1 /*
2 * CAN bus driver for Bosch C_CAN controller
3 *
4 * Copyright (C) 2010 ST Microelectronics
5 * Bhupesh Sharma <bhupesh.sharma@st.com>
6 *
7 * Borrowed heavily from the C_CAN driver originally written by:
8 * Copyright (C) 2007
9 * - Sascha Hauer, Marc Kleine-Budde, Pengutronix <s.hauer@pengutronix.de>
10 * - Simon Kallweit, intefo AG <simon.kallweit@intefo.ch>
11 *
12 * TX and RX NAPI implementation has been borrowed from at91 CAN driver
13 * written by:
14 * Copyright
15 * (C) 2007 by Hans J. Koch <hjk@hansjkoch.de>
16 * (C) 2008, 2009 by Marc Kleine-Budde <kernel@pengutronix.de>
17 *
18 * Bosch C_CAN controller is compliant to CAN protocol version 2.0 part A and B.
19 * Bosch C_CAN user manual can be obtained from:
20 * http://www.semiconductors.bosch.de/media/en/pdf/ipmodules_1/c_can/
21 * users_manual_c_can.pdf
22 *
23 * This file is licensed under the terms of the GNU General Public
24 * License version 2. This program is licensed "as is" without any
25 * warranty of any kind, whether express or implied.
26 */
27
28 #include <linux/kernel.h>
29 #include <linux/module.h>
30 #include <linux/interrupt.h>
31 #include <linux/delay.h>
32 #include <linux/netdevice.h>
33 #include <linux/if_arp.h>
34 #include <linux/if_ether.h>
35 #include <linux/list.h>
36 #include <linux/io.h>
37 #include <linux/pm_runtime.h>
38 #include <linux/pinctrl/consumer.h>
39
40 #include <linux/can.h>
41 #include <linux/can/dev.h>
42 #include <linux/can/error.h>
43
44 #include "c_can.h"
45
46 /* Number of interface registers */
47 #define IF_ENUM_REG_LEN 11
48 #define C_CAN_IFACE(reg, iface) (C_CAN_IF1_##reg + (iface) * IF_ENUM_REG_LEN)
49
50 /* control extension register D_CAN specific */
51 #define CONTROL_EX_PDR BIT(8)
52
53 /* control register */
54 #define CONTROL_SWR BIT(15)
55 #define CONTROL_TEST BIT(7)
56 #define CONTROL_CCE BIT(6)
57 #define CONTROL_DISABLE_AR BIT(5)
58 #define CONTROL_ENABLE_AR (0 << 5)
59 #define CONTROL_EIE BIT(3)
60 #define CONTROL_SIE BIT(2)
61 #define CONTROL_IE BIT(1)
62 #define CONTROL_INIT BIT(0)
63
64 #define CONTROL_IRQMSK (CONTROL_EIE | CONTROL_IE | CONTROL_SIE)
65
66 /* test register */
67 #define TEST_RX BIT(7)
68 #define TEST_TX1 BIT(6)
69 #define TEST_TX2 BIT(5)
70 #define TEST_LBACK BIT(4)
71 #define TEST_SILENT BIT(3)
72 #define TEST_BASIC BIT(2)
73
74 /* status register */
75 #define STATUS_PDA BIT(10)
76 #define STATUS_BOFF BIT(7)
77 #define STATUS_EWARN BIT(6)
78 #define STATUS_EPASS BIT(5)
79 #define STATUS_RXOK BIT(4)
80 #define STATUS_TXOK BIT(3)
81
82 /* error counter register */
83 #define ERR_CNT_TEC_MASK 0xff
84 #define ERR_CNT_TEC_SHIFT 0
85 #define ERR_CNT_REC_SHIFT 8
86 #define ERR_CNT_REC_MASK (0x7f << ERR_CNT_REC_SHIFT)
87 #define ERR_CNT_RP_SHIFT 15
88 #define ERR_CNT_RP_MASK (0x1 << ERR_CNT_RP_SHIFT)
89
90 /* bit-timing register */
91 #define BTR_BRP_MASK 0x3f
92 #define BTR_BRP_SHIFT 0
93 #define BTR_SJW_SHIFT 6
94 #define BTR_SJW_MASK (0x3 << BTR_SJW_SHIFT)
95 #define BTR_TSEG1_SHIFT 8
96 #define BTR_TSEG1_MASK (0xf << BTR_TSEG1_SHIFT)
97 #define BTR_TSEG2_SHIFT 12
98 #define BTR_TSEG2_MASK (0x7 << BTR_TSEG2_SHIFT)
99
100 /* interrupt register */
101 #define INT_STS_PENDING 0x8000
102
103 /* brp extension register */
104 #define BRP_EXT_BRPE_MASK 0x0f
105 #define BRP_EXT_BRPE_SHIFT 0
106
107 /* IFx command request */
108 #define IF_COMR_BUSY BIT(15)
109
110 /* IFx command mask */
111 #define IF_COMM_WR BIT(7)
112 #define IF_COMM_MASK BIT(6)
113 #define IF_COMM_ARB BIT(5)
114 #define IF_COMM_CONTROL BIT(4)
115 #define IF_COMM_CLR_INT_PND BIT(3)
116 #define IF_COMM_TXRQST BIT(2)
117 #define IF_COMM_CLR_NEWDAT IF_COMM_TXRQST
118 #define IF_COMM_DATAA BIT(1)
119 #define IF_COMM_DATAB BIT(0)
120
121 /* TX buffer setup */
122 #define IF_COMM_TX (IF_COMM_ARB | IF_COMM_CONTROL | \
123 IF_COMM_TXRQST | \
124 IF_COMM_DATAA | IF_COMM_DATAB)
125
126 /* For the low buffers we clear the interrupt bit, but keep newdat */
127 #define IF_COMM_RCV_LOW (IF_COMM_MASK | IF_COMM_ARB | \
128 IF_COMM_CONTROL | IF_COMM_CLR_INT_PND | \
129 IF_COMM_DATAA | IF_COMM_DATAB)
130
131 /* For the high buffers we clear the interrupt bit and newdat */
132 #define IF_COMM_RCV_HIGH (IF_COMM_RCV_LOW | IF_COMM_CLR_NEWDAT)
133
134 /* Receive setup of message objects */
135 #define IF_COMM_RCV_SETUP (IF_COMM_MASK | IF_COMM_ARB | IF_COMM_CONTROL)
136
137 /* Invalidation of message objects */
138 #define IF_COMM_INVAL (IF_COMM_ARB | IF_COMM_CONTROL)
139
140 /* IFx arbitration */
141 #define IF_ARB_MSGVAL BIT(31)
142 #define IF_ARB_MSGXTD BIT(30)
143 #define IF_ARB_TRANSMIT BIT(29)
144
145 /* IFx message control */
146 #define IF_MCONT_NEWDAT BIT(15)
147 #define IF_MCONT_MSGLST BIT(14)
148 #define IF_MCONT_INTPND BIT(13)
149 #define IF_MCONT_UMASK BIT(12)
150 #define IF_MCONT_TXIE BIT(11)
151 #define IF_MCONT_RXIE BIT(10)
152 #define IF_MCONT_RMTEN BIT(9)
153 #define IF_MCONT_TXRQST BIT(8)
154 #define IF_MCONT_EOB BIT(7)
155 #define IF_MCONT_DLC_MASK 0xf
156
157 #define IF_MCONT_RCV (IF_MCONT_RXIE | IF_MCONT_UMASK)
158 #define IF_MCONT_RCV_EOB (IF_MCONT_RCV | IF_MCONT_EOB)
159
160 #define IF_MCONT_TX (IF_MCONT_TXIE | IF_MCONT_EOB)
161
162 /* Use IF1 in NAPI path and IF2 in TX path */
163 #define IF_NAPI 0
164 #define IF_TX 1
165
166 /* minimum timeout for checking BUSY status */
167 #define MIN_TIMEOUT_VALUE 6
168
169 /* Wait for ~1 sec for INIT bit */
170 #define INIT_WAIT_MS 1000
171
172 /* c_can lec values */
173 enum c_can_lec_type {
174 LEC_NO_ERROR = 0,
175 LEC_STUFF_ERROR,
176 LEC_FORM_ERROR,
177 LEC_ACK_ERROR,
178 LEC_BIT1_ERROR,
179 LEC_BIT0_ERROR,
180 LEC_CRC_ERROR,
181 LEC_UNUSED,
182 LEC_MASK = LEC_UNUSED,
183 };
184
185 /* c_can error types:
186 * Bus errors (BUS_OFF, ERROR_WARNING, ERROR_PASSIVE) are supported
187 */
188 enum c_can_bus_error_types {
189 C_CAN_NO_ERROR = 0,
190 C_CAN_BUS_OFF,
191 C_CAN_ERROR_WARNING,
192 C_CAN_ERROR_PASSIVE,
193 };
194
195 static const struct can_bittiming_const c_can_bittiming_const = {
196 .name = KBUILD_MODNAME,
197 .tseg1_min = 2, /* Time segment 1 = prop_seg + phase_seg1 */
198 .tseg1_max = 16,
199 .tseg2_min = 1, /* Time segment 2 = phase_seg2 */
200 .tseg2_max = 8,
201 .sjw_max = 4,
202 .brp_min = 1,
203 .brp_max = 1024, /* 6-bit BRP field + 4-bit BRPE field*/
204 .brp_inc = 1,
205 };
206
c_can_pm_runtime_get_sync(const struct c_can_priv * priv)207 static inline void c_can_pm_runtime_get_sync(const struct c_can_priv *priv)
208 {
209 if (priv->device)
210 pm_runtime_get_sync(priv->device);
211 }
212
c_can_pm_runtime_put_sync(const struct c_can_priv * priv)213 static inline void c_can_pm_runtime_put_sync(const struct c_can_priv *priv)
214 {
215 if (priv->device)
216 pm_runtime_put_sync(priv->device);
217 }
218
c_can_reset_ram(const struct c_can_priv * priv,bool enable)219 static inline void c_can_reset_ram(const struct c_can_priv *priv, bool enable)
220 {
221 if (priv->raminit)
222 priv->raminit(priv, enable);
223 }
224
c_can_irq_control(struct c_can_priv * priv,bool enable)225 static void c_can_irq_control(struct c_can_priv *priv, bool enable)
226 {
227 u32 ctrl = priv->read_reg(priv, C_CAN_CTRL_REG) & ~CONTROL_IRQMSK;
228
229 if (enable)
230 ctrl |= CONTROL_IRQMSK;
231
232 priv->write_reg(priv, C_CAN_CTRL_REG, ctrl);
233 }
234
c_can_obj_update(struct net_device * dev,int iface,u32 cmd,u32 obj)235 static void c_can_obj_update(struct net_device *dev, int iface, u32 cmd, u32 obj)
236 {
237 struct c_can_priv *priv = netdev_priv(dev);
238 int cnt, reg = C_CAN_IFACE(COMREQ_REG, iface);
239
240 priv->write_reg32(priv, reg, (cmd << 16) | obj);
241
242 for (cnt = MIN_TIMEOUT_VALUE; cnt; cnt--) {
243 if (!(priv->read_reg(priv, reg) & IF_COMR_BUSY))
244 return;
245 udelay(1);
246 }
247 netdev_err(dev, "Updating object timed out\n");
248 }
249
c_can_object_get(struct net_device * dev,int iface,u32 obj,u32 cmd)250 static inline void c_can_object_get(struct net_device *dev, int iface,
251 u32 obj, u32 cmd)
252 {
253 c_can_obj_update(dev, iface, cmd, obj);
254 }
255
c_can_object_put(struct net_device * dev,int iface,u32 obj,u32 cmd)256 static inline void c_can_object_put(struct net_device *dev, int iface,
257 u32 obj, u32 cmd)
258 {
259 c_can_obj_update(dev, iface, cmd | IF_COMM_WR, obj);
260 }
261
262 /* Note: According to documentation clearing TXIE while MSGVAL is set
263 * is not allowed, but works nicely on C/DCAN. And that lowers the I/O
264 * load significantly.
265 */
c_can_inval_tx_object(struct net_device * dev,int iface,int obj)266 static void c_can_inval_tx_object(struct net_device *dev, int iface, int obj)
267 {
268 struct c_can_priv *priv = netdev_priv(dev);
269
270 priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface), 0);
271 c_can_object_put(dev, iface, obj, IF_COMM_INVAL);
272 }
273
c_can_inval_msg_object(struct net_device * dev,int iface,int obj)274 static void c_can_inval_msg_object(struct net_device *dev, int iface, int obj)
275 {
276 struct c_can_priv *priv = netdev_priv(dev);
277
278 priv->write_reg32(priv, C_CAN_IFACE(ARB1_REG, iface), 0);
279 c_can_inval_tx_object(dev, iface, obj);
280 }
281
c_can_setup_tx_object(struct net_device * dev,int iface,struct can_frame * frame,int idx)282 static void c_can_setup_tx_object(struct net_device *dev, int iface,
283 struct can_frame *frame, int idx)
284 {
285 struct c_can_priv *priv = netdev_priv(dev);
286 u16 ctrl = IF_MCONT_TX | frame->len;
287 bool rtr = frame->can_id & CAN_RTR_FLAG;
288 u32 arb = IF_ARB_MSGVAL;
289 int i;
290
291 if (frame->can_id & CAN_EFF_FLAG) {
292 arb |= frame->can_id & CAN_EFF_MASK;
293 arb |= IF_ARB_MSGXTD;
294 } else {
295 arb |= (frame->can_id & CAN_SFF_MASK) << 18;
296 }
297
298 if (!rtr)
299 arb |= IF_ARB_TRANSMIT;
300
301 /* If we change the DIR bit, we need to invalidate the buffer
302 * first, i.e. clear the MSGVAL flag in the arbiter.
303 */
304 if (rtr != (bool)test_bit(idx, &priv->tx_dir)) {
305 u32 obj = idx + priv->msg_obj_tx_first;
306
307 c_can_inval_msg_object(dev, iface, obj);
308 change_bit(idx, &priv->tx_dir);
309 }
310
311 priv->write_reg32(priv, C_CAN_IFACE(ARB1_REG, iface), arb);
312
313 priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface), ctrl);
314
315 if (priv->type == BOSCH_D_CAN) {
316 u32 data = 0, dreg = C_CAN_IFACE(DATA1_REG, iface);
317
318 for (i = 0; i < frame->len; i += 4, dreg += 2) {
319 data = (u32)frame->data[i];
320 data |= (u32)frame->data[i + 1] << 8;
321 data |= (u32)frame->data[i + 2] << 16;
322 data |= (u32)frame->data[i + 3] << 24;
323 priv->write_reg32(priv, dreg, data);
324 }
325 } else {
326 for (i = 0; i < frame->len; i += 2) {
327 priv->write_reg(priv,
328 C_CAN_IFACE(DATA1_REG, iface) + i / 2,
329 frame->data[i] |
330 (frame->data[i + 1] << 8));
331 }
332 }
333 }
334
c_can_handle_lost_msg_obj(struct net_device * dev,int iface,int objno,u32 ctrl)335 static int c_can_handle_lost_msg_obj(struct net_device *dev,
336 int iface, int objno, u32 ctrl)
337 {
338 struct net_device_stats *stats = &dev->stats;
339 struct c_can_priv *priv = netdev_priv(dev);
340 struct can_frame *frame;
341 struct sk_buff *skb;
342
343 ctrl &= ~(IF_MCONT_MSGLST | IF_MCONT_INTPND | IF_MCONT_NEWDAT);
344 priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface), ctrl);
345 c_can_object_put(dev, iface, objno, IF_COMM_CONTROL);
346
347 stats->rx_errors++;
348 stats->rx_over_errors++;
349
350 /* create an error msg */
351 skb = alloc_can_err_skb(dev, &frame);
352 if (unlikely(!skb))
353 return 0;
354
355 frame->can_id |= CAN_ERR_CRTL;
356 frame->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;
357
358 netif_receive_skb(skb);
359 return 1;
360 }
361
c_can_read_msg_object(struct net_device * dev,int iface,u32 ctrl)362 static int c_can_read_msg_object(struct net_device *dev, int iface, u32 ctrl)
363 {
364 struct net_device_stats *stats = &dev->stats;
365 struct c_can_priv *priv = netdev_priv(dev);
366 struct can_frame *frame;
367 struct sk_buff *skb;
368 u32 arb, data;
369
370 skb = alloc_can_skb(dev, &frame);
371 if (!skb) {
372 stats->rx_dropped++;
373 return -ENOMEM;
374 }
375
376 frame->len = can_cc_dlc2len(ctrl & 0x0F);
377
378 arb = priv->read_reg32(priv, C_CAN_IFACE(ARB1_REG, iface));
379
380 if (arb & IF_ARB_MSGXTD)
381 frame->can_id = (arb & CAN_EFF_MASK) | CAN_EFF_FLAG;
382 else
383 frame->can_id = (arb >> 18) & CAN_SFF_MASK;
384
385 if (arb & IF_ARB_TRANSMIT) {
386 frame->can_id |= CAN_RTR_FLAG;
387 } else {
388 int i, dreg = C_CAN_IFACE(DATA1_REG, iface);
389
390 if (priv->type == BOSCH_D_CAN) {
391 for (i = 0; i < frame->len; i += 4, dreg += 2) {
392 data = priv->read_reg32(priv, dreg);
393 frame->data[i] = data;
394 frame->data[i + 1] = data >> 8;
395 frame->data[i + 2] = data >> 16;
396 frame->data[i + 3] = data >> 24;
397 }
398 } else {
399 for (i = 0; i < frame->len; i += 2, dreg++) {
400 data = priv->read_reg(priv, dreg);
401 frame->data[i] = data;
402 frame->data[i + 1] = data >> 8;
403 }
404 }
405
406 stats->rx_bytes += frame->len;
407 }
408 stats->rx_packets++;
409
410 netif_receive_skb(skb);
411 return 0;
412 }
413
c_can_setup_receive_object(struct net_device * dev,int iface,u32 obj,u32 mask,u32 id,u32 mcont)414 static void c_can_setup_receive_object(struct net_device *dev, int iface,
415 u32 obj, u32 mask, u32 id, u32 mcont)
416 {
417 struct c_can_priv *priv = netdev_priv(dev);
418
419 mask |= BIT(29);
420 priv->write_reg32(priv, C_CAN_IFACE(MASK1_REG, iface), mask);
421
422 id |= IF_ARB_MSGVAL;
423 priv->write_reg32(priv, C_CAN_IFACE(ARB1_REG, iface), id);
424
425 priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface), mcont);
426 c_can_object_put(dev, iface, obj, IF_COMM_RCV_SETUP);
427 }
428
c_can_tx_busy(const struct c_can_priv * priv,const struct c_can_tx_ring * tx_ring)429 static bool c_can_tx_busy(const struct c_can_priv *priv,
430 const struct c_can_tx_ring *tx_ring)
431 {
432 if (c_can_get_tx_free(priv, tx_ring) > 0)
433 return false;
434
435 netif_stop_queue(priv->dev);
436
437 /* Memory barrier before checking tx_free (head and tail) */
438 smp_mb();
439
440 if (c_can_get_tx_free(priv, tx_ring) == 0) {
441 netdev_dbg(priv->dev,
442 "Stopping tx-queue (tx_head=0x%08x, tx_tail=0x%08x, len=%d).\n",
443 tx_ring->head, tx_ring->tail,
444 tx_ring->head - tx_ring->tail);
445 return true;
446 }
447
448 netif_start_queue(priv->dev);
449 return false;
450 }
451
c_can_start_xmit(struct sk_buff * skb,struct net_device * dev)452 static netdev_tx_t c_can_start_xmit(struct sk_buff *skb,
453 struct net_device *dev)
454 {
455 struct can_frame *frame = (struct can_frame *)skb->data;
456 struct c_can_priv *priv = netdev_priv(dev);
457 struct c_can_tx_ring *tx_ring = &priv->tx;
458 u32 idx, obj, cmd = IF_COMM_TX;
459
460 if (can_dev_dropped_skb(dev, skb))
461 return NETDEV_TX_OK;
462
463 if (c_can_tx_busy(priv, tx_ring))
464 return NETDEV_TX_BUSY;
465
466 idx = c_can_get_tx_head(tx_ring);
467 tx_ring->head++;
468 if (c_can_get_tx_free(priv, tx_ring) == 0)
469 netif_stop_queue(dev);
470
471 if (idx < c_can_get_tx_tail(tx_ring))
472 cmd &= ~IF_COMM_TXRQST; /* Cache the message */
473
474 /* Store the message in the interface so we can call
475 * can_put_echo_skb(). We must do this before we enable
476 * transmit as we might race against do_tx().
477 */
478 c_can_setup_tx_object(dev, IF_TX, frame, idx);
479 can_put_echo_skb(skb, dev, idx, 0);
480 obj = idx + priv->msg_obj_tx_first;
481 c_can_object_put(dev, IF_TX, obj, cmd);
482
483 return NETDEV_TX_OK;
484 }
485
c_can_wait_for_ctrl_init(struct net_device * dev,struct c_can_priv * priv,u32 init)486 static int c_can_wait_for_ctrl_init(struct net_device *dev,
487 struct c_can_priv *priv, u32 init)
488 {
489 int retry = 0;
490
491 while (init != (priv->read_reg(priv, C_CAN_CTRL_REG) & CONTROL_INIT)) {
492 udelay(10);
493 if (retry++ > 1000) {
494 netdev_err(dev, "CCTRL: set CONTROL_INIT failed\n");
495 return -EIO;
496 }
497 }
498 return 0;
499 }
500
c_can_set_bittiming(struct net_device * dev)501 static int c_can_set_bittiming(struct net_device *dev)
502 {
503 unsigned int reg_btr, reg_brpe, ctrl_save;
504 u8 brp, brpe, sjw, tseg1, tseg2;
505 u32 ten_bit_brp;
506 struct c_can_priv *priv = netdev_priv(dev);
507 const struct can_bittiming *bt = &priv->can.bittiming;
508 int res;
509
510 /* c_can provides a 6-bit brp and 4-bit brpe fields */
511 ten_bit_brp = bt->brp - 1;
512 brp = ten_bit_brp & BTR_BRP_MASK;
513 brpe = ten_bit_brp >> 6;
514
515 sjw = bt->sjw - 1;
516 tseg1 = bt->prop_seg + bt->phase_seg1 - 1;
517 tseg2 = bt->phase_seg2 - 1;
518 reg_btr = brp | (sjw << BTR_SJW_SHIFT) | (tseg1 << BTR_TSEG1_SHIFT) |
519 (tseg2 << BTR_TSEG2_SHIFT);
520 reg_brpe = brpe & BRP_EXT_BRPE_MASK;
521
522 netdev_info(dev,
523 "setting BTR=%04x BRPE=%04x\n", reg_btr, reg_brpe);
524
525 ctrl_save = priv->read_reg(priv, C_CAN_CTRL_REG);
526 ctrl_save &= ~CONTROL_INIT;
527 priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_CCE | CONTROL_INIT);
528 res = c_can_wait_for_ctrl_init(dev, priv, CONTROL_INIT);
529 if (res)
530 return res;
531
532 priv->write_reg(priv, C_CAN_BTR_REG, reg_btr);
533 priv->write_reg(priv, C_CAN_BRPEXT_REG, reg_brpe);
534 priv->write_reg(priv, C_CAN_CTRL_REG, ctrl_save);
535
536 return c_can_wait_for_ctrl_init(dev, priv, 0);
537 }
538
539 /* Configure C_CAN message objects for Tx and Rx purposes:
540 * C_CAN provides a total of 32 message objects that can be configured
541 * either for Tx or Rx purposes. Here the first 16 message objects are used as
542 * a reception FIFO. The end of reception FIFO is signified by the EoB bit
543 * being SET. The remaining 16 message objects are kept aside for Tx purposes.
544 * See user guide document for further details on configuring message
545 * objects.
546 */
c_can_configure_msg_objects(struct net_device * dev)547 static void c_can_configure_msg_objects(struct net_device *dev)
548 {
549 struct c_can_priv *priv = netdev_priv(dev);
550 int i;
551
552 /* first invalidate all message objects */
553 for (i = priv->msg_obj_rx_first; i <= priv->msg_obj_num; i++)
554 c_can_inval_msg_object(dev, IF_NAPI, i);
555
556 /* setup receive message objects */
557 for (i = priv->msg_obj_rx_first; i < priv->msg_obj_rx_last; i++)
558 c_can_setup_receive_object(dev, IF_NAPI, i, 0, 0, IF_MCONT_RCV);
559
560 c_can_setup_receive_object(dev, IF_NAPI, priv->msg_obj_rx_last, 0, 0,
561 IF_MCONT_RCV_EOB);
562 }
563
c_can_software_reset(struct net_device * dev)564 static int c_can_software_reset(struct net_device *dev)
565 {
566 struct c_can_priv *priv = netdev_priv(dev);
567 int retry = 0;
568
569 if (priv->type != BOSCH_D_CAN)
570 return 0;
571
572 priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_SWR | CONTROL_INIT);
573 while (priv->read_reg(priv, C_CAN_CTRL_REG) & CONTROL_SWR) {
574 msleep(20);
575 if (retry++ > 100) {
576 netdev_err(dev, "CCTRL: software reset failed\n");
577 return -EIO;
578 }
579 }
580
581 return 0;
582 }
583
584 /* Configure C_CAN chip:
585 * - enable/disable auto-retransmission
586 * - set operating mode
587 * - configure message objects
588 */
c_can_chip_config(struct net_device * dev)589 static int c_can_chip_config(struct net_device *dev)
590 {
591 struct c_can_priv *priv = netdev_priv(dev);
592 struct c_can_tx_ring *tx_ring = &priv->tx;
593 int err;
594
595 err = c_can_software_reset(dev);
596 if (err)
597 return err;
598
599 /* enable automatic retransmission */
600 priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_ENABLE_AR);
601
602 if ((priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) &&
603 (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK)) {
604 /* loopback + silent mode : useful for hot self-test */
605 priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_TEST);
606 priv->write_reg(priv, C_CAN_TEST_REG, TEST_LBACK | TEST_SILENT);
607 } else if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
608 /* loopback mode : useful for self-test function */
609 priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_TEST);
610 priv->write_reg(priv, C_CAN_TEST_REG, TEST_LBACK);
611 } else if (priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) {
612 /* silent mode : bus-monitoring mode */
613 priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_TEST);
614 priv->write_reg(priv, C_CAN_TEST_REG, TEST_SILENT);
615 }
616
617 /* configure message objects */
618 c_can_configure_msg_objects(dev);
619
620 /* set a `lec` value so that we can check for updates later */
621 priv->write_reg(priv, C_CAN_STS_REG, LEC_UNUSED);
622
623 /* Clear all internal status */
624 tx_ring->head = 0;
625 tx_ring->tail = 0;
626 priv->tx_dir = 0;
627
628 /* set bittiming params */
629 return c_can_set_bittiming(dev);
630 }
631
c_can_start(struct net_device * dev)632 static int c_can_start(struct net_device *dev)
633 {
634 struct c_can_priv *priv = netdev_priv(dev);
635 int err;
636 struct pinctrl *p;
637
638 /* basic c_can configuration */
639 err = c_can_chip_config(dev);
640 if (err)
641 return err;
642
643 /* Setup the command for new messages */
644 priv->comm_rcv_high = priv->type != BOSCH_D_CAN ?
645 IF_COMM_RCV_LOW : IF_COMM_RCV_HIGH;
646
647 priv->can.state = CAN_STATE_ERROR_ACTIVE;
648
649 /* Attempt to use "active" if available else use "default" */
650 p = pinctrl_get_select(priv->device, "active");
651 if (!IS_ERR(p))
652 pinctrl_put(p);
653 else
654 pinctrl_pm_select_default_state(priv->device);
655
656 return 0;
657 }
658
c_can_stop(struct net_device * dev)659 static void c_can_stop(struct net_device *dev)
660 {
661 struct c_can_priv *priv = netdev_priv(dev);
662
663 c_can_irq_control(priv, false);
664
665 /* put ctrl to init on stop to end ongoing transmission */
666 priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_INIT);
667
668 /* deactivate pins */
669 pinctrl_pm_select_sleep_state(dev->dev.parent);
670 priv->can.state = CAN_STATE_STOPPED;
671 }
672
c_can_set_mode(struct net_device * dev,enum can_mode mode)673 static int c_can_set_mode(struct net_device *dev, enum can_mode mode)
674 {
675 struct c_can_priv *priv = netdev_priv(dev);
676 int err;
677
678 switch (mode) {
679 case CAN_MODE_START:
680 err = c_can_start(dev);
681 if (err)
682 return err;
683 netif_wake_queue(dev);
684 c_can_irq_control(priv, true);
685 break;
686 default:
687 return -EOPNOTSUPP;
688 }
689
690 return 0;
691 }
692
__c_can_get_berr_counter(const struct net_device * dev,struct can_berr_counter * bec)693 static int __c_can_get_berr_counter(const struct net_device *dev,
694 struct can_berr_counter *bec)
695 {
696 unsigned int reg_err_counter;
697 struct c_can_priv *priv = netdev_priv(dev);
698
699 reg_err_counter = priv->read_reg(priv, C_CAN_ERR_CNT_REG);
700 bec->rxerr = (reg_err_counter & ERR_CNT_REC_MASK) >>
701 ERR_CNT_REC_SHIFT;
702 bec->txerr = reg_err_counter & ERR_CNT_TEC_MASK;
703
704 return 0;
705 }
706
c_can_get_berr_counter(const struct net_device * dev,struct can_berr_counter * bec)707 static int c_can_get_berr_counter(const struct net_device *dev,
708 struct can_berr_counter *bec)
709 {
710 struct c_can_priv *priv = netdev_priv(dev);
711 int err;
712
713 c_can_pm_runtime_get_sync(priv);
714 err = __c_can_get_berr_counter(dev, bec);
715 c_can_pm_runtime_put_sync(priv);
716
717 return err;
718 }
719
c_can_do_tx(struct net_device * dev)720 static void c_can_do_tx(struct net_device *dev)
721 {
722 struct c_can_priv *priv = netdev_priv(dev);
723 struct c_can_tx_ring *tx_ring = &priv->tx;
724 struct net_device_stats *stats = &dev->stats;
725 u32 idx, obj, pkts = 0, bytes = 0, pend;
726 u8 tail;
727
728 if (priv->msg_obj_tx_last > 32)
729 pend = priv->read_reg32(priv, C_CAN_INTPND3_REG);
730 else
731 pend = priv->read_reg(priv, C_CAN_INTPND2_REG);
732
733 while ((idx = ffs(pend))) {
734 idx--;
735 pend &= ~BIT(idx);
736 obj = idx + priv->msg_obj_tx_first;
737
738 /* We use IF_NAPI interface instead of IF_TX because we
739 * are called from c_can_poll(), which runs inside
740 * NAPI. We are not transmitting.
741 */
742 c_can_inval_tx_object(dev, IF_NAPI, obj);
743 bytes += can_get_echo_skb(dev, idx, NULL);
744 pkts++;
745 }
746
747 if (!pkts)
748 return;
749
750 tx_ring->tail += pkts;
751 if (c_can_get_tx_free(priv, tx_ring)) {
752 /* Make sure that anybody stopping the queue after
753 * this sees the new tx_ring->tail.
754 */
755 smp_mb();
756 netif_wake_queue(priv->dev);
757 }
758
759 stats->tx_bytes += bytes;
760 stats->tx_packets += pkts;
761
762 tail = c_can_get_tx_tail(tx_ring);
763 if (priv->type == BOSCH_D_CAN && tail == 0) {
764 u8 head = c_can_get_tx_head(tx_ring);
765
766 /* Start transmission for all cached messages */
767 for (idx = tail; idx < head; idx++) {
768 obj = idx + priv->msg_obj_tx_first;
769 c_can_object_put(dev, IF_NAPI, obj, IF_COMM_TXRQST);
770 }
771 }
772 }
773
774 /* If we have a gap in the pending bits, that means we either
775 * raced with the hardware or failed to readout all upper
776 * objects in the last run due to quota limit.
777 */
c_can_adjust_pending(u32 pend,u32 rx_mask)778 static u32 c_can_adjust_pending(u32 pend, u32 rx_mask)
779 {
780 u32 weight, lasts;
781
782 if (pend == rx_mask)
783 return pend;
784
785 /* If the last set bit is larger than the number of pending
786 * bits we have a gap.
787 */
788 weight = hweight32(pend);
789 lasts = fls(pend);
790
791 /* If the bits are linear, nothing to do */
792 if (lasts == weight)
793 return pend;
794
795 /* Find the first set bit after the gap. We walk backwards
796 * from the last set bit.
797 */
798 for (lasts--; pend & BIT(lasts - 1); lasts--)
799 ;
800
801 return pend & ~GENMASK(lasts - 1, 0);
802 }
803
c_can_rx_object_get(struct net_device * dev,struct c_can_priv * priv,u32 obj)804 static inline void c_can_rx_object_get(struct net_device *dev,
805 struct c_can_priv *priv, u32 obj)
806 {
807 c_can_object_get(dev, IF_NAPI, obj, priv->comm_rcv_high);
808 }
809
c_can_rx_finalize(struct net_device * dev,struct c_can_priv * priv,u32 obj)810 static inline void c_can_rx_finalize(struct net_device *dev,
811 struct c_can_priv *priv, u32 obj)
812 {
813 if (priv->type != BOSCH_D_CAN)
814 c_can_object_get(dev, IF_NAPI, obj, IF_COMM_CLR_NEWDAT);
815 }
816
c_can_read_objects(struct net_device * dev,struct c_can_priv * priv,u32 pend,int quota)817 static int c_can_read_objects(struct net_device *dev, struct c_can_priv *priv,
818 u32 pend, int quota)
819 {
820 u32 pkts = 0, ctrl, obj;
821
822 while ((obj = ffs(pend)) && quota > 0) {
823 pend &= ~BIT(obj - 1);
824
825 c_can_rx_object_get(dev, priv, obj);
826 ctrl = priv->read_reg(priv, C_CAN_IFACE(MSGCTRL_REG, IF_NAPI));
827
828 if (ctrl & IF_MCONT_MSGLST) {
829 int n;
830
831 n = c_can_handle_lost_msg_obj(dev, IF_NAPI, obj, ctrl);
832
833 pkts += n;
834 quota -= n;
835 continue;
836 }
837
838 /* This really should not happen, but this covers some
839 * odd HW behaviour. Do not remove that unless you
840 * want to brick your machine.
841 */
842 if (!(ctrl & IF_MCONT_NEWDAT))
843 continue;
844
845 /* read the data from the message object */
846 c_can_read_msg_object(dev, IF_NAPI, ctrl);
847
848 c_can_rx_finalize(dev, priv, obj);
849
850 pkts++;
851 quota--;
852 }
853
854 return pkts;
855 }
856
c_can_get_pending(struct c_can_priv * priv)857 static inline u32 c_can_get_pending(struct c_can_priv *priv)
858 {
859 u32 pend;
860
861 if (priv->msg_obj_rx_last > 16)
862 pend = priv->read_reg32(priv, C_CAN_NEWDAT1_REG);
863 else
864 pend = priv->read_reg(priv, C_CAN_NEWDAT1_REG);
865
866 return pend;
867 }
868
869 /* theory of operation:
870 *
871 * c_can core saves a received CAN message into the first free message
872 * object it finds free (starting with the lowest). Bits NEWDAT and
873 * INTPND are set for this message object indicating that a new message
874 * has arrived.
875 *
876 * We clear the newdat bit right away.
877 *
878 * This can result in packet reordering when the readout is slow.
879 */
c_can_do_rx_poll(struct net_device * dev,int quota)880 static int c_can_do_rx_poll(struct net_device *dev, int quota)
881 {
882 struct c_can_priv *priv = netdev_priv(dev);
883 u32 pkts = 0, pend = 0, toread, n;
884
885 while (quota > 0) {
886 if (!pend) {
887 pend = c_can_get_pending(priv);
888 if (!pend)
889 break;
890 /* If the pending field has a gap, handle the
891 * bits above the gap first.
892 */
893 toread = c_can_adjust_pending(pend,
894 priv->msg_obj_rx_mask);
895 } else {
896 toread = pend;
897 }
898 /* Remove the bits from pend */
899 pend &= ~toread;
900 /* Read the objects */
901 n = c_can_read_objects(dev, priv, toread, quota);
902 pkts += n;
903 quota -= n;
904 }
905
906 return pkts;
907 }
908
c_can_handle_state_change(struct net_device * dev,enum c_can_bus_error_types error_type)909 static int c_can_handle_state_change(struct net_device *dev,
910 enum c_can_bus_error_types error_type)
911 {
912 unsigned int reg_err_counter;
913 unsigned int rx_err_passive;
914 struct c_can_priv *priv = netdev_priv(dev);
915 struct can_frame *cf;
916 struct sk_buff *skb;
917 struct can_berr_counter bec;
918
919 switch (error_type) {
920 case C_CAN_NO_ERROR:
921 priv->can.state = CAN_STATE_ERROR_ACTIVE;
922 break;
923 case C_CAN_ERROR_WARNING:
924 /* error warning state */
925 priv->can.can_stats.error_warning++;
926 priv->can.state = CAN_STATE_ERROR_WARNING;
927 break;
928 case C_CAN_ERROR_PASSIVE:
929 /* error passive state */
930 priv->can.can_stats.error_passive++;
931 priv->can.state = CAN_STATE_ERROR_PASSIVE;
932 break;
933 case C_CAN_BUS_OFF:
934 /* bus-off state */
935 priv->can.state = CAN_STATE_BUS_OFF;
936 priv->can.can_stats.bus_off++;
937 break;
938 default:
939 break;
940 }
941
942 /* propagate the error condition to the CAN stack */
943 skb = alloc_can_err_skb(dev, &cf);
944 if (unlikely(!skb))
945 return 0;
946
947 __c_can_get_berr_counter(dev, &bec);
948 reg_err_counter = priv->read_reg(priv, C_CAN_ERR_CNT_REG);
949 rx_err_passive = (reg_err_counter & ERR_CNT_RP_MASK) >>
950 ERR_CNT_RP_SHIFT;
951
952 switch (error_type) {
953 case C_CAN_NO_ERROR:
954 cf->can_id |= CAN_ERR_CRTL | CAN_ERR_CNT;
955 cf->data[1] = CAN_ERR_CRTL_ACTIVE;
956 cf->data[6] = bec.txerr;
957 cf->data[7] = bec.rxerr;
958 break;
959 case C_CAN_ERROR_WARNING:
960 /* error warning state */
961 cf->can_id |= CAN_ERR_CRTL | CAN_ERR_CNT;
962 cf->data[1] = (bec.txerr > bec.rxerr) ?
963 CAN_ERR_CRTL_TX_WARNING :
964 CAN_ERR_CRTL_RX_WARNING;
965 cf->data[6] = bec.txerr;
966 cf->data[7] = bec.rxerr;
967
968 break;
969 case C_CAN_ERROR_PASSIVE:
970 /* error passive state */
971 cf->can_id |= CAN_ERR_CRTL | CAN_ERR_CNT;
972 if (rx_err_passive)
973 cf->data[1] |= CAN_ERR_CRTL_RX_PASSIVE;
974 if (bec.txerr > 127)
975 cf->data[1] |= CAN_ERR_CRTL_TX_PASSIVE;
976
977 cf->data[6] = bec.txerr;
978 cf->data[7] = bec.rxerr;
979 break;
980 case C_CAN_BUS_OFF:
981 /* bus-off state */
982 cf->can_id |= CAN_ERR_BUSOFF;
983 can_bus_off(dev);
984 break;
985 default:
986 break;
987 }
988
989 netif_receive_skb(skb);
990
991 return 1;
992 }
993
c_can_handle_bus_err(struct net_device * dev,enum c_can_lec_type lec_type)994 static int c_can_handle_bus_err(struct net_device *dev,
995 enum c_can_lec_type lec_type)
996 {
997 struct c_can_priv *priv = netdev_priv(dev);
998 struct net_device_stats *stats = &dev->stats;
999 struct can_frame *cf;
1000 struct sk_buff *skb;
1001
1002 /* early exit if no lec update or no error.
1003 * no lec update means that no CAN bus event has been detected
1004 * since CPU wrote 0x7 value to status reg.
1005 */
1006 if (lec_type == LEC_UNUSED || lec_type == LEC_NO_ERROR)
1007 return 0;
1008
1009 if (!(priv->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING))
1010 return 0;
1011
1012 /* common for all type of bus errors */
1013 priv->can.can_stats.bus_error++;
1014
1015 /* propagate the error condition to the CAN stack */
1016 skb = alloc_can_err_skb(dev, &cf);
1017
1018 /* check for 'last error code' which tells us the
1019 * type of the last error to occur on the CAN bus
1020 */
1021 if (likely(skb))
1022 cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
1023
1024 switch (lec_type) {
1025 case LEC_STUFF_ERROR:
1026 netdev_dbg(dev, "stuff error\n");
1027 if (likely(skb))
1028 cf->data[2] |= CAN_ERR_PROT_STUFF;
1029 stats->rx_errors++;
1030 break;
1031 case LEC_FORM_ERROR:
1032 netdev_dbg(dev, "form error\n");
1033 if (likely(skb))
1034 cf->data[2] |= CAN_ERR_PROT_FORM;
1035 stats->rx_errors++;
1036 break;
1037 case LEC_ACK_ERROR:
1038 netdev_dbg(dev, "ack error\n");
1039 if (likely(skb))
1040 cf->data[3] = CAN_ERR_PROT_LOC_ACK;
1041 stats->tx_errors++;
1042 break;
1043 case LEC_BIT1_ERROR:
1044 netdev_dbg(dev, "bit1 error\n");
1045 if (likely(skb))
1046 cf->data[2] |= CAN_ERR_PROT_BIT1;
1047 stats->tx_errors++;
1048 break;
1049 case LEC_BIT0_ERROR:
1050 netdev_dbg(dev, "bit0 error\n");
1051 if (likely(skb))
1052 cf->data[2] |= CAN_ERR_PROT_BIT0;
1053 stats->tx_errors++;
1054 break;
1055 case LEC_CRC_ERROR:
1056 netdev_dbg(dev, "CRC error\n");
1057 if (likely(skb))
1058 cf->data[3] = CAN_ERR_PROT_LOC_CRC_SEQ;
1059 stats->rx_errors++;
1060 break;
1061 default:
1062 break;
1063 }
1064
1065 if (unlikely(!skb))
1066 return 0;
1067
1068 netif_receive_skb(skb);
1069 return 1;
1070 }
1071
c_can_poll(struct napi_struct * napi,int quota)1072 static int c_can_poll(struct napi_struct *napi, int quota)
1073 {
1074 struct net_device *dev = napi->dev;
1075 struct c_can_priv *priv = netdev_priv(dev);
1076 u16 curr, last = priv->last_status;
1077 int work_done = 0;
1078
1079 /* Only read the status register if a status interrupt was pending */
1080 if (atomic_xchg(&priv->sie_pending, 0)) {
1081 priv->last_status = priv->read_reg(priv, C_CAN_STS_REG);
1082 curr = priv->last_status;
1083 /* Ack status on C_CAN. D_CAN is self clearing */
1084 if (priv->type != BOSCH_D_CAN)
1085 priv->write_reg(priv, C_CAN_STS_REG, LEC_UNUSED);
1086 } else {
1087 /* no change detected ... */
1088 curr = last;
1089 }
1090
1091 /* handle state changes */
1092 if ((curr & STATUS_EWARN) && (!(last & STATUS_EWARN))) {
1093 netdev_dbg(dev, "entered error warning state\n");
1094 work_done += c_can_handle_state_change(dev, C_CAN_ERROR_WARNING);
1095 }
1096
1097 if ((curr & STATUS_EPASS) && (!(last & STATUS_EPASS))) {
1098 netdev_dbg(dev, "entered error passive state\n");
1099 work_done += c_can_handle_state_change(dev, C_CAN_ERROR_PASSIVE);
1100 }
1101
1102 if ((curr & STATUS_BOFF) && (!(last & STATUS_BOFF))) {
1103 netdev_dbg(dev, "entered bus off state\n");
1104 work_done += c_can_handle_state_change(dev, C_CAN_BUS_OFF);
1105 goto end;
1106 }
1107
1108 /* handle bus recovery events */
1109 if ((!(curr & STATUS_BOFF)) && (last & STATUS_BOFF)) {
1110 netdev_dbg(dev, "left bus off state\n");
1111 work_done += c_can_handle_state_change(dev, C_CAN_ERROR_PASSIVE);
1112 }
1113
1114 if ((!(curr & STATUS_EPASS)) && (last & STATUS_EPASS)) {
1115 netdev_dbg(dev, "left error passive state\n");
1116 work_done += c_can_handle_state_change(dev, C_CAN_ERROR_WARNING);
1117 }
1118
1119 if ((!(curr & STATUS_EWARN)) && (last & STATUS_EWARN)) {
1120 netdev_dbg(dev, "left error warning state\n");
1121 work_done += c_can_handle_state_change(dev, C_CAN_NO_ERROR);
1122 }
1123
1124 /* handle lec errors on the bus */
1125 work_done += c_can_handle_bus_err(dev, curr & LEC_MASK);
1126
1127 /* Handle Tx/Rx events. We do this unconditionally */
1128 work_done += c_can_do_rx_poll(dev, (quota - work_done));
1129 c_can_do_tx(dev);
1130
1131 end:
1132 if (work_done < quota) {
1133 napi_complete_done(napi, work_done);
1134 /* enable all IRQs if we are not in bus off state */
1135 if (priv->can.state != CAN_STATE_BUS_OFF)
1136 c_can_irq_control(priv, true);
1137 }
1138
1139 return work_done;
1140 }
1141
c_can_isr(int irq,void * dev_id)1142 static irqreturn_t c_can_isr(int irq, void *dev_id)
1143 {
1144 struct net_device *dev = (struct net_device *)dev_id;
1145 struct c_can_priv *priv = netdev_priv(dev);
1146 int reg_int;
1147
1148 reg_int = priv->read_reg(priv, C_CAN_INT_REG);
1149 if (!reg_int)
1150 return IRQ_NONE;
1151
1152 /* save for later use */
1153 if (reg_int & INT_STS_PENDING)
1154 atomic_set(&priv->sie_pending, 1);
1155
1156 /* disable all interrupts and schedule the NAPI */
1157 c_can_irq_control(priv, false);
1158 napi_schedule(&priv->napi);
1159
1160 return IRQ_HANDLED;
1161 }
1162
c_can_open(struct net_device * dev)1163 static int c_can_open(struct net_device *dev)
1164 {
1165 int err;
1166 struct c_can_priv *priv = netdev_priv(dev);
1167
1168 c_can_pm_runtime_get_sync(priv);
1169 c_can_reset_ram(priv, true);
1170
1171 /* open the can device */
1172 err = open_candev(dev);
1173 if (err) {
1174 netdev_err(dev, "failed to open can device\n");
1175 goto exit_open_fail;
1176 }
1177
1178 /* register interrupt handler */
1179 err = request_irq(dev->irq, &c_can_isr, IRQF_SHARED, dev->name,
1180 dev);
1181 if (err < 0) {
1182 netdev_err(dev, "failed to request interrupt\n");
1183 goto exit_irq_fail;
1184 }
1185
1186 /* start the c_can controller */
1187 err = c_can_start(dev);
1188 if (err)
1189 goto exit_start_fail;
1190
1191 napi_enable(&priv->napi);
1192 /* enable status change, error and module interrupts */
1193 c_can_irq_control(priv, true);
1194 netif_start_queue(dev);
1195
1196 return 0;
1197
1198 exit_start_fail:
1199 free_irq(dev->irq, dev);
1200 exit_irq_fail:
1201 close_candev(dev);
1202 exit_open_fail:
1203 c_can_reset_ram(priv, false);
1204 c_can_pm_runtime_put_sync(priv);
1205 return err;
1206 }
1207
c_can_close(struct net_device * dev)1208 static int c_can_close(struct net_device *dev)
1209 {
1210 struct c_can_priv *priv = netdev_priv(dev);
1211
1212 netif_stop_queue(dev);
1213 napi_disable(&priv->napi);
1214 c_can_stop(dev);
1215 free_irq(dev->irq, dev);
1216 close_candev(dev);
1217
1218 c_can_reset_ram(priv, false);
1219 c_can_pm_runtime_put_sync(priv);
1220
1221 return 0;
1222 }
1223
alloc_c_can_dev(int msg_obj_num)1224 struct net_device *alloc_c_can_dev(int msg_obj_num)
1225 {
1226 struct net_device *dev;
1227 struct c_can_priv *priv;
1228 int msg_obj_tx_num = msg_obj_num / 2;
1229
1230 dev = alloc_candev(sizeof(*priv), msg_obj_tx_num);
1231 if (!dev)
1232 return NULL;
1233
1234 priv = netdev_priv(dev);
1235 priv->msg_obj_num = msg_obj_num;
1236 priv->msg_obj_rx_num = msg_obj_num - msg_obj_tx_num;
1237 priv->msg_obj_rx_first = 1;
1238 priv->msg_obj_rx_last =
1239 priv->msg_obj_rx_first + priv->msg_obj_rx_num - 1;
1240 priv->msg_obj_rx_mask = GENMASK(priv->msg_obj_rx_num - 1, 0);
1241
1242 priv->msg_obj_tx_num = msg_obj_tx_num;
1243 priv->msg_obj_tx_first = priv->msg_obj_rx_last + 1;
1244 priv->msg_obj_tx_last =
1245 priv->msg_obj_tx_first + priv->msg_obj_tx_num - 1;
1246
1247 priv->tx.head = 0;
1248 priv->tx.tail = 0;
1249 priv->tx.obj_num = msg_obj_tx_num;
1250
1251 netif_napi_add_weight(dev, &priv->napi, c_can_poll,
1252 priv->msg_obj_rx_num);
1253
1254 priv->dev = dev;
1255 priv->can.bittiming_const = &c_can_bittiming_const;
1256 priv->can.do_set_mode = c_can_set_mode;
1257 priv->can.do_get_berr_counter = c_can_get_berr_counter;
1258 priv->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK |
1259 CAN_CTRLMODE_LISTENONLY |
1260 CAN_CTRLMODE_BERR_REPORTING;
1261
1262 return dev;
1263 }
1264 EXPORT_SYMBOL_GPL(alloc_c_can_dev);
1265
1266 #ifdef CONFIG_PM
c_can_power_down(struct net_device * dev)1267 int c_can_power_down(struct net_device *dev)
1268 {
1269 u32 val;
1270 unsigned long time_out;
1271 struct c_can_priv *priv = netdev_priv(dev);
1272
1273 if (!(dev->flags & IFF_UP))
1274 return 0;
1275
1276 WARN_ON(priv->type != BOSCH_D_CAN);
1277
1278 /* set PDR value so the device goes to power down mode */
1279 val = priv->read_reg(priv, C_CAN_CTRL_EX_REG);
1280 val |= CONTROL_EX_PDR;
1281 priv->write_reg(priv, C_CAN_CTRL_EX_REG, val);
1282
1283 /* Wait for the PDA bit to get set */
1284 time_out = jiffies + msecs_to_jiffies(INIT_WAIT_MS);
1285 while (!(priv->read_reg(priv, C_CAN_STS_REG) & STATUS_PDA) &&
1286 time_after(time_out, jiffies))
1287 cpu_relax();
1288
1289 if (time_after(jiffies, time_out))
1290 return -ETIMEDOUT;
1291
1292 c_can_stop(dev);
1293
1294 c_can_reset_ram(priv, false);
1295 c_can_pm_runtime_put_sync(priv);
1296
1297 return 0;
1298 }
1299 EXPORT_SYMBOL_GPL(c_can_power_down);
1300
c_can_power_up(struct net_device * dev)1301 int c_can_power_up(struct net_device *dev)
1302 {
1303 u32 val;
1304 unsigned long time_out;
1305 struct c_can_priv *priv = netdev_priv(dev);
1306 int ret;
1307
1308 if (!(dev->flags & IFF_UP))
1309 return 0;
1310
1311 WARN_ON(priv->type != BOSCH_D_CAN);
1312
1313 c_can_pm_runtime_get_sync(priv);
1314 c_can_reset_ram(priv, true);
1315
1316 /* Clear PDR and INIT bits */
1317 val = priv->read_reg(priv, C_CAN_CTRL_EX_REG);
1318 val &= ~CONTROL_EX_PDR;
1319 priv->write_reg(priv, C_CAN_CTRL_EX_REG, val);
1320 val = priv->read_reg(priv, C_CAN_CTRL_REG);
1321 val &= ~CONTROL_INIT;
1322 priv->write_reg(priv, C_CAN_CTRL_REG, val);
1323
1324 /* Wait for the PDA bit to get clear */
1325 time_out = jiffies + msecs_to_jiffies(INIT_WAIT_MS);
1326 while ((priv->read_reg(priv, C_CAN_STS_REG) & STATUS_PDA) &&
1327 time_after(time_out, jiffies))
1328 cpu_relax();
1329
1330 if (time_after(jiffies, time_out)) {
1331 ret = -ETIMEDOUT;
1332 goto err_out;
1333 }
1334
1335 ret = c_can_start(dev);
1336 if (ret)
1337 goto err_out;
1338
1339 c_can_irq_control(priv, true);
1340
1341 return 0;
1342
1343 err_out:
1344 c_can_reset_ram(priv, false);
1345 c_can_pm_runtime_put_sync(priv);
1346
1347 return ret;
1348 }
1349 EXPORT_SYMBOL_GPL(c_can_power_up);
1350 #endif
1351
free_c_can_dev(struct net_device * dev)1352 void free_c_can_dev(struct net_device *dev)
1353 {
1354 struct c_can_priv *priv = netdev_priv(dev);
1355
1356 netif_napi_del(&priv->napi);
1357 free_candev(dev);
1358 }
1359 EXPORT_SYMBOL_GPL(free_c_can_dev);
1360
1361 static const struct net_device_ops c_can_netdev_ops = {
1362 .ndo_open = c_can_open,
1363 .ndo_stop = c_can_close,
1364 .ndo_start_xmit = c_can_start_xmit,
1365 .ndo_change_mtu = can_change_mtu,
1366 };
1367
register_c_can_dev(struct net_device * dev)1368 int register_c_can_dev(struct net_device *dev)
1369 {
1370 /* Deactivate pins to prevent DRA7 DCAN IP from being
1371 * stuck in transition when module is disabled.
1372 * Pins are activated in c_can_start() and deactivated
1373 * in c_can_stop()
1374 */
1375 pinctrl_pm_select_sleep_state(dev->dev.parent);
1376
1377 dev->flags |= IFF_ECHO; /* we support local echo */
1378 dev->netdev_ops = &c_can_netdev_ops;
1379 dev->ethtool_ops = &c_can_ethtool_ops;
1380
1381 return register_candev(dev);
1382 }
1383 EXPORT_SYMBOL_GPL(register_c_can_dev);
1384
unregister_c_can_dev(struct net_device * dev)1385 void unregister_c_can_dev(struct net_device *dev)
1386 {
1387 unregister_candev(dev);
1388 }
1389 EXPORT_SYMBOL_GPL(unregister_c_can_dev);
1390
1391 MODULE_AUTHOR("Bhupesh Sharma <bhupesh.sharma@st.com>");
1392 MODULE_LICENSE("GPL v2");
1393 MODULE_DESCRIPTION("CAN bus driver for Bosch C_CAN controller");
1394