q->avg_peak_bandwidth, b,
1886 b > q->avg_peak_bandwidth ? 2 : 8);
1887 q->avg_window_bytes = 0;
1888 q->avg_window_begin = now;
1889
1890 if (ktime_after(now,
1891 ktime_add_ms(q->last_reconfig_time,
1892 250))) {
1893 q->rate_bps = (q->avg_peak_bandwidth * 15) >> 4;
1894 cake_reconfigure(sch);
1895 }
1896 }
1897 } else {
1898 q->avg_window_bytes = 0;
1899 q->last_packet_time = now;
1900 }
1901
1902 /* flowchain */
1903 if (!flow->set || flow->set == CAKE_SET_DECAYING) {
1904 if (!flow->set) {
1905 list_add_tail(&flow->flowchain, &b->new_flows);
1906 } else {
1907 b->decaying_flow_count--;
1908 list_move_tail(&flow->flowchain, &b->new_flows);
1909 }
1910 flow->set = CAKE_SET_SPARSE;
1911 b->sparse_flow_count++;
1912
1913 flow->deficit = cake_get_flow_quantum(b, flow, q->flow_mode);
1914 } else if (flow->set == CAKE_SET_SPARSE_WAIT) {
1915 /* this flow was empty, accounted as a sparse flow, but actually
1916 * in the bulk rotation.
1917 */
1918 flow->set = CAKE_SET_BULK;
1919 b->sparse_flow_count--;
1920 b->bulk_flow_count++;
1921
1922 cake_inc_srchost_bulk_flow_count(b, flow, q->flow_mode);
1923 cake_inc_dsthost_bulk_flow_count(b, flow, q->flow_mode);
1924 }
1925
1926 if (q->buffer_used > q->buffer_max_used)
1927 q->buffer_max_used = q->buffer_used;
1928
1929 if (q->buffer_used > q->buffer_limit) {
1930 u32 dropped = 0;
1931
1932 while (q->buffer_used > q->buffer_limit) {
1933 dropped++;
1934 cake_drop(sch, to_free);
1935 }
1936 b->drop_overlimit += dropped;
1937 }
1938 return NET_XMIT_SUCCESS;
1939 }
1940
cake_dequeue_one(struct Qdisc * sch)1941 static struct sk_buff *cake_dequeue_one(struct Qdisc *sch)
1942 {
1943 struct cake_sched_data *q = qdisc_priv(sch);
1944 struct cake_tin_data *b = &q->tins[q->cur_tin];
1945 struct cake_flow *flow = &b->flows[q->cur_flow];
1946 struct sk_buff *skb = NULL;
1947 u32 len;
1948
1949 if (flow->head) {
1950 skb = dequeue_head(flow);
1951 len = qdisc_pkt_len(skb);
1952 b->backlogs[q->cur_flow] -= len;
1953 b->tin_backlog -= len;
1954 sch->qstats.backlog -= len;
1955 q->buffer_used -= skb->truesize;
1956 sch->q.qlen--;
1957
1958 if (q->overflow_timeout)
1959 cake_heapify(q, b->overflow_idx[q->cur_flow]);
1960 }
1961 return skb;
1962 }
1963
1964 /* Discard leftover packets from a tin no longer in use. */
cake_clear_tin(struct Qdisc * sch,u16 tin)1965 static void cake_clear_tin(struct Qdisc *sch, u16 tin)
1966 {
1967 struct cake_sched_data *q = qdisc_priv(sch);
1968 struct sk_buff *skb;
1969
1970 q->cur_tin = tin;
1971 for (q->cur_flow = 0; q->cur_flow < CAKE_QUEUES; q->cur_flow++)
1972 while (!!(skb = cake_dequeue_one(sch)))
1973 kfree_skb_reason(skb, SKB_DROP_REASON_QUEUE_PURGE);
1974 }
1975
cake_dequeue(struct Qdisc * sch)1976 static struct sk_buff *cake_dequeue(struct Qdisc *sch)
1977 {
1978 struct cake_sched_data *q = qdisc_priv(sch);
1979 struct cake_tin_data *b = &q->tins[q->cur_tin];
1980 enum skb_drop_reason reason;
1981 ktime_t now = ktime_get();
1982 struct cake_flow *flow;
1983 struct list_head *head;
1984 bool first_flow = true;
1985 struct sk_buff *skb;
1986 u64 delay;
1987 u32 len;
1988
1989 begin:
1990 if (!sch->q.qlen)
1991 return NULL;
1992
1993 /* global hard shaper */
1994 if (ktime_after(q->time_next_packet, now) &&
1995 ktime_after(q->failsafe_next_packet, now)) {
1996 u64 next = min(ktime_to_ns(q->time_next_packet),
1997 ktime_to_ns(q->failsafe_next_packet));
1998
1999 sch->qstats.overlimits++;
2000 qdisc_watchdog_schedule_ns(&q->watchdog, next);
2001 return NULL;
2002 }
2003
2004 /* Choose a class to work on. */
2005 if (!q->rate_ns) {
2006 /* In unlimited mode, can't rely on shaper timings, just balance
2007 * with DRR
2008 */
2009 bool wrapped = false, empty = true;
2010
2011 while (b->tin_deficit < 0 ||
2012 !(b->sparse_flow_count + b->bulk_flow_count)) {
2013 if (b->tin_deficit <= 0)
2014 b->tin_deficit += b->tin_quantum;
2015 if (b->sparse_flow_count + b->bulk_flow_count)
2016 empty = false;
2017
2018 q->cur_tin++;
2019 b++;
2020 if (q->cur_tin >= q->tin_cnt) {
2021 q->cur_tin = 0;
2022 b = q->tins;
2023
2024 if (wrapped) {
2025 /* It's possible for q->qlen to be
2026 * nonzero when we actually have no
2027 * packets anywhere.
2028 */
2029 if (empty)
2030 return NULL;
2031 } else {
2032 wrapped = true;
2033 }
2034 }
2035 }
2036 } else {
2037 /* In shaped mode, choose:
2038 * - Highest-priority tin with queue and meeting schedule, or
2039 * - The earliest-scheduled tin with queue.
2040 */
2041 ktime_t best_time = KTIME_MAX;
2042 int tin, best_tin = 0;
2043
2044 for (tin = 0; tin < q->tin_cnt; tin++) {
2045 b = q->tins + tin;
2046 if ((b->sparse_flow_count + b->bulk_flow_count) > 0) {
2047 ktime_t time_to_pkt = \
2048 ktime_sub(b->time_next_packet, now);
2049
2050 if (ktime_to_ns(time_to_pkt) <= 0 ||
2051 ktime_compare(time_to_pkt,
2052 best_time) <= 0) {
2053 best_time = time_to_pkt;
2054 best_tin = tin;
2055 }
2056 }
2057 }
2058
2059 q->cur_tin = best_tin;
2060 b = q->tins + best_tin;
2061
2062 /* No point in going further if no packets to deliver. */
2063 if (unlikely(!(b->sparse_flow_count + b->bulk_flow_count)))
2064 return NULL;
2065 }
2066
2067 retry:
2068 /* service this class */
2069 head = &b->decaying_flows;
2070 if (!first_flow || list_empty(head)) {
2071 head = &b->new_flows;
2072 if (list_empty(head)) {
2073 head = &b->old_flows;
2074 if (unlikely(list_empty(head))) {
2075 head = &b->decaying_flows;
2076 if (unlikely(list_empty(head)))
2077 goto begin;
2078 }
2079 }
2080 }
2081 flow = list_first_entry(head, struct cake_flow, flowchain);
2082 q->cur_flow = flow - b->flows;
2083 first_flow = false;
2084
2085 /* flow isolation (DRR++) */
2086 if (flow->deficit <= 0) {
2087 /* Keep all flows with deficits out of the sparse and decaying
2088 * rotations. No non-empty flow can go into the decaying
2089 * rotation, so they can't get deficits
2090 */
2091 if (flow->set == CAKE_SET_SPARSE) {
2092 if (flow->head) {
2093 b->sparse_flow_count--;
2094 b->bulk_flow_count++;
2095
2096 cake_inc_srchost_bulk_flow_count(b, flow, q->flow_mode);
2097 cake_inc_dsthost_bulk_flow_count(b, flow, q->flow_mode);
2098
2099 flow->set = CAKE_SET_BULK;
2100 } else {
2101 /* we've moved it to the bulk rotation for
2102 * correct deficit accounting but we still want
2103 * to count it as a sparse flow, not a bulk one.
2104 */
2105 flow->set = CAKE_SET_SPARSE_WAIT;
2106 }
2107 }
2108
2109 flow->deficit += cake_get_flow_quantum(b, flow, q->flow_mode);
2110 list_move_tail(&flow->flowchain, &b->old_flows);
2111
2112 goto retry;
2113 }
2114
2115 /* Retrieve a packet via the AQM */
2116 while (1) {
2117 skb = cake_dequeue_one(sch);
2118 if (!skb) {
2119 /* this queue was actually empty */
2120 if (cobalt_queue_empty(&flow->cvars, &b->cparams, now))
2121 b->unresponsive_flow_count--;
2122
2123 if (flow->cvars.p_drop || flow->cvars.count ||
2124 ktime_before(now, flow->cvars.drop_next)) {
2125 /* keep in the flowchain until the state has
2126 * decayed to rest
2127 */
2128 list_move_tail(&flow->flowchain,
2129 &b->decaying_flows);
2130 if (flow->set == CAKE_SET_BULK) {
2131 b->bulk_flow_count--;
2132
2133 cake_dec_srchost_bulk_flow_count(b, flow, q->flow_mode);
2134 cake_dec_dsthost_bulk_flow_count(b, flow, q->flow_mode);
2135
2136 b->decaying_flow_count++;
2137 } else if (flow->set == CAKE_SET_SPARSE ||
2138 flow->set == CAKE_SET_SPARSE_WAIT) {
2139 b->sparse_flow_count--;
2140 b->decaying_flow_count++;
2141 }
2142 flow->set = CAKE_SET_DECAYING;
2143 } else {
2144 /* remove empty queue from the flowchain */
2145 list_del_init(&flow->flowchain);
2146 if (flow->set == CAKE_SET_SPARSE ||
2147 flow->set == CAKE_SET_SPARSE_WAIT)
2148 b->sparse_flow_count--;
2149 else if (flow->set == CAKE_SET_BULK) {
2150 b->bulk_flow_count--;
2151
2152 cake_dec_srchost_bulk_flow_count(b, flow, q->flow_mode);
2153 cake_dec_dsthost_bulk_flow_count(b, flow, q->flow_mode);
2154 } else
2155 b->decaying_flow_count--;
2156
2157 flow->set = CAKE_SET_NONE;
2158 }
2159 goto begin;
2160 }
2161
2162 reason = cobalt_should_drop(&flow->cvars, &b->cparams, now, skb,
2163 (b->bulk_flow_count *
2164 !!(q->rate_flags &
2165 CAKE_FLAG_INGRESS)));
2166 /* Last packet in queue may be marked, shouldn't be dropped */
2167 if (reason == SKB_NOT_DROPPED_YET || !flow->head)
2168 break;
2169
2170 /* drop this packet, get another one */
2171 if (q->rate_flags & CAKE_FLAG_INGRESS) {
2172 len = cake_advance_shaper(q, b, skb,
2173 now, true);
2174 flow->deficit -= len;
2175 b->tin_deficit -= len;
2176 }
2177 flow->dropped++;
2178 b->tin_dropped++;
2179 qdisc_tree_reduce_backlog(sch, 1, qdisc_pkt_len(skb));
2180 qdisc_qstats_drop(sch);
2181 kfree_skb_reason(skb, reason);
2182 if (q->rate_flags & CAKE_FLAG_INGRESS)
2183 goto retry;
2184 }
2185
2186 b->tin_ecn_mark += !!flow->cvars.ecn_marked;
2187 qdisc_bstats_update(sch, skb);
2188
2189 /* collect delay stats */
2190 delay = ktime_to_ns(ktime_sub(now, cobalt_get_enqueue_time(skb)));
2191 b->avge_delay = cake_ewma(b->avge_delay, delay, 8);
2192 b->peak_delay = cake_ewma(b->peak_delay, delay,
2193 delay > b->peak_delay ? 2 : 8);
2194 b->base_delay = cake_ewma(b->base_delay, delay,
2195 delay < b->base_delay ? 2 : 8);
2196
2197 len = cake_advance_shaper(q, b, skb, now, false);
2198 flow->deficit -= len;
2199 b->tin_deficit -= len;
2200
2201 if (ktime_after(q->time_next_packet, now) && sch->q.qlen) {
2202 u64 next = min(ktime_to_ns(q->time_next_packet),
2203 ktime_to_ns(q->failsafe_next_packet));
2204
2205 qdisc_watchdog_schedule_ns(&q->watchdog, next);
2206 } else if (!sch->q.qlen) {
2207 int i;
2208
2209 for (i = 0; i < q->tin_cnt; i++) {
2210 if (q->tins[i].decaying_flow_count) {
2211 ktime_t next = \
2212 ktime_add_ns(now,
2213 q->tins[i].cparams.target);
2214
2215 qdisc_watchdog_schedule_ns(&q->watchdog,
2216 ktime_to_ns(next));
2217 break;
2218 }
2219 }
2220 }
2221
2222 if (q->overflow_timeout)
2223 q->overflow_timeout--;
2224
2225 return skb;
2226 }
2227
cake_reset(struct Qdisc * sch)2228 static void cake_reset(struct Qdisc *sch)
2229 {
2230 struct cake_sched_data *q = qdisc_priv(sch);
2231 u32 c;
2232
2233 if (!q->tins)
2234 return;
2235
2236 for (c = 0; c < CAKE_MAX_TINS; c++)
2237 cake_clear_tin(sch, c);
2238 }
2239
2240 static const struct nla_policy cake_policy[TCA_CAKE_MAX + 1] = {
2241 [TCA_CAKE_BASE_RATE64] = { .type = NLA_U64 },
2242 [TCA_CAKE_DIFFSERV_MODE] = { .type = NLA_U32 },
2243 [TCA_CAKE_ATM] = { .type = NLA_U32 },
2244 [TCA_CAKE_FLOW_MODE] = { .type = NLA_U32 },
2245 [TCA_CAKE_OVERHEAD] = { .type = NLA_S32 },
2246 [TCA_CAKE_RTT] = { .type = NLA_U32 },
2247 [TCA_CAKE_TARGET] = { .type = NLA_U32 },
2248 [TCA_CAKE_AUTORATE] = { .type = NLA_U32 },
2249 [TCA_CAKE_MEMORY] = { .type = NLA_U32 },
2250 [TCA_CAKE_NAT] = { .type = NLA_U32 },
2251 [TCA_CAKE_RAW] = { .type = NLA_U32 },
2252 [TCA_CAKE_WASH] = { .type = NLA_U32 },
2253 [TCA_CAKE_MPU] = { .type = NLA_U32 },
2254 [TCA_CAKE_INGRESS] = { .type = NLA_U32 },
2255 [TCA_CAKE_ACK_FILTER] = { .type = NLA_U32 },
2256 [TCA_CAKE_SPLIT_GSO] = { .type = NLA_U32 },
2257 [TCA_CAKE_FWMARK] = { .type = NLA_U32 },
2258 };
2259
cake_set_rate(struct cake_tin_data * b,u64 rate,u32 mtu,u64 target_ns,u64 rtt_est_ns)2260 static void cake_set_rate(struct cake_tin_data *b, u64 rate, u32 mtu,
2261 u64 target_ns, u64 rtt_est_ns)
2262 {
2263 /* convert byte-rate into time-per-byte
2264 * so it will always unwedge in reasonable time.
2265 */
2266 static const u64 MIN_RATE = 64;
2267 u32 byte_target = mtu;
2268 u64 byte_target_ns;
2269 u8 rate_shft = 0;
2270 u64 rate_ns = 0;
2271
2272 b->flow_quantum = 1514;
2273 if (rate) {
2274 b->flow_quantum = max(min(rate >> 12, 1514ULL), 300ULL);
2275 rate_shft = 34;
2276 rate_ns = ((u64)NSEC_PER_SEC) << rate_shft;
2277 rate_ns = div64_u64(rate_ns, max(MIN_RATE, rate));
2278 while (!!(rate_ns >> 34)) {
2279 rate_ns >>= 1;
2280 rate_shft--;
2281 }
2282 } /* else unlimited, ie. zero delay */
2283
2284 b->tin_rate_bps = rate;
2285 b->tin_rate_ns = rate_ns;
2286 b->tin_rate_shft = rate_shft;
2287
2288 byte_target_ns = (byte_target * rate_ns) >> rate_shft;
2289
2290 b->cparams.target = max((byte_target_ns * 3) / 2, target_ns);
2291 b->cparams.interval = max(rtt_est_ns +
2292 b->cparams.target - target_ns,
2293 b->cparams.target * 2);
2294 b->cparams.mtu_time = byte_target_ns;
2295 b->cparams.p_inc = 1 << 24; /* 1/256 */
2296 b->cparams.p_dec = 1 << 20; /* 1/4096 */
2297 }
2298
cake_config_besteffort(struct Qdisc * sch)2299 static int cake_config_besteffort(struct Qdisc *sch)
2300 {
2301 struct cake_sched_data *q = qdisc_priv(sch);
2302 struct cake_tin_data *b = &q->tins[0];
2303 u32 mtu = psched_mtu(qdisc_dev(sch));
2304 u64 rate = q->rate_bps;
2305
2306 q->tin_cnt = 1;
2307
2308 q->tin_index = besteffort;
2309 q->tin_order = normal_order;
2310
2311 cake_set_rate(b, rate, mtu,
2312 us_to_ns(q->target), us_to_ns(q->interval));
2313 b->tin_quantum = 65535;
2314
2315 return 0;
2316 }
2317
cake_config_precedence(struct Qdisc * sch)2318 static int cake_config_precedence(struct Qdisc *sch)
2319 {
2320 /* convert high-level (user visible) parameters into internal format */
2321 struct cake_sched_data *q = qdisc_priv(sch);
2322 u32 mtu = psched_mtu(qdisc_dev(sch));
2323 u64 rate = q->rate_bps;
2324 u32 quantum = 256;
2325 u32 i;
2326
2327 q->tin_cnt = 8;
2328 q->tin_index = precedence;
2329 q->tin_order = normal_order;
2330
2331 for (i = 0; i < q->tin_cnt; i++) {
2332 struct cake_tin_data *b = &q->tins[i];
2333
2334 cake_set_rate(b, rate, mtu, us_to_ns(q->target),
2335 us_to_ns(q->interval));
2336
2337 b->tin_quantum = max_t(u16, 1U, quantum);
2338
2339 /* calculate next class's parameters */
2340 rate *= 7;
2341 rate >>= 3;
2342
2343 quantum *= 7;
2344 quantum >>= 3;
2345 }
2346
2347 return 0;
2348 }
2349
2350 /* List of known Diffserv codepoints:
2351 *
2352 * Default Forwarding (DF/CS0) - Best Effort
2353 * Max Throughput (TOS2)
2354 * Min Delay (TOS4)
2355 * LLT "La" (TOS5)
2356 * Assured Forwarding 1 (AF1x) - x3
2357 * Assured Forwarding 2 (AF2x) - x3
2358 * Assured Forwarding 3 (AF3x) - x3
2359 * Assured Forwarding 4 (AF4x) - x3
2360 * Precedence Class 1 (CS1)
2361 * Precedence Class 2 (CS2)
2362 * Precedence Class 3 (CS3)
2363 * Precedence Class 4 (CS4)
2364 * Precedence Class 5 (CS5)
2365 * Precedence Class 6 (CS6)
2366 * Precedence Class 7 (CS7)
2367 * Voice Admit (VA)
2368 * Expedited Forwarding (EF)
2369 * Lower Effort (LE)
2370 *
2371 * Total 26 codepoints.
2372 */
2373
2374 /* List of traffic classes in RFC 4594, updated by RFC 8622:
2375 * (roughly descending order of contended priority)
2376 * (roughly ascending order of uncontended throughput)
2377 *
2378 * Network Control (CS6,CS7) - routing traffic
2379 * Telephony (EF,VA) - aka. VoIP streams
2380 * Signalling (CS5) - VoIP setup
2381 * Multimedia Conferencing (AF4x) - aka. video calls
2382 * Realtime Interactive (CS4) - eg. games
2383 * Multimedia Streaming (AF3x) - eg. YouTube, NetFlix, Twitch
2384 * Broadcast Video (CS3)
2385 * Low-Latency Data (AF2x,TOS4) - eg. database
2386 * Ops, Admin, Management (CS2) - eg. ssh
2387 * Standard Service (DF & unrecognised codepoints)
2388 * High-Throughput Data (AF1x,TOS2) - eg. web traffic
2389 * Low-Priority Data (LE,CS1) - eg. BitTorrent
2390 *
2391 * Total 12 traffic classes.
2392 */
2393
cake_config_diffserv8(struct Qdisc * sch)2394 static int cake_config_diffserv8(struct Qdisc *sch)
2395 {
2396 /* Pruned list of traffic classes for typical applications:
2397 *
2398 * Network Control (CS6, CS7)
2399 * Minimum Latency (EF, VA, CS5, CS4)
2400 * Interactive Shell (CS2)
2401 * Low Latency Transactions (AF2x, TOS4)
2402 * Video Streaming (AF4x, AF3x, CS3)
2403 * Bog Standard (DF etc.)
2404 * High Throughput (AF1x, TOS2, CS1)
2405 * Background Traffic (LE)
2406 *
2407 * Total 8 traffic classes.
2408 */
2409
2410 struct cake_sched_data *q = qdisc_priv(sch);
2411 u32 mtu = psched_mtu(qdisc_dev(sch));
2412 u64 rate = q->rate_bps;
2413 u32 quantum = 256;
2414 u32 i;
2415
2416 q->tin_cnt = 8;
2417
2418 /* codepoint to class mapping */
2419 q->tin_index = diffserv8;
2420 q->tin_order = normal_order;
2421
2422 /* class characteristics */
2423 for (i = 0; i < q->tin_cnt; i++) {
2424 struct cake_tin_data *b = &q->tins[i];
2425
2426 cake_set_rate(b, rate, mtu, us_to_ns(q->target),
2427 us_to_ns(q->interval));
2428
2429 b->tin_quantum = max_t(u16, 1U, quantum);
2430
2431 /* calculate next class's parameters */
2432 rate *= 7;
2433 rate >>= 3;
2434
2435 quantum *= 7;
2436 quantum >>= 3;
2437 }
2438
2439 return 0;
2440 }
2441
cake_config_diffserv4(struct Qdisc * sch)2442 static int cake_config_diffserv4(struct Qdisc *sch)
2443 {
2444 /* Further pruned list of traffic classes for four-class system:
2445 *
2446 * Latency Sensitive (CS7, CS6, EF, VA, CS5, CS4)
2447 * Streaming Media (AF4x, AF3x, CS3, AF2x, TOS4, CS2)
2448 * Best Effort (DF, AF1x, TOS2, and those not specified)
2449 * Background Traffic (LE, CS1)
2450 *
2451 * Total 4 traffic classes.
2452 */
2453
2454 struct cake_sched_data *q = qdisc_priv(sch);
2455 u32 mtu = psched_mtu(qdisc_dev(sch));
2456 u64 rate = q->rate_bps;
2457 u32 quantum = 1024;
2458
2459 q->tin_cnt = 4;
2460
2461 /* codepoint to class mapping */
2462 q->tin_index = diffserv4;
2463 q->tin_order = bulk_order;
2464
2465 /* class characteristics */
2466 cake_set_rate(&q->tins[0], rate, mtu,
2467 us_to_ns(q->target), us_to_ns(q->interval));
2468 cake_set_rate(&q->tins[1], rate >> 4, mtu,
2469 us_to_ns(q->target), us_to_ns(q->interval));
2470 cake_set_rate(&q->tins[2], rate >> 1, mtu,
2471 us_to_ns(q->target), us_to_ns(q->interval));
2472 cake_set_rate(&q->tins[3], rate >> 2, mtu,
2473 us_to_ns(q->target), us_to_ns(q->interval));
2474
2475 /* bandwidth-sharing weights */
2476 q->tins[0].tin_quantum = quantum;
2477 q->tins[1].tin_quantum = quantum >> 4;
2478 q->tins[2].tin_quantum = quantum >> 1;
2479 q->tins[3].tin_quantum = quantum >> 2;
2480
2481 return 0;
2482 }
2483
cake_config_diffserv3(struct Qdisc * sch)2484 static int cake_config_diffserv3(struct Qdisc *sch)
2485 {
2486 /* Simplified Diffserv structure with 3 tins.
2487 * Latency Sensitive (CS7, CS6, EF, VA, TOS4)
2488 * Best Effort
2489 * Low Priority (LE, CS1)
2490 */
2491 struct cake_sched_data *q = qdisc_priv(sch);
2492 u32 mtu = psched_mtu(qdisc_dev(sch));
2493 u64 rate = q->rate_bps;
2494 u32 quantum = 1024;
2495
2496 q->tin_cnt = 3;
2497
2498 /* codepoint to class mapping */
2499 q->tin_index = diffserv3;
2500 q->tin_order = bulk_order;
2501
2502 /* class characteristics */
2503 cake_set_rate(&q->tins[0], rate, mtu,
2504 us_to_ns(q->target), us_to_ns(q->interval));
2505 cake_set_rate(&q->tins[1], rate >> 4, mtu,
2506 us_to_ns(q->target), us_to_ns(q->interval));
2507 cake_set_rate(&q->tins[2], rate >> 2, mtu,
2508 us_to_ns(q->target), us_to_ns(q->interval));
2509
2510 /* bandwidth-sharing weights */
2511 q->tins[0].tin_quantum = quantum;
2512 q->tins[1].tin_quantum = quantum >> 4;
2513 q->tins[2].tin_quantum = quantum >> 2;
2514
2515 return 0;
2516 }
2517
cake_reconfigure(struct Qdisc * sch)2518 static void cake_reconfigure(struct Qdisc *sch)
2519 {
2520 struct cake_sched_data *q = qdisc_priv(sch);
2521 int c, ft;
2522
2523 switch (q->tin_mode) {
2524 case CAKE_DIFFSERV_BESTEFFORT:
2525 ft = cake_config_besteffort(sch);
2526 break;
2527
2528 case CAKE_DIFFSERV_PRECEDENCE:
2529 ft = cake_config_precedence(sch);
2530 break;
2531
2532 case CAKE_DIFFSERV_DIFFSERV8:
2533 ft = cake_config_diffserv8(sch);
2534 break;
2535
2536 case CAKE_DIFFSERV_DIFFSERV4:
2537 ft = cake_config_diffserv4(sch);
2538 break;
2539
2540 case CAKE_DIFFSERV_DIFFSERV3:
2541 default:
2542 ft = cake_config_diffserv3(sch);
2543 break;
2544 }
2545
2546 for (c = q->tin_cnt; c < CAKE_MAX_TINS; c++) {
2547 cake_clear_tin(sch, c);
2548 q->tins[c].cparams.mtu_time = q->tins[ft].cparams.mtu_time;
2549 }
2550
2551 q->rate_ns = q->tins[ft].tin_rate_ns;
2552 q->rate_shft = q->tins[ft].tin_rate_shft;
2553
2554 if (q->buffer_config_limit) {
2555 q->buffer_limit = q->buffer_config_limit;
2556 } else if (q->rate_bps) {
2557 u64 t = q->rate_bps * q->interval;
2558
2559 do_div(t, USEC_PER_SEC / 4);
2560 q->buffer_limit = max_t(u32, t, 4U << 20);
2561 } else {
2562 q->buffer_limit = ~0;
2563 }
2564
2565 sch->flags &= ~TCQ_F_CAN_BYPASS;
2566
2567 q->buffer_limit = min(q->buffer_limit,
2568 max(sch->limit * psched_mtu(qdisc_dev(sch)),
2569 q->buffer_config_limit));
2570 }
2571
cake_change(struct Qdisc * sch,struct nlattr * opt,struct netlink_ext_ack * extack)2572 static int cake_change(struct Qdisc *sch, struct nlattr *opt,
2573 struct netlink_ext_ack *extack)
2574 {
2575 struct cake_sched_data *q = qdisc_priv(sch);
2576 struct nlattr *tb[TCA_CAKE_MAX + 1];
2577 u16 rate_flags;
2578 u8 flow_mode;
2579 int err;
2580
2581 err = nla_parse_nested_deprecated(tb, TCA_CAKE_MAX, opt, cake_policy,
2582 extack);
2583 if (err < 0)
2584 return err;
2585
2586 flow_mode = q->flow_mode;
2587 if (tb[TCA_CAKE_NAT]) {
2588 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
2589 flow_mode &= ~CAKE_FLOW_NAT_FLAG;
2590 flow_mode |= CAKE_FLOW_NAT_FLAG *
2591 !!nla_get_u32(tb[TCA_CAKE_NAT]);
2592 #else
2593 NL_SET_ERR_MSG_ATTR(extack, tb[TCA_CAKE_NAT],
2594 "No conntrack support in kernel");
2595 return -EOPNOTSUPP;
2596 #endif
2597 }
2598
2599 if (tb[TCA_CAKE_BASE_RATE64])
2600 WRITE_ONCE(q->rate_bps,
2601 nla_get_u64(tb[TCA_CAKE_BASE_RATE64]));
2602
2603 if (tb[TCA_CAKE_DIFFSERV_MODE])
2604 WRITE_ONCE(q->tin_mode,
2605 nla_get_u32(tb[TCA_CAKE_DIFFSERV_MODE]));
2606
2607 rate_flags = q->rate_flags;
2608 if (tb[TCA_CAKE_WASH]) {
2609 if (!!nla_get_u32(tb[TCA_CAKE_WASH]))
2610 rate_flags |= CAKE_FLAG_WASH;
2611 else
2612 rate_flags &= ~CAKE_FLAG_WASH;
2613 }
2614
2615 if (tb[TCA_CAKE_FLOW_MODE])
2616 flow_mode = ((flow_mode & CAKE_FLOW_NAT_FLAG) |
2617 (nla_get_u32(tb[TCA_CAKE_FLOW_MODE]) &
2618 CAKE_FLOW_MASK));
2619
2620 if (tb[TCA_CAKE_ATM])
2621 WRITE_ONCE(q->atm_mode,
2622 nla_get_u32(tb[TCA_CAKE_ATM]));
2623
2624 if (tb[TCA_CAKE_OVERHEAD]) {
2625 WRITE_ONCE(q->rate_overhead,
2626 nla_get_s32(tb[TCA_CAKE_OVERHEAD]));
2627 rate_flags |= CAKE_FLAG_OVERHEAD;
2628
2629 q->max_netlen = 0;
2630 q->max_adjlen = 0;
2631 q->min_netlen = ~0;
2632 q->min_adjlen = ~0;
2633 }
2634
2635 if (tb[TCA_CAKE_RAW]) {
2636 rate_flags &= ~CAKE_FLAG_OVERHEAD;
2637
2638 q->max_netlen = 0;
2639 q->max_adjlen = 0;
2640 q->min_netlen = ~0;
2641 q->min_adjlen = ~0;
2642 }
2643
2644 if (tb[TCA_CAKE_MPU])
2645 WRITE_ONCE(q->rate_mpu,
2646 nla_get_u32(tb[TCA_CAKE_MPU]));
2647
2648 if (tb[TCA_CAKE_RTT]) {
2649 u32 interval = nla_get_u32(tb[TCA_CAKE_RTT]);
2650
2651 WRITE_ONCE(q->interval, max(interval, 1U));
2652 }
2653
2654 if (tb[TCA_CAKE_TARGET]) {
2655 u32 target = nla_get_u32(tb[TCA_CAKE_TARGET]);
2656
2657 WRITE_ONCE(q->target, max(target, 1U));
2658 }
2659
2660 if (tb[TCA_CAKE_AUTORATE]) {
2661 if (!!nla_get_u32(tb[TCA_CAKE_AUTORATE]))
2662 rate_flags |= CAKE_FLAG_AUTORATE_INGRESS;
2663 else
2664 rate_flags &= ~CAKE_FLAG_AUTORATE_INGRESS;
2665 }
2666
2667 if (tb[TCA_CAKE_INGRESS]) {
2668 if (!!nla_get_u32(tb[TCA_CAKE_INGRESS]))
2669 rate_flags |= CAKE_FLAG_INGRESS;
2670 else
2671 rate_flags &= ~CAKE_FLAG_INGRESS;
2672 }
2673
2674 if (tb[TCA_CAKE_ACK_FILTER])
2675 WRITE_ONCE(q->ack_filter,
2676 nla_get_u32(tb[TCA_CAKE_ACK_FILTER]));
2677
2678 if (tb[TCA_CAKE_MEMORY])
2679 WRITE_ONCE(q->buffer_config_limit,
2680 nla_get_u32(tb[TCA_CAKE_MEMORY]));
2681
2682 if (tb[TCA_CAKE_SPLIT_GSO]) {
2683 if (!!nla_get_u32(tb[TCA_CAKE_SPLIT_GSO]))
2684 rate_flags |= CAKE_FLAG_SPLIT_GSO;
2685 else
2686 rate_flags &= ~CAKE_FLAG_SPLIT_GSO;
2687 }
2688
2689 if (tb[TCA_CAKE_FWMARK]) {
2690 WRITE_ONCE(q->fwmark_mask, nla_get_u32(tb[TCA_CAKE_FWMARK]));
2691 WRITE_ONCE(q->fwmark_shft,
2692 q->fwmark_mask ? __ffs(q->fwmark_mask) : 0);
2693 }
2694
2695 WRITE_ONCE(q->rate_flags, rate_flags);
2696 WRITE_ONCE(q->flow_mode, flow_mode);
2697 if (q->tins) {
2698 sch_tree_lock(sch);
2699 cake_reconfigure(sch);
2700 sch_tree_unlock(sch);
2701 }
2702
2703 return 0;
2704 }
2705
cake_destroy(struct Qdisc * sch)2706 static void cake_destroy(struct Qdisc *sch)
2707 {
2708 struct cake_sched_data *q = qdisc_priv(sch);
2709
2710 qdisc_watchdog_cancel(&q->watchdog);
2711 tcf_block_put(q->block);
2712 kvfree(q->tins);
2713 }
2714
cake_init(struct Qdisc * sch,struct nlattr * opt,struct netlink_ext_ack * extack)2715 static int cake_init(struct Qdisc *sch, struct nlattr *opt,
2716 struct netlink_ext_ack *extack)
2717 {
2718 struct cake_sched_data *q = qdisc_priv(sch);
2719 int i, j, err;
2720
2721 sch->limit = 10240;
2722 q->tin_mode = CAKE_DIFFSERV_DIFFSERV3;
2723 q->flow_mode = CAKE_FLOW_TRIPLE;
2724
2725 q->rate_bps = 0; /* unlimited by default */
2726
2727 q->interval = 100000; /* 100ms default */
2728 q->target = 5000; /* 5ms: codel RFC argues
2729 * for 5 to 10% of interval
2730 */
2731 q->rate_flags |= CAKE_FLAG_SPLIT_GSO;
2732 q->cur_tin = 0;
2733 q->cur_flow = 0;
2734
2735 qdisc_watchdog_init(&q->watchdog, sch);
2736
2737 if (opt) {
2738 err = cake_change(sch, opt, extack);
2739
2740 if (err)
2741 return err;
2742 }
2743
2744 err = tcf_block_get(&q->block, &q->filter_list, sch, extack);
2745 if (err)
2746 return err;
2747
2748 quantum_div[0] = ~0;
2749 for (i = 1; i <= CAKE_QUEUES; i++)
2750 quantum_div[i] = 65535 / i;
2751
2752 q->tins = kvcalloc(CAKE_MAX_TINS, sizeof(struct cake_tin_data),
2753 GFP_KERNEL);
2754 if (!q->tins)
2755 return -ENOMEM;
2756
2757 for (i = 0; i < CAKE_MAX_TINS; i++) {
2758 struct cake_tin_data *b = q->tins + i;
2759
2760 INIT_LIST_HEAD(&b->new_flows);
2761 INIT_LIST_HEAD(&b->old_flows);
2762 INIT_LIST_HEAD(&b->decaying_flows);
2763 b->sparse_flow_count = 0;
2764 b->bulk_flow_count = 0;
2765 b->decaying_flow_count = 0;
2766
2767 for (j = 0; j < CAKE_QUEUES; j++) {
2768 struct cake_flow *flow = b->flows + j;
2769 u32 k = j * CAKE_MAX_TINS + i;
2770
2771 INIT_LIST_HEAD(&flow->flowchain);
2772 cobalt_vars_init(&flow->cvars);
2773
2774 q->overflow_heap[k].t = i;
2775 q->overflow_heap[k].b = j;
2776 b->overflow_idx[j] = k;
2777 }
2778 }
2779
2780 cake_reconfigure(sch);
2781 q->avg_peak_bandwidth = q->rate_bps;
2782 q->min_netlen = ~0;
2783 q->min_adjlen = ~0;
2784 return 0;
2785 }
2786
cake_dump(struct Qdisc * sch,struct sk_buff * skb)2787 static int cake_dump(struct Qdisc *sch, struct sk_buff *skb)
2788 {
2789 struct cake_sched_data *q = qdisc_priv(sch);
2790 struct nlattr *opts;
2791 u16 rate_flags;
2792 u8 flow_mode;
2793
2794 opts = nla_nest_start_noflag(skb, TCA_OPTIONS);
2795 if (!opts)
2796 goto nla_put_failure;
2797
2798 if (nla_put_u64_64bit(skb, TCA_CAKE_BASE_RATE64,
2799 READ_ONCE(q->rate_bps), TCA_CAKE_PAD))
2800 goto nla_put_failure;
2801
2802 flow_mode = READ_ONCE(q->flow_mode);
2803 if (nla_put_u32(skb, TCA_CAKE_FLOW_MODE, flow_mode & CAKE_FLOW_MASK))
2804 goto nla_put_failure;
2805
2806 if (nla_put_u32(skb, TCA_CAKE_RTT, READ_ONCE(q->interval)))
2807 goto nla_put_failure;
2808
2809 if (nla_put_u32(skb, TCA_CAKE_TARGET, READ_ONCE(q->target)))
2810 goto nla_put_failure;
2811
2812 if (nla_put_u32(skb, TCA_CAKE_MEMORY,
2813 READ_ONCE(q->buffer_config_limit)))
2814 goto nla_put_failure;
2815
2816 rate_flags = READ_ONCE(q->rate_flags);
2817 if (nla_put_u32(skb, TCA_CAKE_AUTORATE,
2818 !!(rate_flags & CAKE_FLAG_AUTORATE_INGRESS)))
2819 goto nla_put_failure;
2820
2821 if (nla_put_u32(skb, TCA_CAKE_INGRESS,
2822 !!(rate_flags & CAKE_FLAG_INGRESS)))
2823 goto nla_put_failure;
2824
2825 if (nla_put_u32(skb, TCA_CAKE_ACK_FILTER, READ_ONCE(q->ack_filter)))
2826 goto nla_put_failure;
2827
2828 if (nla_put_u32(skb, TCA_CAKE_NAT,
2829 !!(flow_mode & CAKE_FLOW_NAT_FLAG)))
2830 goto nla_put_failure;
2831
2832 if (nla_put_u32(skb, TCA_CAKE_DIFFSERV_MODE, READ_ONCE(q->tin_mode)))
2833 goto nla_put_failure;
2834
2835 if (nla_put_u32(skb, TCA_CAKE_WASH,
2836 !!(rate_flags & CAKE_FLAG_WASH)))
2837 goto nla_put_failure;
2838
2839 if (nla_put_u32(skb, TCA_CAKE_OVERHEAD, READ_ONCE(q->rate_overhead)))
2840 goto nla_put_failure;
2841
2842 if (!(rate_flags & CAKE_FLAG_OVERHEAD))
2843 if (nla_put_u32(skb, TCA_CAKE_RAW, 0))
2844 goto nla_put_failure;
2845
2846 if (nla_put_u32(skb, TCA_CAKE_ATM, READ_ONCE(q->atm_mode)))
2847 goto nla_put_failure;
2848
2849 if (nla_put_u32(skb, TCA_CAKE_MPU, READ_ONCE(q->rate_mpu)))
2850 goto nla_put_failure;
2851
2852 if (nla_put_u32(skb, TCA_CAKE_SPLIT_GSO,
2853 !!(rate_flags & CAKE_FLAG_SPLIT_GSO)))
2854 goto nla_put_failure;
2855
2856 if (nla_put_u32(skb, TCA_CAKE_FWMARK, READ_ONCE(q->fwmark_mask)))
2857 goto nla_put_failure;
2858
2859 return nla_nest_end(skb, opts);
2860
2861 nla_put_failure:
2862 return -1;
2863 }
2864
cake_dump_stats(struct Qdisc * sch,struct gnet_dump * d)2865 static int cake_dump_stats(struct Qdisc *sch, struct gnet_dump *d)
2866 {
2867 struct nlattr *stats = nla_nest_start_noflag(d->skb, TCA_STATS_APP);
2868 struct cake_sched_data *q = qdisc_priv(sch);
2869 struct nlattr *tstats, *ts;
2870 int i;
2871
2872 if (!stats)
2873 return -1;
2874
2875 #define PUT_STAT_U32(attr, data) do { \
2876 if (nla_put_u32(d->skb, TCA_CAKE_STATS_ ## attr, data)) \
2877 goto nla_put_failure; \
2878 } while (0)
2879 #define PUT_STAT_U64(attr, data) do { \
2880 if (nla_put_u64_64bit(d->skb, TCA_CAKE_STATS_ ## attr, \
2881 data, TCA_CAKE_STATS_PAD)) \
2882 goto nla_put_failure; \
2883 } while (0)
2884
2885 PUT_STAT_U64(CAPACITY_ESTIMATE64, q->avg_peak_bandwidth);
2886 PUT_STAT_U32(MEMORY_LIMIT, q->buffer_limit);
2887 PUT_STAT_U32(MEMORY_USED, q->buffer_max_used);
2888 PUT_STAT_U32(AVG_NETOFF, ((q->avg_netoff + 0x8000) >> 16));
2889 PUT_STAT_U32(MAX_NETLEN, q->max_netlen);
2890 PUT_STAT_U32(MAX_ADJLEN, q->max_adjlen);
2891 PUT_STAT_U32(MIN_NETLEN, q->min_netlen);
2892 PUT_STAT_U32(MIN_ADJLEN, q->min_adjlen);
2893
2894 #undef PUT_STAT_U32
2895 #undef PUT_STAT_U64
2896
2897 tstats = nla_nest_start_noflag(d->skb, TCA_CAKE_STATS_TIN_STATS);
2898 if (!tstats)
2899 goto nla_put_failure;
2900
2901 #define PUT_TSTAT_U32(attr, data) do { \
2902 if (nla_put_u32(d->skb, TCA_CAKE_TIN_STATS_ ## attr, data)) \
2903 goto nla_put_failure; \
2904 } while (0)
2905 #define PUT_TSTAT_U64(attr, data) do { \
2906 if (nla_put_u64_64bit(d->skb, TCA_CAKE_TIN_STATS_ ## attr, \
2907 data, TCA_CAKE_TIN_STATS_PAD)) \
2908 goto nla_put_failure; \
2909 } while (0)
2910
2911 for (i = 0; i < q->tin_cnt; i++) {
2912 struct cake_tin_data *b = &q->tins[q->tin_order[i]];
2913
2914 ts = nla_nest_start_noflag(d->skb, i + 1);
2915 if (!ts)
2916 goto nla_put_failure;
2917
2918 PUT_TSTAT_U64(THRESHOLD_RATE64, b->tin_rate_bps);
2919 PUT_TSTAT_U64(SENT_BYTES64, b->bytes);
2920 PUT_TSTAT_U32(BACKLOG_BYTES, b->tin_backlog);
2921
2922 PUT_TSTAT_U32(TARGET_US,
2923 ktime_to_us(ns_to_ktime(b->cparams.target)));
2924 PUT_TSTAT_U32(INTERVAL_US,
2925 ktime_to_us(ns_to_ktime(b->cparams.interval)));
2926
2927 PUT_TSTAT_U32(SENT_PACKETS, b->packets);
2928 PUT_TSTAT_U32(DROPPED_PACKETS, b->tin_dropped);
2929 PUT_TSTAT_U32(ECN_MARKED_PACKETS, b->tin_ecn_mark);
2930 PUT_TSTAT_U32(ACKS_DROPPED_PACKETS, b->ack_drops);
2931
2932 PUT_TSTAT_U32(PEAK_DELAY_US,
2933 ktime_to_us(ns_to_ktime(b->peak_delay)));
2934 PUT_TSTAT_U32(AVG_DELAY_US,
2935 ktime_to_us(ns_to_ktime(b->avge_delay)));
2936 PUT_TSTAT_U32(BASE_DELAY_US,
2937 ktime_to_us(ns_to_ktime(b->base_delay)));
2938
2939 PUT_TSTAT_U32(WAY_INDIRECT_HITS, b->way_hits);
2940 PUT_TSTAT_U32(WAY_MISSES, b->way_misses);
2941 PUT_TSTAT_U32(WAY_COLLISIONS, b->way_collisions);
2942
2943 PUT_TSTAT_U32(SPARSE_FLOWS, b->sparse_flow_count +
2944 b->decaying_flow_count);
2945 PUT_TSTAT_U32(BULK_FLOWS, b->bulk_flow_count);
2946 PUT_TSTAT_U32(UNRESPONSIVE_FLOWS, b->unresponsive_flow_count);
2947 PUT_TSTAT_U32(MAX_SKBLEN, b->max_skblen);
2948
2949 PUT_TSTAT_U32(FLOW_QUANTUM, b->flow_quantum);
2950 nla_nest_end(d->skb, ts);
2951 }
2952
2953 #undef PUT_TSTAT_U32
2954 #undef PUT_TSTAT_U64
2955
2956 nla_nest_end(d->skb, tstats);
2957 return nla_nest_end(d->skb, stats);
2958
2959 nla_put_failure:
2960 nla_nest_cancel(d->skb, stats);
2961 return -1;
2962 }
2963
cake_leaf(struct Qdisc * sch,unsigned long arg)2964 static struct Qdisc *cake_leaf(struct Qdisc *sch, unsigned long arg)
2965 {
2966 return NULL;
2967 }
2968
cake_find(struct Qdisc * sch,u32 classid)2969 static unsigned long cake_find(struct Qdisc *sch, u32 classid)
2970 {
2971 return 0;
2972 }
2973
cake_bind(struct Qdisc * sch,unsigned long parent,u32 classid)2974 static unsigned long cake_bind(struct Qdisc *sch, unsigned long parent,
2975 u32 classid)
2976 {
2977 return 0;
2978 }
2979
cake_unbind(struct Qdisc * q,unsigned long cl)2980 static void cake_unbind(struct Qdisc *q, unsigned long cl)
2981 {
2982 }
2983
cake_tcf_block(struct Qdisc * sch,unsigned long cl,struct netlink_ext_ack * extack)2984 static struct tcf_block *cake_tcf_block(struct Qdisc *sch, unsigned long cl,
2985 struct netlink_ext_ack *extack)
2986 {
2987 struct cake_sched_data *q = qdisc_priv(sch);
2988
2989 if (cl)
2990 return NULL;
2991 return q->block;
2992 }
2993
cake_dump_class(struct Qdisc * sch,unsigned long cl,struct sk_buff * skb,struct tcmsg * tcm)2994 static int cake_dump_class(struct Qdisc *sch, unsigned long cl,
2995 struct sk_buff *skb, struct tcmsg *tcm)
2996 {
2997 tcm->tcm_handle |= TC_H_MIN(cl);
2998 return 0;
2999 }
3000
cake_dump_class_stats(struct Qdisc * sch,unsigned long cl,struct gnet_dump * d)3001 static int cake_dump_class_stats(struct Qdisc *sch, unsigned long cl,
3002 struct gnet_dump *d)
3003 {
3004 struct cake_sched_data *q = qdisc_priv(sch);
3005 const struct cake_flow *flow = NULL;
3006 struct gnet_stats_queue qs = { 0 };
3007 struct nlattr *stats;
3008 u32 idx = cl - 1;
3009
3010 if (idx < CAKE_QUEUES * q->tin_cnt) {
3011 const struct cake_tin_data *b = \
3012 &q->tins[q->tin_order[idx / CAKE_QUEUES]];
3013 const struct sk_buff *skb;
3014
3015 flow = &b->flows[idx % CAKE_QUEUES];
3016
3017 if (flow->head) {
3018 sch_tree_lock(sch);
3019 skb = flow->head;
3020 while (skb) {
3021 qs.qlen++;
3022 skb = skb->next;
3023 }
3024 sch_tree_unlock(sch);
3025 }
3026 qs.backlog = b->backlogs[idx % CAKE_QUEUES];
3027 qs.drops = flow->dropped;
3028 }
3029 if (gnet_stats_copy_queue(d, NULL, &qs, qs.qlen) < 0)
3030 return -1;
3031 if (flow) {
3032 ktime_t now = ktime_get();
3033
3034 stats = nla_nest_start_noflag(d->skb, TCA_STATS_APP);
3035 if (!stats)
3036 return -1;
3037
3038 #define PUT_STAT_U32(attr, data) do { \
3039 if (nla_put_u32(d->skb, TCA_CAKE_STATS_ ## attr, data)) \
3040 goto nla_put_failure; \
3041 } while (0)
3042 #define PUT_STAT_S32(attr, data) do { \
3043 if (nla_put_s32(d->skb, TCA_CAKE_STATS_ ## attr, data)) \
3044 goto nla_put_failure; \
3045 } while (0)
3046
3047 PUT_STAT_S32(DEFICIT, flow->deficit);
3048 PUT_STAT_U32(DROPPING, flow->cvars.dropping);
3049 PUT_STAT_U32(COBALT_COUNT, flow->cvars.count);
3050 PUT_STAT_U32(P_DROP, flow->cvars.p_drop);
3051 if (flow->cvars.p_drop) {
3052 PUT_STAT_S32(BLUE_TIMER_US,
3053 ktime_to_us(
3054 ktime_sub(now,
3055 flow->cvars.blue_timer)));
3056 }
3057 if (flow->cvars.dropping) {
3058 PUT_STAT_S32(DROP_NEXT_US,
3059 ktime_to_us(
3060 ktime_sub(now,
3061 flow->cvars.drop_next)));
3062 }
3063
3064 if (nla_nest_end(d->skb, stats) < 0)
3065 return -1;
3066 }
3067
3068 return 0;
3069
3070 nla_put_failure:
3071 nla_nest_cancel(d->skb, stats);
3072 return -1;
3073 }
3074
cake_walk(struct Qdisc * sch,struct qdisc_walker * arg)3075 static void cake_walk(struct Qdisc *sch, struct qdisc_walker *arg)
3076 {
3077 struct cake_sched_data *q = qdisc_priv(sch);
3078 unsigned int i, j;
3079
3080 if (arg->stop)
3081 return;
3082
3083 for (i = 0; i < q->tin_cnt; i++) {
3084 struct cake_tin_data *b = &q->tins[q->tin_order[i]];
3085
3086 for (j = 0; j < CAKE_QUEUES; j++) {
3087 if (list_empty(&b->flows[j].flowchain)) {
3088 arg->count++;
3089 continue;
3090 }
3091 if (!tc_qdisc_stats_dump(sch, i * CAKE_QUEUES + j + 1,
3092 arg))
3093 break;
3094 }
3095 }
3096 }
3097
3098 static const struct Qdisc_class_ops cake_class_ops = {
3099 .leaf = cake_leaf,
3100 .find = cake_find,
3101 .tcf_block = cake_tcf_block,
3102 .bind_tcf = cake_bind,
3103 .unbind_tcf = cake_unbind,
3104 .dump = cake_dump_class,
3105 .dump_stats = cake_dump_class_stats,
3106 .walk = cake_walk,
3107 };
3108
3109 static struct Qdisc_ops cake_qdisc_ops __read_mostly = {
3110 .cl_ops = &cake_class_ops,
3111 .id = "cake",
3112 .priv_size = sizeof(struct cake_sched_data),
3113 .enqueue = cake_enqueue,
3114 .dequeue = cake_dequeue,
3115 .peek = qdisc_peek_dequeued,
3116 .init = cake_init,
3117 .reset = cake_reset,
3118 .destroy = cake_destroy,
3119 .change = cake_change,
3120 .dump = cake_dump,
3121 .dump_stats = cake_dump_stats,
3122 .owner = THIS_MODULE,
3123 };
3124 MODULE_ALIAS_NET_SCH("cake");
3125
cake_module_init(void)3126 static int __init cake_module_init(void)
3127 {
3128 return register_qdisc(&cake_qdisc_ops);
3129 }
3130
cake_module_exit(void)3131 static void __exit cake_module_exit(void)
3132 {
3133 unregister_qdisc(&cake_qdisc_ops);
3134 }
3135
3136 module_init(cake_module_init)
3137 module_exit(cake_module_exit)
3138 MODULE_AUTHOR("Jonathan Morton");
3139 MODULE_LICENSE("Dual BSD/GPL");
3140 MODULE_DESCRIPTION("The CAKE shaper.");
3141