xref: /linux/tools/perf/util/auxtrace.c (revision ec714e371f22f716a04e6ecb2a24988c92b26911)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * auxtrace.c: AUX area trace support
4  * Copyright (c) 2013-2015, Intel Corporation.
5  */
6 
7 #include <inttypes.h>
8 #include <sys/types.h>
9 #include <sys/mman.h>
10 #include <stdbool.h>
11 #include <string.h>
12 #include <limits.h>
13 #include <errno.h>
14 
15 #include <linux/kernel.h>
16 #include <linux/perf_event.h>
17 #include <linux/types.h>
18 #include <linux/bitops.h>
19 #include <linux/log2.h>
20 #include <linux/string.h>
21 #include <linux/time64.h>
22 
23 #include <sys/param.h>
24 #include <stdlib.h>
25 #include <stdio.h>
26 #include <linux/list.h>
27 #include <linux/zalloc.h>
28 
29 #include "config.h"
30 #include "evlist.h"
31 #include "dso.h"
32 #include "map.h"
33 #include "pmu.h"
34 #include "evsel.h"
35 #include "evsel_config.h"
36 #include "symbol.h"
37 #include "util/perf_api_probe.h"
38 #include "util/synthetic-events.h"
39 #include "thread_map.h"
40 #include "asm/bug.h"
41 #include "auxtrace.h"
42 
43 #include <linux/hash.h>
44 
45 #include "event.h"
46 #include "record.h"
47 #include "session.h"
48 #include "debug.h"
49 #include <subcmd/parse-options.h>
50 
51 #include "cs-etm.h"
52 #include "intel-pt.h"
53 #include "intel-bts.h"
54 #include "arm-spe.h"
55 #include "hisi-ptt.h"
56 #include "s390-cpumsf.h"
57 #include "util/mmap.h"
58 #include "powerpc-vpadtl.h"
59 
60 #include <linux/ctype.h>
61 #include "symbol/kallsyms.h"
62 #include <internal/lib.h>
63 #include "util/sample.h"
64 
65 /*
66  * Make a group from 'leader' to 'last', requiring that the events were not
67  * already grouped to a different leader.
68  */
evlist__regroup(struct evlist * evlist,struct evsel * leader,struct evsel * last)69 static int evlist__regroup(struct evlist *evlist, struct evsel *leader, struct evsel *last)
70 {
71 	struct evsel *evsel;
72 	bool grp;
73 
74 	if (!evsel__is_group_leader(leader))
75 		return -EINVAL;
76 
77 	grp = false;
78 	evlist__for_each_entry(evlist, evsel) {
79 		if (grp) {
80 			if (!(evsel__leader(evsel) == leader ||
81 			     (evsel__leader(evsel) == evsel &&
82 			      evsel->core.nr_members <= 1)))
83 				return -EINVAL;
84 		} else if (evsel == leader) {
85 			grp = true;
86 		}
87 		if (evsel == last)
88 			break;
89 	}
90 
91 	grp = false;
92 	evlist__for_each_entry(evlist, evsel) {
93 		if (grp) {
94 			if (!evsel__has_leader(evsel, leader)) {
95 				evsel__set_leader(evsel, leader);
96 				if (leader->core.nr_members < 1)
97 					leader->core.nr_members = 1;
98 				leader->core.nr_members += 1;
99 			}
100 		} else if (evsel == leader) {
101 			grp = true;
102 		}
103 		if (evsel == last)
104 			break;
105 	}
106 
107 	return 0;
108 }
109 
auxtrace__dont_decode(struct perf_session * session)110 static bool auxtrace__dont_decode(struct perf_session *session)
111 {
112 	return !session->itrace_synth_opts ||
113 	       session->itrace_synth_opts->dont_decode;
114 }
115 
auxtrace_mmap__mmap(struct auxtrace_mmap * mm,struct auxtrace_mmap_params * mp,void * userpg,int fd)116 int auxtrace_mmap__mmap(struct auxtrace_mmap *mm,
117 			struct auxtrace_mmap_params *mp,
118 			void *userpg, int fd)
119 {
120 	struct perf_event_mmap_page *pc = userpg;
121 
122 	WARN_ONCE(mm->base, "Uninitialized auxtrace_mmap\n");
123 
124 	mm->userpg = userpg;
125 	mm->mask = mp->mask;
126 	mm->len = mp->len;
127 	mm->prev = 0;
128 	mm->idx = mp->idx;
129 	mm->tid = mp->tid;
130 	mm->cpu = mp->cpu.cpu;
131 
132 	if (!mp->len || !mp->mmap_needed) {
133 		mm->base = NULL;
134 		return 0;
135 	}
136 
137 	pc->aux_offset = mp->offset;
138 	pc->aux_size = mp->len;
139 
140 	mm->base = mmap(NULL, mp->len, mp->prot, MAP_SHARED, fd, mp->offset);
141 	if (mm->base == MAP_FAILED) {
142 		pr_debug2("failed to mmap AUX area\n");
143 		mm->base = NULL;
144 		return -1;
145 	}
146 
147 	return 0;
148 }
149 
auxtrace_mmap__munmap(struct auxtrace_mmap * mm)150 void auxtrace_mmap__munmap(struct auxtrace_mmap *mm)
151 {
152 	if (mm->base) {
153 		munmap(mm->base, mm->len);
154 		mm->base = NULL;
155 	}
156 }
157 
auxtrace_mmap_params__init(struct auxtrace_mmap_params * mp,off_t auxtrace_offset,unsigned int auxtrace_pages,bool auxtrace_overwrite)158 void auxtrace_mmap_params__init(struct auxtrace_mmap_params *mp,
159 				off_t auxtrace_offset,
160 				unsigned int auxtrace_pages,
161 				bool auxtrace_overwrite)
162 {
163 	if (auxtrace_pages) {
164 		mp->offset = auxtrace_offset;
165 		mp->len = auxtrace_pages * (size_t)page_size;
166 		mp->mask = is_power_of_2(mp->len) ? mp->len - 1 : 0;
167 		mp->prot = PROT_READ | (auxtrace_overwrite ? 0 : PROT_WRITE);
168 		pr_debug2("AUX area mmap length %zu\n", mp->len);
169 	} else {
170 		mp->len = 0;
171 	}
172 }
173 
auxtrace_mmap_params__set_idx(struct auxtrace_mmap_params * mp,struct evlist * evlist,struct evsel * evsel,int idx)174 void auxtrace_mmap_params__set_idx(struct auxtrace_mmap_params *mp,
175 				   struct evlist *evlist,
176 				   struct evsel *evsel, int idx)
177 {
178 	bool per_cpu = !perf_cpu_map__has_any_cpu(evlist->core.user_requested_cpus);
179 
180 	mp->mmap_needed = evsel->needs_auxtrace_mmap;
181 
182 	if (!mp->mmap_needed)
183 		return;
184 
185 	mp->idx = idx;
186 
187 	if (per_cpu) {
188 		mp->cpu = perf_cpu_map__cpu(evlist->core.all_cpus, idx);
189 		mp->tid = perf_thread_map__pid(evlist->core.threads, 0);
190 	} else {
191 		mp->cpu.cpu = -1;
192 		mp->tid = perf_thread_map__pid(evlist->core.threads, idx);
193 	}
194 }
195 
196 #define AUXTRACE_INIT_NR_QUEUES	32
197 
auxtrace_alloc_queue_array(unsigned int nr_queues)198 static struct auxtrace_queue *auxtrace_alloc_queue_array(unsigned int nr_queues)
199 {
200 	struct auxtrace_queue *queue_array;
201 	unsigned int max_nr_queues, i;
202 
203 	max_nr_queues = UINT_MAX / sizeof(struct auxtrace_queue);
204 	if (nr_queues > max_nr_queues)
205 		return NULL;
206 
207 	queue_array = calloc(nr_queues, sizeof(struct auxtrace_queue));
208 	if (!queue_array)
209 		return NULL;
210 
211 	for (i = 0; i < nr_queues; i++) {
212 		INIT_LIST_HEAD(&queue_array[i].head);
213 		queue_array[i].priv = NULL;
214 	}
215 
216 	return queue_array;
217 }
218 
auxtrace_queues__init_nr(struct auxtrace_queues * queues,int nr_queues)219 int auxtrace_queues__init_nr(struct auxtrace_queues *queues, int nr_queues)
220 {
221 	queues->nr_queues = nr_queues;
222 	queues->queue_array = auxtrace_alloc_queue_array(queues->nr_queues);
223 	if (!queues->queue_array)
224 		return -ENOMEM;
225 	return 0;
226 }
227 
auxtrace_queues__init(struct auxtrace_queues * queues)228 int auxtrace_queues__init(struct auxtrace_queues *queues)
229 {
230 	return auxtrace_queues__init_nr(queues, AUXTRACE_INIT_NR_QUEUES);
231 }
232 
auxtrace_queues__grow(struct auxtrace_queues * queues,unsigned int new_nr_queues)233 static int auxtrace_queues__grow(struct auxtrace_queues *queues,
234 				 unsigned int new_nr_queues)
235 {
236 	unsigned int nr_queues = queues->nr_queues;
237 	struct auxtrace_queue *queue_array;
238 	unsigned int i;
239 
240 	if (!nr_queues)
241 		nr_queues = AUXTRACE_INIT_NR_QUEUES;
242 
243 	while (nr_queues && nr_queues < new_nr_queues)
244 		nr_queues <<= 1;
245 
246 	if (nr_queues < queues->nr_queues || nr_queues < new_nr_queues)
247 		return -EINVAL;
248 
249 	queue_array = auxtrace_alloc_queue_array(nr_queues);
250 	if (!queue_array)
251 		return -ENOMEM;
252 
253 	for (i = 0; i < queues->nr_queues; i++) {
254 		list_splice_tail(&queues->queue_array[i].head,
255 				 &queue_array[i].head);
256 		queue_array[i].tid = queues->queue_array[i].tid;
257 		queue_array[i].cpu = queues->queue_array[i].cpu;
258 		queue_array[i].set = queues->queue_array[i].set;
259 		queue_array[i].priv = queues->queue_array[i].priv;
260 	}
261 
262 	queues->nr_queues = nr_queues;
263 	queues->queue_array = queue_array;
264 
265 	return 0;
266 }
267 
auxtrace_copy_data(u64 size,struct perf_session * session)268 static void *auxtrace_copy_data(u64 size, struct perf_session *session)
269 {
270 	int fd = perf_data__fd(session->data);
271 	void *p;
272 	ssize_t ret;
273 
274 	if (size > SSIZE_MAX)
275 		return NULL;
276 
277 	p = malloc(size);
278 	if (!p)
279 		return NULL;
280 
281 	ret = readn(fd, p, size);
282 	if (ret != (ssize_t)size) {
283 		free(p);
284 		return NULL;
285 	}
286 
287 	return p;
288 }
289 
auxtrace_queues__queue_buffer(struct auxtrace_queues * queues,unsigned int idx,struct auxtrace_buffer * buffer)290 static int auxtrace_queues__queue_buffer(struct auxtrace_queues *queues,
291 					 unsigned int idx,
292 					 struct auxtrace_buffer *buffer)
293 {
294 	struct auxtrace_queue *queue;
295 	int err;
296 
297 	if (idx >= queues->nr_queues) {
298 		err = auxtrace_queues__grow(queues, idx + 1);
299 		if (err)
300 			return err;
301 	}
302 
303 	queue = &queues->queue_array[idx];
304 
305 	if (!queue->set) {
306 		queue->set = true;
307 		queue->tid = buffer->tid;
308 		queue->cpu = buffer->cpu.cpu;
309 	}
310 
311 	buffer->buffer_nr = queues->next_buffer_nr++;
312 
313 	list_add_tail(&buffer->list, &queue->head);
314 
315 	queues->new_data = true;
316 	queues->populated = true;
317 
318 	return 0;
319 }
320 
321 /* Limit buffers to 32MiB on 32-bit */
322 #define BUFFER_LIMIT_FOR_32_BIT (32 * 1024 * 1024)
323 
auxtrace_queues__split_buffer(struct auxtrace_queues * queues,unsigned int idx,struct auxtrace_buffer * buffer)324 static int auxtrace_queues__split_buffer(struct auxtrace_queues *queues,
325 					 unsigned int idx,
326 					 struct auxtrace_buffer *buffer)
327 {
328 	u64 sz = buffer->size;
329 	bool consecutive = false;
330 	struct auxtrace_buffer *b;
331 	int err;
332 
333 	while (sz > BUFFER_LIMIT_FOR_32_BIT) {
334 		b = memdup(buffer, sizeof(struct auxtrace_buffer));
335 		if (!b)
336 			return -ENOMEM;
337 		b->size = BUFFER_LIMIT_FOR_32_BIT;
338 		b->consecutive = consecutive;
339 		err = auxtrace_queues__queue_buffer(queues, idx, b);
340 		if (err) {
341 			auxtrace_buffer__free(b);
342 			return err;
343 		}
344 		buffer->data_offset += BUFFER_LIMIT_FOR_32_BIT;
345 		sz -= BUFFER_LIMIT_FOR_32_BIT;
346 		consecutive = true;
347 	}
348 
349 	buffer->size = sz;
350 	buffer->consecutive = consecutive;
351 
352 	return 0;
353 }
354 
filter_cpu(struct perf_session * session,struct perf_cpu cpu)355 static bool filter_cpu(struct perf_session *session, struct perf_cpu cpu)
356 {
357 	unsigned long *cpu_bitmap = session->itrace_synth_opts->cpu_bitmap;
358 
359 	return cpu_bitmap && cpu.cpu != -1 && !test_bit(cpu.cpu, cpu_bitmap);
360 }
361 
auxtrace_queues__add_buffer(struct auxtrace_queues * queues,struct perf_session * session,unsigned int idx,struct auxtrace_buffer * buffer,struct auxtrace_buffer ** buffer_ptr)362 static int auxtrace_queues__add_buffer(struct auxtrace_queues *queues,
363 				       struct perf_session *session,
364 				       unsigned int idx,
365 				       struct auxtrace_buffer *buffer,
366 				       struct auxtrace_buffer **buffer_ptr)
367 {
368 	int err = -ENOMEM;
369 
370 	if (filter_cpu(session, buffer->cpu))
371 		return 0;
372 
373 	buffer = memdup(buffer, sizeof(*buffer));
374 	if (!buffer)
375 		return -ENOMEM;
376 
377 	if (session->one_mmap) {
378 		buffer->data = buffer->data_offset - session->one_mmap_offset +
379 			       session->one_mmap_addr;
380 	} else if (perf_data__is_pipe(session->data)) {
381 		buffer->data = auxtrace_copy_data(buffer->size, session);
382 		if (!buffer->data)
383 			goto out_free;
384 		buffer->data_needs_freeing = true;
385 	} else if (BITS_PER_LONG == 32 &&
386 		   buffer->size > BUFFER_LIMIT_FOR_32_BIT) {
387 		err = auxtrace_queues__split_buffer(queues, idx, buffer);
388 		if (err)
389 			goto out_free;
390 	}
391 
392 	err = auxtrace_queues__queue_buffer(queues, idx, buffer);
393 	if (err)
394 		goto out_free;
395 
396 	/* FIXME: Doesn't work for split buffer */
397 	if (buffer_ptr)
398 		*buffer_ptr = buffer;
399 
400 	return 0;
401 
402 out_free:
403 	auxtrace_buffer__free(buffer);
404 	return err;
405 }
406 
auxtrace_queues__add_event(struct auxtrace_queues * queues,struct perf_session * session,union perf_event * event,off_t data_offset,struct auxtrace_buffer ** buffer_ptr)407 int auxtrace_queues__add_event(struct auxtrace_queues *queues,
408 			       struct perf_session *session,
409 			       union perf_event *event, off_t data_offset,
410 			       struct auxtrace_buffer **buffer_ptr)
411 {
412 	struct auxtrace_buffer buffer = {
413 		.pid = -1,
414 		.tid = event->auxtrace.tid,
415 		.cpu = { event->auxtrace.cpu },
416 		.data_offset = data_offset,
417 		.offset = event->auxtrace.offset,
418 		.reference = event->auxtrace.reference,
419 		.size = event->auxtrace.size,
420 	};
421 	unsigned int idx = event->auxtrace.idx;
422 
423 	return auxtrace_queues__add_buffer(queues, session, idx, &buffer,
424 					   buffer_ptr);
425 }
426 
auxtrace_queues__add_indexed_event(struct auxtrace_queues * queues,struct perf_session * session,off_t file_offset,size_t sz)427 static int auxtrace_queues__add_indexed_event(struct auxtrace_queues *queues,
428 					      struct perf_session *session,
429 					      off_t file_offset, size_t sz)
430 {
431 	union perf_event *event;
432 	int err;
433 	char buf[PERF_SAMPLE_MAX_SIZE];
434 
435 	err = perf_session__peek_event(session, file_offset, buf,
436 				       PERF_SAMPLE_MAX_SIZE, &event, NULL);
437 	if (err)
438 		return err;
439 
440 	if (event->header.type == PERF_RECORD_AUXTRACE) {
441 		if (event->header.size < sizeof(struct perf_record_auxtrace) ||
442 		    event->header.size != sz) {
443 			err = -EINVAL;
444 			goto out;
445 		}
446 		file_offset += event->header.size;
447 		err = auxtrace_queues__add_event(queues, session, event,
448 						 file_offset, NULL);
449 	}
450 out:
451 	return err;
452 }
453 
auxtrace_queues__free(struct auxtrace_queues * queues)454 void auxtrace_queues__free(struct auxtrace_queues *queues)
455 {
456 	unsigned int i;
457 
458 	for (i = 0; i < queues->nr_queues; i++) {
459 		while (!list_empty(&queues->queue_array[i].head)) {
460 			struct auxtrace_buffer *buffer;
461 
462 			buffer = list_entry(queues->queue_array[i].head.next,
463 					    struct auxtrace_buffer, list);
464 			list_del_init(&buffer->list);
465 			auxtrace_buffer__free(buffer);
466 		}
467 	}
468 
469 	zfree(&queues->queue_array);
470 	queues->nr_queues = 0;
471 }
472 
auxtrace_heapify(struct auxtrace_heap_item * heap_array,unsigned int pos,unsigned int queue_nr,u64 ordinal)473 static void auxtrace_heapify(struct auxtrace_heap_item *heap_array,
474 			     unsigned int pos, unsigned int queue_nr,
475 			     u64 ordinal)
476 {
477 	unsigned int parent;
478 
479 	while (pos) {
480 		parent = (pos - 1) >> 1;
481 		if (heap_array[parent].ordinal <= ordinal)
482 			break;
483 		heap_array[pos] = heap_array[parent];
484 		pos = parent;
485 	}
486 	heap_array[pos].queue_nr = queue_nr;
487 	heap_array[pos].ordinal = ordinal;
488 }
489 
auxtrace_heap__add(struct auxtrace_heap * heap,unsigned int queue_nr,u64 ordinal)490 int auxtrace_heap__add(struct auxtrace_heap *heap, unsigned int queue_nr,
491 		       u64 ordinal)
492 {
493 	struct auxtrace_heap_item *heap_array;
494 
495 	if (queue_nr >= heap->heap_sz) {
496 		unsigned int heap_sz = AUXTRACE_INIT_NR_QUEUES;
497 
498 		while (heap_sz <= queue_nr)
499 			heap_sz <<= 1;
500 		heap_array = realloc(heap->heap_array,
501 				     heap_sz * sizeof(struct auxtrace_heap_item));
502 		if (!heap_array)
503 			return -ENOMEM;
504 		heap->heap_array = heap_array;
505 		heap->heap_sz = heap_sz;
506 	}
507 
508 	auxtrace_heapify(heap->heap_array, heap->heap_cnt++, queue_nr, ordinal);
509 
510 	return 0;
511 }
512 
auxtrace_heap__free(struct auxtrace_heap * heap)513 void auxtrace_heap__free(struct auxtrace_heap *heap)
514 {
515 	zfree(&heap->heap_array);
516 	heap->heap_cnt = 0;
517 	heap->heap_sz = 0;
518 }
519 
auxtrace_heap__pop(struct auxtrace_heap * heap)520 void auxtrace_heap__pop(struct auxtrace_heap *heap)
521 {
522 	unsigned int pos, last, heap_cnt = heap->heap_cnt;
523 	struct auxtrace_heap_item *heap_array;
524 
525 	if (!heap_cnt)
526 		return;
527 
528 	heap->heap_cnt -= 1;
529 
530 	heap_array = heap->heap_array;
531 
532 	pos = 0;
533 	while (1) {
534 		unsigned int left, right;
535 
536 		left = (pos << 1) + 1;
537 		if (left >= heap_cnt)
538 			break;
539 		right = left + 1;
540 		if (right >= heap_cnt) {
541 			heap_array[pos] = heap_array[left];
542 			return;
543 		}
544 		if (heap_array[left].ordinal < heap_array[right].ordinal) {
545 			heap_array[pos] = heap_array[left];
546 			pos = left;
547 		} else {
548 			heap_array[pos] = heap_array[right];
549 			pos = right;
550 		}
551 	}
552 
553 	last = heap_cnt - 1;
554 	auxtrace_heapify(heap_array, pos, heap_array[last].queue_nr,
555 			 heap_array[last].ordinal);
556 }
557 
auxtrace_record__info_priv_size(struct auxtrace_record * itr,struct evlist * evlist)558 size_t auxtrace_record__info_priv_size(struct auxtrace_record *itr,
559 				       struct evlist *evlist)
560 {
561 	if (itr)
562 		return itr->info_priv_size(itr, evlist);
563 	return 0;
564 }
565 
auxtrace_not_supported(void)566 static int auxtrace_not_supported(void)
567 {
568 	pr_err("AUX area tracing is not supported on this architecture\n");
569 	return -EINVAL;
570 }
571 
auxtrace_record__info_fill(struct auxtrace_record * itr,struct perf_session * session,struct perf_record_auxtrace_info * auxtrace_info,size_t priv_size)572 int auxtrace_record__info_fill(struct auxtrace_record *itr,
573 			       struct perf_session *session,
574 			       struct perf_record_auxtrace_info *auxtrace_info,
575 			       size_t priv_size)
576 {
577 	if (itr)
578 		return itr->info_fill(itr, session, auxtrace_info, priv_size);
579 	return auxtrace_not_supported();
580 }
581 
auxtrace_record__free(struct auxtrace_record * itr)582 void auxtrace_record__free(struct auxtrace_record *itr)
583 {
584 	if (itr)
585 		itr->free(itr);
586 }
587 
auxtrace_record__snapshot_start(struct auxtrace_record * itr)588 int auxtrace_record__snapshot_start(struct auxtrace_record *itr)
589 {
590 	if (itr && itr->snapshot_start)
591 		return itr->snapshot_start(itr);
592 	return 0;
593 }
594 
auxtrace_record__snapshot_finish(struct auxtrace_record * itr,bool on_exit)595 int auxtrace_record__snapshot_finish(struct auxtrace_record *itr, bool on_exit)
596 {
597 	if (!on_exit && itr && itr->snapshot_finish)
598 		return itr->snapshot_finish(itr);
599 	return 0;
600 }
601 
auxtrace_record__find_snapshot(struct auxtrace_record * itr,int idx,struct auxtrace_mmap * mm,unsigned char * data,u64 * head,u64 * old)602 int auxtrace_record__find_snapshot(struct auxtrace_record *itr, int idx,
603 				   struct auxtrace_mmap *mm,
604 				   unsigned char *data, u64 *head, u64 *old)
605 {
606 	if (itr && itr->find_snapshot)
607 		return itr->find_snapshot(itr, idx, mm, data, head, old);
608 	return 0;
609 }
610 
auxtrace_record__options(struct auxtrace_record * itr,struct evlist * evlist,struct record_opts * opts)611 int auxtrace_record__options(struct auxtrace_record *itr,
612 			     struct evlist *evlist,
613 			     struct record_opts *opts)
614 {
615 	if (itr) {
616 		itr->evlist = evlist;
617 		return itr->recording_options(itr, evlist, opts);
618 	}
619 	return 0;
620 }
621 
auxtrace_record__reference(struct auxtrace_record * itr)622 u64 auxtrace_record__reference(struct auxtrace_record *itr)
623 {
624 	if (itr)
625 		return itr->reference(itr);
626 	return 0;
627 }
628 
auxtrace_parse_snapshot_options(struct auxtrace_record * itr,struct record_opts * opts,const char * str)629 int auxtrace_parse_snapshot_options(struct auxtrace_record *itr,
630 				    struct record_opts *opts, const char *str)
631 {
632 	if (!str)
633 		return 0;
634 
635 	/* PMU-agnostic options */
636 	switch (*str) {
637 	case 'e':
638 		opts->auxtrace_snapshot_on_exit = true;
639 		str++;
640 		break;
641 	default:
642 		break;
643 	}
644 
645 	if (itr && itr->parse_snapshot_options)
646 		return itr->parse_snapshot_options(itr, opts, str);
647 
648 	pr_err("No AUX area tracing to snapshot\n");
649 	return -EINVAL;
650 }
651 
evlist__enable_event_idx(struct evlist * evlist,struct evsel * evsel,int idx)652 static int evlist__enable_event_idx(struct evlist *evlist, struct evsel *evsel, int idx)
653 {
654 	bool per_cpu_mmaps = !perf_cpu_map__has_any_cpu(evlist->core.user_requested_cpus);
655 
656 	if (per_cpu_mmaps) {
657 		struct perf_cpu evlist_cpu = perf_cpu_map__cpu(evlist->core.all_cpus, idx);
658 		int cpu_map_idx = perf_cpu_map__idx(evsel->core.cpus, evlist_cpu);
659 
660 		if (cpu_map_idx == -1)
661 			return -EINVAL;
662 		return perf_evsel__enable_cpu(&evsel->core, cpu_map_idx);
663 	}
664 
665 	return perf_evsel__enable_thread(&evsel->core, idx);
666 }
667 
auxtrace_record__read_finish(struct auxtrace_record * itr,int idx)668 int auxtrace_record__read_finish(struct auxtrace_record *itr, int idx)
669 {
670 	struct evsel *evsel;
671 
672 	if (!itr->evlist)
673 		return -EINVAL;
674 
675 	evlist__for_each_entry(itr->evlist, evsel) {
676 		if (evsel__is_aux_event(evsel)) {
677 			if (evsel->disabled)
678 				return 0;
679 			return evlist__enable_event_idx(itr->evlist, evsel, idx);
680 		}
681 	}
682 	return -EINVAL;
683 }
684 
685 /*
686  * Event record size is 16-bit which results in a maximum size of about 64KiB.
687  * Allow about 4KiB for the rest of the sample record, to give a maximum
688  * AUX area sample size of 60KiB.
689  */
690 #define MAX_AUX_SAMPLE_SIZE (60 * 1024)
691 
692 /* Arbitrary default size if no other default provided */
693 #define DEFAULT_AUX_SAMPLE_SIZE (4 * 1024)
694 
auxtrace_validate_aux_sample_size(struct evlist * evlist,struct record_opts * opts)695 static int auxtrace_validate_aux_sample_size(struct evlist *evlist,
696 					     struct record_opts *opts)
697 {
698 	struct evsel *evsel;
699 	bool has_aux_leader = false;
700 	u32 sz;
701 
702 	evlist__for_each_entry(evlist, evsel) {
703 		sz = evsel->core.attr.aux_sample_size;
704 		if (evsel__is_group_leader(evsel)) {
705 			has_aux_leader = evsel__is_aux_event(evsel);
706 			if (sz) {
707 				if (has_aux_leader)
708 					pr_err("Cannot add AUX area sampling to an AUX area event\n");
709 				else
710 					pr_err("Cannot add AUX area sampling to a group leader\n");
711 				return -EINVAL;
712 			}
713 		}
714 		if (sz > MAX_AUX_SAMPLE_SIZE) {
715 			pr_err("AUX area sample size %u too big, max. %d\n",
716 			       sz, MAX_AUX_SAMPLE_SIZE);
717 			return -EINVAL;
718 		}
719 		if (sz) {
720 			if (!has_aux_leader) {
721 				pr_err("Cannot add AUX area sampling because group leader is not an AUX area event\n");
722 				return -EINVAL;
723 			}
724 			evsel__set_sample_bit(evsel, AUX);
725 			opts->auxtrace_sample_mode = true;
726 		} else {
727 			evsel__reset_sample_bit(evsel, AUX);
728 		}
729 	}
730 
731 	if (!opts->auxtrace_sample_mode) {
732 		pr_err("AUX area sampling requires an AUX area event group leader plus other events to which to add samples\n");
733 		return -EINVAL;
734 	}
735 
736 	if (!perf_can_aux_sample()) {
737 		pr_err("AUX area sampling is not supported by kernel\n");
738 		return -EINVAL;
739 	}
740 
741 	return 0;
742 }
743 
auxtrace_parse_sample_options(struct auxtrace_record * itr,struct evlist * evlist,struct record_opts * opts,const char * str)744 int auxtrace_parse_sample_options(struct auxtrace_record *itr,
745 				  struct evlist *evlist,
746 				  struct record_opts *opts, const char *str)
747 {
748 	struct evsel_config_term *term;
749 	struct evsel *aux_evsel;
750 	bool has_aux_sample_size = false;
751 	bool has_aux_leader = false;
752 	struct evsel *evsel;
753 	char *endptr;
754 	unsigned long sz;
755 
756 	if (!str)
757 		goto no_opt;
758 
759 	if (!itr) {
760 		pr_err("No AUX area event to sample\n");
761 		return -EINVAL;
762 	}
763 
764 	sz = strtoul(str, &endptr, 0);
765 	if (*endptr || sz > UINT_MAX) {
766 		pr_err("Bad AUX area sampling option: '%s'\n", str);
767 		return -EINVAL;
768 	}
769 
770 	if (!sz)
771 		sz = itr->default_aux_sample_size;
772 
773 	if (!sz)
774 		sz = DEFAULT_AUX_SAMPLE_SIZE;
775 
776 	/* Set aux_sample_size based on --aux-sample option */
777 	evlist__for_each_entry(evlist, evsel) {
778 		if (evsel__is_group_leader(evsel)) {
779 			has_aux_leader = evsel__is_aux_event(evsel);
780 		} else if (has_aux_leader) {
781 			evsel->core.attr.aux_sample_size = sz;
782 		}
783 	}
784 no_opt:
785 	aux_evsel = NULL;
786 	/* Override with aux_sample_size from config term */
787 	evlist__for_each_entry(evlist, evsel) {
788 		if (evsel__is_aux_event(evsel))
789 			aux_evsel = evsel;
790 		term = evsel__get_config_term(evsel, AUX_SAMPLE_SIZE);
791 		if (term) {
792 			has_aux_sample_size = true;
793 			evsel->core.attr.aux_sample_size = term->val.aux_sample_size;
794 			/* If possible, group with the AUX event */
795 			if (aux_evsel && evsel->core.attr.aux_sample_size)
796 				evlist__regroup(evlist, aux_evsel, evsel);
797 		}
798 	}
799 
800 	if (!str && !has_aux_sample_size)
801 		return 0;
802 
803 	if (!itr) {
804 		pr_err("No AUX area event to sample\n");
805 		return -EINVAL;
806 	}
807 
808 	return auxtrace_validate_aux_sample_size(evlist, opts);
809 }
810 
811 static struct aux_action_opt {
812 	const char *str;
813 	u32 aux_action;
814 	bool aux_event_opt;
815 } aux_action_opts[] = {
816 	{"start-paused", BIT(0), true},
817 	{"pause",        BIT(1), false},
818 	{"resume",       BIT(2), false},
819 	{.str = NULL},
820 };
821 
auxtrace_parse_aux_action_str(const char * str)822 static const struct aux_action_opt *auxtrace_parse_aux_action_str(const char *str)
823 {
824 	const struct aux_action_opt *opt;
825 
826 	if (!str)
827 		return NULL;
828 
829 	for (opt = aux_action_opts; opt->str; opt++)
830 		if (!strcmp(str, opt->str))
831 			return opt;
832 
833 	return NULL;
834 }
835 
auxtrace_parse_aux_action(struct evlist * evlist)836 int auxtrace_parse_aux_action(struct evlist *evlist)
837 {
838 	struct evsel_config_term *term;
839 	struct evsel *aux_evsel = NULL;
840 	struct evsel *evsel;
841 
842 	evlist__for_each_entry(evlist, evsel) {
843 		bool is_aux_event = evsel__is_aux_event(evsel);
844 		const struct aux_action_opt *opt;
845 
846 		if (is_aux_event)
847 			aux_evsel = evsel;
848 		term = evsel__get_config_term(evsel, AUX_ACTION);
849 		if (!term) {
850 			if (evsel__get_config_term(evsel, AUX_OUTPUT))
851 				goto regroup;
852 			continue;
853 		}
854 		opt = auxtrace_parse_aux_action_str(term->val.str);
855 		if (!opt) {
856 			pr_err("Bad aux-action '%s'\n", term->val.str);
857 			return -EINVAL;
858 		}
859 		if (opt->aux_event_opt && !is_aux_event) {
860 			pr_err("aux-action '%s' can only be used with AUX area event\n",
861 			       term->val.str);
862 			return -EINVAL;
863 		}
864 		if (!opt->aux_event_opt && is_aux_event) {
865 			pr_err("aux-action '%s' cannot be used for AUX area event itself\n",
866 			       term->val.str);
867 			return -EINVAL;
868 		}
869 		evsel->core.attr.aux_action = opt->aux_action;
870 regroup:
871 		/* If possible, group with the AUX event */
872 		if (aux_evsel)
873 			evlist__regroup(evlist, aux_evsel, evsel);
874 		if (!evsel__is_aux_event(evsel__leader(evsel))) {
875 			pr_err("Events with aux-action must have AUX area event group leader\n");
876 			return -EINVAL;
877 		}
878 	}
879 
880 	return 0;
881 }
882 
883 struct auxtrace_record *__weak
auxtrace_record__init(struct evlist * evlist __maybe_unused,int * err)884 auxtrace_record__init(struct evlist *evlist __maybe_unused, int *err)
885 {
886 	*err = 0;
887 	return NULL;
888 }
889 
auxtrace_index__alloc(struct list_head * head)890 static int auxtrace_index__alloc(struct list_head *head)
891 {
892 	struct auxtrace_index *auxtrace_index;
893 
894 	auxtrace_index = malloc(sizeof(struct auxtrace_index));
895 	if (!auxtrace_index)
896 		return -ENOMEM;
897 
898 	auxtrace_index->nr = 0;
899 	INIT_LIST_HEAD(&auxtrace_index->list);
900 
901 	list_add_tail(&auxtrace_index->list, head);
902 
903 	return 0;
904 }
905 
auxtrace_index__free(struct list_head * head)906 void auxtrace_index__free(struct list_head *head)
907 {
908 	struct auxtrace_index *auxtrace_index, *n;
909 
910 	list_for_each_entry_safe(auxtrace_index, n, head, list) {
911 		list_del_init(&auxtrace_index->list);
912 		free(auxtrace_index);
913 	}
914 }
915 
auxtrace_index__last(struct list_head * head)916 static struct auxtrace_index *auxtrace_index__last(struct list_head *head)
917 {
918 	struct auxtrace_index *auxtrace_index;
919 	int err;
920 
921 	if (list_empty(head)) {
922 		err = auxtrace_index__alloc(head);
923 		if (err)
924 			return NULL;
925 	}
926 
927 	auxtrace_index = list_entry(head->prev, struct auxtrace_index, list);
928 
929 	if (auxtrace_index->nr >= PERF_AUXTRACE_INDEX_ENTRY_COUNT) {
930 		err = auxtrace_index__alloc(head);
931 		if (err)
932 			return NULL;
933 		auxtrace_index = list_entry(head->prev, struct auxtrace_index,
934 					    list);
935 	}
936 
937 	return auxtrace_index;
938 }
939 
auxtrace_index__auxtrace_event(struct list_head * head,union perf_event * event,off_t file_offset)940 int auxtrace_index__auxtrace_event(struct list_head *head,
941 				   union perf_event *event, off_t file_offset)
942 {
943 	struct auxtrace_index *auxtrace_index;
944 	size_t nr;
945 
946 	auxtrace_index = auxtrace_index__last(head);
947 	if (!auxtrace_index)
948 		return -ENOMEM;
949 
950 	nr = auxtrace_index->nr;
951 	auxtrace_index->entries[nr].file_offset = file_offset;
952 	auxtrace_index->entries[nr].sz = event->header.size;
953 	auxtrace_index->nr += 1;
954 
955 	return 0;
956 }
957 
auxtrace_index__do_write(int fd,struct auxtrace_index * auxtrace_index)958 static int auxtrace_index__do_write(int fd,
959 				    struct auxtrace_index *auxtrace_index)
960 {
961 	struct auxtrace_index_entry ent;
962 	size_t i;
963 
964 	for (i = 0; i < auxtrace_index->nr; i++) {
965 		ent.file_offset = auxtrace_index->entries[i].file_offset;
966 		ent.sz = auxtrace_index->entries[i].sz;
967 		if (writen(fd, &ent, sizeof(ent)) != sizeof(ent))
968 			return -errno;
969 	}
970 	return 0;
971 }
972 
auxtrace_index__write(int fd,struct list_head * head)973 int auxtrace_index__write(int fd, struct list_head *head)
974 {
975 	struct auxtrace_index *auxtrace_index;
976 	u64 total = 0;
977 	int err;
978 
979 	list_for_each_entry(auxtrace_index, head, list)
980 		total += auxtrace_index->nr;
981 
982 	if (writen(fd, &total, sizeof(total)) != sizeof(total))
983 		return -errno;
984 
985 	list_for_each_entry(auxtrace_index, head, list) {
986 		err = auxtrace_index__do_write(fd, auxtrace_index);
987 		if (err)
988 			return err;
989 	}
990 
991 	return 0;
992 }
993 
auxtrace_index__process_entry(int fd,struct list_head * head,bool needs_swap)994 static int auxtrace_index__process_entry(int fd, struct list_head *head,
995 					 bool needs_swap)
996 {
997 	struct auxtrace_index *auxtrace_index;
998 	struct auxtrace_index_entry ent;
999 	size_t nr;
1000 
1001 	if (readn(fd, &ent, sizeof(ent)) != sizeof(ent))
1002 		return -1;
1003 
1004 	auxtrace_index = auxtrace_index__last(head);
1005 	if (!auxtrace_index)
1006 		return -1;
1007 
1008 	nr = auxtrace_index->nr;
1009 	if (needs_swap) {
1010 		auxtrace_index->entries[nr].file_offset =
1011 						bswap_64(ent.file_offset);
1012 		auxtrace_index->entries[nr].sz = bswap_64(ent.sz);
1013 	} else {
1014 		auxtrace_index->entries[nr].file_offset = ent.file_offset;
1015 		auxtrace_index->entries[nr].sz = ent.sz;
1016 	}
1017 
1018 	auxtrace_index->nr = nr + 1;
1019 
1020 	return 0;
1021 }
1022 
auxtrace_index__process(int fd,u64 size,struct perf_session * session,bool needs_swap)1023 int auxtrace_index__process(int fd, u64 size, struct perf_session *session,
1024 			    bool needs_swap)
1025 {
1026 	struct list_head *head = &session->auxtrace_index;
1027 	u64 nr;
1028 
1029 	if (readn(fd, &nr, sizeof(u64)) != sizeof(u64))
1030 		return -1;
1031 
1032 	if (needs_swap)
1033 		nr = bswap_64(nr);
1034 
1035 	if (sizeof(u64) + nr * sizeof(struct auxtrace_index_entry) > size)
1036 		return -1;
1037 
1038 	while (nr--) {
1039 		int err;
1040 
1041 		err = auxtrace_index__process_entry(fd, head, needs_swap);
1042 		if (err)
1043 			return -1;
1044 	}
1045 
1046 	return 0;
1047 }
1048 
auxtrace_queues__process_index_entry(struct auxtrace_queues * queues,struct perf_session * session,struct auxtrace_index_entry * ent)1049 static int auxtrace_queues__process_index_entry(struct auxtrace_queues *queues,
1050 						struct perf_session *session,
1051 						struct auxtrace_index_entry *ent)
1052 {
1053 	return auxtrace_queues__add_indexed_event(queues, session,
1054 						  ent->file_offset, ent->sz);
1055 }
1056 
auxtrace_queues__process_index(struct auxtrace_queues * queues,struct perf_session * session)1057 int auxtrace_queues__process_index(struct auxtrace_queues *queues,
1058 				   struct perf_session *session)
1059 {
1060 	struct auxtrace_index *auxtrace_index;
1061 	struct auxtrace_index_entry *ent;
1062 	size_t i;
1063 	int err;
1064 
1065 	if (auxtrace__dont_decode(session))
1066 		return 0;
1067 
1068 	list_for_each_entry(auxtrace_index, &session->auxtrace_index, list) {
1069 		for (i = 0; i < auxtrace_index->nr; i++) {
1070 			ent = &auxtrace_index->entries[i];
1071 			err = auxtrace_queues__process_index_entry(queues,
1072 								   session,
1073 								   ent);
1074 			if (err)
1075 				return err;
1076 		}
1077 	}
1078 	return 0;
1079 }
1080 
auxtrace_buffer__next(struct auxtrace_queue * queue,struct auxtrace_buffer * buffer)1081 struct auxtrace_buffer *auxtrace_buffer__next(struct auxtrace_queue *queue,
1082 					      struct auxtrace_buffer *buffer)
1083 {
1084 	if (buffer) {
1085 		if (list_is_last(&buffer->list, &queue->head))
1086 			return NULL;
1087 		return list_entry(buffer->list.next, struct auxtrace_buffer,
1088 				  list);
1089 	} else {
1090 		if (list_empty(&queue->head))
1091 			return NULL;
1092 		return list_entry(queue->head.next, struct auxtrace_buffer,
1093 				  list);
1094 	}
1095 }
1096 
auxtrace_queues__sample_queue(struct auxtrace_queues * queues,struct perf_sample * sample,struct perf_session * session)1097 struct auxtrace_queue *auxtrace_queues__sample_queue(struct auxtrace_queues *queues,
1098 						     struct perf_sample *sample,
1099 						     struct perf_session *session)
1100 {
1101 	struct perf_sample_id *sid;
1102 	unsigned int idx;
1103 	u64 id;
1104 
1105 	id = sample->id;
1106 	if (!id)
1107 		return NULL;
1108 
1109 	sid = evlist__id2sid(session->evlist, id);
1110 	if (!sid)
1111 		return NULL;
1112 
1113 	idx = sid->idx;
1114 
1115 	if (idx >= queues->nr_queues)
1116 		return NULL;
1117 
1118 	return &queues->queue_array[idx];
1119 }
1120 
auxtrace_queues__add_sample(struct auxtrace_queues * queues,struct perf_session * session,struct perf_sample * sample,u64 data_offset,u64 reference)1121 int auxtrace_queues__add_sample(struct auxtrace_queues *queues,
1122 				struct perf_session *session,
1123 				struct perf_sample *sample, u64 data_offset,
1124 				u64 reference)
1125 {
1126 	struct auxtrace_buffer buffer = {
1127 		.pid = -1,
1128 		.data_offset = data_offset,
1129 		.reference = reference,
1130 		.size = sample->aux_sample.size,
1131 	};
1132 	struct perf_sample_id *sid;
1133 	u64 id = sample->id;
1134 	unsigned int idx;
1135 
1136 	if (!id)
1137 		return -EINVAL;
1138 
1139 	sid = evlist__id2sid(session->evlist, id);
1140 	if (!sid)
1141 		return -ENOENT;
1142 
1143 	idx = sid->idx;
1144 	buffer.tid = sid->tid;
1145 	buffer.cpu = sid->cpu;
1146 
1147 	return auxtrace_queues__add_buffer(queues, session, idx, &buffer, NULL);
1148 }
1149 
1150 struct queue_data {
1151 	bool samples;
1152 	bool events;
1153 };
1154 
auxtrace_queue_data_cb(struct perf_session * session,union perf_event * event,u64 offset,void * data)1155 static int auxtrace_queue_data_cb(struct perf_session *session,
1156 				  union perf_event *event, u64 offset,
1157 				  void *data)
1158 {
1159 	struct queue_data *qd = data;
1160 	struct perf_sample sample;
1161 	int err;
1162 
1163 	if (qd->events && event->header.type == PERF_RECORD_AUXTRACE) {
1164 		if (event->header.size < sizeof(struct perf_record_auxtrace))
1165 			return -EINVAL;
1166 		offset += event->header.size;
1167 		return session->auxtrace->queue_data(session, NULL, event,
1168 						     offset);
1169 	}
1170 
1171 	if (!qd->samples || event->header.type != PERF_RECORD_SAMPLE)
1172 		return 0;
1173 
1174 	perf_sample__init(&sample, /*all=*/false);
1175 	err = evlist__parse_sample(session->evlist, event, &sample);
1176 	if (err)
1177 		goto out;
1178 
1179 	if (sample.aux_sample.size) {
1180 		offset += sample.aux_sample.data - (void *)event;
1181 
1182 		err = session->auxtrace->queue_data(session, &sample, NULL, offset);
1183 	}
1184 out:
1185 	perf_sample__exit(&sample);
1186 	return err;
1187 }
1188 
auxtrace_queue_data(struct perf_session * session,bool samples,bool events)1189 int auxtrace_queue_data(struct perf_session *session, bool samples, bool events)
1190 {
1191 	struct queue_data qd = {
1192 		.samples = samples,
1193 		.events = events,
1194 	};
1195 
1196 	if (auxtrace__dont_decode(session))
1197 		return 0;
1198 
1199 	if (perf_data__is_pipe(session->data))
1200 		return 0;
1201 
1202 	if (!session->auxtrace || !session->auxtrace->queue_data)
1203 		return -EINVAL;
1204 
1205 	return perf_session__peek_events(session, session->header.data_offset,
1206 					 session->header.data_size,
1207 					 auxtrace_queue_data_cb, &qd);
1208 }
1209 
auxtrace_buffer__get_data_rw(struct auxtrace_buffer * buffer,int fd,bool rw)1210 void *auxtrace_buffer__get_data_rw(struct auxtrace_buffer *buffer, int fd, bool rw)
1211 {
1212 	int prot = rw ? PROT_READ | PROT_WRITE : PROT_READ;
1213 	size_t adj = buffer->data_offset & (page_size - 1);
1214 	size_t size = buffer->size + adj;
1215 	off_t file_offset = buffer->data_offset - adj;
1216 	void *addr;
1217 
1218 	if (buffer->data)
1219 		return buffer->data;
1220 
1221 	addr = mmap(NULL, size, prot, MAP_SHARED, fd, file_offset);
1222 	if (addr == MAP_FAILED)
1223 		return NULL;
1224 
1225 	buffer->mmap_addr = addr;
1226 	buffer->mmap_size = size;
1227 
1228 	buffer->data = addr + adj;
1229 
1230 	return buffer->data;
1231 }
1232 
auxtrace_buffer__put_data(struct auxtrace_buffer * buffer)1233 void auxtrace_buffer__put_data(struct auxtrace_buffer *buffer)
1234 {
1235 	if (!buffer->data || !buffer->mmap_addr)
1236 		return;
1237 	munmap(buffer->mmap_addr, buffer->mmap_size);
1238 	buffer->mmap_addr = NULL;
1239 	buffer->mmap_size = 0;
1240 	buffer->data = NULL;
1241 	buffer->use_data = NULL;
1242 }
1243 
auxtrace_buffer__drop_data(struct auxtrace_buffer * buffer)1244 void auxtrace_buffer__drop_data(struct auxtrace_buffer *buffer)
1245 {
1246 	auxtrace_buffer__put_data(buffer);
1247 	if (buffer->data_needs_freeing) {
1248 		buffer->data_needs_freeing = false;
1249 		zfree(&buffer->data);
1250 		buffer->use_data = NULL;
1251 		buffer->size = 0;
1252 	}
1253 }
1254 
auxtrace_buffer__free(struct auxtrace_buffer * buffer)1255 void auxtrace_buffer__free(struct auxtrace_buffer *buffer)
1256 {
1257 	auxtrace_buffer__drop_data(buffer);
1258 	free(buffer);
1259 }
1260 
auxtrace_synth_guest_error(struct perf_record_auxtrace_error * auxtrace_error,int type,int code,int cpu,pid_t pid,pid_t tid,u64 ip,const char * msg,u64 timestamp,pid_t machine_pid,int vcpu)1261 void auxtrace_synth_guest_error(struct perf_record_auxtrace_error *auxtrace_error, int type,
1262 				int code, int cpu, pid_t pid, pid_t tid, u64 ip,
1263 				const char *msg, u64 timestamp,
1264 				pid_t machine_pid, int vcpu)
1265 {
1266 	size_t size;
1267 
1268 	memset(auxtrace_error, 0, sizeof(struct perf_record_auxtrace_error));
1269 
1270 	auxtrace_error->header.type = PERF_RECORD_AUXTRACE_ERROR;
1271 	auxtrace_error->type = type;
1272 	auxtrace_error->code = code;
1273 	auxtrace_error->cpu = cpu;
1274 	auxtrace_error->pid = pid;
1275 	auxtrace_error->tid = tid;
1276 	auxtrace_error->fmt = 1;
1277 	auxtrace_error->ip = ip;
1278 	auxtrace_error->time = timestamp;
1279 	strlcpy(auxtrace_error->msg, msg, MAX_AUXTRACE_ERROR_MSG);
1280 	if (machine_pid) {
1281 		auxtrace_error->fmt = 2;
1282 		auxtrace_error->machine_pid = machine_pid;
1283 		auxtrace_error->vcpu = vcpu;
1284 		size = sizeof(*auxtrace_error);
1285 	} else {
1286 		size = (void *)auxtrace_error->msg - (void *)auxtrace_error +
1287 		       strlen(auxtrace_error->msg) + 1;
1288 	}
1289 	auxtrace_error->header.size = PERF_ALIGN(size, sizeof(u64));
1290 }
1291 
auxtrace_synth_error(struct perf_record_auxtrace_error * auxtrace_error,int type,int code,int cpu,pid_t pid,pid_t tid,u64 ip,const char * msg,u64 timestamp)1292 void auxtrace_synth_error(struct perf_record_auxtrace_error *auxtrace_error, int type,
1293 			  int code, int cpu, pid_t pid, pid_t tid, u64 ip,
1294 			  const char *msg, u64 timestamp)
1295 {
1296 	auxtrace_synth_guest_error(auxtrace_error, type, code, cpu, pid, tid,
1297 				   ip, msg, timestamp, 0, -1);
1298 }
1299 
perf_event__synthesize_auxtrace_info(struct auxtrace_record * itr,const struct perf_tool * tool,struct perf_session * session,perf_event__handler_t process)1300 int perf_event__synthesize_auxtrace_info(struct auxtrace_record *itr,
1301 					 const struct perf_tool *tool,
1302 					 struct perf_session *session,
1303 					 perf_event__handler_t process)
1304 {
1305 	union perf_event *ev;
1306 	size_t priv_size;
1307 	int err;
1308 
1309 	pr_debug2("Synthesizing auxtrace information\n");
1310 	priv_size = auxtrace_record__info_priv_size(itr, session->evlist);
1311 	ev = zalloc(sizeof(struct perf_record_auxtrace_info) + priv_size);
1312 	if (!ev)
1313 		return -ENOMEM;
1314 
1315 	ev->auxtrace_info.header.type = PERF_RECORD_AUXTRACE_INFO;
1316 	ev->auxtrace_info.header.size = sizeof(struct perf_record_auxtrace_info) +
1317 					priv_size;
1318 	err = auxtrace_record__info_fill(itr, session, &ev->auxtrace_info,
1319 					 priv_size);
1320 	if (err)
1321 		goto out_free;
1322 
1323 	err = process(tool, ev, NULL, NULL);
1324 out_free:
1325 	free(ev);
1326 	return err;
1327 }
1328 
unleader_evsel(struct evlist * evlist,struct evsel * leader)1329 static void unleader_evsel(struct evlist *evlist, struct evsel *leader)
1330 {
1331 	struct evsel *new_leader = NULL;
1332 	struct evsel *evsel;
1333 
1334 	/* Find new leader for the group */
1335 	evlist__for_each_entry(evlist, evsel) {
1336 		if (!evsel__has_leader(evsel, leader) || evsel == leader)
1337 			continue;
1338 		if (!new_leader)
1339 			new_leader = evsel;
1340 		evsel__set_leader(evsel, new_leader);
1341 	}
1342 
1343 	/* Update group information */
1344 	if (new_leader) {
1345 		zfree(&new_leader->group_name);
1346 		new_leader->group_name = leader->group_name;
1347 		leader->group_name = NULL;
1348 
1349 		new_leader->core.nr_members = leader->core.nr_members - 1;
1350 		leader->core.nr_members = 1;
1351 	}
1352 }
1353 
unleader_auxtrace(struct perf_session * session)1354 static void unleader_auxtrace(struct perf_session *session)
1355 {
1356 	struct evsel *evsel;
1357 
1358 	evlist__for_each_entry(session->evlist, evsel) {
1359 		if (auxtrace__evsel_is_auxtrace(session, evsel) &&
1360 		    evsel__is_group_leader(evsel)) {
1361 			unleader_evsel(session->evlist, evsel);
1362 		}
1363 	}
1364 }
1365 
perf_event__process_auxtrace_info(struct perf_session * session,union perf_event * event)1366 int perf_event__process_auxtrace_info(struct perf_session *session,
1367 				      union perf_event *event)
1368 {
1369 	enum auxtrace_type type = event->auxtrace_info.type;
1370 	int err;
1371 
1372 	if (dump_trace)
1373 		fprintf(stdout, " type: %u\n", type);
1374 
1375 	switch (type) {
1376 	case PERF_AUXTRACE_INTEL_PT:
1377 		err = intel_pt_process_auxtrace_info(event, session);
1378 		break;
1379 	case PERF_AUXTRACE_INTEL_BTS:
1380 		err = intel_bts_process_auxtrace_info(event, session);
1381 		break;
1382 	case PERF_AUXTRACE_ARM_SPE:
1383 		err = arm_spe_process_auxtrace_info(event, session);
1384 		break;
1385 	case PERF_AUXTRACE_CS_ETM:
1386 		err = cs_etm__process_auxtrace_info(event, session);
1387 		break;
1388 	case PERF_AUXTRACE_S390_CPUMSF:
1389 		err = s390_cpumsf_process_auxtrace_info(event, session);
1390 		break;
1391 	case PERF_AUXTRACE_HISI_PTT:
1392 		err = hisi_ptt_process_auxtrace_info(event, session);
1393 		break;
1394 	case PERF_AUXTRACE_VPA_DTL:
1395 		err = powerpc_vpadtl_process_auxtrace_info(event, session);
1396 		break;
1397 	case PERF_AUXTRACE_UNKNOWN:
1398 	default:
1399 		return -EINVAL;
1400 	}
1401 
1402 	if (err)
1403 		return err;
1404 
1405 	unleader_auxtrace(session);
1406 
1407 	return 0;
1408 }
1409 
perf_event__process_auxtrace(struct perf_session * session,union perf_event * event)1410 s64 perf_event__process_auxtrace(struct perf_session *session,
1411 				 union perf_event *event)
1412 {
1413 	s64 err;
1414 
1415 	if (dump_trace)
1416 		fprintf(stdout, " size: %#"PRI_lx64"  offset: %#"PRI_lx64"  ref: %#"PRI_lx64"  idx: %u  tid: %d  cpu: %d\n",
1417 			event->auxtrace.size, event->auxtrace.offset,
1418 			event->auxtrace.reference, event->auxtrace.idx,
1419 			event->auxtrace.tid, event->auxtrace.cpu);
1420 
1421 	if (auxtrace__dont_decode(session))
1422 		return event->auxtrace.size;
1423 
1424 	if (!session->auxtrace || event->header.type != PERF_RECORD_AUXTRACE)
1425 		return -EINVAL;
1426 
1427 	err = session->auxtrace->process_auxtrace_event(session, event, session->tool);
1428 	if (err < 0)
1429 		return err;
1430 
1431 	return event->auxtrace.size;
1432 }
1433 
1434 #define PERF_ITRACE_DEFAULT_PERIOD_TYPE		PERF_ITRACE_PERIOD_NANOSECS
1435 #define PERF_ITRACE_DEFAULT_PERIOD		100000
1436 #define PERF_ITRACE_DEFAULT_CALLCHAIN_SZ	16
1437 #define PERF_ITRACE_MAX_CALLCHAIN_SZ		1024
1438 #define PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ	64
1439 #define PERF_ITRACE_MAX_LAST_BRANCH_SZ		1024
1440 
itrace_synth_opts__set_default(struct itrace_synth_opts * synth_opts,bool no_sample)1441 void itrace_synth_opts__set_default(struct itrace_synth_opts *synth_opts,
1442 				    bool no_sample)
1443 {
1444 	synth_opts->branches = true;
1445 	synth_opts->transactions = true;
1446 	synth_opts->ptwrites = true;
1447 	synth_opts->pwr_events = true;
1448 	synth_opts->other_events = true;
1449 	synth_opts->intr_events = true;
1450 	synth_opts->errors = true;
1451 	synth_opts->flc = true;
1452 	synth_opts->llc = true;
1453 	synth_opts->tlb = true;
1454 	synth_opts->mem = true;
1455 	synth_opts->remote_access = true;
1456 
1457 	if (no_sample) {
1458 		synth_opts->period_type = PERF_ITRACE_PERIOD_INSTRUCTIONS;
1459 		synth_opts->period = 1;
1460 		synth_opts->calls = true;
1461 	} else {
1462 		synth_opts->instructions = true;
1463 		synth_opts->cycles = true;
1464 		synth_opts->period_type = PERF_ITRACE_DEFAULT_PERIOD_TYPE;
1465 		synth_opts->period = PERF_ITRACE_DEFAULT_PERIOD;
1466 	}
1467 	synth_opts->callchain_sz = PERF_ITRACE_DEFAULT_CALLCHAIN_SZ;
1468 	synth_opts->last_branch_sz = PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ;
1469 	synth_opts->initial_skip = 0;
1470 }
1471 
get_flag(const char ** ptr,unsigned int * flags)1472 static int get_flag(const char **ptr, unsigned int *flags)
1473 {
1474 	while (1) {
1475 		char c = **ptr;
1476 
1477 		if (c >= 'a' && c <= 'z') {
1478 			*flags |= 1 << (c - 'a');
1479 			++*ptr;
1480 			return 0;
1481 		} else if (c == ' ') {
1482 			++*ptr;
1483 			continue;
1484 		} else {
1485 			return -1;
1486 		}
1487 	}
1488 }
1489 
get_flags(const char ** ptr,unsigned int * plus_flags,unsigned int * minus_flags)1490 static int get_flags(const char **ptr, unsigned int *plus_flags, unsigned int *minus_flags)
1491 {
1492 	while (1) {
1493 		switch (**ptr) {
1494 		case '+':
1495 			++*ptr;
1496 			if (get_flag(ptr, plus_flags))
1497 				return -1;
1498 			break;
1499 		case '-':
1500 			++*ptr;
1501 			if (get_flag(ptr, minus_flags))
1502 				return -1;
1503 			break;
1504 		case ' ':
1505 			++*ptr;
1506 			break;
1507 		default:
1508 			return 0;
1509 		}
1510 	}
1511 }
1512 
1513 #define ITRACE_DFLT_LOG_ON_ERROR_SZ 16384
1514 
itrace_log_on_error_size(void)1515 static unsigned int itrace_log_on_error_size(void)
1516 {
1517 	unsigned int sz = 0;
1518 
1519 	perf_config_scan("itrace.debug-log-buffer-size", "%u", &sz);
1520 	return sz ?: ITRACE_DFLT_LOG_ON_ERROR_SZ;
1521 }
1522 
1523 /*
1524  * Please check tools/perf/Documentation/perf-script.txt for information
1525  * about the options parsed here, which is introduced after this cset,
1526  * when support in 'perf script' for these options is introduced.
1527  */
itrace_do_parse_synth_opts(struct itrace_synth_opts * synth_opts,const char * str,int unset)1528 int itrace_do_parse_synth_opts(struct itrace_synth_opts *synth_opts,
1529 			       const char *str, int unset)
1530 {
1531 	const char *p;
1532 	char *endptr;
1533 	bool period_type_set = false;
1534 	bool period_set = false;
1535 	bool iy = false;
1536 
1537 	synth_opts->set = true;
1538 
1539 	if (unset) {
1540 		synth_opts->dont_decode = true;
1541 		return 0;
1542 	}
1543 
1544 	if (!str) {
1545 		itrace_synth_opts__set_default(synth_opts,
1546 					       synth_opts->default_no_sample);
1547 		return 0;
1548 	}
1549 
1550 	for (p = str; *p;) {
1551 		switch (*p++) {
1552 		case 'i':
1553 		case 'y':
1554 			iy = true;
1555 			if (p[-1] == 'y')
1556 				synth_opts->cycles = true;
1557 			else
1558 				synth_opts->instructions = true;
1559 			while (*p == ' ' || *p == ',')
1560 				p += 1;
1561 			if (isdigit(*p)) {
1562 				synth_opts->period = strtoull(p, &endptr, 10);
1563 				period_set = true;
1564 				p = endptr;
1565 				while (*p == ' ' || *p == ',')
1566 					p += 1;
1567 				switch (*p++) {
1568 				case 'i':
1569 					synth_opts->period_type =
1570 						PERF_ITRACE_PERIOD_INSTRUCTIONS;
1571 					period_type_set = true;
1572 					break;
1573 				case 't':
1574 					synth_opts->period_type =
1575 						PERF_ITRACE_PERIOD_TICKS;
1576 					period_type_set = true;
1577 					break;
1578 				case 'm':
1579 					synth_opts->period *= 1000;
1580 					/* Fall through */
1581 				case 'u':
1582 					synth_opts->period *= 1000;
1583 					/* Fall through */
1584 				case 'n':
1585 					if (*p++ != 's')
1586 						goto out_err;
1587 					synth_opts->period_type =
1588 						PERF_ITRACE_PERIOD_NANOSECS;
1589 					period_type_set = true;
1590 					break;
1591 				case '\0':
1592 					goto out;
1593 				default:
1594 					goto out_err;
1595 				}
1596 			}
1597 			break;
1598 		case 'b':
1599 			synth_opts->branches = true;
1600 			break;
1601 		case 'x':
1602 			synth_opts->transactions = true;
1603 			break;
1604 		case 'w':
1605 			synth_opts->ptwrites = true;
1606 			break;
1607 		case 'p':
1608 			synth_opts->pwr_events = true;
1609 			break;
1610 		case 'o':
1611 			synth_opts->other_events = true;
1612 			break;
1613 		case 'I':
1614 			synth_opts->intr_events = true;
1615 			break;
1616 		case 'e':
1617 			synth_opts->errors = true;
1618 			if (get_flags(&p, &synth_opts->error_plus_flags,
1619 				      &synth_opts->error_minus_flags))
1620 				goto out_err;
1621 			break;
1622 		case 'd':
1623 			synth_opts->log = true;
1624 			if (get_flags(&p, &synth_opts->log_plus_flags,
1625 				      &synth_opts->log_minus_flags))
1626 				goto out_err;
1627 			if (synth_opts->log_plus_flags & AUXTRACE_LOG_FLG_ON_ERROR)
1628 				synth_opts->log_on_error_size = itrace_log_on_error_size();
1629 			break;
1630 		case 'c':
1631 			synth_opts->branches = true;
1632 			synth_opts->calls = true;
1633 			break;
1634 		case 'r':
1635 			synth_opts->branches = true;
1636 			synth_opts->returns = true;
1637 			break;
1638 		case 'G':
1639 		case 'g':
1640 			if (p[-1] == 'G')
1641 				synth_opts->add_callchain = true;
1642 			else
1643 				synth_opts->callchain = true;
1644 			synth_opts->callchain_sz =
1645 					PERF_ITRACE_DEFAULT_CALLCHAIN_SZ;
1646 			while (*p == ' ' || *p == ',')
1647 				p += 1;
1648 			if (isdigit(*p)) {
1649 				unsigned int val;
1650 
1651 				val = strtoul(p, &endptr, 10);
1652 				p = endptr;
1653 				if (!val || val > PERF_ITRACE_MAX_CALLCHAIN_SZ)
1654 					goto out_err;
1655 				synth_opts->callchain_sz = val;
1656 			}
1657 			break;
1658 		case 'L':
1659 		case 'l':
1660 			if (p[-1] == 'L')
1661 				synth_opts->add_last_branch = true;
1662 			else
1663 				synth_opts->last_branch = true;
1664 			synth_opts->last_branch_sz =
1665 					PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ;
1666 			while (*p == ' ' || *p == ',')
1667 				p += 1;
1668 			if (isdigit(*p)) {
1669 				unsigned int val;
1670 
1671 				val = strtoul(p, &endptr, 10);
1672 				p = endptr;
1673 				if (!val ||
1674 				    val > PERF_ITRACE_MAX_LAST_BRANCH_SZ)
1675 					goto out_err;
1676 				synth_opts->last_branch_sz = val;
1677 			}
1678 			break;
1679 		case 's':
1680 			synth_opts->initial_skip = strtoul(p, &endptr, 10);
1681 			if (p == endptr)
1682 				goto out_err;
1683 			p = endptr;
1684 			break;
1685 		case 'f':
1686 			synth_opts->flc = true;
1687 			break;
1688 		case 'm':
1689 			synth_opts->llc = true;
1690 			break;
1691 		case 't':
1692 			synth_opts->tlb = true;
1693 			break;
1694 		case 'a':
1695 			synth_opts->remote_access = true;
1696 			break;
1697 		case 'M':
1698 			synth_opts->mem = true;
1699 			break;
1700 		case 'q':
1701 			synth_opts->quick += 1;
1702 			break;
1703 		case 'A':
1704 			synth_opts->approx_ipc = true;
1705 			break;
1706 		case 'Z':
1707 			synth_opts->timeless_decoding = true;
1708 			break;
1709 		case 'T':
1710 			synth_opts->use_timestamp = true;
1711 			break;
1712 		case ' ':
1713 		case ',':
1714 			break;
1715 		default:
1716 			goto out_err;
1717 		}
1718 	}
1719 out:
1720 	if (iy) {
1721 		if (!period_type_set)
1722 			synth_opts->period_type =
1723 					PERF_ITRACE_DEFAULT_PERIOD_TYPE;
1724 		if (!period_set)
1725 			synth_opts->period = PERF_ITRACE_DEFAULT_PERIOD;
1726 	}
1727 
1728 	return 0;
1729 
1730 out_err:
1731 	pr_err("Bad Instruction Tracing options '%s'\n", str);
1732 	return -EINVAL;
1733 }
1734 
itrace_parse_synth_opts(const struct option * opt,const char * str,int unset)1735 int itrace_parse_synth_opts(const struct option *opt, const char *str, int unset)
1736 {
1737 	return itrace_do_parse_synth_opts(opt->value, str, unset);
1738 }
1739 
1740 static const char * const auxtrace_error_type_name[] = {
1741 	[PERF_AUXTRACE_ERROR_ITRACE] = "instruction trace",
1742 };
1743 
auxtrace_error_name(int type)1744 static const char *auxtrace_error_name(int type)
1745 {
1746 	const char *error_type_name = NULL;
1747 
1748 	if (type < PERF_AUXTRACE_ERROR_MAX)
1749 		error_type_name = auxtrace_error_type_name[type];
1750 	if (!error_type_name)
1751 		error_type_name = "unknown AUX";
1752 	return error_type_name;
1753 }
1754 
perf_event__fprintf_auxtrace_error(union perf_event * event,FILE * fp)1755 size_t perf_event__fprintf_auxtrace_error(union perf_event *event, FILE *fp)
1756 {
1757 	struct perf_record_auxtrace_error *e = &event->auxtrace_error;
1758 	unsigned long long nsecs = e->time;
1759 	const char *msg = e->msg;
1760 	int ret;
1761 
1762 	ret = fprintf(fp, " %s error type %u",
1763 		      auxtrace_error_name(e->type), e->type);
1764 
1765 	if (e->fmt && nsecs) {
1766 		unsigned long secs = nsecs / NSEC_PER_SEC;
1767 
1768 		nsecs -= secs * NSEC_PER_SEC;
1769 		ret += fprintf(fp, " time %lu.%09llu", secs, nsecs);
1770 	} else {
1771 		ret += fprintf(fp, " time 0");
1772 	}
1773 
1774 	if (!e->fmt)
1775 		msg = (const char *)&e->time;
1776 
1777 	if (e->fmt >= 2 && e->machine_pid)
1778 		ret += fprintf(fp, " machine_pid %d vcpu %d", e->machine_pid, e->vcpu);
1779 
1780 	ret += fprintf(fp, " cpu %d pid %d tid %d ip %#"PRI_lx64" code %u: %s\n",
1781 		       e->cpu, e->pid, e->tid, e->ip, e->code, msg);
1782 	return ret;
1783 }
1784 
perf_session__auxtrace_error_inc(struct perf_session * session,union perf_event * event)1785 void perf_session__auxtrace_error_inc(struct perf_session *session,
1786 				      union perf_event *event)
1787 {
1788 	struct perf_record_auxtrace_error *e = &event->auxtrace_error;
1789 
1790 	if (e->type < PERF_AUXTRACE_ERROR_MAX)
1791 		session->evlist->stats.nr_auxtrace_errors[e->type] += 1;
1792 }
1793 
events_stats__auxtrace_error_warn(const struct events_stats * stats)1794 void events_stats__auxtrace_error_warn(const struct events_stats *stats)
1795 {
1796 	int i;
1797 
1798 	for (i = 0; i < PERF_AUXTRACE_ERROR_MAX; i++) {
1799 		if (!stats->nr_auxtrace_errors[i])
1800 			continue;
1801 		ui__warning("%u %s errors\n",
1802 			    stats->nr_auxtrace_errors[i],
1803 			    auxtrace_error_name(i));
1804 	}
1805 }
1806 
perf_event__process_auxtrace_error(struct perf_session * session,union perf_event * event)1807 int perf_event__process_auxtrace_error(struct perf_session *session,
1808 				       union perf_event *event)
1809 {
1810 	if (auxtrace__dont_decode(session))
1811 		return 0;
1812 
1813 	perf_event__fprintf_auxtrace_error(event, stdout);
1814 	return 0;
1815 }
1816 
1817 /*
1818  * In the compat mode kernel runs in 64-bit and perf tool runs in 32-bit mode,
1819  * 32-bit perf tool cannot access 64-bit value atomically, which might lead to
1820  * the issues caused by the below sequence on multiple CPUs: when perf tool
1821  * accesses either the load operation or the store operation for 64-bit value,
1822  * on some architectures the operation is divided into two instructions, one
1823  * is for accessing the low 32-bit value and another is for the high 32-bit;
1824  * thus these two user operations can give the kernel chances to access the
1825  * 64-bit value, and thus leads to the unexpected load values.
1826  *
1827  *   kernel (64-bit)                        user (32-bit)
1828  *
1829  *   if (LOAD ->aux_tail) { --,             LOAD ->aux_head_lo
1830  *       STORE $aux_data      |       ,--->
1831  *       FLUSH $aux_data      |       |     LOAD ->aux_head_hi
1832  *       STORE ->aux_head   --|-------`     smp_rmb()
1833  *   }                        |             LOAD $data
1834  *                            |             smp_mb()
1835  *                            |             STORE ->aux_tail_lo
1836  *                            `----------->
1837  *                                          STORE ->aux_tail_hi
1838  *
1839  * For this reason, it's impossible for the perf tool to work correctly when
1840  * the AUX head or tail is bigger than 4GB (more than 32 bits length); and we
1841  * can not simply limit the AUX ring buffer to less than 4GB, the reason is
1842  * the pointers can be increased monotonically, whatever the buffer size it is,
1843  * at the end the head and tail can be bigger than 4GB and carry out to the
1844  * high 32-bit.
1845  *
1846  * To mitigate the issues and improve the user experience, we can allow the
1847  * perf tool working in certain conditions and bail out with error if detect
1848  * any overflow cannot be handled.
1849  *
1850  * For reading the AUX head, it reads out the values for three times, and
1851  * compares the high 4 bytes of the values between the first time and the last
1852  * time, if there has no change for high 4 bytes injected by the kernel during
1853  * the user reading sequence, it's safe for use the second value.
1854  *
1855  * When compat_auxtrace_mmap__write_tail() detects any carrying in the high
1856  * 32 bits, it means there have two store operations in user space and it cannot
1857  * promise the atomicity for 64-bit write, so return '-1' in this case to tell
1858  * the caller an overflow error has happened.
1859  */
compat_auxtrace_mmap__read_head(struct auxtrace_mmap * mm)1860 u64 __weak compat_auxtrace_mmap__read_head(struct auxtrace_mmap *mm)
1861 {
1862 	struct perf_event_mmap_page *pc = mm->userpg;
1863 	u64 first, second, last;
1864 	u64 mask = (u64)(UINT32_MAX) << 32;
1865 
1866 	do {
1867 		first = READ_ONCE(pc->aux_head);
1868 		/* Ensure all reads are done after we read the head */
1869 		smp_rmb();
1870 		second = READ_ONCE(pc->aux_head);
1871 		/* Ensure all reads are done after we read the head */
1872 		smp_rmb();
1873 		last = READ_ONCE(pc->aux_head);
1874 	} while ((first & mask) != (last & mask));
1875 
1876 	return second;
1877 }
1878 
compat_auxtrace_mmap__write_tail(struct auxtrace_mmap * mm,u64 tail)1879 int __weak compat_auxtrace_mmap__write_tail(struct auxtrace_mmap *mm, u64 tail)
1880 {
1881 	struct perf_event_mmap_page *pc = mm->userpg;
1882 	u64 mask = (u64)(UINT32_MAX) << 32;
1883 
1884 	if (tail & mask)
1885 		return -1;
1886 
1887 	/* Ensure all reads are done before we write the tail out */
1888 	smp_mb();
1889 	WRITE_ONCE(pc->aux_tail, tail);
1890 	return 0;
1891 }
1892 
__auxtrace_mmap__read(struct mmap * map,struct auxtrace_record * itr,struct perf_env * env,const struct perf_tool * tool,process_auxtrace_t fn,bool snapshot,size_t snapshot_size)1893 static int __auxtrace_mmap__read(struct mmap *map,
1894 				 struct auxtrace_record *itr, struct perf_env *env,
1895 				 const struct perf_tool *tool, process_auxtrace_t fn,
1896 				 bool snapshot, size_t snapshot_size)
1897 {
1898 	struct auxtrace_mmap *mm = &map->auxtrace_mmap;
1899 	u64 head, old = mm->prev, offset, ref;
1900 	unsigned char *data = mm->base;
1901 	size_t size, head_off, old_off, len1, len2, padding;
1902 	union perf_event ev;
1903 	void *data1, *data2;
1904 	int kernel_is_64_bit = perf_env__kernel_is_64_bit(env);
1905 
1906 	head = auxtrace_mmap__read_head(mm, kernel_is_64_bit);
1907 
1908 	if (snapshot &&
1909 	    auxtrace_record__find_snapshot(itr, mm->idx, mm, data, &head, &old))
1910 		return -1;
1911 
1912 	if (old == head)
1913 		return 0;
1914 
1915 	pr_debug3("auxtrace idx %d old %#"PRIx64" head %#"PRIx64" diff %#"PRIx64"\n",
1916 		  mm->idx, old, head, head - old);
1917 
1918 	if (mm->mask) {
1919 		head_off = head & mm->mask;
1920 		old_off = old & mm->mask;
1921 	} else {
1922 		head_off = head % mm->len;
1923 		old_off = old % mm->len;
1924 	}
1925 
1926 	if (head_off > old_off)
1927 		size = head_off - old_off;
1928 	else
1929 		size = mm->len - (old_off - head_off);
1930 
1931 	if (snapshot && size > snapshot_size)
1932 		size = snapshot_size;
1933 
1934 	ref = auxtrace_record__reference(itr);
1935 
1936 	if (head > old || size <= head || mm->mask) {
1937 		offset = head - size;
1938 	} else {
1939 		/*
1940 		 * When the buffer size is not a power of 2, 'head' wraps at the
1941 		 * highest multiple of the buffer size, so we have to subtract
1942 		 * the remainder here.
1943 		 */
1944 		u64 rem = (0ULL - mm->len) % mm->len;
1945 
1946 		offset = head - size - rem;
1947 	}
1948 
1949 	if (size > head_off) {
1950 		len1 = size - head_off;
1951 		data1 = &data[mm->len - len1];
1952 		len2 = head_off;
1953 		data2 = &data[0];
1954 	} else {
1955 		len1 = size;
1956 		data1 = &data[head_off - len1];
1957 		len2 = 0;
1958 		data2 = NULL;
1959 	}
1960 
1961 	if (itr->alignment) {
1962 		unsigned int unwanted = len1 % itr->alignment;
1963 
1964 		len1 -= unwanted;
1965 		size -= unwanted;
1966 	}
1967 
1968 	/* padding must be written by fn() e.g. record__process_auxtrace() */
1969 	padding = size & (PERF_AUXTRACE_RECORD_ALIGNMENT - 1);
1970 	if (padding)
1971 		padding = PERF_AUXTRACE_RECORD_ALIGNMENT - padding;
1972 
1973 	memset(&ev, 0, sizeof(ev));
1974 	ev.auxtrace.header.type = PERF_RECORD_AUXTRACE;
1975 	ev.auxtrace.header.size = sizeof(ev.auxtrace);
1976 	ev.auxtrace.size = size + padding;
1977 	ev.auxtrace.offset = offset;
1978 	ev.auxtrace.reference = ref;
1979 	ev.auxtrace.idx = mm->idx;
1980 	ev.auxtrace.tid = mm->tid;
1981 	ev.auxtrace.cpu = mm->cpu;
1982 
1983 	if (fn(tool, map, &ev, data1, len1, data2, len2))
1984 		return -1;
1985 
1986 	mm->prev = head;
1987 
1988 	if (!snapshot) {
1989 		int err;
1990 
1991 		err = auxtrace_mmap__write_tail(mm, head, kernel_is_64_bit);
1992 		if (err < 0)
1993 			return err;
1994 
1995 		if (itr->read_finish) {
1996 			err = itr->read_finish(itr, mm->idx);
1997 			if (err < 0)
1998 				return err;
1999 		}
2000 	}
2001 
2002 	return 1;
2003 }
2004 
auxtrace_mmap__read(struct mmap * map,struct auxtrace_record * itr,struct perf_env * env,const struct perf_tool * tool,process_auxtrace_t fn)2005 int auxtrace_mmap__read(struct mmap *map, struct auxtrace_record *itr,
2006 			struct perf_env *env, const struct perf_tool *tool,
2007 			process_auxtrace_t fn)
2008 {
2009 	return __auxtrace_mmap__read(map, itr, env, tool, fn, false, 0);
2010 }
2011 
auxtrace_mmap__read_snapshot(struct mmap * map,struct auxtrace_record * itr,struct perf_env * env,const struct perf_tool * tool,process_auxtrace_t fn,size_t snapshot_size)2012 int auxtrace_mmap__read_snapshot(struct mmap *map,
2013 				 struct auxtrace_record *itr, struct perf_env *env,
2014 				 const struct perf_tool *tool, process_auxtrace_t fn,
2015 				 size_t snapshot_size)
2016 {
2017 	return __auxtrace_mmap__read(map, itr, env, tool, fn, true, snapshot_size);
2018 }
2019 
2020 /**
2021  * struct auxtrace_cache - hash table to implement a cache
2022  * @hashtable: the hashtable
2023  * @sz: hashtable size (number of hlists)
2024  * @entry_size: size of an entry
2025  * @limit: limit the number of entries to this maximum, when reached the cache
2026  *         is dropped and caching begins again with an empty cache
2027  * @cnt: current number of entries
2028  * @bits: hashtable size (@sz = 2^@bits)
2029  */
2030 struct auxtrace_cache {
2031 	struct hlist_head *hashtable;
2032 	size_t sz;
2033 	size_t entry_size;
2034 	size_t limit;
2035 	size_t cnt;
2036 	unsigned int bits;
2037 };
2038 
auxtrace_cache__new(unsigned int bits,size_t entry_size,unsigned int limit_percent)2039 struct auxtrace_cache *auxtrace_cache__new(unsigned int bits, size_t entry_size,
2040 					   unsigned int limit_percent)
2041 {
2042 	struct auxtrace_cache *c;
2043 	struct hlist_head *ht;
2044 	size_t sz, i;
2045 
2046 	c = zalloc(sizeof(struct auxtrace_cache));
2047 	if (!c)
2048 		return NULL;
2049 
2050 	sz = 1UL << bits;
2051 
2052 	ht = calloc(sz, sizeof(struct hlist_head));
2053 	if (!ht)
2054 		goto out_free;
2055 
2056 	for (i = 0; i < sz; i++)
2057 		INIT_HLIST_HEAD(&ht[i]);
2058 
2059 	c->hashtable = ht;
2060 	c->sz = sz;
2061 	c->entry_size = entry_size;
2062 	c->limit = (c->sz * limit_percent) / 100;
2063 	c->bits = bits;
2064 
2065 	return c;
2066 
2067 out_free:
2068 	free(c);
2069 	return NULL;
2070 }
2071 
auxtrace_cache__drop(struct auxtrace_cache * c)2072 static void auxtrace_cache__drop(struct auxtrace_cache *c)
2073 {
2074 	struct auxtrace_cache_entry *entry;
2075 	struct hlist_node *tmp;
2076 	size_t i;
2077 
2078 	if (!c)
2079 		return;
2080 
2081 	for (i = 0; i < c->sz; i++) {
2082 		hlist_for_each_entry_safe(entry, tmp, &c->hashtable[i], hash) {
2083 			hlist_del(&entry->hash);
2084 			auxtrace_cache__free_entry(c, entry);
2085 		}
2086 	}
2087 
2088 	c->cnt = 0;
2089 }
2090 
auxtrace_cache__free(struct auxtrace_cache * c)2091 void auxtrace_cache__free(struct auxtrace_cache *c)
2092 {
2093 	if (!c)
2094 		return;
2095 
2096 	auxtrace_cache__drop(c);
2097 	zfree(&c->hashtable);
2098 	free(c);
2099 }
2100 
auxtrace_cache__alloc_entry(struct auxtrace_cache * c)2101 void *auxtrace_cache__alloc_entry(struct auxtrace_cache *c)
2102 {
2103 	return malloc(c->entry_size);
2104 }
2105 
auxtrace_cache__free_entry(struct auxtrace_cache * c __maybe_unused,void * entry)2106 void auxtrace_cache__free_entry(struct auxtrace_cache *c __maybe_unused,
2107 				void *entry)
2108 {
2109 	free(entry);
2110 }
2111 
auxtrace_cache__add(struct auxtrace_cache * c,u32 key,struct auxtrace_cache_entry * entry)2112 int auxtrace_cache__add(struct auxtrace_cache *c, u32 key,
2113 			struct auxtrace_cache_entry *entry)
2114 {
2115 	if (c->limit && ++c->cnt > c->limit)
2116 		auxtrace_cache__drop(c);
2117 
2118 	entry->key = key;
2119 	hlist_add_head(&entry->hash, &c->hashtable[hash_32(key, c->bits)]);
2120 
2121 	return 0;
2122 }
2123 
auxtrace_cache__rm(struct auxtrace_cache * c,u32 key)2124 static struct auxtrace_cache_entry *auxtrace_cache__rm(struct auxtrace_cache *c,
2125 						       u32 key)
2126 {
2127 	struct auxtrace_cache_entry *entry;
2128 	struct hlist_head *hlist;
2129 	struct hlist_node *n;
2130 
2131 	if (!c)
2132 		return NULL;
2133 
2134 	hlist = &c->hashtable[hash_32(key, c->bits)];
2135 	hlist_for_each_entry_safe(entry, n, hlist, hash) {
2136 		if (entry->key == key) {
2137 			hlist_del(&entry->hash);
2138 			return entry;
2139 		}
2140 	}
2141 
2142 	return NULL;
2143 }
2144 
auxtrace_cache__remove(struct auxtrace_cache * c,u32 key)2145 void auxtrace_cache__remove(struct auxtrace_cache *c, u32 key)
2146 {
2147 	struct auxtrace_cache_entry *entry = auxtrace_cache__rm(c, key);
2148 
2149 	auxtrace_cache__free_entry(c, entry);
2150 }
2151 
auxtrace_cache__lookup(struct auxtrace_cache * c,u32 key)2152 void *auxtrace_cache__lookup(struct auxtrace_cache *c, u32 key)
2153 {
2154 	struct auxtrace_cache_entry *entry;
2155 	struct hlist_head *hlist;
2156 
2157 	if (!c)
2158 		return NULL;
2159 
2160 	hlist = &c->hashtable[hash_32(key, c->bits)];
2161 	hlist_for_each_entry(entry, hlist, hash) {
2162 		if (entry->key == key)
2163 			return entry;
2164 	}
2165 
2166 	return NULL;
2167 }
2168 
addr_filter__free_str(struct addr_filter * filt)2169 static void addr_filter__free_str(struct addr_filter *filt)
2170 {
2171 	zfree(&filt->str);
2172 	filt->action   = NULL;
2173 	filt->sym_from = NULL;
2174 	filt->sym_to   = NULL;
2175 	filt->filename = NULL;
2176 }
2177 
addr_filter__new(void)2178 static struct addr_filter *addr_filter__new(void)
2179 {
2180 	struct addr_filter *filt = zalloc(sizeof(*filt));
2181 
2182 	if (filt)
2183 		INIT_LIST_HEAD(&filt->list);
2184 
2185 	return filt;
2186 }
2187 
addr_filter__free(struct addr_filter * filt)2188 static void addr_filter__free(struct addr_filter *filt)
2189 {
2190 	if (filt)
2191 		addr_filter__free_str(filt);
2192 	free(filt);
2193 }
2194 
addr_filters__add(struct addr_filters * filts,struct addr_filter * filt)2195 static void addr_filters__add(struct addr_filters *filts,
2196 			      struct addr_filter *filt)
2197 {
2198 	list_add_tail(&filt->list, &filts->head);
2199 	filts->cnt += 1;
2200 }
2201 
addr_filters__del(struct addr_filters * filts,struct addr_filter * filt)2202 static void addr_filters__del(struct addr_filters *filts,
2203 			      struct addr_filter *filt)
2204 {
2205 	list_del_init(&filt->list);
2206 	filts->cnt -= 1;
2207 }
2208 
addr_filters__init(struct addr_filters * filts)2209 void addr_filters__init(struct addr_filters *filts)
2210 {
2211 	INIT_LIST_HEAD(&filts->head);
2212 	filts->cnt = 0;
2213 }
2214 
addr_filters__exit(struct addr_filters * filts)2215 void addr_filters__exit(struct addr_filters *filts)
2216 {
2217 	struct addr_filter *filt, *n;
2218 
2219 	list_for_each_entry_safe(filt, n, &filts->head, list) {
2220 		addr_filters__del(filts, filt);
2221 		addr_filter__free(filt);
2222 	}
2223 }
2224 
parse_num_or_str(char ** inp,u64 * num,const char ** str,const char * str_delim)2225 static int parse_num_or_str(char **inp, u64 *num, const char **str,
2226 			    const char *str_delim)
2227 {
2228 	*inp += strspn(*inp, " ");
2229 
2230 	if (isdigit(**inp)) {
2231 		char *endptr;
2232 
2233 		if (!num)
2234 			return -EINVAL;
2235 		errno = 0;
2236 		*num = strtoull(*inp, &endptr, 0);
2237 		if (errno)
2238 			return -errno;
2239 		if (endptr == *inp)
2240 			return -EINVAL;
2241 		*inp = endptr;
2242 	} else {
2243 		size_t n;
2244 
2245 		if (!str)
2246 			return -EINVAL;
2247 		*inp += strspn(*inp, " ");
2248 		*str = *inp;
2249 		n = strcspn(*inp, str_delim);
2250 		if (!n)
2251 			return -EINVAL;
2252 		*inp += n;
2253 		if (**inp) {
2254 			**inp = '\0';
2255 			*inp += 1;
2256 		}
2257 	}
2258 	return 0;
2259 }
2260 
parse_action(struct addr_filter * filt)2261 static int parse_action(struct addr_filter *filt)
2262 {
2263 	if (!strcmp(filt->action, "filter")) {
2264 		filt->start = true;
2265 		filt->range = true;
2266 	} else if (!strcmp(filt->action, "start")) {
2267 		filt->start = true;
2268 	} else if (!strcmp(filt->action, "stop")) {
2269 		filt->start = false;
2270 	} else if (!strcmp(filt->action, "tracestop")) {
2271 		filt->start = false;
2272 		filt->range = true;
2273 		filt->action += 5; /* Change 'tracestop' to 'stop' */
2274 	} else {
2275 		return -EINVAL;
2276 	}
2277 	return 0;
2278 }
2279 
parse_sym_idx(char ** inp,int * idx)2280 static int parse_sym_idx(char **inp, int *idx)
2281 {
2282 	*idx = -1;
2283 
2284 	*inp += strspn(*inp, " ");
2285 
2286 	if (**inp != '#')
2287 		return 0;
2288 
2289 	*inp += 1;
2290 
2291 	if (**inp == 'g' || **inp == 'G') {
2292 		*inp += 1;
2293 		*idx = 0;
2294 	} else {
2295 		unsigned long num;
2296 		char *endptr;
2297 
2298 		errno = 0;
2299 		num = strtoul(*inp, &endptr, 0);
2300 		if (errno)
2301 			return -errno;
2302 		if (endptr == *inp || num > INT_MAX)
2303 			return -EINVAL;
2304 		*inp = endptr;
2305 		*idx = num;
2306 	}
2307 
2308 	return 0;
2309 }
2310 
parse_addr_size(char ** inp,u64 * num,const char ** str,int * idx)2311 static int parse_addr_size(char **inp, u64 *num, const char **str, int *idx)
2312 {
2313 	int err = parse_num_or_str(inp, num, str, " ");
2314 
2315 	if (!err && *str)
2316 		err = parse_sym_idx(inp, idx);
2317 
2318 	return err;
2319 }
2320 
parse_one_filter(struct addr_filter * filt,const char ** filter_inp)2321 static int parse_one_filter(struct addr_filter *filt, const char **filter_inp)
2322 {
2323 	char *fstr;
2324 	int err;
2325 
2326 	filt->str = fstr = strdup(*filter_inp);
2327 	if (!fstr)
2328 		return -ENOMEM;
2329 
2330 	err = parse_num_or_str(&fstr, NULL, &filt->action, " ");
2331 	if (err)
2332 		goto out_err;
2333 
2334 	err = parse_action(filt);
2335 	if (err)
2336 		goto out_err;
2337 
2338 	err = parse_addr_size(&fstr, &filt->addr, &filt->sym_from,
2339 			      &filt->sym_from_idx);
2340 	if (err)
2341 		goto out_err;
2342 
2343 	fstr += strspn(fstr, " ");
2344 
2345 	if (*fstr == '/') {
2346 		fstr += 1;
2347 		err = parse_addr_size(&fstr, &filt->size, &filt->sym_to,
2348 				      &filt->sym_to_idx);
2349 		if (err)
2350 			goto out_err;
2351 		filt->range = true;
2352 	}
2353 
2354 	fstr += strspn(fstr, " ");
2355 
2356 	if (*fstr == '@') {
2357 		fstr += 1;
2358 		err = parse_num_or_str(&fstr, NULL, &filt->filename, " ,");
2359 		if (err)
2360 			goto out_err;
2361 	}
2362 
2363 	fstr += strspn(fstr, " ,");
2364 
2365 	*filter_inp += fstr - filt->str;
2366 
2367 	return 0;
2368 
2369 out_err:
2370 	addr_filter__free_str(filt);
2371 
2372 	return err;
2373 }
2374 
addr_filters__parse_bare_filter(struct addr_filters * filts,const char * filter)2375 int addr_filters__parse_bare_filter(struct addr_filters *filts,
2376 				    const char *filter)
2377 {
2378 	struct addr_filter *filt;
2379 	const char *fstr = filter;
2380 	int err;
2381 
2382 	while (*fstr) {
2383 		filt = addr_filter__new();
2384 		err = parse_one_filter(filt, &fstr);
2385 		if (err) {
2386 			addr_filter__free(filt);
2387 			addr_filters__exit(filts);
2388 			return err;
2389 		}
2390 		addr_filters__add(filts, filt);
2391 	}
2392 
2393 	return 0;
2394 }
2395 
2396 struct sym_args {
2397 	const char	*name;
2398 	u64		start;
2399 	u64		size;
2400 	int		idx;
2401 	int		cnt;
2402 	bool		started;
2403 	bool		global;
2404 	bool		selected;
2405 	bool		duplicate;
2406 	bool		near;
2407 };
2408 
kern_sym_name_match(const char * kname,const char * name)2409 static bool kern_sym_name_match(const char *kname, const char *name)
2410 {
2411 	size_t n = strlen(name);
2412 
2413 	return !strcmp(kname, name) ||
2414 	       (!strncmp(kname, name, n) && kname[n] == '\t');
2415 }
2416 
kern_sym_match(struct sym_args * args,const char * name,char type)2417 static bool kern_sym_match(struct sym_args *args, const char *name, char type)
2418 {
2419 	/* A function with the same name, and global or the n'th found or any */
2420 	return kallsyms__is_function(type) &&
2421 	       kern_sym_name_match(name, args->name) &&
2422 	       ((args->global && isupper(type)) ||
2423 		(args->selected && ++(args->cnt) == args->idx) ||
2424 		(!args->global && !args->selected));
2425 }
2426 
find_kern_sym_cb(void * arg,const char * name,char type,u64 start)2427 static int find_kern_sym_cb(void *arg, const char *name, char type, u64 start)
2428 {
2429 	struct sym_args *args = arg;
2430 
2431 	if (args->started) {
2432 		if (!args->size)
2433 			args->size = start - args->start;
2434 		if (args->selected) {
2435 			if (args->size)
2436 				return 1;
2437 		} else if (kern_sym_match(args, name, type)) {
2438 			args->duplicate = true;
2439 			return 1;
2440 		}
2441 	} else if (kern_sym_match(args, name, type)) {
2442 		args->started = true;
2443 		args->start = start;
2444 	}
2445 
2446 	return 0;
2447 }
2448 
print_kern_sym_cb(void * arg,const char * name,char type,u64 start)2449 static int print_kern_sym_cb(void *arg, const char *name, char type, u64 start)
2450 {
2451 	struct sym_args *args = arg;
2452 
2453 	if (kern_sym_match(args, name, type)) {
2454 		pr_err("#%d\t0x%"PRIx64"\t%c\t%s\n",
2455 		       ++args->cnt, start, type, name);
2456 		args->near = true;
2457 	} else if (args->near) {
2458 		args->near = false;
2459 		pr_err("\t\twhich is near\t\t%s\n", name);
2460 	}
2461 
2462 	return 0;
2463 }
2464 
sym_not_found_error(const char * sym_name,int idx)2465 static int sym_not_found_error(const char *sym_name, int idx)
2466 {
2467 	if (idx > 0) {
2468 		pr_err("N'th occurrence (N=%d) of symbol '%s' not found.\n",
2469 		       idx, sym_name);
2470 	} else if (!idx) {
2471 		pr_err("Global symbol '%s' not found.\n", sym_name);
2472 	} else {
2473 		pr_err("Symbol '%s' not found.\n", sym_name);
2474 	}
2475 	pr_err("Note that symbols must be functions.\n");
2476 
2477 	return -EINVAL;
2478 }
2479 
find_kern_sym(const char * sym_name,u64 * start,u64 * size,int idx)2480 static int find_kern_sym(const char *sym_name, u64 *start, u64 *size, int idx)
2481 {
2482 	struct sym_args args = {
2483 		.name = sym_name,
2484 		.idx = idx,
2485 		.global = !idx,
2486 		.selected = idx > 0,
2487 	};
2488 	int err;
2489 
2490 	*start = 0;
2491 	*size = 0;
2492 
2493 	err = kallsyms__parse("/proc/kallsyms", &args, find_kern_sym_cb);
2494 	if (err < 0) {
2495 		pr_err("Failed to parse /proc/kallsyms\n");
2496 		return err;
2497 	}
2498 
2499 	if (args.duplicate) {
2500 		pr_err("Multiple kernel symbols with name '%s'\n", sym_name);
2501 		args.cnt = 0;
2502 		kallsyms__parse("/proc/kallsyms", &args, print_kern_sym_cb);
2503 		pr_err("Disambiguate symbol name by inserting #n after the name e.g. %s #2\n",
2504 		       sym_name);
2505 		pr_err("Or select a global symbol by inserting #0 or #g or #G\n");
2506 		return -EINVAL;
2507 	}
2508 
2509 	if (!args.started) {
2510 		pr_err("Kernel symbol lookup: ");
2511 		return sym_not_found_error(sym_name, idx);
2512 	}
2513 
2514 	*start = args.start;
2515 	*size = args.size;
2516 
2517 	return 0;
2518 }
2519 
find_entire_kern_cb(void * arg,const char * name __maybe_unused,char type,u64 start)2520 static int find_entire_kern_cb(void *arg, const char *name __maybe_unused,
2521 			       char type, u64 start)
2522 {
2523 	struct sym_args *args = arg;
2524 	u64 size;
2525 
2526 	if (!kallsyms__is_function(type))
2527 		return 0;
2528 
2529 	if (!args->started) {
2530 		args->started = true;
2531 		args->start = start;
2532 	}
2533 	/* Don't know exactly where the kernel ends, so we add a page */
2534 	size = round_up(start, page_size) + page_size - args->start;
2535 	if (size > args->size)
2536 		args->size = size;
2537 
2538 	return 0;
2539 }
2540 
addr_filter__entire_kernel(struct addr_filter * filt)2541 static int addr_filter__entire_kernel(struct addr_filter *filt)
2542 {
2543 	struct sym_args args = { .started = false };
2544 	int err;
2545 
2546 	err = kallsyms__parse("/proc/kallsyms", &args, find_entire_kern_cb);
2547 	if (err < 0 || !args.started) {
2548 		pr_err("Failed to parse /proc/kallsyms\n");
2549 		return err;
2550 	}
2551 
2552 	filt->addr = args.start;
2553 	filt->size = args.size;
2554 
2555 	return 0;
2556 }
2557 
check_end_after_start(struct addr_filter * filt,u64 start,u64 size)2558 static int check_end_after_start(struct addr_filter *filt, u64 start, u64 size)
2559 {
2560 	if (start + size >= filt->addr)
2561 		return 0;
2562 
2563 	if (filt->sym_from) {
2564 		pr_err("Symbol '%s' (0x%"PRIx64") comes before '%s' (0x%"PRIx64")\n",
2565 		       filt->sym_to, start, filt->sym_from, filt->addr);
2566 	} else {
2567 		pr_err("Symbol '%s' (0x%"PRIx64") comes before address 0x%"PRIx64")\n",
2568 		       filt->sym_to, start, filt->addr);
2569 	}
2570 
2571 	return -EINVAL;
2572 }
2573 
addr_filter__resolve_kernel_syms(struct addr_filter * filt)2574 static int addr_filter__resolve_kernel_syms(struct addr_filter *filt)
2575 {
2576 	bool no_size = false;
2577 	u64 start, size;
2578 	int err;
2579 
2580 	if (symbol_conf.kptr_restrict) {
2581 		pr_err("Kernel addresses are restricted. Unable to resolve kernel symbols.\n");
2582 		return -EINVAL;
2583 	}
2584 
2585 	if (filt->sym_from && !strcmp(filt->sym_from, "*"))
2586 		return addr_filter__entire_kernel(filt);
2587 
2588 	if (filt->sym_from) {
2589 		err = find_kern_sym(filt->sym_from, &start, &size,
2590 				    filt->sym_from_idx);
2591 		if (err)
2592 			return err;
2593 		filt->addr = start;
2594 		if (filt->range && !filt->size && !filt->sym_to) {
2595 			filt->size = size;
2596 			no_size = !size;
2597 		}
2598 	}
2599 
2600 	if (filt->sym_to) {
2601 		err = find_kern_sym(filt->sym_to, &start, &size,
2602 				    filt->sym_to_idx);
2603 		if (err)
2604 			return err;
2605 
2606 		err = check_end_after_start(filt, start, size);
2607 		if (err)
2608 			return err;
2609 		filt->size = start + size - filt->addr;
2610 		no_size = !size;
2611 	}
2612 
2613 	/* The very last symbol in kallsyms does not imply a particular size */
2614 	if (no_size) {
2615 		pr_err("Cannot determine size of symbol '%s'\n",
2616 		       filt->sym_to ? filt->sym_to : filt->sym_from);
2617 		return -EINVAL;
2618 	}
2619 
2620 	return 0;
2621 }
2622 
load_dso(const char * name)2623 static struct dso *load_dso(const char *name)
2624 {
2625 	struct map *map;
2626 	struct dso *dso;
2627 
2628 	map = dso__new_map(name);
2629 	if (!map)
2630 		return NULL;
2631 
2632 	if (map__load(map) < 0)
2633 		pr_err("File '%s' not found or has no symbols.\n", name);
2634 
2635 	dso = dso__get(map__dso(map));
2636 
2637 	map__put(map);
2638 
2639 	return dso;
2640 }
2641 
dso_sym_match(struct symbol * sym,const char * name,int * cnt,int idx)2642 static bool dso_sym_match(struct symbol *sym, const char *name, int *cnt,
2643 			  int idx)
2644 {
2645 	/* Same name, and global or the n'th found or any */
2646 	return !arch__compare_symbol_names(name, sym->name) &&
2647 	       ((!idx && sym->binding == STB_GLOBAL) ||
2648 		(idx > 0 && ++*cnt == idx) ||
2649 		idx < 0);
2650 }
2651 
print_duplicate_syms(struct dso * dso,const char * sym_name)2652 static void print_duplicate_syms(struct dso *dso, const char *sym_name)
2653 {
2654 	struct symbol *sym;
2655 	bool near = false;
2656 	int cnt = 0;
2657 
2658 	pr_err("Multiple symbols with name '%s'\n", sym_name);
2659 
2660 	sym = dso__first_symbol(dso);
2661 	while (sym) {
2662 		if (dso_sym_match(sym, sym_name, &cnt, -1)) {
2663 			pr_err("#%d\t0x%"PRIx64"\t%c\t%s\n",
2664 			       ++cnt, sym->start,
2665 			       sym->binding == STB_GLOBAL ? 'g' :
2666 			       sym->binding == STB_LOCAL  ? 'l' : 'w',
2667 			       sym->name);
2668 			near = true;
2669 		} else if (near) {
2670 			near = false;
2671 			pr_err("\t\twhich is near\t\t%s\n", sym->name);
2672 		}
2673 		sym = dso__next_symbol(sym);
2674 	}
2675 
2676 	pr_err("Disambiguate symbol name by inserting #n after the name e.g. %s #2\n",
2677 	       sym_name);
2678 	pr_err("Or select a global symbol by inserting #0 or #g or #G\n");
2679 }
2680 
find_dso_sym(struct dso * dso,const char * sym_name,u64 * start,u64 * size,int idx)2681 static int find_dso_sym(struct dso *dso, const char *sym_name, u64 *start,
2682 			u64 *size, int idx)
2683 {
2684 	struct symbol *sym;
2685 	int cnt = 0;
2686 
2687 	*start = 0;
2688 	*size = 0;
2689 
2690 	sym = dso__first_symbol(dso);
2691 	while (sym) {
2692 		if (*start) {
2693 			if (!*size)
2694 				*size = sym->start - *start;
2695 			if (idx > 0) {
2696 				if (*size)
2697 					return 0;
2698 			} else if (dso_sym_match(sym, sym_name, &cnt, idx)) {
2699 				print_duplicate_syms(dso, sym_name);
2700 				return -EINVAL;
2701 			}
2702 		} else if (dso_sym_match(sym, sym_name, &cnt, idx)) {
2703 			*start = sym->start;
2704 			*size = sym->end - sym->start;
2705 		}
2706 		sym = dso__next_symbol(sym);
2707 	}
2708 
2709 	if (!*start)
2710 		return sym_not_found_error(sym_name, idx);
2711 
2712 	return 0;
2713 }
2714 
addr_filter__entire_dso(struct addr_filter * filt,struct dso * dso)2715 static int addr_filter__entire_dso(struct addr_filter *filt, struct dso *dso)
2716 {
2717 	if (dso__data_file_size(dso, NULL)) {
2718 		pr_err("Failed to determine filter for %s\nCannot determine file size.\n",
2719 		       filt->filename);
2720 		return -EINVAL;
2721 	}
2722 
2723 	filt->addr = 0;
2724 	filt->size = dso__data(dso)->file_size;
2725 
2726 	return 0;
2727 }
2728 
addr_filter__resolve_syms(struct addr_filter * filt)2729 static int addr_filter__resolve_syms(struct addr_filter *filt)
2730 {
2731 	u64 start, size;
2732 	struct dso *dso;
2733 	int err = 0;
2734 
2735 	if (!filt->sym_from && !filt->sym_to)
2736 		return 0;
2737 
2738 	if (!filt->filename)
2739 		return addr_filter__resolve_kernel_syms(filt);
2740 
2741 	dso = load_dso(filt->filename);
2742 	if (!dso) {
2743 		pr_err("Failed to load symbols from: %s\n", filt->filename);
2744 		return -EINVAL;
2745 	}
2746 
2747 	if (filt->sym_from && !strcmp(filt->sym_from, "*")) {
2748 		err = addr_filter__entire_dso(filt, dso);
2749 		goto put_dso;
2750 	}
2751 
2752 	if (filt->sym_from) {
2753 		err = find_dso_sym(dso, filt->sym_from, &start, &size,
2754 				   filt->sym_from_idx);
2755 		if (err)
2756 			goto put_dso;
2757 		filt->addr = start;
2758 		if (filt->range && !filt->size && !filt->sym_to)
2759 			filt->size = size;
2760 	}
2761 
2762 	if (filt->sym_to) {
2763 		err = find_dso_sym(dso, filt->sym_to, &start, &size,
2764 				   filt->sym_to_idx);
2765 		if (err)
2766 			goto put_dso;
2767 
2768 		err = check_end_after_start(filt, start, size);
2769 		if (err)
2770 			return err;
2771 
2772 		filt->size = start + size - filt->addr;
2773 	}
2774 
2775 put_dso:
2776 	dso__put(dso);
2777 
2778 	return err;
2779 }
2780 
addr_filter__to_str(struct addr_filter * filt)2781 static char *addr_filter__to_str(struct addr_filter *filt)
2782 {
2783 	char filename_buf[PATH_MAX];
2784 	const char *at = "";
2785 	const char *fn = "";
2786 	char *filter;
2787 	int err;
2788 
2789 	if (filt->filename) {
2790 		at = "@";
2791 		fn = realpath(filt->filename, filename_buf);
2792 		if (!fn)
2793 			return NULL;
2794 	}
2795 
2796 	if (filt->range) {
2797 		err = asprintf(&filter, "%s 0x%"PRIx64"/0x%"PRIx64"%s%s",
2798 			       filt->action, filt->addr, filt->size, at, fn);
2799 	} else {
2800 		err = asprintf(&filter, "%s 0x%"PRIx64"%s%s",
2801 			       filt->action, filt->addr, at, fn);
2802 	}
2803 
2804 	return err < 0 ? NULL : filter;
2805 }
2806 
parse_addr_filter(struct evsel * evsel,const char * filter,int max_nr)2807 static int parse_addr_filter(struct evsel *evsel, const char *filter,
2808 			     int max_nr)
2809 {
2810 	struct addr_filters filts;
2811 	struct addr_filter *filt;
2812 	int err;
2813 
2814 	addr_filters__init(&filts);
2815 
2816 	err = addr_filters__parse_bare_filter(&filts, filter);
2817 	if (err)
2818 		goto out_exit;
2819 
2820 	if (filts.cnt > max_nr) {
2821 		pr_err("Error: number of address filters (%d) exceeds maximum (%d)\n",
2822 		       filts.cnt, max_nr);
2823 		err = -EINVAL;
2824 		goto out_exit;
2825 	}
2826 
2827 	list_for_each_entry(filt, &filts.head, list) {
2828 		char *new_filter;
2829 
2830 		err = addr_filter__resolve_syms(filt);
2831 		if (err)
2832 			goto out_exit;
2833 
2834 		new_filter = addr_filter__to_str(filt);
2835 		if (!new_filter) {
2836 			err = -ENOMEM;
2837 			goto out_exit;
2838 		}
2839 
2840 		if (evsel__append_addr_filter(evsel, new_filter)) {
2841 			err = -ENOMEM;
2842 			goto out_exit;
2843 		}
2844 	}
2845 
2846 out_exit:
2847 	addr_filters__exit(&filts);
2848 
2849 	if (err) {
2850 		pr_err("Failed to parse address filter: '%s'\n", filter);
2851 		pr_err("Filter format is: filter|start|stop|tracestop <start symbol or address> [/ <end symbol or size>] [@<file name>]\n");
2852 		pr_err("Where multiple filters are separated by space or comma.\n");
2853 	}
2854 
2855 	return err;
2856 }
2857 
evsel__nr_addr_filter(struct evsel * evsel)2858 static int evsel__nr_addr_filter(struct evsel *evsel)
2859 {
2860 	struct perf_pmu *pmu = evsel__find_pmu(evsel);
2861 	int nr_addr_filters = 0;
2862 
2863 	if (!pmu)
2864 		return 0;
2865 
2866 	perf_pmu__scan_file(pmu, "nr_addr_filters", "%d", &nr_addr_filters);
2867 
2868 	return nr_addr_filters;
2869 }
2870 
auxtrace_parse_filters(struct evlist * evlist)2871 int auxtrace_parse_filters(struct evlist *evlist)
2872 {
2873 	struct evsel *evsel;
2874 	char *filter;
2875 	int err, max_nr;
2876 
2877 	evlist__for_each_entry(evlist, evsel) {
2878 		filter = evsel->filter;
2879 		max_nr = evsel__nr_addr_filter(evsel);
2880 		if (!filter || !max_nr)
2881 			continue;
2882 		evsel->filter = NULL;
2883 		err = parse_addr_filter(evsel, filter, max_nr);
2884 		free(filter);
2885 		if (err)
2886 			return err;
2887 		pr_debug("Address filter: %s\n", evsel->filter);
2888 	}
2889 
2890 	return 0;
2891 }
2892 
auxtrace__process_event(struct perf_session * session,union perf_event * event,struct perf_sample * sample,const struct perf_tool * tool)2893 int auxtrace__process_event(struct perf_session *session, union perf_event *event,
2894 			    struct perf_sample *sample, const struct perf_tool *tool)
2895 {
2896 	if (!session->auxtrace)
2897 		return 0;
2898 
2899 	return session->auxtrace->process_event(session, event, sample, tool);
2900 }
2901 
auxtrace__dump_auxtrace_sample(struct perf_session * session,struct perf_sample * sample)2902 void auxtrace__dump_auxtrace_sample(struct perf_session *session,
2903 				    struct perf_sample *sample)
2904 {
2905 	if (!session->auxtrace || !session->auxtrace->dump_auxtrace_sample ||
2906 	    auxtrace__dont_decode(session))
2907 		return;
2908 
2909 	session->auxtrace->dump_auxtrace_sample(session, sample);
2910 }
2911 
auxtrace__flush_events(struct perf_session * session,const struct perf_tool * tool)2912 int auxtrace__flush_events(struct perf_session *session, const struct perf_tool *tool)
2913 {
2914 	if (!session->auxtrace)
2915 		return 0;
2916 
2917 	return session->auxtrace->flush_events(session, tool);
2918 }
2919 
auxtrace__free_events(struct perf_session * session)2920 void auxtrace__free_events(struct perf_session *session)
2921 {
2922 	if (!session->auxtrace)
2923 		return;
2924 
2925 	return session->auxtrace->free_events(session);
2926 }
2927 
auxtrace__free(struct perf_session * session)2928 void auxtrace__free(struct perf_session *session)
2929 {
2930 	if (!session->auxtrace)
2931 		return;
2932 
2933 	return session->auxtrace->free(session);
2934 }
2935 
auxtrace__evsel_is_auxtrace(struct perf_session * session,struct evsel * evsel)2936 bool auxtrace__evsel_is_auxtrace(struct perf_session *session,
2937 				 struct evsel *evsel)
2938 {
2939 	if (!session->auxtrace || !session->auxtrace->evsel_is_auxtrace)
2940 		return false;
2941 
2942 	return session->auxtrace->evsel_is_auxtrace(session, evsel);
2943 }
2944