1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018 Facebook */
3
4 #include <uapi/linux/btf.h>
5 #include <uapi/linux/bpf.h>
6 #include <uapi/linux/bpf_perf_event.h>
7 #include <uapi/linux/types.h>
8 #include <linux/seq_file.h>
9 #include <linux/compiler.h>
10 #include <linux/ctype.h>
11 #include <linux/errno.h>
12 #include <linux/slab.h>
13 #include <linux/anon_inodes.h>
14 #include <linux/file.h>
15 #include <linux/uaccess.h>
16 #include <linux/kernel.h>
17 #include <linux/idr.h>
18 #include <linux/sort.h>
19 #include <linux/bpf_verifier.h>
20 #include <linux/btf.h>
21 #include <linux/btf_ids.h>
22 #include <linux/bpf.h>
23 #include <linux/bpf_lsm.h>
24 #include <linux/skmsg.h>
25 #include <linux/perf_event.h>
26 #include <linux/bsearch.h>
27 #include <linux/kobject.h>
28 #include <linux/sysfs.h>
29
30 #include <net/netfilter/nf_bpf_link.h>
31
32 #include <net/sock.h>
33 #include <net/xdp.h>
34 #include "../tools/lib/bpf/relo_core.h"
35
36 /* BTF (BPF Type Format) is the meta data format which describes
37 * the data types of BPF program/map. Hence, it basically focus
38 * on the C programming language which the modern BPF is primary
39 * using.
40 *
41 * ELF Section:
42 * ~~~~~~~~~~~
43 * The BTF data is stored under the ".BTF" ELF section
44 *
45 * struct btf_type:
46 * ~~~~~~~~~~~~~~~
47 * Each 'struct btf_type' object describes a C data type.
48 * Depending on the type it is describing, a 'struct btf_type'
49 * object may be followed by more data. F.e.
50 * To describe an array, 'struct btf_type' is followed by
51 * 'struct btf_array'.
52 *
53 * 'struct btf_type' and any extra data following it are
54 * 4 bytes aligned.
55 *
56 * Type section:
57 * ~~~~~~~~~~~~~
58 * The BTF type section contains a list of 'struct btf_type' objects.
59 * Each one describes a C type. Recall from the above section
60 * that a 'struct btf_type' object could be immediately followed by extra
61 * data in order to describe some particular C types.
62 *
63 * type_id:
64 * ~~~~~~~
65 * Each btf_type object is identified by a type_id. The type_id
66 * is implicitly implied by the location of the btf_type object in
67 * the BTF type section. The first one has type_id 1. The second
68 * one has type_id 2...etc. Hence, an earlier btf_type has
69 * a smaller type_id.
70 *
71 * A btf_type object may refer to another btf_type object by using
72 * type_id (i.e. the "type" in the "struct btf_type").
73 *
74 * NOTE that we cannot assume any reference-order.
75 * A btf_type object can refer to an earlier btf_type object
76 * but it can also refer to a later btf_type object.
77 *
78 * For example, to describe "const void *". A btf_type
79 * object describing "const" may refer to another btf_type
80 * object describing "void *". This type-reference is done
81 * by specifying type_id:
82 *
83 * [1] CONST (anon) type_id=2
84 * [2] PTR (anon) type_id=0
85 *
86 * The above is the btf_verifier debug log:
87 * - Each line started with "[?]" is a btf_type object
88 * - [?] is the type_id of the btf_type object.
89 * - CONST/PTR is the BTF_KIND_XXX
90 * - "(anon)" is the name of the type. It just
91 * happens that CONST and PTR has no name.
92 * - type_id=XXX is the 'u32 type' in btf_type
93 *
94 * NOTE: "void" has type_id 0
95 *
96 * String section:
97 * ~~~~~~~~~~~~~~
98 * The BTF string section contains the names used by the type section.
99 * Each string is referred by an "offset" from the beginning of the
100 * string section.
101 *
102 * Each string is '\0' terminated.
103 *
104 * The first character in the string section must be '\0'
105 * which is used to mean 'anonymous'. Some btf_type may not
106 * have a name.
107 */
108
109 /* BTF verification:
110 *
111 * To verify BTF data, two passes are needed.
112 *
113 * Pass #1
114 * ~~~~~~~
115 * The first pass is to collect all btf_type objects to
116 * an array: "btf->types".
117 *
118 * Depending on the C type that a btf_type is describing,
119 * a btf_type may be followed by extra data. We don't know
120 * how many btf_type is there, and more importantly we don't
121 * know where each btf_type is located in the type section.
122 *
123 * Without knowing the location of each type_id, most verifications
124 * cannot be done. e.g. an earlier btf_type may refer to a later
125 * btf_type (recall the "const void *" above), so we cannot
126 * check this type-reference in the first pass.
127 *
128 * In the first pass, it still does some verifications (e.g.
129 * checking the name is a valid offset to the string section).
130 *
131 * Pass #2
132 * ~~~~~~~
133 * The main focus is to resolve a btf_type that is referring
134 * to another type.
135 *
136 * We have to ensure the referring type:
137 * 1) does exist in the BTF (i.e. in btf->types[])
138 * 2) does not cause a loop:
139 * struct A {
140 * struct B b;
141 * };
142 *
143 * struct B {
144 * struct A a;
145 * };
146 *
147 * btf_type_needs_resolve() decides if a btf_type needs
148 * to be resolved.
149 *
150 * The needs_resolve type implements the "resolve()" ops which
151 * essentially does a DFS and detects backedge.
152 *
153 * During resolve (or DFS), different C types have different
154 * "RESOLVED" conditions.
155 *
156 * When resolving a BTF_KIND_STRUCT, we need to resolve all its
157 * members because a member is always referring to another
158 * type. A struct's member can be treated as "RESOLVED" if
159 * it is referring to a BTF_KIND_PTR. Otherwise, the
160 * following valid C struct would be rejected:
161 *
162 * struct A {
163 * int m;
164 * struct A *a;
165 * };
166 *
167 * When resolving a BTF_KIND_PTR, it needs to keep resolving if
168 * it is referring to another BTF_KIND_PTR. Otherwise, we cannot
169 * detect a pointer loop, e.g.:
170 * BTF_KIND_CONST -> BTF_KIND_PTR -> BTF_KIND_CONST -> BTF_KIND_PTR +
171 * ^ |
172 * +-----------------------------------------+
173 *
174 */
175
176 #define BITS_PER_U128 (sizeof(u64) * BITS_PER_BYTE * 2)
177 #define BITS_PER_BYTE_MASK (BITS_PER_BYTE - 1)
178 #define BITS_PER_BYTE_MASKED(bits) ((bits) & BITS_PER_BYTE_MASK)
179 #define BITS_ROUNDDOWN_BYTES(bits) ((bits) >> 3)
180 #define BITS_ROUNDUP_BYTES(bits) \
181 (BITS_ROUNDDOWN_BYTES(bits) + !!BITS_PER_BYTE_MASKED(bits))
182
183 #define BTF_INFO_MASK 0x9f00ffff
184 #define BTF_INT_MASK 0x0fffffff
185 #define BTF_TYPE_ID_VALID(type_id) ((type_id) <= BTF_MAX_TYPE)
186 #define BTF_STR_OFFSET_VALID(name_off) ((name_off) <= BTF_MAX_NAME_OFFSET)
187
188 /* 16MB for 64k structs and each has 16 members and
189 * a few MB spaces for the string section.
190 * The hard limit is S32_MAX.
191 */
192 #define BTF_MAX_SIZE (16 * 1024 * 1024)
193
194 #define for_each_member_from(i, from, struct_type, member) \
195 for (i = from, member = btf_type_member(struct_type) + from; \
196 i < btf_type_vlen(struct_type); \
197 i++, member++)
198
199 #define for_each_vsi_from(i, from, struct_type, member) \
200 for (i = from, member = btf_type_var_secinfo(struct_type) + from; \
201 i < btf_type_vlen(struct_type); \
202 i++, member++)
203
204 DEFINE_IDR(btf_idr);
205 DEFINE_SPINLOCK(btf_idr_lock);
206
207 enum btf_kfunc_hook {
208 BTF_KFUNC_HOOK_COMMON,
209 BTF_KFUNC_HOOK_XDP,
210 BTF_KFUNC_HOOK_TC,
211 BTF_KFUNC_HOOK_STRUCT_OPS,
212 BTF_KFUNC_HOOK_TRACING,
213 BTF_KFUNC_HOOK_SYSCALL,
214 BTF_KFUNC_HOOK_FMODRET,
215 BTF_KFUNC_HOOK_CGROUP,
216 BTF_KFUNC_HOOK_SCHED_ACT,
217 BTF_KFUNC_HOOK_SK_SKB,
218 BTF_KFUNC_HOOK_SOCKET_FILTER,
219 BTF_KFUNC_HOOK_LWT,
220 BTF_KFUNC_HOOK_NETFILTER,
221 BTF_KFUNC_HOOK_KPROBE,
222 BTF_KFUNC_HOOK_MAX,
223 };
224
225 enum {
226 BTF_KFUNC_SET_MAX_CNT = 256,
227 BTF_DTOR_KFUNC_MAX_CNT = 256,
228 BTF_KFUNC_FILTER_MAX_CNT = 16,
229 };
230
231 struct btf_kfunc_hook_filter {
232 btf_kfunc_filter_t filters[BTF_KFUNC_FILTER_MAX_CNT];
233 u32 nr_filters;
234 };
235
236 struct btf_kfunc_set_tab {
237 struct btf_id_set8 *sets[BTF_KFUNC_HOOK_MAX];
238 struct btf_kfunc_hook_filter hook_filters[BTF_KFUNC_HOOK_MAX];
239 };
240
241 struct btf_id_dtor_kfunc_tab {
242 u32 cnt;
243 struct btf_id_dtor_kfunc dtors[];
244 };
245
246 struct btf_struct_ops_tab {
247 u32 cnt;
248 u32 capacity;
249 struct bpf_struct_ops_desc ops[];
250 };
251
252 struct btf {
253 void *data;
254 struct btf_type **types;
255 u32 *resolved_ids;
256 u32 *resolved_sizes;
257 const char *strings;
258 void *nohdr_data;
259 struct btf_header hdr;
260 u32 nr_types; /* includes VOID for base BTF */
261 u32 types_size;
262 u32 data_size;
263 refcount_t refcnt;
264 u32 id;
265 struct rcu_head rcu;
266 struct btf_kfunc_set_tab *kfunc_set_tab;
267 struct btf_id_dtor_kfunc_tab *dtor_kfunc_tab;
268 struct btf_struct_metas *struct_meta_tab;
269 struct btf_struct_ops_tab *struct_ops_tab;
270
271 /* split BTF support */
272 struct btf *base_btf;
273 u32 start_id; /* first type ID in this BTF (0 for base BTF) */
274 u32 start_str_off; /* first string offset (0 for base BTF) */
275 char name[MODULE_NAME_LEN];
276 bool kernel_btf;
277 __u32 *base_id_map; /* map from distilled base BTF -> vmlinux BTF ids */
278 };
279
280 enum verifier_phase {
281 CHECK_META,
282 CHECK_TYPE,
283 };
284
285 struct resolve_vertex {
286 const struct btf_type *t;
287 u32 type_id;
288 u16 next_member;
289 };
290
291 enum visit_state {
292 NOT_VISITED,
293 VISITED,
294 RESOLVED,
295 };
296
297 enum resolve_mode {
298 RESOLVE_TBD, /* To Be Determined */
299 RESOLVE_PTR, /* Resolving for Pointer */
300 RESOLVE_STRUCT_OR_ARRAY, /* Resolving for struct/union
301 * or array
302 */
303 };
304
305 #define MAX_RESOLVE_DEPTH 32
306
307 struct btf_sec_info {
308 u32 off;
309 u32 len;
310 };
311
312 struct btf_verifier_env {
313 struct btf *btf;
314 u8 *visit_states;
315 struct resolve_vertex stack[MAX_RESOLVE_DEPTH];
316 struct bpf_verifier_log log;
317 u32 log_type_id;
318 u32 top_stack;
319 enum verifier_phase phase;
320 enum resolve_mode resolve_mode;
321 };
322
323 static const char * const btf_kind_str[NR_BTF_KINDS] = {
324 [BTF_KIND_UNKN] = "UNKNOWN",
325 [BTF_KIND_INT] = "INT",
326 [BTF_KIND_PTR] = "PTR",
327 [BTF_KIND_ARRAY] = "ARRAY",
328 [BTF_KIND_STRUCT] = "STRUCT",
329 [BTF_KIND_UNION] = "UNION",
330 [BTF_KIND_ENUM] = "ENUM",
331 [BTF_KIND_FWD] = "FWD",
332 [BTF_KIND_TYPEDEF] = "TYPEDEF",
333 [BTF_KIND_VOLATILE] = "VOLATILE",
334 [BTF_KIND_CONST] = "CONST",
335 [BTF_KIND_RESTRICT] = "RESTRICT",
336 [BTF_KIND_FUNC] = "FUNC",
337 [BTF_KIND_FUNC_PROTO] = "FUNC_PROTO",
338 [BTF_KIND_VAR] = "VAR",
339 [BTF_KIND_DATASEC] = "DATASEC",
340 [BTF_KIND_FLOAT] = "FLOAT",
341 [BTF_KIND_DECL_TAG] = "DECL_TAG",
342 [BTF_KIND_TYPE_TAG] = "TYPE_TAG",
343 [BTF_KIND_ENUM64] = "ENUM64",
344 };
345
btf_type_str(const struct btf_type * t)346 const char *btf_type_str(const struct btf_type *t)
347 {
348 return btf_kind_str[BTF_INFO_KIND(t->info)];
349 }
350
351 /* Chunk size we use in safe copy of data to be shown. */
352 #define BTF_SHOW_OBJ_SAFE_SIZE 32
353
354 /*
355 * This is the maximum size of a base type value (equivalent to a
356 * 128-bit int); if we are at the end of our safe buffer and have
357 * less than 16 bytes space we can't be assured of being able
358 * to copy the next type safely, so in such cases we will initiate
359 * a new copy.
360 */
361 #define BTF_SHOW_OBJ_BASE_TYPE_SIZE 16
362
363 /* Type name size */
364 #define BTF_SHOW_NAME_SIZE 80
365
366 /*
367 * The suffix of a type that indicates it cannot alias another type when
368 * comparing BTF IDs for kfunc invocations.
369 */
370 #define NOCAST_ALIAS_SUFFIX "___init"
371
372 /*
373 * Common data to all BTF show operations. Private show functions can add
374 * their own data to a structure containing a struct btf_show and consult it
375 * in the show callback. See btf_type_show() below.
376 *
377 * One challenge with showing nested data is we want to skip 0-valued
378 * data, but in order to figure out whether a nested object is all zeros
379 * we need to walk through it. As a result, we need to make two passes
380 * when handling structs, unions and arrays; the first path simply looks
381 * for nonzero data, while the second actually does the display. The first
382 * pass is signalled by show->state.depth_check being set, and if we
383 * encounter a non-zero value we set show->state.depth_to_show to
384 * the depth at which we encountered it. When we have completed the
385 * first pass, we will know if anything needs to be displayed if
386 * depth_to_show > depth. See btf_[struct,array]_show() for the
387 * implementation of this.
388 *
389 * Another problem is we want to ensure the data for display is safe to
390 * access. To support this, the anonymous "struct {} obj" tracks the data
391 * object and our safe copy of it. We copy portions of the data needed
392 * to the object "copy" buffer, but because its size is limited to
393 * BTF_SHOW_OBJ_COPY_LEN bytes, multiple copies may be required as we
394 * traverse larger objects for display.
395 *
396 * The various data type show functions all start with a call to
397 * btf_show_start_type() which returns a pointer to the safe copy
398 * of the data needed (or if BTF_SHOW_UNSAFE is specified, to the
399 * raw data itself). btf_show_obj_safe() is responsible for
400 * using copy_from_kernel_nofault() to update the safe data if necessary
401 * as we traverse the object's data. skbuff-like semantics are
402 * used:
403 *
404 * - obj.head points to the start of the toplevel object for display
405 * - obj.size is the size of the toplevel object
406 * - obj.data points to the current point in the original data at
407 * which our safe data starts. obj.data will advance as we copy
408 * portions of the data.
409 *
410 * In most cases a single copy will suffice, but larger data structures
411 * such as "struct task_struct" will require many copies. The logic in
412 * btf_show_obj_safe() handles the logic that determines if a new
413 * copy_from_kernel_nofault() is needed.
414 */
415 struct btf_show {
416 u64 flags;
417 void *target; /* target of show operation (seq file, buffer) */
418 __printf(2, 0) void (*showfn)(struct btf_show *show, const char *fmt, va_list args);
419 const struct btf *btf;
420 /* below are used during iteration */
421 struct {
422 u8 depth;
423 u8 depth_to_show;
424 u8 depth_check;
425 u8 array_member:1,
426 array_terminated:1;
427 u16 array_encoding;
428 u32 type_id;
429 int status; /* non-zero for error */
430 const struct btf_type *type;
431 const struct btf_member *member;
432 char name[BTF_SHOW_NAME_SIZE]; /* space for member name/type */
433 } state;
434 struct {
435 u32 size;
436 void *head;
437 void *data;
438 u8 safe[BTF_SHOW_OBJ_SAFE_SIZE];
439 } obj;
440 };
441
442 struct btf_kind_operations {
443 s32 (*check_meta)(struct btf_verifier_env *env,
444 const struct btf_type *t,
445 u32 meta_left);
446 int (*resolve)(struct btf_verifier_env *env,
447 const struct resolve_vertex *v);
448 int (*check_member)(struct btf_verifier_env *env,
449 const struct btf_type *struct_type,
450 const struct btf_member *member,
451 const struct btf_type *member_type);
452 int (*check_kflag_member)(struct btf_verifier_env *env,
453 const struct btf_type *struct_type,
454 const struct btf_member *member,
455 const struct btf_type *member_type);
456 void (*log_details)(struct btf_verifier_env *env,
457 const struct btf_type *t);
458 void (*show)(const struct btf *btf, const struct btf_type *t,
459 u32 type_id, void *data, u8 bits_offsets,
460 struct btf_show *show);
461 };
462
463 static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS];
464 static struct btf_type btf_void;
465
466 static int btf_resolve(struct btf_verifier_env *env,
467 const struct btf_type *t, u32 type_id);
468
469 static int btf_func_check(struct btf_verifier_env *env,
470 const struct btf_type *t);
471
btf_type_is_modifier(const struct btf_type * t)472 static bool btf_type_is_modifier(const struct btf_type *t)
473 {
474 /* Some of them is not strictly a C modifier
475 * but they are grouped into the same bucket
476 * for BTF concern:
477 * A type (t) that refers to another
478 * type through t->type AND its size cannot
479 * be determined without following the t->type.
480 *
481 * ptr does not fall into this bucket
482 * because its size is always sizeof(void *).
483 */
484 switch (BTF_INFO_KIND(t->info)) {
485 case BTF_KIND_TYPEDEF:
486 case BTF_KIND_VOLATILE:
487 case BTF_KIND_CONST:
488 case BTF_KIND_RESTRICT:
489 case BTF_KIND_TYPE_TAG:
490 return true;
491 }
492
493 return false;
494 }
495
btf_type_is_void(const struct btf_type * t)496 bool btf_type_is_void(const struct btf_type *t)
497 {
498 return t == &btf_void;
499 }
500
btf_type_is_fwd(const struct btf_type * t)501 static bool btf_type_is_fwd(const struct btf_type *t)
502 {
503 return BTF_INFO_KIND(t->info) == BTF_KIND_FWD;
504 }
505
btf_type_is_datasec(const struct btf_type * t)506 static bool btf_type_is_datasec(const struct btf_type *t)
507 {
508 return BTF_INFO_KIND(t->info) == BTF_KIND_DATASEC;
509 }
510
btf_type_is_decl_tag(const struct btf_type * t)511 static bool btf_type_is_decl_tag(const struct btf_type *t)
512 {
513 return BTF_INFO_KIND(t->info) == BTF_KIND_DECL_TAG;
514 }
515
btf_type_nosize(const struct btf_type * t)516 static bool btf_type_nosize(const struct btf_type *t)
517 {
518 return btf_type_is_void(t) || btf_type_is_fwd(t) ||
519 btf_type_is_func(t) || btf_type_is_func_proto(t) ||
520 btf_type_is_decl_tag(t);
521 }
522
btf_type_nosize_or_null(const struct btf_type * t)523 static bool btf_type_nosize_or_null(const struct btf_type *t)
524 {
525 return !t || btf_type_nosize(t);
526 }
527
btf_type_is_decl_tag_target(const struct btf_type * t)528 static bool btf_type_is_decl_tag_target(const struct btf_type *t)
529 {
530 return btf_type_is_func(t) || btf_type_is_struct(t) ||
531 btf_type_is_var(t) || btf_type_is_typedef(t);
532 }
533
btf_is_vmlinux(const struct btf * btf)534 bool btf_is_vmlinux(const struct btf *btf)
535 {
536 return btf->kernel_btf && !btf->base_btf;
537 }
538
btf_nr_types(const struct btf * btf)539 u32 btf_nr_types(const struct btf *btf)
540 {
541 u32 total = 0;
542
543 while (btf) {
544 total += btf->nr_types;
545 btf = btf->base_btf;
546 }
547
548 return total;
549 }
550
btf_find_by_name_kind(const struct btf * btf,const char * name,u8 kind)551 s32 btf_find_by_name_kind(const struct btf *btf, const char *name, u8 kind)
552 {
553 const struct btf_type *t;
554 const char *tname;
555 u32 i, total;
556
557 total = btf_nr_types(btf);
558 for (i = 1; i < total; i++) {
559 t = btf_type_by_id(btf, i);
560 if (BTF_INFO_KIND(t->info) != kind)
561 continue;
562
563 tname = btf_name_by_offset(btf, t->name_off);
564 if (!strcmp(tname, name))
565 return i;
566 }
567
568 return -ENOENT;
569 }
570
bpf_find_btf_id(const char * name,u32 kind,struct btf ** btf_p)571 s32 bpf_find_btf_id(const char *name, u32 kind, struct btf **btf_p)
572 {
573 struct btf *btf;
574 s32 ret;
575 int id;
576
577 btf = bpf_get_btf_vmlinux();
578 if (IS_ERR(btf))
579 return PTR_ERR(btf);
580 if (!btf)
581 return -EINVAL;
582
583 ret = btf_find_by_name_kind(btf, name, kind);
584 /* ret is never zero, since btf_find_by_name_kind returns
585 * positive btf_id or negative error.
586 */
587 if (ret > 0) {
588 btf_get(btf);
589 *btf_p = btf;
590 return ret;
591 }
592
593 /* If name is not found in vmlinux's BTF then search in module's BTFs */
594 spin_lock_bh(&btf_idr_lock);
595 idr_for_each_entry(&btf_idr, btf, id) {
596 if (!btf_is_module(btf))
597 continue;
598 /* linear search could be slow hence unlock/lock
599 * the IDR to avoiding holding it for too long
600 */
601 btf_get(btf);
602 spin_unlock_bh(&btf_idr_lock);
603 ret = btf_find_by_name_kind(btf, name, kind);
604 if (ret > 0) {
605 *btf_p = btf;
606 return ret;
607 }
608 btf_put(btf);
609 spin_lock_bh(&btf_idr_lock);
610 }
611 spin_unlock_bh(&btf_idr_lock);
612 return ret;
613 }
614
btf_type_skip_modifiers(const struct btf * btf,u32 id,u32 * res_id)615 const struct btf_type *btf_type_skip_modifiers(const struct btf *btf,
616 u32 id, u32 *res_id)
617 {
618 const struct btf_type *t = btf_type_by_id(btf, id);
619
620 while (btf_type_is_modifier(t)) {
621 id = t->type;
622 t = btf_type_by_id(btf, t->type);
623 }
624
625 if (res_id)
626 *res_id = id;
627
628 return t;
629 }
630
btf_type_resolve_ptr(const struct btf * btf,u32 id,u32 * res_id)631 const struct btf_type *btf_type_resolve_ptr(const struct btf *btf,
632 u32 id, u32 *res_id)
633 {
634 const struct btf_type *t;
635
636 t = btf_type_skip_modifiers(btf, id, NULL);
637 if (!btf_type_is_ptr(t))
638 return NULL;
639
640 return btf_type_skip_modifiers(btf, t->type, res_id);
641 }
642
btf_type_resolve_func_ptr(const struct btf * btf,u32 id,u32 * res_id)643 const struct btf_type *btf_type_resolve_func_ptr(const struct btf *btf,
644 u32 id, u32 *res_id)
645 {
646 const struct btf_type *ptype;
647
648 ptype = btf_type_resolve_ptr(btf, id, res_id);
649 if (ptype && btf_type_is_func_proto(ptype))
650 return ptype;
651
652 return NULL;
653 }
654
655 /* Types that act only as a source, not sink or intermediate
656 * type when resolving.
657 */
btf_type_is_resolve_source_only(const struct btf_type * t)658 static bool btf_type_is_resolve_source_only(const struct btf_type *t)
659 {
660 return btf_type_is_var(t) ||
661 btf_type_is_decl_tag(t) ||
662 btf_type_is_datasec(t);
663 }
664
665 /* What types need to be resolved?
666 *
667 * btf_type_is_modifier() is an obvious one.
668 *
669 * btf_type_is_struct() because its member refers to
670 * another type (through member->type).
671 *
672 * btf_type_is_var() because the variable refers to
673 * another type. btf_type_is_datasec() holds multiple
674 * btf_type_is_var() types that need resolving.
675 *
676 * btf_type_is_array() because its element (array->type)
677 * refers to another type. Array can be thought of a
678 * special case of struct while array just has the same
679 * member-type repeated by array->nelems of times.
680 */
btf_type_needs_resolve(const struct btf_type * t)681 static bool btf_type_needs_resolve(const struct btf_type *t)
682 {
683 return btf_type_is_modifier(t) ||
684 btf_type_is_ptr(t) ||
685 btf_type_is_struct(t) ||
686 btf_type_is_array(t) ||
687 btf_type_is_var(t) ||
688 btf_type_is_func(t) ||
689 btf_type_is_decl_tag(t) ||
690 btf_type_is_datasec(t);
691 }
692
693 /* t->size can be used */
btf_type_has_size(const struct btf_type * t)694 static bool btf_type_has_size(const struct btf_type *t)
695 {
696 switch (BTF_INFO_KIND(t->info)) {
697 case BTF_KIND_INT:
698 case BTF_KIND_STRUCT:
699 case BTF_KIND_UNION:
700 case BTF_KIND_ENUM:
701 case BTF_KIND_DATASEC:
702 case BTF_KIND_FLOAT:
703 case BTF_KIND_ENUM64:
704 return true;
705 }
706
707 return false;
708 }
709
btf_int_encoding_str(u8 encoding)710 static const char *btf_int_encoding_str(u8 encoding)
711 {
712 if (encoding == 0)
713 return "(none)";
714 else if (encoding == BTF_INT_SIGNED)
715 return "SIGNED";
716 else if (encoding == BTF_INT_CHAR)
717 return "CHAR";
718 else if (encoding == BTF_INT_BOOL)
719 return "BOOL";
720 else
721 return "UNKN";
722 }
723
btf_type_int(const struct btf_type * t)724 static u32 btf_type_int(const struct btf_type *t)
725 {
726 return *(u32 *)(t + 1);
727 }
728
btf_type_array(const struct btf_type * t)729 static const struct btf_array *btf_type_array(const struct btf_type *t)
730 {
731 return (const struct btf_array *)(t + 1);
732 }
733
btf_type_enum(const struct btf_type * t)734 static const struct btf_enum *btf_type_enum(const struct btf_type *t)
735 {
736 return (const struct btf_enum *)(t + 1);
737 }
738
btf_type_var(const struct btf_type * t)739 static const struct btf_var *btf_type_var(const struct btf_type *t)
740 {
741 return (const struct btf_var *)(t + 1);
742 }
743
btf_type_decl_tag(const struct btf_type * t)744 static const struct btf_decl_tag *btf_type_decl_tag(const struct btf_type *t)
745 {
746 return (const struct btf_decl_tag *)(t + 1);
747 }
748
btf_type_enum64(const struct btf_type * t)749 static const struct btf_enum64 *btf_type_enum64(const struct btf_type *t)
750 {
751 return (const struct btf_enum64 *)(t + 1);
752 }
753
btf_type_ops(const struct btf_type * t)754 static const struct btf_kind_operations *btf_type_ops(const struct btf_type *t)
755 {
756 return kind_ops[BTF_INFO_KIND(t->info)];
757 }
758
btf_name_offset_valid(const struct btf * btf,u32 offset)759 static bool btf_name_offset_valid(const struct btf *btf, u32 offset)
760 {
761 if (!BTF_STR_OFFSET_VALID(offset))
762 return false;
763
764 while (offset < btf->start_str_off)
765 btf = btf->base_btf;
766
767 offset -= btf->start_str_off;
768 return offset < btf->hdr.str_len;
769 }
770
__btf_name_char_ok(char c,bool first)771 static bool __btf_name_char_ok(char c, bool first)
772 {
773 if ((first ? !isalpha(c) :
774 !isalnum(c)) &&
775 c != '_' &&
776 c != '.')
777 return false;
778 return true;
779 }
780
btf_str_by_offset(const struct btf * btf,u32 offset)781 const char *btf_str_by_offset(const struct btf *btf, u32 offset)
782 {
783 while (offset < btf->start_str_off)
784 btf = btf->base_btf;
785
786 offset -= btf->start_str_off;
787 if (offset < btf->hdr.str_len)
788 return &btf->strings[offset];
789
790 return NULL;
791 }
792
btf_name_valid_identifier(const struct btf * btf,u32 offset)793 static bool btf_name_valid_identifier(const struct btf *btf, u32 offset)
794 {
795 /* offset must be valid */
796 const char *src = btf_str_by_offset(btf, offset);
797 const char *src_limit;
798
799 if (!__btf_name_char_ok(*src, true))
800 return false;
801
802 /* set a limit on identifier length */
803 src_limit = src + KSYM_NAME_LEN;
804 src++;
805 while (*src && src < src_limit) {
806 if (!__btf_name_char_ok(*src, false))
807 return false;
808 src++;
809 }
810
811 return !*src;
812 }
813
814 /* Allow any printable character in DATASEC names */
btf_name_valid_section(const struct btf * btf,u32 offset)815 static bool btf_name_valid_section(const struct btf *btf, u32 offset)
816 {
817 /* offset must be valid */
818 const char *src = btf_str_by_offset(btf, offset);
819 const char *src_limit;
820
821 if (!*src)
822 return false;
823
824 /* set a limit on identifier length */
825 src_limit = src + KSYM_NAME_LEN;
826 while (*src && src < src_limit) {
827 if (!isprint(*src))
828 return false;
829 src++;
830 }
831
832 return !*src;
833 }
834
__btf_name_by_offset(const struct btf * btf,u32 offset)835 static const char *__btf_name_by_offset(const struct btf *btf, u32 offset)
836 {
837 const char *name;
838
839 if (!offset)
840 return "(anon)";
841
842 name = btf_str_by_offset(btf, offset);
843 return name ?: "(invalid-name-offset)";
844 }
845
btf_name_by_offset(const struct btf * btf,u32 offset)846 const char *btf_name_by_offset(const struct btf *btf, u32 offset)
847 {
848 return btf_str_by_offset(btf, offset);
849 }
850
btf_type_by_id(const struct btf * btf,u32 type_id)851 const struct btf_type *btf_type_by_id(const struct btf *btf, u32 type_id)
852 {
853 while (type_id < btf->start_id)
854 btf = btf->base_btf;
855
856 type_id -= btf->start_id;
857 if (type_id >= btf->nr_types)
858 return NULL;
859 return btf->types[type_id];
860 }
861 EXPORT_SYMBOL_GPL(btf_type_by_id);
862
863 /*
864 * Regular int is not a bit field and it must be either
865 * u8/u16/u32/u64 or __int128.
866 */
btf_type_int_is_regular(const struct btf_type * t)867 static bool btf_type_int_is_regular(const struct btf_type *t)
868 {
869 u8 nr_bits, nr_bytes;
870 u32 int_data;
871
872 int_data = btf_type_int(t);
873 nr_bits = BTF_INT_BITS(int_data);
874 nr_bytes = BITS_ROUNDUP_BYTES(nr_bits);
875 if (BITS_PER_BYTE_MASKED(nr_bits) ||
876 BTF_INT_OFFSET(int_data) ||
877 (nr_bytes != sizeof(u8) && nr_bytes != sizeof(u16) &&
878 nr_bytes != sizeof(u32) && nr_bytes != sizeof(u64) &&
879 nr_bytes != (2 * sizeof(u64)))) {
880 return false;
881 }
882
883 return true;
884 }
885
886 /*
887 * Check that given struct member is a regular int with expected
888 * offset and size.
889 */
btf_member_is_reg_int(const struct btf * btf,const struct btf_type * s,const struct btf_member * m,u32 expected_offset,u32 expected_size)890 bool btf_member_is_reg_int(const struct btf *btf, const struct btf_type *s,
891 const struct btf_member *m,
892 u32 expected_offset, u32 expected_size)
893 {
894 const struct btf_type *t;
895 u32 id, int_data;
896 u8 nr_bits;
897
898 id = m->type;
899 t = btf_type_id_size(btf, &id, NULL);
900 if (!t || !btf_type_is_int(t))
901 return false;
902
903 int_data = btf_type_int(t);
904 nr_bits = BTF_INT_BITS(int_data);
905 if (btf_type_kflag(s)) {
906 u32 bitfield_size = BTF_MEMBER_BITFIELD_SIZE(m->offset);
907 u32 bit_offset = BTF_MEMBER_BIT_OFFSET(m->offset);
908
909 /* if kflag set, int should be a regular int and
910 * bit offset should be at byte boundary.
911 */
912 return !bitfield_size &&
913 BITS_ROUNDUP_BYTES(bit_offset) == expected_offset &&
914 BITS_ROUNDUP_BYTES(nr_bits) == expected_size;
915 }
916
917 if (BTF_INT_OFFSET(int_data) ||
918 BITS_PER_BYTE_MASKED(m->offset) ||
919 BITS_ROUNDUP_BYTES(m->offset) != expected_offset ||
920 BITS_PER_BYTE_MASKED(nr_bits) ||
921 BITS_ROUNDUP_BYTES(nr_bits) != expected_size)
922 return false;
923
924 return true;
925 }
926
927 /* Similar to btf_type_skip_modifiers() but does not skip typedefs. */
btf_type_skip_qualifiers(const struct btf * btf,u32 id)928 static const struct btf_type *btf_type_skip_qualifiers(const struct btf *btf,
929 u32 id)
930 {
931 const struct btf_type *t = btf_type_by_id(btf, id);
932
933 while (btf_type_is_modifier(t) &&
934 BTF_INFO_KIND(t->info) != BTF_KIND_TYPEDEF) {
935 t = btf_type_by_id(btf, t->type);
936 }
937
938 return t;
939 }
940
941 #define BTF_SHOW_MAX_ITER 10
942
943 #define BTF_KIND_BIT(kind) (1ULL << kind)
944
945 /*
946 * Populate show->state.name with type name information.
947 * Format of type name is
948 *
949 * [.member_name = ] (type_name)
950 */
btf_show_name(struct btf_show * show)951 static const char *btf_show_name(struct btf_show *show)
952 {
953 /* BTF_MAX_ITER array suffixes "[]" */
954 const char *array_suffixes = "[][][][][][][][][][]";
955 const char *array_suffix = &array_suffixes[strlen(array_suffixes)];
956 /* BTF_MAX_ITER pointer suffixes "*" */
957 const char *ptr_suffixes = "**********";
958 const char *ptr_suffix = &ptr_suffixes[strlen(ptr_suffixes)];
959 const char *name = NULL, *prefix = "", *parens = "";
960 const struct btf_member *m = show->state.member;
961 const struct btf_type *t;
962 const struct btf_array *array;
963 u32 id = show->state.type_id;
964 const char *member = NULL;
965 bool show_member = false;
966 u64 kinds = 0;
967 int i;
968
969 show->state.name[0] = '\0';
970
971 /*
972 * Don't show type name if we're showing an array member;
973 * in that case we show the array type so don't need to repeat
974 * ourselves for each member.
975 */
976 if (show->state.array_member)
977 return "";
978
979 /* Retrieve member name, if any. */
980 if (m) {
981 member = btf_name_by_offset(show->btf, m->name_off);
982 show_member = strlen(member) > 0;
983 id = m->type;
984 }
985
986 /*
987 * Start with type_id, as we have resolved the struct btf_type *
988 * via btf_modifier_show() past the parent typedef to the child
989 * struct, int etc it is defined as. In such cases, the type_id
990 * still represents the starting type while the struct btf_type *
991 * in our show->state points at the resolved type of the typedef.
992 */
993 t = btf_type_by_id(show->btf, id);
994 if (!t)
995 return "";
996
997 /*
998 * The goal here is to build up the right number of pointer and
999 * array suffixes while ensuring the type name for a typedef
1000 * is represented. Along the way we accumulate a list of
1001 * BTF kinds we have encountered, since these will inform later
1002 * display; for example, pointer types will not require an
1003 * opening "{" for struct, we will just display the pointer value.
1004 *
1005 * We also want to accumulate the right number of pointer or array
1006 * indices in the format string while iterating until we get to
1007 * the typedef/pointee/array member target type.
1008 *
1009 * We start by pointing at the end of pointer and array suffix
1010 * strings; as we accumulate pointers and arrays we move the pointer
1011 * or array string backwards so it will show the expected number of
1012 * '*' or '[]' for the type. BTF_SHOW_MAX_ITER of nesting of pointers
1013 * and/or arrays and typedefs are supported as a precaution.
1014 *
1015 * We also want to get typedef name while proceeding to resolve
1016 * type it points to so that we can add parentheses if it is a
1017 * "typedef struct" etc.
1018 */
1019 for (i = 0; i < BTF_SHOW_MAX_ITER; i++) {
1020
1021 switch (BTF_INFO_KIND(t->info)) {
1022 case BTF_KIND_TYPEDEF:
1023 if (!name)
1024 name = btf_name_by_offset(show->btf,
1025 t->name_off);
1026 kinds |= BTF_KIND_BIT(BTF_KIND_TYPEDEF);
1027 id = t->type;
1028 break;
1029 case BTF_KIND_ARRAY:
1030 kinds |= BTF_KIND_BIT(BTF_KIND_ARRAY);
1031 parens = "[";
1032 if (!t)
1033 return "";
1034 array = btf_type_array(t);
1035 if (array_suffix > array_suffixes)
1036 array_suffix -= 2;
1037 id = array->type;
1038 break;
1039 case BTF_KIND_PTR:
1040 kinds |= BTF_KIND_BIT(BTF_KIND_PTR);
1041 if (ptr_suffix > ptr_suffixes)
1042 ptr_suffix -= 1;
1043 id = t->type;
1044 break;
1045 default:
1046 id = 0;
1047 break;
1048 }
1049 if (!id)
1050 break;
1051 t = btf_type_skip_qualifiers(show->btf, id);
1052 }
1053 /* We may not be able to represent this type; bail to be safe */
1054 if (i == BTF_SHOW_MAX_ITER)
1055 return "";
1056
1057 if (!name)
1058 name = btf_name_by_offset(show->btf, t->name_off);
1059
1060 switch (BTF_INFO_KIND(t->info)) {
1061 case BTF_KIND_STRUCT:
1062 case BTF_KIND_UNION:
1063 prefix = BTF_INFO_KIND(t->info) == BTF_KIND_STRUCT ?
1064 "struct" : "union";
1065 /* if it's an array of struct/union, parens is already set */
1066 if (!(kinds & (BTF_KIND_BIT(BTF_KIND_ARRAY))))
1067 parens = "{";
1068 break;
1069 case BTF_KIND_ENUM:
1070 case BTF_KIND_ENUM64:
1071 prefix = "enum";
1072 break;
1073 default:
1074 break;
1075 }
1076
1077 /* pointer does not require parens */
1078 if (kinds & BTF_KIND_BIT(BTF_KIND_PTR))
1079 parens = "";
1080 /* typedef does not require struct/union/enum prefix */
1081 if (kinds & BTF_KIND_BIT(BTF_KIND_TYPEDEF))
1082 prefix = "";
1083
1084 if (!name)
1085 name = "";
1086
1087 /* Even if we don't want type name info, we want parentheses etc */
1088 if (show->flags & BTF_SHOW_NONAME)
1089 snprintf(show->state.name, sizeof(show->state.name), "%s",
1090 parens);
1091 else
1092 snprintf(show->state.name, sizeof(show->state.name),
1093 "%s%s%s(%s%s%s%s%s%s)%s",
1094 /* first 3 strings comprise ".member = " */
1095 show_member ? "." : "",
1096 show_member ? member : "",
1097 show_member ? " = " : "",
1098 /* ...next is our prefix (struct, enum, etc) */
1099 prefix,
1100 strlen(prefix) > 0 && strlen(name) > 0 ? " " : "",
1101 /* ...this is the type name itself */
1102 name,
1103 /* ...suffixed by the appropriate '*', '[]' suffixes */
1104 strlen(ptr_suffix) > 0 ? " " : "", ptr_suffix,
1105 array_suffix, parens);
1106
1107 return show->state.name;
1108 }
1109
__btf_show_indent(struct btf_show * show)1110 static const char *__btf_show_indent(struct btf_show *show)
1111 {
1112 const char *indents = " ";
1113 const char *indent = &indents[strlen(indents)];
1114
1115 if ((indent - show->state.depth) >= indents)
1116 return indent - show->state.depth;
1117 return indents;
1118 }
1119
btf_show_indent(struct btf_show * show)1120 static const char *btf_show_indent(struct btf_show *show)
1121 {
1122 return show->flags & BTF_SHOW_COMPACT ? "" : __btf_show_indent(show);
1123 }
1124
btf_show_newline(struct btf_show * show)1125 static const char *btf_show_newline(struct btf_show *show)
1126 {
1127 return show->flags & BTF_SHOW_COMPACT ? "" : "\n";
1128 }
1129
btf_show_delim(struct btf_show * show)1130 static const char *btf_show_delim(struct btf_show *show)
1131 {
1132 if (show->state.depth == 0)
1133 return "";
1134
1135 if ((show->flags & BTF_SHOW_COMPACT) && show->state.type &&
1136 BTF_INFO_KIND(show->state.type->info) == BTF_KIND_UNION)
1137 return "|";
1138
1139 return ",";
1140 }
1141
btf_show(struct btf_show * show,const char * fmt,...)1142 __printf(2, 3) static void btf_show(struct btf_show *show, const char *fmt, ...)
1143 {
1144 va_list args;
1145
1146 if (!show->state.depth_check) {
1147 va_start(args, fmt);
1148 show->showfn(show, fmt, args);
1149 va_end(args);
1150 }
1151 }
1152
1153 /* Macros are used here as btf_show_type_value[s]() prepends and appends
1154 * format specifiers to the format specifier passed in; these do the work of
1155 * adding indentation, delimiters etc while the caller simply has to specify
1156 * the type value(s) in the format specifier + value(s).
1157 */
1158 #define btf_show_type_value(show, fmt, value) \
1159 do { \
1160 if ((value) != (__typeof__(value))0 || \
1161 (show->flags & BTF_SHOW_ZERO) || \
1162 show->state.depth == 0) { \
1163 btf_show(show, "%s%s" fmt "%s%s", \
1164 btf_show_indent(show), \
1165 btf_show_name(show), \
1166 value, btf_show_delim(show), \
1167 btf_show_newline(show)); \
1168 if (show->state.depth > show->state.depth_to_show) \
1169 show->state.depth_to_show = show->state.depth; \
1170 } \
1171 } while (0)
1172
1173 #define btf_show_type_values(show, fmt, ...) \
1174 do { \
1175 btf_show(show, "%s%s" fmt "%s%s", btf_show_indent(show), \
1176 btf_show_name(show), \
1177 __VA_ARGS__, btf_show_delim(show), \
1178 btf_show_newline(show)); \
1179 if (show->state.depth > show->state.depth_to_show) \
1180 show->state.depth_to_show = show->state.depth; \
1181 } while (0)
1182
1183 /* How much is left to copy to safe buffer after @data? */
btf_show_obj_size_left(struct btf_show * show,void * data)1184 static int btf_show_obj_size_left(struct btf_show *show, void *data)
1185 {
1186 return show->obj.head + show->obj.size - data;
1187 }
1188
1189 /* Is object pointed to by @data of @size already copied to our safe buffer? */
btf_show_obj_is_safe(struct btf_show * show,void * data,int size)1190 static bool btf_show_obj_is_safe(struct btf_show *show, void *data, int size)
1191 {
1192 return data >= show->obj.data &&
1193 (data + size) < (show->obj.data + BTF_SHOW_OBJ_SAFE_SIZE);
1194 }
1195
1196 /*
1197 * If object pointed to by @data of @size falls within our safe buffer, return
1198 * the equivalent pointer to the same safe data. Assumes
1199 * copy_from_kernel_nofault() has already happened and our safe buffer is
1200 * populated.
1201 */
__btf_show_obj_safe(struct btf_show * show,void * data,int size)1202 static void *__btf_show_obj_safe(struct btf_show *show, void *data, int size)
1203 {
1204 if (btf_show_obj_is_safe(show, data, size))
1205 return show->obj.safe + (data - show->obj.data);
1206 return NULL;
1207 }
1208
1209 /*
1210 * Return a safe-to-access version of data pointed to by @data.
1211 * We do this by copying the relevant amount of information
1212 * to the struct btf_show obj.safe buffer using copy_from_kernel_nofault().
1213 *
1214 * If BTF_SHOW_UNSAFE is specified, just return data as-is; no
1215 * safe copy is needed.
1216 *
1217 * Otherwise we need to determine if we have the required amount
1218 * of data (determined by the @data pointer and the size of the
1219 * largest base type we can encounter (represented by
1220 * BTF_SHOW_OBJ_BASE_TYPE_SIZE). Having that much data ensures
1221 * that we will be able to print some of the current object,
1222 * and if more is needed a copy will be triggered.
1223 * Some objects such as structs will not fit into the buffer;
1224 * in such cases additional copies when we iterate over their
1225 * members may be needed.
1226 *
1227 * btf_show_obj_safe() is used to return a safe buffer for
1228 * btf_show_start_type(); this ensures that as we recurse into
1229 * nested types we always have safe data for the given type.
1230 * This approach is somewhat wasteful; it's possible for example
1231 * that when iterating over a large union we'll end up copying the
1232 * same data repeatedly, but the goal is safety not performance.
1233 * We use stack data as opposed to per-CPU buffers because the
1234 * iteration over a type can take some time, and preemption handling
1235 * would greatly complicate use of the safe buffer.
1236 */
btf_show_obj_safe(struct btf_show * show,const struct btf_type * t,void * data)1237 static void *btf_show_obj_safe(struct btf_show *show,
1238 const struct btf_type *t,
1239 void *data)
1240 {
1241 const struct btf_type *rt;
1242 int size_left, size;
1243 void *safe = NULL;
1244
1245 if (show->flags & BTF_SHOW_UNSAFE)
1246 return data;
1247
1248 rt = btf_resolve_size(show->btf, t, &size);
1249 if (IS_ERR(rt)) {
1250 show->state.status = PTR_ERR(rt);
1251 return NULL;
1252 }
1253
1254 /*
1255 * Is this toplevel object? If so, set total object size and
1256 * initialize pointers. Otherwise check if we still fall within
1257 * our safe object data.
1258 */
1259 if (show->state.depth == 0) {
1260 show->obj.size = size;
1261 show->obj.head = data;
1262 } else {
1263 /*
1264 * If the size of the current object is > our remaining
1265 * safe buffer we _may_ need to do a new copy. However
1266 * consider the case of a nested struct; it's size pushes
1267 * us over the safe buffer limit, but showing any individual
1268 * struct members does not. In such cases, we don't need
1269 * to initiate a fresh copy yet; however we definitely need
1270 * at least BTF_SHOW_OBJ_BASE_TYPE_SIZE bytes left
1271 * in our buffer, regardless of the current object size.
1272 * The logic here is that as we resolve types we will
1273 * hit a base type at some point, and we need to be sure
1274 * the next chunk of data is safely available to display
1275 * that type info safely. We cannot rely on the size of
1276 * the current object here because it may be much larger
1277 * than our current buffer (e.g. task_struct is 8k).
1278 * All we want to do here is ensure that we can print the
1279 * next basic type, which we can if either
1280 * - the current type size is within the safe buffer; or
1281 * - at least BTF_SHOW_OBJ_BASE_TYPE_SIZE bytes are left in
1282 * the safe buffer.
1283 */
1284 safe = __btf_show_obj_safe(show, data,
1285 min(size,
1286 BTF_SHOW_OBJ_BASE_TYPE_SIZE));
1287 }
1288
1289 /*
1290 * We need a new copy to our safe object, either because we haven't
1291 * yet copied and are initializing safe data, or because the data
1292 * we want falls outside the boundaries of the safe object.
1293 */
1294 if (!safe) {
1295 size_left = btf_show_obj_size_left(show, data);
1296 if (size_left > BTF_SHOW_OBJ_SAFE_SIZE)
1297 size_left = BTF_SHOW_OBJ_SAFE_SIZE;
1298 show->state.status = copy_from_kernel_nofault(show->obj.safe,
1299 data, size_left);
1300 if (!show->state.status) {
1301 show->obj.data = data;
1302 safe = show->obj.safe;
1303 }
1304 }
1305
1306 return safe;
1307 }
1308
1309 /*
1310 * Set the type we are starting to show and return a safe data pointer
1311 * to be used for showing the associated data.
1312 */
btf_show_start_type(struct btf_show * show,const struct btf_type * t,u32 type_id,void * data)1313 static void *btf_show_start_type(struct btf_show *show,
1314 const struct btf_type *t,
1315 u32 type_id, void *data)
1316 {
1317 show->state.type = t;
1318 show->state.type_id = type_id;
1319 show->state.name[0] = '\0';
1320
1321 return btf_show_obj_safe(show, t, data);
1322 }
1323
btf_show_end_type(struct btf_show * show)1324 static void btf_show_end_type(struct btf_show *show)
1325 {
1326 show->state.type = NULL;
1327 show->state.type_id = 0;
1328 show->state.name[0] = '\0';
1329 }
1330
btf_show_start_aggr_type(struct btf_show * show,const struct btf_type * t,u32 type_id,void * data)1331 static void *btf_show_start_aggr_type(struct btf_show *show,
1332 const struct btf_type *t,
1333 u32 type_id, void *data)
1334 {
1335 void *safe_data = btf_show_start_type(show, t, type_id, data);
1336
1337 if (!safe_data)
1338 return safe_data;
1339
1340 btf_show(show, "%s%s%s", btf_show_indent(show),
1341 btf_show_name(show),
1342 btf_show_newline(show));
1343 show->state.depth++;
1344 return safe_data;
1345 }
1346
btf_show_end_aggr_type(struct btf_show * show,const char * suffix)1347 static void btf_show_end_aggr_type(struct btf_show *show,
1348 const char *suffix)
1349 {
1350 show->state.depth--;
1351 btf_show(show, "%s%s%s%s", btf_show_indent(show), suffix,
1352 btf_show_delim(show), btf_show_newline(show));
1353 btf_show_end_type(show);
1354 }
1355
btf_show_start_member(struct btf_show * show,const struct btf_member * m)1356 static void btf_show_start_member(struct btf_show *show,
1357 const struct btf_member *m)
1358 {
1359 show->state.member = m;
1360 }
1361
btf_show_start_array_member(struct btf_show * show)1362 static void btf_show_start_array_member(struct btf_show *show)
1363 {
1364 show->state.array_member = 1;
1365 btf_show_start_member(show, NULL);
1366 }
1367
btf_show_end_member(struct btf_show * show)1368 static void btf_show_end_member(struct btf_show *show)
1369 {
1370 show->state.member = NULL;
1371 }
1372
btf_show_end_array_member(struct btf_show * show)1373 static void btf_show_end_array_member(struct btf_show *show)
1374 {
1375 show->state.array_member = 0;
1376 btf_show_end_member(show);
1377 }
1378
btf_show_start_array_type(struct btf_show * show,const struct btf_type * t,u32 type_id,u16 array_encoding,void * data)1379 static void *btf_show_start_array_type(struct btf_show *show,
1380 const struct btf_type *t,
1381 u32 type_id,
1382 u16 array_encoding,
1383 void *data)
1384 {
1385 show->state.array_encoding = array_encoding;
1386 show->state.array_terminated = 0;
1387 return btf_show_start_aggr_type(show, t, type_id, data);
1388 }
1389
btf_show_end_array_type(struct btf_show * show)1390 static void btf_show_end_array_type(struct btf_show *show)
1391 {
1392 show->state.array_encoding = 0;
1393 show->state.array_terminated = 0;
1394 btf_show_end_aggr_type(show, "]");
1395 }
1396
btf_show_start_struct_type(struct btf_show * show,const struct btf_type * t,u32 type_id,void * data)1397 static void *btf_show_start_struct_type(struct btf_show *show,
1398 const struct btf_type *t,
1399 u32 type_id,
1400 void *data)
1401 {
1402 return btf_show_start_aggr_type(show, t, type_id, data);
1403 }
1404
btf_show_end_struct_type(struct btf_show * show)1405 static void btf_show_end_struct_type(struct btf_show *show)
1406 {
1407 btf_show_end_aggr_type(show, "}");
1408 }
1409
__btf_verifier_log(struct bpf_verifier_log * log,const char * fmt,...)1410 __printf(2, 3) static void __btf_verifier_log(struct bpf_verifier_log *log,
1411 const char *fmt, ...)
1412 {
1413 va_list args;
1414
1415 va_start(args, fmt);
1416 bpf_verifier_vlog(log, fmt, args);
1417 va_end(args);
1418 }
1419
btf_verifier_log(struct btf_verifier_env * env,const char * fmt,...)1420 __printf(2, 3) static void btf_verifier_log(struct btf_verifier_env *env,
1421 const char *fmt, ...)
1422 {
1423 struct bpf_verifier_log *log = &env->log;
1424 va_list args;
1425
1426 if (!bpf_verifier_log_needed(log))
1427 return;
1428
1429 va_start(args, fmt);
1430 bpf_verifier_vlog(log, fmt, args);
1431 va_end(args);
1432 }
1433
__btf_verifier_log_type(struct btf_verifier_env * env,const struct btf_type * t,bool log_details,const char * fmt,...)1434 __printf(4, 5) static void __btf_verifier_log_type(struct btf_verifier_env *env,
1435 const struct btf_type *t,
1436 bool log_details,
1437 const char *fmt, ...)
1438 {
1439 struct bpf_verifier_log *log = &env->log;
1440 struct btf *btf = env->btf;
1441 va_list args;
1442
1443 if (!bpf_verifier_log_needed(log))
1444 return;
1445
1446 if (log->level == BPF_LOG_KERNEL) {
1447 /* btf verifier prints all types it is processing via
1448 * btf_verifier_log_type(..., fmt = NULL).
1449 * Skip those prints for in-kernel BTF verification.
1450 */
1451 if (!fmt)
1452 return;
1453
1454 /* Skip logging when loading module BTF with mismatches permitted */
1455 if (env->btf->base_btf && IS_ENABLED(CONFIG_MODULE_ALLOW_BTF_MISMATCH))
1456 return;
1457 }
1458
1459 __btf_verifier_log(log, "[%u] %s %s%s",
1460 env->log_type_id,
1461 btf_type_str(t),
1462 __btf_name_by_offset(btf, t->name_off),
1463 log_details ? " " : "");
1464
1465 if (log_details)
1466 btf_type_ops(t)->log_details(env, t);
1467
1468 if (fmt && *fmt) {
1469 __btf_verifier_log(log, " ");
1470 va_start(args, fmt);
1471 bpf_verifier_vlog(log, fmt, args);
1472 va_end(args);
1473 }
1474
1475 __btf_verifier_log(log, "\n");
1476 }
1477
1478 #define btf_verifier_log_type(env, t, ...) \
1479 __btf_verifier_log_type((env), (t), true, __VA_ARGS__)
1480 #define btf_verifier_log_basic(env, t, ...) \
1481 __btf_verifier_log_type((env), (t), false, __VA_ARGS__)
1482
1483 __printf(4, 5)
btf_verifier_log_member(struct btf_verifier_env * env,const struct btf_type * struct_type,const struct btf_member * member,const char * fmt,...)1484 static void btf_verifier_log_member(struct btf_verifier_env *env,
1485 const struct btf_type *struct_type,
1486 const struct btf_member *member,
1487 const char *fmt, ...)
1488 {
1489 struct bpf_verifier_log *log = &env->log;
1490 struct btf *btf = env->btf;
1491 va_list args;
1492
1493 if (!bpf_verifier_log_needed(log))
1494 return;
1495
1496 if (log->level == BPF_LOG_KERNEL) {
1497 if (!fmt)
1498 return;
1499
1500 /* Skip logging when loading module BTF with mismatches permitted */
1501 if (env->btf->base_btf && IS_ENABLED(CONFIG_MODULE_ALLOW_BTF_MISMATCH))
1502 return;
1503 }
1504
1505 /* The CHECK_META phase already did a btf dump.
1506 *
1507 * If member is logged again, it must hit an error in
1508 * parsing this member. It is useful to print out which
1509 * struct this member belongs to.
1510 */
1511 if (env->phase != CHECK_META)
1512 btf_verifier_log_type(env, struct_type, NULL);
1513
1514 if (btf_type_kflag(struct_type))
1515 __btf_verifier_log(log,
1516 "\t%s type_id=%u bitfield_size=%u bits_offset=%u",
1517 __btf_name_by_offset(btf, member->name_off),
1518 member->type,
1519 BTF_MEMBER_BITFIELD_SIZE(member->offset),
1520 BTF_MEMBER_BIT_OFFSET(member->offset));
1521 else
1522 __btf_verifier_log(log, "\t%s type_id=%u bits_offset=%u",
1523 __btf_name_by_offset(btf, member->name_off),
1524 member->type, member->offset);
1525
1526 if (fmt && *fmt) {
1527 __btf_verifier_log(log, " ");
1528 va_start(args, fmt);
1529 bpf_verifier_vlog(log, fmt, args);
1530 va_end(args);
1531 }
1532
1533 __btf_verifier_log(log, "\n");
1534 }
1535
1536 __printf(4, 5)
btf_verifier_log_vsi(struct btf_verifier_env * env,const struct btf_type * datasec_type,const struct btf_var_secinfo * vsi,const char * fmt,...)1537 static void btf_verifier_log_vsi(struct btf_verifier_env *env,
1538 const struct btf_type *datasec_type,
1539 const struct btf_var_secinfo *vsi,
1540 const char *fmt, ...)
1541 {
1542 struct bpf_verifier_log *log = &env->log;
1543 va_list args;
1544
1545 if (!bpf_verifier_log_needed(log))
1546 return;
1547 if (log->level == BPF_LOG_KERNEL && !fmt)
1548 return;
1549 if (env->phase != CHECK_META)
1550 btf_verifier_log_type(env, datasec_type, NULL);
1551
1552 __btf_verifier_log(log, "\t type_id=%u offset=%u size=%u",
1553 vsi->type, vsi->offset, vsi->size);
1554 if (fmt && *fmt) {
1555 __btf_verifier_log(log, " ");
1556 va_start(args, fmt);
1557 bpf_verifier_vlog(log, fmt, args);
1558 va_end(args);
1559 }
1560
1561 __btf_verifier_log(log, "\n");
1562 }
1563
btf_verifier_log_hdr(struct btf_verifier_env * env,u32 btf_data_size)1564 static void btf_verifier_log_hdr(struct btf_verifier_env *env,
1565 u32 btf_data_size)
1566 {
1567 struct bpf_verifier_log *log = &env->log;
1568 const struct btf *btf = env->btf;
1569 const struct btf_header *hdr;
1570
1571 if (!bpf_verifier_log_needed(log))
1572 return;
1573
1574 if (log->level == BPF_LOG_KERNEL)
1575 return;
1576 hdr = &btf->hdr;
1577 __btf_verifier_log(log, "magic: 0x%x\n", hdr->magic);
1578 __btf_verifier_log(log, "version: %u\n", hdr->version);
1579 __btf_verifier_log(log, "flags: 0x%x\n", hdr->flags);
1580 __btf_verifier_log(log, "hdr_len: %u\n", hdr->hdr_len);
1581 __btf_verifier_log(log, "type_off: %u\n", hdr->type_off);
1582 __btf_verifier_log(log, "type_len: %u\n", hdr->type_len);
1583 __btf_verifier_log(log, "str_off: %u\n", hdr->str_off);
1584 __btf_verifier_log(log, "str_len: %u\n", hdr->str_len);
1585 __btf_verifier_log(log, "btf_total_size: %u\n", btf_data_size);
1586 }
1587
btf_add_type(struct btf_verifier_env * env,struct btf_type * t)1588 static int btf_add_type(struct btf_verifier_env *env, struct btf_type *t)
1589 {
1590 struct btf *btf = env->btf;
1591
1592 if (btf->types_size == btf->nr_types) {
1593 /* Expand 'types' array */
1594
1595 struct btf_type **new_types;
1596 u32 expand_by, new_size;
1597
1598 if (btf->start_id + btf->types_size == BTF_MAX_TYPE) {
1599 btf_verifier_log(env, "Exceeded max num of types");
1600 return -E2BIG;
1601 }
1602
1603 expand_by = max_t(u32, btf->types_size >> 2, 16);
1604 new_size = min_t(u32, BTF_MAX_TYPE,
1605 btf->types_size + expand_by);
1606
1607 new_types = kvcalloc(new_size, sizeof(*new_types),
1608 GFP_KERNEL | __GFP_NOWARN);
1609 if (!new_types)
1610 return -ENOMEM;
1611
1612 if (btf->nr_types == 0) {
1613 if (!btf->base_btf) {
1614 /* lazily init VOID type */
1615 new_types[0] = &btf_void;
1616 btf->nr_types++;
1617 }
1618 } else {
1619 memcpy(new_types, btf->types,
1620 sizeof(*btf->types) * btf->nr_types);
1621 }
1622
1623 kvfree(btf->types);
1624 btf->types = new_types;
1625 btf->types_size = new_size;
1626 }
1627
1628 btf->types[btf->nr_types++] = t;
1629
1630 return 0;
1631 }
1632
btf_alloc_id(struct btf * btf)1633 static int btf_alloc_id(struct btf *btf)
1634 {
1635 int id;
1636
1637 idr_preload(GFP_KERNEL);
1638 spin_lock_bh(&btf_idr_lock);
1639 id = idr_alloc_cyclic(&btf_idr, btf, 1, INT_MAX, GFP_ATOMIC);
1640 if (id > 0)
1641 btf->id = id;
1642 spin_unlock_bh(&btf_idr_lock);
1643 idr_preload_end();
1644
1645 if (WARN_ON_ONCE(!id))
1646 return -ENOSPC;
1647
1648 return id > 0 ? 0 : id;
1649 }
1650
btf_free_id(struct btf * btf)1651 static void btf_free_id(struct btf *btf)
1652 {
1653 unsigned long flags;
1654
1655 /*
1656 * In map-in-map, calling map_delete_elem() on outer
1657 * map will call bpf_map_put on the inner map.
1658 * It will then eventually call btf_free_id()
1659 * on the inner map. Some of the map_delete_elem()
1660 * implementation may have irq disabled, so
1661 * we need to use the _irqsave() version instead
1662 * of the _bh() version.
1663 */
1664 spin_lock_irqsave(&btf_idr_lock, flags);
1665 idr_remove(&btf_idr, btf->id);
1666 spin_unlock_irqrestore(&btf_idr_lock, flags);
1667 }
1668
btf_free_kfunc_set_tab(struct btf * btf)1669 static void btf_free_kfunc_set_tab(struct btf *btf)
1670 {
1671 struct btf_kfunc_set_tab *tab = btf->kfunc_set_tab;
1672 int hook;
1673
1674 if (!tab)
1675 return;
1676 for (hook = 0; hook < ARRAY_SIZE(tab->sets); hook++)
1677 kfree(tab->sets[hook]);
1678 kfree(tab);
1679 btf->kfunc_set_tab = NULL;
1680 }
1681
btf_free_dtor_kfunc_tab(struct btf * btf)1682 static void btf_free_dtor_kfunc_tab(struct btf *btf)
1683 {
1684 struct btf_id_dtor_kfunc_tab *tab = btf->dtor_kfunc_tab;
1685
1686 if (!tab)
1687 return;
1688 kfree(tab);
1689 btf->dtor_kfunc_tab = NULL;
1690 }
1691
btf_struct_metas_free(struct btf_struct_metas * tab)1692 static void btf_struct_metas_free(struct btf_struct_metas *tab)
1693 {
1694 int i;
1695
1696 if (!tab)
1697 return;
1698 for (i = 0; i < tab->cnt; i++)
1699 btf_record_free(tab->types[i].record);
1700 kfree(tab);
1701 }
1702
btf_free_struct_meta_tab(struct btf * btf)1703 static void btf_free_struct_meta_tab(struct btf *btf)
1704 {
1705 struct btf_struct_metas *tab = btf->struct_meta_tab;
1706
1707 btf_struct_metas_free(tab);
1708 btf->struct_meta_tab = NULL;
1709 }
1710
btf_free_struct_ops_tab(struct btf * btf)1711 static void btf_free_struct_ops_tab(struct btf *btf)
1712 {
1713 struct btf_struct_ops_tab *tab = btf->struct_ops_tab;
1714 u32 i;
1715
1716 if (!tab)
1717 return;
1718
1719 for (i = 0; i < tab->cnt; i++)
1720 bpf_struct_ops_desc_release(&tab->ops[i]);
1721
1722 kfree(tab);
1723 btf->struct_ops_tab = NULL;
1724 }
1725
btf_free(struct btf * btf)1726 static void btf_free(struct btf *btf)
1727 {
1728 btf_free_struct_meta_tab(btf);
1729 btf_free_dtor_kfunc_tab(btf);
1730 btf_free_kfunc_set_tab(btf);
1731 btf_free_struct_ops_tab(btf);
1732 kvfree(btf->types);
1733 kvfree(btf->resolved_sizes);
1734 kvfree(btf->resolved_ids);
1735 /* vmlinux does not allocate btf->data, it simply points it at
1736 * __start_BTF.
1737 */
1738 if (!btf_is_vmlinux(btf))
1739 kvfree(btf->data);
1740 kvfree(btf->base_id_map);
1741 kfree(btf);
1742 }
1743
btf_free_rcu(struct rcu_head * rcu)1744 static void btf_free_rcu(struct rcu_head *rcu)
1745 {
1746 struct btf *btf = container_of(rcu, struct btf, rcu);
1747
1748 btf_free(btf);
1749 }
1750
btf_get_name(const struct btf * btf)1751 const char *btf_get_name(const struct btf *btf)
1752 {
1753 return btf->name;
1754 }
1755
btf_get(struct btf * btf)1756 void btf_get(struct btf *btf)
1757 {
1758 refcount_inc(&btf->refcnt);
1759 }
1760
btf_put(struct btf * btf)1761 void btf_put(struct btf *btf)
1762 {
1763 if (btf && refcount_dec_and_test(&btf->refcnt)) {
1764 btf_free_id(btf);
1765 call_rcu(&btf->rcu, btf_free_rcu);
1766 }
1767 }
1768
btf_base_btf(const struct btf * btf)1769 struct btf *btf_base_btf(const struct btf *btf)
1770 {
1771 return btf->base_btf;
1772 }
1773
btf_header(const struct btf * btf)1774 const struct btf_header *btf_header(const struct btf *btf)
1775 {
1776 return &btf->hdr;
1777 }
1778
btf_set_base_btf(struct btf * btf,const struct btf * base_btf)1779 void btf_set_base_btf(struct btf *btf, const struct btf *base_btf)
1780 {
1781 btf->base_btf = (struct btf *)base_btf;
1782 btf->start_id = btf_nr_types(base_btf);
1783 btf->start_str_off = base_btf->hdr.str_len;
1784 }
1785
env_resolve_init(struct btf_verifier_env * env)1786 static int env_resolve_init(struct btf_verifier_env *env)
1787 {
1788 struct btf *btf = env->btf;
1789 u32 nr_types = btf->nr_types;
1790 u32 *resolved_sizes = NULL;
1791 u32 *resolved_ids = NULL;
1792 u8 *visit_states = NULL;
1793
1794 resolved_sizes = kvcalloc(nr_types, sizeof(*resolved_sizes),
1795 GFP_KERNEL | __GFP_NOWARN);
1796 if (!resolved_sizes)
1797 goto nomem;
1798
1799 resolved_ids = kvcalloc(nr_types, sizeof(*resolved_ids),
1800 GFP_KERNEL | __GFP_NOWARN);
1801 if (!resolved_ids)
1802 goto nomem;
1803
1804 visit_states = kvcalloc(nr_types, sizeof(*visit_states),
1805 GFP_KERNEL | __GFP_NOWARN);
1806 if (!visit_states)
1807 goto nomem;
1808
1809 btf->resolved_sizes = resolved_sizes;
1810 btf->resolved_ids = resolved_ids;
1811 env->visit_states = visit_states;
1812
1813 return 0;
1814
1815 nomem:
1816 kvfree(resolved_sizes);
1817 kvfree(resolved_ids);
1818 kvfree(visit_states);
1819 return -ENOMEM;
1820 }
1821
btf_verifier_env_free(struct btf_verifier_env * env)1822 static void btf_verifier_env_free(struct btf_verifier_env *env)
1823 {
1824 kvfree(env->visit_states);
1825 kfree(env);
1826 }
1827
env_type_is_resolve_sink(const struct btf_verifier_env * env,const struct btf_type * next_type)1828 static bool env_type_is_resolve_sink(const struct btf_verifier_env *env,
1829 const struct btf_type *next_type)
1830 {
1831 switch (env->resolve_mode) {
1832 case RESOLVE_TBD:
1833 /* int, enum or void is a sink */
1834 return !btf_type_needs_resolve(next_type);
1835 case RESOLVE_PTR:
1836 /* int, enum, void, struct, array, func or func_proto is a sink
1837 * for ptr
1838 */
1839 return !btf_type_is_modifier(next_type) &&
1840 !btf_type_is_ptr(next_type);
1841 case RESOLVE_STRUCT_OR_ARRAY:
1842 /* int, enum, void, ptr, func or func_proto is a sink
1843 * for struct and array
1844 */
1845 return !btf_type_is_modifier(next_type) &&
1846 !btf_type_is_array(next_type) &&
1847 !btf_type_is_struct(next_type);
1848 default:
1849 BUG();
1850 }
1851 }
1852
env_type_is_resolved(const struct btf_verifier_env * env,u32 type_id)1853 static bool env_type_is_resolved(const struct btf_verifier_env *env,
1854 u32 type_id)
1855 {
1856 /* base BTF types should be resolved by now */
1857 if (type_id < env->btf->start_id)
1858 return true;
1859
1860 return env->visit_states[type_id - env->btf->start_id] == RESOLVED;
1861 }
1862
env_stack_push(struct btf_verifier_env * env,const struct btf_type * t,u32 type_id)1863 static int env_stack_push(struct btf_verifier_env *env,
1864 const struct btf_type *t, u32 type_id)
1865 {
1866 const struct btf *btf = env->btf;
1867 struct resolve_vertex *v;
1868
1869 if (env->top_stack == MAX_RESOLVE_DEPTH)
1870 return -E2BIG;
1871
1872 if (type_id < btf->start_id
1873 || env->visit_states[type_id - btf->start_id] != NOT_VISITED)
1874 return -EEXIST;
1875
1876 env->visit_states[type_id - btf->start_id] = VISITED;
1877
1878 v = &env->stack[env->top_stack++];
1879 v->t = t;
1880 v->type_id = type_id;
1881 v->next_member = 0;
1882
1883 if (env->resolve_mode == RESOLVE_TBD) {
1884 if (btf_type_is_ptr(t))
1885 env->resolve_mode = RESOLVE_PTR;
1886 else if (btf_type_is_struct(t) || btf_type_is_array(t))
1887 env->resolve_mode = RESOLVE_STRUCT_OR_ARRAY;
1888 }
1889
1890 return 0;
1891 }
1892
env_stack_set_next_member(struct btf_verifier_env * env,u16 next_member)1893 static void env_stack_set_next_member(struct btf_verifier_env *env,
1894 u16 next_member)
1895 {
1896 env->stack[env->top_stack - 1].next_member = next_member;
1897 }
1898
env_stack_pop_resolved(struct btf_verifier_env * env,u32 resolved_type_id,u32 resolved_size)1899 static void env_stack_pop_resolved(struct btf_verifier_env *env,
1900 u32 resolved_type_id,
1901 u32 resolved_size)
1902 {
1903 u32 type_id = env->stack[--(env->top_stack)].type_id;
1904 struct btf *btf = env->btf;
1905
1906 type_id -= btf->start_id; /* adjust to local type id */
1907 btf->resolved_sizes[type_id] = resolved_size;
1908 btf->resolved_ids[type_id] = resolved_type_id;
1909 env->visit_states[type_id] = RESOLVED;
1910 }
1911
env_stack_peak(struct btf_verifier_env * env)1912 static const struct resolve_vertex *env_stack_peak(struct btf_verifier_env *env)
1913 {
1914 return env->top_stack ? &env->stack[env->top_stack - 1] : NULL;
1915 }
1916
1917 /* Resolve the size of a passed-in "type"
1918 *
1919 * type: is an array (e.g. u32 array[x][y])
1920 * return type: type "u32[x][y]", i.e. BTF_KIND_ARRAY,
1921 * *type_size: (x * y * sizeof(u32)). Hence, *type_size always
1922 * corresponds to the return type.
1923 * *elem_type: u32
1924 * *elem_id: id of u32
1925 * *total_nelems: (x * y). Hence, individual elem size is
1926 * (*type_size / *total_nelems)
1927 * *type_id: id of type if it's changed within the function, 0 if not
1928 *
1929 * type: is not an array (e.g. const struct X)
1930 * return type: type "struct X"
1931 * *type_size: sizeof(struct X)
1932 * *elem_type: same as return type ("struct X")
1933 * *elem_id: 0
1934 * *total_nelems: 1
1935 * *type_id: id of type if it's changed within the function, 0 if not
1936 */
1937 static const struct btf_type *
__btf_resolve_size(const struct btf * btf,const struct btf_type * type,u32 * type_size,const struct btf_type ** elem_type,u32 * elem_id,u32 * total_nelems,u32 * type_id)1938 __btf_resolve_size(const struct btf *btf, const struct btf_type *type,
1939 u32 *type_size, const struct btf_type **elem_type,
1940 u32 *elem_id, u32 *total_nelems, u32 *type_id)
1941 {
1942 const struct btf_type *array_type = NULL;
1943 const struct btf_array *array = NULL;
1944 u32 i, size, nelems = 1, id = 0;
1945
1946 for (i = 0; i < MAX_RESOLVE_DEPTH; i++) {
1947 switch (BTF_INFO_KIND(type->info)) {
1948 /* type->size can be used */
1949 case BTF_KIND_INT:
1950 case BTF_KIND_STRUCT:
1951 case BTF_KIND_UNION:
1952 case BTF_KIND_ENUM:
1953 case BTF_KIND_FLOAT:
1954 case BTF_KIND_ENUM64:
1955 size = type->size;
1956 goto resolved;
1957
1958 case BTF_KIND_PTR:
1959 size = sizeof(void *);
1960 goto resolved;
1961
1962 /* Modifiers */
1963 case BTF_KIND_TYPEDEF:
1964 case BTF_KIND_VOLATILE:
1965 case BTF_KIND_CONST:
1966 case BTF_KIND_RESTRICT:
1967 case BTF_KIND_TYPE_TAG:
1968 id = type->type;
1969 type = btf_type_by_id(btf, type->type);
1970 break;
1971
1972 case BTF_KIND_ARRAY:
1973 if (!array_type)
1974 array_type = type;
1975 array = btf_type_array(type);
1976 if (nelems && array->nelems > U32_MAX / nelems)
1977 return ERR_PTR(-EINVAL);
1978 nelems *= array->nelems;
1979 type = btf_type_by_id(btf, array->type);
1980 break;
1981
1982 /* type without size */
1983 default:
1984 return ERR_PTR(-EINVAL);
1985 }
1986 }
1987
1988 return ERR_PTR(-EINVAL);
1989
1990 resolved:
1991 if (nelems && size > U32_MAX / nelems)
1992 return ERR_PTR(-EINVAL);
1993
1994 *type_size = nelems * size;
1995 if (total_nelems)
1996 *total_nelems = nelems;
1997 if (elem_type)
1998 *elem_type = type;
1999 if (elem_id)
2000 *elem_id = array ? array->type : 0;
2001 if (type_id && id)
2002 *type_id = id;
2003
2004 return array_type ? : type;
2005 }
2006
2007 const struct btf_type *
btf_resolve_size(const struct btf * btf,const struct btf_type * type,u32 * type_size)2008 btf_resolve_size(const struct btf *btf, const struct btf_type *type,
2009 u32 *type_size)
2010 {
2011 return __btf_resolve_size(btf, type, type_size, NULL, NULL, NULL, NULL);
2012 }
2013
btf_resolved_type_id(const struct btf * btf,u32 type_id)2014 static u32 btf_resolved_type_id(const struct btf *btf, u32 type_id)
2015 {
2016 while (type_id < btf->start_id)
2017 btf = btf->base_btf;
2018
2019 return btf->resolved_ids[type_id - btf->start_id];
2020 }
2021
2022 /* The input param "type_id" must point to a needs_resolve type */
btf_type_id_resolve(const struct btf * btf,u32 * type_id)2023 static const struct btf_type *btf_type_id_resolve(const struct btf *btf,
2024 u32 *type_id)
2025 {
2026 *type_id = btf_resolved_type_id(btf, *type_id);
2027 return btf_type_by_id(btf, *type_id);
2028 }
2029
btf_resolved_type_size(const struct btf * btf,u32 type_id)2030 static u32 btf_resolved_type_size(const struct btf *btf, u32 type_id)
2031 {
2032 while (type_id < btf->start_id)
2033 btf = btf->base_btf;
2034
2035 return btf->resolved_sizes[type_id - btf->start_id];
2036 }
2037
btf_type_id_size(const struct btf * btf,u32 * type_id,u32 * ret_size)2038 const struct btf_type *btf_type_id_size(const struct btf *btf,
2039 u32 *type_id, u32 *ret_size)
2040 {
2041 const struct btf_type *size_type;
2042 u32 size_type_id = *type_id;
2043 u32 size = 0;
2044
2045 size_type = btf_type_by_id(btf, size_type_id);
2046 if (btf_type_nosize_or_null(size_type))
2047 return NULL;
2048
2049 if (btf_type_has_size(size_type)) {
2050 size = size_type->size;
2051 } else if (btf_type_is_array(size_type)) {
2052 size = btf_resolved_type_size(btf, size_type_id);
2053 } else if (btf_type_is_ptr(size_type)) {
2054 size = sizeof(void *);
2055 } else {
2056 if (WARN_ON_ONCE(!btf_type_is_modifier(size_type) &&
2057 !btf_type_is_var(size_type)))
2058 return NULL;
2059
2060 size_type_id = btf_resolved_type_id(btf, size_type_id);
2061 size_type = btf_type_by_id(btf, size_type_id);
2062 if (btf_type_nosize_or_null(size_type))
2063 return NULL;
2064 else if (btf_type_has_size(size_type))
2065 size = size_type->size;
2066 else if (btf_type_is_array(size_type))
2067 size = btf_resolved_type_size(btf, size_type_id);
2068 else if (btf_type_is_ptr(size_type))
2069 size = sizeof(void *);
2070 else
2071 return NULL;
2072 }
2073
2074 *type_id = size_type_id;
2075 if (ret_size)
2076 *ret_size = size;
2077
2078 return size_type;
2079 }
2080
btf_df_check_member(struct btf_verifier_env * env,const struct btf_type * struct_type,const struct btf_member * member,const struct btf_type * member_type)2081 static int btf_df_check_member(struct btf_verifier_env *env,
2082 const struct btf_type *struct_type,
2083 const struct btf_member *member,
2084 const struct btf_type *member_type)
2085 {
2086 btf_verifier_log_basic(env, struct_type,
2087 "Unsupported check_member");
2088 return -EINVAL;
2089 }
2090
btf_df_check_kflag_member(struct btf_verifier_env * env,const struct btf_type * struct_type,const struct btf_member * member,const struct btf_type * member_type)2091 static int btf_df_check_kflag_member(struct btf_verifier_env *env,
2092 const struct btf_type *struct_type,
2093 const struct btf_member *member,
2094 const struct btf_type *member_type)
2095 {
2096 btf_verifier_log_basic(env, struct_type,
2097 "Unsupported check_kflag_member");
2098 return -EINVAL;
2099 }
2100
2101 /* Used for ptr, array struct/union and float type members.
2102 * int, enum and modifier types have their specific callback functions.
2103 */
btf_generic_check_kflag_member(struct btf_verifier_env * env,const struct btf_type * struct_type,const struct btf_member * member,const struct btf_type * member_type)2104 static int btf_generic_check_kflag_member(struct btf_verifier_env *env,
2105 const struct btf_type *struct_type,
2106 const struct btf_member *member,
2107 const struct btf_type *member_type)
2108 {
2109 if (BTF_MEMBER_BITFIELD_SIZE(member->offset)) {
2110 btf_verifier_log_member(env, struct_type, member,
2111 "Invalid member bitfield_size");
2112 return -EINVAL;
2113 }
2114
2115 /* bitfield size is 0, so member->offset represents bit offset only.
2116 * It is safe to call non kflag check_member variants.
2117 */
2118 return btf_type_ops(member_type)->check_member(env, struct_type,
2119 member,
2120 member_type);
2121 }
2122
btf_df_resolve(struct btf_verifier_env * env,const struct resolve_vertex * v)2123 static int btf_df_resolve(struct btf_verifier_env *env,
2124 const struct resolve_vertex *v)
2125 {
2126 btf_verifier_log_basic(env, v->t, "Unsupported resolve");
2127 return -EINVAL;
2128 }
2129
btf_df_show(const struct btf * btf,const struct btf_type * t,u32 type_id,void * data,u8 bits_offsets,struct btf_show * show)2130 static void btf_df_show(const struct btf *btf, const struct btf_type *t,
2131 u32 type_id, void *data, u8 bits_offsets,
2132 struct btf_show *show)
2133 {
2134 btf_show(show, "<unsupported kind:%u>", BTF_INFO_KIND(t->info));
2135 }
2136
btf_int_check_member(struct btf_verifier_env * env,const struct btf_type * struct_type,const struct btf_member * member,const struct btf_type * member_type)2137 static int btf_int_check_member(struct btf_verifier_env *env,
2138 const struct btf_type *struct_type,
2139 const struct btf_member *member,
2140 const struct btf_type *member_type)
2141 {
2142 u32 int_data = btf_type_int(member_type);
2143 u32 struct_bits_off = member->offset;
2144 u32 struct_size = struct_type->size;
2145 u32 nr_copy_bits;
2146 u32 bytes_offset;
2147
2148 if (U32_MAX - struct_bits_off < BTF_INT_OFFSET(int_data)) {
2149 btf_verifier_log_member(env, struct_type, member,
2150 "bits_offset exceeds U32_MAX");
2151 return -EINVAL;
2152 }
2153
2154 struct_bits_off += BTF_INT_OFFSET(int_data);
2155 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2156 nr_copy_bits = BTF_INT_BITS(int_data) +
2157 BITS_PER_BYTE_MASKED(struct_bits_off);
2158
2159 if (nr_copy_bits > BITS_PER_U128) {
2160 btf_verifier_log_member(env, struct_type, member,
2161 "nr_copy_bits exceeds 128");
2162 return -EINVAL;
2163 }
2164
2165 if (struct_size < bytes_offset ||
2166 struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) {
2167 btf_verifier_log_member(env, struct_type, member,
2168 "Member exceeds struct_size");
2169 return -EINVAL;
2170 }
2171
2172 return 0;
2173 }
2174
btf_int_check_kflag_member(struct btf_verifier_env * env,const struct btf_type * struct_type,const struct btf_member * member,const struct btf_type * member_type)2175 static int btf_int_check_kflag_member(struct btf_verifier_env *env,
2176 const struct btf_type *struct_type,
2177 const struct btf_member *member,
2178 const struct btf_type *member_type)
2179 {
2180 u32 struct_bits_off, nr_bits, nr_int_data_bits, bytes_offset;
2181 u32 int_data = btf_type_int(member_type);
2182 u32 struct_size = struct_type->size;
2183 u32 nr_copy_bits;
2184
2185 /* a regular int type is required for the kflag int member */
2186 if (!btf_type_int_is_regular(member_type)) {
2187 btf_verifier_log_member(env, struct_type, member,
2188 "Invalid member base type");
2189 return -EINVAL;
2190 }
2191
2192 /* check sanity of bitfield size */
2193 nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset);
2194 struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset);
2195 nr_int_data_bits = BTF_INT_BITS(int_data);
2196 if (!nr_bits) {
2197 /* Not a bitfield member, member offset must be at byte
2198 * boundary.
2199 */
2200 if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2201 btf_verifier_log_member(env, struct_type, member,
2202 "Invalid member offset");
2203 return -EINVAL;
2204 }
2205
2206 nr_bits = nr_int_data_bits;
2207 } else if (nr_bits > nr_int_data_bits) {
2208 btf_verifier_log_member(env, struct_type, member,
2209 "Invalid member bitfield_size");
2210 return -EINVAL;
2211 }
2212
2213 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2214 nr_copy_bits = nr_bits + BITS_PER_BYTE_MASKED(struct_bits_off);
2215 if (nr_copy_bits > BITS_PER_U128) {
2216 btf_verifier_log_member(env, struct_type, member,
2217 "nr_copy_bits exceeds 128");
2218 return -EINVAL;
2219 }
2220
2221 if (struct_size < bytes_offset ||
2222 struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) {
2223 btf_verifier_log_member(env, struct_type, member,
2224 "Member exceeds struct_size");
2225 return -EINVAL;
2226 }
2227
2228 return 0;
2229 }
2230
btf_int_check_meta(struct btf_verifier_env * env,const struct btf_type * t,u32 meta_left)2231 static s32 btf_int_check_meta(struct btf_verifier_env *env,
2232 const struct btf_type *t,
2233 u32 meta_left)
2234 {
2235 u32 int_data, nr_bits, meta_needed = sizeof(int_data);
2236 u16 encoding;
2237
2238 if (meta_left < meta_needed) {
2239 btf_verifier_log_basic(env, t,
2240 "meta_left:%u meta_needed:%u",
2241 meta_left, meta_needed);
2242 return -EINVAL;
2243 }
2244
2245 if (btf_type_vlen(t)) {
2246 btf_verifier_log_type(env, t, "vlen != 0");
2247 return -EINVAL;
2248 }
2249
2250 if (btf_type_kflag(t)) {
2251 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2252 return -EINVAL;
2253 }
2254
2255 int_data = btf_type_int(t);
2256 if (int_data & ~BTF_INT_MASK) {
2257 btf_verifier_log_basic(env, t, "Invalid int_data:%x",
2258 int_data);
2259 return -EINVAL;
2260 }
2261
2262 nr_bits = BTF_INT_BITS(int_data) + BTF_INT_OFFSET(int_data);
2263
2264 if (nr_bits > BITS_PER_U128) {
2265 btf_verifier_log_type(env, t, "nr_bits exceeds %zu",
2266 BITS_PER_U128);
2267 return -EINVAL;
2268 }
2269
2270 if (BITS_ROUNDUP_BYTES(nr_bits) > t->size) {
2271 btf_verifier_log_type(env, t, "nr_bits exceeds type_size");
2272 return -EINVAL;
2273 }
2274
2275 /*
2276 * Only one of the encoding bits is allowed and it
2277 * should be sufficient for the pretty print purpose (i.e. decoding).
2278 * Multiple bits can be allowed later if it is found
2279 * to be insufficient.
2280 */
2281 encoding = BTF_INT_ENCODING(int_data);
2282 if (encoding &&
2283 encoding != BTF_INT_SIGNED &&
2284 encoding != BTF_INT_CHAR &&
2285 encoding != BTF_INT_BOOL) {
2286 btf_verifier_log_type(env, t, "Unsupported encoding");
2287 return -ENOTSUPP;
2288 }
2289
2290 btf_verifier_log_type(env, t, NULL);
2291
2292 return meta_needed;
2293 }
2294
btf_int_log(struct btf_verifier_env * env,const struct btf_type * t)2295 static void btf_int_log(struct btf_verifier_env *env,
2296 const struct btf_type *t)
2297 {
2298 int int_data = btf_type_int(t);
2299
2300 btf_verifier_log(env,
2301 "size=%u bits_offset=%u nr_bits=%u encoding=%s",
2302 t->size, BTF_INT_OFFSET(int_data),
2303 BTF_INT_BITS(int_data),
2304 btf_int_encoding_str(BTF_INT_ENCODING(int_data)));
2305 }
2306
btf_int128_print(struct btf_show * show,void * data)2307 static void btf_int128_print(struct btf_show *show, void *data)
2308 {
2309 /* data points to a __int128 number.
2310 * Suppose
2311 * int128_num = *(__int128 *)data;
2312 * The below formulas shows what upper_num and lower_num represents:
2313 * upper_num = int128_num >> 64;
2314 * lower_num = int128_num & 0xffffffffFFFFFFFFULL;
2315 */
2316 u64 upper_num, lower_num;
2317
2318 #ifdef __BIG_ENDIAN_BITFIELD
2319 upper_num = *(u64 *)data;
2320 lower_num = *(u64 *)(data + 8);
2321 #else
2322 upper_num = *(u64 *)(data + 8);
2323 lower_num = *(u64 *)data;
2324 #endif
2325 if (upper_num == 0)
2326 btf_show_type_value(show, "0x%llx", lower_num);
2327 else
2328 btf_show_type_values(show, "0x%llx%016llx", upper_num,
2329 lower_num);
2330 }
2331
btf_int128_shift(u64 * print_num,u16 left_shift_bits,u16 right_shift_bits)2332 static void btf_int128_shift(u64 *print_num, u16 left_shift_bits,
2333 u16 right_shift_bits)
2334 {
2335 u64 upper_num, lower_num;
2336
2337 #ifdef __BIG_ENDIAN_BITFIELD
2338 upper_num = print_num[0];
2339 lower_num = print_num[1];
2340 #else
2341 upper_num = print_num[1];
2342 lower_num = print_num[0];
2343 #endif
2344
2345 /* shake out un-needed bits by shift/or operations */
2346 if (left_shift_bits >= 64) {
2347 upper_num = lower_num << (left_shift_bits - 64);
2348 lower_num = 0;
2349 } else {
2350 upper_num = (upper_num << left_shift_bits) |
2351 (lower_num >> (64 - left_shift_bits));
2352 lower_num = lower_num << left_shift_bits;
2353 }
2354
2355 if (right_shift_bits >= 64) {
2356 lower_num = upper_num >> (right_shift_bits - 64);
2357 upper_num = 0;
2358 } else {
2359 lower_num = (lower_num >> right_shift_bits) |
2360 (upper_num << (64 - right_shift_bits));
2361 upper_num = upper_num >> right_shift_bits;
2362 }
2363
2364 #ifdef __BIG_ENDIAN_BITFIELD
2365 print_num[0] = upper_num;
2366 print_num[1] = lower_num;
2367 #else
2368 print_num[0] = lower_num;
2369 print_num[1] = upper_num;
2370 #endif
2371 }
2372
btf_bitfield_show(void * data,u8 bits_offset,u8 nr_bits,struct btf_show * show)2373 static void btf_bitfield_show(void *data, u8 bits_offset,
2374 u8 nr_bits, struct btf_show *show)
2375 {
2376 u16 left_shift_bits, right_shift_bits;
2377 u8 nr_copy_bytes;
2378 u8 nr_copy_bits;
2379 u64 print_num[2] = {};
2380
2381 nr_copy_bits = nr_bits + bits_offset;
2382 nr_copy_bytes = BITS_ROUNDUP_BYTES(nr_copy_bits);
2383
2384 memcpy(print_num, data, nr_copy_bytes);
2385
2386 #ifdef __BIG_ENDIAN_BITFIELD
2387 left_shift_bits = bits_offset;
2388 #else
2389 left_shift_bits = BITS_PER_U128 - nr_copy_bits;
2390 #endif
2391 right_shift_bits = BITS_PER_U128 - nr_bits;
2392
2393 btf_int128_shift(print_num, left_shift_bits, right_shift_bits);
2394 btf_int128_print(show, print_num);
2395 }
2396
2397
btf_int_bits_show(const struct btf * btf,const struct btf_type * t,void * data,u8 bits_offset,struct btf_show * show)2398 static void btf_int_bits_show(const struct btf *btf,
2399 const struct btf_type *t,
2400 void *data, u8 bits_offset,
2401 struct btf_show *show)
2402 {
2403 u32 int_data = btf_type_int(t);
2404 u8 nr_bits = BTF_INT_BITS(int_data);
2405 u8 total_bits_offset;
2406
2407 /*
2408 * bits_offset is at most 7.
2409 * BTF_INT_OFFSET() cannot exceed 128 bits.
2410 */
2411 total_bits_offset = bits_offset + BTF_INT_OFFSET(int_data);
2412 data += BITS_ROUNDDOWN_BYTES(total_bits_offset);
2413 bits_offset = BITS_PER_BYTE_MASKED(total_bits_offset);
2414 btf_bitfield_show(data, bits_offset, nr_bits, show);
2415 }
2416
btf_int_show(const struct btf * btf,const struct btf_type * t,u32 type_id,void * data,u8 bits_offset,struct btf_show * show)2417 static void btf_int_show(const struct btf *btf, const struct btf_type *t,
2418 u32 type_id, void *data, u8 bits_offset,
2419 struct btf_show *show)
2420 {
2421 u32 int_data = btf_type_int(t);
2422 u8 encoding = BTF_INT_ENCODING(int_data);
2423 bool sign = encoding & BTF_INT_SIGNED;
2424 u8 nr_bits = BTF_INT_BITS(int_data);
2425 void *safe_data;
2426
2427 safe_data = btf_show_start_type(show, t, type_id, data);
2428 if (!safe_data)
2429 return;
2430
2431 if (bits_offset || BTF_INT_OFFSET(int_data) ||
2432 BITS_PER_BYTE_MASKED(nr_bits)) {
2433 btf_int_bits_show(btf, t, safe_data, bits_offset, show);
2434 goto out;
2435 }
2436
2437 switch (nr_bits) {
2438 case 128:
2439 btf_int128_print(show, safe_data);
2440 break;
2441 case 64:
2442 if (sign)
2443 btf_show_type_value(show, "%lld", *(s64 *)safe_data);
2444 else
2445 btf_show_type_value(show, "%llu", *(u64 *)safe_data);
2446 break;
2447 case 32:
2448 if (sign)
2449 btf_show_type_value(show, "%d", *(s32 *)safe_data);
2450 else
2451 btf_show_type_value(show, "%u", *(u32 *)safe_data);
2452 break;
2453 case 16:
2454 if (sign)
2455 btf_show_type_value(show, "%d", *(s16 *)safe_data);
2456 else
2457 btf_show_type_value(show, "%u", *(u16 *)safe_data);
2458 break;
2459 case 8:
2460 if (show->state.array_encoding == BTF_INT_CHAR) {
2461 /* check for null terminator */
2462 if (show->state.array_terminated)
2463 break;
2464 if (*(char *)data == '\0') {
2465 show->state.array_terminated = 1;
2466 break;
2467 }
2468 if (isprint(*(char *)data)) {
2469 btf_show_type_value(show, "'%c'",
2470 *(char *)safe_data);
2471 break;
2472 }
2473 }
2474 if (sign)
2475 btf_show_type_value(show, "%d", *(s8 *)safe_data);
2476 else
2477 btf_show_type_value(show, "%u", *(u8 *)safe_data);
2478 break;
2479 default:
2480 btf_int_bits_show(btf, t, safe_data, bits_offset, show);
2481 break;
2482 }
2483 out:
2484 btf_show_end_type(show);
2485 }
2486
2487 static const struct btf_kind_operations int_ops = {
2488 .check_meta = btf_int_check_meta,
2489 .resolve = btf_df_resolve,
2490 .check_member = btf_int_check_member,
2491 .check_kflag_member = btf_int_check_kflag_member,
2492 .log_details = btf_int_log,
2493 .show = btf_int_show,
2494 };
2495
btf_modifier_check_member(struct btf_verifier_env * env,const struct btf_type * struct_type,const struct btf_member * member,const struct btf_type * member_type)2496 static int btf_modifier_check_member(struct btf_verifier_env *env,
2497 const struct btf_type *struct_type,
2498 const struct btf_member *member,
2499 const struct btf_type *member_type)
2500 {
2501 const struct btf_type *resolved_type;
2502 u32 resolved_type_id = member->type;
2503 struct btf_member resolved_member;
2504 struct btf *btf = env->btf;
2505
2506 resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL);
2507 if (!resolved_type) {
2508 btf_verifier_log_member(env, struct_type, member,
2509 "Invalid member");
2510 return -EINVAL;
2511 }
2512
2513 resolved_member = *member;
2514 resolved_member.type = resolved_type_id;
2515
2516 return btf_type_ops(resolved_type)->check_member(env, struct_type,
2517 &resolved_member,
2518 resolved_type);
2519 }
2520
btf_modifier_check_kflag_member(struct btf_verifier_env * env,const struct btf_type * struct_type,const struct btf_member * member,const struct btf_type * member_type)2521 static int btf_modifier_check_kflag_member(struct btf_verifier_env *env,
2522 const struct btf_type *struct_type,
2523 const struct btf_member *member,
2524 const struct btf_type *member_type)
2525 {
2526 const struct btf_type *resolved_type;
2527 u32 resolved_type_id = member->type;
2528 struct btf_member resolved_member;
2529 struct btf *btf = env->btf;
2530
2531 resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL);
2532 if (!resolved_type) {
2533 btf_verifier_log_member(env, struct_type, member,
2534 "Invalid member");
2535 return -EINVAL;
2536 }
2537
2538 resolved_member = *member;
2539 resolved_member.type = resolved_type_id;
2540
2541 return btf_type_ops(resolved_type)->check_kflag_member(env, struct_type,
2542 &resolved_member,
2543 resolved_type);
2544 }
2545
btf_ptr_check_member(struct btf_verifier_env * env,const struct btf_type * struct_type,const struct btf_member * member,const struct btf_type * member_type)2546 static int btf_ptr_check_member(struct btf_verifier_env *env,
2547 const struct btf_type *struct_type,
2548 const struct btf_member *member,
2549 const struct btf_type *member_type)
2550 {
2551 u32 struct_size, struct_bits_off, bytes_offset;
2552
2553 struct_size = struct_type->size;
2554 struct_bits_off = member->offset;
2555 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2556
2557 if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2558 btf_verifier_log_member(env, struct_type, member,
2559 "Member is not byte aligned");
2560 return -EINVAL;
2561 }
2562
2563 if (struct_size - bytes_offset < sizeof(void *)) {
2564 btf_verifier_log_member(env, struct_type, member,
2565 "Member exceeds struct_size");
2566 return -EINVAL;
2567 }
2568
2569 return 0;
2570 }
2571
btf_ref_type_check_meta(struct btf_verifier_env * env,const struct btf_type * t,u32 meta_left)2572 static int btf_ref_type_check_meta(struct btf_verifier_env *env,
2573 const struct btf_type *t,
2574 u32 meta_left)
2575 {
2576 const char *value;
2577
2578 if (btf_type_vlen(t)) {
2579 btf_verifier_log_type(env, t, "vlen != 0");
2580 return -EINVAL;
2581 }
2582
2583 if (btf_type_kflag(t)) {
2584 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2585 return -EINVAL;
2586 }
2587
2588 if (!BTF_TYPE_ID_VALID(t->type)) {
2589 btf_verifier_log_type(env, t, "Invalid type_id");
2590 return -EINVAL;
2591 }
2592
2593 /* typedef/type_tag type must have a valid name, and other ref types,
2594 * volatile, const, restrict, should have a null name.
2595 */
2596 if (BTF_INFO_KIND(t->info) == BTF_KIND_TYPEDEF) {
2597 if (!t->name_off ||
2598 !btf_name_valid_identifier(env->btf, t->name_off)) {
2599 btf_verifier_log_type(env, t, "Invalid name");
2600 return -EINVAL;
2601 }
2602 } else if (BTF_INFO_KIND(t->info) == BTF_KIND_TYPE_TAG) {
2603 value = btf_name_by_offset(env->btf, t->name_off);
2604 if (!value || !value[0]) {
2605 btf_verifier_log_type(env, t, "Invalid name");
2606 return -EINVAL;
2607 }
2608 } else {
2609 if (t->name_off) {
2610 btf_verifier_log_type(env, t, "Invalid name");
2611 return -EINVAL;
2612 }
2613 }
2614
2615 btf_verifier_log_type(env, t, NULL);
2616
2617 return 0;
2618 }
2619
btf_modifier_resolve(struct btf_verifier_env * env,const struct resolve_vertex * v)2620 static int btf_modifier_resolve(struct btf_verifier_env *env,
2621 const struct resolve_vertex *v)
2622 {
2623 const struct btf_type *t = v->t;
2624 const struct btf_type *next_type;
2625 u32 next_type_id = t->type;
2626 struct btf *btf = env->btf;
2627
2628 next_type = btf_type_by_id(btf, next_type_id);
2629 if (!next_type || btf_type_is_resolve_source_only(next_type)) {
2630 btf_verifier_log_type(env, v->t, "Invalid type_id");
2631 return -EINVAL;
2632 }
2633
2634 if (!env_type_is_resolve_sink(env, next_type) &&
2635 !env_type_is_resolved(env, next_type_id))
2636 return env_stack_push(env, next_type, next_type_id);
2637
2638 /* Figure out the resolved next_type_id with size.
2639 * They will be stored in the current modifier's
2640 * resolved_ids and resolved_sizes such that it can
2641 * save us a few type-following when we use it later (e.g. in
2642 * pretty print).
2643 */
2644 if (!btf_type_id_size(btf, &next_type_id, NULL)) {
2645 if (env_type_is_resolved(env, next_type_id))
2646 next_type = btf_type_id_resolve(btf, &next_type_id);
2647
2648 /* "typedef void new_void", "const void"...etc */
2649 if (!btf_type_is_void(next_type) &&
2650 !btf_type_is_fwd(next_type) &&
2651 !btf_type_is_func_proto(next_type)) {
2652 btf_verifier_log_type(env, v->t, "Invalid type_id");
2653 return -EINVAL;
2654 }
2655 }
2656
2657 env_stack_pop_resolved(env, next_type_id, 0);
2658
2659 return 0;
2660 }
2661
btf_var_resolve(struct btf_verifier_env * env,const struct resolve_vertex * v)2662 static int btf_var_resolve(struct btf_verifier_env *env,
2663 const struct resolve_vertex *v)
2664 {
2665 const struct btf_type *next_type;
2666 const struct btf_type *t = v->t;
2667 u32 next_type_id = t->type;
2668 struct btf *btf = env->btf;
2669
2670 next_type = btf_type_by_id(btf, next_type_id);
2671 if (!next_type || btf_type_is_resolve_source_only(next_type)) {
2672 btf_verifier_log_type(env, v->t, "Invalid type_id");
2673 return -EINVAL;
2674 }
2675
2676 if (!env_type_is_resolve_sink(env, next_type) &&
2677 !env_type_is_resolved(env, next_type_id))
2678 return env_stack_push(env, next_type, next_type_id);
2679
2680 if (btf_type_is_modifier(next_type)) {
2681 const struct btf_type *resolved_type;
2682 u32 resolved_type_id;
2683
2684 resolved_type_id = next_type_id;
2685 resolved_type = btf_type_id_resolve(btf, &resolved_type_id);
2686
2687 if (btf_type_is_ptr(resolved_type) &&
2688 !env_type_is_resolve_sink(env, resolved_type) &&
2689 !env_type_is_resolved(env, resolved_type_id))
2690 return env_stack_push(env, resolved_type,
2691 resolved_type_id);
2692 }
2693
2694 /* We must resolve to something concrete at this point, no
2695 * forward types or similar that would resolve to size of
2696 * zero is allowed.
2697 */
2698 if (!btf_type_id_size(btf, &next_type_id, NULL)) {
2699 btf_verifier_log_type(env, v->t, "Invalid type_id");
2700 return -EINVAL;
2701 }
2702
2703 env_stack_pop_resolved(env, next_type_id, 0);
2704
2705 return 0;
2706 }
2707
btf_ptr_resolve(struct btf_verifier_env * env,const struct resolve_vertex * v)2708 static int btf_ptr_resolve(struct btf_verifier_env *env,
2709 const struct resolve_vertex *v)
2710 {
2711 const struct btf_type *next_type;
2712 const struct btf_type *t = v->t;
2713 u32 next_type_id = t->type;
2714 struct btf *btf = env->btf;
2715
2716 next_type = btf_type_by_id(btf, next_type_id);
2717 if (!next_type || btf_type_is_resolve_source_only(next_type)) {
2718 btf_verifier_log_type(env, v->t, "Invalid type_id");
2719 return -EINVAL;
2720 }
2721
2722 if (!env_type_is_resolve_sink(env, next_type) &&
2723 !env_type_is_resolved(env, next_type_id))
2724 return env_stack_push(env, next_type, next_type_id);
2725
2726 /* If the modifier was RESOLVED during RESOLVE_STRUCT_OR_ARRAY,
2727 * the modifier may have stopped resolving when it was resolved
2728 * to a ptr (last-resolved-ptr).
2729 *
2730 * We now need to continue from the last-resolved-ptr to
2731 * ensure the last-resolved-ptr will not referring back to
2732 * the current ptr (t).
2733 */
2734 if (btf_type_is_modifier(next_type)) {
2735 const struct btf_type *resolved_type;
2736 u32 resolved_type_id;
2737
2738 resolved_type_id = next_type_id;
2739 resolved_type = btf_type_id_resolve(btf, &resolved_type_id);
2740
2741 if (btf_type_is_ptr(resolved_type) &&
2742 !env_type_is_resolve_sink(env, resolved_type) &&
2743 !env_type_is_resolved(env, resolved_type_id))
2744 return env_stack_push(env, resolved_type,
2745 resolved_type_id);
2746 }
2747
2748 if (!btf_type_id_size(btf, &next_type_id, NULL)) {
2749 if (env_type_is_resolved(env, next_type_id))
2750 next_type = btf_type_id_resolve(btf, &next_type_id);
2751
2752 if (!btf_type_is_void(next_type) &&
2753 !btf_type_is_fwd(next_type) &&
2754 !btf_type_is_func_proto(next_type)) {
2755 btf_verifier_log_type(env, v->t, "Invalid type_id");
2756 return -EINVAL;
2757 }
2758 }
2759
2760 env_stack_pop_resolved(env, next_type_id, 0);
2761
2762 return 0;
2763 }
2764
btf_modifier_show(const struct btf * btf,const struct btf_type * t,u32 type_id,void * data,u8 bits_offset,struct btf_show * show)2765 static void btf_modifier_show(const struct btf *btf,
2766 const struct btf_type *t,
2767 u32 type_id, void *data,
2768 u8 bits_offset, struct btf_show *show)
2769 {
2770 if (btf->resolved_ids)
2771 t = btf_type_id_resolve(btf, &type_id);
2772 else
2773 t = btf_type_skip_modifiers(btf, type_id, NULL);
2774
2775 btf_type_ops(t)->show(btf, t, type_id, data, bits_offset, show);
2776 }
2777
btf_var_show(const struct btf * btf,const struct btf_type * t,u32 type_id,void * data,u8 bits_offset,struct btf_show * show)2778 static void btf_var_show(const struct btf *btf, const struct btf_type *t,
2779 u32 type_id, void *data, u8 bits_offset,
2780 struct btf_show *show)
2781 {
2782 t = btf_type_id_resolve(btf, &type_id);
2783
2784 btf_type_ops(t)->show(btf, t, type_id, data, bits_offset, show);
2785 }
2786
btf_ptr_show(const struct btf * btf,const struct btf_type * t,u32 type_id,void * data,u8 bits_offset,struct btf_show * show)2787 static void btf_ptr_show(const struct btf *btf, const struct btf_type *t,
2788 u32 type_id, void *data, u8 bits_offset,
2789 struct btf_show *show)
2790 {
2791 void *safe_data;
2792
2793 safe_data = btf_show_start_type(show, t, type_id, data);
2794 if (!safe_data)
2795 return;
2796
2797 /* It is a hashed value unless BTF_SHOW_PTR_RAW is specified */
2798 if (show->flags & BTF_SHOW_PTR_RAW)
2799 btf_show_type_value(show, "0x%px", *(void **)safe_data);
2800 else
2801 btf_show_type_value(show, "0x%p", *(void **)safe_data);
2802 btf_show_end_type(show);
2803 }
2804
btf_ref_type_log(struct btf_verifier_env * env,const struct btf_type * t)2805 static void btf_ref_type_log(struct btf_verifier_env *env,
2806 const struct btf_type *t)
2807 {
2808 btf_verifier_log(env, "type_id=%u", t->type);
2809 }
2810
2811 static const struct btf_kind_operations modifier_ops = {
2812 .check_meta = btf_ref_type_check_meta,
2813 .resolve = btf_modifier_resolve,
2814 .check_member = btf_modifier_check_member,
2815 .check_kflag_member = btf_modifier_check_kflag_member,
2816 .log_details = btf_ref_type_log,
2817 .show = btf_modifier_show,
2818 };
2819
2820 static const struct btf_kind_operations ptr_ops = {
2821 .check_meta = btf_ref_type_check_meta,
2822 .resolve = btf_ptr_resolve,
2823 .check_member = btf_ptr_check_member,
2824 .check_kflag_member = btf_generic_check_kflag_member,
2825 .log_details = btf_ref_type_log,
2826 .show = btf_ptr_show,
2827 };
2828
btf_fwd_check_meta(struct btf_verifier_env * env,const struct btf_type * t,u32 meta_left)2829 static s32 btf_fwd_check_meta(struct btf_verifier_env *env,
2830 const struct btf_type *t,
2831 u32 meta_left)
2832 {
2833 if (btf_type_vlen(t)) {
2834 btf_verifier_log_type(env, t, "vlen != 0");
2835 return -EINVAL;
2836 }
2837
2838 if (t->type) {
2839 btf_verifier_log_type(env, t, "type != 0");
2840 return -EINVAL;
2841 }
2842
2843 /* fwd type must have a valid name */
2844 if (!t->name_off ||
2845 !btf_name_valid_identifier(env->btf, t->name_off)) {
2846 btf_verifier_log_type(env, t, "Invalid name");
2847 return -EINVAL;
2848 }
2849
2850 btf_verifier_log_type(env, t, NULL);
2851
2852 return 0;
2853 }
2854
btf_fwd_type_log(struct btf_verifier_env * env,const struct btf_type * t)2855 static void btf_fwd_type_log(struct btf_verifier_env *env,
2856 const struct btf_type *t)
2857 {
2858 btf_verifier_log(env, "%s", btf_type_kflag(t) ? "union" : "struct");
2859 }
2860
2861 static const struct btf_kind_operations fwd_ops = {
2862 .check_meta = btf_fwd_check_meta,
2863 .resolve = btf_df_resolve,
2864 .check_member = btf_df_check_member,
2865 .check_kflag_member = btf_df_check_kflag_member,
2866 .log_details = btf_fwd_type_log,
2867 .show = btf_df_show,
2868 };
2869
btf_array_check_member(struct btf_verifier_env * env,const struct btf_type * struct_type,const struct btf_member * member,const struct btf_type * member_type)2870 static int btf_array_check_member(struct btf_verifier_env *env,
2871 const struct btf_type *struct_type,
2872 const struct btf_member *member,
2873 const struct btf_type *member_type)
2874 {
2875 u32 struct_bits_off = member->offset;
2876 u32 struct_size, bytes_offset;
2877 u32 array_type_id, array_size;
2878 struct btf *btf = env->btf;
2879
2880 if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2881 btf_verifier_log_member(env, struct_type, member,
2882 "Member is not byte aligned");
2883 return -EINVAL;
2884 }
2885
2886 array_type_id = member->type;
2887 btf_type_id_size(btf, &array_type_id, &array_size);
2888 struct_size = struct_type->size;
2889 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2890 if (struct_size - bytes_offset < array_size) {
2891 btf_verifier_log_member(env, struct_type, member,
2892 "Member exceeds struct_size");
2893 return -EINVAL;
2894 }
2895
2896 return 0;
2897 }
2898
btf_array_check_meta(struct btf_verifier_env * env,const struct btf_type * t,u32 meta_left)2899 static s32 btf_array_check_meta(struct btf_verifier_env *env,
2900 const struct btf_type *t,
2901 u32 meta_left)
2902 {
2903 const struct btf_array *array = btf_type_array(t);
2904 u32 meta_needed = sizeof(*array);
2905
2906 if (meta_left < meta_needed) {
2907 btf_verifier_log_basic(env, t,
2908 "meta_left:%u meta_needed:%u",
2909 meta_left, meta_needed);
2910 return -EINVAL;
2911 }
2912
2913 /* array type should not have a name */
2914 if (t->name_off) {
2915 btf_verifier_log_type(env, t, "Invalid name");
2916 return -EINVAL;
2917 }
2918
2919 if (btf_type_vlen(t)) {
2920 btf_verifier_log_type(env, t, "vlen != 0");
2921 return -EINVAL;
2922 }
2923
2924 if (btf_type_kflag(t)) {
2925 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2926 return -EINVAL;
2927 }
2928
2929 if (t->size) {
2930 btf_verifier_log_type(env, t, "size != 0");
2931 return -EINVAL;
2932 }
2933
2934 /* Array elem type and index type cannot be in type void,
2935 * so !array->type and !array->index_type are not allowed.
2936 */
2937 if (!array->type || !BTF_TYPE_ID_VALID(array->type)) {
2938 btf_verifier_log_type(env, t, "Invalid elem");
2939 return -EINVAL;
2940 }
2941
2942 if (!array->index_type || !BTF_TYPE_ID_VALID(array->index_type)) {
2943 btf_verifier_log_type(env, t, "Invalid index");
2944 return -EINVAL;
2945 }
2946
2947 btf_verifier_log_type(env, t, NULL);
2948
2949 return meta_needed;
2950 }
2951
btf_array_resolve(struct btf_verifier_env * env,const struct resolve_vertex * v)2952 static int btf_array_resolve(struct btf_verifier_env *env,
2953 const struct resolve_vertex *v)
2954 {
2955 const struct btf_array *array = btf_type_array(v->t);
2956 const struct btf_type *elem_type, *index_type;
2957 u32 elem_type_id, index_type_id;
2958 struct btf *btf = env->btf;
2959 u32 elem_size;
2960
2961 /* Check array->index_type */
2962 index_type_id = array->index_type;
2963 index_type = btf_type_by_id(btf, index_type_id);
2964 if (btf_type_nosize_or_null(index_type) ||
2965 btf_type_is_resolve_source_only(index_type)) {
2966 btf_verifier_log_type(env, v->t, "Invalid index");
2967 return -EINVAL;
2968 }
2969
2970 if (!env_type_is_resolve_sink(env, index_type) &&
2971 !env_type_is_resolved(env, index_type_id))
2972 return env_stack_push(env, index_type, index_type_id);
2973
2974 index_type = btf_type_id_size(btf, &index_type_id, NULL);
2975 if (!index_type || !btf_type_is_int(index_type) ||
2976 !btf_type_int_is_regular(index_type)) {
2977 btf_verifier_log_type(env, v->t, "Invalid index");
2978 return -EINVAL;
2979 }
2980
2981 /* Check array->type */
2982 elem_type_id = array->type;
2983 elem_type = btf_type_by_id(btf, elem_type_id);
2984 if (btf_type_nosize_or_null(elem_type) ||
2985 btf_type_is_resolve_source_only(elem_type)) {
2986 btf_verifier_log_type(env, v->t,
2987 "Invalid elem");
2988 return -EINVAL;
2989 }
2990
2991 if (!env_type_is_resolve_sink(env, elem_type) &&
2992 !env_type_is_resolved(env, elem_type_id))
2993 return env_stack_push(env, elem_type, elem_type_id);
2994
2995 elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size);
2996 if (!elem_type) {
2997 btf_verifier_log_type(env, v->t, "Invalid elem");
2998 return -EINVAL;
2999 }
3000
3001 if (btf_type_is_int(elem_type) && !btf_type_int_is_regular(elem_type)) {
3002 btf_verifier_log_type(env, v->t, "Invalid array of int");
3003 return -EINVAL;
3004 }
3005
3006 if (array->nelems && elem_size > U32_MAX / array->nelems) {
3007 btf_verifier_log_type(env, v->t,
3008 "Array size overflows U32_MAX");
3009 return -EINVAL;
3010 }
3011
3012 env_stack_pop_resolved(env, elem_type_id, elem_size * array->nelems);
3013
3014 return 0;
3015 }
3016
btf_array_log(struct btf_verifier_env * env,const struct btf_type * t)3017 static void btf_array_log(struct btf_verifier_env *env,
3018 const struct btf_type *t)
3019 {
3020 const struct btf_array *array = btf_type_array(t);
3021
3022 btf_verifier_log(env, "type_id=%u index_type_id=%u nr_elems=%u",
3023 array->type, array->index_type, array->nelems);
3024 }
3025
__btf_array_show(const struct btf * btf,const struct btf_type * t,u32 type_id,void * data,u8 bits_offset,struct btf_show * show)3026 static void __btf_array_show(const struct btf *btf, const struct btf_type *t,
3027 u32 type_id, void *data, u8 bits_offset,
3028 struct btf_show *show)
3029 {
3030 const struct btf_array *array = btf_type_array(t);
3031 const struct btf_kind_operations *elem_ops;
3032 const struct btf_type *elem_type;
3033 u32 i, elem_size = 0, elem_type_id;
3034 u16 encoding = 0;
3035
3036 elem_type_id = array->type;
3037 elem_type = btf_type_skip_modifiers(btf, elem_type_id, NULL);
3038 if (elem_type && btf_type_has_size(elem_type))
3039 elem_size = elem_type->size;
3040
3041 if (elem_type && btf_type_is_int(elem_type)) {
3042 u32 int_type = btf_type_int(elem_type);
3043
3044 encoding = BTF_INT_ENCODING(int_type);
3045
3046 /*
3047 * BTF_INT_CHAR encoding never seems to be set for
3048 * char arrays, so if size is 1 and element is
3049 * printable as a char, we'll do that.
3050 */
3051 if (elem_size == 1)
3052 encoding = BTF_INT_CHAR;
3053 }
3054
3055 if (!btf_show_start_array_type(show, t, type_id, encoding, data))
3056 return;
3057
3058 if (!elem_type)
3059 goto out;
3060 elem_ops = btf_type_ops(elem_type);
3061
3062 for (i = 0; i < array->nelems; i++) {
3063
3064 btf_show_start_array_member(show);
3065
3066 elem_ops->show(btf, elem_type, elem_type_id, data,
3067 bits_offset, show);
3068 data += elem_size;
3069
3070 btf_show_end_array_member(show);
3071
3072 if (show->state.array_terminated)
3073 break;
3074 }
3075 out:
3076 btf_show_end_array_type(show);
3077 }
3078
btf_array_show(const struct btf * btf,const struct btf_type * t,u32 type_id,void * data,u8 bits_offset,struct btf_show * show)3079 static void btf_array_show(const struct btf *btf, const struct btf_type *t,
3080 u32 type_id, void *data, u8 bits_offset,
3081 struct btf_show *show)
3082 {
3083 const struct btf_member *m = show->state.member;
3084
3085 /*
3086 * First check if any members would be shown (are non-zero).
3087 * See comments above "struct btf_show" definition for more
3088 * details on how this works at a high-level.
3089 */
3090 if (show->state.depth > 0 && !(show->flags & BTF_SHOW_ZERO)) {
3091 if (!show->state.depth_check) {
3092 show->state.depth_check = show->state.depth + 1;
3093 show->state.depth_to_show = 0;
3094 }
3095 __btf_array_show(btf, t, type_id, data, bits_offset, show);
3096 show->state.member = m;
3097
3098 if (show->state.depth_check != show->state.depth + 1)
3099 return;
3100 show->state.depth_check = 0;
3101
3102 if (show->state.depth_to_show <= show->state.depth)
3103 return;
3104 /*
3105 * Reaching here indicates we have recursed and found
3106 * non-zero array member(s).
3107 */
3108 }
3109 __btf_array_show(btf, t, type_id, data, bits_offset, show);
3110 }
3111
3112 static const struct btf_kind_operations array_ops = {
3113 .check_meta = btf_array_check_meta,
3114 .resolve = btf_array_resolve,
3115 .check_member = btf_array_check_member,
3116 .check_kflag_member = btf_generic_check_kflag_member,
3117 .log_details = btf_array_log,
3118 .show = btf_array_show,
3119 };
3120
btf_struct_check_member(struct btf_verifier_env * env,const struct btf_type * struct_type,const struct btf_member * member,const struct btf_type * member_type)3121 static int btf_struct_check_member(struct btf_verifier_env *env,
3122 const struct btf_type *struct_type,
3123 const struct btf_member *member,
3124 const struct btf_type *member_type)
3125 {
3126 u32 struct_bits_off = member->offset;
3127 u32 struct_size, bytes_offset;
3128
3129 if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
3130 btf_verifier_log_member(env, struct_type, member,
3131 "Member is not byte aligned");
3132 return -EINVAL;
3133 }
3134
3135 struct_size = struct_type->size;
3136 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
3137 if (struct_size - bytes_offset < member_type->size) {
3138 btf_verifier_log_member(env, struct_type, member,
3139 "Member exceeds struct_size");
3140 return -EINVAL;
3141 }
3142
3143 return 0;
3144 }
3145
btf_struct_check_meta(struct btf_verifier_env * env,const struct btf_type * t,u32 meta_left)3146 static s32 btf_struct_check_meta(struct btf_verifier_env *env,
3147 const struct btf_type *t,
3148 u32 meta_left)
3149 {
3150 bool is_union = BTF_INFO_KIND(t->info) == BTF_KIND_UNION;
3151 const struct btf_member *member;
3152 u32 meta_needed, last_offset;
3153 struct btf *btf = env->btf;
3154 u32 struct_size = t->size;
3155 u32 offset;
3156 u16 i;
3157
3158 meta_needed = btf_type_vlen(t) * sizeof(*member);
3159 if (meta_left < meta_needed) {
3160 btf_verifier_log_basic(env, t,
3161 "meta_left:%u meta_needed:%u",
3162 meta_left, meta_needed);
3163 return -EINVAL;
3164 }
3165
3166 /* struct type either no name or a valid one */
3167 if (t->name_off &&
3168 !btf_name_valid_identifier(env->btf, t->name_off)) {
3169 btf_verifier_log_type(env, t, "Invalid name");
3170 return -EINVAL;
3171 }
3172
3173 btf_verifier_log_type(env, t, NULL);
3174
3175 last_offset = 0;
3176 for_each_member(i, t, member) {
3177 if (!btf_name_offset_valid(btf, member->name_off)) {
3178 btf_verifier_log_member(env, t, member,
3179 "Invalid member name_offset:%u",
3180 member->name_off);
3181 return -EINVAL;
3182 }
3183
3184 /* struct member either no name or a valid one */
3185 if (member->name_off &&
3186 !btf_name_valid_identifier(btf, member->name_off)) {
3187 btf_verifier_log_member(env, t, member, "Invalid name");
3188 return -EINVAL;
3189 }
3190 /* A member cannot be in type void */
3191 if (!member->type || !BTF_TYPE_ID_VALID(member->type)) {
3192 btf_verifier_log_member(env, t, member,
3193 "Invalid type_id");
3194 return -EINVAL;
3195 }
3196
3197 offset = __btf_member_bit_offset(t, member);
3198 if (is_union && offset) {
3199 btf_verifier_log_member(env, t, member,
3200 "Invalid member bits_offset");
3201 return -EINVAL;
3202 }
3203
3204 /*
3205 * ">" instead of ">=" because the last member could be
3206 * "char a[0];"
3207 */
3208 if (last_offset > offset) {
3209 btf_verifier_log_member(env, t, member,
3210 "Invalid member bits_offset");
3211 return -EINVAL;
3212 }
3213
3214 if (BITS_ROUNDUP_BYTES(offset) > struct_size) {
3215 btf_verifier_log_member(env, t, member,
3216 "Member bits_offset exceeds its struct size");
3217 return -EINVAL;
3218 }
3219
3220 btf_verifier_log_member(env, t, member, NULL);
3221 last_offset = offset;
3222 }
3223
3224 return meta_needed;
3225 }
3226
btf_struct_resolve(struct btf_verifier_env * env,const struct resolve_vertex * v)3227 static int btf_struct_resolve(struct btf_verifier_env *env,
3228 const struct resolve_vertex *v)
3229 {
3230 const struct btf_member *member;
3231 int err;
3232 u16 i;
3233
3234 /* Before continue resolving the next_member,
3235 * ensure the last member is indeed resolved to a
3236 * type with size info.
3237 */
3238 if (v->next_member) {
3239 const struct btf_type *last_member_type;
3240 const struct btf_member *last_member;
3241 u32 last_member_type_id;
3242
3243 last_member = btf_type_member(v->t) + v->next_member - 1;
3244 last_member_type_id = last_member->type;
3245 if (WARN_ON_ONCE(!env_type_is_resolved(env,
3246 last_member_type_id)))
3247 return -EINVAL;
3248
3249 last_member_type = btf_type_by_id(env->btf,
3250 last_member_type_id);
3251 if (btf_type_kflag(v->t))
3252 err = btf_type_ops(last_member_type)->check_kflag_member(env, v->t,
3253 last_member,
3254 last_member_type);
3255 else
3256 err = btf_type_ops(last_member_type)->check_member(env, v->t,
3257 last_member,
3258 last_member_type);
3259 if (err)
3260 return err;
3261 }
3262
3263 for_each_member_from(i, v->next_member, v->t, member) {
3264 u32 member_type_id = member->type;
3265 const struct btf_type *member_type = btf_type_by_id(env->btf,
3266 member_type_id);
3267
3268 if (btf_type_nosize_or_null(member_type) ||
3269 btf_type_is_resolve_source_only(member_type)) {
3270 btf_verifier_log_member(env, v->t, member,
3271 "Invalid member");
3272 return -EINVAL;
3273 }
3274
3275 if (!env_type_is_resolve_sink(env, member_type) &&
3276 !env_type_is_resolved(env, member_type_id)) {
3277 env_stack_set_next_member(env, i + 1);
3278 return env_stack_push(env, member_type, member_type_id);
3279 }
3280
3281 if (btf_type_kflag(v->t))
3282 err = btf_type_ops(member_type)->check_kflag_member(env, v->t,
3283 member,
3284 member_type);
3285 else
3286 err = btf_type_ops(member_type)->check_member(env, v->t,
3287 member,
3288 member_type);
3289 if (err)
3290 return err;
3291 }
3292
3293 env_stack_pop_resolved(env, 0, 0);
3294
3295 return 0;
3296 }
3297
btf_struct_log(struct btf_verifier_env * env,const struct btf_type * t)3298 static void btf_struct_log(struct btf_verifier_env *env,
3299 const struct btf_type *t)
3300 {
3301 btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
3302 }
3303
3304 enum {
3305 BTF_FIELD_IGNORE = 0,
3306 BTF_FIELD_FOUND = 1,
3307 };
3308
3309 struct btf_field_info {
3310 enum btf_field_type type;
3311 u32 off;
3312 union {
3313 struct {
3314 u32 type_id;
3315 } kptr;
3316 struct {
3317 const char *node_name;
3318 u32 value_btf_id;
3319 } graph_root;
3320 };
3321 };
3322
btf_find_struct(const struct btf * btf,const struct btf_type * t,u32 off,int sz,enum btf_field_type field_type,struct btf_field_info * info)3323 static int btf_find_struct(const struct btf *btf, const struct btf_type *t,
3324 u32 off, int sz, enum btf_field_type field_type,
3325 struct btf_field_info *info)
3326 {
3327 if (!__btf_type_is_struct(t))
3328 return BTF_FIELD_IGNORE;
3329 if (t->size != sz)
3330 return BTF_FIELD_IGNORE;
3331 info->type = field_type;
3332 info->off = off;
3333 return BTF_FIELD_FOUND;
3334 }
3335
btf_find_kptr(const struct btf * btf,const struct btf_type * t,u32 off,int sz,struct btf_field_info * info,u32 field_mask)3336 static int btf_find_kptr(const struct btf *btf, const struct btf_type *t,
3337 u32 off, int sz, struct btf_field_info *info, u32 field_mask)
3338 {
3339 enum btf_field_type type;
3340 u32 res_id;
3341
3342 /* Permit modifiers on the pointer itself */
3343 if (btf_type_is_volatile(t))
3344 t = btf_type_by_id(btf, t->type);
3345 /* For PTR, sz is always == 8 */
3346 if (!btf_type_is_ptr(t))
3347 return BTF_FIELD_IGNORE;
3348 t = btf_type_by_id(btf, t->type);
3349
3350 if (!btf_type_is_type_tag(t))
3351 return BTF_FIELD_IGNORE;
3352 /* Reject extra tags */
3353 if (btf_type_is_type_tag(btf_type_by_id(btf, t->type)))
3354 return -EINVAL;
3355 if (!strcmp("kptr_untrusted", __btf_name_by_offset(btf, t->name_off)))
3356 type = BPF_KPTR_UNREF;
3357 else if (!strcmp("kptr", __btf_name_by_offset(btf, t->name_off)))
3358 type = BPF_KPTR_REF;
3359 else if (!strcmp("percpu_kptr", __btf_name_by_offset(btf, t->name_off)))
3360 type = BPF_KPTR_PERCPU;
3361 else if (!strcmp("uptr", __btf_name_by_offset(btf, t->name_off)))
3362 type = BPF_UPTR;
3363 else
3364 return -EINVAL;
3365
3366 if (!(type & field_mask))
3367 return BTF_FIELD_IGNORE;
3368
3369 /* Get the base type */
3370 t = btf_type_skip_modifiers(btf, t->type, &res_id);
3371 /* Only pointer to struct is allowed */
3372 if (!__btf_type_is_struct(t))
3373 return -EINVAL;
3374
3375 info->type = type;
3376 info->off = off;
3377 info->kptr.type_id = res_id;
3378 return BTF_FIELD_FOUND;
3379 }
3380
btf_find_next_decl_tag(const struct btf * btf,const struct btf_type * pt,int comp_idx,const char * tag_key,int last_id)3381 int btf_find_next_decl_tag(const struct btf *btf, const struct btf_type *pt,
3382 int comp_idx, const char *tag_key, int last_id)
3383 {
3384 int len = strlen(tag_key);
3385 int i, n;
3386
3387 for (i = last_id + 1, n = btf_nr_types(btf); i < n; i++) {
3388 const struct btf_type *t = btf_type_by_id(btf, i);
3389
3390 if (!btf_type_is_decl_tag(t))
3391 continue;
3392 if (pt != btf_type_by_id(btf, t->type))
3393 continue;
3394 if (btf_type_decl_tag(t)->component_idx != comp_idx)
3395 continue;
3396 if (strncmp(__btf_name_by_offset(btf, t->name_off), tag_key, len))
3397 continue;
3398 return i;
3399 }
3400 return -ENOENT;
3401 }
3402
btf_find_decl_tag_value(const struct btf * btf,const struct btf_type * pt,int comp_idx,const char * tag_key)3403 const char *btf_find_decl_tag_value(const struct btf *btf, const struct btf_type *pt,
3404 int comp_idx, const char *tag_key)
3405 {
3406 const char *value = NULL;
3407 const struct btf_type *t;
3408 int len, id;
3409
3410 id = btf_find_next_decl_tag(btf, pt, comp_idx, tag_key, 0);
3411 if (id < 0)
3412 return ERR_PTR(id);
3413
3414 t = btf_type_by_id(btf, id);
3415 len = strlen(tag_key);
3416 value = __btf_name_by_offset(btf, t->name_off) + len;
3417
3418 /* Prevent duplicate entries for same type */
3419 id = btf_find_next_decl_tag(btf, pt, comp_idx, tag_key, id);
3420 if (id >= 0)
3421 return ERR_PTR(-EEXIST);
3422
3423 return value;
3424 }
3425
3426 static int
btf_find_graph_root(const struct btf * btf,const struct btf_type * pt,const struct btf_type * t,int comp_idx,u32 off,int sz,struct btf_field_info * info,enum btf_field_type head_type)3427 btf_find_graph_root(const struct btf *btf, const struct btf_type *pt,
3428 const struct btf_type *t, int comp_idx, u32 off,
3429 int sz, struct btf_field_info *info,
3430 enum btf_field_type head_type)
3431 {
3432 const char *node_field_name;
3433 const char *value_type;
3434 s32 id;
3435
3436 if (!__btf_type_is_struct(t))
3437 return BTF_FIELD_IGNORE;
3438 if (t->size != sz)
3439 return BTF_FIELD_IGNORE;
3440 value_type = btf_find_decl_tag_value(btf, pt, comp_idx, "contains:");
3441 if (IS_ERR(value_type))
3442 return -EINVAL;
3443 node_field_name = strstr(value_type, ":");
3444 if (!node_field_name)
3445 return -EINVAL;
3446 value_type = kstrndup(value_type, node_field_name - value_type, GFP_KERNEL | __GFP_NOWARN);
3447 if (!value_type)
3448 return -ENOMEM;
3449 id = btf_find_by_name_kind(btf, value_type, BTF_KIND_STRUCT);
3450 kfree(value_type);
3451 if (id < 0)
3452 return id;
3453 node_field_name++;
3454 if (str_is_empty(node_field_name))
3455 return -EINVAL;
3456 info->type = head_type;
3457 info->off = off;
3458 info->graph_root.value_btf_id = id;
3459 info->graph_root.node_name = node_field_name;
3460 return BTF_FIELD_FOUND;
3461 }
3462
3463 #define field_mask_test_name(field_type, field_type_str) \
3464 if (field_mask & field_type && !strcmp(name, field_type_str)) { \
3465 type = field_type; \
3466 goto end; \
3467 }
3468
btf_get_field_type(const struct btf * btf,const struct btf_type * var_type,u32 field_mask,u32 * seen_mask,int * align,int * sz)3469 static int btf_get_field_type(const struct btf *btf, const struct btf_type *var_type,
3470 u32 field_mask, u32 *seen_mask,
3471 int *align, int *sz)
3472 {
3473 int type = 0;
3474 const char *name = __btf_name_by_offset(btf, var_type->name_off);
3475
3476 if (field_mask & BPF_SPIN_LOCK) {
3477 if (!strcmp(name, "bpf_spin_lock")) {
3478 if (*seen_mask & BPF_SPIN_LOCK)
3479 return -E2BIG;
3480 *seen_mask |= BPF_SPIN_LOCK;
3481 type = BPF_SPIN_LOCK;
3482 goto end;
3483 }
3484 }
3485 if (field_mask & BPF_TIMER) {
3486 if (!strcmp(name, "bpf_timer")) {
3487 if (*seen_mask & BPF_TIMER)
3488 return -E2BIG;
3489 *seen_mask |= BPF_TIMER;
3490 type = BPF_TIMER;
3491 goto end;
3492 }
3493 }
3494 if (field_mask & BPF_WORKQUEUE) {
3495 if (!strcmp(name, "bpf_wq")) {
3496 if (*seen_mask & BPF_WORKQUEUE)
3497 return -E2BIG;
3498 *seen_mask |= BPF_WORKQUEUE;
3499 type = BPF_WORKQUEUE;
3500 goto end;
3501 }
3502 }
3503 field_mask_test_name(BPF_LIST_HEAD, "bpf_list_head");
3504 field_mask_test_name(BPF_LIST_NODE, "bpf_list_node");
3505 field_mask_test_name(BPF_RB_ROOT, "bpf_rb_root");
3506 field_mask_test_name(BPF_RB_NODE, "bpf_rb_node");
3507 field_mask_test_name(BPF_REFCOUNT, "bpf_refcount");
3508
3509 /* Only return BPF_KPTR when all other types with matchable names fail */
3510 if (field_mask & (BPF_KPTR | BPF_UPTR) && !__btf_type_is_struct(var_type)) {
3511 type = BPF_KPTR_REF;
3512 goto end;
3513 }
3514 return 0;
3515 end:
3516 *sz = btf_field_type_size(type);
3517 *align = btf_field_type_align(type);
3518 return type;
3519 }
3520
3521 #undef field_mask_test_name
3522
3523 /* Repeat a number of fields for a specified number of times.
3524 *
3525 * Copy the fields starting from the first field and repeat them for
3526 * repeat_cnt times. The fields are repeated by adding the offset of each
3527 * field with
3528 * (i + 1) * elem_size
3529 * where i is the repeat index and elem_size is the size of an element.
3530 */
btf_repeat_fields(struct btf_field_info * info,int info_cnt,u32 field_cnt,u32 repeat_cnt,u32 elem_size)3531 static int btf_repeat_fields(struct btf_field_info *info, int info_cnt,
3532 u32 field_cnt, u32 repeat_cnt, u32 elem_size)
3533 {
3534 u32 i, j;
3535 u32 cur;
3536
3537 /* Ensure not repeating fields that should not be repeated. */
3538 for (i = 0; i < field_cnt; i++) {
3539 switch (info[i].type) {
3540 case BPF_KPTR_UNREF:
3541 case BPF_KPTR_REF:
3542 case BPF_KPTR_PERCPU:
3543 case BPF_UPTR:
3544 case BPF_LIST_HEAD:
3545 case BPF_RB_ROOT:
3546 break;
3547 default:
3548 return -EINVAL;
3549 }
3550 }
3551
3552 /* The type of struct size or variable size is u32,
3553 * so the multiplication will not overflow.
3554 */
3555 if (field_cnt * (repeat_cnt + 1) > info_cnt)
3556 return -E2BIG;
3557
3558 cur = field_cnt;
3559 for (i = 0; i < repeat_cnt; i++) {
3560 memcpy(&info[cur], &info[0], field_cnt * sizeof(info[0]));
3561 for (j = 0; j < field_cnt; j++)
3562 info[cur++].off += (i + 1) * elem_size;
3563 }
3564
3565 return 0;
3566 }
3567
3568 static int btf_find_struct_field(const struct btf *btf,
3569 const struct btf_type *t, u32 field_mask,
3570 struct btf_field_info *info, int info_cnt,
3571 u32 level);
3572
3573 /* Find special fields in the struct type of a field.
3574 *
3575 * This function is used to find fields of special types that is not a
3576 * global variable or a direct field of a struct type. It also handles the
3577 * repetition if it is the element type of an array.
3578 */
btf_find_nested_struct(const struct btf * btf,const struct btf_type * t,u32 off,u32 nelems,u32 field_mask,struct btf_field_info * info,int info_cnt,u32 level)3579 static int btf_find_nested_struct(const struct btf *btf, const struct btf_type *t,
3580 u32 off, u32 nelems,
3581 u32 field_mask, struct btf_field_info *info,
3582 int info_cnt, u32 level)
3583 {
3584 int ret, err, i;
3585
3586 level++;
3587 if (level >= MAX_RESOLVE_DEPTH)
3588 return -E2BIG;
3589
3590 ret = btf_find_struct_field(btf, t, field_mask, info, info_cnt, level);
3591
3592 if (ret <= 0)
3593 return ret;
3594
3595 /* Shift the offsets of the nested struct fields to the offsets
3596 * related to the container.
3597 */
3598 for (i = 0; i < ret; i++)
3599 info[i].off += off;
3600
3601 if (nelems > 1) {
3602 err = btf_repeat_fields(info, info_cnt, ret, nelems - 1, t->size);
3603 if (err == 0)
3604 ret *= nelems;
3605 else
3606 ret = err;
3607 }
3608
3609 return ret;
3610 }
3611
btf_find_field_one(const struct btf * btf,const struct btf_type * var,const struct btf_type * var_type,int var_idx,u32 off,u32 expected_size,u32 field_mask,u32 * seen_mask,struct btf_field_info * info,int info_cnt,u32 level)3612 static int btf_find_field_one(const struct btf *btf,
3613 const struct btf_type *var,
3614 const struct btf_type *var_type,
3615 int var_idx,
3616 u32 off, u32 expected_size,
3617 u32 field_mask, u32 *seen_mask,
3618 struct btf_field_info *info, int info_cnt,
3619 u32 level)
3620 {
3621 int ret, align, sz, field_type;
3622 struct btf_field_info tmp;
3623 const struct btf_array *array;
3624 u32 i, nelems = 1;
3625
3626 /* Walk into array types to find the element type and the number of
3627 * elements in the (flattened) array.
3628 */
3629 for (i = 0; i < MAX_RESOLVE_DEPTH && btf_type_is_array(var_type); i++) {
3630 array = btf_array(var_type);
3631 nelems *= array->nelems;
3632 var_type = btf_type_by_id(btf, array->type);
3633 }
3634 if (i == MAX_RESOLVE_DEPTH)
3635 return -E2BIG;
3636 if (nelems == 0)
3637 return 0;
3638
3639 field_type = btf_get_field_type(btf, var_type,
3640 field_mask, seen_mask, &align, &sz);
3641 /* Look into variables of struct types */
3642 if (!field_type && __btf_type_is_struct(var_type)) {
3643 sz = var_type->size;
3644 if (expected_size && expected_size != sz * nelems)
3645 return 0;
3646 ret = btf_find_nested_struct(btf, var_type, off, nelems, field_mask,
3647 &info[0], info_cnt, level);
3648 return ret;
3649 }
3650
3651 if (field_type == 0)
3652 return 0;
3653 if (field_type < 0)
3654 return field_type;
3655
3656 if (expected_size && expected_size != sz * nelems)
3657 return 0;
3658 if (off % align)
3659 return 0;
3660
3661 switch (field_type) {
3662 case BPF_SPIN_LOCK:
3663 case BPF_TIMER:
3664 case BPF_WORKQUEUE:
3665 case BPF_LIST_NODE:
3666 case BPF_RB_NODE:
3667 case BPF_REFCOUNT:
3668 ret = btf_find_struct(btf, var_type, off, sz, field_type,
3669 info_cnt ? &info[0] : &tmp);
3670 if (ret < 0)
3671 return ret;
3672 break;
3673 case BPF_KPTR_UNREF:
3674 case BPF_KPTR_REF:
3675 case BPF_KPTR_PERCPU:
3676 case BPF_UPTR:
3677 ret = btf_find_kptr(btf, var_type, off, sz,
3678 info_cnt ? &info[0] : &tmp, field_mask);
3679 if (ret < 0)
3680 return ret;
3681 break;
3682 case BPF_LIST_HEAD:
3683 case BPF_RB_ROOT:
3684 ret = btf_find_graph_root(btf, var, var_type,
3685 var_idx, off, sz,
3686 info_cnt ? &info[0] : &tmp,
3687 field_type);
3688 if (ret < 0)
3689 return ret;
3690 break;
3691 default:
3692 return -EFAULT;
3693 }
3694
3695 if (ret == BTF_FIELD_IGNORE)
3696 return 0;
3697 if (!info_cnt)
3698 return -E2BIG;
3699 if (nelems > 1) {
3700 ret = btf_repeat_fields(info, info_cnt, 1, nelems - 1, sz);
3701 if (ret < 0)
3702 return ret;
3703 }
3704 return nelems;
3705 }
3706
btf_find_struct_field(const struct btf * btf,const struct btf_type * t,u32 field_mask,struct btf_field_info * info,int info_cnt,u32 level)3707 static int btf_find_struct_field(const struct btf *btf,
3708 const struct btf_type *t, u32 field_mask,
3709 struct btf_field_info *info, int info_cnt,
3710 u32 level)
3711 {
3712 int ret, idx = 0;
3713 const struct btf_member *member;
3714 u32 i, off, seen_mask = 0;
3715
3716 for_each_member(i, t, member) {
3717 const struct btf_type *member_type = btf_type_by_id(btf,
3718 member->type);
3719
3720 off = __btf_member_bit_offset(t, member);
3721 if (off % 8)
3722 /* valid C code cannot generate such BTF */
3723 return -EINVAL;
3724 off /= 8;
3725
3726 ret = btf_find_field_one(btf, t, member_type, i,
3727 off, 0,
3728 field_mask, &seen_mask,
3729 &info[idx], info_cnt - idx, level);
3730 if (ret < 0)
3731 return ret;
3732 idx += ret;
3733 }
3734 return idx;
3735 }
3736
btf_find_datasec_var(const struct btf * btf,const struct btf_type * t,u32 field_mask,struct btf_field_info * info,int info_cnt,u32 level)3737 static int btf_find_datasec_var(const struct btf *btf, const struct btf_type *t,
3738 u32 field_mask, struct btf_field_info *info,
3739 int info_cnt, u32 level)
3740 {
3741 int ret, idx = 0;
3742 const struct btf_var_secinfo *vsi;
3743 u32 i, off, seen_mask = 0;
3744
3745 for_each_vsi(i, t, vsi) {
3746 const struct btf_type *var = btf_type_by_id(btf, vsi->type);
3747 const struct btf_type *var_type = btf_type_by_id(btf, var->type);
3748
3749 off = vsi->offset;
3750 ret = btf_find_field_one(btf, var, var_type, -1, off, vsi->size,
3751 field_mask, &seen_mask,
3752 &info[idx], info_cnt - idx,
3753 level);
3754 if (ret < 0)
3755 return ret;
3756 idx += ret;
3757 }
3758 return idx;
3759 }
3760
btf_find_field(const struct btf * btf,const struct btf_type * t,u32 field_mask,struct btf_field_info * info,int info_cnt)3761 static int btf_find_field(const struct btf *btf, const struct btf_type *t,
3762 u32 field_mask, struct btf_field_info *info,
3763 int info_cnt)
3764 {
3765 if (__btf_type_is_struct(t))
3766 return btf_find_struct_field(btf, t, field_mask, info, info_cnt, 0);
3767 else if (btf_type_is_datasec(t))
3768 return btf_find_datasec_var(btf, t, field_mask, info, info_cnt, 0);
3769 return -EINVAL;
3770 }
3771
3772 /* Callers have to ensure the life cycle of btf if it is program BTF */
btf_parse_kptr(const struct btf * btf,struct btf_field * field,struct btf_field_info * info)3773 static int btf_parse_kptr(const struct btf *btf, struct btf_field *field,
3774 struct btf_field_info *info)
3775 {
3776 struct module *mod = NULL;
3777 const struct btf_type *t;
3778 /* If a matching btf type is found in kernel or module BTFs, kptr_ref
3779 * is that BTF, otherwise it's program BTF
3780 */
3781 struct btf *kptr_btf;
3782 int ret;
3783 s32 id;
3784
3785 /* Find type in map BTF, and use it to look up the matching type
3786 * in vmlinux or module BTFs, by name and kind.
3787 */
3788 t = btf_type_by_id(btf, info->kptr.type_id);
3789 id = bpf_find_btf_id(__btf_name_by_offset(btf, t->name_off), BTF_INFO_KIND(t->info),
3790 &kptr_btf);
3791 if (id == -ENOENT) {
3792 /* btf_parse_kptr should only be called w/ btf = program BTF */
3793 WARN_ON_ONCE(btf_is_kernel(btf));
3794
3795 /* Type exists only in program BTF. Assume that it's a MEM_ALLOC
3796 * kptr allocated via bpf_obj_new
3797 */
3798 field->kptr.dtor = NULL;
3799 id = info->kptr.type_id;
3800 kptr_btf = (struct btf *)btf;
3801 goto found_dtor;
3802 }
3803 if (id < 0)
3804 return id;
3805
3806 /* Find and stash the function pointer for the destruction function that
3807 * needs to be eventually invoked from the map free path.
3808 */
3809 if (info->type == BPF_KPTR_REF) {
3810 const struct btf_type *dtor_func;
3811 const char *dtor_func_name;
3812 unsigned long addr;
3813 s32 dtor_btf_id;
3814
3815 /* This call also serves as a whitelist of allowed objects that
3816 * can be used as a referenced pointer and be stored in a map at
3817 * the same time.
3818 */
3819 dtor_btf_id = btf_find_dtor_kfunc(kptr_btf, id);
3820 if (dtor_btf_id < 0) {
3821 ret = dtor_btf_id;
3822 goto end_btf;
3823 }
3824
3825 dtor_func = btf_type_by_id(kptr_btf, dtor_btf_id);
3826 if (!dtor_func) {
3827 ret = -ENOENT;
3828 goto end_btf;
3829 }
3830
3831 if (btf_is_module(kptr_btf)) {
3832 mod = btf_try_get_module(kptr_btf);
3833 if (!mod) {
3834 ret = -ENXIO;
3835 goto end_btf;
3836 }
3837 }
3838
3839 /* We already verified dtor_func to be btf_type_is_func
3840 * in register_btf_id_dtor_kfuncs.
3841 */
3842 dtor_func_name = __btf_name_by_offset(kptr_btf, dtor_func->name_off);
3843 addr = kallsyms_lookup_name(dtor_func_name);
3844 if (!addr) {
3845 ret = -EINVAL;
3846 goto end_mod;
3847 }
3848 field->kptr.dtor = (void *)addr;
3849 }
3850
3851 found_dtor:
3852 field->kptr.btf_id = id;
3853 field->kptr.btf = kptr_btf;
3854 field->kptr.module = mod;
3855 return 0;
3856 end_mod:
3857 module_put(mod);
3858 end_btf:
3859 btf_put(kptr_btf);
3860 return ret;
3861 }
3862
btf_parse_graph_root(const struct btf * btf,struct btf_field * field,struct btf_field_info * info,const char * node_type_name,size_t node_type_align)3863 static int btf_parse_graph_root(const struct btf *btf,
3864 struct btf_field *field,
3865 struct btf_field_info *info,
3866 const char *node_type_name,
3867 size_t node_type_align)
3868 {
3869 const struct btf_type *t, *n = NULL;
3870 const struct btf_member *member;
3871 u32 offset;
3872 int i;
3873
3874 t = btf_type_by_id(btf, info->graph_root.value_btf_id);
3875 /* We've already checked that value_btf_id is a struct type. We
3876 * just need to figure out the offset of the list_node, and
3877 * verify its type.
3878 */
3879 for_each_member(i, t, member) {
3880 if (strcmp(info->graph_root.node_name,
3881 __btf_name_by_offset(btf, member->name_off)))
3882 continue;
3883 /* Invalid BTF, two members with same name */
3884 if (n)
3885 return -EINVAL;
3886 n = btf_type_by_id(btf, member->type);
3887 if (!__btf_type_is_struct(n))
3888 return -EINVAL;
3889 if (strcmp(node_type_name, __btf_name_by_offset(btf, n->name_off)))
3890 return -EINVAL;
3891 offset = __btf_member_bit_offset(n, member);
3892 if (offset % 8)
3893 return -EINVAL;
3894 offset /= 8;
3895 if (offset % node_type_align)
3896 return -EINVAL;
3897
3898 field->graph_root.btf = (struct btf *)btf;
3899 field->graph_root.value_btf_id = info->graph_root.value_btf_id;
3900 field->graph_root.node_offset = offset;
3901 }
3902 if (!n)
3903 return -ENOENT;
3904 return 0;
3905 }
3906
btf_parse_list_head(const struct btf * btf,struct btf_field * field,struct btf_field_info * info)3907 static int btf_parse_list_head(const struct btf *btf, struct btf_field *field,
3908 struct btf_field_info *info)
3909 {
3910 return btf_parse_graph_root(btf, field, info, "bpf_list_node",
3911 __alignof__(struct bpf_list_node));
3912 }
3913
btf_parse_rb_root(const struct btf * btf,struct btf_field * field,struct btf_field_info * info)3914 static int btf_parse_rb_root(const struct btf *btf, struct btf_field *field,
3915 struct btf_field_info *info)
3916 {
3917 return btf_parse_graph_root(btf, field, info, "bpf_rb_node",
3918 __alignof__(struct bpf_rb_node));
3919 }
3920
btf_field_cmp(const void * _a,const void * _b,const void * priv)3921 static int btf_field_cmp(const void *_a, const void *_b, const void *priv)
3922 {
3923 const struct btf_field *a = (const struct btf_field *)_a;
3924 const struct btf_field *b = (const struct btf_field *)_b;
3925
3926 if (a->offset < b->offset)
3927 return -1;
3928 else if (a->offset > b->offset)
3929 return 1;
3930 return 0;
3931 }
3932
btf_parse_fields(const struct btf * btf,const struct btf_type * t,u32 field_mask,u32 value_size)3933 struct btf_record *btf_parse_fields(const struct btf *btf, const struct btf_type *t,
3934 u32 field_mask, u32 value_size)
3935 {
3936 struct btf_field_info info_arr[BTF_FIELDS_MAX];
3937 u32 next_off = 0, field_type_size;
3938 struct btf_record *rec;
3939 int ret, i, cnt;
3940
3941 ret = btf_find_field(btf, t, field_mask, info_arr, ARRAY_SIZE(info_arr));
3942 if (ret < 0)
3943 return ERR_PTR(ret);
3944 if (!ret)
3945 return NULL;
3946
3947 cnt = ret;
3948 /* This needs to be kzalloc to zero out padding and unused fields, see
3949 * comment in btf_record_equal.
3950 */
3951 rec = kzalloc(offsetof(struct btf_record, fields[cnt]), GFP_KERNEL | __GFP_NOWARN);
3952 if (!rec)
3953 return ERR_PTR(-ENOMEM);
3954
3955 rec->spin_lock_off = -EINVAL;
3956 rec->timer_off = -EINVAL;
3957 rec->wq_off = -EINVAL;
3958 rec->refcount_off = -EINVAL;
3959 for (i = 0; i < cnt; i++) {
3960 field_type_size = btf_field_type_size(info_arr[i].type);
3961 if (info_arr[i].off + field_type_size > value_size) {
3962 WARN_ONCE(1, "verifier bug off %d size %d", info_arr[i].off, value_size);
3963 ret = -EFAULT;
3964 goto end;
3965 }
3966 if (info_arr[i].off < next_off) {
3967 ret = -EEXIST;
3968 goto end;
3969 }
3970 next_off = info_arr[i].off + field_type_size;
3971
3972 rec->field_mask |= info_arr[i].type;
3973 rec->fields[i].offset = info_arr[i].off;
3974 rec->fields[i].type = info_arr[i].type;
3975 rec->fields[i].size = field_type_size;
3976
3977 switch (info_arr[i].type) {
3978 case BPF_SPIN_LOCK:
3979 WARN_ON_ONCE(rec->spin_lock_off >= 0);
3980 /* Cache offset for faster lookup at runtime */
3981 rec->spin_lock_off = rec->fields[i].offset;
3982 break;
3983 case BPF_TIMER:
3984 WARN_ON_ONCE(rec->timer_off >= 0);
3985 /* Cache offset for faster lookup at runtime */
3986 rec->timer_off = rec->fields[i].offset;
3987 break;
3988 case BPF_WORKQUEUE:
3989 WARN_ON_ONCE(rec->wq_off >= 0);
3990 /* Cache offset for faster lookup at runtime */
3991 rec->wq_off = rec->fields[i].offset;
3992 break;
3993 case BPF_REFCOUNT:
3994 WARN_ON_ONCE(rec->refcount_off >= 0);
3995 /* Cache offset for faster lookup at runtime */
3996 rec->refcount_off = rec->fields[i].offset;
3997 break;
3998 case BPF_KPTR_UNREF:
3999 case BPF_KPTR_REF:
4000 case BPF_KPTR_PERCPU:
4001 case BPF_UPTR:
4002 ret = btf_parse_kptr(btf, &rec->fields[i], &info_arr[i]);
4003 if (ret < 0)
4004 goto end;
4005 break;
4006 case BPF_LIST_HEAD:
4007 ret = btf_parse_list_head(btf, &rec->fields[i], &info_arr[i]);
4008 if (ret < 0)
4009 goto end;
4010 break;
4011 case BPF_RB_ROOT:
4012 ret = btf_parse_rb_root(btf, &rec->fields[i], &info_arr[i]);
4013 if (ret < 0)
4014 goto end;
4015 break;
4016 case BPF_LIST_NODE:
4017 case BPF_RB_NODE:
4018 break;
4019 default:
4020 ret = -EFAULT;
4021 goto end;
4022 }
4023 rec->cnt++;
4024 }
4025
4026 /* bpf_{list_head, rb_node} require bpf_spin_lock */
4027 if ((btf_record_has_field(rec, BPF_LIST_HEAD) ||
4028 btf_record_has_field(rec, BPF_RB_ROOT)) && rec->spin_lock_off < 0) {
4029 ret = -EINVAL;
4030 goto end;
4031 }
4032
4033 if (rec->refcount_off < 0 &&
4034 btf_record_has_field(rec, BPF_LIST_NODE) &&
4035 btf_record_has_field(rec, BPF_RB_NODE)) {
4036 ret = -EINVAL;
4037 goto end;
4038 }
4039
4040 sort_r(rec->fields, rec->cnt, sizeof(struct btf_field), btf_field_cmp,
4041 NULL, rec);
4042
4043 return rec;
4044 end:
4045 btf_record_free(rec);
4046 return ERR_PTR(ret);
4047 }
4048
btf_check_and_fixup_fields(const struct btf * btf,struct btf_record * rec)4049 int btf_check_and_fixup_fields(const struct btf *btf, struct btf_record *rec)
4050 {
4051 int i;
4052
4053 /* There are three types that signify ownership of some other type:
4054 * kptr_ref, bpf_list_head, bpf_rb_root.
4055 * kptr_ref only supports storing kernel types, which can't store
4056 * references to program allocated local types.
4057 *
4058 * Hence we only need to ensure that bpf_{list_head,rb_root} ownership
4059 * does not form cycles.
4060 */
4061 if (IS_ERR_OR_NULL(rec) || !(rec->field_mask & (BPF_GRAPH_ROOT | BPF_UPTR)))
4062 return 0;
4063 for (i = 0; i < rec->cnt; i++) {
4064 struct btf_struct_meta *meta;
4065 const struct btf_type *t;
4066 u32 btf_id;
4067
4068 if (rec->fields[i].type == BPF_UPTR) {
4069 /* The uptr only supports pinning one page and cannot
4070 * point to a kernel struct
4071 */
4072 if (btf_is_kernel(rec->fields[i].kptr.btf))
4073 return -EINVAL;
4074 t = btf_type_by_id(rec->fields[i].kptr.btf,
4075 rec->fields[i].kptr.btf_id);
4076 if (!t->size)
4077 return -EINVAL;
4078 if (t->size > PAGE_SIZE)
4079 return -E2BIG;
4080 continue;
4081 }
4082
4083 if (!(rec->fields[i].type & BPF_GRAPH_ROOT))
4084 continue;
4085 btf_id = rec->fields[i].graph_root.value_btf_id;
4086 meta = btf_find_struct_meta(btf, btf_id);
4087 if (!meta)
4088 return -EFAULT;
4089 rec->fields[i].graph_root.value_rec = meta->record;
4090
4091 /* We need to set value_rec for all root types, but no need
4092 * to check ownership cycle for a type unless it's also a
4093 * node type.
4094 */
4095 if (!(rec->field_mask & BPF_GRAPH_NODE))
4096 continue;
4097
4098 /* We need to ensure ownership acyclicity among all types. The
4099 * proper way to do it would be to topologically sort all BTF
4100 * IDs based on the ownership edges, since there can be multiple
4101 * bpf_{list_head,rb_node} in a type. Instead, we use the
4102 * following resaoning:
4103 *
4104 * - A type can only be owned by another type in user BTF if it
4105 * has a bpf_{list,rb}_node. Let's call these node types.
4106 * - A type can only _own_ another type in user BTF if it has a
4107 * bpf_{list_head,rb_root}. Let's call these root types.
4108 *
4109 * We ensure that if a type is both a root and node, its
4110 * element types cannot be root types.
4111 *
4112 * To ensure acyclicity:
4113 *
4114 * When A is an root type but not a node, its ownership
4115 * chain can be:
4116 * A -> B -> C
4117 * Where:
4118 * - A is an root, e.g. has bpf_rb_root.
4119 * - B is both a root and node, e.g. has bpf_rb_node and
4120 * bpf_list_head.
4121 * - C is only an root, e.g. has bpf_list_node
4122 *
4123 * When A is both a root and node, some other type already
4124 * owns it in the BTF domain, hence it can not own
4125 * another root type through any of the ownership edges.
4126 * A -> B
4127 * Where:
4128 * - A is both an root and node.
4129 * - B is only an node.
4130 */
4131 if (meta->record->field_mask & BPF_GRAPH_ROOT)
4132 return -ELOOP;
4133 }
4134 return 0;
4135 }
4136
__btf_struct_show(const struct btf * btf,const struct btf_type * t,u32 type_id,void * data,u8 bits_offset,struct btf_show * show)4137 static void __btf_struct_show(const struct btf *btf, const struct btf_type *t,
4138 u32 type_id, void *data, u8 bits_offset,
4139 struct btf_show *show)
4140 {
4141 const struct btf_member *member;
4142 void *safe_data;
4143 u32 i;
4144
4145 safe_data = btf_show_start_struct_type(show, t, type_id, data);
4146 if (!safe_data)
4147 return;
4148
4149 for_each_member(i, t, member) {
4150 const struct btf_type *member_type = btf_type_by_id(btf,
4151 member->type);
4152 const struct btf_kind_operations *ops;
4153 u32 member_offset, bitfield_size;
4154 u32 bytes_offset;
4155 u8 bits8_offset;
4156
4157 btf_show_start_member(show, member);
4158
4159 member_offset = __btf_member_bit_offset(t, member);
4160 bitfield_size = __btf_member_bitfield_size(t, member);
4161 bytes_offset = BITS_ROUNDDOWN_BYTES(member_offset);
4162 bits8_offset = BITS_PER_BYTE_MASKED(member_offset);
4163 if (bitfield_size) {
4164 safe_data = btf_show_start_type(show, member_type,
4165 member->type,
4166 data + bytes_offset);
4167 if (safe_data)
4168 btf_bitfield_show(safe_data,
4169 bits8_offset,
4170 bitfield_size, show);
4171 btf_show_end_type(show);
4172 } else {
4173 ops = btf_type_ops(member_type);
4174 ops->show(btf, member_type, member->type,
4175 data + bytes_offset, bits8_offset, show);
4176 }
4177
4178 btf_show_end_member(show);
4179 }
4180
4181 btf_show_end_struct_type(show);
4182 }
4183
btf_struct_show(const struct btf * btf,const struct btf_type * t,u32 type_id,void * data,u8 bits_offset,struct btf_show * show)4184 static void btf_struct_show(const struct btf *btf, const struct btf_type *t,
4185 u32 type_id, void *data, u8 bits_offset,
4186 struct btf_show *show)
4187 {
4188 const struct btf_member *m = show->state.member;
4189
4190 /*
4191 * First check if any members would be shown (are non-zero).
4192 * See comments above "struct btf_show" definition for more
4193 * details on how this works at a high-level.
4194 */
4195 if (show->state.depth > 0 && !(show->flags & BTF_SHOW_ZERO)) {
4196 if (!show->state.depth_check) {
4197 show->state.depth_check = show->state.depth + 1;
4198 show->state.depth_to_show = 0;
4199 }
4200 __btf_struct_show(btf, t, type_id, data, bits_offset, show);
4201 /* Restore saved member data here */
4202 show->state.member = m;
4203 if (show->state.depth_check != show->state.depth + 1)
4204 return;
4205 show->state.depth_check = 0;
4206
4207 if (show->state.depth_to_show <= show->state.depth)
4208 return;
4209 /*
4210 * Reaching here indicates we have recursed and found
4211 * non-zero child values.
4212 */
4213 }
4214
4215 __btf_struct_show(btf, t, type_id, data, bits_offset, show);
4216 }
4217
4218 static const struct btf_kind_operations struct_ops = {
4219 .check_meta = btf_struct_check_meta,
4220 .resolve = btf_struct_resolve,
4221 .check_member = btf_struct_check_member,
4222 .check_kflag_member = btf_generic_check_kflag_member,
4223 .log_details = btf_struct_log,
4224 .show = btf_struct_show,
4225 };
4226
btf_enum_check_member(struct btf_verifier_env * env,const struct btf_type * struct_type,const struct btf_member * member,const struct btf_type * member_type)4227 static int btf_enum_check_member(struct btf_verifier_env *env,
4228 const struct btf_type *struct_type,
4229 const struct btf_member *member,
4230 const struct btf_type *member_type)
4231 {
4232 u32 struct_bits_off = member->offset;
4233 u32 struct_size, bytes_offset;
4234
4235 if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
4236 btf_verifier_log_member(env, struct_type, member,
4237 "Member is not byte aligned");
4238 return -EINVAL;
4239 }
4240
4241 struct_size = struct_type->size;
4242 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
4243 if (struct_size - bytes_offset < member_type->size) {
4244 btf_verifier_log_member(env, struct_type, member,
4245 "Member exceeds struct_size");
4246 return -EINVAL;
4247 }
4248
4249 return 0;
4250 }
4251
btf_enum_check_kflag_member(struct btf_verifier_env * env,const struct btf_type * struct_type,const struct btf_member * member,const struct btf_type * member_type)4252 static int btf_enum_check_kflag_member(struct btf_verifier_env *env,
4253 const struct btf_type *struct_type,
4254 const struct btf_member *member,
4255 const struct btf_type *member_type)
4256 {
4257 u32 struct_bits_off, nr_bits, bytes_end, struct_size;
4258 u32 int_bitsize = sizeof(int) * BITS_PER_BYTE;
4259
4260 struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset);
4261 nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset);
4262 if (!nr_bits) {
4263 if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
4264 btf_verifier_log_member(env, struct_type, member,
4265 "Member is not byte aligned");
4266 return -EINVAL;
4267 }
4268
4269 nr_bits = int_bitsize;
4270 } else if (nr_bits > int_bitsize) {
4271 btf_verifier_log_member(env, struct_type, member,
4272 "Invalid member bitfield_size");
4273 return -EINVAL;
4274 }
4275
4276 struct_size = struct_type->size;
4277 bytes_end = BITS_ROUNDUP_BYTES(struct_bits_off + nr_bits);
4278 if (struct_size < bytes_end) {
4279 btf_verifier_log_member(env, struct_type, member,
4280 "Member exceeds struct_size");
4281 return -EINVAL;
4282 }
4283
4284 return 0;
4285 }
4286
btf_enum_check_meta(struct btf_verifier_env * env,const struct btf_type * t,u32 meta_left)4287 static s32 btf_enum_check_meta(struct btf_verifier_env *env,
4288 const struct btf_type *t,
4289 u32 meta_left)
4290 {
4291 const struct btf_enum *enums = btf_type_enum(t);
4292 struct btf *btf = env->btf;
4293 const char *fmt_str;
4294 u16 i, nr_enums;
4295 u32 meta_needed;
4296
4297 nr_enums = btf_type_vlen(t);
4298 meta_needed = nr_enums * sizeof(*enums);
4299
4300 if (meta_left < meta_needed) {
4301 btf_verifier_log_basic(env, t,
4302 "meta_left:%u meta_needed:%u",
4303 meta_left, meta_needed);
4304 return -EINVAL;
4305 }
4306
4307 if (t->size > 8 || !is_power_of_2(t->size)) {
4308 btf_verifier_log_type(env, t, "Unexpected size");
4309 return -EINVAL;
4310 }
4311
4312 /* enum type either no name or a valid one */
4313 if (t->name_off &&
4314 !btf_name_valid_identifier(env->btf, t->name_off)) {
4315 btf_verifier_log_type(env, t, "Invalid name");
4316 return -EINVAL;
4317 }
4318
4319 btf_verifier_log_type(env, t, NULL);
4320
4321 for (i = 0; i < nr_enums; i++) {
4322 if (!btf_name_offset_valid(btf, enums[i].name_off)) {
4323 btf_verifier_log(env, "\tInvalid name_offset:%u",
4324 enums[i].name_off);
4325 return -EINVAL;
4326 }
4327
4328 /* enum member must have a valid name */
4329 if (!enums[i].name_off ||
4330 !btf_name_valid_identifier(btf, enums[i].name_off)) {
4331 btf_verifier_log_type(env, t, "Invalid name");
4332 return -EINVAL;
4333 }
4334
4335 if (env->log.level == BPF_LOG_KERNEL)
4336 continue;
4337 fmt_str = btf_type_kflag(t) ? "\t%s val=%d\n" : "\t%s val=%u\n";
4338 btf_verifier_log(env, fmt_str,
4339 __btf_name_by_offset(btf, enums[i].name_off),
4340 enums[i].val);
4341 }
4342
4343 return meta_needed;
4344 }
4345
btf_enum_log(struct btf_verifier_env * env,const struct btf_type * t)4346 static void btf_enum_log(struct btf_verifier_env *env,
4347 const struct btf_type *t)
4348 {
4349 btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
4350 }
4351
btf_enum_show(const struct btf * btf,const struct btf_type * t,u32 type_id,void * data,u8 bits_offset,struct btf_show * show)4352 static void btf_enum_show(const struct btf *btf, const struct btf_type *t,
4353 u32 type_id, void *data, u8 bits_offset,
4354 struct btf_show *show)
4355 {
4356 const struct btf_enum *enums = btf_type_enum(t);
4357 u32 i, nr_enums = btf_type_vlen(t);
4358 void *safe_data;
4359 int v;
4360
4361 safe_data = btf_show_start_type(show, t, type_id, data);
4362 if (!safe_data)
4363 return;
4364
4365 v = *(int *)safe_data;
4366
4367 for (i = 0; i < nr_enums; i++) {
4368 if (v != enums[i].val)
4369 continue;
4370
4371 btf_show_type_value(show, "%s",
4372 __btf_name_by_offset(btf,
4373 enums[i].name_off));
4374
4375 btf_show_end_type(show);
4376 return;
4377 }
4378
4379 if (btf_type_kflag(t))
4380 btf_show_type_value(show, "%d", v);
4381 else
4382 btf_show_type_value(show, "%u", v);
4383 btf_show_end_type(show);
4384 }
4385
4386 static const struct btf_kind_operations enum_ops = {
4387 .check_meta = btf_enum_check_meta,
4388 .resolve = btf_df_resolve,
4389 .check_member = btf_enum_check_member,
4390 .check_kflag_member = btf_enum_check_kflag_member,
4391 .log_details = btf_enum_log,
4392 .show = btf_enum_show,
4393 };
4394
btf_enum64_check_meta(struct btf_verifier_env * env,const struct btf_type * t,u32 meta_left)4395 static s32 btf_enum64_check_meta(struct btf_verifier_env *env,
4396 const struct btf_type *t,
4397 u32 meta_left)
4398 {
4399 const struct btf_enum64 *enums = btf_type_enum64(t);
4400 struct btf *btf = env->btf;
4401 const char *fmt_str;
4402 u16 i, nr_enums;
4403 u32 meta_needed;
4404
4405 nr_enums = btf_type_vlen(t);
4406 meta_needed = nr_enums * sizeof(*enums);
4407
4408 if (meta_left < meta_needed) {
4409 btf_verifier_log_basic(env, t,
4410 "meta_left:%u meta_needed:%u",
4411 meta_left, meta_needed);
4412 return -EINVAL;
4413 }
4414
4415 if (t->size > 8 || !is_power_of_2(t->size)) {
4416 btf_verifier_log_type(env, t, "Unexpected size");
4417 return -EINVAL;
4418 }
4419
4420 /* enum type either no name or a valid one */
4421 if (t->name_off &&
4422 !btf_name_valid_identifier(env->btf, t->name_off)) {
4423 btf_verifier_log_type(env, t, "Invalid name");
4424 return -EINVAL;
4425 }
4426
4427 btf_verifier_log_type(env, t, NULL);
4428
4429 for (i = 0; i < nr_enums; i++) {
4430 if (!btf_name_offset_valid(btf, enums[i].name_off)) {
4431 btf_verifier_log(env, "\tInvalid name_offset:%u",
4432 enums[i].name_off);
4433 return -EINVAL;
4434 }
4435
4436 /* enum member must have a valid name */
4437 if (!enums[i].name_off ||
4438 !btf_name_valid_identifier(btf, enums[i].name_off)) {
4439 btf_verifier_log_type(env, t, "Invalid name");
4440 return -EINVAL;
4441 }
4442
4443 if (env->log.level == BPF_LOG_KERNEL)
4444 continue;
4445
4446 fmt_str = btf_type_kflag(t) ? "\t%s val=%lld\n" : "\t%s val=%llu\n";
4447 btf_verifier_log(env, fmt_str,
4448 __btf_name_by_offset(btf, enums[i].name_off),
4449 btf_enum64_value(enums + i));
4450 }
4451
4452 return meta_needed;
4453 }
4454
btf_enum64_show(const struct btf * btf,const struct btf_type * t,u32 type_id,void * data,u8 bits_offset,struct btf_show * show)4455 static void btf_enum64_show(const struct btf *btf, const struct btf_type *t,
4456 u32 type_id, void *data, u8 bits_offset,
4457 struct btf_show *show)
4458 {
4459 const struct btf_enum64 *enums = btf_type_enum64(t);
4460 u32 i, nr_enums = btf_type_vlen(t);
4461 void *safe_data;
4462 s64 v;
4463
4464 safe_data = btf_show_start_type(show, t, type_id, data);
4465 if (!safe_data)
4466 return;
4467
4468 v = *(u64 *)safe_data;
4469
4470 for (i = 0; i < nr_enums; i++) {
4471 if (v != btf_enum64_value(enums + i))
4472 continue;
4473
4474 btf_show_type_value(show, "%s",
4475 __btf_name_by_offset(btf,
4476 enums[i].name_off));
4477
4478 btf_show_end_type(show);
4479 return;
4480 }
4481
4482 if (btf_type_kflag(t))
4483 btf_show_type_value(show, "%lld", v);
4484 else
4485 btf_show_type_value(show, "%llu", v);
4486 btf_show_end_type(show);
4487 }
4488
4489 static const struct btf_kind_operations enum64_ops = {
4490 .check_meta = btf_enum64_check_meta,
4491 .resolve = btf_df_resolve,
4492 .check_member = btf_enum_check_member,
4493 .check_kflag_member = btf_enum_check_kflag_member,
4494 .log_details = btf_enum_log,
4495 .show = btf_enum64_show,
4496 };
4497
btf_func_proto_check_meta(struct btf_verifier_env * env,const struct btf_type * t,u32 meta_left)4498 static s32 btf_func_proto_check_meta(struct btf_verifier_env *env,
4499 const struct btf_type *t,
4500 u32 meta_left)
4501 {
4502 u32 meta_needed = btf_type_vlen(t) * sizeof(struct btf_param);
4503
4504 if (meta_left < meta_needed) {
4505 btf_verifier_log_basic(env, t,
4506 "meta_left:%u meta_needed:%u",
4507 meta_left, meta_needed);
4508 return -EINVAL;
4509 }
4510
4511 if (t->name_off) {
4512 btf_verifier_log_type(env, t, "Invalid name");
4513 return -EINVAL;
4514 }
4515
4516 if (btf_type_kflag(t)) {
4517 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
4518 return -EINVAL;
4519 }
4520
4521 btf_verifier_log_type(env, t, NULL);
4522
4523 return meta_needed;
4524 }
4525
btf_func_proto_log(struct btf_verifier_env * env,const struct btf_type * t)4526 static void btf_func_proto_log(struct btf_verifier_env *env,
4527 const struct btf_type *t)
4528 {
4529 const struct btf_param *args = (const struct btf_param *)(t + 1);
4530 u16 nr_args = btf_type_vlen(t), i;
4531
4532 btf_verifier_log(env, "return=%u args=(", t->type);
4533 if (!nr_args) {
4534 btf_verifier_log(env, "void");
4535 goto done;
4536 }
4537
4538 if (nr_args == 1 && !args[0].type) {
4539 /* Only one vararg */
4540 btf_verifier_log(env, "vararg");
4541 goto done;
4542 }
4543
4544 btf_verifier_log(env, "%u %s", args[0].type,
4545 __btf_name_by_offset(env->btf,
4546 args[0].name_off));
4547 for (i = 1; i < nr_args - 1; i++)
4548 btf_verifier_log(env, ", %u %s", args[i].type,
4549 __btf_name_by_offset(env->btf,
4550 args[i].name_off));
4551
4552 if (nr_args > 1) {
4553 const struct btf_param *last_arg = &args[nr_args - 1];
4554
4555 if (last_arg->type)
4556 btf_verifier_log(env, ", %u %s", last_arg->type,
4557 __btf_name_by_offset(env->btf,
4558 last_arg->name_off));
4559 else
4560 btf_verifier_log(env, ", vararg");
4561 }
4562
4563 done:
4564 btf_verifier_log(env, ")");
4565 }
4566
4567 static const struct btf_kind_operations func_proto_ops = {
4568 .check_meta = btf_func_proto_check_meta,
4569 .resolve = btf_df_resolve,
4570 /*
4571 * BTF_KIND_FUNC_PROTO cannot be directly referred by
4572 * a struct's member.
4573 *
4574 * It should be a function pointer instead.
4575 * (i.e. struct's member -> BTF_KIND_PTR -> BTF_KIND_FUNC_PROTO)
4576 *
4577 * Hence, there is no btf_func_check_member().
4578 */
4579 .check_member = btf_df_check_member,
4580 .check_kflag_member = btf_df_check_kflag_member,
4581 .log_details = btf_func_proto_log,
4582 .show = btf_df_show,
4583 };
4584
btf_func_check_meta(struct btf_verifier_env * env,const struct btf_type * t,u32 meta_left)4585 static s32 btf_func_check_meta(struct btf_verifier_env *env,
4586 const struct btf_type *t,
4587 u32 meta_left)
4588 {
4589 if (!t->name_off ||
4590 !btf_name_valid_identifier(env->btf, t->name_off)) {
4591 btf_verifier_log_type(env, t, "Invalid name");
4592 return -EINVAL;
4593 }
4594
4595 if (btf_type_vlen(t) > BTF_FUNC_GLOBAL) {
4596 btf_verifier_log_type(env, t, "Invalid func linkage");
4597 return -EINVAL;
4598 }
4599
4600 if (btf_type_kflag(t)) {
4601 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
4602 return -EINVAL;
4603 }
4604
4605 btf_verifier_log_type(env, t, NULL);
4606
4607 return 0;
4608 }
4609
btf_func_resolve(struct btf_verifier_env * env,const struct resolve_vertex * v)4610 static int btf_func_resolve(struct btf_verifier_env *env,
4611 const struct resolve_vertex *v)
4612 {
4613 const struct btf_type *t = v->t;
4614 u32 next_type_id = t->type;
4615 int err;
4616
4617 err = btf_func_check(env, t);
4618 if (err)
4619 return err;
4620
4621 env_stack_pop_resolved(env, next_type_id, 0);
4622 return 0;
4623 }
4624
4625 static const struct btf_kind_operations func_ops = {
4626 .check_meta = btf_func_check_meta,
4627 .resolve = btf_func_resolve,
4628 .check_member = btf_df_check_member,
4629 .check_kflag_member = btf_df_check_kflag_member,
4630 .log_details = btf_ref_type_log,
4631 .show = btf_df_show,
4632 };
4633
btf_var_check_meta(struct btf_verifier_env * env,const struct btf_type * t,u32 meta_left)4634 static s32 btf_var_check_meta(struct btf_verifier_env *env,
4635 const struct btf_type *t,
4636 u32 meta_left)
4637 {
4638 const struct btf_var *var;
4639 u32 meta_needed = sizeof(*var);
4640
4641 if (meta_left < meta_needed) {
4642 btf_verifier_log_basic(env, t,
4643 "meta_left:%u meta_needed:%u",
4644 meta_left, meta_needed);
4645 return -EINVAL;
4646 }
4647
4648 if (btf_type_vlen(t)) {
4649 btf_verifier_log_type(env, t, "vlen != 0");
4650 return -EINVAL;
4651 }
4652
4653 if (btf_type_kflag(t)) {
4654 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
4655 return -EINVAL;
4656 }
4657
4658 if (!t->name_off ||
4659 !btf_name_valid_identifier(env->btf, t->name_off)) {
4660 btf_verifier_log_type(env, t, "Invalid name");
4661 return -EINVAL;
4662 }
4663
4664 /* A var cannot be in type void */
4665 if (!t->type || !BTF_TYPE_ID_VALID(t->type)) {
4666 btf_verifier_log_type(env, t, "Invalid type_id");
4667 return -EINVAL;
4668 }
4669
4670 var = btf_type_var(t);
4671 if (var->linkage != BTF_VAR_STATIC &&
4672 var->linkage != BTF_VAR_GLOBAL_ALLOCATED) {
4673 btf_verifier_log_type(env, t, "Linkage not supported");
4674 return -EINVAL;
4675 }
4676
4677 btf_verifier_log_type(env, t, NULL);
4678
4679 return meta_needed;
4680 }
4681
btf_var_log(struct btf_verifier_env * env,const struct btf_type * t)4682 static void btf_var_log(struct btf_verifier_env *env, const struct btf_type *t)
4683 {
4684 const struct btf_var *var = btf_type_var(t);
4685
4686 btf_verifier_log(env, "type_id=%u linkage=%u", t->type, var->linkage);
4687 }
4688
4689 static const struct btf_kind_operations var_ops = {
4690 .check_meta = btf_var_check_meta,
4691 .resolve = btf_var_resolve,
4692 .check_member = btf_df_check_member,
4693 .check_kflag_member = btf_df_check_kflag_member,
4694 .log_details = btf_var_log,
4695 .show = btf_var_show,
4696 };
4697
btf_datasec_check_meta(struct btf_verifier_env * env,const struct btf_type * t,u32 meta_left)4698 static s32 btf_datasec_check_meta(struct btf_verifier_env *env,
4699 const struct btf_type *t,
4700 u32 meta_left)
4701 {
4702 const struct btf_var_secinfo *vsi;
4703 u64 last_vsi_end_off = 0, sum = 0;
4704 u32 i, meta_needed;
4705
4706 meta_needed = btf_type_vlen(t) * sizeof(*vsi);
4707 if (meta_left < meta_needed) {
4708 btf_verifier_log_basic(env, t,
4709 "meta_left:%u meta_needed:%u",
4710 meta_left, meta_needed);
4711 return -EINVAL;
4712 }
4713
4714 if (!t->size) {
4715 btf_verifier_log_type(env, t, "size == 0");
4716 return -EINVAL;
4717 }
4718
4719 if (btf_type_kflag(t)) {
4720 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
4721 return -EINVAL;
4722 }
4723
4724 if (!t->name_off ||
4725 !btf_name_valid_section(env->btf, t->name_off)) {
4726 btf_verifier_log_type(env, t, "Invalid name");
4727 return -EINVAL;
4728 }
4729
4730 btf_verifier_log_type(env, t, NULL);
4731
4732 for_each_vsi(i, t, vsi) {
4733 /* A var cannot be in type void */
4734 if (!vsi->type || !BTF_TYPE_ID_VALID(vsi->type)) {
4735 btf_verifier_log_vsi(env, t, vsi,
4736 "Invalid type_id");
4737 return -EINVAL;
4738 }
4739
4740 if (vsi->offset < last_vsi_end_off || vsi->offset >= t->size) {
4741 btf_verifier_log_vsi(env, t, vsi,
4742 "Invalid offset");
4743 return -EINVAL;
4744 }
4745
4746 if (!vsi->size || vsi->size > t->size) {
4747 btf_verifier_log_vsi(env, t, vsi,
4748 "Invalid size");
4749 return -EINVAL;
4750 }
4751
4752 last_vsi_end_off = vsi->offset + vsi->size;
4753 if (last_vsi_end_off > t->size) {
4754 btf_verifier_log_vsi(env, t, vsi,
4755 "Invalid offset+size");
4756 return -EINVAL;
4757 }
4758
4759 btf_verifier_log_vsi(env, t, vsi, NULL);
4760 sum += vsi->size;
4761 }
4762
4763 if (t->size < sum) {
4764 btf_verifier_log_type(env, t, "Invalid btf_info size");
4765 return -EINVAL;
4766 }
4767
4768 return meta_needed;
4769 }
4770
btf_datasec_resolve(struct btf_verifier_env * env,const struct resolve_vertex * v)4771 static int btf_datasec_resolve(struct btf_verifier_env *env,
4772 const struct resolve_vertex *v)
4773 {
4774 const struct btf_var_secinfo *vsi;
4775 struct btf *btf = env->btf;
4776 u16 i;
4777
4778 env->resolve_mode = RESOLVE_TBD;
4779 for_each_vsi_from(i, v->next_member, v->t, vsi) {
4780 u32 var_type_id = vsi->type, type_id, type_size = 0;
4781 const struct btf_type *var_type = btf_type_by_id(env->btf,
4782 var_type_id);
4783 if (!var_type || !btf_type_is_var(var_type)) {
4784 btf_verifier_log_vsi(env, v->t, vsi,
4785 "Not a VAR kind member");
4786 return -EINVAL;
4787 }
4788
4789 if (!env_type_is_resolve_sink(env, var_type) &&
4790 !env_type_is_resolved(env, var_type_id)) {
4791 env_stack_set_next_member(env, i + 1);
4792 return env_stack_push(env, var_type, var_type_id);
4793 }
4794
4795 type_id = var_type->type;
4796 if (!btf_type_id_size(btf, &type_id, &type_size)) {
4797 btf_verifier_log_vsi(env, v->t, vsi, "Invalid type");
4798 return -EINVAL;
4799 }
4800
4801 if (vsi->size < type_size) {
4802 btf_verifier_log_vsi(env, v->t, vsi, "Invalid size");
4803 return -EINVAL;
4804 }
4805 }
4806
4807 env_stack_pop_resolved(env, 0, 0);
4808 return 0;
4809 }
4810
btf_datasec_log(struct btf_verifier_env * env,const struct btf_type * t)4811 static void btf_datasec_log(struct btf_verifier_env *env,
4812 const struct btf_type *t)
4813 {
4814 btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
4815 }
4816
btf_datasec_show(const struct btf * btf,const struct btf_type * t,u32 type_id,void * data,u8 bits_offset,struct btf_show * show)4817 static void btf_datasec_show(const struct btf *btf,
4818 const struct btf_type *t, u32 type_id,
4819 void *data, u8 bits_offset,
4820 struct btf_show *show)
4821 {
4822 const struct btf_var_secinfo *vsi;
4823 const struct btf_type *var;
4824 u32 i;
4825
4826 if (!btf_show_start_type(show, t, type_id, data))
4827 return;
4828
4829 btf_show_type_value(show, "section (\"%s\") = {",
4830 __btf_name_by_offset(btf, t->name_off));
4831 for_each_vsi(i, t, vsi) {
4832 var = btf_type_by_id(btf, vsi->type);
4833 if (i)
4834 btf_show(show, ",");
4835 btf_type_ops(var)->show(btf, var, vsi->type,
4836 data + vsi->offset, bits_offset, show);
4837 }
4838 btf_show_end_type(show);
4839 }
4840
4841 static const struct btf_kind_operations datasec_ops = {
4842 .check_meta = btf_datasec_check_meta,
4843 .resolve = btf_datasec_resolve,
4844 .check_member = btf_df_check_member,
4845 .check_kflag_member = btf_df_check_kflag_member,
4846 .log_details = btf_datasec_log,
4847 .show = btf_datasec_show,
4848 };
4849
btf_float_check_meta(struct btf_verifier_env * env,const struct btf_type * t,u32 meta_left)4850 static s32 btf_float_check_meta(struct btf_verifier_env *env,
4851 const struct btf_type *t,
4852 u32 meta_left)
4853 {
4854 if (btf_type_vlen(t)) {
4855 btf_verifier_log_type(env, t, "vlen != 0");
4856 return -EINVAL;
4857 }
4858
4859 if (btf_type_kflag(t)) {
4860 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
4861 return -EINVAL;
4862 }
4863
4864 if (t->size != 2 && t->size != 4 && t->size != 8 && t->size != 12 &&
4865 t->size != 16) {
4866 btf_verifier_log_type(env, t, "Invalid type_size");
4867 return -EINVAL;
4868 }
4869
4870 btf_verifier_log_type(env, t, NULL);
4871
4872 return 0;
4873 }
4874
btf_float_check_member(struct btf_verifier_env * env,const struct btf_type * struct_type,const struct btf_member * member,const struct btf_type * member_type)4875 static int btf_float_check_member(struct btf_verifier_env *env,
4876 const struct btf_type *struct_type,
4877 const struct btf_member *member,
4878 const struct btf_type *member_type)
4879 {
4880 u64 start_offset_bytes;
4881 u64 end_offset_bytes;
4882 u64 misalign_bits;
4883 u64 align_bytes;
4884 u64 align_bits;
4885
4886 /* Different architectures have different alignment requirements, so
4887 * here we check only for the reasonable minimum. This way we ensure
4888 * that types after CO-RE can pass the kernel BTF verifier.
4889 */
4890 align_bytes = min_t(u64, sizeof(void *), member_type->size);
4891 align_bits = align_bytes * BITS_PER_BYTE;
4892 div64_u64_rem(member->offset, align_bits, &misalign_bits);
4893 if (misalign_bits) {
4894 btf_verifier_log_member(env, struct_type, member,
4895 "Member is not properly aligned");
4896 return -EINVAL;
4897 }
4898
4899 start_offset_bytes = member->offset / BITS_PER_BYTE;
4900 end_offset_bytes = start_offset_bytes + member_type->size;
4901 if (end_offset_bytes > struct_type->size) {
4902 btf_verifier_log_member(env, struct_type, member,
4903 "Member exceeds struct_size");
4904 return -EINVAL;
4905 }
4906
4907 return 0;
4908 }
4909
btf_float_log(struct btf_verifier_env * env,const struct btf_type * t)4910 static void btf_float_log(struct btf_verifier_env *env,
4911 const struct btf_type *t)
4912 {
4913 btf_verifier_log(env, "size=%u", t->size);
4914 }
4915
4916 static const struct btf_kind_operations float_ops = {
4917 .check_meta = btf_float_check_meta,
4918 .resolve = btf_df_resolve,
4919 .check_member = btf_float_check_member,
4920 .check_kflag_member = btf_generic_check_kflag_member,
4921 .log_details = btf_float_log,
4922 .show = btf_df_show,
4923 };
4924
btf_decl_tag_check_meta(struct btf_verifier_env * env,const struct btf_type * t,u32 meta_left)4925 static s32 btf_decl_tag_check_meta(struct btf_verifier_env *env,
4926 const struct btf_type *t,
4927 u32 meta_left)
4928 {
4929 const struct btf_decl_tag *tag;
4930 u32 meta_needed = sizeof(*tag);
4931 s32 component_idx;
4932 const char *value;
4933
4934 if (meta_left < meta_needed) {
4935 btf_verifier_log_basic(env, t,
4936 "meta_left:%u meta_needed:%u",
4937 meta_left, meta_needed);
4938 return -EINVAL;
4939 }
4940
4941 value = btf_name_by_offset(env->btf, t->name_off);
4942 if (!value || !value[0]) {
4943 btf_verifier_log_type(env, t, "Invalid value");
4944 return -EINVAL;
4945 }
4946
4947 if (btf_type_vlen(t)) {
4948 btf_verifier_log_type(env, t, "vlen != 0");
4949 return -EINVAL;
4950 }
4951
4952 if (btf_type_kflag(t)) {
4953 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
4954 return -EINVAL;
4955 }
4956
4957 component_idx = btf_type_decl_tag(t)->component_idx;
4958 if (component_idx < -1) {
4959 btf_verifier_log_type(env, t, "Invalid component_idx");
4960 return -EINVAL;
4961 }
4962
4963 btf_verifier_log_type(env, t, NULL);
4964
4965 return meta_needed;
4966 }
4967
btf_decl_tag_resolve(struct btf_verifier_env * env,const struct resolve_vertex * v)4968 static int btf_decl_tag_resolve(struct btf_verifier_env *env,
4969 const struct resolve_vertex *v)
4970 {
4971 const struct btf_type *next_type;
4972 const struct btf_type *t = v->t;
4973 u32 next_type_id = t->type;
4974 struct btf *btf = env->btf;
4975 s32 component_idx;
4976 u32 vlen;
4977
4978 next_type = btf_type_by_id(btf, next_type_id);
4979 if (!next_type || !btf_type_is_decl_tag_target(next_type)) {
4980 btf_verifier_log_type(env, v->t, "Invalid type_id");
4981 return -EINVAL;
4982 }
4983
4984 if (!env_type_is_resolve_sink(env, next_type) &&
4985 !env_type_is_resolved(env, next_type_id))
4986 return env_stack_push(env, next_type, next_type_id);
4987
4988 component_idx = btf_type_decl_tag(t)->component_idx;
4989 if (component_idx != -1) {
4990 if (btf_type_is_var(next_type) || btf_type_is_typedef(next_type)) {
4991 btf_verifier_log_type(env, v->t, "Invalid component_idx");
4992 return -EINVAL;
4993 }
4994
4995 if (btf_type_is_struct(next_type)) {
4996 vlen = btf_type_vlen(next_type);
4997 } else {
4998 /* next_type should be a function */
4999 next_type = btf_type_by_id(btf, next_type->type);
5000 vlen = btf_type_vlen(next_type);
5001 }
5002
5003 if ((u32)component_idx >= vlen) {
5004 btf_verifier_log_type(env, v->t, "Invalid component_idx");
5005 return -EINVAL;
5006 }
5007 }
5008
5009 env_stack_pop_resolved(env, next_type_id, 0);
5010
5011 return 0;
5012 }
5013
btf_decl_tag_log(struct btf_verifier_env * env,const struct btf_type * t)5014 static void btf_decl_tag_log(struct btf_verifier_env *env, const struct btf_type *t)
5015 {
5016 btf_verifier_log(env, "type=%u component_idx=%d", t->type,
5017 btf_type_decl_tag(t)->component_idx);
5018 }
5019
5020 static const struct btf_kind_operations decl_tag_ops = {
5021 .check_meta = btf_decl_tag_check_meta,
5022 .resolve = btf_decl_tag_resolve,
5023 .check_member = btf_df_check_member,
5024 .check_kflag_member = btf_df_check_kflag_member,
5025 .log_details = btf_decl_tag_log,
5026 .show = btf_df_show,
5027 };
5028
btf_func_proto_check(struct btf_verifier_env * env,const struct btf_type * t)5029 static int btf_func_proto_check(struct btf_verifier_env *env,
5030 const struct btf_type *t)
5031 {
5032 const struct btf_type *ret_type;
5033 const struct btf_param *args;
5034 const struct btf *btf;
5035 u16 nr_args, i;
5036 int err;
5037
5038 btf = env->btf;
5039 args = (const struct btf_param *)(t + 1);
5040 nr_args = btf_type_vlen(t);
5041
5042 /* Check func return type which could be "void" (t->type == 0) */
5043 if (t->type) {
5044 u32 ret_type_id = t->type;
5045
5046 ret_type = btf_type_by_id(btf, ret_type_id);
5047 if (!ret_type) {
5048 btf_verifier_log_type(env, t, "Invalid return type");
5049 return -EINVAL;
5050 }
5051
5052 if (btf_type_is_resolve_source_only(ret_type)) {
5053 btf_verifier_log_type(env, t, "Invalid return type");
5054 return -EINVAL;
5055 }
5056
5057 if (btf_type_needs_resolve(ret_type) &&
5058 !env_type_is_resolved(env, ret_type_id)) {
5059 err = btf_resolve(env, ret_type, ret_type_id);
5060 if (err)
5061 return err;
5062 }
5063
5064 /* Ensure the return type is a type that has a size */
5065 if (!btf_type_id_size(btf, &ret_type_id, NULL)) {
5066 btf_verifier_log_type(env, t, "Invalid return type");
5067 return -EINVAL;
5068 }
5069 }
5070
5071 if (!nr_args)
5072 return 0;
5073
5074 /* Last func arg type_id could be 0 if it is a vararg */
5075 if (!args[nr_args - 1].type) {
5076 if (args[nr_args - 1].name_off) {
5077 btf_verifier_log_type(env, t, "Invalid arg#%u",
5078 nr_args);
5079 return -EINVAL;
5080 }
5081 nr_args--;
5082 }
5083
5084 for (i = 0; i < nr_args; i++) {
5085 const struct btf_type *arg_type;
5086 u32 arg_type_id;
5087
5088 arg_type_id = args[i].type;
5089 arg_type = btf_type_by_id(btf, arg_type_id);
5090 if (!arg_type) {
5091 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
5092 return -EINVAL;
5093 }
5094
5095 if (btf_type_is_resolve_source_only(arg_type)) {
5096 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
5097 return -EINVAL;
5098 }
5099
5100 if (args[i].name_off &&
5101 (!btf_name_offset_valid(btf, args[i].name_off) ||
5102 !btf_name_valid_identifier(btf, args[i].name_off))) {
5103 btf_verifier_log_type(env, t,
5104 "Invalid arg#%u", i + 1);
5105 return -EINVAL;
5106 }
5107
5108 if (btf_type_needs_resolve(arg_type) &&
5109 !env_type_is_resolved(env, arg_type_id)) {
5110 err = btf_resolve(env, arg_type, arg_type_id);
5111 if (err)
5112 return err;
5113 }
5114
5115 if (!btf_type_id_size(btf, &arg_type_id, NULL)) {
5116 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
5117 return -EINVAL;
5118 }
5119 }
5120
5121 return 0;
5122 }
5123
btf_func_check(struct btf_verifier_env * env,const struct btf_type * t)5124 static int btf_func_check(struct btf_verifier_env *env,
5125 const struct btf_type *t)
5126 {
5127 const struct btf_type *proto_type;
5128 const struct btf_param *args;
5129 const struct btf *btf;
5130 u16 nr_args, i;
5131
5132 btf = env->btf;
5133 proto_type = btf_type_by_id(btf, t->type);
5134
5135 if (!proto_type || !btf_type_is_func_proto(proto_type)) {
5136 btf_verifier_log_type(env, t, "Invalid type_id");
5137 return -EINVAL;
5138 }
5139
5140 args = (const struct btf_param *)(proto_type + 1);
5141 nr_args = btf_type_vlen(proto_type);
5142 for (i = 0; i < nr_args; i++) {
5143 if (!args[i].name_off && args[i].type) {
5144 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
5145 return -EINVAL;
5146 }
5147 }
5148
5149 return 0;
5150 }
5151
5152 static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS] = {
5153 [BTF_KIND_INT] = &int_ops,
5154 [BTF_KIND_PTR] = &ptr_ops,
5155 [BTF_KIND_ARRAY] = &array_ops,
5156 [BTF_KIND_STRUCT] = &struct_ops,
5157 [BTF_KIND_UNION] = &struct_ops,
5158 [BTF_KIND_ENUM] = &enum_ops,
5159 [BTF_KIND_FWD] = &fwd_ops,
5160 [BTF_KIND_TYPEDEF] = &modifier_ops,
5161 [BTF_KIND_VOLATILE] = &modifier_ops,
5162 [BTF_KIND_CONST] = &modifier_ops,
5163 [BTF_KIND_RESTRICT] = &modifier_ops,
5164 [BTF_KIND_FUNC] = &func_ops,
5165 [BTF_KIND_FUNC_PROTO] = &func_proto_ops,
5166 [BTF_KIND_VAR] = &var_ops,
5167 [BTF_KIND_DATASEC] = &datasec_ops,
5168 [BTF_KIND_FLOAT] = &float_ops,
5169 [BTF_KIND_DECL_TAG] = &decl_tag_ops,
5170 [BTF_KIND_TYPE_TAG] = &modifier_ops,
5171 [BTF_KIND_ENUM64] = &enum64_ops,
5172 };
5173
btf_check_meta(struct btf_verifier_env * env,const struct btf_type * t,u32 meta_left)5174 static s32 btf_check_meta(struct btf_verifier_env *env,
5175 const struct btf_type *t,
5176 u32 meta_left)
5177 {
5178 u32 saved_meta_left = meta_left;
5179 s32 var_meta_size;
5180
5181 if (meta_left < sizeof(*t)) {
5182 btf_verifier_log(env, "[%u] meta_left:%u meta_needed:%zu",
5183 env->log_type_id, meta_left, sizeof(*t));
5184 return -EINVAL;
5185 }
5186 meta_left -= sizeof(*t);
5187
5188 if (t->info & ~BTF_INFO_MASK) {
5189 btf_verifier_log(env, "[%u] Invalid btf_info:%x",
5190 env->log_type_id, t->info);
5191 return -EINVAL;
5192 }
5193
5194 if (BTF_INFO_KIND(t->info) > BTF_KIND_MAX ||
5195 BTF_INFO_KIND(t->info) == BTF_KIND_UNKN) {
5196 btf_verifier_log(env, "[%u] Invalid kind:%u",
5197 env->log_type_id, BTF_INFO_KIND(t->info));
5198 return -EINVAL;
5199 }
5200
5201 if (!btf_name_offset_valid(env->btf, t->name_off)) {
5202 btf_verifier_log(env, "[%u] Invalid name_offset:%u",
5203 env->log_type_id, t->name_off);
5204 return -EINVAL;
5205 }
5206
5207 var_meta_size = btf_type_ops(t)->check_meta(env, t, meta_left);
5208 if (var_meta_size < 0)
5209 return var_meta_size;
5210
5211 meta_left -= var_meta_size;
5212
5213 return saved_meta_left - meta_left;
5214 }
5215
btf_check_all_metas(struct btf_verifier_env * env)5216 static int btf_check_all_metas(struct btf_verifier_env *env)
5217 {
5218 struct btf *btf = env->btf;
5219 struct btf_header *hdr;
5220 void *cur, *end;
5221
5222 hdr = &btf->hdr;
5223 cur = btf->nohdr_data + hdr->type_off;
5224 end = cur + hdr->type_len;
5225
5226 env->log_type_id = btf->base_btf ? btf->start_id : 1;
5227 while (cur < end) {
5228 struct btf_type *t = cur;
5229 s32 meta_size;
5230
5231 meta_size = btf_check_meta(env, t, end - cur);
5232 if (meta_size < 0)
5233 return meta_size;
5234
5235 btf_add_type(env, t);
5236 cur += meta_size;
5237 env->log_type_id++;
5238 }
5239
5240 return 0;
5241 }
5242
btf_resolve_valid(struct btf_verifier_env * env,const struct btf_type * t,u32 type_id)5243 static bool btf_resolve_valid(struct btf_verifier_env *env,
5244 const struct btf_type *t,
5245 u32 type_id)
5246 {
5247 struct btf *btf = env->btf;
5248
5249 if (!env_type_is_resolved(env, type_id))
5250 return false;
5251
5252 if (btf_type_is_struct(t) || btf_type_is_datasec(t))
5253 return !btf_resolved_type_id(btf, type_id) &&
5254 !btf_resolved_type_size(btf, type_id);
5255
5256 if (btf_type_is_decl_tag(t) || btf_type_is_func(t))
5257 return btf_resolved_type_id(btf, type_id) &&
5258 !btf_resolved_type_size(btf, type_id);
5259
5260 if (btf_type_is_modifier(t) || btf_type_is_ptr(t) ||
5261 btf_type_is_var(t)) {
5262 t = btf_type_id_resolve(btf, &type_id);
5263 return t &&
5264 !btf_type_is_modifier(t) &&
5265 !btf_type_is_var(t) &&
5266 !btf_type_is_datasec(t);
5267 }
5268
5269 if (btf_type_is_array(t)) {
5270 const struct btf_array *array = btf_type_array(t);
5271 const struct btf_type *elem_type;
5272 u32 elem_type_id = array->type;
5273 u32 elem_size;
5274
5275 elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size);
5276 return elem_type && !btf_type_is_modifier(elem_type) &&
5277 (array->nelems * elem_size ==
5278 btf_resolved_type_size(btf, type_id));
5279 }
5280
5281 return false;
5282 }
5283
btf_resolve(struct btf_verifier_env * env,const struct btf_type * t,u32 type_id)5284 static int btf_resolve(struct btf_verifier_env *env,
5285 const struct btf_type *t, u32 type_id)
5286 {
5287 u32 save_log_type_id = env->log_type_id;
5288 const struct resolve_vertex *v;
5289 int err = 0;
5290
5291 env->resolve_mode = RESOLVE_TBD;
5292 env_stack_push(env, t, type_id);
5293 while (!err && (v = env_stack_peak(env))) {
5294 env->log_type_id = v->type_id;
5295 err = btf_type_ops(v->t)->resolve(env, v);
5296 }
5297
5298 env->log_type_id = type_id;
5299 if (err == -E2BIG) {
5300 btf_verifier_log_type(env, t,
5301 "Exceeded max resolving depth:%u",
5302 MAX_RESOLVE_DEPTH);
5303 } else if (err == -EEXIST) {
5304 btf_verifier_log_type(env, t, "Loop detected");
5305 }
5306
5307 /* Final sanity check */
5308 if (!err && !btf_resolve_valid(env, t, type_id)) {
5309 btf_verifier_log_type(env, t, "Invalid resolve state");
5310 err = -EINVAL;
5311 }
5312
5313 env->log_type_id = save_log_type_id;
5314 return err;
5315 }
5316
btf_check_all_types(struct btf_verifier_env * env)5317 static int btf_check_all_types(struct btf_verifier_env *env)
5318 {
5319 struct btf *btf = env->btf;
5320 const struct btf_type *t;
5321 u32 type_id, i;
5322 int err;
5323
5324 err = env_resolve_init(env);
5325 if (err)
5326 return err;
5327
5328 env->phase++;
5329 for (i = btf->base_btf ? 0 : 1; i < btf->nr_types; i++) {
5330 type_id = btf->start_id + i;
5331 t = btf_type_by_id(btf, type_id);
5332
5333 env->log_type_id = type_id;
5334 if (btf_type_needs_resolve(t) &&
5335 !env_type_is_resolved(env, type_id)) {
5336 err = btf_resolve(env, t, type_id);
5337 if (err)
5338 return err;
5339 }
5340
5341 if (btf_type_is_func_proto(t)) {
5342 err = btf_func_proto_check(env, t);
5343 if (err)
5344 return err;
5345 }
5346 }
5347
5348 return 0;
5349 }
5350
btf_parse_type_sec(struct btf_verifier_env * env)5351 static int btf_parse_type_sec(struct btf_verifier_env *env)
5352 {
5353 const struct btf_header *hdr = &env->btf->hdr;
5354 int err;
5355
5356 /* Type section must align to 4 bytes */
5357 if (hdr->type_off & (sizeof(u32) - 1)) {
5358 btf_verifier_log(env, "Unaligned type_off");
5359 return -EINVAL;
5360 }
5361
5362 if (!env->btf->base_btf && !hdr->type_len) {
5363 btf_verifier_log(env, "No type found");
5364 return -EINVAL;
5365 }
5366
5367 err = btf_check_all_metas(env);
5368 if (err)
5369 return err;
5370
5371 return btf_check_all_types(env);
5372 }
5373
btf_parse_str_sec(struct btf_verifier_env * env)5374 static int btf_parse_str_sec(struct btf_verifier_env *env)
5375 {
5376 const struct btf_header *hdr;
5377 struct btf *btf = env->btf;
5378 const char *start, *end;
5379
5380 hdr = &btf->hdr;
5381 start = btf->nohdr_data + hdr->str_off;
5382 end = start + hdr->str_len;
5383
5384 if (end != btf->data + btf->data_size) {
5385 btf_verifier_log(env, "String section is not at the end");
5386 return -EINVAL;
5387 }
5388
5389 btf->strings = start;
5390
5391 if (btf->base_btf && !hdr->str_len)
5392 return 0;
5393 if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_NAME_OFFSET || end[-1]) {
5394 btf_verifier_log(env, "Invalid string section");
5395 return -EINVAL;
5396 }
5397 if (!btf->base_btf && start[0]) {
5398 btf_verifier_log(env, "Invalid string section");
5399 return -EINVAL;
5400 }
5401
5402 return 0;
5403 }
5404
5405 static const size_t btf_sec_info_offset[] = {
5406 offsetof(struct btf_header, type_off),
5407 offsetof(struct btf_header, str_off),
5408 };
5409
btf_sec_info_cmp(const void * a,const void * b)5410 static int btf_sec_info_cmp(const void *a, const void *b)
5411 {
5412 const struct btf_sec_info *x = a;
5413 const struct btf_sec_info *y = b;
5414
5415 return (int)(x->off - y->off) ? : (int)(x->len - y->len);
5416 }
5417
btf_check_sec_info(struct btf_verifier_env * env,u32 btf_data_size)5418 static int btf_check_sec_info(struct btf_verifier_env *env,
5419 u32 btf_data_size)
5420 {
5421 struct btf_sec_info secs[ARRAY_SIZE(btf_sec_info_offset)];
5422 u32 total, expected_total, i;
5423 const struct btf_header *hdr;
5424 const struct btf *btf;
5425
5426 btf = env->btf;
5427 hdr = &btf->hdr;
5428
5429 /* Populate the secs from hdr */
5430 for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++)
5431 secs[i] = *(struct btf_sec_info *)((void *)hdr +
5432 btf_sec_info_offset[i]);
5433
5434 sort(secs, ARRAY_SIZE(btf_sec_info_offset),
5435 sizeof(struct btf_sec_info), btf_sec_info_cmp, NULL);
5436
5437 /* Check for gaps and overlap among sections */
5438 total = 0;
5439 expected_total = btf_data_size - hdr->hdr_len;
5440 for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++) {
5441 if (expected_total < secs[i].off) {
5442 btf_verifier_log(env, "Invalid section offset");
5443 return -EINVAL;
5444 }
5445 if (total < secs[i].off) {
5446 /* gap */
5447 btf_verifier_log(env, "Unsupported section found");
5448 return -EINVAL;
5449 }
5450 if (total > secs[i].off) {
5451 btf_verifier_log(env, "Section overlap found");
5452 return -EINVAL;
5453 }
5454 if (expected_total - total < secs[i].len) {
5455 btf_verifier_log(env,
5456 "Total section length too long");
5457 return -EINVAL;
5458 }
5459 total += secs[i].len;
5460 }
5461
5462 /* There is data other than hdr and known sections */
5463 if (expected_total != total) {
5464 btf_verifier_log(env, "Unsupported section found");
5465 return -EINVAL;
5466 }
5467
5468 return 0;
5469 }
5470
btf_parse_hdr(struct btf_verifier_env * env)5471 static int btf_parse_hdr(struct btf_verifier_env *env)
5472 {
5473 u32 hdr_len, hdr_copy, btf_data_size;
5474 const struct btf_header *hdr;
5475 struct btf *btf;
5476
5477 btf = env->btf;
5478 btf_data_size = btf->data_size;
5479
5480 if (btf_data_size < offsetofend(struct btf_header, hdr_len)) {
5481 btf_verifier_log(env, "hdr_len not found");
5482 return -EINVAL;
5483 }
5484
5485 hdr = btf->data;
5486 hdr_len = hdr->hdr_len;
5487 if (btf_data_size < hdr_len) {
5488 btf_verifier_log(env, "btf_header not found");
5489 return -EINVAL;
5490 }
5491
5492 /* Ensure the unsupported header fields are zero */
5493 if (hdr_len > sizeof(btf->hdr)) {
5494 u8 *expected_zero = btf->data + sizeof(btf->hdr);
5495 u8 *end = btf->data + hdr_len;
5496
5497 for (; expected_zero < end; expected_zero++) {
5498 if (*expected_zero) {
5499 btf_verifier_log(env, "Unsupported btf_header");
5500 return -E2BIG;
5501 }
5502 }
5503 }
5504
5505 hdr_copy = min_t(u32, hdr_len, sizeof(btf->hdr));
5506 memcpy(&btf->hdr, btf->data, hdr_copy);
5507
5508 hdr = &btf->hdr;
5509
5510 btf_verifier_log_hdr(env, btf_data_size);
5511
5512 if (hdr->magic != BTF_MAGIC) {
5513 btf_verifier_log(env, "Invalid magic");
5514 return -EINVAL;
5515 }
5516
5517 if (hdr->version != BTF_VERSION) {
5518 btf_verifier_log(env, "Unsupported version");
5519 return -ENOTSUPP;
5520 }
5521
5522 if (hdr->flags) {
5523 btf_verifier_log(env, "Unsupported flags");
5524 return -ENOTSUPP;
5525 }
5526
5527 if (!btf->base_btf && btf_data_size == hdr->hdr_len) {
5528 btf_verifier_log(env, "No data");
5529 return -EINVAL;
5530 }
5531
5532 return btf_check_sec_info(env, btf_data_size);
5533 }
5534
5535 static const char *alloc_obj_fields[] = {
5536 "bpf_spin_lock",
5537 "bpf_list_head",
5538 "bpf_list_node",
5539 "bpf_rb_root",
5540 "bpf_rb_node",
5541 "bpf_refcount",
5542 };
5543
5544 static struct btf_struct_metas *
btf_parse_struct_metas(struct bpf_verifier_log * log,struct btf * btf)5545 btf_parse_struct_metas(struct bpf_verifier_log *log, struct btf *btf)
5546 {
5547 struct btf_struct_metas *tab = NULL;
5548 struct btf_id_set *aof;
5549 int i, n, id, ret;
5550
5551 BUILD_BUG_ON(offsetof(struct btf_id_set, cnt) != 0);
5552 BUILD_BUG_ON(sizeof(struct btf_id_set) != sizeof(u32));
5553
5554 aof = kmalloc(sizeof(*aof), GFP_KERNEL | __GFP_NOWARN);
5555 if (!aof)
5556 return ERR_PTR(-ENOMEM);
5557 aof->cnt = 0;
5558
5559 for (i = 0; i < ARRAY_SIZE(alloc_obj_fields); i++) {
5560 /* Try to find whether this special type exists in user BTF, and
5561 * if so remember its ID so we can easily find it among members
5562 * of structs that we iterate in the next loop.
5563 */
5564 struct btf_id_set *new_aof;
5565
5566 id = btf_find_by_name_kind(btf, alloc_obj_fields[i], BTF_KIND_STRUCT);
5567 if (id < 0)
5568 continue;
5569
5570 new_aof = krealloc(aof, offsetof(struct btf_id_set, ids[aof->cnt + 1]),
5571 GFP_KERNEL | __GFP_NOWARN);
5572 if (!new_aof) {
5573 ret = -ENOMEM;
5574 goto free_aof;
5575 }
5576 aof = new_aof;
5577 aof->ids[aof->cnt++] = id;
5578 }
5579
5580 n = btf_nr_types(btf);
5581 for (i = 1; i < n; i++) {
5582 /* Try to find if there are kptrs in user BTF and remember their ID */
5583 struct btf_id_set *new_aof;
5584 struct btf_field_info tmp;
5585 const struct btf_type *t;
5586
5587 t = btf_type_by_id(btf, i);
5588 if (!t) {
5589 ret = -EINVAL;
5590 goto free_aof;
5591 }
5592
5593 ret = btf_find_kptr(btf, t, 0, 0, &tmp, BPF_KPTR);
5594 if (ret != BTF_FIELD_FOUND)
5595 continue;
5596
5597 new_aof = krealloc(aof, offsetof(struct btf_id_set, ids[aof->cnt + 1]),
5598 GFP_KERNEL | __GFP_NOWARN);
5599 if (!new_aof) {
5600 ret = -ENOMEM;
5601 goto free_aof;
5602 }
5603 aof = new_aof;
5604 aof->ids[aof->cnt++] = i;
5605 }
5606
5607 if (!aof->cnt) {
5608 kfree(aof);
5609 return NULL;
5610 }
5611 sort(&aof->ids, aof->cnt, sizeof(aof->ids[0]), btf_id_cmp_func, NULL);
5612
5613 for (i = 1; i < n; i++) {
5614 struct btf_struct_metas *new_tab;
5615 const struct btf_member *member;
5616 struct btf_struct_meta *type;
5617 struct btf_record *record;
5618 const struct btf_type *t;
5619 int j, tab_cnt;
5620
5621 t = btf_type_by_id(btf, i);
5622 if (!__btf_type_is_struct(t))
5623 continue;
5624
5625 cond_resched();
5626
5627 for_each_member(j, t, member) {
5628 if (btf_id_set_contains(aof, member->type))
5629 goto parse;
5630 }
5631 continue;
5632 parse:
5633 tab_cnt = tab ? tab->cnt : 0;
5634 new_tab = krealloc(tab, offsetof(struct btf_struct_metas, types[tab_cnt + 1]),
5635 GFP_KERNEL | __GFP_NOWARN);
5636 if (!new_tab) {
5637 ret = -ENOMEM;
5638 goto free;
5639 }
5640 if (!tab)
5641 new_tab->cnt = 0;
5642 tab = new_tab;
5643
5644 type = &tab->types[tab->cnt];
5645 type->btf_id = i;
5646 record = btf_parse_fields(btf, t, BPF_SPIN_LOCK | BPF_LIST_HEAD | BPF_LIST_NODE |
5647 BPF_RB_ROOT | BPF_RB_NODE | BPF_REFCOUNT |
5648 BPF_KPTR, t->size);
5649 /* The record cannot be unset, treat it as an error if so */
5650 if (IS_ERR_OR_NULL(record)) {
5651 ret = PTR_ERR_OR_ZERO(record) ?: -EFAULT;
5652 goto free;
5653 }
5654 type->record = record;
5655 tab->cnt++;
5656 }
5657 kfree(aof);
5658 return tab;
5659 free:
5660 btf_struct_metas_free(tab);
5661 free_aof:
5662 kfree(aof);
5663 return ERR_PTR(ret);
5664 }
5665
btf_find_struct_meta(const struct btf * btf,u32 btf_id)5666 struct btf_struct_meta *btf_find_struct_meta(const struct btf *btf, u32 btf_id)
5667 {
5668 struct btf_struct_metas *tab;
5669
5670 BUILD_BUG_ON(offsetof(struct btf_struct_meta, btf_id) != 0);
5671 tab = btf->struct_meta_tab;
5672 if (!tab)
5673 return NULL;
5674 return bsearch(&btf_id, tab->types, tab->cnt, sizeof(tab->types[0]), btf_id_cmp_func);
5675 }
5676
btf_check_type_tags(struct btf_verifier_env * env,struct btf * btf,int start_id)5677 static int btf_check_type_tags(struct btf_verifier_env *env,
5678 struct btf *btf, int start_id)
5679 {
5680 int i, n, good_id = start_id - 1;
5681 bool in_tags;
5682
5683 n = btf_nr_types(btf);
5684 for (i = start_id; i < n; i++) {
5685 const struct btf_type *t;
5686 int chain_limit = 32;
5687 u32 cur_id = i;
5688
5689 t = btf_type_by_id(btf, i);
5690 if (!t)
5691 return -EINVAL;
5692 if (!btf_type_is_modifier(t))
5693 continue;
5694
5695 cond_resched();
5696
5697 in_tags = btf_type_is_type_tag(t);
5698 while (btf_type_is_modifier(t)) {
5699 if (!chain_limit--) {
5700 btf_verifier_log(env, "Max chain length or cycle detected");
5701 return -ELOOP;
5702 }
5703 if (btf_type_is_type_tag(t)) {
5704 if (!in_tags) {
5705 btf_verifier_log(env, "Type tags don't precede modifiers");
5706 return -EINVAL;
5707 }
5708 } else if (in_tags) {
5709 in_tags = false;
5710 }
5711 if (cur_id <= good_id)
5712 break;
5713 /* Move to next type */
5714 cur_id = t->type;
5715 t = btf_type_by_id(btf, cur_id);
5716 if (!t)
5717 return -EINVAL;
5718 }
5719 good_id = i;
5720 }
5721 return 0;
5722 }
5723
finalize_log(struct bpf_verifier_log * log,bpfptr_t uattr,u32 uattr_size)5724 static int finalize_log(struct bpf_verifier_log *log, bpfptr_t uattr, u32 uattr_size)
5725 {
5726 u32 log_true_size;
5727 int err;
5728
5729 err = bpf_vlog_finalize(log, &log_true_size);
5730
5731 if (uattr_size >= offsetofend(union bpf_attr, btf_log_true_size) &&
5732 copy_to_bpfptr_offset(uattr, offsetof(union bpf_attr, btf_log_true_size),
5733 &log_true_size, sizeof(log_true_size)))
5734 err = -EFAULT;
5735
5736 return err;
5737 }
5738
btf_parse(const union bpf_attr * attr,bpfptr_t uattr,u32 uattr_size)5739 static struct btf *btf_parse(const union bpf_attr *attr, bpfptr_t uattr, u32 uattr_size)
5740 {
5741 bpfptr_t btf_data = make_bpfptr(attr->btf, uattr.is_kernel);
5742 char __user *log_ubuf = u64_to_user_ptr(attr->btf_log_buf);
5743 struct btf_struct_metas *struct_meta_tab;
5744 struct btf_verifier_env *env = NULL;
5745 struct btf *btf = NULL;
5746 u8 *data;
5747 int err, ret;
5748
5749 if (attr->btf_size > BTF_MAX_SIZE)
5750 return ERR_PTR(-E2BIG);
5751
5752 env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
5753 if (!env)
5754 return ERR_PTR(-ENOMEM);
5755
5756 /* user could have requested verbose verifier output
5757 * and supplied buffer to store the verification trace
5758 */
5759 err = bpf_vlog_init(&env->log, attr->btf_log_level,
5760 log_ubuf, attr->btf_log_size);
5761 if (err)
5762 goto errout_free;
5763
5764 btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
5765 if (!btf) {
5766 err = -ENOMEM;
5767 goto errout;
5768 }
5769 env->btf = btf;
5770
5771 data = kvmalloc(attr->btf_size, GFP_KERNEL | __GFP_NOWARN);
5772 if (!data) {
5773 err = -ENOMEM;
5774 goto errout;
5775 }
5776
5777 btf->data = data;
5778 btf->data_size = attr->btf_size;
5779
5780 if (copy_from_bpfptr(data, btf_data, attr->btf_size)) {
5781 err = -EFAULT;
5782 goto errout;
5783 }
5784
5785 err = btf_parse_hdr(env);
5786 if (err)
5787 goto errout;
5788
5789 btf->nohdr_data = btf->data + btf->hdr.hdr_len;
5790
5791 err = btf_parse_str_sec(env);
5792 if (err)
5793 goto errout;
5794
5795 err = btf_parse_type_sec(env);
5796 if (err)
5797 goto errout;
5798
5799 err = btf_check_type_tags(env, btf, 1);
5800 if (err)
5801 goto errout;
5802
5803 struct_meta_tab = btf_parse_struct_metas(&env->log, btf);
5804 if (IS_ERR(struct_meta_tab)) {
5805 err = PTR_ERR(struct_meta_tab);
5806 goto errout;
5807 }
5808 btf->struct_meta_tab = struct_meta_tab;
5809
5810 if (struct_meta_tab) {
5811 int i;
5812
5813 for (i = 0; i < struct_meta_tab->cnt; i++) {
5814 err = btf_check_and_fixup_fields(btf, struct_meta_tab->types[i].record);
5815 if (err < 0)
5816 goto errout_meta;
5817 }
5818 }
5819
5820 err = finalize_log(&env->log, uattr, uattr_size);
5821 if (err)
5822 goto errout_free;
5823
5824 btf_verifier_env_free(env);
5825 refcount_set(&btf->refcnt, 1);
5826 return btf;
5827
5828 errout_meta:
5829 btf_free_struct_meta_tab(btf);
5830 errout:
5831 /* overwrite err with -ENOSPC or -EFAULT */
5832 ret = finalize_log(&env->log, uattr, uattr_size);
5833 if (ret)
5834 err = ret;
5835 errout_free:
5836 btf_verifier_env_free(env);
5837 if (btf)
5838 btf_free(btf);
5839 return ERR_PTR(err);
5840 }
5841
5842 extern char __start_BTF[];
5843 extern char __stop_BTF[];
5844 extern struct btf *btf_vmlinux;
5845
5846 #define BPF_MAP_TYPE(_id, _ops)
5847 #define BPF_LINK_TYPE(_id, _name)
5848 static union {
5849 struct bpf_ctx_convert {
5850 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
5851 prog_ctx_type _id##_prog; \
5852 kern_ctx_type _id##_kern;
5853 #include <linux/bpf_types.h>
5854 #undef BPF_PROG_TYPE
5855 } *__t;
5856 /* 't' is written once under lock. Read many times. */
5857 const struct btf_type *t;
5858 } bpf_ctx_convert;
5859 enum {
5860 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
5861 __ctx_convert##_id,
5862 #include <linux/bpf_types.h>
5863 #undef BPF_PROG_TYPE
5864 __ctx_convert_unused, /* to avoid empty enum in extreme .config */
5865 };
5866 static u8 bpf_ctx_convert_map[] = {
5867 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
5868 [_id] = __ctx_convert##_id,
5869 #include <linux/bpf_types.h>
5870 #undef BPF_PROG_TYPE
5871 0, /* avoid empty array */
5872 };
5873 #undef BPF_MAP_TYPE
5874 #undef BPF_LINK_TYPE
5875
find_canonical_prog_ctx_type(enum bpf_prog_type prog_type)5876 static const struct btf_type *find_canonical_prog_ctx_type(enum bpf_prog_type prog_type)
5877 {
5878 const struct btf_type *conv_struct;
5879 const struct btf_member *ctx_type;
5880
5881 conv_struct = bpf_ctx_convert.t;
5882 if (!conv_struct)
5883 return NULL;
5884 /* prog_type is valid bpf program type. No need for bounds check. */
5885 ctx_type = btf_type_member(conv_struct) + bpf_ctx_convert_map[prog_type] * 2;
5886 /* ctx_type is a pointer to prog_ctx_type in vmlinux.
5887 * Like 'struct __sk_buff'
5888 */
5889 return btf_type_by_id(btf_vmlinux, ctx_type->type);
5890 }
5891
find_kern_ctx_type_id(enum bpf_prog_type prog_type)5892 static int find_kern_ctx_type_id(enum bpf_prog_type prog_type)
5893 {
5894 const struct btf_type *conv_struct;
5895 const struct btf_member *ctx_type;
5896
5897 conv_struct = bpf_ctx_convert.t;
5898 if (!conv_struct)
5899 return -EFAULT;
5900 /* prog_type is valid bpf program type. No need for bounds check. */
5901 ctx_type = btf_type_member(conv_struct) + bpf_ctx_convert_map[prog_type] * 2 + 1;
5902 /* ctx_type is a pointer to prog_ctx_type in vmlinux.
5903 * Like 'struct sk_buff'
5904 */
5905 return ctx_type->type;
5906 }
5907
btf_is_projection_of(const char * pname,const char * tname)5908 bool btf_is_projection_of(const char *pname, const char *tname)
5909 {
5910 if (strcmp(pname, "__sk_buff") == 0 && strcmp(tname, "sk_buff") == 0)
5911 return true;
5912 if (strcmp(pname, "xdp_md") == 0 && strcmp(tname, "xdp_buff") == 0)
5913 return true;
5914 return false;
5915 }
5916
btf_is_prog_ctx_type(struct bpf_verifier_log * log,const struct btf * btf,const struct btf_type * t,enum bpf_prog_type prog_type,int arg)5917 bool btf_is_prog_ctx_type(struct bpf_verifier_log *log, const struct btf *btf,
5918 const struct btf_type *t, enum bpf_prog_type prog_type,
5919 int arg)
5920 {
5921 const struct btf_type *ctx_type;
5922 const char *tname, *ctx_tname;
5923
5924 t = btf_type_by_id(btf, t->type);
5925
5926 /* KPROBE programs allow bpf_user_pt_regs_t typedef, which we need to
5927 * check before we skip all the typedef below.
5928 */
5929 if (prog_type == BPF_PROG_TYPE_KPROBE) {
5930 while (btf_type_is_modifier(t) && !btf_type_is_typedef(t))
5931 t = btf_type_by_id(btf, t->type);
5932
5933 if (btf_type_is_typedef(t)) {
5934 tname = btf_name_by_offset(btf, t->name_off);
5935 if (tname && strcmp(tname, "bpf_user_pt_regs_t") == 0)
5936 return true;
5937 }
5938 }
5939
5940 while (btf_type_is_modifier(t))
5941 t = btf_type_by_id(btf, t->type);
5942 if (!btf_type_is_struct(t)) {
5943 /* Only pointer to struct is supported for now.
5944 * That means that BPF_PROG_TYPE_TRACEPOINT with BTF
5945 * is not supported yet.
5946 * BPF_PROG_TYPE_RAW_TRACEPOINT is fine.
5947 */
5948 return false;
5949 }
5950 tname = btf_name_by_offset(btf, t->name_off);
5951 if (!tname) {
5952 bpf_log(log, "arg#%d struct doesn't have a name\n", arg);
5953 return false;
5954 }
5955
5956 ctx_type = find_canonical_prog_ctx_type(prog_type);
5957 if (!ctx_type) {
5958 bpf_log(log, "btf_vmlinux is malformed\n");
5959 /* should not happen */
5960 return false;
5961 }
5962 again:
5963 ctx_tname = btf_name_by_offset(btf_vmlinux, ctx_type->name_off);
5964 if (!ctx_tname) {
5965 /* should not happen */
5966 bpf_log(log, "Please fix kernel include/linux/bpf_types.h\n");
5967 return false;
5968 }
5969 /* program types without named context types work only with arg:ctx tag */
5970 if (ctx_tname[0] == '\0')
5971 return false;
5972 /* only compare that prog's ctx type name is the same as
5973 * kernel expects. No need to compare field by field.
5974 * It's ok for bpf prog to do:
5975 * struct __sk_buff {};
5976 * int socket_filter_bpf_prog(struct __sk_buff *skb)
5977 * { // no fields of skb are ever used }
5978 */
5979 if (btf_is_projection_of(ctx_tname, tname))
5980 return true;
5981 if (strcmp(ctx_tname, tname)) {
5982 /* bpf_user_pt_regs_t is a typedef, so resolve it to
5983 * underlying struct and check name again
5984 */
5985 if (!btf_type_is_modifier(ctx_type))
5986 return false;
5987 while (btf_type_is_modifier(ctx_type))
5988 ctx_type = btf_type_by_id(btf_vmlinux, ctx_type->type);
5989 goto again;
5990 }
5991 return true;
5992 }
5993
5994 /* forward declarations for arch-specific underlying types of
5995 * bpf_user_pt_regs_t; this avoids the need for arch-specific #ifdef
5996 * compilation guards below for BPF_PROG_TYPE_PERF_EVENT checks, but still
5997 * works correctly with __builtin_types_compatible_p() on respective
5998 * architectures
5999 */
6000 struct user_regs_struct;
6001 struct user_pt_regs;
6002
btf_validate_prog_ctx_type(struct bpf_verifier_log * log,const struct btf * btf,const struct btf_type * t,int arg,enum bpf_prog_type prog_type,enum bpf_attach_type attach_type)6003 static int btf_validate_prog_ctx_type(struct bpf_verifier_log *log, const struct btf *btf,
6004 const struct btf_type *t, int arg,
6005 enum bpf_prog_type prog_type,
6006 enum bpf_attach_type attach_type)
6007 {
6008 const struct btf_type *ctx_type;
6009 const char *tname, *ctx_tname;
6010
6011 if (!btf_is_ptr(t)) {
6012 bpf_log(log, "arg#%d type isn't a pointer\n", arg);
6013 return -EINVAL;
6014 }
6015 t = btf_type_by_id(btf, t->type);
6016
6017 /* KPROBE and PERF_EVENT programs allow bpf_user_pt_regs_t typedef */
6018 if (prog_type == BPF_PROG_TYPE_KPROBE || prog_type == BPF_PROG_TYPE_PERF_EVENT) {
6019 while (btf_type_is_modifier(t) && !btf_type_is_typedef(t))
6020 t = btf_type_by_id(btf, t->type);
6021
6022 if (btf_type_is_typedef(t)) {
6023 tname = btf_name_by_offset(btf, t->name_off);
6024 if (tname && strcmp(tname, "bpf_user_pt_regs_t") == 0)
6025 return 0;
6026 }
6027 }
6028
6029 /* all other program types don't use typedefs for context type */
6030 while (btf_type_is_modifier(t))
6031 t = btf_type_by_id(btf, t->type);
6032
6033 /* `void *ctx __arg_ctx` is always valid */
6034 if (btf_type_is_void(t))
6035 return 0;
6036
6037 tname = btf_name_by_offset(btf, t->name_off);
6038 if (str_is_empty(tname)) {
6039 bpf_log(log, "arg#%d type doesn't have a name\n", arg);
6040 return -EINVAL;
6041 }
6042
6043 /* special cases */
6044 switch (prog_type) {
6045 case BPF_PROG_TYPE_KPROBE:
6046 if (__btf_type_is_struct(t) && strcmp(tname, "pt_regs") == 0)
6047 return 0;
6048 break;
6049 case BPF_PROG_TYPE_PERF_EVENT:
6050 if (__builtin_types_compatible_p(bpf_user_pt_regs_t, struct pt_regs) &&
6051 __btf_type_is_struct(t) && strcmp(tname, "pt_regs") == 0)
6052 return 0;
6053 if (__builtin_types_compatible_p(bpf_user_pt_regs_t, struct user_pt_regs) &&
6054 __btf_type_is_struct(t) && strcmp(tname, "user_pt_regs") == 0)
6055 return 0;
6056 if (__builtin_types_compatible_p(bpf_user_pt_regs_t, struct user_regs_struct) &&
6057 __btf_type_is_struct(t) && strcmp(tname, "user_regs_struct") == 0)
6058 return 0;
6059 break;
6060 case BPF_PROG_TYPE_RAW_TRACEPOINT:
6061 case BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE:
6062 /* allow u64* as ctx */
6063 if (btf_is_int(t) && t->size == 8)
6064 return 0;
6065 break;
6066 case BPF_PROG_TYPE_TRACING:
6067 switch (attach_type) {
6068 case BPF_TRACE_RAW_TP:
6069 /* tp_btf program is TRACING, so need special case here */
6070 if (__btf_type_is_struct(t) &&
6071 strcmp(tname, "bpf_raw_tracepoint_args") == 0)
6072 return 0;
6073 /* allow u64* as ctx */
6074 if (btf_is_int(t) && t->size == 8)
6075 return 0;
6076 break;
6077 case BPF_TRACE_ITER:
6078 /* allow struct bpf_iter__xxx types only */
6079 if (__btf_type_is_struct(t) &&
6080 strncmp(tname, "bpf_iter__", sizeof("bpf_iter__") - 1) == 0)
6081 return 0;
6082 break;
6083 case BPF_TRACE_FENTRY:
6084 case BPF_TRACE_FEXIT:
6085 case BPF_MODIFY_RETURN:
6086 /* allow u64* as ctx */
6087 if (btf_is_int(t) && t->size == 8)
6088 return 0;
6089 break;
6090 default:
6091 break;
6092 }
6093 break;
6094 case BPF_PROG_TYPE_LSM:
6095 case BPF_PROG_TYPE_STRUCT_OPS:
6096 /* allow u64* as ctx */
6097 if (btf_is_int(t) && t->size == 8)
6098 return 0;
6099 break;
6100 case BPF_PROG_TYPE_TRACEPOINT:
6101 case BPF_PROG_TYPE_SYSCALL:
6102 case BPF_PROG_TYPE_EXT:
6103 return 0; /* anything goes */
6104 default:
6105 break;
6106 }
6107
6108 ctx_type = find_canonical_prog_ctx_type(prog_type);
6109 if (!ctx_type) {
6110 /* should not happen */
6111 bpf_log(log, "btf_vmlinux is malformed\n");
6112 return -EINVAL;
6113 }
6114
6115 /* resolve typedefs and check that underlying structs are matching as well */
6116 while (btf_type_is_modifier(ctx_type))
6117 ctx_type = btf_type_by_id(btf_vmlinux, ctx_type->type);
6118
6119 /* if program type doesn't have distinctly named struct type for
6120 * context, then __arg_ctx argument can only be `void *`, which we
6121 * already checked above
6122 */
6123 if (!__btf_type_is_struct(ctx_type)) {
6124 bpf_log(log, "arg#%d should be void pointer\n", arg);
6125 return -EINVAL;
6126 }
6127
6128 ctx_tname = btf_name_by_offset(btf_vmlinux, ctx_type->name_off);
6129 if (!__btf_type_is_struct(t) || strcmp(ctx_tname, tname) != 0) {
6130 bpf_log(log, "arg#%d should be `struct %s *`\n", arg, ctx_tname);
6131 return -EINVAL;
6132 }
6133
6134 return 0;
6135 }
6136
btf_translate_to_vmlinux(struct bpf_verifier_log * log,struct btf * btf,const struct btf_type * t,enum bpf_prog_type prog_type,int arg)6137 static int btf_translate_to_vmlinux(struct bpf_verifier_log *log,
6138 struct btf *btf,
6139 const struct btf_type *t,
6140 enum bpf_prog_type prog_type,
6141 int arg)
6142 {
6143 if (!btf_is_prog_ctx_type(log, btf, t, prog_type, arg))
6144 return -ENOENT;
6145 return find_kern_ctx_type_id(prog_type);
6146 }
6147
get_kern_ctx_btf_id(struct bpf_verifier_log * log,enum bpf_prog_type prog_type)6148 int get_kern_ctx_btf_id(struct bpf_verifier_log *log, enum bpf_prog_type prog_type)
6149 {
6150 const struct btf_member *kctx_member;
6151 const struct btf_type *conv_struct;
6152 const struct btf_type *kctx_type;
6153 u32 kctx_type_id;
6154
6155 conv_struct = bpf_ctx_convert.t;
6156 /* get member for kernel ctx type */
6157 kctx_member = btf_type_member(conv_struct) + bpf_ctx_convert_map[prog_type] * 2 + 1;
6158 kctx_type_id = kctx_member->type;
6159 kctx_type = btf_type_by_id(btf_vmlinux, kctx_type_id);
6160 if (!btf_type_is_struct(kctx_type)) {
6161 bpf_log(log, "kern ctx type id %u is not a struct\n", kctx_type_id);
6162 return -EINVAL;
6163 }
6164
6165 return kctx_type_id;
6166 }
6167
6168 BTF_ID_LIST(bpf_ctx_convert_btf_id)
BTF_ID(struct,bpf_ctx_convert)6169 BTF_ID(struct, bpf_ctx_convert)
6170
6171 static struct btf *btf_parse_base(struct btf_verifier_env *env, const char *name,
6172 void *data, unsigned int data_size)
6173 {
6174 struct btf *btf = NULL;
6175 int err;
6176
6177 if (!IS_ENABLED(CONFIG_DEBUG_INFO_BTF))
6178 return ERR_PTR(-ENOENT);
6179
6180 btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
6181 if (!btf) {
6182 err = -ENOMEM;
6183 goto errout;
6184 }
6185 env->btf = btf;
6186
6187 btf->data = data;
6188 btf->data_size = data_size;
6189 btf->kernel_btf = true;
6190 snprintf(btf->name, sizeof(btf->name), "%s", name);
6191
6192 err = btf_parse_hdr(env);
6193 if (err)
6194 goto errout;
6195
6196 btf->nohdr_data = btf->data + btf->hdr.hdr_len;
6197
6198 err = btf_parse_str_sec(env);
6199 if (err)
6200 goto errout;
6201
6202 err = btf_check_all_metas(env);
6203 if (err)
6204 goto errout;
6205
6206 err = btf_check_type_tags(env, btf, 1);
6207 if (err)
6208 goto errout;
6209
6210 refcount_set(&btf->refcnt, 1);
6211
6212 return btf;
6213
6214 errout:
6215 if (btf) {
6216 kvfree(btf->types);
6217 kfree(btf);
6218 }
6219 return ERR_PTR(err);
6220 }
6221
btf_parse_vmlinux(void)6222 struct btf *btf_parse_vmlinux(void)
6223 {
6224 struct btf_verifier_env *env = NULL;
6225 struct bpf_verifier_log *log;
6226 struct btf *btf;
6227 int err;
6228
6229 env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
6230 if (!env)
6231 return ERR_PTR(-ENOMEM);
6232
6233 log = &env->log;
6234 log->level = BPF_LOG_KERNEL;
6235 btf = btf_parse_base(env, "vmlinux", __start_BTF, __stop_BTF - __start_BTF);
6236 if (IS_ERR(btf))
6237 goto err_out;
6238
6239 /* btf_parse_vmlinux() runs under bpf_verifier_lock */
6240 bpf_ctx_convert.t = btf_type_by_id(btf, bpf_ctx_convert_btf_id[0]);
6241 err = btf_alloc_id(btf);
6242 if (err) {
6243 btf_free(btf);
6244 btf = ERR_PTR(err);
6245 }
6246 err_out:
6247 btf_verifier_env_free(env);
6248 return btf;
6249 }
6250
6251 /* If .BTF_ids section was created with distilled base BTF, both base and
6252 * split BTF ids will need to be mapped to actual base/split ids for
6253 * BTF now that it has been relocated.
6254 */
btf_relocate_id(const struct btf * btf,__u32 id)6255 static __u32 btf_relocate_id(const struct btf *btf, __u32 id)
6256 {
6257 if (!btf->base_btf || !btf->base_id_map)
6258 return id;
6259 return btf->base_id_map[id];
6260 }
6261
6262 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
6263
btf_parse_module(const char * module_name,const void * data,unsigned int data_size,void * base_data,unsigned int base_data_size)6264 static struct btf *btf_parse_module(const char *module_name, const void *data,
6265 unsigned int data_size, void *base_data,
6266 unsigned int base_data_size)
6267 {
6268 struct btf *btf = NULL, *vmlinux_btf, *base_btf = NULL;
6269 struct btf_verifier_env *env = NULL;
6270 struct bpf_verifier_log *log;
6271 int err = 0;
6272
6273 vmlinux_btf = bpf_get_btf_vmlinux();
6274 if (IS_ERR(vmlinux_btf))
6275 return vmlinux_btf;
6276 if (!vmlinux_btf)
6277 return ERR_PTR(-EINVAL);
6278
6279 env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
6280 if (!env)
6281 return ERR_PTR(-ENOMEM);
6282
6283 log = &env->log;
6284 log->level = BPF_LOG_KERNEL;
6285
6286 if (base_data) {
6287 base_btf = btf_parse_base(env, ".BTF.base", base_data, base_data_size);
6288 if (IS_ERR(base_btf)) {
6289 err = PTR_ERR(base_btf);
6290 goto errout;
6291 }
6292 } else {
6293 base_btf = vmlinux_btf;
6294 }
6295
6296 btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
6297 if (!btf) {
6298 err = -ENOMEM;
6299 goto errout;
6300 }
6301 env->btf = btf;
6302
6303 btf->base_btf = base_btf;
6304 btf->start_id = base_btf->nr_types;
6305 btf->start_str_off = base_btf->hdr.str_len;
6306 btf->kernel_btf = true;
6307 snprintf(btf->name, sizeof(btf->name), "%s", module_name);
6308
6309 btf->data = kvmemdup(data, data_size, GFP_KERNEL | __GFP_NOWARN);
6310 if (!btf->data) {
6311 err = -ENOMEM;
6312 goto errout;
6313 }
6314 btf->data_size = data_size;
6315
6316 err = btf_parse_hdr(env);
6317 if (err)
6318 goto errout;
6319
6320 btf->nohdr_data = btf->data + btf->hdr.hdr_len;
6321
6322 err = btf_parse_str_sec(env);
6323 if (err)
6324 goto errout;
6325
6326 err = btf_check_all_metas(env);
6327 if (err)
6328 goto errout;
6329
6330 err = btf_check_type_tags(env, btf, btf_nr_types(base_btf));
6331 if (err)
6332 goto errout;
6333
6334 if (base_btf != vmlinux_btf) {
6335 err = btf_relocate(btf, vmlinux_btf, &btf->base_id_map);
6336 if (err)
6337 goto errout;
6338 btf_free(base_btf);
6339 base_btf = vmlinux_btf;
6340 }
6341
6342 btf_verifier_env_free(env);
6343 refcount_set(&btf->refcnt, 1);
6344 return btf;
6345
6346 errout:
6347 btf_verifier_env_free(env);
6348 if (!IS_ERR(base_btf) && base_btf != vmlinux_btf)
6349 btf_free(base_btf);
6350 if (btf) {
6351 kvfree(btf->data);
6352 kvfree(btf->types);
6353 kfree(btf);
6354 }
6355 return ERR_PTR(err);
6356 }
6357
6358 #endif /* CONFIG_DEBUG_INFO_BTF_MODULES */
6359
bpf_prog_get_target_btf(const struct bpf_prog * prog)6360 struct btf *bpf_prog_get_target_btf(const struct bpf_prog *prog)
6361 {
6362 struct bpf_prog *tgt_prog = prog->aux->dst_prog;
6363
6364 if (tgt_prog)
6365 return tgt_prog->aux->btf;
6366 else
6367 return prog->aux->attach_btf;
6368 }
6369
is_int_ptr(struct btf * btf,const struct btf_type * t)6370 static bool is_int_ptr(struct btf *btf, const struct btf_type *t)
6371 {
6372 /* skip modifiers */
6373 t = btf_type_skip_modifiers(btf, t->type, NULL);
6374
6375 return btf_type_is_int(t);
6376 }
6377
get_ctx_arg_idx(struct btf * btf,const struct btf_type * func_proto,int off)6378 static u32 get_ctx_arg_idx(struct btf *btf, const struct btf_type *func_proto,
6379 int off)
6380 {
6381 const struct btf_param *args;
6382 const struct btf_type *t;
6383 u32 offset = 0, nr_args;
6384 int i;
6385
6386 if (!func_proto)
6387 return off / 8;
6388
6389 nr_args = btf_type_vlen(func_proto);
6390 args = (const struct btf_param *)(func_proto + 1);
6391 for (i = 0; i < nr_args; i++) {
6392 t = btf_type_skip_modifiers(btf, args[i].type, NULL);
6393 offset += btf_type_is_ptr(t) ? 8 : roundup(t->size, 8);
6394 if (off < offset)
6395 return i;
6396 }
6397
6398 t = btf_type_skip_modifiers(btf, func_proto->type, NULL);
6399 offset += btf_type_is_ptr(t) ? 8 : roundup(t->size, 8);
6400 if (off < offset)
6401 return nr_args;
6402
6403 return nr_args + 1;
6404 }
6405
prog_args_trusted(const struct bpf_prog * prog)6406 static bool prog_args_trusted(const struct bpf_prog *prog)
6407 {
6408 enum bpf_attach_type atype = prog->expected_attach_type;
6409
6410 switch (prog->type) {
6411 case BPF_PROG_TYPE_TRACING:
6412 return atype == BPF_TRACE_RAW_TP || atype == BPF_TRACE_ITER;
6413 case BPF_PROG_TYPE_LSM:
6414 return bpf_lsm_is_trusted(prog);
6415 case BPF_PROG_TYPE_STRUCT_OPS:
6416 return true;
6417 default:
6418 return false;
6419 }
6420 }
6421
btf_ctx_arg_offset(const struct btf * btf,const struct btf_type * func_proto,u32 arg_no)6422 int btf_ctx_arg_offset(const struct btf *btf, const struct btf_type *func_proto,
6423 u32 arg_no)
6424 {
6425 const struct btf_param *args;
6426 const struct btf_type *t;
6427 int off = 0, i;
6428 u32 sz;
6429
6430 args = btf_params(func_proto);
6431 for (i = 0; i < arg_no; i++) {
6432 t = btf_type_by_id(btf, args[i].type);
6433 t = btf_resolve_size(btf, t, &sz);
6434 if (IS_ERR(t))
6435 return PTR_ERR(t);
6436 off += roundup(sz, 8);
6437 }
6438
6439 return off;
6440 }
6441
6442 struct bpf_raw_tp_null_args {
6443 const char *func;
6444 u64 mask;
6445 };
6446
6447 static const struct bpf_raw_tp_null_args raw_tp_null_args[] = {
6448 /* sched */
6449 { "sched_pi_setprio", 0x10 },
6450 /* ... from sched_numa_pair_template event class */
6451 { "sched_stick_numa", 0x100 },
6452 { "sched_swap_numa", 0x100 },
6453 /* afs */
6454 { "afs_make_fs_call", 0x10 },
6455 { "afs_make_fs_calli", 0x10 },
6456 { "afs_make_fs_call1", 0x10 },
6457 { "afs_make_fs_call2", 0x10 },
6458 { "afs_protocol_error", 0x1 },
6459 { "afs_flock_ev", 0x10 },
6460 /* cachefiles */
6461 { "cachefiles_lookup", 0x1 | 0x200 },
6462 { "cachefiles_unlink", 0x1 },
6463 { "cachefiles_rename", 0x1 },
6464 { "cachefiles_prep_read", 0x1 },
6465 { "cachefiles_mark_active", 0x1 },
6466 { "cachefiles_mark_failed", 0x1 },
6467 { "cachefiles_mark_inactive", 0x1 },
6468 { "cachefiles_vfs_error", 0x1 },
6469 { "cachefiles_io_error", 0x1 },
6470 { "cachefiles_ondemand_open", 0x1 },
6471 { "cachefiles_ondemand_copen", 0x1 },
6472 { "cachefiles_ondemand_close", 0x1 },
6473 { "cachefiles_ondemand_read", 0x1 },
6474 { "cachefiles_ondemand_cread", 0x1 },
6475 { "cachefiles_ondemand_fd_write", 0x1 },
6476 { "cachefiles_ondemand_fd_release", 0x1 },
6477 /* ext4, from ext4__mballoc event class */
6478 { "ext4_mballoc_discard", 0x10 },
6479 { "ext4_mballoc_free", 0x10 },
6480 /* fib */
6481 { "fib_table_lookup", 0x100 },
6482 /* filelock */
6483 /* ... from filelock_lock event class */
6484 { "posix_lock_inode", 0x10 },
6485 { "fcntl_setlk", 0x10 },
6486 { "locks_remove_posix", 0x10 },
6487 { "flock_lock_inode", 0x10 },
6488 /* ... from filelock_lease event class */
6489 { "break_lease_noblock", 0x10 },
6490 { "break_lease_block", 0x10 },
6491 { "break_lease_unblock", 0x10 },
6492 { "generic_delete_lease", 0x10 },
6493 { "time_out_leases", 0x10 },
6494 /* host1x */
6495 { "host1x_cdma_push_gather", 0x10000 },
6496 /* huge_memory */
6497 { "mm_khugepaged_scan_pmd", 0x10 },
6498 { "mm_collapse_huge_page_isolate", 0x1 },
6499 { "mm_khugepaged_scan_file", 0x10 },
6500 { "mm_khugepaged_collapse_file", 0x10 },
6501 /* kmem */
6502 { "mm_page_alloc", 0x1 },
6503 { "mm_page_pcpu_drain", 0x1 },
6504 /* .. from mm_page event class */
6505 { "mm_page_alloc_zone_locked", 0x1 },
6506 /* netfs */
6507 { "netfs_failure", 0x10 },
6508 /* power */
6509 { "device_pm_callback_start", 0x10 },
6510 /* qdisc */
6511 { "qdisc_dequeue", 0x1000 },
6512 /* rxrpc */
6513 { "rxrpc_recvdata", 0x1 },
6514 { "rxrpc_resend", 0x10 },
6515 /* sunrpc */
6516 { "xs_stream_read_data", 0x1 },
6517 /* ... from xprt_cong_event event class */
6518 { "xprt_reserve_cong", 0x10 },
6519 { "xprt_release_cong", 0x10 },
6520 { "xprt_get_cong", 0x10 },
6521 { "xprt_put_cong", 0x10 },
6522 /* tcp */
6523 { "tcp_send_reset", 0x11 },
6524 /* tegra_apb_dma */
6525 { "tegra_dma_tx_status", 0x100 },
6526 /* timer_migration */
6527 { "tmigr_update_events", 0x1 },
6528 /* writeback, from writeback_folio_template event class */
6529 { "writeback_dirty_folio", 0x10 },
6530 { "folio_wait_writeback", 0x10 },
6531 /* rdma */
6532 { "mr_integ_alloc", 0x2000 },
6533 /* bpf_testmod */
6534 { "bpf_testmod_test_read", 0x0 },
6535 };
6536
btf_ctx_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)6537 bool btf_ctx_access(int off, int size, enum bpf_access_type type,
6538 const struct bpf_prog *prog,
6539 struct bpf_insn_access_aux *info)
6540 {
6541 const struct btf_type *t = prog->aux->attach_func_proto;
6542 struct bpf_prog *tgt_prog = prog->aux->dst_prog;
6543 struct btf *btf = bpf_prog_get_target_btf(prog);
6544 const char *tname = prog->aux->attach_func_name;
6545 struct bpf_verifier_log *log = info->log;
6546 const struct btf_param *args;
6547 bool ptr_err_raw_tp = false;
6548 const char *tag_value;
6549 u32 nr_args, arg;
6550 int i, ret;
6551
6552 if (off % 8) {
6553 bpf_log(log, "func '%s' offset %d is not multiple of 8\n",
6554 tname, off);
6555 return false;
6556 }
6557 arg = get_ctx_arg_idx(btf, t, off);
6558 args = (const struct btf_param *)(t + 1);
6559 /* if (t == NULL) Fall back to default BPF prog with
6560 * MAX_BPF_FUNC_REG_ARGS u64 arguments.
6561 */
6562 nr_args = t ? btf_type_vlen(t) : MAX_BPF_FUNC_REG_ARGS;
6563 if (prog->aux->attach_btf_trace) {
6564 /* skip first 'void *__data' argument in btf_trace_##name typedef */
6565 args++;
6566 nr_args--;
6567 }
6568
6569 if (arg > nr_args) {
6570 bpf_log(log, "func '%s' doesn't have %d-th argument\n",
6571 tname, arg + 1);
6572 return false;
6573 }
6574
6575 if (arg == nr_args) {
6576 switch (prog->expected_attach_type) {
6577 case BPF_LSM_MAC:
6578 /* mark we are accessing the return value */
6579 info->is_retval = true;
6580 fallthrough;
6581 case BPF_LSM_CGROUP:
6582 case BPF_TRACE_FEXIT:
6583 /* When LSM programs are attached to void LSM hooks
6584 * they use FEXIT trampolines and when attached to
6585 * int LSM hooks, they use MODIFY_RETURN trampolines.
6586 *
6587 * While the LSM programs are BPF_MODIFY_RETURN-like
6588 * the check:
6589 *
6590 * if (ret_type != 'int')
6591 * return -EINVAL;
6592 *
6593 * is _not_ done here. This is still safe as LSM hooks
6594 * have only void and int return types.
6595 */
6596 if (!t)
6597 return true;
6598 t = btf_type_by_id(btf, t->type);
6599 break;
6600 case BPF_MODIFY_RETURN:
6601 /* For now the BPF_MODIFY_RETURN can only be attached to
6602 * functions that return an int.
6603 */
6604 if (!t)
6605 return false;
6606
6607 t = btf_type_skip_modifiers(btf, t->type, NULL);
6608 if (!btf_type_is_small_int(t)) {
6609 bpf_log(log,
6610 "ret type %s not allowed for fmod_ret\n",
6611 btf_type_str(t));
6612 return false;
6613 }
6614 break;
6615 default:
6616 bpf_log(log, "func '%s' doesn't have %d-th argument\n",
6617 tname, arg + 1);
6618 return false;
6619 }
6620 } else {
6621 if (!t)
6622 /* Default prog with MAX_BPF_FUNC_REG_ARGS args */
6623 return true;
6624 t = btf_type_by_id(btf, args[arg].type);
6625 }
6626
6627 /* skip modifiers */
6628 while (btf_type_is_modifier(t))
6629 t = btf_type_by_id(btf, t->type);
6630 if (btf_type_is_small_int(t) || btf_is_any_enum(t) || __btf_type_is_struct(t))
6631 /* accessing a scalar */
6632 return true;
6633 if (!btf_type_is_ptr(t)) {
6634 bpf_log(log,
6635 "func '%s' arg%d '%s' has type %s. Only pointer access is allowed\n",
6636 tname, arg,
6637 __btf_name_by_offset(btf, t->name_off),
6638 btf_type_str(t));
6639 return false;
6640 }
6641
6642 if (size != sizeof(u64)) {
6643 bpf_log(log, "func '%s' size %d must be 8\n",
6644 tname, size);
6645 return false;
6646 }
6647
6648 /* check for PTR_TO_RDONLY_BUF_OR_NULL or PTR_TO_RDWR_BUF_OR_NULL */
6649 for (i = 0; i < prog->aux->ctx_arg_info_size; i++) {
6650 const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i];
6651 u32 type, flag;
6652
6653 type = base_type(ctx_arg_info->reg_type);
6654 flag = type_flag(ctx_arg_info->reg_type);
6655 if (ctx_arg_info->offset == off && type == PTR_TO_BUF &&
6656 (flag & PTR_MAYBE_NULL)) {
6657 info->reg_type = ctx_arg_info->reg_type;
6658 return true;
6659 }
6660 }
6661
6662 if (t->type == 0)
6663 /* This is a pointer to void.
6664 * It is the same as scalar from the verifier safety pov.
6665 * No further pointer walking is allowed.
6666 */
6667 return true;
6668
6669 if (is_int_ptr(btf, t))
6670 return true;
6671
6672 /* this is a pointer to another type */
6673 for (i = 0; i < prog->aux->ctx_arg_info_size; i++) {
6674 const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i];
6675
6676 if (ctx_arg_info->offset == off) {
6677 if (!ctx_arg_info->btf_id) {
6678 bpf_log(log,"invalid btf_id for context argument offset %u\n", off);
6679 return false;
6680 }
6681
6682 info->reg_type = ctx_arg_info->reg_type;
6683 info->btf = ctx_arg_info->btf ? : btf_vmlinux;
6684 info->btf_id = ctx_arg_info->btf_id;
6685 return true;
6686 }
6687 }
6688
6689 info->reg_type = PTR_TO_BTF_ID;
6690 if (prog_args_trusted(prog))
6691 info->reg_type |= PTR_TRUSTED;
6692
6693 if (btf_param_match_suffix(btf, &args[arg], "__nullable"))
6694 info->reg_type |= PTR_MAYBE_NULL;
6695
6696 if (prog->expected_attach_type == BPF_TRACE_RAW_TP) {
6697 struct btf *btf = prog->aux->attach_btf;
6698 const struct btf_type *t;
6699 const char *tname;
6700
6701 /* BTF lookups cannot fail, return false on error */
6702 t = btf_type_by_id(btf, prog->aux->attach_btf_id);
6703 if (!t)
6704 return false;
6705 tname = btf_name_by_offset(btf, t->name_off);
6706 if (!tname)
6707 return false;
6708 /* Checked by bpf_check_attach_target */
6709 tname += sizeof("btf_trace_") - 1;
6710 for (i = 0; i < ARRAY_SIZE(raw_tp_null_args); i++) {
6711 /* Is this a func with potential NULL args? */
6712 if (strcmp(tname, raw_tp_null_args[i].func))
6713 continue;
6714 if (raw_tp_null_args[i].mask & (0x1 << (arg * 4)))
6715 info->reg_type |= PTR_MAYBE_NULL;
6716 /* Is the current arg IS_ERR? */
6717 if (raw_tp_null_args[i].mask & (0x2 << (arg * 4)))
6718 ptr_err_raw_tp = true;
6719 break;
6720 }
6721 /* If we don't know NULL-ness specification and the tracepoint
6722 * is coming from a loadable module, be conservative and mark
6723 * argument as PTR_MAYBE_NULL.
6724 */
6725 if (i == ARRAY_SIZE(raw_tp_null_args) && btf_is_module(btf))
6726 info->reg_type |= PTR_MAYBE_NULL;
6727 }
6728
6729 if (tgt_prog) {
6730 enum bpf_prog_type tgt_type;
6731
6732 if (tgt_prog->type == BPF_PROG_TYPE_EXT)
6733 tgt_type = tgt_prog->aux->saved_dst_prog_type;
6734 else
6735 tgt_type = tgt_prog->type;
6736
6737 ret = btf_translate_to_vmlinux(log, btf, t, tgt_type, arg);
6738 if (ret > 0) {
6739 info->btf = btf_vmlinux;
6740 info->btf_id = ret;
6741 return true;
6742 } else {
6743 return false;
6744 }
6745 }
6746
6747 info->btf = btf;
6748 info->btf_id = t->type;
6749 t = btf_type_by_id(btf, t->type);
6750
6751 if (btf_type_is_type_tag(t)) {
6752 tag_value = __btf_name_by_offset(btf, t->name_off);
6753 if (strcmp(tag_value, "user") == 0)
6754 info->reg_type |= MEM_USER;
6755 if (strcmp(tag_value, "percpu") == 0)
6756 info->reg_type |= MEM_PERCPU;
6757 }
6758
6759 /* skip modifiers */
6760 while (btf_type_is_modifier(t)) {
6761 info->btf_id = t->type;
6762 t = btf_type_by_id(btf, t->type);
6763 }
6764 if (!btf_type_is_struct(t)) {
6765 bpf_log(log,
6766 "func '%s' arg%d type %s is not a struct\n",
6767 tname, arg, btf_type_str(t));
6768 return false;
6769 }
6770 bpf_log(log, "func '%s' arg%d has btf_id %d type %s '%s'\n",
6771 tname, arg, info->btf_id, btf_type_str(t),
6772 __btf_name_by_offset(btf, t->name_off));
6773
6774 /* Perform all checks on the validity of type for this argument, but if
6775 * we know it can be IS_ERR at runtime, scrub pointer type and mark as
6776 * scalar.
6777 */
6778 if (ptr_err_raw_tp) {
6779 bpf_log(log, "marking pointer arg%d as scalar as it may encode error", arg);
6780 info->reg_type = SCALAR_VALUE;
6781 }
6782 return true;
6783 }
6784 EXPORT_SYMBOL_GPL(btf_ctx_access);
6785
6786 enum bpf_struct_walk_result {
6787 /* < 0 error */
6788 WALK_SCALAR = 0,
6789 WALK_PTR,
6790 WALK_STRUCT,
6791 };
6792
btf_struct_walk(struct bpf_verifier_log * log,const struct btf * btf,const struct btf_type * t,int off,int size,u32 * next_btf_id,enum bpf_type_flag * flag,const char ** field_name)6793 static int btf_struct_walk(struct bpf_verifier_log *log, const struct btf *btf,
6794 const struct btf_type *t, int off, int size,
6795 u32 *next_btf_id, enum bpf_type_flag *flag,
6796 const char **field_name)
6797 {
6798 u32 i, moff, mtrue_end, msize = 0, total_nelems = 0;
6799 const struct btf_type *mtype, *elem_type = NULL;
6800 const struct btf_member *member;
6801 const char *tname, *mname, *tag_value;
6802 u32 vlen, elem_id, mid;
6803
6804 again:
6805 if (btf_type_is_modifier(t))
6806 t = btf_type_skip_modifiers(btf, t->type, NULL);
6807 tname = __btf_name_by_offset(btf, t->name_off);
6808 if (!btf_type_is_struct(t)) {
6809 bpf_log(log, "Type '%s' is not a struct\n", tname);
6810 return -EINVAL;
6811 }
6812
6813 vlen = btf_type_vlen(t);
6814 if (BTF_INFO_KIND(t->info) == BTF_KIND_UNION && vlen != 1 && !(*flag & PTR_UNTRUSTED))
6815 /*
6816 * walking unions yields untrusted pointers
6817 * with exception of __bpf_md_ptr and other
6818 * unions with a single member
6819 */
6820 *flag |= PTR_UNTRUSTED;
6821
6822 if (off + size > t->size) {
6823 /* If the last element is a variable size array, we may
6824 * need to relax the rule.
6825 */
6826 struct btf_array *array_elem;
6827
6828 if (vlen == 0)
6829 goto error;
6830
6831 member = btf_type_member(t) + vlen - 1;
6832 mtype = btf_type_skip_modifiers(btf, member->type,
6833 NULL);
6834 if (!btf_type_is_array(mtype))
6835 goto error;
6836
6837 array_elem = (struct btf_array *)(mtype + 1);
6838 if (array_elem->nelems != 0)
6839 goto error;
6840
6841 moff = __btf_member_bit_offset(t, member) / 8;
6842 if (off < moff)
6843 goto error;
6844
6845 /* allow structure and integer */
6846 t = btf_type_skip_modifiers(btf, array_elem->type,
6847 NULL);
6848
6849 if (btf_type_is_int(t))
6850 return WALK_SCALAR;
6851
6852 if (!btf_type_is_struct(t))
6853 goto error;
6854
6855 off = (off - moff) % t->size;
6856 goto again;
6857
6858 error:
6859 bpf_log(log, "access beyond struct %s at off %u size %u\n",
6860 tname, off, size);
6861 return -EACCES;
6862 }
6863
6864 for_each_member(i, t, member) {
6865 /* offset of the field in bytes */
6866 moff = __btf_member_bit_offset(t, member) / 8;
6867 if (off + size <= moff)
6868 /* won't find anything, field is already too far */
6869 break;
6870
6871 if (__btf_member_bitfield_size(t, member)) {
6872 u32 end_bit = __btf_member_bit_offset(t, member) +
6873 __btf_member_bitfield_size(t, member);
6874
6875 /* off <= moff instead of off == moff because clang
6876 * does not generate a BTF member for anonymous
6877 * bitfield like the ":16" here:
6878 * struct {
6879 * int :16;
6880 * int x:8;
6881 * };
6882 */
6883 if (off <= moff &&
6884 BITS_ROUNDUP_BYTES(end_bit) <= off + size)
6885 return WALK_SCALAR;
6886
6887 /* off may be accessing a following member
6888 *
6889 * or
6890 *
6891 * Doing partial access at either end of this
6892 * bitfield. Continue on this case also to
6893 * treat it as not accessing this bitfield
6894 * and eventually error out as field not
6895 * found to keep it simple.
6896 * It could be relaxed if there was a legit
6897 * partial access case later.
6898 */
6899 continue;
6900 }
6901
6902 /* In case of "off" is pointing to holes of a struct */
6903 if (off < moff)
6904 break;
6905
6906 /* type of the field */
6907 mid = member->type;
6908 mtype = btf_type_by_id(btf, member->type);
6909 mname = __btf_name_by_offset(btf, member->name_off);
6910
6911 mtype = __btf_resolve_size(btf, mtype, &msize,
6912 &elem_type, &elem_id, &total_nelems,
6913 &mid);
6914 if (IS_ERR(mtype)) {
6915 bpf_log(log, "field %s doesn't have size\n", mname);
6916 return -EFAULT;
6917 }
6918
6919 mtrue_end = moff + msize;
6920 if (off >= mtrue_end)
6921 /* no overlap with member, keep iterating */
6922 continue;
6923
6924 if (btf_type_is_array(mtype)) {
6925 u32 elem_idx;
6926
6927 /* __btf_resolve_size() above helps to
6928 * linearize a multi-dimensional array.
6929 *
6930 * The logic here is treating an array
6931 * in a struct as the following way:
6932 *
6933 * struct outer {
6934 * struct inner array[2][2];
6935 * };
6936 *
6937 * looks like:
6938 *
6939 * struct outer {
6940 * struct inner array_elem0;
6941 * struct inner array_elem1;
6942 * struct inner array_elem2;
6943 * struct inner array_elem3;
6944 * };
6945 *
6946 * When accessing outer->array[1][0], it moves
6947 * moff to "array_elem2", set mtype to
6948 * "struct inner", and msize also becomes
6949 * sizeof(struct inner). Then most of the
6950 * remaining logic will fall through without
6951 * caring the current member is an array or
6952 * not.
6953 *
6954 * Unlike mtype/msize/moff, mtrue_end does not
6955 * change. The naming difference ("_true") tells
6956 * that it is not always corresponding to
6957 * the current mtype/msize/moff.
6958 * It is the true end of the current
6959 * member (i.e. array in this case). That
6960 * will allow an int array to be accessed like
6961 * a scratch space,
6962 * i.e. allow access beyond the size of
6963 * the array's element as long as it is
6964 * within the mtrue_end boundary.
6965 */
6966
6967 /* skip empty array */
6968 if (moff == mtrue_end)
6969 continue;
6970
6971 msize /= total_nelems;
6972 elem_idx = (off - moff) / msize;
6973 moff += elem_idx * msize;
6974 mtype = elem_type;
6975 mid = elem_id;
6976 }
6977
6978 /* the 'off' we're looking for is either equal to start
6979 * of this field or inside of this struct
6980 */
6981 if (btf_type_is_struct(mtype)) {
6982 /* our field must be inside that union or struct */
6983 t = mtype;
6984
6985 /* return if the offset matches the member offset */
6986 if (off == moff) {
6987 *next_btf_id = mid;
6988 return WALK_STRUCT;
6989 }
6990
6991 /* adjust offset we're looking for */
6992 off -= moff;
6993 goto again;
6994 }
6995
6996 if (btf_type_is_ptr(mtype)) {
6997 const struct btf_type *stype, *t;
6998 enum bpf_type_flag tmp_flag = 0;
6999 u32 id;
7000
7001 if (msize != size || off != moff) {
7002 bpf_log(log,
7003 "cannot access ptr member %s with moff %u in struct %s with off %u size %u\n",
7004 mname, moff, tname, off, size);
7005 return -EACCES;
7006 }
7007
7008 /* check type tag */
7009 t = btf_type_by_id(btf, mtype->type);
7010 if (btf_type_is_type_tag(t)) {
7011 tag_value = __btf_name_by_offset(btf, t->name_off);
7012 /* check __user tag */
7013 if (strcmp(tag_value, "user") == 0)
7014 tmp_flag = MEM_USER;
7015 /* check __percpu tag */
7016 if (strcmp(tag_value, "percpu") == 0)
7017 tmp_flag = MEM_PERCPU;
7018 /* check __rcu tag */
7019 if (strcmp(tag_value, "rcu") == 0)
7020 tmp_flag = MEM_RCU;
7021 }
7022
7023 stype = btf_type_skip_modifiers(btf, mtype->type, &id);
7024 if (btf_type_is_struct(stype)) {
7025 *next_btf_id = id;
7026 *flag |= tmp_flag;
7027 if (field_name)
7028 *field_name = mname;
7029 return WALK_PTR;
7030 }
7031 }
7032
7033 /* Allow more flexible access within an int as long as
7034 * it is within mtrue_end.
7035 * Since mtrue_end could be the end of an array,
7036 * that also allows using an array of int as a scratch
7037 * space. e.g. skb->cb[].
7038 */
7039 if (off + size > mtrue_end && !(*flag & PTR_UNTRUSTED)) {
7040 bpf_log(log,
7041 "access beyond the end of member %s (mend:%u) in struct %s with off %u size %u\n",
7042 mname, mtrue_end, tname, off, size);
7043 return -EACCES;
7044 }
7045
7046 return WALK_SCALAR;
7047 }
7048 bpf_log(log, "struct %s doesn't have field at offset %d\n", tname, off);
7049 return -EINVAL;
7050 }
7051
btf_struct_access(struct bpf_verifier_log * log,const struct bpf_reg_state * reg,int off,int size,enum bpf_access_type atype __maybe_unused,u32 * next_btf_id,enum bpf_type_flag * flag,const char ** field_name)7052 int btf_struct_access(struct bpf_verifier_log *log,
7053 const struct bpf_reg_state *reg,
7054 int off, int size, enum bpf_access_type atype __maybe_unused,
7055 u32 *next_btf_id, enum bpf_type_flag *flag,
7056 const char **field_name)
7057 {
7058 const struct btf *btf = reg->btf;
7059 enum bpf_type_flag tmp_flag = 0;
7060 const struct btf_type *t;
7061 u32 id = reg->btf_id;
7062 int err;
7063
7064 while (type_is_alloc(reg->type)) {
7065 struct btf_struct_meta *meta;
7066 struct btf_record *rec;
7067 int i;
7068
7069 meta = btf_find_struct_meta(btf, id);
7070 if (!meta)
7071 break;
7072 rec = meta->record;
7073 for (i = 0; i < rec->cnt; i++) {
7074 struct btf_field *field = &rec->fields[i];
7075 u32 offset = field->offset;
7076 if (off < offset + field->size && offset < off + size) {
7077 bpf_log(log,
7078 "direct access to %s is disallowed\n",
7079 btf_field_type_name(field->type));
7080 return -EACCES;
7081 }
7082 }
7083 break;
7084 }
7085
7086 t = btf_type_by_id(btf, id);
7087 do {
7088 err = btf_struct_walk(log, btf, t, off, size, &id, &tmp_flag, field_name);
7089
7090 switch (err) {
7091 case WALK_PTR:
7092 /* For local types, the destination register cannot
7093 * become a pointer again.
7094 */
7095 if (type_is_alloc(reg->type))
7096 return SCALAR_VALUE;
7097 /* If we found the pointer or scalar on t+off,
7098 * we're done.
7099 */
7100 *next_btf_id = id;
7101 *flag = tmp_flag;
7102 return PTR_TO_BTF_ID;
7103 case WALK_SCALAR:
7104 return SCALAR_VALUE;
7105 case WALK_STRUCT:
7106 /* We found nested struct, so continue the search
7107 * by diving in it. At this point the offset is
7108 * aligned with the new type, so set it to 0.
7109 */
7110 t = btf_type_by_id(btf, id);
7111 off = 0;
7112 break;
7113 default:
7114 /* It's either error or unknown return value..
7115 * scream and leave.
7116 */
7117 if (WARN_ONCE(err > 0, "unknown btf_struct_walk return value"))
7118 return -EINVAL;
7119 return err;
7120 }
7121 } while (t);
7122
7123 return -EINVAL;
7124 }
7125
7126 /* Check that two BTF types, each specified as an BTF object + id, are exactly
7127 * the same. Trivial ID check is not enough due to module BTFs, because we can
7128 * end up with two different module BTFs, but IDs point to the common type in
7129 * vmlinux BTF.
7130 */
btf_types_are_same(const struct btf * btf1,u32 id1,const struct btf * btf2,u32 id2)7131 bool btf_types_are_same(const struct btf *btf1, u32 id1,
7132 const struct btf *btf2, u32 id2)
7133 {
7134 if (id1 != id2)
7135 return false;
7136 if (btf1 == btf2)
7137 return true;
7138 return btf_type_by_id(btf1, id1) == btf_type_by_id(btf2, id2);
7139 }
7140
btf_struct_ids_match(struct bpf_verifier_log * log,const struct btf * btf,u32 id,int off,const struct btf * need_btf,u32 need_type_id,bool strict)7141 bool btf_struct_ids_match(struct bpf_verifier_log *log,
7142 const struct btf *btf, u32 id, int off,
7143 const struct btf *need_btf, u32 need_type_id,
7144 bool strict)
7145 {
7146 const struct btf_type *type;
7147 enum bpf_type_flag flag = 0;
7148 int err;
7149
7150 /* Are we already done? */
7151 if (off == 0 && btf_types_are_same(btf, id, need_btf, need_type_id))
7152 return true;
7153 /* In case of strict type match, we do not walk struct, the top level
7154 * type match must succeed. When strict is true, off should have already
7155 * been 0.
7156 */
7157 if (strict)
7158 return false;
7159 again:
7160 type = btf_type_by_id(btf, id);
7161 if (!type)
7162 return false;
7163 err = btf_struct_walk(log, btf, type, off, 1, &id, &flag, NULL);
7164 if (err != WALK_STRUCT)
7165 return false;
7166
7167 /* We found nested struct object. If it matches
7168 * the requested ID, we're done. Otherwise let's
7169 * continue the search with offset 0 in the new
7170 * type.
7171 */
7172 if (!btf_types_are_same(btf, id, need_btf, need_type_id)) {
7173 off = 0;
7174 goto again;
7175 }
7176
7177 return true;
7178 }
7179
__get_type_size(struct btf * btf,u32 btf_id,const struct btf_type ** ret_type)7180 static int __get_type_size(struct btf *btf, u32 btf_id,
7181 const struct btf_type **ret_type)
7182 {
7183 const struct btf_type *t;
7184
7185 *ret_type = btf_type_by_id(btf, 0);
7186 if (!btf_id)
7187 /* void */
7188 return 0;
7189 t = btf_type_by_id(btf, btf_id);
7190 while (t && btf_type_is_modifier(t))
7191 t = btf_type_by_id(btf, t->type);
7192 if (!t)
7193 return -EINVAL;
7194 *ret_type = t;
7195 if (btf_type_is_ptr(t))
7196 /* kernel size of pointer. Not BPF's size of pointer*/
7197 return sizeof(void *);
7198 if (btf_type_is_int(t) || btf_is_any_enum(t) || __btf_type_is_struct(t))
7199 return t->size;
7200 return -EINVAL;
7201 }
7202
__get_type_fmodel_flags(const struct btf_type * t)7203 static u8 __get_type_fmodel_flags(const struct btf_type *t)
7204 {
7205 u8 flags = 0;
7206
7207 if (__btf_type_is_struct(t))
7208 flags |= BTF_FMODEL_STRUCT_ARG;
7209 if (btf_type_is_signed_int(t))
7210 flags |= BTF_FMODEL_SIGNED_ARG;
7211
7212 return flags;
7213 }
7214
btf_distill_func_proto(struct bpf_verifier_log * log,struct btf * btf,const struct btf_type * func,const char * tname,struct btf_func_model * m)7215 int btf_distill_func_proto(struct bpf_verifier_log *log,
7216 struct btf *btf,
7217 const struct btf_type *func,
7218 const char *tname,
7219 struct btf_func_model *m)
7220 {
7221 const struct btf_param *args;
7222 const struct btf_type *t;
7223 u32 i, nargs;
7224 int ret;
7225
7226 if (!func) {
7227 /* BTF function prototype doesn't match the verifier types.
7228 * Fall back to MAX_BPF_FUNC_REG_ARGS u64 args.
7229 */
7230 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) {
7231 m->arg_size[i] = 8;
7232 m->arg_flags[i] = 0;
7233 }
7234 m->ret_size = 8;
7235 m->ret_flags = 0;
7236 m->nr_args = MAX_BPF_FUNC_REG_ARGS;
7237 return 0;
7238 }
7239 args = (const struct btf_param *)(func + 1);
7240 nargs = btf_type_vlen(func);
7241 if (nargs > MAX_BPF_FUNC_ARGS) {
7242 bpf_log(log,
7243 "The function %s has %d arguments. Too many.\n",
7244 tname, nargs);
7245 return -EINVAL;
7246 }
7247 ret = __get_type_size(btf, func->type, &t);
7248 if (ret < 0 || __btf_type_is_struct(t)) {
7249 bpf_log(log,
7250 "The function %s return type %s is unsupported.\n",
7251 tname, btf_type_str(t));
7252 return -EINVAL;
7253 }
7254 m->ret_size = ret;
7255 m->ret_flags = __get_type_fmodel_flags(t);
7256
7257 for (i = 0; i < nargs; i++) {
7258 if (i == nargs - 1 && args[i].type == 0) {
7259 bpf_log(log,
7260 "The function %s with variable args is unsupported.\n",
7261 tname);
7262 return -EINVAL;
7263 }
7264 ret = __get_type_size(btf, args[i].type, &t);
7265
7266 /* No support of struct argument size greater than 16 bytes */
7267 if (ret < 0 || ret > 16) {
7268 bpf_log(log,
7269 "The function %s arg%d type %s is unsupported.\n",
7270 tname, i, btf_type_str(t));
7271 return -EINVAL;
7272 }
7273 if (ret == 0) {
7274 bpf_log(log,
7275 "The function %s has malformed void argument.\n",
7276 tname);
7277 return -EINVAL;
7278 }
7279 m->arg_size[i] = ret;
7280 m->arg_flags[i] = __get_type_fmodel_flags(t);
7281 }
7282 m->nr_args = nargs;
7283 return 0;
7284 }
7285
7286 /* Compare BTFs of two functions assuming only scalars and pointers to context.
7287 * t1 points to BTF_KIND_FUNC in btf1
7288 * t2 points to BTF_KIND_FUNC in btf2
7289 * Returns:
7290 * EINVAL - function prototype mismatch
7291 * EFAULT - verifier bug
7292 * 0 - 99% match. The last 1% is validated by the verifier.
7293 */
btf_check_func_type_match(struct bpf_verifier_log * log,struct btf * btf1,const struct btf_type * t1,struct btf * btf2,const struct btf_type * t2)7294 static int btf_check_func_type_match(struct bpf_verifier_log *log,
7295 struct btf *btf1, const struct btf_type *t1,
7296 struct btf *btf2, const struct btf_type *t2)
7297 {
7298 const struct btf_param *args1, *args2;
7299 const char *fn1, *fn2, *s1, *s2;
7300 u32 nargs1, nargs2, i;
7301
7302 fn1 = btf_name_by_offset(btf1, t1->name_off);
7303 fn2 = btf_name_by_offset(btf2, t2->name_off);
7304
7305 if (btf_func_linkage(t1) != BTF_FUNC_GLOBAL) {
7306 bpf_log(log, "%s() is not a global function\n", fn1);
7307 return -EINVAL;
7308 }
7309 if (btf_func_linkage(t2) != BTF_FUNC_GLOBAL) {
7310 bpf_log(log, "%s() is not a global function\n", fn2);
7311 return -EINVAL;
7312 }
7313
7314 t1 = btf_type_by_id(btf1, t1->type);
7315 if (!t1 || !btf_type_is_func_proto(t1))
7316 return -EFAULT;
7317 t2 = btf_type_by_id(btf2, t2->type);
7318 if (!t2 || !btf_type_is_func_proto(t2))
7319 return -EFAULT;
7320
7321 args1 = (const struct btf_param *)(t1 + 1);
7322 nargs1 = btf_type_vlen(t1);
7323 args2 = (const struct btf_param *)(t2 + 1);
7324 nargs2 = btf_type_vlen(t2);
7325
7326 if (nargs1 != nargs2) {
7327 bpf_log(log, "%s() has %d args while %s() has %d args\n",
7328 fn1, nargs1, fn2, nargs2);
7329 return -EINVAL;
7330 }
7331
7332 t1 = btf_type_skip_modifiers(btf1, t1->type, NULL);
7333 t2 = btf_type_skip_modifiers(btf2, t2->type, NULL);
7334 if (t1->info != t2->info) {
7335 bpf_log(log,
7336 "Return type %s of %s() doesn't match type %s of %s()\n",
7337 btf_type_str(t1), fn1,
7338 btf_type_str(t2), fn2);
7339 return -EINVAL;
7340 }
7341
7342 for (i = 0; i < nargs1; i++) {
7343 t1 = btf_type_skip_modifiers(btf1, args1[i].type, NULL);
7344 t2 = btf_type_skip_modifiers(btf2, args2[i].type, NULL);
7345
7346 if (t1->info != t2->info) {
7347 bpf_log(log, "arg%d in %s() is %s while %s() has %s\n",
7348 i, fn1, btf_type_str(t1),
7349 fn2, btf_type_str(t2));
7350 return -EINVAL;
7351 }
7352 if (btf_type_has_size(t1) && t1->size != t2->size) {
7353 bpf_log(log,
7354 "arg%d in %s() has size %d while %s() has %d\n",
7355 i, fn1, t1->size,
7356 fn2, t2->size);
7357 return -EINVAL;
7358 }
7359
7360 /* global functions are validated with scalars and pointers
7361 * to context only. And only global functions can be replaced.
7362 * Hence type check only those types.
7363 */
7364 if (btf_type_is_int(t1) || btf_is_any_enum(t1))
7365 continue;
7366 if (!btf_type_is_ptr(t1)) {
7367 bpf_log(log,
7368 "arg%d in %s() has unrecognized type\n",
7369 i, fn1);
7370 return -EINVAL;
7371 }
7372 t1 = btf_type_skip_modifiers(btf1, t1->type, NULL);
7373 t2 = btf_type_skip_modifiers(btf2, t2->type, NULL);
7374 if (!btf_type_is_struct(t1)) {
7375 bpf_log(log,
7376 "arg%d in %s() is not a pointer to context\n",
7377 i, fn1);
7378 return -EINVAL;
7379 }
7380 if (!btf_type_is_struct(t2)) {
7381 bpf_log(log,
7382 "arg%d in %s() is not a pointer to context\n",
7383 i, fn2);
7384 return -EINVAL;
7385 }
7386 /* This is an optional check to make program writing easier.
7387 * Compare names of structs and report an error to the user.
7388 * btf_prepare_func_args() already checked that t2 struct
7389 * is a context type. btf_prepare_func_args() will check
7390 * later that t1 struct is a context type as well.
7391 */
7392 s1 = btf_name_by_offset(btf1, t1->name_off);
7393 s2 = btf_name_by_offset(btf2, t2->name_off);
7394 if (strcmp(s1, s2)) {
7395 bpf_log(log,
7396 "arg%d %s(struct %s *) doesn't match %s(struct %s *)\n",
7397 i, fn1, s1, fn2, s2);
7398 return -EINVAL;
7399 }
7400 }
7401 return 0;
7402 }
7403
7404 /* Compare BTFs of given program with BTF of target program */
btf_check_type_match(struct bpf_verifier_log * log,const struct bpf_prog * prog,struct btf * btf2,const struct btf_type * t2)7405 int btf_check_type_match(struct bpf_verifier_log *log, const struct bpf_prog *prog,
7406 struct btf *btf2, const struct btf_type *t2)
7407 {
7408 struct btf *btf1 = prog->aux->btf;
7409 const struct btf_type *t1;
7410 u32 btf_id = 0;
7411
7412 if (!prog->aux->func_info) {
7413 bpf_log(log, "Program extension requires BTF\n");
7414 return -EINVAL;
7415 }
7416
7417 btf_id = prog->aux->func_info[0].type_id;
7418 if (!btf_id)
7419 return -EFAULT;
7420
7421 t1 = btf_type_by_id(btf1, btf_id);
7422 if (!t1 || !btf_type_is_func(t1))
7423 return -EFAULT;
7424
7425 return btf_check_func_type_match(log, btf1, t1, btf2, t2);
7426 }
7427
btf_is_dynptr_ptr(const struct btf * btf,const struct btf_type * t)7428 static bool btf_is_dynptr_ptr(const struct btf *btf, const struct btf_type *t)
7429 {
7430 const char *name;
7431
7432 t = btf_type_by_id(btf, t->type); /* skip PTR */
7433
7434 while (btf_type_is_modifier(t))
7435 t = btf_type_by_id(btf, t->type);
7436
7437 /* allow either struct or struct forward declaration */
7438 if (btf_type_is_struct(t) ||
7439 (btf_type_is_fwd(t) && btf_type_kflag(t) == 0)) {
7440 name = btf_str_by_offset(btf, t->name_off);
7441 return name && strcmp(name, "bpf_dynptr") == 0;
7442 }
7443
7444 return false;
7445 }
7446
7447 struct bpf_cand_cache {
7448 const char *name;
7449 u32 name_len;
7450 u16 kind;
7451 u16 cnt;
7452 struct {
7453 const struct btf *btf;
7454 u32 id;
7455 } cands[];
7456 };
7457
7458 static DEFINE_MUTEX(cand_cache_mutex);
7459
7460 static struct bpf_cand_cache *
7461 bpf_core_find_cands(struct bpf_core_ctx *ctx, u32 local_type_id);
7462
btf_get_ptr_to_btf_id(struct bpf_verifier_log * log,int arg_idx,const struct btf * btf,const struct btf_type * t)7463 static int btf_get_ptr_to_btf_id(struct bpf_verifier_log *log, int arg_idx,
7464 const struct btf *btf, const struct btf_type *t)
7465 {
7466 struct bpf_cand_cache *cc;
7467 struct bpf_core_ctx ctx = {
7468 .btf = btf,
7469 .log = log,
7470 };
7471 u32 kern_type_id, type_id;
7472 int err = 0;
7473
7474 /* skip PTR and modifiers */
7475 type_id = t->type;
7476 t = btf_type_by_id(btf, t->type);
7477 while (btf_type_is_modifier(t)) {
7478 type_id = t->type;
7479 t = btf_type_by_id(btf, t->type);
7480 }
7481
7482 mutex_lock(&cand_cache_mutex);
7483 cc = bpf_core_find_cands(&ctx, type_id);
7484 if (IS_ERR(cc)) {
7485 err = PTR_ERR(cc);
7486 bpf_log(log, "arg#%d reference type('%s %s') candidate matching error: %d\n",
7487 arg_idx, btf_type_str(t), __btf_name_by_offset(btf, t->name_off),
7488 err);
7489 goto cand_cache_unlock;
7490 }
7491 if (cc->cnt != 1) {
7492 bpf_log(log, "arg#%d reference type('%s %s') %s\n",
7493 arg_idx, btf_type_str(t), __btf_name_by_offset(btf, t->name_off),
7494 cc->cnt == 0 ? "has no matches" : "is ambiguous");
7495 err = cc->cnt == 0 ? -ENOENT : -ESRCH;
7496 goto cand_cache_unlock;
7497 }
7498 if (btf_is_module(cc->cands[0].btf)) {
7499 bpf_log(log, "arg#%d reference type('%s %s') points to kernel module type (unsupported)\n",
7500 arg_idx, btf_type_str(t), __btf_name_by_offset(btf, t->name_off));
7501 err = -EOPNOTSUPP;
7502 goto cand_cache_unlock;
7503 }
7504 kern_type_id = cc->cands[0].id;
7505
7506 cand_cache_unlock:
7507 mutex_unlock(&cand_cache_mutex);
7508 if (err)
7509 return err;
7510
7511 return kern_type_id;
7512 }
7513
7514 enum btf_arg_tag {
7515 ARG_TAG_CTX = BIT_ULL(0),
7516 ARG_TAG_NONNULL = BIT_ULL(1),
7517 ARG_TAG_TRUSTED = BIT_ULL(2),
7518 ARG_TAG_NULLABLE = BIT_ULL(3),
7519 ARG_TAG_ARENA = BIT_ULL(4),
7520 };
7521
7522 /* Process BTF of a function to produce high-level expectation of function
7523 * arguments (like ARG_PTR_TO_CTX, or ARG_PTR_TO_MEM, etc). This information
7524 * is cached in subprog info for reuse.
7525 * Returns:
7526 * EFAULT - there is a verifier bug. Abort verification.
7527 * EINVAL - cannot convert BTF.
7528 * 0 - Successfully processed BTF and constructed argument expectations.
7529 */
btf_prepare_func_args(struct bpf_verifier_env * env,int subprog)7530 int btf_prepare_func_args(struct bpf_verifier_env *env, int subprog)
7531 {
7532 bool is_global = subprog_aux(env, subprog)->linkage == BTF_FUNC_GLOBAL;
7533 struct bpf_subprog_info *sub = subprog_info(env, subprog);
7534 struct bpf_verifier_log *log = &env->log;
7535 struct bpf_prog *prog = env->prog;
7536 enum bpf_prog_type prog_type = prog->type;
7537 struct btf *btf = prog->aux->btf;
7538 const struct btf_param *args;
7539 const struct btf_type *t, *ref_t, *fn_t;
7540 u32 i, nargs, btf_id;
7541 const char *tname;
7542
7543 if (sub->args_cached)
7544 return 0;
7545
7546 if (!prog->aux->func_info) {
7547 bpf_log(log, "Verifier bug\n");
7548 return -EFAULT;
7549 }
7550
7551 btf_id = prog->aux->func_info[subprog].type_id;
7552 if (!btf_id) {
7553 if (!is_global) /* not fatal for static funcs */
7554 return -EINVAL;
7555 bpf_log(log, "Global functions need valid BTF\n");
7556 return -EFAULT;
7557 }
7558
7559 fn_t = btf_type_by_id(btf, btf_id);
7560 if (!fn_t || !btf_type_is_func(fn_t)) {
7561 /* These checks were already done by the verifier while loading
7562 * struct bpf_func_info
7563 */
7564 bpf_log(log, "BTF of func#%d doesn't point to KIND_FUNC\n",
7565 subprog);
7566 return -EFAULT;
7567 }
7568 tname = btf_name_by_offset(btf, fn_t->name_off);
7569
7570 if (prog->aux->func_info_aux[subprog].unreliable) {
7571 bpf_log(log, "Verifier bug in function %s()\n", tname);
7572 return -EFAULT;
7573 }
7574 if (prog_type == BPF_PROG_TYPE_EXT)
7575 prog_type = prog->aux->dst_prog->type;
7576
7577 t = btf_type_by_id(btf, fn_t->type);
7578 if (!t || !btf_type_is_func_proto(t)) {
7579 bpf_log(log, "Invalid type of function %s()\n", tname);
7580 return -EFAULT;
7581 }
7582 args = (const struct btf_param *)(t + 1);
7583 nargs = btf_type_vlen(t);
7584 if (nargs > MAX_BPF_FUNC_REG_ARGS) {
7585 if (!is_global)
7586 return -EINVAL;
7587 bpf_log(log, "Global function %s() with %d > %d args. Buggy compiler.\n",
7588 tname, nargs, MAX_BPF_FUNC_REG_ARGS);
7589 return -EINVAL;
7590 }
7591 /* check that function returns int, exception cb also requires this */
7592 t = btf_type_by_id(btf, t->type);
7593 while (btf_type_is_modifier(t))
7594 t = btf_type_by_id(btf, t->type);
7595 if (!btf_type_is_int(t) && !btf_is_any_enum(t)) {
7596 if (!is_global)
7597 return -EINVAL;
7598 bpf_log(log,
7599 "Global function %s() doesn't return scalar. Only those are supported.\n",
7600 tname);
7601 return -EINVAL;
7602 }
7603 /* Convert BTF function arguments into verifier types.
7604 * Only PTR_TO_CTX and SCALAR are supported atm.
7605 */
7606 for (i = 0; i < nargs; i++) {
7607 u32 tags = 0;
7608 int id = 0;
7609
7610 /* 'arg:<tag>' decl_tag takes precedence over derivation of
7611 * register type from BTF type itself
7612 */
7613 while ((id = btf_find_next_decl_tag(btf, fn_t, i, "arg:", id)) > 0) {
7614 const struct btf_type *tag_t = btf_type_by_id(btf, id);
7615 const char *tag = __btf_name_by_offset(btf, tag_t->name_off) + 4;
7616
7617 /* disallow arg tags in static subprogs */
7618 if (!is_global) {
7619 bpf_log(log, "arg#%d type tag is not supported in static functions\n", i);
7620 return -EOPNOTSUPP;
7621 }
7622
7623 if (strcmp(tag, "ctx") == 0) {
7624 tags |= ARG_TAG_CTX;
7625 } else if (strcmp(tag, "trusted") == 0) {
7626 tags |= ARG_TAG_TRUSTED;
7627 } else if (strcmp(tag, "nonnull") == 0) {
7628 tags |= ARG_TAG_NONNULL;
7629 } else if (strcmp(tag, "nullable") == 0) {
7630 tags |= ARG_TAG_NULLABLE;
7631 } else if (strcmp(tag, "arena") == 0) {
7632 tags |= ARG_TAG_ARENA;
7633 } else {
7634 bpf_log(log, "arg#%d has unsupported set of tags\n", i);
7635 return -EOPNOTSUPP;
7636 }
7637 }
7638 if (id != -ENOENT) {
7639 bpf_log(log, "arg#%d type tag fetching failure: %d\n", i, id);
7640 return id;
7641 }
7642
7643 t = btf_type_by_id(btf, args[i].type);
7644 while (btf_type_is_modifier(t))
7645 t = btf_type_by_id(btf, t->type);
7646 if (!btf_type_is_ptr(t))
7647 goto skip_pointer;
7648
7649 if ((tags & ARG_TAG_CTX) || btf_is_prog_ctx_type(log, btf, t, prog_type, i)) {
7650 if (tags & ~ARG_TAG_CTX) {
7651 bpf_log(log, "arg#%d has invalid combination of tags\n", i);
7652 return -EINVAL;
7653 }
7654 if ((tags & ARG_TAG_CTX) &&
7655 btf_validate_prog_ctx_type(log, btf, t, i, prog_type,
7656 prog->expected_attach_type))
7657 return -EINVAL;
7658 sub->args[i].arg_type = ARG_PTR_TO_CTX;
7659 continue;
7660 }
7661 if (btf_is_dynptr_ptr(btf, t)) {
7662 if (tags) {
7663 bpf_log(log, "arg#%d has invalid combination of tags\n", i);
7664 return -EINVAL;
7665 }
7666 sub->args[i].arg_type = ARG_PTR_TO_DYNPTR | MEM_RDONLY;
7667 continue;
7668 }
7669 if (tags & ARG_TAG_TRUSTED) {
7670 int kern_type_id;
7671
7672 if (tags & ARG_TAG_NONNULL) {
7673 bpf_log(log, "arg#%d has invalid combination of tags\n", i);
7674 return -EINVAL;
7675 }
7676
7677 kern_type_id = btf_get_ptr_to_btf_id(log, i, btf, t);
7678 if (kern_type_id < 0)
7679 return kern_type_id;
7680
7681 sub->args[i].arg_type = ARG_PTR_TO_BTF_ID | PTR_TRUSTED;
7682 if (tags & ARG_TAG_NULLABLE)
7683 sub->args[i].arg_type |= PTR_MAYBE_NULL;
7684 sub->args[i].btf_id = kern_type_id;
7685 continue;
7686 }
7687 if (tags & ARG_TAG_ARENA) {
7688 if (tags & ~ARG_TAG_ARENA) {
7689 bpf_log(log, "arg#%d arena cannot be combined with any other tags\n", i);
7690 return -EINVAL;
7691 }
7692 sub->args[i].arg_type = ARG_PTR_TO_ARENA;
7693 continue;
7694 }
7695 if (is_global) { /* generic user data pointer */
7696 u32 mem_size;
7697
7698 if (tags & ARG_TAG_NULLABLE) {
7699 bpf_log(log, "arg#%d has invalid combination of tags\n", i);
7700 return -EINVAL;
7701 }
7702
7703 t = btf_type_skip_modifiers(btf, t->type, NULL);
7704 ref_t = btf_resolve_size(btf, t, &mem_size);
7705 if (IS_ERR(ref_t)) {
7706 bpf_log(log, "arg#%d reference type('%s %s') size cannot be determined: %ld\n",
7707 i, btf_type_str(t), btf_name_by_offset(btf, t->name_off),
7708 PTR_ERR(ref_t));
7709 return -EINVAL;
7710 }
7711
7712 sub->args[i].arg_type = ARG_PTR_TO_MEM | PTR_MAYBE_NULL;
7713 if (tags & ARG_TAG_NONNULL)
7714 sub->args[i].arg_type &= ~PTR_MAYBE_NULL;
7715 sub->args[i].mem_size = mem_size;
7716 continue;
7717 }
7718
7719 skip_pointer:
7720 if (tags) {
7721 bpf_log(log, "arg#%d has pointer tag, but is not a pointer type\n", i);
7722 return -EINVAL;
7723 }
7724 if (btf_type_is_int(t) || btf_is_any_enum(t)) {
7725 sub->args[i].arg_type = ARG_ANYTHING;
7726 continue;
7727 }
7728 if (!is_global)
7729 return -EINVAL;
7730 bpf_log(log, "Arg#%d type %s in %s() is not supported yet.\n",
7731 i, btf_type_str(t), tname);
7732 return -EINVAL;
7733 }
7734
7735 sub->arg_cnt = nargs;
7736 sub->args_cached = true;
7737
7738 return 0;
7739 }
7740
btf_type_show(const struct btf * btf,u32 type_id,void * obj,struct btf_show * show)7741 static void btf_type_show(const struct btf *btf, u32 type_id, void *obj,
7742 struct btf_show *show)
7743 {
7744 const struct btf_type *t = btf_type_by_id(btf, type_id);
7745
7746 show->btf = btf;
7747 memset(&show->state, 0, sizeof(show->state));
7748 memset(&show->obj, 0, sizeof(show->obj));
7749
7750 btf_type_ops(t)->show(btf, t, type_id, obj, 0, show);
7751 }
7752
btf_seq_show(struct btf_show * show,const char * fmt,va_list args)7753 __printf(2, 0) static void btf_seq_show(struct btf_show *show, const char *fmt,
7754 va_list args)
7755 {
7756 seq_vprintf((struct seq_file *)show->target, fmt, args);
7757 }
7758
btf_type_seq_show_flags(const struct btf * btf,u32 type_id,void * obj,struct seq_file * m,u64 flags)7759 int btf_type_seq_show_flags(const struct btf *btf, u32 type_id,
7760 void *obj, struct seq_file *m, u64 flags)
7761 {
7762 struct btf_show sseq;
7763
7764 sseq.target = m;
7765 sseq.showfn = btf_seq_show;
7766 sseq.flags = flags;
7767
7768 btf_type_show(btf, type_id, obj, &sseq);
7769
7770 return sseq.state.status;
7771 }
7772
btf_type_seq_show(const struct btf * btf,u32 type_id,void * obj,struct seq_file * m)7773 void btf_type_seq_show(const struct btf *btf, u32 type_id, void *obj,
7774 struct seq_file *m)
7775 {
7776 (void) btf_type_seq_show_flags(btf, type_id, obj, m,
7777 BTF_SHOW_NONAME | BTF_SHOW_COMPACT |
7778 BTF_SHOW_ZERO | BTF_SHOW_UNSAFE);
7779 }
7780
7781 struct btf_show_snprintf {
7782 struct btf_show show;
7783 int len_left; /* space left in string */
7784 int len; /* length we would have written */
7785 };
7786
btf_snprintf_show(struct btf_show * show,const char * fmt,va_list args)7787 __printf(2, 0) static void btf_snprintf_show(struct btf_show *show, const char *fmt,
7788 va_list args)
7789 {
7790 struct btf_show_snprintf *ssnprintf = (struct btf_show_snprintf *)show;
7791 int len;
7792
7793 len = vsnprintf(show->target, ssnprintf->len_left, fmt, args);
7794
7795 if (len < 0) {
7796 ssnprintf->len_left = 0;
7797 ssnprintf->len = len;
7798 } else if (len >= ssnprintf->len_left) {
7799 /* no space, drive on to get length we would have written */
7800 ssnprintf->len_left = 0;
7801 ssnprintf->len += len;
7802 } else {
7803 ssnprintf->len_left -= len;
7804 ssnprintf->len += len;
7805 show->target += len;
7806 }
7807 }
7808
btf_type_snprintf_show(const struct btf * btf,u32 type_id,void * obj,char * buf,int len,u64 flags)7809 int btf_type_snprintf_show(const struct btf *btf, u32 type_id, void *obj,
7810 char *buf, int len, u64 flags)
7811 {
7812 struct btf_show_snprintf ssnprintf;
7813
7814 ssnprintf.show.target = buf;
7815 ssnprintf.show.flags = flags;
7816 ssnprintf.show.showfn = btf_snprintf_show;
7817 ssnprintf.len_left = len;
7818 ssnprintf.len = 0;
7819
7820 btf_type_show(btf, type_id, obj, (struct btf_show *)&ssnprintf);
7821
7822 /* If we encountered an error, return it. */
7823 if (ssnprintf.show.state.status)
7824 return ssnprintf.show.state.status;
7825
7826 /* Otherwise return length we would have written */
7827 return ssnprintf.len;
7828 }
7829
7830 #ifdef CONFIG_PROC_FS
bpf_btf_show_fdinfo(struct seq_file * m,struct file * filp)7831 static void bpf_btf_show_fdinfo(struct seq_file *m, struct file *filp)
7832 {
7833 const struct btf *btf = filp->private_data;
7834
7835 seq_printf(m, "btf_id:\t%u\n", btf->id);
7836 }
7837 #endif
7838
btf_release(struct inode * inode,struct file * filp)7839 static int btf_release(struct inode *inode, struct file *filp)
7840 {
7841 btf_put(filp->private_data);
7842 return 0;
7843 }
7844
7845 const struct file_operations btf_fops = {
7846 #ifdef CONFIG_PROC_FS
7847 .show_fdinfo = bpf_btf_show_fdinfo,
7848 #endif
7849 .release = btf_release,
7850 };
7851
__btf_new_fd(struct btf * btf)7852 static int __btf_new_fd(struct btf *btf)
7853 {
7854 return anon_inode_getfd("btf", &btf_fops, btf, O_RDONLY | O_CLOEXEC);
7855 }
7856
btf_new_fd(const union bpf_attr * attr,bpfptr_t uattr,u32 uattr_size)7857 int btf_new_fd(const union bpf_attr *attr, bpfptr_t uattr, u32 uattr_size)
7858 {
7859 struct btf *btf;
7860 int ret;
7861
7862 btf = btf_parse(attr, uattr, uattr_size);
7863 if (IS_ERR(btf))
7864 return PTR_ERR(btf);
7865
7866 ret = btf_alloc_id(btf);
7867 if (ret) {
7868 btf_free(btf);
7869 return ret;
7870 }
7871
7872 /*
7873 * The BTF ID is published to the userspace.
7874 * All BTF free must go through call_rcu() from
7875 * now on (i.e. free by calling btf_put()).
7876 */
7877
7878 ret = __btf_new_fd(btf);
7879 if (ret < 0)
7880 btf_put(btf);
7881
7882 return ret;
7883 }
7884
btf_get_by_fd(int fd)7885 struct btf *btf_get_by_fd(int fd)
7886 {
7887 struct btf *btf;
7888 CLASS(fd, f)(fd);
7889
7890 if (fd_empty(f))
7891 return ERR_PTR(-EBADF);
7892
7893 if (fd_file(f)->f_op != &btf_fops)
7894 return ERR_PTR(-EINVAL);
7895
7896 btf = fd_file(f)->private_data;
7897 refcount_inc(&btf->refcnt);
7898
7899 return btf;
7900 }
7901
btf_get_info_by_fd(const struct btf * btf,const union bpf_attr * attr,union bpf_attr __user * uattr)7902 int btf_get_info_by_fd(const struct btf *btf,
7903 const union bpf_attr *attr,
7904 union bpf_attr __user *uattr)
7905 {
7906 struct bpf_btf_info __user *uinfo;
7907 struct bpf_btf_info info;
7908 u32 info_copy, btf_copy;
7909 void __user *ubtf;
7910 char __user *uname;
7911 u32 uinfo_len, uname_len, name_len;
7912 int ret = 0;
7913
7914 uinfo = u64_to_user_ptr(attr->info.info);
7915 uinfo_len = attr->info.info_len;
7916
7917 info_copy = min_t(u32, uinfo_len, sizeof(info));
7918 memset(&info, 0, sizeof(info));
7919 if (copy_from_user(&info, uinfo, info_copy))
7920 return -EFAULT;
7921
7922 info.id = btf->id;
7923 ubtf = u64_to_user_ptr(info.btf);
7924 btf_copy = min_t(u32, btf->data_size, info.btf_size);
7925 if (copy_to_user(ubtf, btf->data, btf_copy))
7926 return -EFAULT;
7927 info.btf_size = btf->data_size;
7928
7929 info.kernel_btf = btf->kernel_btf;
7930
7931 uname = u64_to_user_ptr(info.name);
7932 uname_len = info.name_len;
7933 if (!uname ^ !uname_len)
7934 return -EINVAL;
7935
7936 name_len = strlen(btf->name);
7937 info.name_len = name_len;
7938
7939 if (uname) {
7940 if (uname_len >= name_len + 1) {
7941 if (copy_to_user(uname, btf->name, name_len + 1))
7942 return -EFAULT;
7943 } else {
7944 char zero = '\0';
7945
7946 if (copy_to_user(uname, btf->name, uname_len - 1))
7947 return -EFAULT;
7948 if (put_user(zero, uname + uname_len - 1))
7949 return -EFAULT;
7950 /* let user-space know about too short buffer */
7951 ret = -ENOSPC;
7952 }
7953 }
7954
7955 if (copy_to_user(uinfo, &info, info_copy) ||
7956 put_user(info_copy, &uattr->info.info_len))
7957 return -EFAULT;
7958
7959 return ret;
7960 }
7961
btf_get_fd_by_id(u32 id)7962 int btf_get_fd_by_id(u32 id)
7963 {
7964 struct btf *btf;
7965 int fd;
7966
7967 rcu_read_lock();
7968 btf = idr_find(&btf_idr, id);
7969 if (!btf || !refcount_inc_not_zero(&btf->refcnt))
7970 btf = ERR_PTR(-ENOENT);
7971 rcu_read_unlock();
7972
7973 if (IS_ERR(btf))
7974 return PTR_ERR(btf);
7975
7976 fd = __btf_new_fd(btf);
7977 if (fd < 0)
7978 btf_put(btf);
7979
7980 return fd;
7981 }
7982
btf_obj_id(const struct btf * btf)7983 u32 btf_obj_id(const struct btf *btf)
7984 {
7985 return btf->id;
7986 }
7987
btf_is_kernel(const struct btf * btf)7988 bool btf_is_kernel(const struct btf *btf)
7989 {
7990 return btf->kernel_btf;
7991 }
7992
btf_is_module(const struct btf * btf)7993 bool btf_is_module(const struct btf *btf)
7994 {
7995 return btf->kernel_btf && strcmp(btf->name, "vmlinux") != 0;
7996 }
7997
7998 enum {
7999 BTF_MODULE_F_LIVE = (1 << 0),
8000 };
8001
8002 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
8003 struct btf_module {
8004 struct list_head list;
8005 struct module *module;
8006 struct btf *btf;
8007 struct bin_attribute *sysfs_attr;
8008 int flags;
8009 };
8010
8011 static LIST_HEAD(btf_modules);
8012 static DEFINE_MUTEX(btf_module_mutex);
8013
8014 static ssize_t
btf_module_read(struct file * file,struct kobject * kobj,struct bin_attribute * bin_attr,char * buf,loff_t off,size_t len)8015 btf_module_read(struct file *file, struct kobject *kobj,
8016 struct bin_attribute *bin_attr,
8017 char *buf, loff_t off, size_t len)
8018 {
8019 const struct btf *btf = bin_attr->private;
8020
8021 memcpy(buf, btf->data + off, len);
8022 return len;
8023 }
8024
8025 static void purge_cand_cache(struct btf *btf);
8026
btf_module_notify(struct notifier_block * nb,unsigned long op,void * module)8027 static int btf_module_notify(struct notifier_block *nb, unsigned long op,
8028 void *module)
8029 {
8030 struct btf_module *btf_mod, *tmp;
8031 struct module *mod = module;
8032 struct btf *btf;
8033 int err = 0;
8034
8035 if (mod->btf_data_size == 0 ||
8036 (op != MODULE_STATE_COMING && op != MODULE_STATE_LIVE &&
8037 op != MODULE_STATE_GOING))
8038 goto out;
8039
8040 switch (op) {
8041 case MODULE_STATE_COMING:
8042 btf_mod = kzalloc(sizeof(*btf_mod), GFP_KERNEL);
8043 if (!btf_mod) {
8044 err = -ENOMEM;
8045 goto out;
8046 }
8047 btf = btf_parse_module(mod->name, mod->btf_data, mod->btf_data_size,
8048 mod->btf_base_data, mod->btf_base_data_size);
8049 if (IS_ERR(btf)) {
8050 kfree(btf_mod);
8051 if (!IS_ENABLED(CONFIG_MODULE_ALLOW_BTF_MISMATCH)) {
8052 pr_warn("failed to validate module [%s] BTF: %ld\n",
8053 mod->name, PTR_ERR(btf));
8054 err = PTR_ERR(btf);
8055 } else {
8056 pr_warn_once("Kernel module BTF mismatch detected, BTF debug info may be unavailable for some modules\n");
8057 }
8058 goto out;
8059 }
8060 err = btf_alloc_id(btf);
8061 if (err) {
8062 btf_free(btf);
8063 kfree(btf_mod);
8064 goto out;
8065 }
8066
8067 purge_cand_cache(NULL);
8068 mutex_lock(&btf_module_mutex);
8069 btf_mod->module = module;
8070 btf_mod->btf = btf;
8071 list_add(&btf_mod->list, &btf_modules);
8072 mutex_unlock(&btf_module_mutex);
8073
8074 if (IS_ENABLED(CONFIG_SYSFS)) {
8075 struct bin_attribute *attr;
8076
8077 attr = kzalloc(sizeof(*attr), GFP_KERNEL);
8078 if (!attr)
8079 goto out;
8080
8081 sysfs_bin_attr_init(attr);
8082 attr->attr.name = btf->name;
8083 attr->attr.mode = 0444;
8084 attr->size = btf->data_size;
8085 attr->private = btf;
8086 attr->read = btf_module_read;
8087
8088 err = sysfs_create_bin_file(btf_kobj, attr);
8089 if (err) {
8090 pr_warn("failed to register module [%s] BTF in sysfs: %d\n",
8091 mod->name, err);
8092 kfree(attr);
8093 err = 0;
8094 goto out;
8095 }
8096
8097 btf_mod->sysfs_attr = attr;
8098 }
8099
8100 break;
8101 case MODULE_STATE_LIVE:
8102 mutex_lock(&btf_module_mutex);
8103 list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
8104 if (btf_mod->module != module)
8105 continue;
8106
8107 btf_mod->flags |= BTF_MODULE_F_LIVE;
8108 break;
8109 }
8110 mutex_unlock(&btf_module_mutex);
8111 break;
8112 case MODULE_STATE_GOING:
8113 mutex_lock(&btf_module_mutex);
8114 list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
8115 if (btf_mod->module != module)
8116 continue;
8117
8118 list_del(&btf_mod->list);
8119 if (btf_mod->sysfs_attr)
8120 sysfs_remove_bin_file(btf_kobj, btf_mod->sysfs_attr);
8121 purge_cand_cache(btf_mod->btf);
8122 btf_put(btf_mod->btf);
8123 kfree(btf_mod->sysfs_attr);
8124 kfree(btf_mod);
8125 break;
8126 }
8127 mutex_unlock(&btf_module_mutex);
8128 break;
8129 }
8130 out:
8131 return notifier_from_errno(err);
8132 }
8133
8134 static struct notifier_block btf_module_nb = {
8135 .notifier_call = btf_module_notify,
8136 };
8137
btf_module_init(void)8138 static int __init btf_module_init(void)
8139 {
8140 register_module_notifier(&btf_module_nb);
8141 return 0;
8142 }
8143
8144 fs_initcall(btf_module_init);
8145 #endif /* CONFIG_DEBUG_INFO_BTF_MODULES */
8146
btf_try_get_module(const struct btf * btf)8147 struct module *btf_try_get_module(const struct btf *btf)
8148 {
8149 struct module *res = NULL;
8150 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
8151 struct btf_module *btf_mod, *tmp;
8152
8153 mutex_lock(&btf_module_mutex);
8154 list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
8155 if (btf_mod->btf != btf)
8156 continue;
8157
8158 /* We must only consider module whose __init routine has
8159 * finished, hence we must check for BTF_MODULE_F_LIVE flag,
8160 * which is set from the notifier callback for
8161 * MODULE_STATE_LIVE.
8162 */
8163 if ((btf_mod->flags & BTF_MODULE_F_LIVE) && try_module_get(btf_mod->module))
8164 res = btf_mod->module;
8165
8166 break;
8167 }
8168 mutex_unlock(&btf_module_mutex);
8169 #endif
8170
8171 return res;
8172 }
8173
8174 /* Returns struct btf corresponding to the struct module.
8175 * This function can return NULL or ERR_PTR.
8176 */
btf_get_module_btf(const struct module * module)8177 static struct btf *btf_get_module_btf(const struct module *module)
8178 {
8179 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
8180 struct btf_module *btf_mod, *tmp;
8181 #endif
8182 struct btf *btf = NULL;
8183
8184 if (!module) {
8185 btf = bpf_get_btf_vmlinux();
8186 if (!IS_ERR_OR_NULL(btf))
8187 btf_get(btf);
8188 return btf;
8189 }
8190
8191 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
8192 mutex_lock(&btf_module_mutex);
8193 list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
8194 if (btf_mod->module != module)
8195 continue;
8196
8197 btf_get(btf_mod->btf);
8198 btf = btf_mod->btf;
8199 break;
8200 }
8201 mutex_unlock(&btf_module_mutex);
8202 #endif
8203
8204 return btf;
8205 }
8206
check_btf_kconfigs(const struct module * module,const char * feature)8207 static int check_btf_kconfigs(const struct module *module, const char *feature)
8208 {
8209 if (!module && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
8210 pr_err("missing vmlinux BTF, cannot register %s\n", feature);
8211 return -ENOENT;
8212 }
8213 if (module && IS_ENABLED(CONFIG_DEBUG_INFO_BTF_MODULES))
8214 pr_warn("missing module BTF, cannot register %s\n", feature);
8215 return 0;
8216 }
8217
BPF_CALL_4(bpf_btf_find_by_name_kind,char *,name,int,name_sz,u32,kind,int,flags)8218 BPF_CALL_4(bpf_btf_find_by_name_kind, char *, name, int, name_sz, u32, kind, int, flags)
8219 {
8220 struct btf *btf = NULL;
8221 int btf_obj_fd = 0;
8222 long ret;
8223
8224 if (flags)
8225 return -EINVAL;
8226
8227 if (name_sz <= 1 || name[name_sz - 1])
8228 return -EINVAL;
8229
8230 ret = bpf_find_btf_id(name, kind, &btf);
8231 if (ret > 0 && btf_is_module(btf)) {
8232 btf_obj_fd = __btf_new_fd(btf);
8233 if (btf_obj_fd < 0) {
8234 btf_put(btf);
8235 return btf_obj_fd;
8236 }
8237 return ret | (((u64)btf_obj_fd) << 32);
8238 }
8239 if (ret > 0)
8240 btf_put(btf);
8241 return ret;
8242 }
8243
8244 const struct bpf_func_proto bpf_btf_find_by_name_kind_proto = {
8245 .func = bpf_btf_find_by_name_kind,
8246 .gpl_only = false,
8247 .ret_type = RET_INTEGER,
8248 .arg1_type = ARG_PTR_TO_MEM | MEM_RDONLY,
8249 .arg2_type = ARG_CONST_SIZE,
8250 .arg3_type = ARG_ANYTHING,
8251 .arg4_type = ARG_ANYTHING,
8252 };
8253
BTF_ID_LIST_GLOBAL(btf_tracing_ids,MAX_BTF_TRACING_TYPE)8254 BTF_ID_LIST_GLOBAL(btf_tracing_ids, MAX_BTF_TRACING_TYPE)
8255 #define BTF_TRACING_TYPE(name, type) BTF_ID(struct, type)
8256 BTF_TRACING_TYPE_xxx
8257 #undef BTF_TRACING_TYPE
8258
8259 /* Validate well-formedness of iter argument type.
8260 * On success, return positive BTF ID of iter state's STRUCT type.
8261 * On error, negative error is returned.
8262 */
8263 int btf_check_iter_arg(struct btf *btf, const struct btf_type *func, int arg_idx)
8264 {
8265 const struct btf_param *arg;
8266 const struct btf_type *t;
8267 const char *name;
8268 int btf_id;
8269
8270 if (btf_type_vlen(func) <= arg_idx)
8271 return -EINVAL;
8272
8273 arg = &btf_params(func)[arg_idx];
8274 t = btf_type_skip_modifiers(btf, arg->type, NULL);
8275 if (!t || !btf_type_is_ptr(t))
8276 return -EINVAL;
8277 t = btf_type_skip_modifiers(btf, t->type, &btf_id);
8278 if (!t || !__btf_type_is_struct(t))
8279 return -EINVAL;
8280
8281 name = btf_name_by_offset(btf, t->name_off);
8282 if (!name || strncmp(name, ITER_PREFIX, sizeof(ITER_PREFIX) - 1))
8283 return -EINVAL;
8284
8285 return btf_id;
8286 }
8287
btf_check_iter_kfuncs(struct btf * btf,const char * func_name,const struct btf_type * func,u32 func_flags)8288 static int btf_check_iter_kfuncs(struct btf *btf, const char *func_name,
8289 const struct btf_type *func, u32 func_flags)
8290 {
8291 u32 flags = func_flags & (KF_ITER_NEW | KF_ITER_NEXT | KF_ITER_DESTROY);
8292 const char *sfx, *iter_name;
8293 const struct btf_type *t;
8294 char exp_name[128];
8295 u32 nr_args;
8296 int btf_id;
8297
8298 /* exactly one of KF_ITER_{NEW,NEXT,DESTROY} can be set */
8299 if (!flags || (flags & (flags - 1)))
8300 return -EINVAL;
8301
8302 /* any BPF iter kfunc should have `struct bpf_iter_<type> *` first arg */
8303 nr_args = btf_type_vlen(func);
8304 if (nr_args < 1)
8305 return -EINVAL;
8306
8307 btf_id = btf_check_iter_arg(btf, func, 0);
8308 if (btf_id < 0)
8309 return btf_id;
8310
8311 /* sizeof(struct bpf_iter_<type>) should be a multiple of 8 to
8312 * fit nicely in stack slots
8313 */
8314 t = btf_type_by_id(btf, btf_id);
8315 if (t->size == 0 || (t->size % 8))
8316 return -EINVAL;
8317
8318 /* validate bpf_iter_<type>_{new,next,destroy}(struct bpf_iter_<type> *)
8319 * naming pattern
8320 */
8321 iter_name = btf_name_by_offset(btf, t->name_off) + sizeof(ITER_PREFIX) - 1;
8322 if (flags & KF_ITER_NEW)
8323 sfx = "new";
8324 else if (flags & KF_ITER_NEXT)
8325 sfx = "next";
8326 else /* (flags & KF_ITER_DESTROY) */
8327 sfx = "destroy";
8328
8329 snprintf(exp_name, sizeof(exp_name), "bpf_iter_%s_%s", iter_name, sfx);
8330 if (strcmp(func_name, exp_name))
8331 return -EINVAL;
8332
8333 /* only iter constructor should have extra arguments */
8334 if (!(flags & KF_ITER_NEW) && nr_args != 1)
8335 return -EINVAL;
8336
8337 if (flags & KF_ITER_NEXT) {
8338 /* bpf_iter_<type>_next() should return pointer */
8339 t = btf_type_skip_modifiers(btf, func->type, NULL);
8340 if (!t || !btf_type_is_ptr(t))
8341 return -EINVAL;
8342 }
8343
8344 if (flags & KF_ITER_DESTROY) {
8345 /* bpf_iter_<type>_destroy() should return void */
8346 t = btf_type_by_id(btf, func->type);
8347 if (!t || !btf_type_is_void(t))
8348 return -EINVAL;
8349 }
8350
8351 return 0;
8352 }
8353
btf_check_kfunc_protos(struct btf * btf,u32 func_id,u32 func_flags)8354 static int btf_check_kfunc_protos(struct btf *btf, u32 func_id, u32 func_flags)
8355 {
8356 const struct btf_type *func;
8357 const char *func_name;
8358 int err;
8359
8360 /* any kfunc should be FUNC -> FUNC_PROTO */
8361 func = btf_type_by_id(btf, func_id);
8362 if (!func || !btf_type_is_func(func))
8363 return -EINVAL;
8364
8365 /* sanity check kfunc name */
8366 func_name = btf_name_by_offset(btf, func->name_off);
8367 if (!func_name || !func_name[0])
8368 return -EINVAL;
8369
8370 func = btf_type_by_id(btf, func->type);
8371 if (!func || !btf_type_is_func_proto(func))
8372 return -EINVAL;
8373
8374 if (func_flags & (KF_ITER_NEW | KF_ITER_NEXT | KF_ITER_DESTROY)) {
8375 err = btf_check_iter_kfuncs(btf, func_name, func, func_flags);
8376 if (err)
8377 return err;
8378 }
8379
8380 return 0;
8381 }
8382
8383 /* Kernel Function (kfunc) BTF ID set registration API */
8384
btf_populate_kfunc_set(struct btf * btf,enum btf_kfunc_hook hook,const struct btf_kfunc_id_set * kset)8385 static int btf_populate_kfunc_set(struct btf *btf, enum btf_kfunc_hook hook,
8386 const struct btf_kfunc_id_set *kset)
8387 {
8388 struct btf_kfunc_hook_filter *hook_filter;
8389 struct btf_id_set8 *add_set = kset->set;
8390 bool vmlinux_set = !btf_is_module(btf);
8391 bool add_filter = !!kset->filter;
8392 struct btf_kfunc_set_tab *tab;
8393 struct btf_id_set8 *set;
8394 u32 set_cnt, i;
8395 int ret;
8396
8397 if (hook >= BTF_KFUNC_HOOK_MAX) {
8398 ret = -EINVAL;
8399 goto end;
8400 }
8401
8402 if (!add_set->cnt)
8403 return 0;
8404
8405 tab = btf->kfunc_set_tab;
8406
8407 if (tab && add_filter) {
8408 u32 i;
8409
8410 hook_filter = &tab->hook_filters[hook];
8411 for (i = 0; i < hook_filter->nr_filters; i++) {
8412 if (hook_filter->filters[i] == kset->filter) {
8413 add_filter = false;
8414 break;
8415 }
8416 }
8417
8418 if (add_filter && hook_filter->nr_filters == BTF_KFUNC_FILTER_MAX_CNT) {
8419 ret = -E2BIG;
8420 goto end;
8421 }
8422 }
8423
8424 if (!tab) {
8425 tab = kzalloc(sizeof(*tab), GFP_KERNEL | __GFP_NOWARN);
8426 if (!tab)
8427 return -ENOMEM;
8428 btf->kfunc_set_tab = tab;
8429 }
8430
8431 set = tab->sets[hook];
8432 /* Warn when register_btf_kfunc_id_set is called twice for the same hook
8433 * for module sets.
8434 */
8435 if (WARN_ON_ONCE(set && !vmlinux_set)) {
8436 ret = -EINVAL;
8437 goto end;
8438 }
8439
8440 /* In case of vmlinux sets, there may be more than one set being
8441 * registered per hook. To create a unified set, we allocate a new set
8442 * and concatenate all individual sets being registered. While each set
8443 * is individually sorted, they may become unsorted when concatenated,
8444 * hence re-sorting the final set again is required to make binary
8445 * searching the set using btf_id_set8_contains function work.
8446 *
8447 * For module sets, we need to allocate as we may need to relocate
8448 * BTF ids.
8449 */
8450 set_cnt = set ? set->cnt : 0;
8451
8452 if (set_cnt > U32_MAX - add_set->cnt) {
8453 ret = -EOVERFLOW;
8454 goto end;
8455 }
8456
8457 if (set_cnt + add_set->cnt > BTF_KFUNC_SET_MAX_CNT) {
8458 ret = -E2BIG;
8459 goto end;
8460 }
8461
8462 /* Grow set */
8463 set = krealloc(tab->sets[hook],
8464 offsetof(struct btf_id_set8, pairs[set_cnt + add_set->cnt]),
8465 GFP_KERNEL | __GFP_NOWARN);
8466 if (!set) {
8467 ret = -ENOMEM;
8468 goto end;
8469 }
8470
8471 /* For newly allocated set, initialize set->cnt to 0 */
8472 if (!tab->sets[hook])
8473 set->cnt = 0;
8474 tab->sets[hook] = set;
8475
8476 /* Concatenate the two sets */
8477 memcpy(set->pairs + set->cnt, add_set->pairs, add_set->cnt * sizeof(set->pairs[0]));
8478 /* Now that the set is copied, update with relocated BTF ids */
8479 for (i = set->cnt; i < set->cnt + add_set->cnt; i++)
8480 set->pairs[i].id = btf_relocate_id(btf, set->pairs[i].id);
8481
8482 set->cnt += add_set->cnt;
8483
8484 sort(set->pairs, set->cnt, sizeof(set->pairs[0]), btf_id_cmp_func, NULL);
8485
8486 if (add_filter) {
8487 hook_filter = &tab->hook_filters[hook];
8488 hook_filter->filters[hook_filter->nr_filters++] = kset->filter;
8489 }
8490 return 0;
8491 end:
8492 btf_free_kfunc_set_tab(btf);
8493 return ret;
8494 }
8495
__btf_kfunc_id_set_contains(const struct btf * btf,enum btf_kfunc_hook hook,u32 kfunc_btf_id,const struct bpf_prog * prog)8496 static u32 *__btf_kfunc_id_set_contains(const struct btf *btf,
8497 enum btf_kfunc_hook hook,
8498 u32 kfunc_btf_id,
8499 const struct bpf_prog *prog)
8500 {
8501 struct btf_kfunc_hook_filter *hook_filter;
8502 struct btf_id_set8 *set;
8503 u32 *id, i;
8504
8505 if (hook >= BTF_KFUNC_HOOK_MAX)
8506 return NULL;
8507 if (!btf->kfunc_set_tab)
8508 return NULL;
8509 hook_filter = &btf->kfunc_set_tab->hook_filters[hook];
8510 for (i = 0; i < hook_filter->nr_filters; i++) {
8511 if (hook_filter->filters[i](prog, kfunc_btf_id))
8512 return NULL;
8513 }
8514 set = btf->kfunc_set_tab->sets[hook];
8515 if (!set)
8516 return NULL;
8517 id = btf_id_set8_contains(set, kfunc_btf_id);
8518 if (!id)
8519 return NULL;
8520 /* The flags for BTF ID are located next to it */
8521 return id + 1;
8522 }
8523
bpf_prog_type_to_kfunc_hook(enum bpf_prog_type prog_type)8524 static int bpf_prog_type_to_kfunc_hook(enum bpf_prog_type prog_type)
8525 {
8526 switch (prog_type) {
8527 case BPF_PROG_TYPE_UNSPEC:
8528 return BTF_KFUNC_HOOK_COMMON;
8529 case BPF_PROG_TYPE_XDP:
8530 return BTF_KFUNC_HOOK_XDP;
8531 case BPF_PROG_TYPE_SCHED_CLS:
8532 return BTF_KFUNC_HOOK_TC;
8533 case BPF_PROG_TYPE_STRUCT_OPS:
8534 return BTF_KFUNC_HOOK_STRUCT_OPS;
8535 case BPF_PROG_TYPE_TRACING:
8536 case BPF_PROG_TYPE_TRACEPOINT:
8537 case BPF_PROG_TYPE_PERF_EVENT:
8538 case BPF_PROG_TYPE_LSM:
8539 return BTF_KFUNC_HOOK_TRACING;
8540 case BPF_PROG_TYPE_SYSCALL:
8541 return BTF_KFUNC_HOOK_SYSCALL;
8542 case BPF_PROG_TYPE_CGROUP_SKB:
8543 case BPF_PROG_TYPE_CGROUP_SOCK:
8544 case BPF_PROG_TYPE_CGROUP_DEVICE:
8545 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
8546 case BPF_PROG_TYPE_CGROUP_SOCKOPT:
8547 case BPF_PROG_TYPE_CGROUP_SYSCTL:
8548 return BTF_KFUNC_HOOK_CGROUP;
8549 case BPF_PROG_TYPE_SCHED_ACT:
8550 return BTF_KFUNC_HOOK_SCHED_ACT;
8551 case BPF_PROG_TYPE_SK_SKB:
8552 return BTF_KFUNC_HOOK_SK_SKB;
8553 case BPF_PROG_TYPE_SOCKET_FILTER:
8554 return BTF_KFUNC_HOOK_SOCKET_FILTER;
8555 case BPF_PROG_TYPE_LWT_OUT:
8556 case BPF_PROG_TYPE_LWT_IN:
8557 case BPF_PROG_TYPE_LWT_XMIT:
8558 case BPF_PROG_TYPE_LWT_SEG6LOCAL:
8559 return BTF_KFUNC_HOOK_LWT;
8560 case BPF_PROG_TYPE_NETFILTER:
8561 return BTF_KFUNC_HOOK_NETFILTER;
8562 case BPF_PROG_TYPE_KPROBE:
8563 return BTF_KFUNC_HOOK_KPROBE;
8564 default:
8565 return BTF_KFUNC_HOOK_MAX;
8566 }
8567 }
8568
8569 /* Caution:
8570 * Reference to the module (obtained using btf_try_get_module) corresponding to
8571 * the struct btf *MUST* be held when calling this function from verifier
8572 * context. This is usually true as we stash references in prog's kfunc_btf_tab;
8573 * keeping the reference for the duration of the call provides the necessary
8574 * protection for looking up a well-formed btf->kfunc_set_tab.
8575 */
btf_kfunc_id_set_contains(const struct btf * btf,u32 kfunc_btf_id,const struct bpf_prog * prog)8576 u32 *btf_kfunc_id_set_contains(const struct btf *btf,
8577 u32 kfunc_btf_id,
8578 const struct bpf_prog *prog)
8579 {
8580 enum bpf_prog_type prog_type = resolve_prog_type(prog);
8581 enum btf_kfunc_hook hook;
8582 u32 *kfunc_flags;
8583
8584 kfunc_flags = __btf_kfunc_id_set_contains(btf, BTF_KFUNC_HOOK_COMMON, kfunc_btf_id, prog);
8585 if (kfunc_flags)
8586 return kfunc_flags;
8587
8588 hook = bpf_prog_type_to_kfunc_hook(prog_type);
8589 return __btf_kfunc_id_set_contains(btf, hook, kfunc_btf_id, prog);
8590 }
8591
btf_kfunc_is_modify_return(const struct btf * btf,u32 kfunc_btf_id,const struct bpf_prog * prog)8592 u32 *btf_kfunc_is_modify_return(const struct btf *btf, u32 kfunc_btf_id,
8593 const struct bpf_prog *prog)
8594 {
8595 return __btf_kfunc_id_set_contains(btf, BTF_KFUNC_HOOK_FMODRET, kfunc_btf_id, prog);
8596 }
8597
__register_btf_kfunc_id_set(enum btf_kfunc_hook hook,const struct btf_kfunc_id_set * kset)8598 static int __register_btf_kfunc_id_set(enum btf_kfunc_hook hook,
8599 const struct btf_kfunc_id_set *kset)
8600 {
8601 struct btf *btf;
8602 int ret, i;
8603
8604 btf = btf_get_module_btf(kset->owner);
8605 if (!btf)
8606 return check_btf_kconfigs(kset->owner, "kfunc");
8607 if (IS_ERR(btf))
8608 return PTR_ERR(btf);
8609
8610 for (i = 0; i < kset->set->cnt; i++) {
8611 ret = btf_check_kfunc_protos(btf, btf_relocate_id(btf, kset->set->pairs[i].id),
8612 kset->set->pairs[i].flags);
8613 if (ret)
8614 goto err_out;
8615 }
8616
8617 ret = btf_populate_kfunc_set(btf, hook, kset);
8618
8619 err_out:
8620 btf_put(btf);
8621 return ret;
8622 }
8623
8624 /* This function must be invoked only from initcalls/module init functions */
register_btf_kfunc_id_set(enum bpf_prog_type prog_type,const struct btf_kfunc_id_set * kset)8625 int register_btf_kfunc_id_set(enum bpf_prog_type prog_type,
8626 const struct btf_kfunc_id_set *kset)
8627 {
8628 enum btf_kfunc_hook hook;
8629
8630 /* All kfuncs need to be tagged as such in BTF.
8631 * WARN() for initcall registrations that do not check errors.
8632 */
8633 if (!(kset->set->flags & BTF_SET8_KFUNCS)) {
8634 WARN_ON(!kset->owner);
8635 return -EINVAL;
8636 }
8637
8638 hook = bpf_prog_type_to_kfunc_hook(prog_type);
8639 return __register_btf_kfunc_id_set(hook, kset);
8640 }
8641 EXPORT_SYMBOL_GPL(register_btf_kfunc_id_set);
8642
8643 /* This function must be invoked only from initcalls/module init functions */
register_btf_fmodret_id_set(const struct btf_kfunc_id_set * kset)8644 int register_btf_fmodret_id_set(const struct btf_kfunc_id_set *kset)
8645 {
8646 return __register_btf_kfunc_id_set(BTF_KFUNC_HOOK_FMODRET, kset);
8647 }
8648 EXPORT_SYMBOL_GPL(register_btf_fmodret_id_set);
8649
btf_find_dtor_kfunc(struct btf * btf,u32 btf_id)8650 s32 btf_find_dtor_kfunc(struct btf *btf, u32 btf_id)
8651 {
8652 struct btf_id_dtor_kfunc_tab *tab = btf->dtor_kfunc_tab;
8653 struct btf_id_dtor_kfunc *dtor;
8654
8655 if (!tab)
8656 return -ENOENT;
8657 /* Even though the size of tab->dtors[0] is > sizeof(u32), we only need
8658 * to compare the first u32 with btf_id, so we can reuse btf_id_cmp_func.
8659 */
8660 BUILD_BUG_ON(offsetof(struct btf_id_dtor_kfunc, btf_id) != 0);
8661 dtor = bsearch(&btf_id, tab->dtors, tab->cnt, sizeof(tab->dtors[0]), btf_id_cmp_func);
8662 if (!dtor)
8663 return -ENOENT;
8664 return dtor->kfunc_btf_id;
8665 }
8666
btf_check_dtor_kfuncs(struct btf * btf,const struct btf_id_dtor_kfunc * dtors,u32 cnt)8667 static int btf_check_dtor_kfuncs(struct btf *btf, const struct btf_id_dtor_kfunc *dtors, u32 cnt)
8668 {
8669 const struct btf_type *dtor_func, *dtor_func_proto, *t;
8670 const struct btf_param *args;
8671 s32 dtor_btf_id;
8672 u32 nr_args, i;
8673
8674 for (i = 0; i < cnt; i++) {
8675 dtor_btf_id = btf_relocate_id(btf, dtors[i].kfunc_btf_id);
8676
8677 dtor_func = btf_type_by_id(btf, dtor_btf_id);
8678 if (!dtor_func || !btf_type_is_func(dtor_func))
8679 return -EINVAL;
8680
8681 dtor_func_proto = btf_type_by_id(btf, dtor_func->type);
8682 if (!dtor_func_proto || !btf_type_is_func_proto(dtor_func_proto))
8683 return -EINVAL;
8684
8685 /* Make sure the prototype of the destructor kfunc is 'void func(type *)' */
8686 t = btf_type_by_id(btf, dtor_func_proto->type);
8687 if (!t || !btf_type_is_void(t))
8688 return -EINVAL;
8689
8690 nr_args = btf_type_vlen(dtor_func_proto);
8691 if (nr_args != 1)
8692 return -EINVAL;
8693 args = btf_params(dtor_func_proto);
8694 t = btf_type_by_id(btf, args[0].type);
8695 /* Allow any pointer type, as width on targets Linux supports
8696 * will be same for all pointer types (i.e. sizeof(void *))
8697 */
8698 if (!t || !btf_type_is_ptr(t))
8699 return -EINVAL;
8700 }
8701 return 0;
8702 }
8703
8704 /* This function must be invoked only from initcalls/module init functions */
register_btf_id_dtor_kfuncs(const struct btf_id_dtor_kfunc * dtors,u32 add_cnt,struct module * owner)8705 int register_btf_id_dtor_kfuncs(const struct btf_id_dtor_kfunc *dtors, u32 add_cnt,
8706 struct module *owner)
8707 {
8708 struct btf_id_dtor_kfunc_tab *tab;
8709 struct btf *btf;
8710 u32 tab_cnt, i;
8711 int ret;
8712
8713 btf = btf_get_module_btf(owner);
8714 if (!btf)
8715 return check_btf_kconfigs(owner, "dtor kfuncs");
8716 if (IS_ERR(btf))
8717 return PTR_ERR(btf);
8718
8719 if (add_cnt >= BTF_DTOR_KFUNC_MAX_CNT) {
8720 pr_err("cannot register more than %d kfunc destructors\n", BTF_DTOR_KFUNC_MAX_CNT);
8721 ret = -E2BIG;
8722 goto end;
8723 }
8724
8725 /* Ensure that the prototype of dtor kfuncs being registered is sane */
8726 ret = btf_check_dtor_kfuncs(btf, dtors, add_cnt);
8727 if (ret < 0)
8728 goto end;
8729
8730 tab = btf->dtor_kfunc_tab;
8731 /* Only one call allowed for modules */
8732 if (WARN_ON_ONCE(tab && btf_is_module(btf))) {
8733 ret = -EINVAL;
8734 goto end;
8735 }
8736
8737 tab_cnt = tab ? tab->cnt : 0;
8738 if (tab_cnt > U32_MAX - add_cnt) {
8739 ret = -EOVERFLOW;
8740 goto end;
8741 }
8742 if (tab_cnt + add_cnt >= BTF_DTOR_KFUNC_MAX_CNT) {
8743 pr_err("cannot register more than %d kfunc destructors\n", BTF_DTOR_KFUNC_MAX_CNT);
8744 ret = -E2BIG;
8745 goto end;
8746 }
8747
8748 tab = krealloc(btf->dtor_kfunc_tab,
8749 offsetof(struct btf_id_dtor_kfunc_tab, dtors[tab_cnt + add_cnt]),
8750 GFP_KERNEL | __GFP_NOWARN);
8751 if (!tab) {
8752 ret = -ENOMEM;
8753 goto end;
8754 }
8755
8756 if (!btf->dtor_kfunc_tab)
8757 tab->cnt = 0;
8758 btf->dtor_kfunc_tab = tab;
8759
8760 memcpy(tab->dtors + tab->cnt, dtors, add_cnt * sizeof(tab->dtors[0]));
8761
8762 /* remap BTF ids based on BTF relocation (if any) */
8763 for (i = tab_cnt; i < tab_cnt + add_cnt; i++) {
8764 tab->dtors[i].btf_id = btf_relocate_id(btf, tab->dtors[i].btf_id);
8765 tab->dtors[i].kfunc_btf_id = btf_relocate_id(btf, tab->dtors[i].kfunc_btf_id);
8766 }
8767
8768 tab->cnt += add_cnt;
8769
8770 sort(tab->dtors, tab->cnt, sizeof(tab->dtors[0]), btf_id_cmp_func, NULL);
8771
8772 end:
8773 if (ret)
8774 btf_free_dtor_kfunc_tab(btf);
8775 btf_put(btf);
8776 return ret;
8777 }
8778 EXPORT_SYMBOL_GPL(register_btf_id_dtor_kfuncs);
8779
8780 #define MAX_TYPES_ARE_COMPAT_DEPTH 2
8781
8782 /* Check local and target types for compatibility. This check is used for
8783 * type-based CO-RE relocations and follow slightly different rules than
8784 * field-based relocations. This function assumes that root types were already
8785 * checked for name match. Beyond that initial root-level name check, names
8786 * are completely ignored. Compatibility rules are as follows:
8787 * - any two STRUCTs/UNIONs/FWDs/ENUMs/INTs/ENUM64s are considered compatible, but
8788 * kind should match for local and target types (i.e., STRUCT is not
8789 * compatible with UNION);
8790 * - for ENUMs/ENUM64s, the size is ignored;
8791 * - for INT, size and signedness are ignored;
8792 * - for ARRAY, dimensionality is ignored, element types are checked for
8793 * compatibility recursively;
8794 * - CONST/VOLATILE/RESTRICT modifiers are ignored;
8795 * - TYPEDEFs/PTRs are compatible if types they pointing to are compatible;
8796 * - FUNC_PROTOs are compatible if they have compatible signature: same
8797 * number of input args and compatible return and argument types.
8798 * These rules are not set in stone and probably will be adjusted as we get
8799 * more experience with using BPF CO-RE relocations.
8800 */
bpf_core_types_are_compat(const struct btf * local_btf,__u32 local_id,const struct btf * targ_btf,__u32 targ_id)8801 int bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id,
8802 const struct btf *targ_btf, __u32 targ_id)
8803 {
8804 return __bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id,
8805 MAX_TYPES_ARE_COMPAT_DEPTH);
8806 }
8807
8808 #define MAX_TYPES_MATCH_DEPTH 2
8809
bpf_core_types_match(const struct btf * local_btf,u32 local_id,const struct btf * targ_btf,u32 targ_id)8810 int bpf_core_types_match(const struct btf *local_btf, u32 local_id,
8811 const struct btf *targ_btf, u32 targ_id)
8812 {
8813 return __bpf_core_types_match(local_btf, local_id, targ_btf, targ_id, false,
8814 MAX_TYPES_MATCH_DEPTH);
8815 }
8816
bpf_core_is_flavor_sep(const char * s)8817 static bool bpf_core_is_flavor_sep(const char *s)
8818 {
8819 /* check X___Y name pattern, where X and Y are not underscores */
8820 return s[0] != '_' && /* X */
8821 s[1] == '_' && s[2] == '_' && s[3] == '_' && /* ___ */
8822 s[4] != '_'; /* Y */
8823 }
8824
bpf_core_essential_name_len(const char * name)8825 size_t bpf_core_essential_name_len(const char *name)
8826 {
8827 size_t n = strlen(name);
8828 int i;
8829
8830 for (i = n - 5; i >= 0; i--) {
8831 if (bpf_core_is_flavor_sep(name + i))
8832 return i + 1;
8833 }
8834 return n;
8835 }
8836
bpf_free_cands(struct bpf_cand_cache * cands)8837 static void bpf_free_cands(struct bpf_cand_cache *cands)
8838 {
8839 if (!cands->cnt)
8840 /* empty candidate array was allocated on stack */
8841 return;
8842 kfree(cands);
8843 }
8844
bpf_free_cands_from_cache(struct bpf_cand_cache * cands)8845 static void bpf_free_cands_from_cache(struct bpf_cand_cache *cands)
8846 {
8847 kfree(cands->name);
8848 kfree(cands);
8849 }
8850
8851 #define VMLINUX_CAND_CACHE_SIZE 31
8852 static struct bpf_cand_cache *vmlinux_cand_cache[VMLINUX_CAND_CACHE_SIZE];
8853
8854 #define MODULE_CAND_CACHE_SIZE 31
8855 static struct bpf_cand_cache *module_cand_cache[MODULE_CAND_CACHE_SIZE];
8856
__print_cand_cache(struct bpf_verifier_log * log,struct bpf_cand_cache ** cache,int cache_size)8857 static void __print_cand_cache(struct bpf_verifier_log *log,
8858 struct bpf_cand_cache **cache,
8859 int cache_size)
8860 {
8861 struct bpf_cand_cache *cc;
8862 int i, j;
8863
8864 for (i = 0; i < cache_size; i++) {
8865 cc = cache[i];
8866 if (!cc)
8867 continue;
8868 bpf_log(log, "[%d]%s(", i, cc->name);
8869 for (j = 0; j < cc->cnt; j++) {
8870 bpf_log(log, "%d", cc->cands[j].id);
8871 if (j < cc->cnt - 1)
8872 bpf_log(log, " ");
8873 }
8874 bpf_log(log, "), ");
8875 }
8876 }
8877
print_cand_cache(struct bpf_verifier_log * log)8878 static void print_cand_cache(struct bpf_verifier_log *log)
8879 {
8880 mutex_lock(&cand_cache_mutex);
8881 bpf_log(log, "vmlinux_cand_cache:");
8882 __print_cand_cache(log, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE);
8883 bpf_log(log, "\nmodule_cand_cache:");
8884 __print_cand_cache(log, module_cand_cache, MODULE_CAND_CACHE_SIZE);
8885 bpf_log(log, "\n");
8886 mutex_unlock(&cand_cache_mutex);
8887 }
8888
hash_cands(struct bpf_cand_cache * cands)8889 static u32 hash_cands(struct bpf_cand_cache *cands)
8890 {
8891 return jhash(cands->name, cands->name_len, 0);
8892 }
8893
check_cand_cache(struct bpf_cand_cache * cands,struct bpf_cand_cache ** cache,int cache_size)8894 static struct bpf_cand_cache *check_cand_cache(struct bpf_cand_cache *cands,
8895 struct bpf_cand_cache **cache,
8896 int cache_size)
8897 {
8898 struct bpf_cand_cache *cc = cache[hash_cands(cands) % cache_size];
8899
8900 if (cc && cc->name_len == cands->name_len &&
8901 !strncmp(cc->name, cands->name, cands->name_len))
8902 return cc;
8903 return NULL;
8904 }
8905
sizeof_cands(int cnt)8906 static size_t sizeof_cands(int cnt)
8907 {
8908 return offsetof(struct bpf_cand_cache, cands[cnt]);
8909 }
8910
populate_cand_cache(struct bpf_cand_cache * cands,struct bpf_cand_cache ** cache,int cache_size)8911 static struct bpf_cand_cache *populate_cand_cache(struct bpf_cand_cache *cands,
8912 struct bpf_cand_cache **cache,
8913 int cache_size)
8914 {
8915 struct bpf_cand_cache **cc = &cache[hash_cands(cands) % cache_size], *new_cands;
8916
8917 if (*cc) {
8918 bpf_free_cands_from_cache(*cc);
8919 *cc = NULL;
8920 }
8921 new_cands = kmemdup(cands, sizeof_cands(cands->cnt), GFP_KERNEL);
8922 if (!new_cands) {
8923 bpf_free_cands(cands);
8924 return ERR_PTR(-ENOMEM);
8925 }
8926 /* strdup the name, since it will stay in cache.
8927 * the cands->name points to strings in prog's BTF and the prog can be unloaded.
8928 */
8929 new_cands->name = kmemdup_nul(cands->name, cands->name_len, GFP_KERNEL);
8930 bpf_free_cands(cands);
8931 if (!new_cands->name) {
8932 kfree(new_cands);
8933 return ERR_PTR(-ENOMEM);
8934 }
8935 *cc = new_cands;
8936 return new_cands;
8937 }
8938
8939 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
__purge_cand_cache(struct btf * btf,struct bpf_cand_cache ** cache,int cache_size)8940 static void __purge_cand_cache(struct btf *btf, struct bpf_cand_cache **cache,
8941 int cache_size)
8942 {
8943 struct bpf_cand_cache *cc;
8944 int i, j;
8945
8946 for (i = 0; i < cache_size; i++) {
8947 cc = cache[i];
8948 if (!cc)
8949 continue;
8950 if (!btf) {
8951 /* when new module is loaded purge all of module_cand_cache,
8952 * since new module might have candidates with the name
8953 * that matches cached cands.
8954 */
8955 bpf_free_cands_from_cache(cc);
8956 cache[i] = NULL;
8957 continue;
8958 }
8959 /* when module is unloaded purge cache entries
8960 * that match module's btf
8961 */
8962 for (j = 0; j < cc->cnt; j++)
8963 if (cc->cands[j].btf == btf) {
8964 bpf_free_cands_from_cache(cc);
8965 cache[i] = NULL;
8966 break;
8967 }
8968 }
8969
8970 }
8971
purge_cand_cache(struct btf * btf)8972 static void purge_cand_cache(struct btf *btf)
8973 {
8974 mutex_lock(&cand_cache_mutex);
8975 __purge_cand_cache(btf, module_cand_cache, MODULE_CAND_CACHE_SIZE);
8976 mutex_unlock(&cand_cache_mutex);
8977 }
8978 #endif
8979
8980 static struct bpf_cand_cache *
bpf_core_add_cands(struct bpf_cand_cache * cands,const struct btf * targ_btf,int targ_start_id)8981 bpf_core_add_cands(struct bpf_cand_cache *cands, const struct btf *targ_btf,
8982 int targ_start_id)
8983 {
8984 struct bpf_cand_cache *new_cands;
8985 const struct btf_type *t;
8986 const char *targ_name;
8987 size_t targ_essent_len;
8988 int n, i;
8989
8990 n = btf_nr_types(targ_btf);
8991 for (i = targ_start_id; i < n; i++) {
8992 t = btf_type_by_id(targ_btf, i);
8993 if (btf_kind(t) != cands->kind)
8994 continue;
8995
8996 targ_name = btf_name_by_offset(targ_btf, t->name_off);
8997 if (!targ_name)
8998 continue;
8999
9000 /* the resched point is before strncmp to make sure that search
9001 * for non-existing name will have a chance to schedule().
9002 */
9003 cond_resched();
9004
9005 if (strncmp(cands->name, targ_name, cands->name_len) != 0)
9006 continue;
9007
9008 targ_essent_len = bpf_core_essential_name_len(targ_name);
9009 if (targ_essent_len != cands->name_len)
9010 continue;
9011
9012 /* most of the time there is only one candidate for a given kind+name pair */
9013 new_cands = kmalloc(sizeof_cands(cands->cnt + 1), GFP_KERNEL);
9014 if (!new_cands) {
9015 bpf_free_cands(cands);
9016 return ERR_PTR(-ENOMEM);
9017 }
9018
9019 memcpy(new_cands, cands, sizeof_cands(cands->cnt));
9020 bpf_free_cands(cands);
9021 cands = new_cands;
9022 cands->cands[cands->cnt].btf = targ_btf;
9023 cands->cands[cands->cnt].id = i;
9024 cands->cnt++;
9025 }
9026 return cands;
9027 }
9028
9029 static struct bpf_cand_cache *
bpf_core_find_cands(struct bpf_core_ctx * ctx,u32 local_type_id)9030 bpf_core_find_cands(struct bpf_core_ctx *ctx, u32 local_type_id)
9031 {
9032 struct bpf_cand_cache *cands, *cc, local_cand = {};
9033 const struct btf *local_btf = ctx->btf;
9034 const struct btf_type *local_type;
9035 const struct btf *main_btf;
9036 size_t local_essent_len;
9037 struct btf *mod_btf;
9038 const char *name;
9039 int id;
9040
9041 main_btf = bpf_get_btf_vmlinux();
9042 if (IS_ERR(main_btf))
9043 return ERR_CAST(main_btf);
9044 if (!main_btf)
9045 return ERR_PTR(-EINVAL);
9046
9047 local_type = btf_type_by_id(local_btf, local_type_id);
9048 if (!local_type)
9049 return ERR_PTR(-EINVAL);
9050
9051 name = btf_name_by_offset(local_btf, local_type->name_off);
9052 if (str_is_empty(name))
9053 return ERR_PTR(-EINVAL);
9054 local_essent_len = bpf_core_essential_name_len(name);
9055
9056 cands = &local_cand;
9057 cands->name = name;
9058 cands->kind = btf_kind(local_type);
9059 cands->name_len = local_essent_len;
9060
9061 cc = check_cand_cache(cands, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE);
9062 /* cands is a pointer to stack here */
9063 if (cc) {
9064 if (cc->cnt)
9065 return cc;
9066 goto check_modules;
9067 }
9068
9069 /* Attempt to find target candidates in vmlinux BTF first */
9070 cands = bpf_core_add_cands(cands, main_btf, 1);
9071 if (IS_ERR(cands))
9072 return ERR_CAST(cands);
9073
9074 /* cands is a pointer to kmalloced memory here if cands->cnt > 0 */
9075
9076 /* populate cache even when cands->cnt == 0 */
9077 cc = populate_cand_cache(cands, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE);
9078 if (IS_ERR(cc))
9079 return ERR_CAST(cc);
9080
9081 /* if vmlinux BTF has any candidate, don't go for module BTFs */
9082 if (cc->cnt)
9083 return cc;
9084
9085 check_modules:
9086 /* cands is a pointer to stack here and cands->cnt == 0 */
9087 cc = check_cand_cache(cands, module_cand_cache, MODULE_CAND_CACHE_SIZE);
9088 if (cc)
9089 /* if cache has it return it even if cc->cnt == 0 */
9090 return cc;
9091
9092 /* If candidate is not found in vmlinux's BTF then search in module's BTFs */
9093 spin_lock_bh(&btf_idr_lock);
9094 idr_for_each_entry(&btf_idr, mod_btf, id) {
9095 if (!btf_is_module(mod_btf))
9096 continue;
9097 /* linear search could be slow hence unlock/lock
9098 * the IDR to avoiding holding it for too long
9099 */
9100 btf_get(mod_btf);
9101 spin_unlock_bh(&btf_idr_lock);
9102 cands = bpf_core_add_cands(cands, mod_btf, btf_nr_types(main_btf));
9103 btf_put(mod_btf);
9104 if (IS_ERR(cands))
9105 return ERR_CAST(cands);
9106 spin_lock_bh(&btf_idr_lock);
9107 }
9108 spin_unlock_bh(&btf_idr_lock);
9109 /* cands is a pointer to kmalloced memory here if cands->cnt > 0
9110 * or pointer to stack if cands->cnd == 0.
9111 * Copy it into the cache even when cands->cnt == 0 and
9112 * return the result.
9113 */
9114 return populate_cand_cache(cands, module_cand_cache, MODULE_CAND_CACHE_SIZE);
9115 }
9116
bpf_core_apply(struct bpf_core_ctx * ctx,const struct bpf_core_relo * relo,int relo_idx,void * insn)9117 int bpf_core_apply(struct bpf_core_ctx *ctx, const struct bpf_core_relo *relo,
9118 int relo_idx, void *insn)
9119 {
9120 bool need_cands = relo->kind != BPF_CORE_TYPE_ID_LOCAL;
9121 struct bpf_core_cand_list cands = {};
9122 struct bpf_core_relo_res targ_res;
9123 struct bpf_core_spec *specs;
9124 const struct btf_type *type;
9125 int err;
9126
9127 /* ~4k of temp memory necessary to convert LLVM spec like "0:1:0:5"
9128 * into arrays of btf_ids of struct fields and array indices.
9129 */
9130 specs = kcalloc(3, sizeof(*specs), GFP_KERNEL);
9131 if (!specs)
9132 return -ENOMEM;
9133
9134 type = btf_type_by_id(ctx->btf, relo->type_id);
9135 if (!type) {
9136 bpf_log(ctx->log, "relo #%u: bad type id %u\n",
9137 relo_idx, relo->type_id);
9138 kfree(specs);
9139 return -EINVAL;
9140 }
9141
9142 if (need_cands) {
9143 struct bpf_cand_cache *cc;
9144 int i;
9145
9146 mutex_lock(&cand_cache_mutex);
9147 cc = bpf_core_find_cands(ctx, relo->type_id);
9148 if (IS_ERR(cc)) {
9149 bpf_log(ctx->log, "target candidate search failed for %d\n",
9150 relo->type_id);
9151 err = PTR_ERR(cc);
9152 goto out;
9153 }
9154 if (cc->cnt) {
9155 cands.cands = kcalloc(cc->cnt, sizeof(*cands.cands), GFP_KERNEL);
9156 if (!cands.cands) {
9157 err = -ENOMEM;
9158 goto out;
9159 }
9160 }
9161 for (i = 0; i < cc->cnt; i++) {
9162 bpf_log(ctx->log,
9163 "CO-RE relocating %s %s: found target candidate [%d]\n",
9164 btf_kind_str[cc->kind], cc->name, cc->cands[i].id);
9165 cands.cands[i].btf = cc->cands[i].btf;
9166 cands.cands[i].id = cc->cands[i].id;
9167 }
9168 cands.len = cc->cnt;
9169 /* cand_cache_mutex needs to span the cache lookup and
9170 * copy of btf pointer into bpf_core_cand_list,
9171 * since module can be unloaded while bpf_core_calc_relo_insn
9172 * is working with module's btf.
9173 */
9174 }
9175
9176 err = bpf_core_calc_relo_insn((void *)ctx->log, relo, relo_idx, ctx->btf, &cands, specs,
9177 &targ_res);
9178 if (err)
9179 goto out;
9180
9181 err = bpf_core_patch_insn((void *)ctx->log, insn, relo->insn_off / 8, relo, relo_idx,
9182 &targ_res);
9183
9184 out:
9185 kfree(specs);
9186 if (need_cands) {
9187 kfree(cands.cands);
9188 mutex_unlock(&cand_cache_mutex);
9189 if (ctx->log->level & BPF_LOG_LEVEL2)
9190 print_cand_cache(ctx->log);
9191 }
9192 return err;
9193 }
9194
btf_nested_type_is_trusted(struct bpf_verifier_log * log,const struct bpf_reg_state * reg,const char * field_name,u32 btf_id,const char * suffix)9195 bool btf_nested_type_is_trusted(struct bpf_verifier_log *log,
9196 const struct bpf_reg_state *reg,
9197 const char *field_name, u32 btf_id, const char *suffix)
9198 {
9199 struct btf *btf = reg->btf;
9200 const struct btf_type *walk_type, *safe_type;
9201 const char *tname;
9202 char safe_tname[64];
9203 long ret, safe_id;
9204 const struct btf_member *member;
9205 u32 i;
9206
9207 walk_type = btf_type_by_id(btf, reg->btf_id);
9208 if (!walk_type)
9209 return false;
9210
9211 tname = btf_name_by_offset(btf, walk_type->name_off);
9212
9213 ret = snprintf(safe_tname, sizeof(safe_tname), "%s%s", tname, suffix);
9214 if (ret >= sizeof(safe_tname))
9215 return false;
9216
9217 safe_id = btf_find_by_name_kind(btf, safe_tname, BTF_INFO_KIND(walk_type->info));
9218 if (safe_id < 0)
9219 return false;
9220
9221 safe_type = btf_type_by_id(btf, safe_id);
9222 if (!safe_type)
9223 return false;
9224
9225 for_each_member(i, safe_type, member) {
9226 const char *m_name = __btf_name_by_offset(btf, member->name_off);
9227 const struct btf_type *mtype = btf_type_by_id(btf, member->type);
9228 u32 id;
9229
9230 if (!btf_type_is_ptr(mtype))
9231 continue;
9232
9233 btf_type_skip_modifiers(btf, mtype->type, &id);
9234 /* If we match on both type and name, the field is considered trusted. */
9235 if (btf_id == id && !strcmp(field_name, m_name))
9236 return true;
9237 }
9238
9239 return false;
9240 }
9241
btf_type_ids_nocast_alias(struct bpf_verifier_log * log,const struct btf * reg_btf,u32 reg_id,const struct btf * arg_btf,u32 arg_id)9242 bool btf_type_ids_nocast_alias(struct bpf_verifier_log *log,
9243 const struct btf *reg_btf, u32 reg_id,
9244 const struct btf *arg_btf, u32 arg_id)
9245 {
9246 const char *reg_name, *arg_name, *search_needle;
9247 const struct btf_type *reg_type, *arg_type;
9248 int reg_len, arg_len, cmp_len;
9249 size_t pattern_len = sizeof(NOCAST_ALIAS_SUFFIX) - sizeof(char);
9250
9251 reg_type = btf_type_by_id(reg_btf, reg_id);
9252 if (!reg_type)
9253 return false;
9254
9255 arg_type = btf_type_by_id(arg_btf, arg_id);
9256 if (!arg_type)
9257 return false;
9258
9259 reg_name = btf_name_by_offset(reg_btf, reg_type->name_off);
9260 arg_name = btf_name_by_offset(arg_btf, arg_type->name_off);
9261
9262 reg_len = strlen(reg_name);
9263 arg_len = strlen(arg_name);
9264
9265 /* Exactly one of the two type names may be suffixed with ___init, so
9266 * if the strings are the same size, they can't possibly be no-cast
9267 * aliases of one another. If you have two of the same type names, e.g.
9268 * they're both nf_conn___init, it would be improper to return true
9269 * because they are _not_ no-cast aliases, they are the same type.
9270 */
9271 if (reg_len == arg_len)
9272 return false;
9273
9274 /* Either of the two names must be the other name, suffixed with ___init. */
9275 if ((reg_len != arg_len + pattern_len) &&
9276 (arg_len != reg_len + pattern_len))
9277 return false;
9278
9279 if (reg_len < arg_len) {
9280 search_needle = strstr(arg_name, NOCAST_ALIAS_SUFFIX);
9281 cmp_len = reg_len;
9282 } else {
9283 search_needle = strstr(reg_name, NOCAST_ALIAS_SUFFIX);
9284 cmp_len = arg_len;
9285 }
9286
9287 if (!search_needle)
9288 return false;
9289
9290 /* ___init suffix must come at the end of the name */
9291 if (*(search_needle + pattern_len) != '\0')
9292 return false;
9293
9294 return !strncmp(reg_name, arg_name, cmp_len);
9295 }
9296
9297 #ifdef CONFIG_BPF_JIT
9298 static int
btf_add_struct_ops(struct btf * btf,struct bpf_struct_ops * st_ops,struct bpf_verifier_log * log)9299 btf_add_struct_ops(struct btf *btf, struct bpf_struct_ops *st_ops,
9300 struct bpf_verifier_log *log)
9301 {
9302 struct btf_struct_ops_tab *tab, *new_tab;
9303 int i, err;
9304
9305 tab = btf->struct_ops_tab;
9306 if (!tab) {
9307 tab = kzalloc(offsetof(struct btf_struct_ops_tab, ops[4]),
9308 GFP_KERNEL);
9309 if (!tab)
9310 return -ENOMEM;
9311 tab->capacity = 4;
9312 btf->struct_ops_tab = tab;
9313 }
9314
9315 for (i = 0; i < tab->cnt; i++)
9316 if (tab->ops[i].st_ops == st_ops)
9317 return -EEXIST;
9318
9319 if (tab->cnt == tab->capacity) {
9320 new_tab = krealloc(tab,
9321 offsetof(struct btf_struct_ops_tab,
9322 ops[tab->capacity * 2]),
9323 GFP_KERNEL);
9324 if (!new_tab)
9325 return -ENOMEM;
9326 tab = new_tab;
9327 tab->capacity *= 2;
9328 btf->struct_ops_tab = tab;
9329 }
9330
9331 tab->ops[btf->struct_ops_tab->cnt].st_ops = st_ops;
9332
9333 err = bpf_struct_ops_desc_init(&tab->ops[btf->struct_ops_tab->cnt], btf, log);
9334 if (err)
9335 return err;
9336
9337 btf->struct_ops_tab->cnt++;
9338
9339 return 0;
9340 }
9341
9342 const struct bpf_struct_ops_desc *
bpf_struct_ops_find_value(struct btf * btf,u32 value_id)9343 bpf_struct_ops_find_value(struct btf *btf, u32 value_id)
9344 {
9345 const struct bpf_struct_ops_desc *st_ops_list;
9346 unsigned int i;
9347 u32 cnt;
9348
9349 if (!value_id)
9350 return NULL;
9351 if (!btf->struct_ops_tab)
9352 return NULL;
9353
9354 cnt = btf->struct_ops_tab->cnt;
9355 st_ops_list = btf->struct_ops_tab->ops;
9356 for (i = 0; i < cnt; i++) {
9357 if (st_ops_list[i].value_id == value_id)
9358 return &st_ops_list[i];
9359 }
9360
9361 return NULL;
9362 }
9363
9364 const struct bpf_struct_ops_desc *
bpf_struct_ops_find(struct btf * btf,u32 type_id)9365 bpf_struct_ops_find(struct btf *btf, u32 type_id)
9366 {
9367 const struct bpf_struct_ops_desc *st_ops_list;
9368 unsigned int i;
9369 u32 cnt;
9370
9371 if (!type_id)
9372 return NULL;
9373 if (!btf->struct_ops_tab)
9374 return NULL;
9375
9376 cnt = btf->struct_ops_tab->cnt;
9377 st_ops_list = btf->struct_ops_tab->ops;
9378 for (i = 0; i < cnt; i++) {
9379 if (st_ops_list[i].type_id == type_id)
9380 return &st_ops_list[i];
9381 }
9382
9383 return NULL;
9384 }
9385
__register_bpf_struct_ops(struct bpf_struct_ops * st_ops)9386 int __register_bpf_struct_ops(struct bpf_struct_ops *st_ops)
9387 {
9388 struct bpf_verifier_log *log;
9389 struct btf *btf;
9390 int err = 0;
9391
9392 btf = btf_get_module_btf(st_ops->owner);
9393 if (!btf)
9394 return check_btf_kconfigs(st_ops->owner, "struct_ops");
9395 if (IS_ERR(btf))
9396 return PTR_ERR(btf);
9397
9398 log = kzalloc(sizeof(*log), GFP_KERNEL | __GFP_NOWARN);
9399 if (!log) {
9400 err = -ENOMEM;
9401 goto errout;
9402 }
9403
9404 log->level = BPF_LOG_KERNEL;
9405
9406 err = btf_add_struct_ops(btf, st_ops, log);
9407
9408 errout:
9409 kfree(log);
9410 btf_put(btf);
9411
9412 return err;
9413 }
9414 EXPORT_SYMBOL_GPL(__register_bpf_struct_ops);
9415 #endif
9416
btf_param_match_suffix(const struct btf * btf,const struct btf_param * arg,const char * suffix)9417 bool btf_param_match_suffix(const struct btf *btf,
9418 const struct btf_param *arg,
9419 const char *suffix)
9420 {
9421 int suffix_len = strlen(suffix), len;
9422 const char *param_name;
9423
9424 /* In the future, this can be ported to use BTF tagging */
9425 param_name = btf_name_by_offset(btf, arg->name_off);
9426 if (str_is_empty(param_name))
9427 return false;
9428 len = strlen(param_name);
9429 if (len <= suffix_len)
9430 return false;
9431 param_name += len - suffix_len;
9432 return !strncmp(param_name, suffix, suffix_len);
9433 }
9434