xref: /linux/fs/btrfs/ctree.h (revision f92b71ffca8c7e45e194aecc85e31bd11582f4d2)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #ifndef BTRFS_CTREE_H
7 #define BTRFS_CTREE_H
8 
9 #include <linux/cleanup.h>
10 #include <linux/spinlock.h>
11 #include <linux/rbtree.h>
12 #include <linux/mutex.h>
13 #include <linux/wait.h>
14 #include <linux/list.h>
15 #include <linux/atomic.h>
16 #include <linux/xarray.h>
17 #include <linux/refcount.h>
18 #include <uapi/linux/btrfs_tree.h>
19 #include "locking.h"
20 #include "fs.h"
21 #include "accessors.h"
22 #include "extent-io-tree.h"
23 
24 struct extent_buffer;
25 struct btrfs_block_rsv;
26 struct btrfs_trans_handle;
27 struct btrfs_block_group;
28 
29 /* Read ahead values for struct btrfs_path.reada */
30 enum {
31 	READA_NONE,
32 	READA_BACK,
33 	READA_FORWARD,
34 	/*
35 	 * Similar to READA_FORWARD but unlike it:
36 	 *
37 	 * 1) It will trigger readahead even for leaves that are not close to
38 	 *    each other on disk;
39 	 * 2) It also triggers readahead for nodes;
40 	 * 3) During a search, even when a node or leaf is already in memory, it
41 	 *    will still trigger readahead for other nodes and leaves that follow
42 	 *    it.
43 	 *
44 	 * This is meant to be used only when we know we are iterating over the
45 	 * entire tree or a very large part of it.
46 	 */
47 	READA_FORWARD_ALWAYS,
48 };
49 
50 /*
51  * btrfs_paths remember the path taken from the root down to the leaf.
52  * level 0 is always the leaf, and nodes[1...BTRFS_MAX_LEVEL] will point
53  * to any other levels that are present.
54  *
55  * The slots array records the index of the item or block pointer
56  * used while walking the tree.
57  */
58 struct btrfs_path {
59 	struct extent_buffer *nodes[BTRFS_MAX_LEVEL];
60 	int slots[BTRFS_MAX_LEVEL];
61 	/* if there is real range locking, this locks field will change */
62 	u8 locks[BTRFS_MAX_LEVEL];
63 	u8 reada;
64 	u8 lowest_level;
65 
66 	/*
67 	 * set by btrfs_split_item, tells search_slot to keep all locks
68 	 * and to force calls to keep space in the nodes
69 	 */
70 	unsigned int search_for_split:1;
71 	/* Keep some upper locks as we walk down. */
72 	unsigned int keep_locks:1;
73 	unsigned int skip_locking:1;
74 	unsigned int search_commit_root:1;
75 	unsigned int need_commit_sem:1;
76 	unsigned int skip_release_on_error:1;
77 	/*
78 	 * Indicate that new item (btrfs_search_slot) is extending already
79 	 * existing item and ins_len contains only the data size and not item
80 	 * header (ie. sizeof(struct btrfs_item) is not included).
81 	 */
82 	unsigned int search_for_extension:1;
83 	/* Stop search if any locks need to be taken (for read) */
84 	unsigned int nowait:1;
85 };
86 
87 #define BTRFS_PATH_AUTO_FREE(path_name)					\
88 	struct btrfs_path *path_name __free(btrfs_free_path) = NULL
89 
90 /*
91  * The state of btrfs root
92  */
93 enum {
94 	/*
95 	 * btrfs_record_root_in_trans is a multi-step process, and it can race
96 	 * with the balancing code.   But the race is very small, and only the
97 	 * first time the root is added to each transaction.  So IN_TRANS_SETUP
98 	 * is used to tell us when more checks are required
99 	 */
100 	BTRFS_ROOT_IN_TRANS_SETUP,
101 
102 	/*
103 	 * Set if tree blocks of this root can be shared by other roots.
104 	 * Only subvolume trees and their reloc trees have this bit set.
105 	 * Conflicts with TRACK_DIRTY bit.
106 	 *
107 	 * This affects two things:
108 	 *
109 	 * - How balance works
110 	 *   For shareable roots, we need to use reloc tree and do path
111 	 *   replacement for balance, and need various pre/post hooks for
112 	 *   snapshot creation to handle them.
113 	 *
114 	 *   While for non-shareable trees, we just simply do a tree search
115 	 *   with COW.
116 	 *
117 	 * - How dirty roots are tracked
118 	 *   For shareable roots, btrfs_record_root_in_trans() is needed to
119 	 *   track them, while non-subvolume roots have TRACK_DIRTY bit, they
120 	 *   don't need to set this manually.
121 	 */
122 	BTRFS_ROOT_SHAREABLE,
123 	BTRFS_ROOT_TRACK_DIRTY,
124 	BTRFS_ROOT_IN_RADIX,
125 	BTRFS_ROOT_ORPHAN_ITEM_INSERTED,
126 	BTRFS_ROOT_DEFRAG_RUNNING,
127 	BTRFS_ROOT_FORCE_COW,
128 	BTRFS_ROOT_MULTI_LOG_TASKS,
129 	BTRFS_ROOT_DIRTY,
130 	BTRFS_ROOT_DELETING,
131 
132 	/*
133 	 * Reloc tree is orphan, only kept here for qgroup delayed subtree scan
134 	 *
135 	 * Set for the subvolume tree owning the reloc tree.
136 	 */
137 	BTRFS_ROOT_DEAD_RELOC_TREE,
138 	/* Mark dead root stored on device whose cleanup needs to be resumed */
139 	BTRFS_ROOT_DEAD_TREE,
140 	/* The root has a log tree. Used for subvolume roots and the tree root. */
141 	BTRFS_ROOT_HAS_LOG_TREE,
142 	/* Qgroup flushing is in progress */
143 	BTRFS_ROOT_QGROUP_FLUSHING,
144 	/* We started the orphan cleanup for this root. */
145 	BTRFS_ROOT_ORPHAN_CLEANUP,
146 	/* This root has a drop operation that was started previously. */
147 	BTRFS_ROOT_UNFINISHED_DROP,
148 	/* This reloc root needs to have its buffers lockdep class reset. */
149 	BTRFS_ROOT_RESET_LOCKDEP_CLASS,
150 };
151 
152 /*
153  * Record swapped tree blocks of a subvolume tree for delayed subtree trace
154  * code. For detail check comment in fs/btrfs/qgroup.c.
155  */
156 struct btrfs_qgroup_swapped_blocks {
157 	spinlock_t lock;
158 	/* RM_EMPTY_ROOT() of above blocks[] */
159 	bool swapped;
160 	struct rb_root blocks[BTRFS_MAX_LEVEL];
161 };
162 
163 /*
164  * in ram representation of the tree.  extent_root is used for all allocations
165  * and for the extent tree extent_root root.
166  */
167 struct btrfs_root {
168 	struct rb_node rb_node;
169 
170 	struct extent_buffer *node;
171 
172 	struct extent_buffer *commit_root;
173 	struct btrfs_root *log_root;
174 	struct btrfs_root *reloc_root;
175 
176 	unsigned long state;
177 	struct btrfs_root_item root_item;
178 	struct btrfs_key root_key;
179 	struct btrfs_fs_info *fs_info;
180 	struct extent_io_tree dirty_log_pages;
181 
182 	struct mutex objectid_mutex;
183 
184 	spinlock_t accounting_lock;
185 	struct btrfs_block_rsv *block_rsv;
186 
187 	struct mutex log_mutex;
188 	wait_queue_head_t log_writer_wait;
189 	wait_queue_head_t log_commit_wait[2];
190 	struct list_head log_ctxs[2];
191 	/* Used only for log trees of subvolumes, not for the log root tree */
192 	atomic_t log_writers;
193 	atomic_t log_commit[2];
194 	/* Used only for log trees of subvolumes, not for the log root tree */
195 	atomic_t log_batch;
196 	/*
197 	 * Protected by the 'log_mutex' lock but can be read without holding
198 	 * that lock to avoid unnecessary lock contention, in which case it
199 	 * should be read using btrfs_get_root_log_transid() except if it's a
200 	 * log tree in which case it can be directly accessed. Updates to this
201 	 * field should always use btrfs_set_root_log_transid(), except for log
202 	 * trees where the field can be updated directly.
203 	 */
204 	int log_transid;
205 	/* No matter the commit succeeds or not*/
206 	int log_transid_committed;
207 	/*
208 	 * Just be updated when the commit succeeds. Use
209 	 * btrfs_get_root_last_log_commit() and btrfs_set_root_last_log_commit()
210 	 * to access this field.
211 	 */
212 	int last_log_commit;
213 	pid_t log_start_pid;
214 
215 	u64 last_trans;
216 
217 	u64 free_objectid;
218 
219 	struct btrfs_key defrag_progress;
220 	struct btrfs_key defrag_max;
221 
222 	/* The dirty list is only used by non-shareable roots */
223 	struct list_head dirty_list;
224 
225 	struct list_head root_list;
226 
227 	/* Xarray that keeps track of in-memory inodes. */
228 	struct xarray inodes;
229 
230 	/* Xarray that keeps track of delayed nodes of every inode. */
231 	struct xarray delayed_nodes;
232 	/*
233 	 * right now this just gets used so that a root has its own devid
234 	 * for stat.  It may be used for more later
235 	 */
236 	dev_t anon_dev;
237 
238 	spinlock_t root_item_lock;
239 	refcount_t refs;
240 
241 	struct mutex delalloc_mutex;
242 	spinlock_t delalloc_lock;
243 	/*
244 	 * all of the inodes that have delalloc bytes.  It is possible for
245 	 * this list to be empty even when there is still dirty data=ordered
246 	 * extents waiting to finish IO.
247 	 */
248 	struct list_head delalloc_inodes;
249 	struct list_head delalloc_root;
250 	u64 nr_delalloc_inodes;
251 
252 	struct mutex ordered_extent_mutex;
253 	/*
254 	 * this is used by the balancing code to wait for all the pending
255 	 * ordered extents
256 	 */
257 	spinlock_t ordered_extent_lock;
258 
259 	/*
260 	 * all of the data=ordered extents pending writeback
261 	 * these can span multiple transactions and basically include
262 	 * every dirty data page that isn't from nodatacow
263 	 */
264 	struct list_head ordered_extents;
265 	struct list_head ordered_root;
266 	u64 nr_ordered_extents;
267 
268 	/*
269 	 * Not empty if this subvolume root has gone through tree block swap
270 	 * (relocation)
271 	 *
272 	 * Will be used by reloc_control::dirty_subvol_roots.
273 	 */
274 	struct list_head reloc_dirty_list;
275 
276 	/*
277 	 * Number of currently running SEND ioctls to prevent
278 	 * manipulation with the read-only status via SUBVOL_SETFLAGS
279 	 */
280 	int send_in_progress;
281 	/*
282 	 * Number of currently running deduplication operations that have a
283 	 * destination inode belonging to this root. Protected by the lock
284 	 * root_item_lock.
285 	 */
286 	int dedupe_in_progress;
287 	/* For exclusion of snapshot creation and nocow writes */
288 	struct btrfs_drew_lock snapshot_lock;
289 
290 	atomic_t snapshot_force_cow;
291 
292 	/* For qgroup metadata reserved space */
293 	spinlock_t qgroup_meta_rsv_lock;
294 	u64 qgroup_meta_rsv_pertrans;
295 	u64 qgroup_meta_rsv_prealloc;
296 	wait_queue_head_t qgroup_flush_wait;
297 
298 	/* Number of active swapfiles */
299 	atomic_t nr_swapfiles;
300 
301 	/* Record pairs of swapped blocks for qgroup */
302 	struct btrfs_qgroup_swapped_blocks swapped_blocks;
303 
304 	/* Used only by log trees, when logging csum items */
305 	struct extent_io_tree log_csum_range;
306 
307 	/* Used in simple quotas, track root during relocation. */
308 	u64 relocation_src_root;
309 
310 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
311 	u64 alloc_bytenr;
312 #endif
313 
314 #ifdef CONFIG_BTRFS_DEBUG
315 	struct list_head leak_list;
316 #endif
317 };
318 
btrfs_root_readonly(const struct btrfs_root * root)319 static inline bool btrfs_root_readonly(const struct btrfs_root *root)
320 {
321 	/* Byte-swap the constant at compile time, root_item::flags is LE */
322 	return (root->root_item.flags & cpu_to_le64(BTRFS_ROOT_SUBVOL_RDONLY)) != 0;
323 }
324 
btrfs_root_dead(const struct btrfs_root * root)325 static inline bool btrfs_root_dead(const struct btrfs_root *root)
326 {
327 	/* Byte-swap the constant at compile time, root_item::flags is LE */
328 	return (root->root_item.flags & cpu_to_le64(BTRFS_ROOT_SUBVOL_DEAD)) != 0;
329 }
330 
btrfs_root_id(const struct btrfs_root * root)331 static inline u64 btrfs_root_id(const struct btrfs_root *root)
332 {
333 	return root->root_key.objectid;
334 }
335 
btrfs_get_root_log_transid(const struct btrfs_root * root)336 static inline int btrfs_get_root_log_transid(const struct btrfs_root *root)
337 {
338 	return READ_ONCE(root->log_transid);
339 }
340 
btrfs_set_root_log_transid(struct btrfs_root * root,int log_transid)341 static inline void btrfs_set_root_log_transid(struct btrfs_root *root, int log_transid)
342 {
343 	WRITE_ONCE(root->log_transid, log_transid);
344 }
345 
btrfs_get_root_last_log_commit(const struct btrfs_root * root)346 static inline int btrfs_get_root_last_log_commit(const struct btrfs_root *root)
347 {
348 	return READ_ONCE(root->last_log_commit);
349 }
350 
btrfs_set_root_last_log_commit(struct btrfs_root * root,int commit_id)351 static inline void btrfs_set_root_last_log_commit(struct btrfs_root *root, int commit_id)
352 {
353 	WRITE_ONCE(root->last_log_commit, commit_id);
354 }
355 
btrfs_get_root_last_trans(const struct btrfs_root * root)356 static inline u64 btrfs_get_root_last_trans(const struct btrfs_root *root)
357 {
358 	return READ_ONCE(root->last_trans);
359 }
360 
btrfs_set_root_last_trans(struct btrfs_root * root,u64 transid)361 static inline void btrfs_set_root_last_trans(struct btrfs_root *root, u64 transid)
362 {
363 	WRITE_ONCE(root->last_trans, transid);
364 }
365 
366 /*
367  * Return the generation this root started with.
368  *
369  * Every normal root that is created with root->root_key.offset set to it's
370  * originating generation.  If it is a snapshot it is the generation when the
371  * snapshot was created.
372  *
373  * However for TREE_RELOC roots root_key.offset is the objectid of the owning
374  * tree root.  Thankfully we copy the root item of the owning tree root, which
375  * has it's last_snapshot set to what we would have root_key.offset set to, so
376  * return that if this is a TREE_RELOC root.
377  */
btrfs_root_origin_generation(const struct btrfs_root * root)378 static inline u64 btrfs_root_origin_generation(const struct btrfs_root *root)
379 {
380 	if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID)
381 		return btrfs_root_last_snapshot(&root->root_item);
382 	return root->root_key.offset;
383 }
384 
385 /*
386  * Structure that conveys information about an extent that is going to replace
387  * all the extents in a file range.
388  */
389 struct btrfs_replace_extent_info {
390 	u64 disk_offset;
391 	u64 disk_len;
392 	u64 data_offset;
393 	u64 data_len;
394 	u64 file_offset;
395 	/* Pointer to a file extent item of type regular or prealloc. */
396 	char *extent_buf;
397 	/*
398 	 * Set to true when attempting to replace a file range with a new extent
399 	 * described by this structure, set to false when attempting to clone an
400 	 * existing extent into a file range.
401 	 */
402 	bool is_new_extent;
403 	/* Indicate if we should update the inode's mtime and ctime. */
404 	bool update_times;
405 	/* Meaningful only if is_new_extent is true. */
406 	int qgroup_reserved;
407 	/*
408 	 * Meaningful only if is_new_extent is true.
409 	 * Used to track how many extent items we have already inserted in a
410 	 * subvolume tree that refer to the extent described by this structure,
411 	 * so that we know when to create a new delayed ref or update an existing
412 	 * one.
413 	 */
414 	int insertions;
415 };
416 
417 /* Arguments for btrfs_drop_extents() */
418 struct btrfs_drop_extents_args {
419 	/* Input parameters */
420 
421 	/*
422 	 * If NULL, btrfs_drop_extents() will allocate and free its own path.
423 	 * If 'replace_extent' is true, this must not be NULL. Also the path
424 	 * is always released except if 'replace_extent' is true and
425 	 * btrfs_drop_extents() sets 'extent_inserted' to true, in which case
426 	 * the path is kept locked.
427 	 */
428 	struct btrfs_path *path;
429 	/* Start offset of the range to drop extents from */
430 	u64 start;
431 	/* End (exclusive, last byte + 1) of the range to drop extents from */
432 	u64 end;
433 	/* If true drop all the extent maps in the range */
434 	bool drop_cache;
435 	/*
436 	 * If true it means we want to insert a new extent after dropping all
437 	 * the extents in the range. If this is true, the 'extent_item_size'
438 	 * parameter must be set as well and the 'extent_inserted' field will
439 	 * be set to true by btrfs_drop_extents() if it could insert the new
440 	 * extent.
441 	 * Note: when this is set to true the path must not be NULL.
442 	 */
443 	bool replace_extent;
444 	/*
445 	 * Used if 'replace_extent' is true. Size of the file extent item to
446 	 * insert after dropping all existing extents in the range
447 	 */
448 	u32 extent_item_size;
449 
450 	/* Output parameters */
451 
452 	/*
453 	 * Set to the minimum between the input parameter 'end' and the end
454 	 * (exclusive, last byte + 1) of the last dropped extent. This is always
455 	 * set even if btrfs_drop_extents() returns an error.
456 	 */
457 	u64 drop_end;
458 	/*
459 	 * The number of allocated bytes found in the range. This can be smaller
460 	 * than the range's length when there are holes in the range.
461 	 */
462 	u64 bytes_found;
463 	/*
464 	 * Only set if 'replace_extent' is true. Set to true if we were able
465 	 * to insert a replacement extent after dropping all extents in the
466 	 * range, otherwise set to false by btrfs_drop_extents().
467 	 * Also, if btrfs_drop_extents() has set this to true it means it
468 	 * returned with the path locked, otherwise if it has set this to
469 	 * false it has returned with the path released.
470 	 */
471 	bool extent_inserted;
472 };
473 
474 struct btrfs_file_private {
475 	void *filldir_buf;
476 	u64 last_index;
477 	struct extent_state *llseek_cached_state;
478 	/* Task that allocated this structure. */
479 	struct task_struct *owner_task;
480 };
481 
BTRFS_LEAF_DATA_SIZE(const struct btrfs_fs_info * info)482 static inline u32 BTRFS_LEAF_DATA_SIZE(const struct btrfs_fs_info *info)
483 {
484 	return info->nodesize - sizeof(struct btrfs_header);
485 }
486 
BTRFS_MAX_ITEM_SIZE(const struct btrfs_fs_info * info)487 static inline u32 BTRFS_MAX_ITEM_SIZE(const struct btrfs_fs_info *info)
488 {
489 	return BTRFS_LEAF_DATA_SIZE(info) - sizeof(struct btrfs_item);
490 }
491 
BTRFS_NODEPTRS_PER_BLOCK(const struct btrfs_fs_info * info)492 static inline u32 BTRFS_NODEPTRS_PER_BLOCK(const struct btrfs_fs_info *info)
493 {
494 	return BTRFS_LEAF_DATA_SIZE(info) / sizeof(struct btrfs_key_ptr);
495 }
496 
BTRFS_MAX_XATTR_SIZE(const struct btrfs_fs_info * info)497 static inline u32 BTRFS_MAX_XATTR_SIZE(const struct btrfs_fs_info *info)
498 {
499 	return BTRFS_MAX_ITEM_SIZE(info) - sizeof(struct btrfs_dir_item);
500 }
501 
502 int __init btrfs_ctree_init(void);
503 void __cold btrfs_ctree_exit(void);
504 
505 int btrfs_bin_search(const struct extent_buffer *eb, int first_slot,
506 		     const struct btrfs_key *key, int *slot);
507 
508 int __pure btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2);
509 
510 #ifdef __LITTLE_ENDIAN
511 
512 /*
513  * Compare two keys, on little-endian the disk order is same as CPU order and
514  * we can avoid the conversion.
515  */
btrfs_comp_keys(const struct btrfs_disk_key * disk_key,const struct btrfs_key * k2)516 static inline int btrfs_comp_keys(const struct btrfs_disk_key *disk_key,
517 				  const struct btrfs_key *k2)
518 {
519 	const struct btrfs_key *k1 = (const struct btrfs_key *)disk_key;
520 
521 	return btrfs_comp_cpu_keys(k1, k2);
522 }
523 
524 #else
525 
526 /* Compare two keys in a memcmp fashion. */
btrfs_comp_keys(const struct btrfs_disk_key * disk,const struct btrfs_key * k2)527 static inline int btrfs_comp_keys(const struct btrfs_disk_key *disk,
528 				  const struct btrfs_key *k2)
529 {
530 	struct btrfs_key k1;
531 
532 	btrfs_disk_key_to_cpu(&k1, disk);
533 
534 	return btrfs_comp_cpu_keys(&k1, k2);
535 }
536 
537 #endif
538 
539 int btrfs_previous_item(struct btrfs_root *root,
540 			struct btrfs_path *path, u64 min_objectid,
541 			int type);
542 int btrfs_previous_extent_item(struct btrfs_root *root,
543 			struct btrfs_path *path, u64 min_objectid);
544 void btrfs_set_item_key_safe(struct btrfs_trans_handle *trans,
545 			     const struct btrfs_path *path,
546 			     const struct btrfs_key *new_key);
547 struct extent_buffer *btrfs_root_node(struct btrfs_root *root);
548 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
549 			struct btrfs_key *key, int lowest_level,
550 			u64 min_trans);
551 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
552 			 struct btrfs_path *path,
553 			 u64 min_trans);
554 struct extent_buffer *btrfs_read_node_slot(struct extent_buffer *parent,
555 					   int slot);
556 
557 int btrfs_cow_block(struct btrfs_trans_handle *trans,
558 		    struct btrfs_root *root, struct extent_buffer *buf,
559 		    struct extent_buffer *parent, int parent_slot,
560 		    struct extent_buffer **cow_ret,
561 		    enum btrfs_lock_nesting nest);
562 int btrfs_force_cow_block(struct btrfs_trans_handle *trans,
563 			  struct btrfs_root *root,
564 			  struct extent_buffer *buf,
565 			  struct extent_buffer *parent, int parent_slot,
566 			  struct extent_buffer **cow_ret,
567 			  u64 search_start, u64 empty_size,
568 			  enum btrfs_lock_nesting nest);
569 int btrfs_copy_root(struct btrfs_trans_handle *trans,
570 		      struct btrfs_root *root,
571 		      struct extent_buffer *buf,
572 		      struct extent_buffer **cow_ret, u64 new_root_objectid);
573 bool btrfs_block_can_be_shared(const struct btrfs_trans_handle *trans,
574 			       const struct btrfs_root *root,
575 			       const struct extent_buffer *buf);
576 int btrfs_del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
577 		  struct btrfs_path *path, int level, int slot);
578 void btrfs_extend_item(struct btrfs_trans_handle *trans,
579 		       const struct btrfs_path *path, u32 data_size);
580 void btrfs_truncate_item(struct btrfs_trans_handle *trans,
581 			 const struct btrfs_path *path, u32 new_size, int from_end);
582 int btrfs_split_item(struct btrfs_trans_handle *trans,
583 		     struct btrfs_root *root,
584 		     struct btrfs_path *path,
585 		     const struct btrfs_key *new_key,
586 		     unsigned long split_offset);
587 int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
588 			 struct btrfs_root *root,
589 			 struct btrfs_path *path,
590 			 const struct btrfs_key *new_key);
591 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
592 		u64 inum, u64 ioff, u8 key_type, struct btrfs_key *found_key);
593 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root,
594 		      const struct btrfs_key *key, struct btrfs_path *p,
595 		      int ins_len, int cow);
596 int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key,
597 			  struct btrfs_path *p, u64 time_seq);
598 int btrfs_search_slot_for_read(struct btrfs_root *root,
599 			       const struct btrfs_key *key,
600 			       struct btrfs_path *p, int find_higher,
601 			       int return_any);
602 void btrfs_release_path(struct btrfs_path *p);
603 struct btrfs_path *btrfs_alloc_path(void);
604 void btrfs_free_path(struct btrfs_path *p);
605 DEFINE_FREE(btrfs_free_path, struct btrfs_path *, btrfs_free_path(_T))
606 
607 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
608 		   struct btrfs_path *path, int slot, int nr);
btrfs_del_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path)609 static inline int btrfs_del_item(struct btrfs_trans_handle *trans,
610 				 struct btrfs_root *root,
611 				 struct btrfs_path *path)
612 {
613 	return btrfs_del_items(trans, root, path, path->slots[0], 1);
614 }
615 
616 /*
617  * Describes a batch of items to insert in a btree. This is used by
618  * btrfs_insert_empty_items().
619  */
620 struct btrfs_item_batch {
621 	/*
622 	 * Pointer to an array containing the keys of the items to insert (in
623 	 * sorted order).
624 	 */
625 	const struct btrfs_key *keys;
626 	/* Pointer to an array containing the data size for each item to insert. */
627 	const u32 *data_sizes;
628 	/*
629 	 * The sum of data sizes for all items. The caller can compute this while
630 	 * setting up the data_sizes array, so it ends up being more efficient
631 	 * than having btrfs_insert_empty_items() or setup_item_for_insert()
632 	 * doing it, as it would avoid an extra loop over a potentially large
633 	 * array, and in the case of setup_item_for_insert(), we would be doing
634 	 * it while holding a write lock on a leaf and often on upper level nodes
635 	 * too, unnecessarily increasing the size of a critical section.
636 	 */
637 	u32 total_data_size;
638 	/* Size of the keys and data_sizes arrays (number of items in the batch). */
639 	int nr;
640 };
641 
642 void btrfs_setup_item_for_insert(struct btrfs_trans_handle *trans,
643 				 struct btrfs_root *root,
644 				 struct btrfs_path *path,
645 				 const struct btrfs_key *key,
646 				 u32 data_size);
647 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
648 		      const struct btrfs_key *key, void *data, u32 data_size);
649 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
650 			     struct btrfs_root *root,
651 			     struct btrfs_path *path,
652 			     const struct btrfs_item_batch *batch);
653 
btrfs_insert_empty_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,const struct btrfs_key * key,u32 data_size)654 static inline int btrfs_insert_empty_item(struct btrfs_trans_handle *trans,
655 					  struct btrfs_root *root,
656 					  struct btrfs_path *path,
657 					  const struct btrfs_key *key,
658 					  u32 data_size)
659 {
660 	struct btrfs_item_batch batch;
661 
662 	batch.keys = key;
663 	batch.data_sizes = &data_size;
664 	batch.total_data_size = data_size;
665 	batch.nr = 1;
666 
667 	return btrfs_insert_empty_items(trans, root, path, &batch);
668 }
669 
670 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
671 			u64 time_seq);
672 
673 int btrfs_search_backwards(struct btrfs_root *root, struct btrfs_key *key,
674 			   struct btrfs_path *path);
675 
676 int btrfs_get_next_valid_item(struct btrfs_root *root, struct btrfs_key *key,
677 			      struct btrfs_path *path);
678 
679 /*
680  * Search in @root for a given @key, and store the slot found in @found_key.
681  *
682  * @root:	The root node of the tree.
683  * @key:	The key we are looking for.
684  * @found_key:	Will hold the found item.
685  * @path:	Holds the current slot/leaf.
686  * @iter_ret:	Contains the value returned from btrfs_search_slot or
687  * 		btrfs_get_next_valid_item, whichever was executed last.
688  *
689  * The @iter_ret is an output variable that will contain the return value of
690  * btrfs_search_slot, if it encountered an error, or the value returned from
691  * btrfs_get_next_valid_item otherwise. That return value can be 0, if a valid
692  * slot was found, 1 if there were no more leaves, and <0 if there was an error.
693  *
694  * It's recommended to use a separate variable for iter_ret and then use it to
695  * set the function return value so there's no confusion of the 0/1/errno
696  * values stemming from btrfs_search_slot.
697  */
698 #define btrfs_for_each_slot(root, key, found_key, path, iter_ret)		\
699 	for (iter_ret = btrfs_search_slot(NULL, (root), (key), (path), 0, 0);	\
700 		(iter_ret) >= 0 &&						\
701 		(iter_ret = btrfs_get_next_valid_item((root), (found_key), (path))) == 0; \
702 		(path)->slots[0]++						\
703 	)
704 
705 int btrfs_next_old_item(struct btrfs_root *root, struct btrfs_path *path, u64 time_seq);
706 
707 /*
708  * Search the tree again to find a leaf with greater keys.
709  *
710  * Returns 0 if it found something or 1 if there are no greater leaves.
711  * Returns < 0 on error.
712  */
btrfs_next_leaf(struct btrfs_root * root,struct btrfs_path * path)713 static inline int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
714 {
715 	return btrfs_next_old_leaf(root, path, 0);
716 }
717 
btrfs_next_item(struct btrfs_root * root,struct btrfs_path * p)718 static inline int btrfs_next_item(struct btrfs_root *root, struct btrfs_path *p)
719 {
720 	return btrfs_next_old_item(root, p, 0);
721 }
722 int btrfs_leaf_free_space(const struct extent_buffer *leaf);
723 
btrfs_is_fstree(u64 rootid)724 static inline bool btrfs_is_fstree(u64 rootid)
725 {
726 	if (rootid == BTRFS_FS_TREE_OBJECTID)
727 		return true;
728 
729 	if ((s64)rootid < (s64)BTRFS_FIRST_FREE_OBJECTID)
730 		return false;
731 
732 	if (btrfs_qgroup_level(rootid) != 0)
733 		return false;
734 
735 	return true;
736 }
737 
btrfs_is_data_reloc_root(const struct btrfs_root * root)738 static inline bool btrfs_is_data_reloc_root(const struct btrfs_root *root)
739 {
740 	return root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID;
741 }
742 
743 #endif
744