xref: /linux/include/uapi/linux/btrfs_tree.h (revision 8620da16fb6be1fd9906374fa1c763a10c6918df)
1 /* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note */
2 #ifndef _BTRFS_CTREE_H_
3 #define _BTRFS_CTREE_H_
4 
5 #include <linux/btrfs.h>
6 #include <linux/types.h>
7 #ifdef __KERNEL__
8 #include <linux/stddef.h>
9 #else
10 #include <stddef.h>
11 #endif
12 
13 /* ASCII for _BHRfS_M, no terminating nul */
14 #define BTRFS_MAGIC 0x4D5F53665248425FULL
15 
16 #define BTRFS_MAX_LEVEL 8
17 
18 /*
19  * We can actually store much bigger names, but lets not confuse the rest of
20  * linux.
21  */
22 #define BTRFS_NAME_LEN 255
23 
24 /*
25  * Theoretical limit is larger, but we keep this down to a sane value. That
26  * should limit greatly the possibility of collisions on inode ref items.
27  */
28 #define BTRFS_LINK_MAX 65535U
29 
30 /*
31  * This header contains the structure definitions and constants used
32  * by file system objects that can be retrieved using
33  * the BTRFS_IOC_SEARCH_TREE ioctl.  That means basically anything that
34  * is needed to describe a leaf node's key or item contents.
35  */
36 
37 /* holds pointers to all of the tree roots */
38 #define BTRFS_ROOT_TREE_OBJECTID 1ULL
39 
40 /* stores information about which extents are in use, and reference counts */
41 #define BTRFS_EXTENT_TREE_OBJECTID 2ULL
42 
43 /*
44  * chunk tree stores translations from logical -> physical block numbering
45  * the super block points to the chunk tree
46  */
47 #define BTRFS_CHUNK_TREE_OBJECTID 3ULL
48 
49 /*
50  * stores information about which areas of a given device are in use.
51  * one per device.  The tree of tree roots points to the device tree
52  */
53 #define BTRFS_DEV_TREE_OBJECTID 4ULL
54 
55 /* one per subvolume, storing files and directories */
56 #define BTRFS_FS_TREE_OBJECTID 5ULL
57 
58 /* directory objectid inside the root tree */
59 #define BTRFS_ROOT_TREE_DIR_OBJECTID 6ULL
60 
61 /* holds checksums of all the data extents */
62 #define BTRFS_CSUM_TREE_OBJECTID 7ULL
63 
64 /* holds quota configuration and tracking */
65 #define BTRFS_QUOTA_TREE_OBJECTID 8ULL
66 
67 /* for storing items that use the BTRFS_UUID_KEY* types */
68 #define BTRFS_UUID_TREE_OBJECTID 9ULL
69 
70 /* tracks free space in block groups. */
71 #define BTRFS_FREE_SPACE_TREE_OBJECTID 10ULL
72 
73 /* Holds the block group items for extent tree v2. */
74 #define BTRFS_BLOCK_GROUP_TREE_OBJECTID 11ULL
75 
76 /* Tracks RAID stripes in block groups. */
77 #define BTRFS_RAID_STRIPE_TREE_OBJECTID 12ULL
78 
79 /* Holds details of remapped addresses after relocation. */
80 #define BTRFS_REMAP_TREE_OBJECTID 13ULL
81 
82 /* device stats in the device tree */
83 #define BTRFS_DEV_STATS_OBJECTID 0ULL
84 
85 /* for storing balance parameters in the root tree */
86 #define BTRFS_BALANCE_OBJECTID -4ULL
87 
88 /* orphan objectid for tracking unlinked/truncated files */
89 #define BTRFS_ORPHAN_OBJECTID -5ULL
90 
91 /* does write ahead logging to speed up fsyncs */
92 #define BTRFS_TREE_LOG_OBJECTID -6ULL
93 #define BTRFS_TREE_LOG_FIXUP_OBJECTID -7ULL
94 
95 /* for space balancing */
96 #define BTRFS_TREE_RELOC_OBJECTID -8ULL
97 #define BTRFS_DATA_RELOC_TREE_OBJECTID -9ULL
98 
99 /*
100  * extent checksums all have this objectid
101  * this allows them to share the logging tree
102  * for fsyncs
103  */
104 #define BTRFS_EXTENT_CSUM_OBJECTID -10ULL
105 
106 /* For storing free space cache */
107 #define BTRFS_FREE_SPACE_OBJECTID -11ULL
108 
109 /*
110  * The inode number assigned to the special inode for storing
111  * free ino cache
112  */
113 #define BTRFS_FREE_INO_OBJECTID -12ULL
114 
115 /* dummy objectid represents multiple objectids */
116 #define BTRFS_MULTIPLE_OBJECTIDS -255ULL
117 
118 /*
119  * All files have objectids in this range.
120  */
121 #define BTRFS_FIRST_FREE_OBJECTID 256ULL
122 #define BTRFS_LAST_FREE_OBJECTID -256ULL
123 #define BTRFS_FIRST_CHUNK_TREE_OBJECTID 256ULL
124 
125 
126 /*
127  * the device items go into the chunk tree.  The key is in the form
128  * [ 1 BTRFS_DEV_ITEM_KEY device_id ]
129  */
130 #define BTRFS_DEV_ITEMS_OBJECTID 1ULL
131 
132 #define BTRFS_BTREE_INODE_OBJECTID 1
133 
134 #define BTRFS_EMPTY_SUBVOL_DIR_OBJECTID 2
135 
136 #define BTRFS_DEV_REPLACE_DEVID 0ULL
137 
138 /*
139  * inode items have the data typically returned from stat and store other
140  * info about object characteristics.  There is one for every file and dir in
141  * the FS
142  */
143 #define BTRFS_INODE_ITEM_KEY		1
144 #define BTRFS_INODE_REF_KEY		12
145 #define BTRFS_INODE_EXTREF_KEY		13
146 #define BTRFS_XATTR_ITEM_KEY		24
147 
148 /*
149  * fs verity items are stored under two different key types on disk.
150  * The descriptor items:
151  * [ inode objectid, BTRFS_VERITY_DESC_ITEM_KEY, offset ]
152  *
153  * At offset 0, we store a btrfs_verity_descriptor_item which tracks the size
154  * of the descriptor item and some extra data for encryption.
155  * Starting at offset 1, these hold the generic fs verity descriptor.  The
156  * latter are opaque to btrfs, we just read and write them as a blob for the
157  * higher level verity code.  The most common descriptor size is 256 bytes.
158  *
159  * The merkle tree items:
160  * [ inode objectid, BTRFS_VERITY_MERKLE_ITEM_KEY, offset ]
161  *
162  * These also start at offset 0, and correspond to the merkle tree bytes.  When
163  * fsverity asks for page 0 of the merkle tree, we pull up one page starting at
164  * offset 0 for this key type.  These are also opaque to btrfs, we're blindly
165  * storing whatever fsverity sends down.
166  */
167 #define BTRFS_VERITY_DESC_ITEM_KEY	36
168 #define BTRFS_VERITY_MERKLE_ITEM_KEY	37
169 
170 #define BTRFS_ORPHAN_ITEM_KEY		48
171 /* reserve 2-15 close to the inode for later flexibility */
172 
173 /*
174  * dir items are the name -> inode pointers in a directory.  There is one
175  * for every name in a directory.  BTRFS_DIR_LOG_ITEM_KEY is no longer used
176  * but it's still defined here for documentation purposes and to help avoid
177  * having its numerical value reused in the future.
178  */
179 #define BTRFS_DIR_LOG_ITEM_KEY  60
180 #define BTRFS_DIR_LOG_INDEX_KEY 72
181 #define BTRFS_DIR_ITEM_KEY	84
182 #define BTRFS_DIR_INDEX_KEY	96
183 /*
184  * extent data is for file data
185  */
186 #define BTRFS_EXTENT_DATA_KEY	108
187 
188 /*
189  * extent csums are stored in a separate tree and hold csums for
190  * an entire extent on disk.
191  */
192 #define BTRFS_EXTENT_CSUM_KEY	128
193 
194 /*
195  * root items point to tree roots.  They are typically in the root
196  * tree used by the super block to find all the other trees
197  */
198 #define BTRFS_ROOT_ITEM_KEY	132
199 
200 /*
201  * root backrefs tie subvols and snapshots to the directory entries that
202  * reference them
203  */
204 #define BTRFS_ROOT_BACKREF_KEY	144
205 
206 /*
207  * root refs make a fast index for listing all of the snapshots and
208  * subvolumes referenced by a given root.  They point directly to the
209  * directory item in the root that references the subvol
210  */
211 #define BTRFS_ROOT_REF_KEY	156
212 
213 /*
214  * extent items are in the extent map tree.  These record which blocks
215  * are used, and how many references there are to each block
216  */
217 #define BTRFS_EXTENT_ITEM_KEY	168
218 
219 /*
220  * The same as the BTRFS_EXTENT_ITEM_KEY, except it's metadata we already know
221  * the length, so we save the level in key->offset instead of the length.
222  */
223 #define BTRFS_METADATA_ITEM_KEY	169
224 
225 /*
226  * Special inline ref key which stores the id of the subvolume which originally
227  * created the extent. This subvolume owns the extent permanently from the
228  * perspective of simple quotas. Needed to know which subvolume to free quota
229  * usage from when the extent is deleted.
230  *
231  * Stored as an inline ref rather to avoid wasting space on a separate item on
232  * top of the existing extent item. However, unlike the other inline refs,
233  * there is one one owner ref per extent rather than one per extent.
234  *
235  * Because of this, it goes at the front of the list of inline refs, and thus
236  * must have a lower type value than any other inline ref type (to satisfy the
237  * disk format rule that inline refs have non-decreasing type).
238  */
239 #define BTRFS_EXTENT_OWNER_REF_KEY	172
240 
241 #define BTRFS_TREE_BLOCK_REF_KEY	176
242 
243 #define BTRFS_EXTENT_DATA_REF_KEY	178
244 
245 /*
246  * Obsolete key. Defintion removed in 6.6, value may be reused in the future.
247  *
248  * #define BTRFS_EXTENT_REF_V0_KEY	180
249  */
250 
251 #define BTRFS_SHARED_BLOCK_REF_KEY	182
252 
253 #define BTRFS_SHARED_DATA_REF_KEY	184
254 
255 /*
256  * block groups give us hints into the extent allocation trees.  Which
257  * blocks are free etc etc
258  */
259 #define BTRFS_BLOCK_GROUP_ITEM_KEY 192
260 
261 /*
262  * Every block group is represented in the free space tree by a free space info
263  * item, which stores some accounting information. It is keyed on
264  * (block_group_start, FREE_SPACE_INFO, block_group_length).
265  */
266 #define BTRFS_FREE_SPACE_INFO_KEY 198
267 
268 /*
269  * A free space extent tracks an extent of space that is free in a block group.
270  * It is keyed on (start, FREE_SPACE_EXTENT, length).
271  */
272 #define BTRFS_FREE_SPACE_EXTENT_KEY 199
273 
274 /*
275  * When a block group becomes very fragmented, we convert it to use bitmaps
276  * instead of extents. A free space bitmap is keyed on
277  * (start, FREE_SPACE_BITMAP, length); the corresponding item is a bitmap with
278  * (length / sectorsize) bits.
279  */
280 #define BTRFS_FREE_SPACE_BITMAP_KEY 200
281 
282 #define BTRFS_DEV_EXTENT_KEY	204
283 #define BTRFS_DEV_ITEM_KEY	216
284 #define BTRFS_CHUNK_ITEM_KEY	228
285 
286 #define BTRFS_RAID_STRIPE_KEY	230
287 
288 #define BTRFS_IDENTITY_REMAP_KEY 	234
289 #define BTRFS_REMAP_KEY		 	235
290 #define BTRFS_REMAP_BACKREF_KEY	 	236
291 
292 /*
293  * Records the overall state of the qgroups.
294  * There's only one instance of this key present,
295  * (0, BTRFS_QGROUP_STATUS_KEY, 0)
296  */
297 #define BTRFS_QGROUP_STATUS_KEY         240
298 /*
299  * Records the currently used space of the qgroup.
300  * One key per qgroup, (0, BTRFS_QGROUP_INFO_KEY, qgroupid).
301  */
302 #define BTRFS_QGROUP_INFO_KEY           242
303 /*
304  * Contains the user configured limits for the qgroup.
305  * One key per qgroup, (0, BTRFS_QGROUP_LIMIT_KEY, qgroupid).
306  */
307 #define BTRFS_QGROUP_LIMIT_KEY          244
308 /*
309  * Records the child-parent relationship of qgroups. For
310  * each relation, 2 keys are present:
311  * (childid, BTRFS_QGROUP_RELATION_KEY, parentid)
312  * (parentid, BTRFS_QGROUP_RELATION_KEY, childid)
313  */
314 #define BTRFS_QGROUP_RELATION_KEY       246
315 
316 /*
317  * Obsolete name, see BTRFS_TEMPORARY_ITEM_KEY.
318  */
319 #define BTRFS_BALANCE_ITEM_KEY	248
320 
321 /*
322  * The key type for tree items that are stored persistently, but do not need to
323  * exist for extended period of time. The items can exist in any tree.
324  *
325  * [subtype, BTRFS_TEMPORARY_ITEM_KEY, data]
326  *
327  * Existing items:
328  *
329  * - balance status item
330  *   (BTRFS_BALANCE_OBJECTID, BTRFS_TEMPORARY_ITEM_KEY, 0)
331  */
332 #define BTRFS_TEMPORARY_ITEM_KEY	248
333 
334 /*
335  * Obsolete name, see BTRFS_PERSISTENT_ITEM_KEY
336  */
337 #define BTRFS_DEV_STATS_KEY		249
338 
339 /*
340  * The key type for tree items that are stored persistently and usually exist
341  * for a long period, eg. filesystem lifetime. The item kinds can be status
342  * information, stats or preference values. The item can exist in any tree.
343  *
344  * [subtype, BTRFS_PERSISTENT_ITEM_KEY, data]
345  *
346  * Existing items:
347  *
348  * - device statistics, store IO stats in the device tree, one key for all
349  *   stats
350  *   (BTRFS_DEV_STATS_OBJECTID, BTRFS_DEV_STATS_KEY, 0)
351  */
352 #define BTRFS_PERSISTENT_ITEM_KEY	249
353 
354 /*
355  * Persistently stores the device replace state in the device tree.
356  * The key is built like this: (0, BTRFS_DEV_REPLACE_KEY, 0).
357  */
358 #define BTRFS_DEV_REPLACE_KEY	250
359 
360 /*
361  * Stores items that allow to quickly map UUIDs to something else.
362  * These items are part of the filesystem UUID tree.
363  * The key is built like this:
364  * (UUID_upper_64_bits, BTRFS_UUID_KEY*, UUID_lower_64_bits).
365  */
366 #if BTRFS_UUID_SIZE != 16
367 #error "UUID items require BTRFS_UUID_SIZE == 16!"
368 #endif
369 #define BTRFS_UUID_KEY_SUBVOL	251	/* for UUIDs assigned to subvols */
370 #define BTRFS_UUID_KEY_RECEIVED_SUBVOL	252	/* for UUIDs assigned to
371 						 * received subvols */
372 
373 /*
374  * string items are for debugging.  They just store a short string of
375  * data in the FS
376  */
377 #define BTRFS_STRING_ITEM_KEY	253
378 
379 /* Maximum metadata block size (nodesize) */
380 #define BTRFS_MAX_METADATA_BLOCKSIZE			65536
381 
382 /* 32 bytes in various csum fields */
383 #define BTRFS_CSUM_SIZE 32
384 
385 /* csum types */
386 enum btrfs_csum_type {
387 	BTRFS_CSUM_TYPE_CRC32	= 0,
388 	BTRFS_CSUM_TYPE_XXHASH	= 1,
389 	BTRFS_CSUM_TYPE_SHA256	= 2,
390 	BTRFS_CSUM_TYPE_BLAKE2	= 3,
391 };
392 
393 /*
394  * flags definitions for directory entry item type
395  *
396  * Used by:
397  * struct btrfs_dir_item.type
398  *
399  * Values 0..7 must match common file type values in fs_types.h.
400  */
401 #define BTRFS_FT_UNKNOWN	0
402 #define BTRFS_FT_REG_FILE	1
403 #define BTRFS_FT_DIR		2
404 #define BTRFS_FT_CHRDEV		3
405 #define BTRFS_FT_BLKDEV		4
406 #define BTRFS_FT_FIFO		5
407 #define BTRFS_FT_SOCK		6
408 #define BTRFS_FT_SYMLINK	7
409 #define BTRFS_FT_XATTR		8
410 #define BTRFS_FT_MAX		9
411 /* Directory contains encrypted data */
412 #define BTRFS_FT_ENCRYPTED	0x80
413 
414 static inline __u8 btrfs_dir_flags_to_ftype(__u8 flags)
415 {
416 	return flags & ~BTRFS_FT_ENCRYPTED;
417 }
418 
419 /*
420  * Inode flags
421  */
422 #define BTRFS_INODE_NODATASUM		(1U << 0)
423 #define BTRFS_INODE_NODATACOW		(1U << 1)
424 #define BTRFS_INODE_READONLY		(1U << 2)
425 #define BTRFS_INODE_NOCOMPRESS		(1U << 3)
426 #define BTRFS_INODE_PREALLOC		(1U << 4)
427 #define BTRFS_INODE_SYNC		(1U << 5)
428 #define BTRFS_INODE_IMMUTABLE		(1U << 6)
429 #define BTRFS_INODE_APPEND		(1U << 7)
430 #define BTRFS_INODE_NODUMP		(1U << 8)
431 #define BTRFS_INODE_NOATIME		(1U << 9)
432 #define BTRFS_INODE_DIRSYNC		(1U << 10)
433 #define BTRFS_INODE_COMPRESS		(1U << 11)
434 
435 #define BTRFS_INODE_ROOT_ITEM_INIT	(1U << 31)
436 
437 #define BTRFS_INODE_FLAG_MASK						\
438 	(BTRFS_INODE_NODATASUM |					\
439 	 BTRFS_INODE_NODATACOW |					\
440 	 BTRFS_INODE_READONLY |						\
441 	 BTRFS_INODE_NOCOMPRESS |					\
442 	 BTRFS_INODE_PREALLOC |						\
443 	 BTRFS_INODE_SYNC |						\
444 	 BTRFS_INODE_IMMUTABLE |					\
445 	 BTRFS_INODE_APPEND |						\
446 	 BTRFS_INODE_NODUMP |						\
447 	 BTRFS_INODE_NOATIME |						\
448 	 BTRFS_INODE_DIRSYNC |						\
449 	 BTRFS_INODE_COMPRESS |						\
450 	 BTRFS_INODE_ROOT_ITEM_INIT)
451 
452 #define BTRFS_INODE_RO_VERITY		(1U << 0)
453 
454 #define BTRFS_INODE_RO_FLAG_MASK	(BTRFS_INODE_RO_VERITY)
455 
456 /*
457  * The key defines the order in the tree, and so it also defines (optimal)
458  * block layout.
459  *
460  * objectid corresponds to the inode number.
461  *
462  * type tells us things about the object, and is a kind of stream selector.
463  * so for a given inode, keys with type of 1 might refer to the inode data,
464  * type of 2 may point to file data in the btree and type == 3 may point to
465  * extents.
466  *
467  * offset is the starting byte offset for this key in the stream.
468  *
469  * btrfs_disk_key is in disk byte order.  struct btrfs_key is always
470  * in cpu native order.  Otherwise they are identical and their sizes
471  * should be the same (ie both packed)
472  */
473 struct btrfs_disk_key {
474 	__le64 objectid;
475 	__u8 type;
476 	__le64 offset;
477 } __attribute__ ((__packed__));
478 
479 struct btrfs_key {
480 	__u64 objectid;
481 	__u8 type;
482 	__u64 offset;
483 } __attribute__ ((__packed__));
484 
485 /*
486  * Every tree block (leaf or node) starts with this header.
487  */
488 struct btrfs_header {
489 	/* These first four must match the super block */
490 	__u8 csum[BTRFS_CSUM_SIZE];
491 	/* FS specific uuid */
492 	__u8 fsid[BTRFS_FSID_SIZE];
493 	/* Which block this node is supposed to live in */
494 	__le64 bytenr;
495 	__le64 flags;
496 
497 	/* Allowed to be different from the super from here on down */
498 	__u8 chunk_tree_uuid[BTRFS_UUID_SIZE];
499 	__le64 generation;
500 	__le64 owner;
501 	__le32 nritems;
502 	__u8 level;
503 } __attribute__ ((__packed__));
504 
505 /*
506  * This is a very generous portion of the super block, giving us room to
507  * translate 14 chunks with 3 stripes each.
508  */
509 #define BTRFS_SYSTEM_CHUNK_ARRAY_SIZE 2048
510 
511 /*
512  * Just in case we somehow lose the roots and are not able to mount, we store
513  * an array of the roots from previous transactions in the super.
514  */
515 #define BTRFS_NUM_BACKUP_ROOTS 4
516 struct btrfs_root_backup {
517 	__le64 tree_root;
518 	__le64 tree_root_gen;
519 
520 	__le64 chunk_root;
521 	__le64 chunk_root_gen;
522 
523 	__le64 extent_root;
524 	__le64 extent_root_gen;
525 
526 	__le64 fs_root;
527 	__le64 fs_root_gen;
528 
529 	__le64 dev_root;
530 	__le64 dev_root_gen;
531 
532 	__le64 csum_root;
533 	__le64 csum_root_gen;
534 
535 	__le64 total_bytes;
536 	__le64 bytes_used;
537 	__le64 num_devices;
538 	/* future */
539 	__le64 unused_64[4];
540 
541 	__u8 tree_root_level;
542 	__u8 chunk_root_level;
543 	__u8 extent_root_level;
544 	__u8 fs_root_level;
545 	__u8 dev_root_level;
546 	__u8 csum_root_level;
547 	/* future and to align */
548 	__u8 unused_8[10];
549 } __attribute__ ((__packed__));
550 
551 /*
552  * A leaf is full of items. offset and size tell us where to find the item in
553  * the leaf (relative to the start of the data area)
554  */
555 struct btrfs_item {
556 	struct btrfs_disk_key key;
557 	__le32 offset;
558 	__le32 size;
559 } __attribute__ ((__packed__));
560 
561 /*
562  * Leaves have an item area and a data area:
563  * [item0, item1....itemN] [free space] [dataN...data1, data0]
564  *
565  * The data is separate from the items to get the keys closer together during
566  * searches.
567  */
568 struct btrfs_leaf {
569 	struct btrfs_header header;
570 	struct btrfs_item items[];
571 } __attribute__ ((__packed__));
572 
573 /*
574  * All non-leaf blocks are nodes, they hold only keys and pointers to other
575  * blocks.
576  */
577 struct btrfs_key_ptr {
578 	struct btrfs_disk_key key;
579 	__le64 blockptr;
580 	__le64 generation;
581 } __attribute__ ((__packed__));
582 
583 struct btrfs_node {
584 	struct btrfs_header header;
585 	struct btrfs_key_ptr ptrs[];
586 } __attribute__ ((__packed__));
587 
588 struct btrfs_dev_item {
589 	/* the internal btrfs device id */
590 	__le64 devid;
591 
592 	/* size of the device */
593 	__le64 total_bytes;
594 
595 	/* bytes used */
596 	__le64 bytes_used;
597 
598 	/* optimal io alignment for this device */
599 	__le32 io_align;
600 
601 	/* optimal io width for this device */
602 	__le32 io_width;
603 
604 	/* minimal io size for this device */
605 	__le32 sector_size;
606 
607 	/* type and info about this device */
608 	__le64 type;
609 
610 	/* expected generation for this device */
611 	__le64 generation;
612 
613 	/*
614 	 * starting byte of this partition on the device,
615 	 * to allow for stripe alignment in the future
616 	 */
617 	__le64 start_offset;
618 
619 	/* grouping information for allocation decisions */
620 	__le32 dev_group;
621 
622 	/* seek speed 0-100 where 100 is fastest */
623 	__u8 seek_speed;
624 
625 	/* bandwidth 0-100 where 100 is fastest */
626 	__u8 bandwidth;
627 
628 	/* btrfs generated uuid for this device */
629 	__u8 uuid[BTRFS_UUID_SIZE];
630 
631 	/* uuid of FS who owns this device */
632 	__u8 fsid[BTRFS_UUID_SIZE];
633 } __attribute__ ((__packed__));
634 
635 struct btrfs_stripe {
636 	__le64 devid;
637 	__le64 offset;
638 	__u8 dev_uuid[BTRFS_UUID_SIZE];
639 } __attribute__ ((__packed__));
640 
641 struct btrfs_chunk {
642 	/* size of this chunk in bytes */
643 	__le64 length;
644 
645 	/* objectid of the root referencing this chunk */
646 	__le64 owner;
647 
648 	__le64 stripe_len;
649 	__le64 type;
650 
651 	/* optimal io alignment for this chunk */
652 	__le32 io_align;
653 
654 	/* optimal io width for this chunk */
655 	__le32 io_width;
656 
657 	/* minimal io size for this chunk */
658 	__le32 sector_size;
659 
660 	/* 2^16 stripes is quite a lot, a second limit is the size of a single
661 	 * item in the btree
662 	 */
663 	__le16 num_stripes;
664 
665 	/* sub stripes only matter for raid10 */
666 	__le16 sub_stripes;
667 	struct btrfs_stripe stripe;
668 	/* additional stripes go here */
669 } __attribute__ ((__packed__));
670 
671 /*
672  * The super block basically lists the main trees of the FS.
673  */
674 struct btrfs_super_block {
675 	/* The first 4 fields must match struct btrfs_header */
676 	__u8 csum[BTRFS_CSUM_SIZE];
677 	/* FS specific UUID, visible to user */
678 	__u8 fsid[BTRFS_FSID_SIZE];
679 	/* This block number */
680 	__le64 bytenr;
681 	__le64 flags;
682 
683 	/* Allowed to be different from the btrfs_header from here own down */
684 	__le64 magic;
685 	__le64 generation;
686 	__le64 root;
687 	__le64 chunk_root;
688 	__le64 log_root;
689 
690 	/*
691 	 * This member has never been utilized since the very beginning, thus
692 	 * it's always 0 regardless of kernel version.  We always use
693 	 * generation + 1 to read log tree root.  So here we mark it deprecated.
694 	 */
695 	__le64 __unused_log_root_transid;
696 	__le64 total_bytes;
697 	__le64 bytes_used;
698 	__le64 root_dir_objectid;
699 	__le64 num_devices;
700 	__le32 sectorsize;
701 	__le32 nodesize;
702 	__le32 __unused_leafsize;
703 	__le32 stripesize;
704 	__le32 sys_chunk_array_size;
705 	__le64 chunk_root_generation;
706 	__le64 compat_flags;
707 	__le64 compat_ro_flags;
708 	__le64 incompat_flags;
709 	__le16 csum_type;
710 	__u8 root_level;
711 	__u8 chunk_root_level;
712 	__u8 log_root_level;
713 	struct btrfs_dev_item dev_item;
714 
715 	char label[BTRFS_LABEL_SIZE];
716 
717 	__le64 cache_generation;
718 	__le64 uuid_tree_generation;
719 
720 	/* The UUID written into btree blocks */
721 	__u8 metadata_uuid[BTRFS_FSID_SIZE];
722 
723 	__u64 nr_global_roots;
724 	__le64 remap_root;
725 	__le64 remap_root_generation;
726 	__u8 remap_root_level;
727 
728 	/* Future expansion */
729 	__u8 reserved[199];
730 	__u8 sys_chunk_array[BTRFS_SYSTEM_CHUNK_ARRAY_SIZE];
731 	struct btrfs_root_backup super_roots[BTRFS_NUM_BACKUP_ROOTS];
732 
733 	/* Padded to 4096 bytes */
734 	__u8 padding[565];
735 } __attribute__ ((__packed__));
736 
737 #define BTRFS_FREE_SPACE_EXTENT	1
738 #define BTRFS_FREE_SPACE_BITMAP	2
739 
740 struct btrfs_free_space_entry {
741 	__le64 offset;
742 	__le64 bytes;
743 	__u8 type;
744 } __attribute__ ((__packed__));
745 
746 struct btrfs_free_space_header {
747 	struct btrfs_disk_key location;
748 	__le64 generation;
749 	__le64 num_entries;
750 	__le64 num_bitmaps;
751 } __attribute__ ((__packed__));
752 
753 struct btrfs_raid_stride {
754 	/* The id of device this raid extent lives on. */
755 	__le64 devid;
756 	/* The physical location on disk. */
757 	__le64 physical;
758 } __attribute__ ((__packed__));
759 
760 struct btrfs_stripe_extent {
761 	/* An array of raid strides this stripe is composed of. */
762 	__DECLARE_FLEX_ARRAY(struct btrfs_raid_stride, strides);
763 } __attribute__ ((__packed__));
764 
765 #define BTRFS_HEADER_FLAG_WRITTEN	(1ULL << 0)
766 #define BTRFS_HEADER_FLAG_RELOC		(1ULL << 1)
767 
768 /* Super block flags */
769 /* Errors detected */
770 #define BTRFS_SUPER_FLAG_ERROR		(1ULL << 2)
771 
772 #define BTRFS_SUPER_FLAG_SEEDING	(1ULL << 32)
773 #define BTRFS_SUPER_FLAG_METADUMP	(1ULL << 33)
774 #define BTRFS_SUPER_FLAG_METADUMP_V2	(1ULL << 34)
775 #define BTRFS_SUPER_FLAG_CHANGING_FSID	(1ULL << 35)
776 #define BTRFS_SUPER_FLAG_CHANGING_FSID_V2 (1ULL << 36)
777 
778 /*
779  * Those are temporaray flags utilized by btrfs-progs to do offline conversion.
780  * They are rejected by kernel.
781  * But still keep them all here to avoid conflicts.
782  */
783 #define BTRFS_SUPER_FLAG_CHANGING_BG_TREE	(1ULL << 38)
784 #define BTRFS_SUPER_FLAG_CHANGING_DATA_CSUM	(1ULL << 39)
785 #define BTRFS_SUPER_FLAG_CHANGING_META_CSUM	(1ULL << 40)
786 
787 /*
788  * items in the extent btree are used to record the objectid of the
789  * owner of the block and the number of references
790  */
791 
792 struct btrfs_extent_item {
793 	__le64 refs;
794 	__le64 generation;
795 	__le64 flags;
796 } __attribute__ ((__packed__));
797 
798 struct btrfs_extent_item_v0 {
799 	__le32 refs;
800 } __attribute__ ((__packed__));
801 
802 
803 #define BTRFS_EXTENT_FLAG_DATA		(1ULL << 0)
804 #define BTRFS_EXTENT_FLAG_TREE_BLOCK	(1ULL << 1)
805 
806 /* following flags only apply to tree blocks */
807 
808 /* use full backrefs for extent pointers in the block */
809 #define BTRFS_BLOCK_FLAG_FULL_BACKREF	(1ULL << 8)
810 
811 #define BTRFS_BACKREF_REV_MAX		256
812 #define BTRFS_BACKREF_REV_SHIFT		56
813 #define BTRFS_BACKREF_REV_MASK		(((u64)BTRFS_BACKREF_REV_MAX - 1) << \
814 					 BTRFS_BACKREF_REV_SHIFT)
815 
816 #define BTRFS_OLD_BACKREF_REV		0
817 #define BTRFS_MIXED_BACKREF_REV		1
818 
819 /*
820  * this flag is only used internally by scrub and may be changed at any time
821  * it is only declared here to avoid collisions
822  */
823 #define BTRFS_EXTENT_FLAG_SUPER		(1ULL << 48)
824 
825 struct btrfs_tree_block_info {
826 	struct btrfs_disk_key key;
827 	__u8 level;
828 } __attribute__ ((__packed__));
829 
830 struct btrfs_extent_data_ref {
831 	__le64 root;
832 	__le64 objectid;
833 	__le64 offset;
834 	__le32 count;
835 } __attribute__ ((__packed__));
836 
837 struct btrfs_shared_data_ref {
838 	__le32 count;
839 } __attribute__ ((__packed__));
840 
841 struct btrfs_extent_owner_ref {
842 	__le64 root_id;
843 } __attribute__ ((__packed__));
844 
845 struct btrfs_extent_inline_ref {
846 	__u8 type;
847 	__le64 offset;
848 } __attribute__ ((__packed__));
849 
850 /* dev extents record free space on individual devices.  The owner
851  * field points back to the chunk allocation mapping tree that allocated
852  * the extent.  The chunk tree uuid field is a way to double check the owner
853  */
854 struct btrfs_dev_extent {
855 	__le64 chunk_tree;
856 	__le64 chunk_objectid;
857 	__le64 chunk_offset;
858 	__le64 length;
859 	__u8 chunk_tree_uuid[BTRFS_UUID_SIZE];
860 } __attribute__ ((__packed__));
861 
862 struct btrfs_inode_ref {
863 	__le64 index;
864 	__le16 name_len;
865 	/* name goes here */
866 } __attribute__ ((__packed__));
867 
868 struct btrfs_inode_extref {
869 	__le64 parent_objectid;
870 	__le64 index;
871 	__le16 name_len;
872 	__u8   name[];
873 	/* name goes here */
874 } __attribute__ ((__packed__));
875 
876 struct btrfs_timespec {
877 	__le64 sec;
878 	__le32 nsec;
879 } __attribute__ ((__packed__));
880 
881 struct btrfs_inode_item {
882 	/* nfs style generation number */
883 	__le64 generation;
884 	/* transid that last touched this inode */
885 	__le64 transid;
886 	__le64 size;
887 	__le64 nbytes;
888 	__le64 block_group;
889 	__le32 nlink;
890 	__le32 uid;
891 	__le32 gid;
892 	__le32 mode;
893 	__le64 rdev;
894 	__le64 flags;
895 
896 	/* modification sequence number for NFS */
897 	__le64 sequence;
898 
899 	/*
900 	 * a little future expansion, for more than this we can
901 	 * just grow the inode item and version it
902 	 */
903 	__le64 reserved[4];
904 	struct btrfs_timespec atime;
905 	struct btrfs_timespec ctime;
906 	struct btrfs_timespec mtime;
907 	struct btrfs_timespec otime;
908 } __attribute__ ((__packed__));
909 
910 struct btrfs_dir_log_item {
911 	__le64 end;
912 } __attribute__ ((__packed__));
913 
914 struct btrfs_dir_item {
915 	struct btrfs_disk_key location;
916 	__le64 transid;
917 	__le16 data_len;
918 	__le16 name_len;
919 	__u8 type;
920 } __attribute__ ((__packed__));
921 
922 #define BTRFS_ROOT_SUBVOL_RDONLY	(1ULL << 0)
923 
924 /*
925  * Internal in-memory flag that a subvolume has been marked for deletion but
926  * still visible as a directory
927  */
928 #define BTRFS_ROOT_SUBVOL_DEAD		(1ULL << 48)
929 
930 struct btrfs_root_item {
931 	struct btrfs_inode_item inode;
932 	__le64 generation;
933 	__le64 root_dirid;
934 	__le64 bytenr;
935 	__le64 byte_limit;
936 	__le64 bytes_used;
937 	__le64 last_snapshot;
938 	__le64 flags;
939 	__le32 refs;
940 	struct btrfs_disk_key drop_progress;
941 	__u8 drop_level;
942 	__u8 level;
943 
944 	/*
945 	 * The following fields appear after subvol_uuids+subvol_times
946 	 * were introduced.
947 	 */
948 
949 	/*
950 	 * This generation number is used to test if the new fields are valid
951 	 * and up to date while reading the root item. Every time the root item
952 	 * is written out, the "generation" field is copied into this field. If
953 	 * anyone ever mounted the fs with an older kernel, we will have
954 	 * mismatching generation values here and thus must invalidate the
955 	 * new fields. See btrfs_update_root and btrfs_find_last_root for
956 	 * details.
957 	 * the offset of generation_v2 is also used as the start for the memset
958 	 * when invalidating the fields.
959 	 */
960 	__le64 generation_v2;
961 	__u8 uuid[BTRFS_UUID_SIZE];
962 	__u8 parent_uuid[BTRFS_UUID_SIZE];
963 	__u8 received_uuid[BTRFS_UUID_SIZE];
964 	__le64 ctransid; /* updated when an inode changes */
965 	__le64 otransid; /* trans when created */
966 	__le64 stransid; /* trans when sent. non-zero for received subvol */
967 	__le64 rtransid; /* trans when received. non-zero for received subvol */
968 	struct btrfs_timespec ctime;
969 	struct btrfs_timespec otime;
970 	struct btrfs_timespec stime;
971 	struct btrfs_timespec rtime;
972 	__le64 reserved[8]; /* for future */
973 } __attribute__ ((__packed__));
974 
975 /*
976  * Btrfs root item used to be smaller than current size.  The old format ends
977  * at where member generation_v2 is.
978  */
979 static inline __u32 btrfs_legacy_root_item_size(void)
980 {
981 	return offsetof(struct btrfs_root_item, generation_v2);
982 }
983 
984 /*
985  * this is used for both forward and backward root refs
986  */
987 struct btrfs_root_ref {
988 	__le64 dirid;
989 	__le64 sequence;
990 	__le16 name_len;
991 } __attribute__ ((__packed__));
992 
993 struct btrfs_disk_balance_args {
994 	/*
995 	 * profiles to operate on, single is denoted by
996 	 * BTRFS_AVAIL_ALLOC_BIT_SINGLE
997 	 */
998 	__le64 profiles;
999 
1000 	/*
1001 	 * usage filter
1002 	 * BTRFS_BALANCE_ARGS_USAGE with a single value means '0..N'
1003 	 * BTRFS_BALANCE_ARGS_USAGE_RANGE - range syntax, min..max
1004 	 */
1005 	union {
1006 		__le64 usage;
1007 		struct {
1008 			__le32 usage_min;
1009 			__le32 usage_max;
1010 		};
1011 	};
1012 
1013 	/* devid filter */
1014 	__le64 devid;
1015 
1016 	/* devid subset filter [pstart..pend) */
1017 	__le64 pstart;
1018 	__le64 pend;
1019 
1020 	/* btrfs virtual address space subset filter [vstart..vend) */
1021 	__le64 vstart;
1022 	__le64 vend;
1023 
1024 	/*
1025 	 * profile to convert to, single is denoted by
1026 	 * BTRFS_AVAIL_ALLOC_BIT_SINGLE
1027 	 */
1028 	__le64 target;
1029 
1030 	/* BTRFS_BALANCE_ARGS_* */
1031 	__le64 flags;
1032 
1033 	/*
1034 	 * BTRFS_BALANCE_ARGS_LIMIT with value 'limit'
1035 	 * BTRFS_BALANCE_ARGS_LIMIT_RANGE - the extend version can use minimum
1036 	 * and maximum
1037 	 */
1038 	union {
1039 		__le64 limit;
1040 		struct {
1041 			__le32 limit_min;
1042 			__le32 limit_max;
1043 		};
1044 	};
1045 
1046 	/*
1047 	 * Process chunks that cross stripes_min..stripes_max devices,
1048 	 * BTRFS_BALANCE_ARGS_STRIPES_RANGE
1049 	 */
1050 	__le32 stripes_min;
1051 	__le32 stripes_max;
1052 
1053 	__le64 unused[6];
1054 } __attribute__ ((__packed__));
1055 
1056 /*
1057  * store balance parameters to disk so that balance can be properly
1058  * resumed after crash or unmount
1059  */
1060 struct btrfs_balance_item {
1061 	/* BTRFS_BALANCE_* */
1062 	__le64 flags;
1063 
1064 	struct btrfs_disk_balance_args data;
1065 	struct btrfs_disk_balance_args meta;
1066 	struct btrfs_disk_balance_args sys;
1067 
1068 	__le64 unused[4];
1069 } __attribute__ ((__packed__));
1070 
1071 enum {
1072 	BTRFS_FILE_EXTENT_INLINE   = 0,
1073 	BTRFS_FILE_EXTENT_REG      = 1,
1074 	BTRFS_FILE_EXTENT_PREALLOC = 2,
1075 	BTRFS_NR_FILE_EXTENT_TYPES = 3,
1076 };
1077 
1078 struct btrfs_file_extent_item {
1079 	/*
1080 	 * transaction id that created this extent
1081 	 */
1082 	__le64 generation;
1083 	/*
1084 	 * max number of bytes to hold this extent in ram
1085 	 * when we split a compressed extent we can't know how big
1086 	 * each of the resulting pieces will be.  So, this is
1087 	 * an upper limit on the size of the extent in ram instead of
1088 	 * an exact limit.
1089 	 */
1090 	__le64 ram_bytes;
1091 
1092 	/*
1093 	 * 32 bits for the various ways we might encode the data,
1094 	 * including compression and encryption.  If any of these
1095 	 * are set to something a given disk format doesn't understand
1096 	 * it is treated like an incompat flag for reading and writing,
1097 	 * but not for stat.
1098 	 */
1099 	__u8 compression;
1100 	__u8 encryption;
1101 	__le16 other_encoding; /* spare for later use */
1102 
1103 	/* are we inline data or a real extent? */
1104 	__u8 type;
1105 
1106 	/*
1107 	 * disk space consumed by the extent, checksum blocks are included
1108 	 * in these numbers
1109 	 *
1110 	 * At this offset in the structure, the inline extent data start.
1111 	 */
1112 	__le64 disk_bytenr;
1113 	__le64 disk_num_bytes;
1114 	/*
1115 	 * the logical offset in file blocks (no csums)
1116 	 * this extent record is for.  This allows a file extent to point
1117 	 * into the middle of an existing extent on disk, sharing it
1118 	 * between two snapshots (useful if some bytes in the middle of the
1119 	 * extent have changed
1120 	 */
1121 	__le64 offset;
1122 	/*
1123 	 * the logical number of file blocks (no csums included).  This
1124 	 * always reflects the size uncompressed and without encoding.
1125 	 */
1126 	__le64 num_bytes;
1127 
1128 } __attribute__ ((__packed__));
1129 
1130 struct btrfs_csum_item {
1131 	__u8 csum;
1132 } __attribute__ ((__packed__));
1133 
1134 struct btrfs_dev_stats_item {
1135 	/*
1136 	 * grow this item struct at the end for future enhancements and keep
1137 	 * the existing values unchanged
1138 	 */
1139 	__le64 values[BTRFS_DEV_STAT_VALUES_MAX];
1140 } __attribute__ ((__packed__));
1141 
1142 #define BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_ALWAYS	0
1143 #define BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID	1
1144 
1145 struct btrfs_dev_replace_item {
1146 	/*
1147 	 * grow this item struct at the end for future enhancements and keep
1148 	 * the existing values unchanged
1149 	 */
1150 	__le64 src_devid;
1151 	__le64 cursor_left;
1152 	__le64 cursor_right;
1153 	__le64 cont_reading_from_srcdev_mode;
1154 
1155 	__le64 replace_state;
1156 	__le64 time_started;
1157 	__le64 time_stopped;
1158 	__le64 num_write_errors;
1159 	__le64 num_uncorrectable_read_errors;
1160 } __attribute__ ((__packed__));
1161 
1162 /* different types of block groups (and chunks) */
1163 #define BTRFS_BLOCK_GROUP_DATA		(1ULL << 0)
1164 #define BTRFS_BLOCK_GROUP_SYSTEM	(1ULL << 1)
1165 #define BTRFS_BLOCK_GROUP_METADATA	(1ULL << 2)
1166 #define BTRFS_BLOCK_GROUP_RAID0		(1ULL << 3)
1167 #define BTRFS_BLOCK_GROUP_RAID1		(1ULL << 4)
1168 #define BTRFS_BLOCK_GROUP_DUP		(1ULL << 5)
1169 #define BTRFS_BLOCK_GROUP_RAID10	(1ULL << 6)
1170 #define BTRFS_BLOCK_GROUP_RAID5         (1ULL << 7)
1171 #define BTRFS_BLOCK_GROUP_RAID6         (1ULL << 8)
1172 #define BTRFS_BLOCK_GROUP_RAID1C3       (1ULL << 9)
1173 #define BTRFS_BLOCK_GROUP_RAID1C4       (1ULL << 10)
1174 #define BTRFS_BLOCK_GROUP_REMAPPED      (1ULL << 11)
1175 #define BTRFS_BLOCK_GROUP_METADATA_REMAP (1ULL << 12)
1176 #define BTRFS_BLOCK_GROUP_RESERVED	(BTRFS_AVAIL_ALLOC_BIT_SINGLE | \
1177 					 BTRFS_SPACE_INFO_GLOBAL_RSV)
1178 
1179 #define BTRFS_BLOCK_GROUP_TYPE_MASK	(BTRFS_BLOCK_GROUP_DATA |    \
1180 					 BTRFS_BLOCK_GROUP_SYSTEM |  \
1181 					 BTRFS_BLOCK_GROUP_METADATA | \
1182 					 BTRFS_BLOCK_GROUP_METADATA_REMAP)
1183 
1184 #define BTRFS_BLOCK_GROUP_PROFILE_MASK	(BTRFS_BLOCK_GROUP_RAID0 |   \
1185 					 BTRFS_BLOCK_GROUP_RAID1 |   \
1186 					 BTRFS_BLOCK_GROUP_RAID1C3 | \
1187 					 BTRFS_BLOCK_GROUP_RAID1C4 | \
1188 					 BTRFS_BLOCK_GROUP_RAID5 |   \
1189 					 BTRFS_BLOCK_GROUP_RAID6 |   \
1190 					 BTRFS_BLOCK_GROUP_DUP |     \
1191 					 BTRFS_BLOCK_GROUP_RAID10)
1192 #define BTRFS_BLOCK_GROUP_RAID56_MASK	(BTRFS_BLOCK_GROUP_RAID5 |   \
1193 					 BTRFS_BLOCK_GROUP_RAID6)
1194 
1195 #define BTRFS_BLOCK_GROUP_RAID1_MASK	(BTRFS_BLOCK_GROUP_RAID1 |   \
1196 					 BTRFS_BLOCK_GROUP_RAID1C3 | \
1197 					 BTRFS_BLOCK_GROUP_RAID1C4)
1198 
1199 /*
1200  * We need a bit for restriper to be able to tell when chunks of type
1201  * SINGLE are available.  This "extended" profile format is used in
1202  * fs_info->avail_*_alloc_bits (in-memory) and balance item fields
1203  * (on-disk).  The corresponding on-disk bit in chunk.type is reserved
1204  * to avoid remappings between two formats in future.
1205  */
1206 #define BTRFS_AVAIL_ALLOC_BIT_SINGLE	(1ULL << 48)
1207 
1208 /*
1209  * A fake block group type that is used to communicate global block reserve
1210  * size to userspace via the SPACE_INFO ioctl.
1211  */
1212 #define BTRFS_SPACE_INFO_GLOBAL_RSV	(1ULL << 49)
1213 
1214 #define BTRFS_EXTENDED_PROFILE_MASK	(BTRFS_BLOCK_GROUP_PROFILE_MASK | \
1215 					 BTRFS_AVAIL_ALLOC_BIT_SINGLE)
1216 
1217 static inline __u64 chunk_to_extended(__u64 flags)
1218 {
1219 	if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0)
1220 		flags |= BTRFS_AVAIL_ALLOC_BIT_SINGLE;
1221 
1222 	return flags;
1223 }
1224 static inline __u64 extended_to_chunk(__u64 flags)
1225 {
1226 	return flags & ~BTRFS_AVAIL_ALLOC_BIT_SINGLE;
1227 }
1228 
1229 struct btrfs_block_group_item {
1230 	__le64 used;
1231 	__le64 chunk_objectid;
1232 	__le64 flags;
1233 } __attribute__ ((__packed__));
1234 
1235 struct btrfs_block_group_item_v2 {
1236 	__le64 used;
1237 	__le64 chunk_objectid;
1238 	__le64 flags;
1239 	__le64 remap_bytes;
1240 	__le32 identity_remap_count;
1241 } __attribute__ ((__packed__));
1242 
1243 struct btrfs_free_space_info {
1244 	__le32 extent_count;
1245 	__le32 flags;
1246 } __attribute__ ((__packed__));
1247 
1248 #define BTRFS_FREE_SPACE_USING_BITMAPS (1ULL << 0)
1249 
1250 #define BTRFS_QGROUP_LEVEL_SHIFT		48
1251 static inline __u16 btrfs_qgroup_level(__u64 qgroupid)
1252 {
1253 	return (__u16)(qgroupid >> BTRFS_QGROUP_LEVEL_SHIFT);
1254 }
1255 
1256 /*
1257  * is subvolume quota turned on?
1258  */
1259 #define BTRFS_QGROUP_STATUS_FLAG_ON		(1ULL << 0)
1260 /*
1261  * RESCAN is set during the initialization phase
1262  */
1263 #define BTRFS_QGROUP_STATUS_FLAG_RESCAN		(1ULL << 1)
1264 /*
1265  * Some qgroup entries are known to be out of date,
1266  * either because the configuration has changed in a way that
1267  * makes a rescan necessary, or because the fs has been mounted
1268  * with a non-qgroup-aware version.
1269  * Turning qouta off and on again makes it inconsistent, too.
1270  */
1271 #define BTRFS_QGROUP_STATUS_FLAG_INCONSISTENT	(1ULL << 2)
1272 
1273 /*
1274  * Whether or not this filesystem is using simple quotas.  Not exactly the
1275  * incompat bit, because we support using simple quotas, disabling it, then
1276  * going back to full qgroup quotas.
1277  */
1278 #define BTRFS_QGROUP_STATUS_FLAG_SIMPLE_MODE	(1ULL << 3)
1279 
1280 #define BTRFS_QGROUP_STATUS_FLAGS_MASK	(BTRFS_QGROUP_STATUS_FLAG_ON |		\
1281 					 BTRFS_QGROUP_STATUS_FLAG_RESCAN |	\
1282 					 BTRFS_QGROUP_STATUS_FLAG_INCONSISTENT | \
1283 					 BTRFS_QGROUP_STATUS_FLAG_SIMPLE_MODE)
1284 
1285 #define BTRFS_QGROUP_STATUS_VERSION        1
1286 
1287 struct btrfs_qgroup_status_item {
1288 	__le64 version;
1289 	/*
1290 	 * the generation is updated during every commit. As older
1291 	 * versions of btrfs are not aware of qgroups, it will be
1292 	 * possible to detect inconsistencies by checking the
1293 	 * generation on mount time
1294 	 */
1295 	__le64 generation;
1296 
1297 	/* flag definitions see above */
1298 	__le64 flags;
1299 
1300 	/*
1301 	 * only used during scanning to record the progress
1302 	 * of the scan. It contains a logical address
1303 	 */
1304 	__le64 rescan;
1305 
1306 	/*
1307 	 * The generation when quotas were last enabled. Used by simple quotas to
1308 	 * avoid decrementing when freeing an extent that was written before
1309 	 * enable.
1310 	 *
1311 	 * Set only if flags contain BTRFS_QGROUP_STATUS_FLAG_SIMPLE_MODE.
1312 	 */
1313 	__le64 enable_gen;
1314 } __attribute__ ((__packed__));
1315 
1316 struct btrfs_qgroup_info_item {
1317 	__le64 generation;
1318 	__le64 rfer;
1319 	__le64 rfer_cmpr;
1320 	__le64 excl;
1321 	__le64 excl_cmpr;
1322 } __attribute__ ((__packed__));
1323 
1324 struct btrfs_qgroup_limit_item {
1325 	/*
1326 	 * only updated when any of the other values change
1327 	 */
1328 	__le64 flags;
1329 	__le64 max_rfer;
1330 	__le64 max_excl;
1331 	__le64 rsv_rfer;
1332 	__le64 rsv_excl;
1333 } __attribute__ ((__packed__));
1334 
1335 struct btrfs_verity_descriptor_item {
1336 	/* Size of the verity descriptor in bytes */
1337 	__le64 size;
1338 	/*
1339 	 * When we implement support for fscrypt, we will need to encrypt the
1340 	 * Merkle tree for encrypted verity files. These 128 bits are for the
1341 	 * eventual storage of an fscrypt initialization vector.
1342 	 */
1343 	__le64 reserved[2];
1344 	__u8 encryption;
1345 } __attribute__ ((__packed__));
1346 
1347 /*
1348  * For a range identified by a BTRFS_REMAP_KEY item in the remap tree, gives
1349  * the address that the start of the range will get remapped to.  This
1350  * structure is also shared by BTRFS_REMAP_BACKREF_KEY.
1351  */
1352 struct btrfs_remap_item {
1353 	__le64 address;
1354 } __attribute__ ((__packed__));
1355 
1356 #endif /* _BTRFS_CTREE_H_ */
1357