xref: /linux/drivers/net/ethernet/micrel/ks8851_spi.c (revision 1a9239bb4253f9076b5b4b2a1a4e8d7defd77a95)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* drivers/net/ethernet/micrel/ks8851.c
3  *
4  * Copyright 2009 Simtec Electronics
5  *	http://www.simtec.co.uk/
6  *	Ben Dooks <ben@simtec.co.uk>
7  */
8 
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10 
11 #include <linux/interrupt.h>
12 #include <linux/module.h>
13 #include <linux/kernel.h>
14 #include <linux/netdevice.h>
15 #include <linux/etherdevice.h>
16 #include <linux/ethtool.h>
17 #include <linux/cache.h>
18 #include <linux/crc32.h>
19 #include <linux/mii.h>
20 #include <linux/regulator/consumer.h>
21 
22 #include <linux/spi/spi.h>
23 #include <linux/of_net.h>
24 
25 #include "ks8851.h"
26 
27 static int msg_enable;
28 
29 /**
30  * struct ks8851_net_spi - KS8851 SPI driver private data
31  * @lock: Lock to ensure that the device is not accessed when busy.
32  * @tx_work: Work queue for tx packets
33  * @ks8851: KS8851 driver common private data
34  * @spidev: The spi device we're bound to.
35  * @spi_msg1: pre-setup SPI transfer with one message, @spi_xfer1.
36  * @spi_msg2: pre-setup SPI transfer with two messages, @spi_xfer2.
37  * @spi_xfer1: @spi_msg1 SPI transfer structure
38  * @spi_xfer2: @spi_msg2 SPI transfer structure
39  *
40  * The @lock ensures that the chip is protected when certain operations are
41  * in progress. When the read or write packet transfer is in progress, most
42  * of the chip registers are not ccessible until the transfer is finished and
43  * the DMA has been de-asserted.
44  */
45 struct ks8851_net_spi {
46 	struct ks8851_net	ks8851;
47 	struct mutex		lock;
48 	struct work_struct	tx_work;
49 	struct spi_device	*spidev;
50 	struct spi_message	spi_msg1;
51 	struct spi_message	spi_msg2;
52 	struct spi_transfer	spi_xfer1;
53 	struct spi_transfer	spi_xfer2[2];
54 };
55 
56 #define to_ks8851_spi(ks) container_of((ks), struct ks8851_net_spi, ks8851)
57 
58 /* SPI frame opcodes */
59 #define KS_SPIOP_RD	0x00
60 #define KS_SPIOP_WR	0x40
61 #define KS_SPIOP_RXFIFO	0x80
62 #define KS_SPIOP_TXFIFO	0xC0
63 
64 /* shift for byte-enable data */
65 #define BYTE_EN(_x)	((_x) << 2)
66 
67 /* turn register number and byte-enable mask into data for start of packet */
68 #define MK_OP(_byteen, _reg)	\
69 	(BYTE_EN(_byteen) | (_reg) << (8 + 2) | (_reg) >> 6)
70 
71 /**
72  * ks8851_lock_spi - register access lock
73  * @ks: The chip state
74  * @flags: Spinlock flags
75  *
76  * Claim chip register access lock
77  */
ks8851_lock_spi(struct ks8851_net * ks,unsigned long * flags)78 static void ks8851_lock_spi(struct ks8851_net *ks, unsigned long *flags)
79 {
80 	struct ks8851_net_spi *kss = to_ks8851_spi(ks);
81 
82 	mutex_lock(&kss->lock);
83 }
84 
85 /**
86  * ks8851_unlock_spi - register access unlock
87  * @ks: The chip state
88  * @flags: Spinlock flags
89  *
90  * Release chip register access lock
91  */
ks8851_unlock_spi(struct ks8851_net * ks,unsigned long * flags)92 static void ks8851_unlock_spi(struct ks8851_net *ks, unsigned long *flags)
93 {
94 	struct ks8851_net_spi *kss = to_ks8851_spi(ks);
95 
96 	mutex_unlock(&kss->lock);
97 }
98 
99 /* SPI register read/write calls.
100  *
101  * All these calls issue SPI transactions to access the chip's registers. They
102  * all require that the necessary lock is held to prevent accesses when the
103  * chip is busy transferring packet data (RX/TX FIFO accesses).
104  */
105 
106 /**
107  * ks8851_wrreg16_spi - write 16bit register value to chip via SPI
108  * @ks: The chip state
109  * @reg: The register address
110  * @val: The value to write
111  *
112  * Issue a write to put the value @val into the register specified in @reg.
113  */
ks8851_wrreg16_spi(struct ks8851_net * ks,unsigned int reg,unsigned int val)114 static void ks8851_wrreg16_spi(struct ks8851_net *ks, unsigned int reg,
115 			       unsigned int val)
116 {
117 	struct ks8851_net_spi *kss = to_ks8851_spi(ks);
118 	struct spi_transfer *xfer = &kss->spi_xfer1;
119 	struct spi_message *msg = &kss->spi_msg1;
120 	__le16 txb[2];
121 	int ret;
122 
123 	txb[0] = cpu_to_le16(MK_OP(reg & 2 ? 0xC : 0x03, reg) | KS_SPIOP_WR);
124 	txb[1] = cpu_to_le16(val);
125 
126 	xfer->tx_buf = txb;
127 	xfer->rx_buf = NULL;
128 	xfer->len = 4;
129 
130 	ret = spi_sync(kss->spidev, msg);
131 	if (ret < 0)
132 		netdev_err(ks->netdev, "spi_sync() failed\n");
133 }
134 
135 /**
136  * ks8851_rdreg - issue read register command and return the data
137  * @ks: The device state
138  * @op: The register address and byte enables in message format.
139  * @rxb: The RX buffer to return the result into
140  * @rxl: The length of data expected.
141  *
142  * This is the low level read call that issues the necessary spi message(s)
143  * to read data from the register specified in @op.
144  */
ks8851_rdreg(struct ks8851_net * ks,unsigned int op,u8 * rxb,unsigned int rxl)145 static void ks8851_rdreg(struct ks8851_net *ks, unsigned int op,
146 			 u8 *rxb, unsigned int rxl)
147 {
148 	struct ks8851_net_spi *kss = to_ks8851_spi(ks);
149 	struct spi_transfer *xfer;
150 	struct spi_message *msg;
151 	__le16 *txb = (__le16 *)ks->txd;
152 	u8 *trx = ks->rxd;
153 	int ret;
154 
155 	txb[0] = cpu_to_le16(op | KS_SPIOP_RD);
156 
157 	if (kss->spidev->controller->flags & SPI_CONTROLLER_HALF_DUPLEX) {
158 		msg = &kss->spi_msg2;
159 		xfer = kss->spi_xfer2;
160 
161 		xfer->tx_buf = txb;
162 		xfer->rx_buf = NULL;
163 		xfer->len = 2;
164 
165 		xfer++;
166 		xfer->tx_buf = NULL;
167 		xfer->rx_buf = trx;
168 		xfer->len = rxl;
169 	} else {
170 		msg = &kss->spi_msg1;
171 		xfer = &kss->spi_xfer1;
172 
173 		xfer->tx_buf = txb;
174 		xfer->rx_buf = trx;
175 		xfer->len = rxl + 2;
176 	}
177 
178 	ret = spi_sync(kss->spidev, msg);
179 	if (ret < 0)
180 		netdev_err(ks->netdev, "read: spi_sync() failed\n");
181 	else if (kss->spidev->controller->flags & SPI_CONTROLLER_HALF_DUPLEX)
182 		memcpy(rxb, trx, rxl);
183 	else
184 		memcpy(rxb, trx + 2, rxl);
185 }
186 
187 /**
188  * ks8851_rdreg16_spi - read 16 bit register from device via SPI
189  * @ks: The chip information
190  * @reg: The register address
191  *
192  * Read a 16bit register from the chip, returning the result
193  */
ks8851_rdreg16_spi(struct ks8851_net * ks,unsigned int reg)194 static unsigned int ks8851_rdreg16_spi(struct ks8851_net *ks, unsigned int reg)
195 {
196 	__le16 rx = 0;
197 
198 	ks8851_rdreg(ks, MK_OP(reg & 2 ? 0xC : 0x3, reg), (u8 *)&rx, 2);
199 	return le16_to_cpu(rx);
200 }
201 
202 /**
203  * ks8851_rdfifo_spi - read data from the receive fifo via SPI
204  * @ks: The device state.
205  * @buff: The buffer address
206  * @len: The length of the data to read
207  *
208  * Issue an RXQ FIFO read command and read the @len amount of data from
209  * the FIFO into the buffer specified by @buff.
210  */
ks8851_rdfifo_spi(struct ks8851_net * ks,u8 * buff,unsigned int len)211 static void ks8851_rdfifo_spi(struct ks8851_net *ks, u8 *buff, unsigned int len)
212 {
213 	struct ks8851_net_spi *kss = to_ks8851_spi(ks);
214 	struct spi_transfer *xfer = kss->spi_xfer2;
215 	struct spi_message *msg = &kss->spi_msg2;
216 	u8 txb[1];
217 	int ret;
218 
219 	netif_dbg(ks, rx_status, ks->netdev,
220 		  "%s: %d@%p\n", __func__, len, buff);
221 
222 	/* set the operation we're issuing */
223 	txb[0] = KS_SPIOP_RXFIFO;
224 
225 	xfer->tx_buf = txb;
226 	xfer->rx_buf = NULL;
227 	xfer->len = 1;
228 
229 	xfer++;
230 	xfer->rx_buf = buff;
231 	xfer->tx_buf = NULL;
232 	xfer->len = len;
233 
234 	ret = spi_sync(kss->spidev, msg);
235 	if (ret < 0)
236 		netdev_err(ks->netdev, "%s: spi_sync() failed\n", __func__);
237 }
238 
239 /**
240  * ks8851_wrfifo_spi - write packet to TX FIFO via SPI
241  * @ks: The device state.
242  * @txp: The sk_buff to transmit.
243  * @irq: IRQ on completion of the packet.
244  *
245  * Send the @txp to the chip. This means creating the relevant packet header
246  * specifying the length of the packet and the other information the chip
247  * needs, such as IRQ on completion. Send the header and the packet data to
248  * the device.
249  */
ks8851_wrfifo_spi(struct ks8851_net * ks,struct sk_buff * txp,bool irq)250 static void ks8851_wrfifo_spi(struct ks8851_net *ks, struct sk_buff *txp,
251 			      bool irq)
252 {
253 	struct ks8851_net_spi *kss = to_ks8851_spi(ks);
254 	struct spi_transfer *xfer = kss->spi_xfer2;
255 	struct spi_message *msg = &kss->spi_msg2;
256 	unsigned int fid = 0;
257 	int ret;
258 
259 	netif_dbg(ks, tx_queued, ks->netdev, "%s: skb %p, %d@%p, irq %d\n",
260 		  __func__, txp, txp->len, txp->data, irq);
261 
262 	fid = ks->fid++;
263 	fid &= TXFR_TXFID_MASK;
264 
265 	if (irq)
266 		fid |= TXFR_TXIC;	/* irq on completion */
267 
268 	/* start header at txb[1] to align txw entries */
269 	ks->txh.txb[1] = KS_SPIOP_TXFIFO;
270 	ks->txh.txw[1] = cpu_to_le16(fid);
271 	ks->txh.txw[2] = cpu_to_le16(txp->len);
272 
273 	xfer->tx_buf = &ks->txh.txb[1];
274 	xfer->rx_buf = NULL;
275 	xfer->len = 5;
276 
277 	xfer++;
278 	xfer->tx_buf = txp->data;
279 	xfer->rx_buf = NULL;
280 	xfer->len = ALIGN(txp->len, 4);
281 
282 	ret = spi_sync(kss->spidev, msg);
283 	if (ret < 0)
284 		netdev_err(ks->netdev, "%s: spi_sync() failed\n", __func__);
285 }
286 
287 /**
288  * calc_txlen - calculate size of message to send packet
289  * @len: Length of data
290  *
291  * Returns the size of the TXFIFO message needed to send
292  * this packet.
293  */
calc_txlen(unsigned int len)294 static unsigned int calc_txlen(unsigned int len)
295 {
296 	return ALIGN(len + 4, 4);
297 }
298 
299 /**
300  * ks8851_tx_work - process tx packet(s)
301  * @work: The work strucutre what was scheduled.
302  *
303  * This is called when a number of packets have been scheduled for
304  * transmission and need to be sent to the device.
305  */
ks8851_tx_work(struct work_struct * work)306 static void ks8851_tx_work(struct work_struct *work)
307 {
308 	unsigned int dequeued_len = 0;
309 	struct ks8851_net_spi *kss;
310 	unsigned short tx_space;
311 	struct ks8851_net *ks;
312 	unsigned long flags;
313 	struct sk_buff *txb;
314 	bool last;
315 
316 	kss = container_of(work, struct ks8851_net_spi, tx_work);
317 	ks = &kss->ks8851;
318 	last = skb_queue_empty(&ks->txq);
319 
320 	ks8851_lock_spi(ks, &flags);
321 
322 	while (!last) {
323 		txb = skb_dequeue(&ks->txq);
324 		last = skb_queue_empty(&ks->txq);
325 
326 		if (txb) {
327 			dequeued_len += calc_txlen(txb->len);
328 
329 			ks8851_wrreg16_spi(ks, KS_RXQCR,
330 					   ks->rc_rxqcr | RXQCR_SDA);
331 			ks8851_wrfifo_spi(ks, txb, last);
332 			ks8851_wrreg16_spi(ks, KS_RXQCR, ks->rc_rxqcr);
333 			ks8851_wrreg16_spi(ks, KS_TXQCR, TXQCR_METFE);
334 
335 			ks8851_done_tx(ks, txb);
336 		}
337 	}
338 
339 	tx_space = ks8851_rdreg16_spi(ks, KS_TXMIR);
340 
341 	spin_lock_bh(&ks->statelock);
342 	ks->queued_len -= dequeued_len;
343 	ks->tx_space = tx_space;
344 	spin_unlock_bh(&ks->statelock);
345 
346 	ks8851_unlock_spi(ks, &flags);
347 }
348 
349 /**
350  * ks8851_flush_tx_work_spi - flush outstanding TX work
351  * @ks: The device state
352  */
ks8851_flush_tx_work_spi(struct ks8851_net * ks)353 static void ks8851_flush_tx_work_spi(struct ks8851_net *ks)
354 {
355 	struct ks8851_net_spi *kss = to_ks8851_spi(ks);
356 
357 	flush_work(&kss->tx_work);
358 }
359 
360 /**
361  * ks8851_start_xmit_spi - transmit packet using SPI
362  * @skb: The buffer to transmit
363  * @dev: The device used to transmit the packet.
364  *
365  * Called by the network layer to transmit the @skb. Queue the packet for
366  * the device and schedule the necessary work to transmit the packet when
367  * it is free.
368  *
369  * We do this to firstly avoid sleeping with the network device locked,
370  * and secondly so we can round up more than one packet to transmit which
371  * means we can try and avoid generating too many transmit done interrupts.
372  */
ks8851_start_xmit_spi(struct sk_buff * skb,struct net_device * dev)373 static netdev_tx_t ks8851_start_xmit_spi(struct sk_buff *skb,
374 					 struct net_device *dev)
375 {
376 	unsigned int needed = calc_txlen(skb->len);
377 	struct ks8851_net *ks = netdev_priv(dev);
378 	netdev_tx_t ret = NETDEV_TX_OK;
379 	struct ks8851_net_spi *kss;
380 
381 	kss = to_ks8851_spi(ks);
382 
383 	netif_dbg(ks, tx_queued, ks->netdev,
384 		  "%s: skb %p, %d@%p\n", __func__, skb, skb->len, skb->data);
385 
386 	spin_lock(&ks->statelock);
387 
388 	if (ks->queued_len + needed > ks->tx_space) {
389 		netif_stop_queue(dev);
390 		ret = NETDEV_TX_BUSY;
391 	} else {
392 		ks->queued_len += needed;
393 		skb_queue_tail(&ks->txq, skb);
394 	}
395 
396 	spin_unlock(&ks->statelock);
397 	if (ret == NETDEV_TX_OK)
398 		schedule_work(&kss->tx_work);
399 
400 	return ret;
401 }
402 
ks8851_probe_spi(struct spi_device * spi)403 static int ks8851_probe_spi(struct spi_device *spi)
404 {
405 	struct device *dev = &spi->dev;
406 	struct ks8851_net_spi *kss;
407 	struct net_device *netdev;
408 	struct ks8851_net *ks;
409 
410 	netdev = devm_alloc_etherdev(dev, sizeof(struct ks8851_net_spi));
411 	if (!netdev)
412 		return -ENOMEM;
413 
414 	spi->bits_per_word = 8;
415 
416 	kss = netdev_priv(netdev);
417 	ks = &kss->ks8851;
418 
419 	ks->lock = ks8851_lock_spi;
420 	ks->unlock = ks8851_unlock_spi;
421 	ks->rdreg16 = ks8851_rdreg16_spi;
422 	ks->wrreg16 = ks8851_wrreg16_spi;
423 	ks->rdfifo = ks8851_rdfifo_spi;
424 	ks->wrfifo = ks8851_wrfifo_spi;
425 	ks->start_xmit = ks8851_start_xmit_spi;
426 	ks->flush_tx_work = ks8851_flush_tx_work_spi;
427 
428 #define STD_IRQ (IRQ_LCI |	/* Link Change */	\
429 		 IRQ_TXI |	/* TX done */		\
430 		 IRQ_RXI |	/* RX done */		\
431 		 IRQ_SPIBEI |	/* SPI bus error */	\
432 		 IRQ_TXPSI |	/* TX process stop */	\
433 		 IRQ_RXPSI)	/* RX process stop */
434 	ks->rc_ier = STD_IRQ;
435 
436 	kss->spidev = spi;
437 	mutex_init(&kss->lock);
438 	INIT_WORK(&kss->tx_work, ks8851_tx_work);
439 
440 	/* initialise pre-made spi transfer messages */
441 	spi_message_init(&kss->spi_msg1);
442 	spi_message_add_tail(&kss->spi_xfer1, &kss->spi_msg1);
443 
444 	spi_message_init(&kss->spi_msg2);
445 	spi_message_add_tail(&kss->spi_xfer2[0], &kss->spi_msg2);
446 	spi_message_add_tail(&kss->spi_xfer2[1], &kss->spi_msg2);
447 
448 	netdev->irq = spi->irq;
449 
450 	return ks8851_probe_common(netdev, dev, msg_enable);
451 }
452 
ks8851_remove_spi(struct spi_device * spi)453 static void ks8851_remove_spi(struct spi_device *spi)
454 {
455 	ks8851_remove_common(&spi->dev);
456 }
457 
458 static const struct of_device_id ks8851_match_table[] = {
459 	{ .compatible = "micrel,ks8851" },
460 	{ }
461 };
462 MODULE_DEVICE_TABLE(of, ks8851_match_table);
463 
464 static struct spi_driver ks8851_driver = {
465 	.driver = {
466 		.name = "ks8851",
467 		.of_match_table = ks8851_match_table,
468 		.pm = &ks8851_pm_ops,
469 	},
470 	.probe = ks8851_probe_spi,
471 	.remove = ks8851_remove_spi,
472 };
473 module_spi_driver(ks8851_driver);
474 
475 MODULE_DESCRIPTION("KS8851 Network driver");
476 MODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>");
477 MODULE_LICENSE("GPL");
478 
479 module_param_named(message, msg_enable, int, 0);
480 MODULE_PARM_DESC(message, "Message verbosity level (0=none, 31=all)");
481 MODULE_ALIAS("spi:ks8851");
482