1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #ifndef BTRFS_CTREE_H
7 #define BTRFS_CTREE_H
8
9 #include <linux/cleanup.h>
10 #include <linux/spinlock.h>
11 #include <linux/rbtree.h>
12 #include <linux/mutex.h>
13 #include <linux/wait.h>
14 #include <linux/list.h>
15 #include <linux/atomic.h>
16 #include <linux/xarray.h>
17 #include <linux/refcount.h>
18 #include <uapi/linux/btrfs_tree.h>
19 #include "locking.h"
20 #include "fs.h"
21 #include "accessors.h"
22 #include "extent-io-tree.h"
23
24 struct extent_buffer;
25 struct btrfs_block_rsv;
26 struct btrfs_trans_handle;
27 struct btrfs_block_group;
28
29 /* Read ahead values for struct btrfs_path.reada */
30 enum {
31 READA_NONE,
32 READA_BACK,
33 READA_FORWARD,
34 /*
35 * Similar to READA_FORWARD but unlike it:
36 *
37 * 1) It will trigger readahead even for leaves that are not close to
38 * each other on disk;
39 * 2) It also triggers readahead for nodes;
40 * 3) During a search, even when a node or leaf is already in memory, it
41 * will still trigger readahead for other nodes and leaves that follow
42 * it.
43 *
44 * This is meant to be used only when we know we are iterating over the
45 * entire tree or a very large part of it.
46 */
47 READA_FORWARD_ALWAYS,
48 };
49
50 /*
51 * btrfs_paths remember the path taken from the root down to the leaf.
52 * level 0 is always the leaf, and nodes[1...BTRFS_MAX_LEVEL] will point
53 * to any other levels that are present.
54 *
55 * The slots array records the index of the item or block pointer
56 * used while walking the tree.
57 */
58 struct btrfs_path {
59 struct extent_buffer *nodes[BTRFS_MAX_LEVEL];
60 int slots[BTRFS_MAX_LEVEL];
61 /* if there is real range locking, this locks field will change */
62 u8 locks[BTRFS_MAX_LEVEL];
63 u8 reada;
64 u8 lowest_level;
65
66 /*
67 * set by btrfs_split_item, tells search_slot to keep all locks
68 * and to force calls to keep space in the nodes
69 */
70 unsigned int search_for_split:1;
71 /* Keep some upper locks as we walk down. */
72 unsigned int keep_locks:1;
73 unsigned int skip_locking:1;
74 unsigned int search_commit_root:1;
75 unsigned int need_commit_sem:1;
76 unsigned int skip_release_on_error:1;
77 /*
78 * Indicate that new item (btrfs_search_slot) is extending already
79 * existing item and ins_len contains only the data size and not item
80 * header (ie. sizeof(struct btrfs_item) is not included).
81 */
82 unsigned int search_for_extension:1;
83 /* Stop search if any locks need to be taken (for read) */
84 unsigned int nowait:1;
85 };
86
87 #define BTRFS_PATH_AUTO_FREE(path_name) \
88 struct btrfs_path *path_name __free(btrfs_free_path) = NULL
89
90 /*
91 * The state of btrfs root
92 */
93 enum {
94 /*
95 * btrfs_record_root_in_trans is a multi-step process, and it can race
96 * with the balancing code. But the race is very small, and only the
97 * first time the root is added to each transaction. So IN_TRANS_SETUP
98 * is used to tell us when more checks are required
99 */
100 BTRFS_ROOT_IN_TRANS_SETUP,
101
102 /*
103 * Set if tree blocks of this root can be shared by other roots.
104 * Only subvolume trees and their reloc trees have this bit set.
105 * Conflicts with TRACK_DIRTY bit.
106 *
107 * This affects two things:
108 *
109 * - How balance works
110 * For shareable roots, we need to use reloc tree and do path
111 * replacement for balance, and need various pre/post hooks for
112 * snapshot creation to handle them.
113 *
114 * While for non-shareable trees, we just simply do a tree search
115 * with COW.
116 *
117 * - How dirty roots are tracked
118 * For shareable roots, btrfs_record_root_in_trans() is needed to
119 * track them, while non-subvolume roots have TRACK_DIRTY bit, they
120 * don't need to set this manually.
121 */
122 BTRFS_ROOT_SHAREABLE,
123 BTRFS_ROOT_TRACK_DIRTY,
124 BTRFS_ROOT_IN_RADIX,
125 BTRFS_ROOT_ORPHAN_ITEM_INSERTED,
126 BTRFS_ROOT_DEFRAG_RUNNING,
127 BTRFS_ROOT_FORCE_COW,
128 BTRFS_ROOT_MULTI_LOG_TASKS,
129 BTRFS_ROOT_DIRTY,
130 BTRFS_ROOT_DELETING,
131
132 /*
133 * Reloc tree is orphan, only kept here for qgroup delayed subtree scan
134 *
135 * Set for the subvolume tree owning the reloc tree.
136 */
137 BTRFS_ROOT_DEAD_RELOC_TREE,
138 /* Mark dead root stored on device whose cleanup needs to be resumed */
139 BTRFS_ROOT_DEAD_TREE,
140 /* The root has a log tree. Used for subvolume roots and the tree root. */
141 BTRFS_ROOT_HAS_LOG_TREE,
142 /* Qgroup flushing is in progress */
143 BTRFS_ROOT_QGROUP_FLUSHING,
144 /* We started the orphan cleanup for this root. */
145 BTRFS_ROOT_ORPHAN_CLEANUP,
146 /* This root has a drop operation that was started previously. */
147 BTRFS_ROOT_UNFINISHED_DROP,
148 /* This reloc root needs to have its buffers lockdep class reset. */
149 BTRFS_ROOT_RESET_LOCKDEP_CLASS,
150 };
151
152 /*
153 * Record swapped tree blocks of a subvolume tree for delayed subtree trace
154 * code. For detail check comment in fs/btrfs/qgroup.c.
155 */
156 struct btrfs_qgroup_swapped_blocks {
157 spinlock_t lock;
158 /* RM_EMPTY_ROOT() of above blocks[] */
159 bool swapped;
160 struct rb_root blocks[BTRFS_MAX_LEVEL];
161 };
162
163 /*
164 * in ram representation of the tree. extent_root is used for all allocations
165 * and for the extent tree extent_root root.
166 */
167 struct btrfs_root {
168 struct rb_node rb_node;
169
170 struct extent_buffer *node;
171
172 struct extent_buffer *commit_root;
173 struct btrfs_root *log_root;
174 struct btrfs_root *reloc_root;
175
176 unsigned long state;
177 struct btrfs_root_item root_item;
178 struct btrfs_key root_key;
179 struct btrfs_fs_info *fs_info;
180 struct extent_io_tree dirty_log_pages;
181
182 struct mutex objectid_mutex;
183
184 spinlock_t accounting_lock;
185 struct btrfs_block_rsv *block_rsv;
186
187 struct mutex log_mutex;
188 wait_queue_head_t log_writer_wait;
189 wait_queue_head_t log_commit_wait[2];
190 struct list_head log_ctxs[2];
191 /* Used only for log trees of subvolumes, not for the log root tree */
192 atomic_t log_writers;
193 atomic_t log_commit[2];
194 /* Used only for log trees of subvolumes, not for the log root tree */
195 atomic_t log_batch;
196 /*
197 * Protected by the 'log_mutex' lock but can be read without holding
198 * that lock to avoid unnecessary lock contention, in which case it
199 * should be read using btrfs_get_root_log_transid() except if it's a
200 * log tree in which case it can be directly accessed. Updates to this
201 * field should always use btrfs_set_root_log_transid(), except for log
202 * trees where the field can be updated directly.
203 */
204 int log_transid;
205 /* No matter the commit succeeds or not*/
206 int log_transid_committed;
207 /*
208 * Just be updated when the commit succeeds. Use
209 * btrfs_get_root_last_log_commit() and btrfs_set_root_last_log_commit()
210 * to access this field.
211 */
212 int last_log_commit;
213 pid_t log_start_pid;
214
215 u64 last_trans;
216
217 u64 free_objectid;
218
219 struct btrfs_key defrag_progress;
220 struct btrfs_key defrag_max;
221
222 /* The dirty list is only used by non-shareable roots */
223 struct list_head dirty_list;
224
225 struct list_head root_list;
226
227 /* Xarray that keeps track of in-memory inodes. */
228 struct xarray inodes;
229
230 /* Xarray that keeps track of delayed nodes of every inode. */
231 struct xarray delayed_nodes;
232 /*
233 * right now this just gets used so that a root has its own devid
234 * for stat. It may be used for more later
235 */
236 dev_t anon_dev;
237
238 spinlock_t root_item_lock;
239 refcount_t refs;
240
241 struct mutex delalloc_mutex;
242 spinlock_t delalloc_lock;
243 /*
244 * all of the inodes that have delalloc bytes. It is possible for
245 * this list to be empty even when there is still dirty data=ordered
246 * extents waiting to finish IO.
247 */
248 struct list_head delalloc_inodes;
249 struct list_head delalloc_root;
250 u64 nr_delalloc_inodes;
251
252 struct mutex ordered_extent_mutex;
253 /*
254 * this is used by the balancing code to wait for all the pending
255 * ordered extents
256 */
257 spinlock_t ordered_extent_lock;
258
259 /*
260 * all of the data=ordered extents pending writeback
261 * these can span multiple transactions and basically include
262 * every dirty data page that isn't from nodatacow
263 */
264 struct list_head ordered_extents;
265 struct list_head ordered_root;
266 u64 nr_ordered_extents;
267
268 /*
269 * Not empty if this subvolume root has gone through tree block swap
270 * (relocation)
271 *
272 * Will be used by reloc_control::dirty_subvol_roots.
273 */
274 struct list_head reloc_dirty_list;
275
276 /*
277 * Number of currently running SEND ioctls to prevent
278 * manipulation with the read-only status via SUBVOL_SETFLAGS
279 */
280 int send_in_progress;
281 /*
282 * Number of currently running deduplication operations that have a
283 * destination inode belonging to this root. Protected by the lock
284 * root_item_lock.
285 */
286 int dedupe_in_progress;
287 /* For exclusion of snapshot creation and nocow writes */
288 struct btrfs_drew_lock snapshot_lock;
289
290 atomic_t snapshot_force_cow;
291
292 /* For qgroup metadata reserved space */
293 spinlock_t qgroup_meta_rsv_lock;
294 u64 qgroup_meta_rsv_pertrans;
295 u64 qgroup_meta_rsv_prealloc;
296 wait_queue_head_t qgroup_flush_wait;
297
298 /* Number of active swapfiles */
299 atomic_t nr_swapfiles;
300
301 /* Record pairs of swapped blocks for qgroup */
302 struct btrfs_qgroup_swapped_blocks swapped_blocks;
303
304 /* Used only by log trees, when logging csum items */
305 struct extent_io_tree log_csum_range;
306
307 /* Used in simple quotas, track root during relocation. */
308 u64 relocation_src_root;
309
310 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
311 u64 alloc_bytenr;
312 #endif
313
314 #ifdef CONFIG_BTRFS_DEBUG
315 struct list_head leak_list;
316 #endif
317 };
318
btrfs_root_readonly(const struct btrfs_root * root)319 static inline bool btrfs_root_readonly(const struct btrfs_root *root)
320 {
321 /* Byte-swap the constant at compile time, root_item::flags is LE */
322 return (root->root_item.flags & cpu_to_le64(BTRFS_ROOT_SUBVOL_RDONLY)) != 0;
323 }
324
btrfs_root_dead(const struct btrfs_root * root)325 static inline bool btrfs_root_dead(const struct btrfs_root *root)
326 {
327 /* Byte-swap the constant at compile time, root_item::flags is LE */
328 return (root->root_item.flags & cpu_to_le64(BTRFS_ROOT_SUBVOL_DEAD)) != 0;
329 }
330
btrfs_root_id(const struct btrfs_root * root)331 static inline u64 btrfs_root_id(const struct btrfs_root *root)
332 {
333 return root->root_key.objectid;
334 }
335
btrfs_get_root_log_transid(const struct btrfs_root * root)336 static inline int btrfs_get_root_log_transid(const struct btrfs_root *root)
337 {
338 return READ_ONCE(root->log_transid);
339 }
340
btrfs_set_root_log_transid(struct btrfs_root * root,int log_transid)341 static inline void btrfs_set_root_log_transid(struct btrfs_root *root, int log_transid)
342 {
343 WRITE_ONCE(root->log_transid, log_transid);
344 }
345
btrfs_get_root_last_log_commit(const struct btrfs_root * root)346 static inline int btrfs_get_root_last_log_commit(const struct btrfs_root *root)
347 {
348 return READ_ONCE(root->last_log_commit);
349 }
350
btrfs_set_root_last_log_commit(struct btrfs_root * root,int commit_id)351 static inline void btrfs_set_root_last_log_commit(struct btrfs_root *root, int commit_id)
352 {
353 WRITE_ONCE(root->last_log_commit, commit_id);
354 }
355
btrfs_get_root_last_trans(const struct btrfs_root * root)356 static inline u64 btrfs_get_root_last_trans(const struct btrfs_root *root)
357 {
358 return READ_ONCE(root->last_trans);
359 }
360
btrfs_set_root_last_trans(struct btrfs_root * root,u64 transid)361 static inline void btrfs_set_root_last_trans(struct btrfs_root *root, u64 transid)
362 {
363 WRITE_ONCE(root->last_trans, transid);
364 }
365
366 /*
367 * Return the generation this root started with.
368 *
369 * Every normal root that is created with root->root_key.offset set to it's
370 * originating generation. If it is a snapshot it is the generation when the
371 * snapshot was created.
372 *
373 * However for TREE_RELOC roots root_key.offset is the objectid of the owning
374 * tree root. Thankfully we copy the root item of the owning tree root, which
375 * has it's last_snapshot set to what we would have root_key.offset set to, so
376 * return that if this is a TREE_RELOC root.
377 */
btrfs_root_origin_generation(const struct btrfs_root * root)378 static inline u64 btrfs_root_origin_generation(const struct btrfs_root *root)
379 {
380 if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID)
381 return btrfs_root_last_snapshot(&root->root_item);
382 return root->root_key.offset;
383 }
384
385 /*
386 * Structure that conveys information about an extent that is going to replace
387 * all the extents in a file range.
388 */
389 struct btrfs_replace_extent_info {
390 u64 disk_offset;
391 u64 disk_len;
392 u64 data_offset;
393 u64 data_len;
394 u64 file_offset;
395 /* Pointer to a file extent item of type regular or prealloc. */
396 char *extent_buf;
397 /*
398 * Set to true when attempting to replace a file range with a new extent
399 * described by this structure, set to false when attempting to clone an
400 * existing extent into a file range.
401 */
402 bool is_new_extent;
403 /* Indicate if we should update the inode's mtime and ctime. */
404 bool update_times;
405 /* Meaningful only if is_new_extent is true. */
406 int qgroup_reserved;
407 /*
408 * Meaningful only if is_new_extent is true.
409 * Used to track how many extent items we have already inserted in a
410 * subvolume tree that refer to the extent described by this structure,
411 * so that we know when to create a new delayed ref or update an existing
412 * one.
413 */
414 int insertions;
415 };
416
417 /* Arguments for btrfs_drop_extents() */
418 struct btrfs_drop_extents_args {
419 /* Input parameters */
420
421 /*
422 * If NULL, btrfs_drop_extents() will allocate and free its own path.
423 * If 'replace_extent' is true, this must not be NULL. Also the path
424 * is always released except if 'replace_extent' is true and
425 * btrfs_drop_extents() sets 'extent_inserted' to true, in which case
426 * the path is kept locked.
427 */
428 struct btrfs_path *path;
429 /* Start offset of the range to drop extents from */
430 u64 start;
431 /* End (exclusive, last byte + 1) of the range to drop extents from */
432 u64 end;
433 /* If true drop all the extent maps in the range */
434 bool drop_cache;
435 /*
436 * If true it means we want to insert a new extent after dropping all
437 * the extents in the range. If this is true, the 'extent_item_size'
438 * parameter must be set as well and the 'extent_inserted' field will
439 * be set to true by btrfs_drop_extents() if it could insert the new
440 * extent.
441 * Note: when this is set to true the path must not be NULL.
442 */
443 bool replace_extent;
444 /*
445 * Used if 'replace_extent' is true. Size of the file extent item to
446 * insert after dropping all existing extents in the range
447 */
448 u32 extent_item_size;
449
450 /* Output parameters */
451
452 /*
453 * Set to the minimum between the input parameter 'end' and the end
454 * (exclusive, last byte + 1) of the last dropped extent. This is always
455 * set even if btrfs_drop_extents() returns an error.
456 */
457 u64 drop_end;
458 /*
459 * The number of allocated bytes found in the range. This can be smaller
460 * than the range's length when there are holes in the range.
461 */
462 u64 bytes_found;
463 /*
464 * Only set if 'replace_extent' is true. Set to true if we were able
465 * to insert a replacement extent after dropping all extents in the
466 * range, otherwise set to false by btrfs_drop_extents().
467 * Also, if btrfs_drop_extents() has set this to true it means it
468 * returned with the path locked, otherwise if it has set this to
469 * false it has returned with the path released.
470 */
471 bool extent_inserted;
472 };
473
474 struct btrfs_file_private {
475 void *filldir_buf;
476 u64 last_index;
477 struct extent_state *llseek_cached_state;
478 /* Task that allocated this structure. */
479 struct task_struct *owner_task;
480 };
481
BTRFS_LEAF_DATA_SIZE(const struct btrfs_fs_info * info)482 static inline u32 BTRFS_LEAF_DATA_SIZE(const struct btrfs_fs_info *info)
483 {
484 return info->nodesize - sizeof(struct btrfs_header);
485 }
486
BTRFS_MAX_ITEM_SIZE(const struct btrfs_fs_info * info)487 static inline u32 BTRFS_MAX_ITEM_SIZE(const struct btrfs_fs_info *info)
488 {
489 return BTRFS_LEAF_DATA_SIZE(info) - sizeof(struct btrfs_item);
490 }
491
BTRFS_NODEPTRS_PER_BLOCK(const struct btrfs_fs_info * info)492 static inline u32 BTRFS_NODEPTRS_PER_BLOCK(const struct btrfs_fs_info *info)
493 {
494 return BTRFS_LEAF_DATA_SIZE(info) / sizeof(struct btrfs_key_ptr);
495 }
496
BTRFS_MAX_XATTR_SIZE(const struct btrfs_fs_info * info)497 static inline u32 BTRFS_MAX_XATTR_SIZE(const struct btrfs_fs_info *info)
498 {
499 return BTRFS_MAX_ITEM_SIZE(info) - sizeof(struct btrfs_dir_item);
500 }
501
502 int __init btrfs_ctree_init(void);
503 void __cold btrfs_ctree_exit(void);
504
505 int btrfs_bin_search(const struct extent_buffer *eb, int first_slot,
506 const struct btrfs_key *key, int *slot);
507
508 int __pure btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2);
509
510 #ifdef __LITTLE_ENDIAN
511
512 /*
513 * Compare two keys, on little-endian the disk order is same as CPU order and
514 * we can avoid the conversion.
515 */
btrfs_comp_keys(const struct btrfs_disk_key * disk_key,const struct btrfs_key * k2)516 static inline int btrfs_comp_keys(const struct btrfs_disk_key *disk_key,
517 const struct btrfs_key *k2)
518 {
519 const struct btrfs_key *k1 = (const struct btrfs_key *)disk_key;
520
521 return btrfs_comp_cpu_keys(k1, k2);
522 }
523
524 #else
525
526 /* Compare two keys in a memcmp fashion. */
btrfs_comp_keys(const struct btrfs_disk_key * disk,const struct btrfs_key * k2)527 static inline int btrfs_comp_keys(const struct btrfs_disk_key *disk,
528 const struct btrfs_key *k2)
529 {
530 struct btrfs_key k1;
531
532 btrfs_disk_key_to_cpu(&k1, disk);
533
534 return btrfs_comp_cpu_keys(&k1, k2);
535 }
536
537 #endif
538
539 int btrfs_previous_item(struct btrfs_root *root,
540 struct btrfs_path *path, u64 min_objectid,
541 int type);
542 int btrfs_previous_extent_item(struct btrfs_root *root,
543 struct btrfs_path *path, u64 min_objectid);
544 void btrfs_set_item_key_safe(struct btrfs_trans_handle *trans,
545 const struct btrfs_path *path,
546 const struct btrfs_key *new_key);
547 struct extent_buffer *btrfs_root_node(struct btrfs_root *root);
548 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
549 struct btrfs_key *key, int lowest_level,
550 u64 min_trans);
551 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
552 struct btrfs_path *path,
553 u64 min_trans);
554 struct extent_buffer *btrfs_read_node_slot(struct extent_buffer *parent,
555 int slot);
556
557 int btrfs_cow_block(struct btrfs_trans_handle *trans,
558 struct btrfs_root *root, struct extent_buffer *buf,
559 struct extent_buffer *parent, int parent_slot,
560 struct extent_buffer **cow_ret,
561 enum btrfs_lock_nesting nest);
562 int btrfs_force_cow_block(struct btrfs_trans_handle *trans,
563 struct btrfs_root *root,
564 struct extent_buffer *buf,
565 struct extent_buffer *parent, int parent_slot,
566 struct extent_buffer **cow_ret,
567 u64 search_start, u64 empty_size,
568 enum btrfs_lock_nesting nest);
569 int btrfs_copy_root(struct btrfs_trans_handle *trans,
570 struct btrfs_root *root,
571 struct extent_buffer *buf,
572 struct extent_buffer **cow_ret, u64 new_root_objectid);
573 bool btrfs_block_can_be_shared(const struct btrfs_trans_handle *trans,
574 const struct btrfs_root *root,
575 const struct extent_buffer *buf);
576 int btrfs_del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
577 struct btrfs_path *path, int level, int slot);
578 void btrfs_extend_item(struct btrfs_trans_handle *trans,
579 const struct btrfs_path *path, u32 data_size);
580 void btrfs_truncate_item(struct btrfs_trans_handle *trans,
581 const struct btrfs_path *path, u32 new_size, int from_end);
582 int btrfs_split_item(struct btrfs_trans_handle *trans,
583 struct btrfs_root *root,
584 struct btrfs_path *path,
585 const struct btrfs_key *new_key,
586 unsigned long split_offset);
587 int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
588 struct btrfs_root *root,
589 struct btrfs_path *path,
590 const struct btrfs_key *new_key);
591 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
592 u64 inum, u64 ioff, u8 key_type, struct btrfs_key *found_key);
593 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root,
594 const struct btrfs_key *key, struct btrfs_path *p,
595 int ins_len, int cow);
596 int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key,
597 struct btrfs_path *p, u64 time_seq);
598 int btrfs_search_slot_for_read(struct btrfs_root *root,
599 const struct btrfs_key *key,
600 struct btrfs_path *p, int find_higher,
601 int return_any);
602 void btrfs_release_path(struct btrfs_path *p);
603 struct btrfs_path *btrfs_alloc_path(void);
604 void btrfs_free_path(struct btrfs_path *p);
605 DEFINE_FREE(btrfs_free_path, struct btrfs_path *, btrfs_free_path(_T))
606
607 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
608 struct btrfs_path *path, int slot, int nr);
btrfs_del_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path)609 static inline int btrfs_del_item(struct btrfs_trans_handle *trans,
610 struct btrfs_root *root,
611 struct btrfs_path *path)
612 {
613 return btrfs_del_items(trans, root, path, path->slots[0], 1);
614 }
615
616 /*
617 * Describes a batch of items to insert in a btree. This is used by
618 * btrfs_insert_empty_items().
619 */
620 struct btrfs_item_batch {
621 /*
622 * Pointer to an array containing the keys of the items to insert (in
623 * sorted order).
624 */
625 const struct btrfs_key *keys;
626 /* Pointer to an array containing the data size for each item to insert. */
627 const u32 *data_sizes;
628 /*
629 * The sum of data sizes for all items. The caller can compute this while
630 * setting up the data_sizes array, so it ends up being more efficient
631 * than having btrfs_insert_empty_items() or setup_item_for_insert()
632 * doing it, as it would avoid an extra loop over a potentially large
633 * array, and in the case of setup_item_for_insert(), we would be doing
634 * it while holding a write lock on a leaf and often on upper level nodes
635 * too, unnecessarily increasing the size of a critical section.
636 */
637 u32 total_data_size;
638 /* Size of the keys and data_sizes arrays (number of items in the batch). */
639 int nr;
640 };
641
642 void btrfs_setup_item_for_insert(struct btrfs_trans_handle *trans,
643 struct btrfs_root *root,
644 struct btrfs_path *path,
645 const struct btrfs_key *key,
646 u32 data_size);
647 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
648 const struct btrfs_key *key, void *data, u32 data_size);
649 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
650 struct btrfs_root *root,
651 struct btrfs_path *path,
652 const struct btrfs_item_batch *batch);
653
btrfs_insert_empty_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,const struct btrfs_key * key,u32 data_size)654 static inline int btrfs_insert_empty_item(struct btrfs_trans_handle *trans,
655 struct btrfs_root *root,
656 struct btrfs_path *path,
657 const struct btrfs_key *key,
658 u32 data_size)
659 {
660 struct btrfs_item_batch batch;
661
662 batch.keys = key;
663 batch.data_sizes = &data_size;
664 batch.total_data_size = data_size;
665 batch.nr = 1;
666
667 return btrfs_insert_empty_items(trans, root, path, &batch);
668 }
669
670 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
671 u64 time_seq);
672
673 int btrfs_search_backwards(struct btrfs_root *root, struct btrfs_key *key,
674 struct btrfs_path *path);
675
676 int btrfs_get_next_valid_item(struct btrfs_root *root, struct btrfs_key *key,
677 struct btrfs_path *path);
678
679 /*
680 * Search in @root for a given @key, and store the slot found in @found_key.
681 *
682 * @root: The root node of the tree.
683 * @key: The key we are looking for.
684 * @found_key: Will hold the found item.
685 * @path: Holds the current slot/leaf.
686 * @iter_ret: Contains the value returned from btrfs_search_slot or
687 * btrfs_get_next_valid_item, whichever was executed last.
688 *
689 * The @iter_ret is an output variable that will contain the return value of
690 * btrfs_search_slot, if it encountered an error, or the value returned from
691 * btrfs_get_next_valid_item otherwise. That return value can be 0, if a valid
692 * slot was found, 1 if there were no more leaves, and <0 if there was an error.
693 *
694 * It's recommended to use a separate variable for iter_ret and then use it to
695 * set the function return value so there's no confusion of the 0/1/errno
696 * values stemming from btrfs_search_slot.
697 */
698 #define btrfs_for_each_slot(root, key, found_key, path, iter_ret) \
699 for (iter_ret = btrfs_search_slot(NULL, (root), (key), (path), 0, 0); \
700 (iter_ret) >= 0 && \
701 (iter_ret = btrfs_get_next_valid_item((root), (found_key), (path))) == 0; \
702 (path)->slots[0]++ \
703 )
704
705 int btrfs_next_old_item(struct btrfs_root *root, struct btrfs_path *path, u64 time_seq);
706
707 /*
708 * Search the tree again to find a leaf with greater keys.
709 *
710 * Returns 0 if it found something or 1 if there are no greater leaves.
711 * Returns < 0 on error.
712 */
btrfs_next_leaf(struct btrfs_root * root,struct btrfs_path * path)713 static inline int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
714 {
715 return btrfs_next_old_leaf(root, path, 0);
716 }
717
btrfs_next_item(struct btrfs_root * root,struct btrfs_path * p)718 static inline int btrfs_next_item(struct btrfs_root *root, struct btrfs_path *p)
719 {
720 return btrfs_next_old_item(root, p, 0);
721 }
722 int btrfs_leaf_free_space(const struct extent_buffer *leaf);
723
btrfs_is_fstree(u64 rootid)724 static inline bool btrfs_is_fstree(u64 rootid)
725 {
726 if (rootid == BTRFS_FS_TREE_OBJECTID)
727 return true;
728
729 if ((s64)rootid < (s64)BTRFS_FIRST_FREE_OBJECTID)
730 return false;
731
732 if (btrfs_qgroup_level(rootid) != 0)
733 return false;
734
735 return true;
736 }
737
btrfs_is_data_reloc_root(const struct btrfs_root * root)738 static inline bool btrfs_is_data_reloc_root(const struct btrfs_root *root)
739 {
740 return root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID;
741 }
742
743 #endif
744