1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * auxtrace.c: AUX area trace support
4 * Copyright (c) 2013-2015, Intel Corporation.
5 */
6
7 #include <inttypes.h>
8 #include <sys/types.h>
9 #include <sys/mman.h>
10 #include <stdbool.h>
11 #include <string.h>
12 #include <limits.h>
13 #include <errno.h>
14
15 #include <linux/kernel.h>
16 #include <linux/perf_event.h>
17 #include <linux/types.h>
18 #include <linux/bitops.h>
19 #include <linux/log2.h>
20 #include <linux/string.h>
21 #include <linux/time64.h>
22
23 #include <sys/param.h>
24 #include <stdlib.h>
25 #include <stdio.h>
26 #include <linux/list.h>
27 #include <linux/zalloc.h>
28
29 #include "config.h"
30 #include "evlist.h"
31 #include "dso.h"
32 #include "map.h"
33 #include "pmu.h"
34 #include "evsel.h"
35 #include "evsel_config.h"
36 #include "symbol.h"
37 #include "util/perf_api_probe.h"
38 #include "util/synthetic-events.h"
39 #include "thread_map.h"
40 #include "asm/bug.h"
41 #include "auxtrace.h"
42
43 #include <linux/hash.h>
44
45 #include "event.h"
46 #include "record.h"
47 #include "session.h"
48 #include "debug.h"
49 #include <subcmd/parse-options.h>
50
51 #include "cs-etm.h"
52 #include "intel-pt.h"
53 #include "intel-bts.h"
54 #include "arm-spe.h"
55 #include "hisi-ptt.h"
56 #include "s390-cpumsf.h"
57 #include "util/mmap.h"
58 #include "powerpc-vpadtl.h"
59
60 #include <linux/ctype.h>
61 #include "symbol/kallsyms.h"
62 #include <internal/lib.h>
63 #include "util/sample.h"
64
65 /*
66 * Make a group from 'leader' to 'last', requiring that the events were not
67 * already grouped to a different leader.
68 */
evlist__regroup(struct evlist * evlist,struct evsel * leader,struct evsel * last)69 static int evlist__regroup(struct evlist *evlist, struct evsel *leader, struct evsel *last)
70 {
71 struct evsel *evsel;
72 bool grp;
73
74 if (!evsel__is_group_leader(leader))
75 return -EINVAL;
76
77 grp = false;
78 evlist__for_each_entry(evlist, evsel) {
79 if (grp) {
80 if (!(evsel__leader(evsel) == leader ||
81 (evsel__leader(evsel) == evsel &&
82 evsel->core.nr_members <= 1)))
83 return -EINVAL;
84 } else if (evsel == leader) {
85 grp = true;
86 }
87 if (evsel == last)
88 break;
89 }
90
91 grp = false;
92 evlist__for_each_entry(evlist, evsel) {
93 if (grp) {
94 if (!evsel__has_leader(evsel, leader)) {
95 evsel__set_leader(evsel, leader);
96 if (leader->core.nr_members < 1)
97 leader->core.nr_members = 1;
98 leader->core.nr_members += 1;
99 }
100 } else if (evsel == leader) {
101 grp = true;
102 }
103 if (evsel == last)
104 break;
105 }
106
107 return 0;
108 }
109
auxtrace__dont_decode(struct perf_session * session)110 static bool auxtrace__dont_decode(struct perf_session *session)
111 {
112 return !session->itrace_synth_opts ||
113 session->itrace_synth_opts->dont_decode;
114 }
115
auxtrace_mmap__mmap(struct auxtrace_mmap * mm,struct auxtrace_mmap_params * mp,void * userpg,int fd)116 int auxtrace_mmap__mmap(struct auxtrace_mmap *mm,
117 struct auxtrace_mmap_params *mp,
118 void *userpg, int fd)
119 {
120 struct perf_event_mmap_page *pc = userpg;
121
122 WARN_ONCE(mm->base, "Uninitialized auxtrace_mmap\n");
123
124 mm->userpg = userpg;
125 mm->mask = mp->mask;
126 mm->len = mp->len;
127 mm->prev = 0;
128 mm->idx = mp->idx;
129 mm->tid = mp->tid;
130 mm->cpu = mp->cpu.cpu;
131
132 if (!mp->len || !mp->mmap_needed) {
133 mm->base = NULL;
134 return 0;
135 }
136
137 pc->aux_offset = mp->offset;
138 pc->aux_size = mp->len;
139
140 mm->base = mmap(NULL, mp->len, mp->prot, MAP_SHARED, fd, mp->offset);
141 if (mm->base == MAP_FAILED) {
142 pr_debug2("failed to mmap AUX area\n");
143 mm->base = NULL;
144 return -1;
145 }
146
147 return 0;
148 }
149
auxtrace_mmap__munmap(struct auxtrace_mmap * mm)150 void auxtrace_mmap__munmap(struct auxtrace_mmap *mm)
151 {
152 if (mm->base) {
153 munmap(mm->base, mm->len);
154 mm->base = NULL;
155 }
156 }
157
auxtrace_mmap_params__init(struct auxtrace_mmap_params * mp,off_t auxtrace_offset,unsigned int auxtrace_pages,bool auxtrace_overwrite)158 void auxtrace_mmap_params__init(struct auxtrace_mmap_params *mp,
159 off_t auxtrace_offset,
160 unsigned int auxtrace_pages,
161 bool auxtrace_overwrite)
162 {
163 if (auxtrace_pages) {
164 mp->offset = auxtrace_offset;
165 mp->len = auxtrace_pages * (size_t)page_size;
166 mp->mask = is_power_of_2(mp->len) ? mp->len - 1 : 0;
167 mp->prot = PROT_READ | (auxtrace_overwrite ? 0 : PROT_WRITE);
168 pr_debug2("AUX area mmap length %zu\n", mp->len);
169 } else {
170 mp->len = 0;
171 }
172 }
173
auxtrace_mmap_params__set_idx(struct auxtrace_mmap_params * mp,struct evlist * evlist,struct evsel * evsel,int idx)174 void auxtrace_mmap_params__set_idx(struct auxtrace_mmap_params *mp,
175 struct evlist *evlist,
176 struct evsel *evsel, int idx)
177 {
178 bool per_cpu = !perf_cpu_map__has_any_cpu(evlist->core.user_requested_cpus);
179
180 mp->mmap_needed = evsel->needs_auxtrace_mmap;
181
182 if (!mp->mmap_needed)
183 return;
184
185 mp->idx = idx;
186
187 if (per_cpu) {
188 mp->cpu = perf_cpu_map__cpu(evlist->core.all_cpus, idx);
189 mp->tid = perf_thread_map__pid(evlist->core.threads, 0);
190 } else {
191 mp->cpu.cpu = -1;
192 mp->tid = perf_thread_map__pid(evlist->core.threads, idx);
193 }
194 }
195
196 #define AUXTRACE_INIT_NR_QUEUES 32
197
auxtrace_alloc_queue_array(unsigned int nr_queues)198 static struct auxtrace_queue *auxtrace_alloc_queue_array(unsigned int nr_queues)
199 {
200 struct auxtrace_queue *queue_array;
201 unsigned int max_nr_queues, i;
202
203 max_nr_queues = UINT_MAX / sizeof(struct auxtrace_queue);
204 if (nr_queues > max_nr_queues)
205 return NULL;
206
207 queue_array = calloc(nr_queues, sizeof(struct auxtrace_queue));
208 if (!queue_array)
209 return NULL;
210
211 for (i = 0; i < nr_queues; i++) {
212 INIT_LIST_HEAD(&queue_array[i].head);
213 queue_array[i].priv = NULL;
214 }
215
216 return queue_array;
217 }
218
auxtrace_queues__init_nr(struct auxtrace_queues * queues,int nr_queues)219 int auxtrace_queues__init_nr(struct auxtrace_queues *queues, int nr_queues)
220 {
221 queues->nr_queues = nr_queues;
222 queues->queue_array = auxtrace_alloc_queue_array(queues->nr_queues);
223 if (!queues->queue_array)
224 return -ENOMEM;
225 return 0;
226 }
227
auxtrace_queues__init(struct auxtrace_queues * queues)228 int auxtrace_queues__init(struct auxtrace_queues *queues)
229 {
230 return auxtrace_queues__init_nr(queues, AUXTRACE_INIT_NR_QUEUES);
231 }
232
auxtrace_queues__grow(struct auxtrace_queues * queues,unsigned int new_nr_queues)233 static int auxtrace_queues__grow(struct auxtrace_queues *queues,
234 unsigned int new_nr_queues)
235 {
236 unsigned int nr_queues = queues->nr_queues;
237 struct auxtrace_queue *queue_array;
238 unsigned int i;
239
240 if (!nr_queues)
241 nr_queues = AUXTRACE_INIT_NR_QUEUES;
242
243 while (nr_queues && nr_queues < new_nr_queues)
244 nr_queues <<= 1;
245
246 if (nr_queues < queues->nr_queues || nr_queues < new_nr_queues)
247 return -EINVAL;
248
249 queue_array = auxtrace_alloc_queue_array(nr_queues);
250 if (!queue_array)
251 return -ENOMEM;
252
253 for (i = 0; i < queues->nr_queues; i++) {
254 list_splice_tail(&queues->queue_array[i].head,
255 &queue_array[i].head);
256 queue_array[i].tid = queues->queue_array[i].tid;
257 queue_array[i].cpu = queues->queue_array[i].cpu;
258 queue_array[i].set = queues->queue_array[i].set;
259 queue_array[i].priv = queues->queue_array[i].priv;
260 }
261
262 queues->nr_queues = nr_queues;
263 queues->queue_array = queue_array;
264
265 return 0;
266 }
267
auxtrace_copy_data(u64 size,struct perf_session * session)268 static void *auxtrace_copy_data(u64 size, struct perf_session *session)
269 {
270 int fd = perf_data__fd(session->data);
271 void *p;
272 ssize_t ret;
273
274 if (size > SSIZE_MAX)
275 return NULL;
276
277 p = malloc(size);
278 if (!p)
279 return NULL;
280
281 ret = readn(fd, p, size);
282 if (ret != (ssize_t)size) {
283 free(p);
284 return NULL;
285 }
286
287 return p;
288 }
289
auxtrace_queues__queue_buffer(struct auxtrace_queues * queues,unsigned int idx,struct auxtrace_buffer * buffer)290 static int auxtrace_queues__queue_buffer(struct auxtrace_queues *queues,
291 unsigned int idx,
292 struct auxtrace_buffer *buffer)
293 {
294 struct auxtrace_queue *queue;
295 int err;
296
297 if (idx >= queues->nr_queues) {
298 err = auxtrace_queues__grow(queues, idx + 1);
299 if (err)
300 return err;
301 }
302
303 queue = &queues->queue_array[idx];
304
305 if (!queue->set) {
306 queue->set = true;
307 queue->tid = buffer->tid;
308 queue->cpu = buffer->cpu.cpu;
309 }
310
311 buffer->buffer_nr = queues->next_buffer_nr++;
312
313 list_add_tail(&buffer->list, &queue->head);
314
315 queues->new_data = true;
316 queues->populated = true;
317
318 return 0;
319 }
320
321 /* Limit buffers to 32MiB on 32-bit */
322 #define BUFFER_LIMIT_FOR_32_BIT (32 * 1024 * 1024)
323
auxtrace_queues__split_buffer(struct auxtrace_queues * queues,unsigned int idx,struct auxtrace_buffer * buffer)324 static int auxtrace_queues__split_buffer(struct auxtrace_queues *queues,
325 unsigned int idx,
326 struct auxtrace_buffer *buffer)
327 {
328 u64 sz = buffer->size;
329 bool consecutive = false;
330 struct auxtrace_buffer *b;
331 int err;
332
333 while (sz > BUFFER_LIMIT_FOR_32_BIT) {
334 b = memdup(buffer, sizeof(struct auxtrace_buffer));
335 if (!b)
336 return -ENOMEM;
337 b->size = BUFFER_LIMIT_FOR_32_BIT;
338 b->consecutive = consecutive;
339 err = auxtrace_queues__queue_buffer(queues, idx, b);
340 if (err) {
341 auxtrace_buffer__free(b);
342 return err;
343 }
344 buffer->data_offset += BUFFER_LIMIT_FOR_32_BIT;
345 sz -= BUFFER_LIMIT_FOR_32_BIT;
346 consecutive = true;
347 }
348
349 buffer->size = sz;
350 buffer->consecutive = consecutive;
351
352 return 0;
353 }
354
filter_cpu(struct perf_session * session,struct perf_cpu cpu)355 static bool filter_cpu(struct perf_session *session, struct perf_cpu cpu)
356 {
357 unsigned long *cpu_bitmap = session->itrace_synth_opts->cpu_bitmap;
358
359 return cpu_bitmap && cpu.cpu != -1 && !test_bit(cpu.cpu, cpu_bitmap);
360 }
361
auxtrace_queues__add_buffer(struct auxtrace_queues * queues,struct perf_session * session,unsigned int idx,struct auxtrace_buffer * buffer,struct auxtrace_buffer ** buffer_ptr)362 static int auxtrace_queues__add_buffer(struct auxtrace_queues *queues,
363 struct perf_session *session,
364 unsigned int idx,
365 struct auxtrace_buffer *buffer,
366 struct auxtrace_buffer **buffer_ptr)
367 {
368 int err = -ENOMEM;
369
370 if (filter_cpu(session, buffer->cpu))
371 return 0;
372
373 buffer = memdup(buffer, sizeof(*buffer));
374 if (!buffer)
375 return -ENOMEM;
376
377 if (session->one_mmap) {
378 buffer->data = buffer->data_offset - session->one_mmap_offset +
379 session->one_mmap_addr;
380 } else if (perf_data__is_pipe(session->data)) {
381 buffer->data = auxtrace_copy_data(buffer->size, session);
382 if (!buffer->data)
383 goto out_free;
384 buffer->data_needs_freeing = true;
385 } else if (BITS_PER_LONG == 32 &&
386 buffer->size > BUFFER_LIMIT_FOR_32_BIT) {
387 err = auxtrace_queues__split_buffer(queues, idx, buffer);
388 if (err)
389 goto out_free;
390 }
391
392 err = auxtrace_queues__queue_buffer(queues, idx, buffer);
393 if (err)
394 goto out_free;
395
396 /* FIXME: Doesn't work for split buffer */
397 if (buffer_ptr)
398 *buffer_ptr = buffer;
399
400 return 0;
401
402 out_free:
403 auxtrace_buffer__free(buffer);
404 return err;
405 }
406
auxtrace_queues__add_event(struct auxtrace_queues * queues,struct perf_session * session,union perf_event * event,off_t data_offset,struct auxtrace_buffer ** buffer_ptr)407 int auxtrace_queues__add_event(struct auxtrace_queues *queues,
408 struct perf_session *session,
409 union perf_event *event, off_t data_offset,
410 struct auxtrace_buffer **buffer_ptr)
411 {
412 struct auxtrace_buffer buffer = {
413 .pid = -1,
414 .tid = event->auxtrace.tid,
415 .cpu = { event->auxtrace.cpu },
416 .data_offset = data_offset,
417 .offset = event->auxtrace.offset,
418 .reference = event->auxtrace.reference,
419 .size = event->auxtrace.size,
420 };
421 unsigned int idx = event->auxtrace.idx;
422
423 return auxtrace_queues__add_buffer(queues, session, idx, &buffer,
424 buffer_ptr);
425 }
426
auxtrace_queues__add_indexed_event(struct auxtrace_queues * queues,struct perf_session * session,off_t file_offset,size_t sz)427 static int auxtrace_queues__add_indexed_event(struct auxtrace_queues *queues,
428 struct perf_session *session,
429 off_t file_offset, size_t sz)
430 {
431 union perf_event *event;
432 int err;
433 char buf[PERF_SAMPLE_MAX_SIZE];
434
435 err = perf_session__peek_event(session, file_offset, buf,
436 PERF_SAMPLE_MAX_SIZE, &event, NULL);
437 if (err)
438 return err;
439
440 if (event->header.type == PERF_RECORD_AUXTRACE) {
441 if (event->header.size < sizeof(struct perf_record_auxtrace) ||
442 event->header.size != sz) {
443 err = -EINVAL;
444 goto out;
445 }
446 file_offset += event->header.size;
447 err = auxtrace_queues__add_event(queues, session, event,
448 file_offset, NULL);
449 }
450 out:
451 return err;
452 }
453
auxtrace_queues__free(struct auxtrace_queues * queues)454 void auxtrace_queues__free(struct auxtrace_queues *queues)
455 {
456 unsigned int i;
457
458 for (i = 0; i < queues->nr_queues; i++) {
459 while (!list_empty(&queues->queue_array[i].head)) {
460 struct auxtrace_buffer *buffer;
461
462 buffer = list_entry(queues->queue_array[i].head.next,
463 struct auxtrace_buffer, list);
464 list_del_init(&buffer->list);
465 auxtrace_buffer__free(buffer);
466 }
467 }
468
469 zfree(&queues->queue_array);
470 queues->nr_queues = 0;
471 }
472
auxtrace_heapify(struct auxtrace_heap_item * heap_array,unsigned int pos,unsigned int queue_nr,u64 ordinal)473 static void auxtrace_heapify(struct auxtrace_heap_item *heap_array,
474 unsigned int pos, unsigned int queue_nr,
475 u64 ordinal)
476 {
477 unsigned int parent;
478
479 while (pos) {
480 parent = (pos - 1) >> 1;
481 if (heap_array[parent].ordinal <= ordinal)
482 break;
483 heap_array[pos] = heap_array[parent];
484 pos = parent;
485 }
486 heap_array[pos].queue_nr = queue_nr;
487 heap_array[pos].ordinal = ordinal;
488 }
489
auxtrace_heap__add(struct auxtrace_heap * heap,unsigned int queue_nr,u64 ordinal)490 int auxtrace_heap__add(struct auxtrace_heap *heap, unsigned int queue_nr,
491 u64 ordinal)
492 {
493 struct auxtrace_heap_item *heap_array;
494
495 if (queue_nr >= heap->heap_sz) {
496 unsigned int heap_sz = AUXTRACE_INIT_NR_QUEUES;
497
498 while (heap_sz <= queue_nr)
499 heap_sz <<= 1;
500 heap_array = realloc(heap->heap_array,
501 heap_sz * sizeof(struct auxtrace_heap_item));
502 if (!heap_array)
503 return -ENOMEM;
504 heap->heap_array = heap_array;
505 heap->heap_sz = heap_sz;
506 }
507
508 auxtrace_heapify(heap->heap_array, heap->heap_cnt++, queue_nr, ordinal);
509
510 return 0;
511 }
512
auxtrace_heap__free(struct auxtrace_heap * heap)513 void auxtrace_heap__free(struct auxtrace_heap *heap)
514 {
515 zfree(&heap->heap_array);
516 heap->heap_cnt = 0;
517 heap->heap_sz = 0;
518 }
519
auxtrace_heap__pop(struct auxtrace_heap * heap)520 void auxtrace_heap__pop(struct auxtrace_heap *heap)
521 {
522 unsigned int pos, last, heap_cnt = heap->heap_cnt;
523 struct auxtrace_heap_item *heap_array;
524
525 if (!heap_cnt)
526 return;
527
528 heap->heap_cnt -= 1;
529
530 heap_array = heap->heap_array;
531
532 pos = 0;
533 while (1) {
534 unsigned int left, right;
535
536 left = (pos << 1) + 1;
537 if (left >= heap_cnt)
538 break;
539 right = left + 1;
540 if (right >= heap_cnt) {
541 heap_array[pos] = heap_array[left];
542 return;
543 }
544 if (heap_array[left].ordinal < heap_array[right].ordinal) {
545 heap_array[pos] = heap_array[left];
546 pos = left;
547 } else {
548 heap_array[pos] = heap_array[right];
549 pos = right;
550 }
551 }
552
553 last = heap_cnt - 1;
554 auxtrace_heapify(heap_array, pos, heap_array[last].queue_nr,
555 heap_array[last].ordinal);
556 }
557
auxtrace_record__info_priv_size(struct auxtrace_record * itr,struct evlist * evlist)558 size_t auxtrace_record__info_priv_size(struct auxtrace_record *itr,
559 struct evlist *evlist)
560 {
561 if (itr)
562 return itr->info_priv_size(itr, evlist);
563 return 0;
564 }
565
auxtrace_not_supported(void)566 static int auxtrace_not_supported(void)
567 {
568 pr_err("AUX area tracing is not supported on this architecture\n");
569 return -EINVAL;
570 }
571
auxtrace_record__info_fill(struct auxtrace_record * itr,struct perf_session * session,struct perf_record_auxtrace_info * auxtrace_info,size_t priv_size)572 int auxtrace_record__info_fill(struct auxtrace_record *itr,
573 struct perf_session *session,
574 struct perf_record_auxtrace_info *auxtrace_info,
575 size_t priv_size)
576 {
577 if (itr)
578 return itr->info_fill(itr, session, auxtrace_info, priv_size);
579 return auxtrace_not_supported();
580 }
581
auxtrace_record__free(struct auxtrace_record * itr)582 void auxtrace_record__free(struct auxtrace_record *itr)
583 {
584 if (itr)
585 itr->free(itr);
586 }
587
auxtrace_record__snapshot_start(struct auxtrace_record * itr)588 int auxtrace_record__snapshot_start(struct auxtrace_record *itr)
589 {
590 if (itr && itr->snapshot_start)
591 return itr->snapshot_start(itr);
592 return 0;
593 }
594
auxtrace_record__snapshot_finish(struct auxtrace_record * itr,bool on_exit)595 int auxtrace_record__snapshot_finish(struct auxtrace_record *itr, bool on_exit)
596 {
597 if (!on_exit && itr && itr->snapshot_finish)
598 return itr->snapshot_finish(itr);
599 return 0;
600 }
601
auxtrace_record__find_snapshot(struct auxtrace_record * itr,int idx,struct auxtrace_mmap * mm,unsigned char * data,u64 * head,u64 * old)602 int auxtrace_record__find_snapshot(struct auxtrace_record *itr, int idx,
603 struct auxtrace_mmap *mm,
604 unsigned char *data, u64 *head, u64 *old)
605 {
606 if (itr && itr->find_snapshot)
607 return itr->find_snapshot(itr, idx, mm, data, head, old);
608 return 0;
609 }
610
auxtrace_record__options(struct auxtrace_record * itr,struct evlist * evlist,struct record_opts * opts)611 int auxtrace_record__options(struct auxtrace_record *itr,
612 struct evlist *evlist,
613 struct record_opts *opts)
614 {
615 if (itr) {
616 itr->evlist = evlist;
617 return itr->recording_options(itr, evlist, opts);
618 }
619 return 0;
620 }
621
auxtrace_record__reference(struct auxtrace_record * itr)622 u64 auxtrace_record__reference(struct auxtrace_record *itr)
623 {
624 if (itr)
625 return itr->reference(itr);
626 return 0;
627 }
628
auxtrace_parse_snapshot_options(struct auxtrace_record * itr,struct record_opts * opts,const char * str)629 int auxtrace_parse_snapshot_options(struct auxtrace_record *itr,
630 struct record_opts *opts, const char *str)
631 {
632 if (!str)
633 return 0;
634
635 /* PMU-agnostic options */
636 switch (*str) {
637 case 'e':
638 opts->auxtrace_snapshot_on_exit = true;
639 str++;
640 break;
641 default:
642 break;
643 }
644
645 if (itr && itr->parse_snapshot_options)
646 return itr->parse_snapshot_options(itr, opts, str);
647
648 pr_err("No AUX area tracing to snapshot\n");
649 return -EINVAL;
650 }
651
evlist__enable_event_idx(struct evlist * evlist,struct evsel * evsel,int idx)652 static int evlist__enable_event_idx(struct evlist *evlist, struct evsel *evsel, int idx)
653 {
654 bool per_cpu_mmaps = !perf_cpu_map__has_any_cpu(evlist->core.user_requested_cpus);
655
656 if (per_cpu_mmaps) {
657 struct perf_cpu evlist_cpu = perf_cpu_map__cpu(evlist->core.all_cpus, idx);
658 int cpu_map_idx = perf_cpu_map__idx(evsel->core.cpus, evlist_cpu);
659
660 if (cpu_map_idx == -1)
661 return -EINVAL;
662 return perf_evsel__enable_cpu(&evsel->core, cpu_map_idx);
663 }
664
665 return perf_evsel__enable_thread(&evsel->core, idx);
666 }
667
auxtrace_record__read_finish(struct auxtrace_record * itr,int idx)668 int auxtrace_record__read_finish(struct auxtrace_record *itr, int idx)
669 {
670 struct evsel *evsel;
671
672 if (!itr->evlist)
673 return -EINVAL;
674
675 evlist__for_each_entry(itr->evlist, evsel) {
676 if (evsel__is_aux_event(evsel)) {
677 if (evsel->disabled)
678 return 0;
679 return evlist__enable_event_idx(itr->evlist, evsel, idx);
680 }
681 }
682 return -EINVAL;
683 }
684
685 /*
686 * Event record size is 16-bit which results in a maximum size of about 64KiB.
687 * Allow about 4KiB for the rest of the sample record, to give a maximum
688 * AUX area sample size of 60KiB.
689 */
690 #define MAX_AUX_SAMPLE_SIZE (60 * 1024)
691
692 /* Arbitrary default size if no other default provided */
693 #define DEFAULT_AUX_SAMPLE_SIZE (4 * 1024)
694
auxtrace_validate_aux_sample_size(struct evlist * evlist,struct record_opts * opts)695 static int auxtrace_validate_aux_sample_size(struct evlist *evlist,
696 struct record_opts *opts)
697 {
698 struct evsel *evsel;
699 bool has_aux_leader = false;
700 u32 sz;
701
702 evlist__for_each_entry(evlist, evsel) {
703 sz = evsel->core.attr.aux_sample_size;
704 if (evsel__is_group_leader(evsel)) {
705 has_aux_leader = evsel__is_aux_event(evsel);
706 if (sz) {
707 if (has_aux_leader)
708 pr_err("Cannot add AUX area sampling to an AUX area event\n");
709 else
710 pr_err("Cannot add AUX area sampling to a group leader\n");
711 return -EINVAL;
712 }
713 }
714 if (sz > MAX_AUX_SAMPLE_SIZE) {
715 pr_err("AUX area sample size %u too big, max. %d\n",
716 sz, MAX_AUX_SAMPLE_SIZE);
717 return -EINVAL;
718 }
719 if (sz) {
720 if (!has_aux_leader) {
721 pr_err("Cannot add AUX area sampling because group leader is not an AUX area event\n");
722 return -EINVAL;
723 }
724 evsel__set_sample_bit(evsel, AUX);
725 opts->auxtrace_sample_mode = true;
726 } else {
727 evsel__reset_sample_bit(evsel, AUX);
728 }
729 }
730
731 if (!opts->auxtrace_sample_mode) {
732 pr_err("AUX area sampling requires an AUX area event group leader plus other events to which to add samples\n");
733 return -EINVAL;
734 }
735
736 if (!perf_can_aux_sample()) {
737 pr_err("AUX area sampling is not supported by kernel\n");
738 return -EINVAL;
739 }
740
741 return 0;
742 }
743
auxtrace_parse_sample_options(struct auxtrace_record * itr,struct evlist * evlist,struct record_opts * opts,const char * str)744 int auxtrace_parse_sample_options(struct auxtrace_record *itr,
745 struct evlist *evlist,
746 struct record_opts *opts, const char *str)
747 {
748 struct evsel_config_term *term;
749 struct evsel *aux_evsel;
750 bool has_aux_sample_size = false;
751 bool has_aux_leader = false;
752 struct evsel *evsel;
753 char *endptr;
754 unsigned long sz;
755
756 if (!str)
757 goto no_opt;
758
759 if (!itr) {
760 pr_err("No AUX area event to sample\n");
761 return -EINVAL;
762 }
763
764 sz = strtoul(str, &endptr, 0);
765 if (*endptr || sz > UINT_MAX) {
766 pr_err("Bad AUX area sampling option: '%s'\n", str);
767 return -EINVAL;
768 }
769
770 if (!sz)
771 sz = itr->default_aux_sample_size;
772
773 if (!sz)
774 sz = DEFAULT_AUX_SAMPLE_SIZE;
775
776 /* Set aux_sample_size based on --aux-sample option */
777 evlist__for_each_entry(evlist, evsel) {
778 if (evsel__is_group_leader(evsel)) {
779 has_aux_leader = evsel__is_aux_event(evsel);
780 } else if (has_aux_leader) {
781 evsel->core.attr.aux_sample_size = sz;
782 }
783 }
784 no_opt:
785 aux_evsel = NULL;
786 /* Override with aux_sample_size from config term */
787 evlist__for_each_entry(evlist, evsel) {
788 if (evsel__is_aux_event(evsel))
789 aux_evsel = evsel;
790 term = evsel__get_config_term(evsel, AUX_SAMPLE_SIZE);
791 if (term) {
792 has_aux_sample_size = true;
793 evsel->core.attr.aux_sample_size = term->val.aux_sample_size;
794 /* If possible, group with the AUX event */
795 if (aux_evsel && evsel->core.attr.aux_sample_size)
796 evlist__regroup(evlist, aux_evsel, evsel);
797 }
798 }
799
800 if (!str && !has_aux_sample_size)
801 return 0;
802
803 if (!itr) {
804 pr_err("No AUX area event to sample\n");
805 return -EINVAL;
806 }
807
808 return auxtrace_validate_aux_sample_size(evlist, opts);
809 }
810
811 static struct aux_action_opt {
812 const char *str;
813 u32 aux_action;
814 bool aux_event_opt;
815 } aux_action_opts[] = {
816 {"start-paused", BIT(0), true},
817 {"pause", BIT(1), false},
818 {"resume", BIT(2), false},
819 {.str = NULL},
820 };
821
auxtrace_parse_aux_action_str(const char * str)822 static const struct aux_action_opt *auxtrace_parse_aux_action_str(const char *str)
823 {
824 const struct aux_action_opt *opt;
825
826 if (!str)
827 return NULL;
828
829 for (opt = aux_action_opts; opt->str; opt++)
830 if (!strcmp(str, opt->str))
831 return opt;
832
833 return NULL;
834 }
835
auxtrace_parse_aux_action(struct evlist * evlist)836 int auxtrace_parse_aux_action(struct evlist *evlist)
837 {
838 struct evsel_config_term *term;
839 struct evsel *aux_evsel = NULL;
840 struct evsel *evsel;
841
842 evlist__for_each_entry(evlist, evsel) {
843 bool is_aux_event = evsel__is_aux_event(evsel);
844 const struct aux_action_opt *opt;
845
846 if (is_aux_event)
847 aux_evsel = evsel;
848 term = evsel__get_config_term(evsel, AUX_ACTION);
849 if (!term) {
850 if (evsel__get_config_term(evsel, AUX_OUTPUT))
851 goto regroup;
852 continue;
853 }
854 opt = auxtrace_parse_aux_action_str(term->val.str);
855 if (!opt) {
856 pr_err("Bad aux-action '%s'\n", term->val.str);
857 return -EINVAL;
858 }
859 if (opt->aux_event_opt && !is_aux_event) {
860 pr_err("aux-action '%s' can only be used with AUX area event\n",
861 term->val.str);
862 return -EINVAL;
863 }
864 if (!opt->aux_event_opt && is_aux_event) {
865 pr_err("aux-action '%s' cannot be used for AUX area event itself\n",
866 term->val.str);
867 return -EINVAL;
868 }
869 evsel->core.attr.aux_action = opt->aux_action;
870 regroup:
871 /* If possible, group with the AUX event */
872 if (aux_evsel)
873 evlist__regroup(evlist, aux_evsel, evsel);
874 if (!evsel__is_aux_event(evsel__leader(evsel))) {
875 pr_err("Events with aux-action must have AUX area event group leader\n");
876 return -EINVAL;
877 }
878 }
879
880 return 0;
881 }
882
883 struct auxtrace_record *__weak
auxtrace_record__init(struct evlist * evlist __maybe_unused,int * err)884 auxtrace_record__init(struct evlist *evlist __maybe_unused, int *err)
885 {
886 *err = 0;
887 return NULL;
888 }
889
auxtrace_index__alloc(struct list_head * head)890 static int auxtrace_index__alloc(struct list_head *head)
891 {
892 struct auxtrace_index *auxtrace_index;
893
894 auxtrace_index = malloc(sizeof(struct auxtrace_index));
895 if (!auxtrace_index)
896 return -ENOMEM;
897
898 auxtrace_index->nr = 0;
899 INIT_LIST_HEAD(&auxtrace_index->list);
900
901 list_add_tail(&auxtrace_index->list, head);
902
903 return 0;
904 }
905
auxtrace_index__free(struct list_head * head)906 void auxtrace_index__free(struct list_head *head)
907 {
908 struct auxtrace_index *auxtrace_index, *n;
909
910 list_for_each_entry_safe(auxtrace_index, n, head, list) {
911 list_del_init(&auxtrace_index->list);
912 free(auxtrace_index);
913 }
914 }
915
auxtrace_index__last(struct list_head * head)916 static struct auxtrace_index *auxtrace_index__last(struct list_head *head)
917 {
918 struct auxtrace_index *auxtrace_index;
919 int err;
920
921 if (list_empty(head)) {
922 err = auxtrace_index__alloc(head);
923 if (err)
924 return NULL;
925 }
926
927 auxtrace_index = list_entry(head->prev, struct auxtrace_index, list);
928
929 if (auxtrace_index->nr >= PERF_AUXTRACE_INDEX_ENTRY_COUNT) {
930 err = auxtrace_index__alloc(head);
931 if (err)
932 return NULL;
933 auxtrace_index = list_entry(head->prev, struct auxtrace_index,
934 list);
935 }
936
937 return auxtrace_index;
938 }
939
auxtrace_index__auxtrace_event(struct list_head * head,union perf_event * event,off_t file_offset)940 int auxtrace_index__auxtrace_event(struct list_head *head,
941 union perf_event *event, off_t file_offset)
942 {
943 struct auxtrace_index *auxtrace_index;
944 size_t nr;
945
946 auxtrace_index = auxtrace_index__last(head);
947 if (!auxtrace_index)
948 return -ENOMEM;
949
950 nr = auxtrace_index->nr;
951 auxtrace_index->entries[nr].file_offset = file_offset;
952 auxtrace_index->entries[nr].sz = event->header.size;
953 auxtrace_index->nr += 1;
954
955 return 0;
956 }
957
auxtrace_index__do_write(int fd,struct auxtrace_index * auxtrace_index)958 static int auxtrace_index__do_write(int fd,
959 struct auxtrace_index *auxtrace_index)
960 {
961 struct auxtrace_index_entry ent;
962 size_t i;
963
964 for (i = 0; i < auxtrace_index->nr; i++) {
965 ent.file_offset = auxtrace_index->entries[i].file_offset;
966 ent.sz = auxtrace_index->entries[i].sz;
967 if (writen(fd, &ent, sizeof(ent)) != sizeof(ent))
968 return -errno;
969 }
970 return 0;
971 }
972
auxtrace_index__write(int fd,struct list_head * head)973 int auxtrace_index__write(int fd, struct list_head *head)
974 {
975 struct auxtrace_index *auxtrace_index;
976 u64 total = 0;
977 int err;
978
979 list_for_each_entry(auxtrace_index, head, list)
980 total += auxtrace_index->nr;
981
982 if (writen(fd, &total, sizeof(total)) != sizeof(total))
983 return -errno;
984
985 list_for_each_entry(auxtrace_index, head, list) {
986 err = auxtrace_index__do_write(fd, auxtrace_index);
987 if (err)
988 return err;
989 }
990
991 return 0;
992 }
993
auxtrace_index__process_entry(int fd,struct list_head * head,bool needs_swap)994 static int auxtrace_index__process_entry(int fd, struct list_head *head,
995 bool needs_swap)
996 {
997 struct auxtrace_index *auxtrace_index;
998 struct auxtrace_index_entry ent;
999 size_t nr;
1000
1001 if (readn(fd, &ent, sizeof(ent)) != sizeof(ent))
1002 return -1;
1003
1004 auxtrace_index = auxtrace_index__last(head);
1005 if (!auxtrace_index)
1006 return -1;
1007
1008 nr = auxtrace_index->nr;
1009 if (needs_swap) {
1010 auxtrace_index->entries[nr].file_offset =
1011 bswap_64(ent.file_offset);
1012 auxtrace_index->entries[nr].sz = bswap_64(ent.sz);
1013 } else {
1014 auxtrace_index->entries[nr].file_offset = ent.file_offset;
1015 auxtrace_index->entries[nr].sz = ent.sz;
1016 }
1017
1018 auxtrace_index->nr = nr + 1;
1019
1020 return 0;
1021 }
1022
auxtrace_index__process(int fd,u64 size,struct perf_session * session,bool needs_swap)1023 int auxtrace_index__process(int fd, u64 size, struct perf_session *session,
1024 bool needs_swap)
1025 {
1026 struct list_head *head = &session->auxtrace_index;
1027 u64 nr;
1028
1029 if (readn(fd, &nr, sizeof(u64)) != sizeof(u64))
1030 return -1;
1031
1032 if (needs_swap)
1033 nr = bswap_64(nr);
1034
1035 if (sizeof(u64) + nr * sizeof(struct auxtrace_index_entry) > size)
1036 return -1;
1037
1038 while (nr--) {
1039 int err;
1040
1041 err = auxtrace_index__process_entry(fd, head, needs_swap);
1042 if (err)
1043 return -1;
1044 }
1045
1046 return 0;
1047 }
1048
auxtrace_queues__process_index_entry(struct auxtrace_queues * queues,struct perf_session * session,struct auxtrace_index_entry * ent)1049 static int auxtrace_queues__process_index_entry(struct auxtrace_queues *queues,
1050 struct perf_session *session,
1051 struct auxtrace_index_entry *ent)
1052 {
1053 return auxtrace_queues__add_indexed_event(queues, session,
1054 ent->file_offset, ent->sz);
1055 }
1056
auxtrace_queues__process_index(struct auxtrace_queues * queues,struct perf_session * session)1057 int auxtrace_queues__process_index(struct auxtrace_queues *queues,
1058 struct perf_session *session)
1059 {
1060 struct auxtrace_index *auxtrace_index;
1061 struct auxtrace_index_entry *ent;
1062 size_t i;
1063 int err;
1064
1065 if (auxtrace__dont_decode(session))
1066 return 0;
1067
1068 list_for_each_entry(auxtrace_index, &session->auxtrace_index, list) {
1069 for (i = 0; i < auxtrace_index->nr; i++) {
1070 ent = &auxtrace_index->entries[i];
1071 err = auxtrace_queues__process_index_entry(queues,
1072 session,
1073 ent);
1074 if (err)
1075 return err;
1076 }
1077 }
1078 return 0;
1079 }
1080
auxtrace_buffer__next(struct auxtrace_queue * queue,struct auxtrace_buffer * buffer)1081 struct auxtrace_buffer *auxtrace_buffer__next(struct auxtrace_queue *queue,
1082 struct auxtrace_buffer *buffer)
1083 {
1084 if (buffer) {
1085 if (list_is_last(&buffer->list, &queue->head))
1086 return NULL;
1087 return list_entry(buffer->list.next, struct auxtrace_buffer,
1088 list);
1089 } else {
1090 if (list_empty(&queue->head))
1091 return NULL;
1092 return list_entry(queue->head.next, struct auxtrace_buffer,
1093 list);
1094 }
1095 }
1096
auxtrace_queues__sample_queue(struct auxtrace_queues * queues,struct perf_sample * sample,struct perf_session * session)1097 struct auxtrace_queue *auxtrace_queues__sample_queue(struct auxtrace_queues *queues,
1098 struct perf_sample *sample,
1099 struct perf_session *session)
1100 {
1101 struct perf_sample_id *sid;
1102 unsigned int idx;
1103 u64 id;
1104
1105 id = sample->id;
1106 if (!id)
1107 return NULL;
1108
1109 sid = evlist__id2sid(session->evlist, id);
1110 if (!sid)
1111 return NULL;
1112
1113 idx = sid->idx;
1114
1115 if (idx >= queues->nr_queues)
1116 return NULL;
1117
1118 return &queues->queue_array[idx];
1119 }
1120
auxtrace_queues__add_sample(struct auxtrace_queues * queues,struct perf_session * session,struct perf_sample * sample,u64 data_offset,u64 reference)1121 int auxtrace_queues__add_sample(struct auxtrace_queues *queues,
1122 struct perf_session *session,
1123 struct perf_sample *sample, u64 data_offset,
1124 u64 reference)
1125 {
1126 struct auxtrace_buffer buffer = {
1127 .pid = -1,
1128 .data_offset = data_offset,
1129 .reference = reference,
1130 .size = sample->aux_sample.size,
1131 };
1132 struct perf_sample_id *sid;
1133 u64 id = sample->id;
1134 unsigned int idx;
1135
1136 if (!id)
1137 return -EINVAL;
1138
1139 sid = evlist__id2sid(session->evlist, id);
1140 if (!sid)
1141 return -ENOENT;
1142
1143 idx = sid->idx;
1144 buffer.tid = sid->tid;
1145 buffer.cpu = sid->cpu;
1146
1147 return auxtrace_queues__add_buffer(queues, session, idx, &buffer, NULL);
1148 }
1149
1150 struct queue_data {
1151 bool samples;
1152 bool events;
1153 };
1154
auxtrace_queue_data_cb(struct perf_session * session,union perf_event * event,u64 offset,void * data)1155 static int auxtrace_queue_data_cb(struct perf_session *session,
1156 union perf_event *event, u64 offset,
1157 void *data)
1158 {
1159 struct queue_data *qd = data;
1160 struct perf_sample sample;
1161 int err;
1162
1163 if (qd->events && event->header.type == PERF_RECORD_AUXTRACE) {
1164 if (event->header.size < sizeof(struct perf_record_auxtrace))
1165 return -EINVAL;
1166 offset += event->header.size;
1167 return session->auxtrace->queue_data(session, NULL, event,
1168 offset);
1169 }
1170
1171 if (!qd->samples || event->header.type != PERF_RECORD_SAMPLE)
1172 return 0;
1173
1174 perf_sample__init(&sample, /*all=*/false);
1175 err = evlist__parse_sample(session->evlist, event, &sample);
1176 if (err)
1177 goto out;
1178
1179 if (sample.aux_sample.size) {
1180 offset += sample.aux_sample.data - (void *)event;
1181
1182 err = session->auxtrace->queue_data(session, &sample, NULL, offset);
1183 }
1184 out:
1185 perf_sample__exit(&sample);
1186 return err;
1187 }
1188
auxtrace_queue_data(struct perf_session * session,bool samples,bool events)1189 int auxtrace_queue_data(struct perf_session *session, bool samples, bool events)
1190 {
1191 struct queue_data qd = {
1192 .samples = samples,
1193 .events = events,
1194 };
1195
1196 if (auxtrace__dont_decode(session))
1197 return 0;
1198
1199 if (perf_data__is_pipe(session->data))
1200 return 0;
1201
1202 if (!session->auxtrace || !session->auxtrace->queue_data)
1203 return -EINVAL;
1204
1205 return perf_session__peek_events(session, session->header.data_offset,
1206 session->header.data_size,
1207 auxtrace_queue_data_cb, &qd);
1208 }
1209
auxtrace_buffer__get_data_rw(struct auxtrace_buffer * buffer,int fd,bool rw)1210 void *auxtrace_buffer__get_data_rw(struct auxtrace_buffer *buffer, int fd, bool rw)
1211 {
1212 int prot = rw ? PROT_READ | PROT_WRITE : PROT_READ;
1213 size_t adj = buffer->data_offset & (page_size - 1);
1214 size_t size = buffer->size + adj;
1215 off_t file_offset = buffer->data_offset - adj;
1216 void *addr;
1217
1218 if (buffer->data)
1219 return buffer->data;
1220
1221 addr = mmap(NULL, size, prot, MAP_SHARED, fd, file_offset);
1222 if (addr == MAP_FAILED)
1223 return NULL;
1224
1225 buffer->mmap_addr = addr;
1226 buffer->mmap_size = size;
1227
1228 buffer->data = addr + adj;
1229
1230 return buffer->data;
1231 }
1232
auxtrace_buffer__put_data(struct auxtrace_buffer * buffer)1233 void auxtrace_buffer__put_data(struct auxtrace_buffer *buffer)
1234 {
1235 if (!buffer->data || !buffer->mmap_addr)
1236 return;
1237 munmap(buffer->mmap_addr, buffer->mmap_size);
1238 buffer->mmap_addr = NULL;
1239 buffer->mmap_size = 0;
1240 buffer->data = NULL;
1241 buffer->use_data = NULL;
1242 }
1243
auxtrace_buffer__drop_data(struct auxtrace_buffer * buffer)1244 void auxtrace_buffer__drop_data(struct auxtrace_buffer *buffer)
1245 {
1246 auxtrace_buffer__put_data(buffer);
1247 if (buffer->data_needs_freeing) {
1248 buffer->data_needs_freeing = false;
1249 zfree(&buffer->data);
1250 buffer->use_data = NULL;
1251 buffer->size = 0;
1252 }
1253 }
1254
auxtrace_buffer__free(struct auxtrace_buffer * buffer)1255 void auxtrace_buffer__free(struct auxtrace_buffer *buffer)
1256 {
1257 auxtrace_buffer__drop_data(buffer);
1258 free(buffer);
1259 }
1260
auxtrace_synth_guest_error(struct perf_record_auxtrace_error * auxtrace_error,int type,int code,int cpu,pid_t pid,pid_t tid,u64 ip,const char * msg,u64 timestamp,pid_t machine_pid,int vcpu)1261 void auxtrace_synth_guest_error(struct perf_record_auxtrace_error *auxtrace_error, int type,
1262 int code, int cpu, pid_t pid, pid_t tid, u64 ip,
1263 const char *msg, u64 timestamp,
1264 pid_t machine_pid, int vcpu)
1265 {
1266 size_t size;
1267
1268 memset(auxtrace_error, 0, sizeof(struct perf_record_auxtrace_error));
1269
1270 auxtrace_error->header.type = PERF_RECORD_AUXTRACE_ERROR;
1271 auxtrace_error->type = type;
1272 auxtrace_error->code = code;
1273 auxtrace_error->cpu = cpu;
1274 auxtrace_error->pid = pid;
1275 auxtrace_error->tid = tid;
1276 auxtrace_error->fmt = 1;
1277 auxtrace_error->ip = ip;
1278 auxtrace_error->time = timestamp;
1279 strlcpy(auxtrace_error->msg, msg, MAX_AUXTRACE_ERROR_MSG);
1280 if (machine_pid) {
1281 auxtrace_error->fmt = 2;
1282 auxtrace_error->machine_pid = machine_pid;
1283 auxtrace_error->vcpu = vcpu;
1284 size = sizeof(*auxtrace_error);
1285 } else {
1286 size = (void *)auxtrace_error->msg - (void *)auxtrace_error +
1287 strlen(auxtrace_error->msg) + 1;
1288 }
1289 auxtrace_error->header.size = PERF_ALIGN(size, sizeof(u64));
1290 }
1291
auxtrace_synth_error(struct perf_record_auxtrace_error * auxtrace_error,int type,int code,int cpu,pid_t pid,pid_t tid,u64 ip,const char * msg,u64 timestamp)1292 void auxtrace_synth_error(struct perf_record_auxtrace_error *auxtrace_error, int type,
1293 int code, int cpu, pid_t pid, pid_t tid, u64 ip,
1294 const char *msg, u64 timestamp)
1295 {
1296 auxtrace_synth_guest_error(auxtrace_error, type, code, cpu, pid, tid,
1297 ip, msg, timestamp, 0, -1);
1298 }
1299
perf_event__synthesize_auxtrace_info(struct auxtrace_record * itr,const struct perf_tool * tool,struct perf_session * session,perf_event__handler_t process)1300 int perf_event__synthesize_auxtrace_info(struct auxtrace_record *itr,
1301 const struct perf_tool *tool,
1302 struct perf_session *session,
1303 perf_event__handler_t process)
1304 {
1305 union perf_event *ev;
1306 size_t priv_size;
1307 int err;
1308
1309 pr_debug2("Synthesizing auxtrace information\n");
1310 priv_size = auxtrace_record__info_priv_size(itr, session->evlist);
1311 ev = zalloc(sizeof(struct perf_record_auxtrace_info) + priv_size);
1312 if (!ev)
1313 return -ENOMEM;
1314
1315 ev->auxtrace_info.header.type = PERF_RECORD_AUXTRACE_INFO;
1316 ev->auxtrace_info.header.size = sizeof(struct perf_record_auxtrace_info) +
1317 priv_size;
1318 err = auxtrace_record__info_fill(itr, session, &ev->auxtrace_info,
1319 priv_size);
1320 if (err)
1321 goto out_free;
1322
1323 err = process(tool, ev, NULL, NULL);
1324 out_free:
1325 free(ev);
1326 return err;
1327 }
1328
unleader_evsel(struct evlist * evlist,struct evsel * leader)1329 static void unleader_evsel(struct evlist *evlist, struct evsel *leader)
1330 {
1331 struct evsel *new_leader = NULL;
1332 struct evsel *evsel;
1333
1334 /* Find new leader for the group */
1335 evlist__for_each_entry(evlist, evsel) {
1336 if (!evsel__has_leader(evsel, leader) || evsel == leader)
1337 continue;
1338 if (!new_leader)
1339 new_leader = evsel;
1340 evsel__set_leader(evsel, new_leader);
1341 }
1342
1343 /* Update group information */
1344 if (new_leader) {
1345 zfree(&new_leader->group_name);
1346 new_leader->group_name = leader->group_name;
1347 leader->group_name = NULL;
1348
1349 new_leader->core.nr_members = leader->core.nr_members - 1;
1350 leader->core.nr_members = 1;
1351 }
1352 }
1353
unleader_auxtrace(struct perf_session * session)1354 static void unleader_auxtrace(struct perf_session *session)
1355 {
1356 struct evsel *evsel;
1357
1358 evlist__for_each_entry(session->evlist, evsel) {
1359 if (auxtrace__evsel_is_auxtrace(session, evsel) &&
1360 evsel__is_group_leader(evsel)) {
1361 unleader_evsel(session->evlist, evsel);
1362 }
1363 }
1364 }
1365
perf_event__process_auxtrace_info(struct perf_session * session,union perf_event * event)1366 int perf_event__process_auxtrace_info(struct perf_session *session,
1367 union perf_event *event)
1368 {
1369 enum auxtrace_type type = event->auxtrace_info.type;
1370 int err;
1371
1372 if (dump_trace)
1373 fprintf(stdout, " type: %u\n", type);
1374
1375 switch (type) {
1376 case PERF_AUXTRACE_INTEL_PT:
1377 err = intel_pt_process_auxtrace_info(event, session);
1378 break;
1379 case PERF_AUXTRACE_INTEL_BTS:
1380 err = intel_bts_process_auxtrace_info(event, session);
1381 break;
1382 case PERF_AUXTRACE_ARM_SPE:
1383 err = arm_spe_process_auxtrace_info(event, session);
1384 break;
1385 case PERF_AUXTRACE_CS_ETM:
1386 err = cs_etm__process_auxtrace_info(event, session);
1387 break;
1388 case PERF_AUXTRACE_S390_CPUMSF:
1389 err = s390_cpumsf_process_auxtrace_info(event, session);
1390 break;
1391 case PERF_AUXTRACE_HISI_PTT:
1392 err = hisi_ptt_process_auxtrace_info(event, session);
1393 break;
1394 case PERF_AUXTRACE_VPA_DTL:
1395 err = powerpc_vpadtl_process_auxtrace_info(event, session);
1396 break;
1397 case PERF_AUXTRACE_UNKNOWN:
1398 default:
1399 return -EINVAL;
1400 }
1401
1402 if (err)
1403 return err;
1404
1405 unleader_auxtrace(session);
1406
1407 return 0;
1408 }
1409
perf_event__process_auxtrace(struct perf_session * session,union perf_event * event)1410 s64 perf_event__process_auxtrace(struct perf_session *session,
1411 union perf_event *event)
1412 {
1413 s64 err;
1414
1415 if (dump_trace)
1416 fprintf(stdout, " size: %#"PRI_lx64" offset: %#"PRI_lx64" ref: %#"PRI_lx64" idx: %u tid: %d cpu: %d\n",
1417 event->auxtrace.size, event->auxtrace.offset,
1418 event->auxtrace.reference, event->auxtrace.idx,
1419 event->auxtrace.tid, event->auxtrace.cpu);
1420
1421 if (auxtrace__dont_decode(session))
1422 return event->auxtrace.size;
1423
1424 if (!session->auxtrace || event->header.type != PERF_RECORD_AUXTRACE)
1425 return -EINVAL;
1426
1427 err = session->auxtrace->process_auxtrace_event(session, event, session->tool);
1428 if (err < 0)
1429 return err;
1430
1431 return event->auxtrace.size;
1432 }
1433
1434 #define PERF_ITRACE_DEFAULT_PERIOD_TYPE PERF_ITRACE_PERIOD_NANOSECS
1435 #define PERF_ITRACE_DEFAULT_PERIOD 100000
1436 #define PERF_ITRACE_DEFAULT_CALLCHAIN_SZ 16
1437 #define PERF_ITRACE_MAX_CALLCHAIN_SZ 1024
1438 #define PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ 64
1439 #define PERF_ITRACE_MAX_LAST_BRANCH_SZ 1024
1440
itrace_synth_opts__set_default(struct itrace_synth_opts * synth_opts,bool no_sample)1441 void itrace_synth_opts__set_default(struct itrace_synth_opts *synth_opts,
1442 bool no_sample)
1443 {
1444 synth_opts->branches = true;
1445 synth_opts->transactions = true;
1446 synth_opts->ptwrites = true;
1447 synth_opts->pwr_events = true;
1448 synth_opts->other_events = true;
1449 synth_opts->intr_events = true;
1450 synth_opts->errors = true;
1451 synth_opts->flc = true;
1452 synth_opts->llc = true;
1453 synth_opts->tlb = true;
1454 synth_opts->mem = true;
1455 synth_opts->remote_access = true;
1456
1457 if (no_sample) {
1458 synth_opts->period_type = PERF_ITRACE_PERIOD_INSTRUCTIONS;
1459 synth_opts->period = 1;
1460 synth_opts->calls = true;
1461 } else {
1462 synth_opts->instructions = true;
1463 synth_opts->cycles = true;
1464 synth_opts->period_type = PERF_ITRACE_DEFAULT_PERIOD_TYPE;
1465 synth_opts->period = PERF_ITRACE_DEFAULT_PERIOD;
1466 }
1467 synth_opts->callchain_sz = PERF_ITRACE_DEFAULT_CALLCHAIN_SZ;
1468 synth_opts->last_branch_sz = PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ;
1469 synth_opts->initial_skip = 0;
1470 }
1471
get_flag(const char ** ptr,unsigned int * flags)1472 static int get_flag(const char **ptr, unsigned int *flags)
1473 {
1474 while (1) {
1475 char c = **ptr;
1476
1477 if (c >= 'a' && c <= 'z') {
1478 *flags |= 1 << (c - 'a');
1479 ++*ptr;
1480 return 0;
1481 } else if (c == ' ') {
1482 ++*ptr;
1483 continue;
1484 } else {
1485 return -1;
1486 }
1487 }
1488 }
1489
get_flags(const char ** ptr,unsigned int * plus_flags,unsigned int * minus_flags)1490 static int get_flags(const char **ptr, unsigned int *plus_flags, unsigned int *minus_flags)
1491 {
1492 while (1) {
1493 switch (**ptr) {
1494 case '+':
1495 ++*ptr;
1496 if (get_flag(ptr, plus_flags))
1497 return -1;
1498 break;
1499 case '-':
1500 ++*ptr;
1501 if (get_flag(ptr, minus_flags))
1502 return -1;
1503 break;
1504 case ' ':
1505 ++*ptr;
1506 break;
1507 default:
1508 return 0;
1509 }
1510 }
1511 }
1512
1513 #define ITRACE_DFLT_LOG_ON_ERROR_SZ 16384
1514
itrace_log_on_error_size(void)1515 static unsigned int itrace_log_on_error_size(void)
1516 {
1517 unsigned int sz = 0;
1518
1519 perf_config_scan("itrace.debug-log-buffer-size", "%u", &sz);
1520 return sz ?: ITRACE_DFLT_LOG_ON_ERROR_SZ;
1521 }
1522
1523 /*
1524 * Please check tools/perf/Documentation/perf-script.txt for information
1525 * about the options parsed here, which is introduced after this cset,
1526 * when support in 'perf script' for these options is introduced.
1527 */
itrace_do_parse_synth_opts(struct itrace_synth_opts * synth_opts,const char * str,int unset)1528 int itrace_do_parse_synth_opts(struct itrace_synth_opts *synth_opts,
1529 const char *str, int unset)
1530 {
1531 const char *p;
1532 char *endptr;
1533 bool period_type_set = false;
1534 bool period_set = false;
1535 bool iy = false;
1536
1537 synth_opts->set = true;
1538
1539 if (unset) {
1540 synth_opts->dont_decode = true;
1541 return 0;
1542 }
1543
1544 if (!str) {
1545 itrace_synth_opts__set_default(synth_opts,
1546 synth_opts->default_no_sample);
1547 return 0;
1548 }
1549
1550 for (p = str; *p;) {
1551 switch (*p++) {
1552 case 'i':
1553 case 'y':
1554 iy = true;
1555 if (p[-1] == 'y')
1556 synth_opts->cycles = true;
1557 else
1558 synth_opts->instructions = true;
1559 while (*p == ' ' || *p == ',')
1560 p += 1;
1561 if (isdigit(*p)) {
1562 synth_opts->period = strtoull(p, &endptr, 10);
1563 period_set = true;
1564 p = endptr;
1565 while (*p == ' ' || *p == ',')
1566 p += 1;
1567 switch (*p++) {
1568 case 'i':
1569 synth_opts->period_type =
1570 PERF_ITRACE_PERIOD_INSTRUCTIONS;
1571 period_type_set = true;
1572 break;
1573 case 't':
1574 synth_opts->period_type =
1575 PERF_ITRACE_PERIOD_TICKS;
1576 period_type_set = true;
1577 break;
1578 case 'm':
1579 synth_opts->period *= 1000;
1580 /* Fall through */
1581 case 'u':
1582 synth_opts->period *= 1000;
1583 /* Fall through */
1584 case 'n':
1585 if (*p++ != 's')
1586 goto out_err;
1587 synth_opts->period_type =
1588 PERF_ITRACE_PERIOD_NANOSECS;
1589 period_type_set = true;
1590 break;
1591 case '\0':
1592 goto out;
1593 default:
1594 goto out_err;
1595 }
1596 }
1597 break;
1598 case 'b':
1599 synth_opts->branches = true;
1600 break;
1601 case 'x':
1602 synth_opts->transactions = true;
1603 break;
1604 case 'w':
1605 synth_opts->ptwrites = true;
1606 break;
1607 case 'p':
1608 synth_opts->pwr_events = true;
1609 break;
1610 case 'o':
1611 synth_opts->other_events = true;
1612 break;
1613 case 'I':
1614 synth_opts->intr_events = true;
1615 break;
1616 case 'e':
1617 synth_opts->errors = true;
1618 if (get_flags(&p, &synth_opts->error_plus_flags,
1619 &synth_opts->error_minus_flags))
1620 goto out_err;
1621 break;
1622 case 'd':
1623 synth_opts->log = true;
1624 if (get_flags(&p, &synth_opts->log_plus_flags,
1625 &synth_opts->log_minus_flags))
1626 goto out_err;
1627 if (synth_opts->log_plus_flags & AUXTRACE_LOG_FLG_ON_ERROR)
1628 synth_opts->log_on_error_size = itrace_log_on_error_size();
1629 break;
1630 case 'c':
1631 synth_opts->branches = true;
1632 synth_opts->calls = true;
1633 break;
1634 case 'r':
1635 synth_opts->branches = true;
1636 synth_opts->returns = true;
1637 break;
1638 case 'G':
1639 case 'g':
1640 if (p[-1] == 'G')
1641 synth_opts->add_callchain = true;
1642 else
1643 synth_opts->callchain = true;
1644 synth_opts->callchain_sz =
1645 PERF_ITRACE_DEFAULT_CALLCHAIN_SZ;
1646 while (*p == ' ' || *p == ',')
1647 p += 1;
1648 if (isdigit(*p)) {
1649 unsigned int val;
1650
1651 val = strtoul(p, &endptr, 10);
1652 p = endptr;
1653 if (!val || val > PERF_ITRACE_MAX_CALLCHAIN_SZ)
1654 goto out_err;
1655 synth_opts->callchain_sz = val;
1656 }
1657 break;
1658 case 'L':
1659 case 'l':
1660 if (p[-1] == 'L')
1661 synth_opts->add_last_branch = true;
1662 else
1663 synth_opts->last_branch = true;
1664 synth_opts->last_branch_sz =
1665 PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ;
1666 while (*p == ' ' || *p == ',')
1667 p += 1;
1668 if (isdigit(*p)) {
1669 unsigned int val;
1670
1671 val = strtoul(p, &endptr, 10);
1672 p = endptr;
1673 if (!val ||
1674 val > PERF_ITRACE_MAX_LAST_BRANCH_SZ)
1675 goto out_err;
1676 synth_opts->last_branch_sz = val;
1677 }
1678 break;
1679 case 's':
1680 synth_opts->initial_skip = strtoul(p, &endptr, 10);
1681 if (p == endptr)
1682 goto out_err;
1683 p = endptr;
1684 break;
1685 case 'f':
1686 synth_opts->flc = true;
1687 break;
1688 case 'm':
1689 synth_opts->llc = true;
1690 break;
1691 case 't':
1692 synth_opts->tlb = true;
1693 break;
1694 case 'a':
1695 synth_opts->remote_access = true;
1696 break;
1697 case 'M':
1698 synth_opts->mem = true;
1699 break;
1700 case 'q':
1701 synth_opts->quick += 1;
1702 break;
1703 case 'A':
1704 synth_opts->approx_ipc = true;
1705 break;
1706 case 'Z':
1707 synth_opts->timeless_decoding = true;
1708 break;
1709 case 'T':
1710 synth_opts->use_timestamp = true;
1711 break;
1712 case ' ':
1713 case ',':
1714 break;
1715 default:
1716 goto out_err;
1717 }
1718 }
1719 out:
1720 if (iy) {
1721 if (!period_type_set)
1722 synth_opts->period_type =
1723 PERF_ITRACE_DEFAULT_PERIOD_TYPE;
1724 if (!period_set)
1725 synth_opts->period = PERF_ITRACE_DEFAULT_PERIOD;
1726 }
1727
1728 return 0;
1729
1730 out_err:
1731 pr_err("Bad Instruction Tracing options '%s'\n", str);
1732 return -EINVAL;
1733 }
1734
itrace_parse_synth_opts(const struct option * opt,const char * str,int unset)1735 int itrace_parse_synth_opts(const struct option *opt, const char *str, int unset)
1736 {
1737 return itrace_do_parse_synth_opts(opt->value, str, unset);
1738 }
1739
1740 static const char * const auxtrace_error_type_name[] = {
1741 [PERF_AUXTRACE_ERROR_ITRACE] = "instruction trace",
1742 };
1743
auxtrace_error_name(int type)1744 static const char *auxtrace_error_name(int type)
1745 {
1746 const char *error_type_name = NULL;
1747
1748 if (type < PERF_AUXTRACE_ERROR_MAX)
1749 error_type_name = auxtrace_error_type_name[type];
1750 if (!error_type_name)
1751 error_type_name = "unknown AUX";
1752 return error_type_name;
1753 }
1754
perf_event__fprintf_auxtrace_error(union perf_event * event,FILE * fp)1755 size_t perf_event__fprintf_auxtrace_error(union perf_event *event, FILE *fp)
1756 {
1757 struct perf_record_auxtrace_error *e = &event->auxtrace_error;
1758 unsigned long long nsecs = e->time;
1759 const char *msg = e->msg;
1760 int ret;
1761
1762 ret = fprintf(fp, " %s error type %u",
1763 auxtrace_error_name(e->type), e->type);
1764
1765 if (e->fmt && nsecs) {
1766 unsigned long secs = nsecs / NSEC_PER_SEC;
1767
1768 nsecs -= secs * NSEC_PER_SEC;
1769 ret += fprintf(fp, " time %lu.%09llu", secs, nsecs);
1770 } else {
1771 ret += fprintf(fp, " time 0");
1772 }
1773
1774 if (!e->fmt)
1775 msg = (const char *)&e->time;
1776
1777 if (e->fmt >= 2 && e->machine_pid)
1778 ret += fprintf(fp, " machine_pid %d vcpu %d", e->machine_pid, e->vcpu);
1779
1780 ret += fprintf(fp, " cpu %d pid %d tid %d ip %#"PRI_lx64" code %u: %s\n",
1781 e->cpu, e->pid, e->tid, e->ip, e->code, msg);
1782 return ret;
1783 }
1784
perf_session__auxtrace_error_inc(struct perf_session * session,union perf_event * event)1785 void perf_session__auxtrace_error_inc(struct perf_session *session,
1786 union perf_event *event)
1787 {
1788 struct perf_record_auxtrace_error *e = &event->auxtrace_error;
1789
1790 if (e->type < PERF_AUXTRACE_ERROR_MAX)
1791 session->evlist->stats.nr_auxtrace_errors[e->type] += 1;
1792 }
1793
events_stats__auxtrace_error_warn(const struct events_stats * stats)1794 void events_stats__auxtrace_error_warn(const struct events_stats *stats)
1795 {
1796 int i;
1797
1798 for (i = 0; i < PERF_AUXTRACE_ERROR_MAX; i++) {
1799 if (!stats->nr_auxtrace_errors[i])
1800 continue;
1801 ui__warning("%u %s errors\n",
1802 stats->nr_auxtrace_errors[i],
1803 auxtrace_error_name(i));
1804 }
1805 }
1806
perf_event__process_auxtrace_error(struct perf_session * session,union perf_event * event)1807 int perf_event__process_auxtrace_error(struct perf_session *session,
1808 union perf_event *event)
1809 {
1810 if (auxtrace__dont_decode(session))
1811 return 0;
1812
1813 perf_event__fprintf_auxtrace_error(event, stdout);
1814 return 0;
1815 }
1816
1817 /*
1818 * In the compat mode kernel runs in 64-bit and perf tool runs in 32-bit mode,
1819 * 32-bit perf tool cannot access 64-bit value atomically, which might lead to
1820 * the issues caused by the below sequence on multiple CPUs: when perf tool
1821 * accesses either the load operation or the store operation for 64-bit value,
1822 * on some architectures the operation is divided into two instructions, one
1823 * is for accessing the low 32-bit value and another is for the high 32-bit;
1824 * thus these two user operations can give the kernel chances to access the
1825 * 64-bit value, and thus leads to the unexpected load values.
1826 *
1827 * kernel (64-bit) user (32-bit)
1828 *
1829 * if (LOAD ->aux_tail) { --, LOAD ->aux_head_lo
1830 * STORE $aux_data | ,--->
1831 * FLUSH $aux_data | | LOAD ->aux_head_hi
1832 * STORE ->aux_head --|-------` smp_rmb()
1833 * } | LOAD $data
1834 * | smp_mb()
1835 * | STORE ->aux_tail_lo
1836 * `----------->
1837 * STORE ->aux_tail_hi
1838 *
1839 * For this reason, it's impossible for the perf tool to work correctly when
1840 * the AUX head or tail is bigger than 4GB (more than 32 bits length); and we
1841 * can not simply limit the AUX ring buffer to less than 4GB, the reason is
1842 * the pointers can be increased monotonically, whatever the buffer size it is,
1843 * at the end the head and tail can be bigger than 4GB and carry out to the
1844 * high 32-bit.
1845 *
1846 * To mitigate the issues and improve the user experience, we can allow the
1847 * perf tool working in certain conditions and bail out with error if detect
1848 * any overflow cannot be handled.
1849 *
1850 * For reading the AUX head, it reads out the values for three times, and
1851 * compares the high 4 bytes of the values between the first time and the last
1852 * time, if there has no change for high 4 bytes injected by the kernel during
1853 * the user reading sequence, it's safe for use the second value.
1854 *
1855 * When compat_auxtrace_mmap__write_tail() detects any carrying in the high
1856 * 32 bits, it means there have two store operations in user space and it cannot
1857 * promise the atomicity for 64-bit write, so return '-1' in this case to tell
1858 * the caller an overflow error has happened.
1859 */
compat_auxtrace_mmap__read_head(struct auxtrace_mmap * mm)1860 u64 __weak compat_auxtrace_mmap__read_head(struct auxtrace_mmap *mm)
1861 {
1862 struct perf_event_mmap_page *pc = mm->userpg;
1863 u64 first, second, last;
1864 u64 mask = (u64)(UINT32_MAX) << 32;
1865
1866 do {
1867 first = READ_ONCE(pc->aux_head);
1868 /* Ensure all reads are done after we read the head */
1869 smp_rmb();
1870 second = READ_ONCE(pc->aux_head);
1871 /* Ensure all reads are done after we read the head */
1872 smp_rmb();
1873 last = READ_ONCE(pc->aux_head);
1874 } while ((first & mask) != (last & mask));
1875
1876 return second;
1877 }
1878
compat_auxtrace_mmap__write_tail(struct auxtrace_mmap * mm,u64 tail)1879 int __weak compat_auxtrace_mmap__write_tail(struct auxtrace_mmap *mm, u64 tail)
1880 {
1881 struct perf_event_mmap_page *pc = mm->userpg;
1882 u64 mask = (u64)(UINT32_MAX) << 32;
1883
1884 if (tail & mask)
1885 return -1;
1886
1887 /* Ensure all reads are done before we write the tail out */
1888 smp_mb();
1889 WRITE_ONCE(pc->aux_tail, tail);
1890 return 0;
1891 }
1892
__auxtrace_mmap__read(struct mmap * map,struct auxtrace_record * itr,struct perf_env * env,const struct perf_tool * tool,process_auxtrace_t fn,bool snapshot,size_t snapshot_size)1893 static int __auxtrace_mmap__read(struct mmap *map,
1894 struct auxtrace_record *itr, struct perf_env *env,
1895 const struct perf_tool *tool, process_auxtrace_t fn,
1896 bool snapshot, size_t snapshot_size)
1897 {
1898 struct auxtrace_mmap *mm = &map->auxtrace_mmap;
1899 u64 head, old = mm->prev, offset, ref;
1900 unsigned char *data = mm->base;
1901 size_t size, head_off, old_off, len1, len2, padding;
1902 union perf_event ev;
1903 void *data1, *data2;
1904 int kernel_is_64_bit = perf_env__kernel_is_64_bit(env);
1905
1906 head = auxtrace_mmap__read_head(mm, kernel_is_64_bit);
1907
1908 if (snapshot &&
1909 auxtrace_record__find_snapshot(itr, mm->idx, mm, data, &head, &old))
1910 return -1;
1911
1912 if (old == head)
1913 return 0;
1914
1915 pr_debug3("auxtrace idx %d old %#"PRIx64" head %#"PRIx64" diff %#"PRIx64"\n",
1916 mm->idx, old, head, head - old);
1917
1918 if (mm->mask) {
1919 head_off = head & mm->mask;
1920 old_off = old & mm->mask;
1921 } else {
1922 head_off = head % mm->len;
1923 old_off = old % mm->len;
1924 }
1925
1926 if (head_off > old_off)
1927 size = head_off - old_off;
1928 else
1929 size = mm->len - (old_off - head_off);
1930
1931 if (snapshot && size > snapshot_size)
1932 size = snapshot_size;
1933
1934 ref = auxtrace_record__reference(itr);
1935
1936 if (head > old || size <= head || mm->mask) {
1937 offset = head - size;
1938 } else {
1939 /*
1940 * When the buffer size is not a power of 2, 'head' wraps at the
1941 * highest multiple of the buffer size, so we have to subtract
1942 * the remainder here.
1943 */
1944 u64 rem = (0ULL - mm->len) % mm->len;
1945
1946 offset = head - size - rem;
1947 }
1948
1949 if (size > head_off) {
1950 len1 = size - head_off;
1951 data1 = &data[mm->len - len1];
1952 len2 = head_off;
1953 data2 = &data[0];
1954 } else {
1955 len1 = size;
1956 data1 = &data[head_off - len1];
1957 len2 = 0;
1958 data2 = NULL;
1959 }
1960
1961 if (itr->alignment) {
1962 unsigned int unwanted = len1 % itr->alignment;
1963
1964 len1 -= unwanted;
1965 size -= unwanted;
1966 }
1967
1968 /* padding must be written by fn() e.g. record__process_auxtrace() */
1969 padding = size & (PERF_AUXTRACE_RECORD_ALIGNMENT - 1);
1970 if (padding)
1971 padding = PERF_AUXTRACE_RECORD_ALIGNMENT - padding;
1972
1973 memset(&ev, 0, sizeof(ev));
1974 ev.auxtrace.header.type = PERF_RECORD_AUXTRACE;
1975 ev.auxtrace.header.size = sizeof(ev.auxtrace);
1976 ev.auxtrace.size = size + padding;
1977 ev.auxtrace.offset = offset;
1978 ev.auxtrace.reference = ref;
1979 ev.auxtrace.idx = mm->idx;
1980 ev.auxtrace.tid = mm->tid;
1981 ev.auxtrace.cpu = mm->cpu;
1982
1983 if (fn(tool, map, &ev, data1, len1, data2, len2))
1984 return -1;
1985
1986 mm->prev = head;
1987
1988 if (!snapshot) {
1989 int err;
1990
1991 err = auxtrace_mmap__write_tail(mm, head, kernel_is_64_bit);
1992 if (err < 0)
1993 return err;
1994
1995 if (itr->read_finish) {
1996 err = itr->read_finish(itr, mm->idx);
1997 if (err < 0)
1998 return err;
1999 }
2000 }
2001
2002 return 1;
2003 }
2004
auxtrace_mmap__read(struct mmap * map,struct auxtrace_record * itr,struct perf_env * env,const struct perf_tool * tool,process_auxtrace_t fn)2005 int auxtrace_mmap__read(struct mmap *map, struct auxtrace_record *itr,
2006 struct perf_env *env, const struct perf_tool *tool,
2007 process_auxtrace_t fn)
2008 {
2009 return __auxtrace_mmap__read(map, itr, env, tool, fn, false, 0);
2010 }
2011
auxtrace_mmap__read_snapshot(struct mmap * map,struct auxtrace_record * itr,struct perf_env * env,const struct perf_tool * tool,process_auxtrace_t fn,size_t snapshot_size)2012 int auxtrace_mmap__read_snapshot(struct mmap *map,
2013 struct auxtrace_record *itr, struct perf_env *env,
2014 const struct perf_tool *tool, process_auxtrace_t fn,
2015 size_t snapshot_size)
2016 {
2017 return __auxtrace_mmap__read(map, itr, env, tool, fn, true, snapshot_size);
2018 }
2019
2020 /**
2021 * struct auxtrace_cache - hash table to implement a cache
2022 * @hashtable: the hashtable
2023 * @sz: hashtable size (number of hlists)
2024 * @entry_size: size of an entry
2025 * @limit: limit the number of entries to this maximum, when reached the cache
2026 * is dropped and caching begins again with an empty cache
2027 * @cnt: current number of entries
2028 * @bits: hashtable size (@sz = 2^@bits)
2029 */
2030 struct auxtrace_cache {
2031 struct hlist_head *hashtable;
2032 size_t sz;
2033 size_t entry_size;
2034 size_t limit;
2035 size_t cnt;
2036 unsigned int bits;
2037 };
2038
auxtrace_cache__new(unsigned int bits,size_t entry_size,unsigned int limit_percent)2039 struct auxtrace_cache *auxtrace_cache__new(unsigned int bits, size_t entry_size,
2040 unsigned int limit_percent)
2041 {
2042 struct auxtrace_cache *c;
2043 struct hlist_head *ht;
2044 size_t sz, i;
2045
2046 c = zalloc(sizeof(struct auxtrace_cache));
2047 if (!c)
2048 return NULL;
2049
2050 sz = 1UL << bits;
2051
2052 ht = calloc(sz, sizeof(struct hlist_head));
2053 if (!ht)
2054 goto out_free;
2055
2056 for (i = 0; i < sz; i++)
2057 INIT_HLIST_HEAD(&ht[i]);
2058
2059 c->hashtable = ht;
2060 c->sz = sz;
2061 c->entry_size = entry_size;
2062 c->limit = (c->sz * limit_percent) / 100;
2063 c->bits = bits;
2064
2065 return c;
2066
2067 out_free:
2068 free(c);
2069 return NULL;
2070 }
2071
auxtrace_cache__drop(struct auxtrace_cache * c)2072 static void auxtrace_cache__drop(struct auxtrace_cache *c)
2073 {
2074 struct auxtrace_cache_entry *entry;
2075 struct hlist_node *tmp;
2076 size_t i;
2077
2078 if (!c)
2079 return;
2080
2081 for (i = 0; i < c->sz; i++) {
2082 hlist_for_each_entry_safe(entry, tmp, &c->hashtable[i], hash) {
2083 hlist_del(&entry->hash);
2084 auxtrace_cache__free_entry(c, entry);
2085 }
2086 }
2087
2088 c->cnt = 0;
2089 }
2090
auxtrace_cache__free(struct auxtrace_cache * c)2091 void auxtrace_cache__free(struct auxtrace_cache *c)
2092 {
2093 if (!c)
2094 return;
2095
2096 auxtrace_cache__drop(c);
2097 zfree(&c->hashtable);
2098 free(c);
2099 }
2100
auxtrace_cache__alloc_entry(struct auxtrace_cache * c)2101 void *auxtrace_cache__alloc_entry(struct auxtrace_cache *c)
2102 {
2103 return malloc(c->entry_size);
2104 }
2105
auxtrace_cache__free_entry(struct auxtrace_cache * c __maybe_unused,void * entry)2106 void auxtrace_cache__free_entry(struct auxtrace_cache *c __maybe_unused,
2107 void *entry)
2108 {
2109 free(entry);
2110 }
2111
auxtrace_cache__add(struct auxtrace_cache * c,u32 key,struct auxtrace_cache_entry * entry)2112 int auxtrace_cache__add(struct auxtrace_cache *c, u32 key,
2113 struct auxtrace_cache_entry *entry)
2114 {
2115 if (c->limit && ++c->cnt > c->limit)
2116 auxtrace_cache__drop(c);
2117
2118 entry->key = key;
2119 hlist_add_head(&entry->hash, &c->hashtable[hash_32(key, c->bits)]);
2120
2121 return 0;
2122 }
2123
auxtrace_cache__rm(struct auxtrace_cache * c,u32 key)2124 static struct auxtrace_cache_entry *auxtrace_cache__rm(struct auxtrace_cache *c,
2125 u32 key)
2126 {
2127 struct auxtrace_cache_entry *entry;
2128 struct hlist_head *hlist;
2129 struct hlist_node *n;
2130
2131 if (!c)
2132 return NULL;
2133
2134 hlist = &c->hashtable[hash_32(key, c->bits)];
2135 hlist_for_each_entry_safe(entry, n, hlist, hash) {
2136 if (entry->key == key) {
2137 hlist_del(&entry->hash);
2138 return entry;
2139 }
2140 }
2141
2142 return NULL;
2143 }
2144
auxtrace_cache__remove(struct auxtrace_cache * c,u32 key)2145 void auxtrace_cache__remove(struct auxtrace_cache *c, u32 key)
2146 {
2147 struct auxtrace_cache_entry *entry = auxtrace_cache__rm(c, key);
2148
2149 auxtrace_cache__free_entry(c, entry);
2150 }
2151
auxtrace_cache__lookup(struct auxtrace_cache * c,u32 key)2152 void *auxtrace_cache__lookup(struct auxtrace_cache *c, u32 key)
2153 {
2154 struct auxtrace_cache_entry *entry;
2155 struct hlist_head *hlist;
2156
2157 if (!c)
2158 return NULL;
2159
2160 hlist = &c->hashtable[hash_32(key, c->bits)];
2161 hlist_for_each_entry(entry, hlist, hash) {
2162 if (entry->key == key)
2163 return entry;
2164 }
2165
2166 return NULL;
2167 }
2168
addr_filter__free_str(struct addr_filter * filt)2169 static void addr_filter__free_str(struct addr_filter *filt)
2170 {
2171 zfree(&filt->str);
2172 filt->action = NULL;
2173 filt->sym_from = NULL;
2174 filt->sym_to = NULL;
2175 filt->filename = NULL;
2176 }
2177
addr_filter__new(void)2178 static struct addr_filter *addr_filter__new(void)
2179 {
2180 struct addr_filter *filt = zalloc(sizeof(*filt));
2181
2182 if (filt)
2183 INIT_LIST_HEAD(&filt->list);
2184
2185 return filt;
2186 }
2187
addr_filter__free(struct addr_filter * filt)2188 static void addr_filter__free(struct addr_filter *filt)
2189 {
2190 if (filt)
2191 addr_filter__free_str(filt);
2192 free(filt);
2193 }
2194
addr_filters__add(struct addr_filters * filts,struct addr_filter * filt)2195 static void addr_filters__add(struct addr_filters *filts,
2196 struct addr_filter *filt)
2197 {
2198 list_add_tail(&filt->list, &filts->head);
2199 filts->cnt += 1;
2200 }
2201
addr_filters__del(struct addr_filters * filts,struct addr_filter * filt)2202 static void addr_filters__del(struct addr_filters *filts,
2203 struct addr_filter *filt)
2204 {
2205 list_del_init(&filt->list);
2206 filts->cnt -= 1;
2207 }
2208
addr_filters__init(struct addr_filters * filts)2209 void addr_filters__init(struct addr_filters *filts)
2210 {
2211 INIT_LIST_HEAD(&filts->head);
2212 filts->cnt = 0;
2213 }
2214
addr_filters__exit(struct addr_filters * filts)2215 void addr_filters__exit(struct addr_filters *filts)
2216 {
2217 struct addr_filter *filt, *n;
2218
2219 list_for_each_entry_safe(filt, n, &filts->head, list) {
2220 addr_filters__del(filts, filt);
2221 addr_filter__free(filt);
2222 }
2223 }
2224
parse_num_or_str(char ** inp,u64 * num,const char ** str,const char * str_delim)2225 static int parse_num_or_str(char **inp, u64 *num, const char **str,
2226 const char *str_delim)
2227 {
2228 *inp += strspn(*inp, " ");
2229
2230 if (isdigit(**inp)) {
2231 char *endptr;
2232
2233 if (!num)
2234 return -EINVAL;
2235 errno = 0;
2236 *num = strtoull(*inp, &endptr, 0);
2237 if (errno)
2238 return -errno;
2239 if (endptr == *inp)
2240 return -EINVAL;
2241 *inp = endptr;
2242 } else {
2243 size_t n;
2244
2245 if (!str)
2246 return -EINVAL;
2247 *inp += strspn(*inp, " ");
2248 *str = *inp;
2249 n = strcspn(*inp, str_delim);
2250 if (!n)
2251 return -EINVAL;
2252 *inp += n;
2253 if (**inp) {
2254 **inp = '\0';
2255 *inp += 1;
2256 }
2257 }
2258 return 0;
2259 }
2260
parse_action(struct addr_filter * filt)2261 static int parse_action(struct addr_filter *filt)
2262 {
2263 if (!strcmp(filt->action, "filter")) {
2264 filt->start = true;
2265 filt->range = true;
2266 } else if (!strcmp(filt->action, "start")) {
2267 filt->start = true;
2268 } else if (!strcmp(filt->action, "stop")) {
2269 filt->start = false;
2270 } else if (!strcmp(filt->action, "tracestop")) {
2271 filt->start = false;
2272 filt->range = true;
2273 filt->action += 5; /* Change 'tracestop' to 'stop' */
2274 } else {
2275 return -EINVAL;
2276 }
2277 return 0;
2278 }
2279
parse_sym_idx(char ** inp,int * idx)2280 static int parse_sym_idx(char **inp, int *idx)
2281 {
2282 *idx = -1;
2283
2284 *inp += strspn(*inp, " ");
2285
2286 if (**inp != '#')
2287 return 0;
2288
2289 *inp += 1;
2290
2291 if (**inp == 'g' || **inp == 'G') {
2292 *inp += 1;
2293 *idx = 0;
2294 } else {
2295 unsigned long num;
2296 char *endptr;
2297
2298 errno = 0;
2299 num = strtoul(*inp, &endptr, 0);
2300 if (errno)
2301 return -errno;
2302 if (endptr == *inp || num > INT_MAX)
2303 return -EINVAL;
2304 *inp = endptr;
2305 *idx = num;
2306 }
2307
2308 return 0;
2309 }
2310
parse_addr_size(char ** inp,u64 * num,const char ** str,int * idx)2311 static int parse_addr_size(char **inp, u64 *num, const char **str, int *idx)
2312 {
2313 int err = parse_num_or_str(inp, num, str, " ");
2314
2315 if (!err && *str)
2316 err = parse_sym_idx(inp, idx);
2317
2318 return err;
2319 }
2320
parse_one_filter(struct addr_filter * filt,const char ** filter_inp)2321 static int parse_one_filter(struct addr_filter *filt, const char **filter_inp)
2322 {
2323 char *fstr;
2324 int err;
2325
2326 filt->str = fstr = strdup(*filter_inp);
2327 if (!fstr)
2328 return -ENOMEM;
2329
2330 err = parse_num_or_str(&fstr, NULL, &filt->action, " ");
2331 if (err)
2332 goto out_err;
2333
2334 err = parse_action(filt);
2335 if (err)
2336 goto out_err;
2337
2338 err = parse_addr_size(&fstr, &filt->addr, &filt->sym_from,
2339 &filt->sym_from_idx);
2340 if (err)
2341 goto out_err;
2342
2343 fstr += strspn(fstr, " ");
2344
2345 if (*fstr == '/') {
2346 fstr += 1;
2347 err = parse_addr_size(&fstr, &filt->size, &filt->sym_to,
2348 &filt->sym_to_idx);
2349 if (err)
2350 goto out_err;
2351 filt->range = true;
2352 }
2353
2354 fstr += strspn(fstr, " ");
2355
2356 if (*fstr == '@') {
2357 fstr += 1;
2358 err = parse_num_or_str(&fstr, NULL, &filt->filename, " ,");
2359 if (err)
2360 goto out_err;
2361 }
2362
2363 fstr += strspn(fstr, " ,");
2364
2365 *filter_inp += fstr - filt->str;
2366
2367 return 0;
2368
2369 out_err:
2370 addr_filter__free_str(filt);
2371
2372 return err;
2373 }
2374
addr_filters__parse_bare_filter(struct addr_filters * filts,const char * filter)2375 int addr_filters__parse_bare_filter(struct addr_filters *filts,
2376 const char *filter)
2377 {
2378 struct addr_filter *filt;
2379 const char *fstr = filter;
2380 int err;
2381
2382 while (*fstr) {
2383 filt = addr_filter__new();
2384 err = parse_one_filter(filt, &fstr);
2385 if (err) {
2386 addr_filter__free(filt);
2387 addr_filters__exit(filts);
2388 return err;
2389 }
2390 addr_filters__add(filts, filt);
2391 }
2392
2393 return 0;
2394 }
2395
2396 struct sym_args {
2397 const char *name;
2398 u64 start;
2399 u64 size;
2400 int idx;
2401 int cnt;
2402 bool started;
2403 bool global;
2404 bool selected;
2405 bool duplicate;
2406 bool near;
2407 };
2408
kern_sym_name_match(const char * kname,const char * name)2409 static bool kern_sym_name_match(const char *kname, const char *name)
2410 {
2411 size_t n = strlen(name);
2412
2413 return !strcmp(kname, name) ||
2414 (!strncmp(kname, name, n) && kname[n] == '\t');
2415 }
2416
kern_sym_match(struct sym_args * args,const char * name,char type)2417 static bool kern_sym_match(struct sym_args *args, const char *name, char type)
2418 {
2419 /* A function with the same name, and global or the n'th found or any */
2420 return kallsyms__is_function(type) &&
2421 kern_sym_name_match(name, args->name) &&
2422 ((args->global && isupper(type)) ||
2423 (args->selected && ++(args->cnt) == args->idx) ||
2424 (!args->global && !args->selected));
2425 }
2426
find_kern_sym_cb(void * arg,const char * name,char type,u64 start)2427 static int find_kern_sym_cb(void *arg, const char *name, char type, u64 start)
2428 {
2429 struct sym_args *args = arg;
2430
2431 if (args->started) {
2432 if (!args->size)
2433 args->size = start - args->start;
2434 if (args->selected) {
2435 if (args->size)
2436 return 1;
2437 } else if (kern_sym_match(args, name, type)) {
2438 args->duplicate = true;
2439 return 1;
2440 }
2441 } else if (kern_sym_match(args, name, type)) {
2442 args->started = true;
2443 args->start = start;
2444 }
2445
2446 return 0;
2447 }
2448
print_kern_sym_cb(void * arg,const char * name,char type,u64 start)2449 static int print_kern_sym_cb(void *arg, const char *name, char type, u64 start)
2450 {
2451 struct sym_args *args = arg;
2452
2453 if (kern_sym_match(args, name, type)) {
2454 pr_err("#%d\t0x%"PRIx64"\t%c\t%s\n",
2455 ++args->cnt, start, type, name);
2456 args->near = true;
2457 } else if (args->near) {
2458 args->near = false;
2459 pr_err("\t\twhich is near\t\t%s\n", name);
2460 }
2461
2462 return 0;
2463 }
2464
sym_not_found_error(const char * sym_name,int idx)2465 static int sym_not_found_error(const char *sym_name, int idx)
2466 {
2467 if (idx > 0) {
2468 pr_err("N'th occurrence (N=%d) of symbol '%s' not found.\n",
2469 idx, sym_name);
2470 } else if (!idx) {
2471 pr_err("Global symbol '%s' not found.\n", sym_name);
2472 } else {
2473 pr_err("Symbol '%s' not found.\n", sym_name);
2474 }
2475 pr_err("Note that symbols must be functions.\n");
2476
2477 return -EINVAL;
2478 }
2479
find_kern_sym(const char * sym_name,u64 * start,u64 * size,int idx)2480 static int find_kern_sym(const char *sym_name, u64 *start, u64 *size, int idx)
2481 {
2482 struct sym_args args = {
2483 .name = sym_name,
2484 .idx = idx,
2485 .global = !idx,
2486 .selected = idx > 0,
2487 };
2488 int err;
2489
2490 *start = 0;
2491 *size = 0;
2492
2493 err = kallsyms__parse("/proc/kallsyms", &args, find_kern_sym_cb);
2494 if (err < 0) {
2495 pr_err("Failed to parse /proc/kallsyms\n");
2496 return err;
2497 }
2498
2499 if (args.duplicate) {
2500 pr_err("Multiple kernel symbols with name '%s'\n", sym_name);
2501 args.cnt = 0;
2502 kallsyms__parse("/proc/kallsyms", &args, print_kern_sym_cb);
2503 pr_err("Disambiguate symbol name by inserting #n after the name e.g. %s #2\n",
2504 sym_name);
2505 pr_err("Or select a global symbol by inserting #0 or #g or #G\n");
2506 return -EINVAL;
2507 }
2508
2509 if (!args.started) {
2510 pr_err("Kernel symbol lookup: ");
2511 return sym_not_found_error(sym_name, idx);
2512 }
2513
2514 *start = args.start;
2515 *size = args.size;
2516
2517 return 0;
2518 }
2519
find_entire_kern_cb(void * arg,const char * name __maybe_unused,char type,u64 start)2520 static int find_entire_kern_cb(void *arg, const char *name __maybe_unused,
2521 char type, u64 start)
2522 {
2523 struct sym_args *args = arg;
2524 u64 size;
2525
2526 if (!kallsyms__is_function(type))
2527 return 0;
2528
2529 if (!args->started) {
2530 args->started = true;
2531 args->start = start;
2532 }
2533 /* Don't know exactly where the kernel ends, so we add a page */
2534 size = round_up(start, page_size) + page_size - args->start;
2535 if (size > args->size)
2536 args->size = size;
2537
2538 return 0;
2539 }
2540
addr_filter__entire_kernel(struct addr_filter * filt)2541 static int addr_filter__entire_kernel(struct addr_filter *filt)
2542 {
2543 struct sym_args args = { .started = false };
2544 int err;
2545
2546 err = kallsyms__parse("/proc/kallsyms", &args, find_entire_kern_cb);
2547 if (err < 0 || !args.started) {
2548 pr_err("Failed to parse /proc/kallsyms\n");
2549 return err;
2550 }
2551
2552 filt->addr = args.start;
2553 filt->size = args.size;
2554
2555 return 0;
2556 }
2557
check_end_after_start(struct addr_filter * filt,u64 start,u64 size)2558 static int check_end_after_start(struct addr_filter *filt, u64 start, u64 size)
2559 {
2560 if (start + size >= filt->addr)
2561 return 0;
2562
2563 if (filt->sym_from) {
2564 pr_err("Symbol '%s' (0x%"PRIx64") comes before '%s' (0x%"PRIx64")\n",
2565 filt->sym_to, start, filt->sym_from, filt->addr);
2566 } else {
2567 pr_err("Symbol '%s' (0x%"PRIx64") comes before address 0x%"PRIx64")\n",
2568 filt->sym_to, start, filt->addr);
2569 }
2570
2571 return -EINVAL;
2572 }
2573
addr_filter__resolve_kernel_syms(struct addr_filter * filt)2574 static int addr_filter__resolve_kernel_syms(struct addr_filter *filt)
2575 {
2576 bool no_size = false;
2577 u64 start, size;
2578 int err;
2579
2580 if (symbol_conf.kptr_restrict) {
2581 pr_err("Kernel addresses are restricted. Unable to resolve kernel symbols.\n");
2582 return -EINVAL;
2583 }
2584
2585 if (filt->sym_from && !strcmp(filt->sym_from, "*"))
2586 return addr_filter__entire_kernel(filt);
2587
2588 if (filt->sym_from) {
2589 err = find_kern_sym(filt->sym_from, &start, &size,
2590 filt->sym_from_idx);
2591 if (err)
2592 return err;
2593 filt->addr = start;
2594 if (filt->range && !filt->size && !filt->sym_to) {
2595 filt->size = size;
2596 no_size = !size;
2597 }
2598 }
2599
2600 if (filt->sym_to) {
2601 err = find_kern_sym(filt->sym_to, &start, &size,
2602 filt->sym_to_idx);
2603 if (err)
2604 return err;
2605
2606 err = check_end_after_start(filt, start, size);
2607 if (err)
2608 return err;
2609 filt->size = start + size - filt->addr;
2610 no_size = !size;
2611 }
2612
2613 /* The very last symbol in kallsyms does not imply a particular size */
2614 if (no_size) {
2615 pr_err("Cannot determine size of symbol '%s'\n",
2616 filt->sym_to ? filt->sym_to : filt->sym_from);
2617 return -EINVAL;
2618 }
2619
2620 return 0;
2621 }
2622
load_dso(const char * name)2623 static struct dso *load_dso(const char *name)
2624 {
2625 struct map *map;
2626 struct dso *dso;
2627
2628 map = dso__new_map(name);
2629 if (!map)
2630 return NULL;
2631
2632 if (map__load(map) < 0)
2633 pr_err("File '%s' not found or has no symbols.\n", name);
2634
2635 dso = dso__get(map__dso(map));
2636
2637 map__put(map);
2638
2639 return dso;
2640 }
2641
dso_sym_match(struct symbol * sym,const char * name,int * cnt,int idx)2642 static bool dso_sym_match(struct symbol *sym, const char *name, int *cnt,
2643 int idx)
2644 {
2645 /* Same name, and global or the n'th found or any */
2646 return !arch__compare_symbol_names(name, sym->name) &&
2647 ((!idx && sym->binding == STB_GLOBAL) ||
2648 (idx > 0 && ++*cnt == idx) ||
2649 idx < 0);
2650 }
2651
print_duplicate_syms(struct dso * dso,const char * sym_name)2652 static void print_duplicate_syms(struct dso *dso, const char *sym_name)
2653 {
2654 struct symbol *sym;
2655 bool near = false;
2656 int cnt = 0;
2657
2658 pr_err("Multiple symbols with name '%s'\n", sym_name);
2659
2660 sym = dso__first_symbol(dso);
2661 while (sym) {
2662 if (dso_sym_match(sym, sym_name, &cnt, -1)) {
2663 pr_err("#%d\t0x%"PRIx64"\t%c\t%s\n",
2664 ++cnt, sym->start,
2665 sym->binding == STB_GLOBAL ? 'g' :
2666 sym->binding == STB_LOCAL ? 'l' : 'w',
2667 sym->name);
2668 near = true;
2669 } else if (near) {
2670 near = false;
2671 pr_err("\t\twhich is near\t\t%s\n", sym->name);
2672 }
2673 sym = dso__next_symbol(sym);
2674 }
2675
2676 pr_err("Disambiguate symbol name by inserting #n after the name e.g. %s #2\n",
2677 sym_name);
2678 pr_err("Or select a global symbol by inserting #0 or #g or #G\n");
2679 }
2680
find_dso_sym(struct dso * dso,const char * sym_name,u64 * start,u64 * size,int idx)2681 static int find_dso_sym(struct dso *dso, const char *sym_name, u64 *start,
2682 u64 *size, int idx)
2683 {
2684 struct symbol *sym;
2685 int cnt = 0;
2686
2687 *start = 0;
2688 *size = 0;
2689
2690 sym = dso__first_symbol(dso);
2691 while (sym) {
2692 if (*start) {
2693 if (!*size)
2694 *size = sym->start - *start;
2695 if (idx > 0) {
2696 if (*size)
2697 return 0;
2698 } else if (dso_sym_match(sym, sym_name, &cnt, idx)) {
2699 print_duplicate_syms(dso, sym_name);
2700 return -EINVAL;
2701 }
2702 } else if (dso_sym_match(sym, sym_name, &cnt, idx)) {
2703 *start = sym->start;
2704 *size = sym->end - sym->start;
2705 }
2706 sym = dso__next_symbol(sym);
2707 }
2708
2709 if (!*start)
2710 return sym_not_found_error(sym_name, idx);
2711
2712 return 0;
2713 }
2714
addr_filter__entire_dso(struct addr_filter * filt,struct dso * dso)2715 static int addr_filter__entire_dso(struct addr_filter *filt, struct dso *dso)
2716 {
2717 if (dso__data_file_size(dso, NULL)) {
2718 pr_err("Failed to determine filter for %s\nCannot determine file size.\n",
2719 filt->filename);
2720 return -EINVAL;
2721 }
2722
2723 filt->addr = 0;
2724 filt->size = dso__data(dso)->file_size;
2725
2726 return 0;
2727 }
2728
addr_filter__resolve_syms(struct addr_filter * filt)2729 static int addr_filter__resolve_syms(struct addr_filter *filt)
2730 {
2731 u64 start, size;
2732 struct dso *dso;
2733 int err = 0;
2734
2735 if (!filt->sym_from && !filt->sym_to)
2736 return 0;
2737
2738 if (!filt->filename)
2739 return addr_filter__resolve_kernel_syms(filt);
2740
2741 dso = load_dso(filt->filename);
2742 if (!dso) {
2743 pr_err("Failed to load symbols from: %s\n", filt->filename);
2744 return -EINVAL;
2745 }
2746
2747 if (filt->sym_from && !strcmp(filt->sym_from, "*")) {
2748 err = addr_filter__entire_dso(filt, dso);
2749 goto put_dso;
2750 }
2751
2752 if (filt->sym_from) {
2753 err = find_dso_sym(dso, filt->sym_from, &start, &size,
2754 filt->sym_from_idx);
2755 if (err)
2756 goto put_dso;
2757 filt->addr = start;
2758 if (filt->range && !filt->size && !filt->sym_to)
2759 filt->size = size;
2760 }
2761
2762 if (filt->sym_to) {
2763 err = find_dso_sym(dso, filt->sym_to, &start, &size,
2764 filt->sym_to_idx);
2765 if (err)
2766 goto put_dso;
2767
2768 err = check_end_after_start(filt, start, size);
2769 if (err)
2770 return err;
2771
2772 filt->size = start + size - filt->addr;
2773 }
2774
2775 put_dso:
2776 dso__put(dso);
2777
2778 return err;
2779 }
2780
addr_filter__to_str(struct addr_filter * filt)2781 static char *addr_filter__to_str(struct addr_filter *filt)
2782 {
2783 char filename_buf[PATH_MAX];
2784 const char *at = "";
2785 const char *fn = "";
2786 char *filter;
2787 int err;
2788
2789 if (filt->filename) {
2790 at = "@";
2791 fn = realpath(filt->filename, filename_buf);
2792 if (!fn)
2793 return NULL;
2794 }
2795
2796 if (filt->range) {
2797 err = asprintf(&filter, "%s 0x%"PRIx64"/0x%"PRIx64"%s%s",
2798 filt->action, filt->addr, filt->size, at, fn);
2799 } else {
2800 err = asprintf(&filter, "%s 0x%"PRIx64"%s%s",
2801 filt->action, filt->addr, at, fn);
2802 }
2803
2804 return err < 0 ? NULL : filter;
2805 }
2806
parse_addr_filter(struct evsel * evsel,const char * filter,int max_nr)2807 static int parse_addr_filter(struct evsel *evsel, const char *filter,
2808 int max_nr)
2809 {
2810 struct addr_filters filts;
2811 struct addr_filter *filt;
2812 int err;
2813
2814 addr_filters__init(&filts);
2815
2816 err = addr_filters__parse_bare_filter(&filts, filter);
2817 if (err)
2818 goto out_exit;
2819
2820 if (filts.cnt > max_nr) {
2821 pr_err("Error: number of address filters (%d) exceeds maximum (%d)\n",
2822 filts.cnt, max_nr);
2823 err = -EINVAL;
2824 goto out_exit;
2825 }
2826
2827 list_for_each_entry(filt, &filts.head, list) {
2828 char *new_filter;
2829
2830 err = addr_filter__resolve_syms(filt);
2831 if (err)
2832 goto out_exit;
2833
2834 new_filter = addr_filter__to_str(filt);
2835 if (!new_filter) {
2836 err = -ENOMEM;
2837 goto out_exit;
2838 }
2839
2840 if (evsel__append_addr_filter(evsel, new_filter)) {
2841 err = -ENOMEM;
2842 goto out_exit;
2843 }
2844 }
2845
2846 out_exit:
2847 addr_filters__exit(&filts);
2848
2849 if (err) {
2850 pr_err("Failed to parse address filter: '%s'\n", filter);
2851 pr_err("Filter format is: filter|start|stop|tracestop <start symbol or address> [/ <end symbol or size>] [@<file name>]\n");
2852 pr_err("Where multiple filters are separated by space or comma.\n");
2853 }
2854
2855 return err;
2856 }
2857
evsel__nr_addr_filter(struct evsel * evsel)2858 static int evsel__nr_addr_filter(struct evsel *evsel)
2859 {
2860 struct perf_pmu *pmu = evsel__find_pmu(evsel);
2861 int nr_addr_filters = 0;
2862
2863 if (!pmu)
2864 return 0;
2865
2866 perf_pmu__scan_file(pmu, "nr_addr_filters", "%d", &nr_addr_filters);
2867
2868 return nr_addr_filters;
2869 }
2870
auxtrace_parse_filters(struct evlist * evlist)2871 int auxtrace_parse_filters(struct evlist *evlist)
2872 {
2873 struct evsel *evsel;
2874 char *filter;
2875 int err, max_nr;
2876
2877 evlist__for_each_entry(evlist, evsel) {
2878 filter = evsel->filter;
2879 max_nr = evsel__nr_addr_filter(evsel);
2880 if (!filter || !max_nr)
2881 continue;
2882 evsel->filter = NULL;
2883 err = parse_addr_filter(evsel, filter, max_nr);
2884 free(filter);
2885 if (err)
2886 return err;
2887 pr_debug("Address filter: %s\n", evsel->filter);
2888 }
2889
2890 return 0;
2891 }
2892
auxtrace__process_event(struct perf_session * session,union perf_event * event,struct perf_sample * sample,const struct perf_tool * tool)2893 int auxtrace__process_event(struct perf_session *session, union perf_event *event,
2894 struct perf_sample *sample, const struct perf_tool *tool)
2895 {
2896 if (!session->auxtrace)
2897 return 0;
2898
2899 return session->auxtrace->process_event(session, event, sample, tool);
2900 }
2901
auxtrace__dump_auxtrace_sample(struct perf_session * session,struct perf_sample * sample)2902 void auxtrace__dump_auxtrace_sample(struct perf_session *session,
2903 struct perf_sample *sample)
2904 {
2905 if (!session->auxtrace || !session->auxtrace->dump_auxtrace_sample ||
2906 auxtrace__dont_decode(session))
2907 return;
2908
2909 session->auxtrace->dump_auxtrace_sample(session, sample);
2910 }
2911
auxtrace__flush_events(struct perf_session * session,const struct perf_tool * tool)2912 int auxtrace__flush_events(struct perf_session *session, const struct perf_tool *tool)
2913 {
2914 if (!session->auxtrace)
2915 return 0;
2916
2917 return session->auxtrace->flush_events(session, tool);
2918 }
2919
auxtrace__free_events(struct perf_session * session)2920 void auxtrace__free_events(struct perf_session *session)
2921 {
2922 if (!session->auxtrace)
2923 return;
2924
2925 return session->auxtrace->free_events(session);
2926 }
2927
auxtrace__free(struct perf_session * session)2928 void auxtrace__free(struct perf_session *session)
2929 {
2930 if (!session->auxtrace)
2931 return;
2932
2933 return session->auxtrace->free(session);
2934 }
2935
auxtrace__evsel_is_auxtrace(struct perf_session * session,struct evsel * evsel)2936 bool auxtrace__evsel_is_auxtrace(struct perf_session *session,
2937 struct evsel *evsel)
2938 {
2939 if (!session->auxtrace || !session->auxtrace->evsel_is_auxtrace)
2940 return false;
2941
2942 return session->auxtrace->evsel_is_auxtrace(session, evsel);
2943 }
2944