1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) STMicroelectronics SA 2015
4 * Authors: Yannick Fertre <yannick.fertre@st.com>
5 * Hugues Fruchet <hugues.fruchet@st.com>
6 */
7
8 #include "hva.h"
9 #include "hva-hw.h"
10
11 #define MAX_SPS_PPS_SIZE 128
12
13 #define BITSTREAM_OFFSET_MASK 0x7F
14
15 /* video max size*/
16 #define H264_MAX_SIZE_W 1920
17 #define H264_MAX_SIZE_H 1920
18
19 /* macroBlocs number (width & height) */
20 #define MB_W(w) ((w + 0xF) / 0x10)
21 #define MB_H(h) ((h + 0xF) / 0x10)
22
23 /* formula to get temporal or spatial data size */
24 #define DATA_SIZE(w, h) (MB_W(w) * MB_H(h) * 16)
25
26 #define SEARCH_WINDOW_BUFFER_MAX_SIZE(w) ((4 * MB_W(w) + 42) * 256 * 3 / 2)
27 #define CABAC_CONTEXT_BUFFER_MAX_SIZE(w) (MB_W(w) * 16)
28 #define CTX_MB_BUFFER_MAX_SIZE(w) (MB_W(w) * 16 * 8)
29 #define SLICE_HEADER_SIZE (4 * 16)
30 #define BRC_DATA_SIZE (5 * 16)
31
32 /* source buffer copy in YUV 420 MB-tiled format with size=16*256*3/2 */
33 #define CURRENT_WINDOW_BUFFER_MAX_SIZE (16 * 256 * 3 / 2)
34
35 /*
36 * 4 lines of pixels (in Luma, Chroma blue and Chroma red) of top MB
37 * for deblocking with size=4*16*MBx*2
38 */
39 #define LOCAL_RECONSTRUCTED_BUFFER_MAX_SIZE(w) (4 * 16 * MB_W(w) * 2)
40
41 /* factor for bitrate and cpb buffer size max values if profile >= high */
42 #define H264_FACTOR_HIGH 1200
43
44 /* factor for bitrate and cpb buffer size max values if profile < high */
45 #define H264_FACTOR_BASELINE 1000
46
47 /* number of bytes for NALU_TYPE_FILLER_DATA header and footer */
48 #define H264_FILLER_DATA_SIZE 6
49
50 struct h264_profile {
51 enum v4l2_mpeg_video_h264_level level;
52 u32 max_mb_per_seconds;
53 u32 max_frame_size;
54 u32 max_bitrate;
55 u32 max_cpb_size;
56 u32 min_comp_ratio;
57 };
58
59 static const struct h264_profile h264_infos_list[] = {
60 {V4L2_MPEG_VIDEO_H264_LEVEL_1_0, 1485, 99, 64, 175, 2},
61 {V4L2_MPEG_VIDEO_H264_LEVEL_1B, 1485, 99, 128, 350, 2},
62 {V4L2_MPEG_VIDEO_H264_LEVEL_1_1, 3000, 396, 192, 500, 2},
63 {V4L2_MPEG_VIDEO_H264_LEVEL_1_2, 6000, 396, 384, 1000, 2},
64 {V4L2_MPEG_VIDEO_H264_LEVEL_1_3, 11880, 396, 768, 2000, 2},
65 {V4L2_MPEG_VIDEO_H264_LEVEL_2_0, 11880, 396, 2000, 2000, 2},
66 {V4L2_MPEG_VIDEO_H264_LEVEL_2_1, 19800, 792, 4000, 4000, 2},
67 {V4L2_MPEG_VIDEO_H264_LEVEL_2_2, 20250, 1620, 4000, 4000, 2},
68 {V4L2_MPEG_VIDEO_H264_LEVEL_3_0, 40500, 1620, 10000, 10000, 2},
69 {V4L2_MPEG_VIDEO_H264_LEVEL_3_1, 108000, 3600, 14000, 14000, 4},
70 {V4L2_MPEG_VIDEO_H264_LEVEL_3_2, 216000, 5120, 20000, 20000, 4},
71 {V4L2_MPEG_VIDEO_H264_LEVEL_4_0, 245760, 8192, 20000, 25000, 4},
72 {V4L2_MPEG_VIDEO_H264_LEVEL_4_1, 245760, 8192, 50000, 62500, 2},
73 {V4L2_MPEG_VIDEO_H264_LEVEL_4_2, 522240, 8704, 50000, 62500, 2},
74 {V4L2_MPEG_VIDEO_H264_LEVEL_5_0, 589824, 22080, 135000, 135000, 2},
75 {V4L2_MPEG_VIDEO_H264_LEVEL_5_1, 983040, 36864, 240000, 240000, 2}
76 };
77
78 enum hva_brc_type {
79 BRC_TYPE_NONE = 0,
80 BRC_TYPE_CBR = 1,
81 BRC_TYPE_VBR = 2,
82 BRC_TYPE_VBR_LOW_DELAY = 3
83 };
84
85 enum hva_entropy_coding_mode {
86 CAVLC = 0,
87 CABAC = 1
88 };
89
90 enum hva_picture_coding_type {
91 PICTURE_CODING_TYPE_I = 0,
92 PICTURE_CODING_TYPE_P = 1,
93 PICTURE_CODING_TYPE_B = 2
94 };
95
96 enum hva_h264_sampling_mode {
97 SAMPLING_MODE_NV12 = 0,
98 SAMPLING_MODE_UYVY = 1,
99 SAMPLING_MODE_RGB3 = 3,
100 SAMPLING_MODE_XRGB4 = 4,
101 SAMPLING_MODE_NV21 = 8,
102 SAMPLING_MODE_VYUY = 9,
103 SAMPLING_MODE_BGR3 = 11,
104 SAMPLING_MODE_XBGR4 = 12,
105 SAMPLING_MODE_RGBX4 = 20,
106 SAMPLING_MODE_BGRX4 = 28
107 };
108
109 enum hva_h264_nalu_type {
110 NALU_TYPE_UNKNOWN = 0,
111 NALU_TYPE_SLICE = 1,
112 NALU_TYPE_SLICE_DPA = 2,
113 NALU_TYPE_SLICE_DPB = 3,
114 NALU_TYPE_SLICE_DPC = 4,
115 NALU_TYPE_SLICE_IDR = 5,
116 NALU_TYPE_SEI = 6,
117 NALU_TYPE_SPS = 7,
118 NALU_TYPE_PPS = 8,
119 NALU_TYPE_AU_DELIMITER = 9,
120 NALU_TYPE_SEQ_END = 10,
121 NALU_TYPE_STREAM_END = 11,
122 NALU_TYPE_FILLER_DATA = 12,
123 NALU_TYPE_SPS_EXT = 13,
124 NALU_TYPE_PREFIX_UNIT = 14,
125 NALU_TYPE_SUBSET_SPS = 15,
126 NALU_TYPE_SLICE_AUX = 19,
127 NALU_TYPE_SLICE_EXT = 20
128 };
129
130 enum hva_h264_sei_payload_type {
131 SEI_BUFFERING_PERIOD = 0,
132 SEI_PICTURE_TIMING = 1,
133 SEI_STEREO_VIDEO_INFO = 21,
134 SEI_FRAME_PACKING_ARRANGEMENT = 45
135 };
136
137 /*
138 * stereo Video Info struct
139 */
140 struct hva_h264_stereo_video_sei {
141 u8 field_views_flag;
142 u8 top_field_is_left_view_flag;
143 u8 current_frame_is_left_view_flag;
144 u8 next_frame_is_second_view_flag;
145 u8 left_view_self_contained_flag;
146 u8 right_view_self_contained_flag;
147 };
148
149 /*
150 * struct hva_h264_td
151 *
152 * @frame_width: width in pixels of the buffer containing the input frame
153 * @frame_height: height in pixels of the buffer containing the input frame
154 * @frame_num: the parameter to be written in the slice header
155 * @picture_coding_type: type I, P or B
156 * @pic_order_cnt_type: POC mode, as defined in H264 std : can be 0,1,2
157 * @first_picture_in_sequence: flag telling to encoder that this is the
158 * first picture in a video sequence.
159 * Used for VBR
160 * @slice_size_type: 0 = no constraint to close the slice
161 * 1= a slice is closed as soon as the slice_mb_size limit
162 * is reached
163 * 2= a slice is closed as soon as the slice_byte_size limit
164 * is reached
165 * 3= a slice is closed as soon as either the slice_byte_size
166 * limit or the slice_mb_size limit is reached
167 * @slice_mb_size: defines the slice size in number of macroblocks
168 * (used when slice_size_type=1 or slice_size_type=3)
169 * @ir_param_option: defines the number of macroblocks per frame to be
170 * refreshed by AIR algorithm OR the refresh period
171 * by CIR algorithm
172 * @intra_refresh_type: enables the adaptive intra refresh algorithm.
173 * Disable=0 / Adaptative=1 and Cycle=2 as intra refresh
174 * @use_constrained_intra_flag: constrained_intra_pred_flag from PPS
175 * @transform_mode: controls the use of 4x4/8x8 transform mode
176 * @disable_deblocking_filter_idc:
177 * 0: specifies that all luma and chroma block edges of
178 * the slice are filtered.
179 * 1: specifies that deblocking is disabled for all block
180 * edges of the slice.
181 * 2: specifies that all luma and chroma block edges of
182 * the slice are filtered with exception of the block edges
183 * that coincide with slice boundaries
184 * @slice_alpha_c0_offset_div2: to be written in slice header,
185 * controls deblocking
186 * @slice_beta_offset_div2: to be written in slice header,
187 * controls deblocking
188 * @encoder_complexity: encoder complexity control (IME).
189 * 0 = I_16x16, P_16x16, Full ME Complexity
190 * 1 = I_16x16, I_NxN, P_16x16, Full ME Complexity
191 * 2 = I_16x16, I_NXN, P_16x16, P_WxH, Full ME Complexity
192 * 4 = I_16x16, P_16x16, Reduced ME Complexity
193 * 5 = I_16x16, I_NxN, P_16x16, Reduced ME Complexity
194 * 6 = I_16x16, I_NXN, P_16x16, P_WxH, Reduced ME Complexity
195 * @chroma_qp_index_offset: coming from picture parameter set
196 * (PPS see [H.264 STD] 7.4.2.2)
197 * @entropy_coding_mode: entropy coding mode.
198 * 0 = CAVLC
199 * 1 = CABAC
200 * @brc_type: selects the bit-rate control algorithm
201 * 0 = constant Qp, (no BRC)
202 * 1 = CBR
203 * 2 = VBR
204 * @quant: Quantization param used in case of fix QP encoding (no BRC)
205 * @non_VCL_NALU_Size: size of non-VCL NALUs (SPS, PPS, filler),
206 * used by BRC
207 * @cpb_buffer_size: size of Coded Picture Buffer, used by BRC
208 * @bit_rate: target bitrate, for BRC
209 * @qp_min: min QP threshold
210 * @qp_max: max QP threshold
211 * @framerate_num: target framerate numerator , used by BRC
212 * @framerate_den: target framerate denomurator , used by BRC
213 * @delay: End-to-End Initial Delay
214 * @strict_HRD_compliancy: flag for HDR compliancy (1)
215 * May impact quality encoding
216 * @addr_source_buffer: address of input frame buffer for current frame
217 * @addr_fwd_Ref_Buffer: address of reference frame buffer
218 * @addr_rec_buffer: address of reconstructed frame buffer
219 * @addr_output_bitstream_start: output bitstream start address
220 * @addr_output_bitstream_end: output bitstream end address
221 * @addr_external_sw : address of external search window
222 * @addr_lctx : address of context picture buffer
223 * @addr_local_rec_buffer: address of local reconstructed buffer
224 * @addr_spatial_context: address of spatial context buffer
225 * @bitstream_offset: offset in bits between aligned bitstream start
226 * address and first bit to be written by HVA.
227 * Range value is [0..63]
228 * @sampling_mode: Input picture format .
229 * 0: YUV420 semi_planar Interleaved
230 * 1: YUV422 raster Interleaved
231 * @addr_param_out: address of output parameters structure
232 * @addr_scaling_matrix: address to the coefficient of
233 * the inverse scaling matrix
234 * @addr_scaling_matrix_dir: address to the coefficient of
235 * the direct scaling matrix
236 * @addr_cabac_context_buffer: address of cabac context buffer
237 * @GmvX: Input information about the horizontal global displacement of
238 * the encoded frame versus the previous one
239 * @GmvY: Input information about the vertical global displacement of
240 * the encoded frame versus the previous one
241 * @window_width: width in pixels of the window to be encoded inside
242 * the input frame
243 * @window_height: width in pixels of the window to be encoded inside
244 * the input frame
245 * @window_horizontal_offset: horizontal offset in pels for input window
246 * within input frame
247 * @window_vertical_offset: vertical offset in pels for input window
248 * within input frame
249 * @addr_roi: Map of QP offset for the Region of Interest algorithm and
250 * also used for Error map.
251 * Bit 0-6 used for qp offset (value -64 to 63).
252 * Bit 7 used to force intra
253 * @addr_slice_header: address to slice header
254 * @slice_header_size_in_bits: size in bits of the Slice header
255 * @slice_header_offset0: Slice header offset where to insert
256 * first_Mb_in_slice
257 * @slice_header_offset1: Slice header offset where to insert
258 * slice_qp_delta
259 * @slice_header_offset2: Slice header offset where to insert
260 * num_MBs_in_slice
261 * @slice_synchro_enable: enable "slice ready" interrupt after each slice
262 * @max_slice_number: Maximum number of slice in a frame
263 * (0 is strictly forbidden)
264 * @rgb2_yuv_y_coeff: Four coefficients (C0C1C2C3) to convert from RGB to
265 * YUV for the Y component.
266 * Y = C0*R + C1*G + C2*B + C3 (C0 is on byte 0)
267 * @rgb2_yuv_u_coeff: four coefficients (C0C1C2C3) to convert from RGB to
268 * YUV for the Y component.
269 * Y = C0*R + C1*G + C2*B + C3 (C0 is on byte 0)
270 * @rgb2_yuv_v_coeff: Four coefficients (C0C1C2C3) to convert from RGB to
271 * YUV for the U (Cb) component.
272 * U = C0*R + C1*G + C2*B + C3 (C0 is on byte 0)
273 * @slice_byte_size: maximum slice size in bytes
274 * (used when slice_size_type=2 or slice_size_type=3)
275 * @max_air_intra_mb_nb: Maximum number of intra macroblock in a frame
276 * for the AIR algorithm
277 * @brc_no_skip: Disable skipping in the Bitrate Controller
278 * @addr_brc_in_out_parameter: address of static buffer for BRC parameters
279 */
280 struct hva_h264_td {
281 u16 frame_width;
282 u16 frame_height;
283 u32 frame_num;
284 u16 picture_coding_type;
285 u16 reserved1;
286 u16 pic_order_cnt_type;
287 u16 first_picture_in_sequence;
288 u16 slice_size_type;
289 u16 reserved2;
290 u32 slice_mb_size;
291 u16 ir_param_option;
292 u16 intra_refresh_type;
293 u16 use_constrained_intra_flag;
294 u16 transform_mode;
295 u16 disable_deblocking_filter_idc;
296 s16 slice_alpha_c0_offset_div2;
297 s16 slice_beta_offset_div2;
298 u16 encoder_complexity;
299 s16 chroma_qp_index_offset;
300 u16 entropy_coding_mode;
301 u16 brc_type;
302 u16 quant;
303 u32 non_vcl_nalu_size;
304 u32 cpb_buffer_size;
305 u32 bit_rate;
306 u16 qp_min;
307 u16 qp_max;
308 u16 framerate_num;
309 u16 framerate_den;
310 u16 delay;
311 u16 strict_hrd_compliancy;
312 u32 addr_source_buffer;
313 u32 addr_fwd_ref_buffer;
314 u32 addr_rec_buffer;
315 u32 addr_output_bitstream_start;
316 u32 addr_output_bitstream_end;
317 u32 addr_external_sw;
318 u32 addr_lctx;
319 u32 addr_local_rec_buffer;
320 u32 addr_spatial_context;
321 u16 bitstream_offset;
322 u16 sampling_mode;
323 u32 addr_param_out;
324 u32 addr_scaling_matrix;
325 u32 addr_scaling_matrix_dir;
326 u32 addr_cabac_context_buffer;
327 u32 reserved3;
328 u32 reserved4;
329 s16 gmv_x;
330 s16 gmv_y;
331 u16 window_width;
332 u16 window_height;
333 u16 window_horizontal_offset;
334 u16 window_vertical_offset;
335 u32 addr_roi;
336 u32 addr_slice_header;
337 u16 slice_header_size_in_bits;
338 u16 slice_header_offset0;
339 u16 slice_header_offset1;
340 u16 slice_header_offset2;
341 u32 reserved5;
342 u32 reserved6;
343 u16 reserved7;
344 u16 reserved8;
345 u16 slice_synchro_enable;
346 u16 max_slice_number;
347 u32 rgb2_yuv_y_coeff;
348 u32 rgb2_yuv_u_coeff;
349 u32 rgb2_yuv_v_coeff;
350 u32 slice_byte_size;
351 u16 max_air_intra_mb_nb;
352 u16 brc_no_skip;
353 u32 addr_temporal_context;
354 u32 addr_brc_in_out_parameter;
355 };
356
357 /*
358 * struct hva_h264_slice_po
359 *
360 * @ slice_size: slice size
361 * @ slice_start_time: start time
362 * @ slice_stop_time: stop time
363 * @ slice_num: slice number
364 */
365 struct hva_h264_slice_po {
366 u32 slice_size;
367 u32 slice_start_time;
368 u32 slice_end_time;
369 u32 slice_num;
370 };
371
372 /*
373 * struct hva_h264_po
374 *
375 * @ bitstream_size: bitstream size
376 * @ dct_bitstream_size: dtc bitstream size
377 * @ stuffing_bits: number of stuffing bits inserted by the encoder
378 * @ removal_time: removal time of current frame (nb of ticks 1/framerate)
379 * @ hvc_start_time: hvc start time
380 * @ hvc_stop_time: hvc stop time
381 * @ slice_count: slice count
382 */
383 struct hva_h264_po {
384 u32 bitstream_size;
385 u32 dct_bitstream_size;
386 u32 stuffing_bits;
387 u32 removal_time;
388 u32 hvc_start_time;
389 u32 hvc_stop_time;
390 u32 slice_count;
391 u32 reserved0;
392 struct hva_h264_slice_po slice_params[16];
393 };
394
395 struct hva_h264_task {
396 struct hva_h264_td td;
397 struct hva_h264_po po;
398 };
399
400 /*
401 * struct hva_h264_ctx
402 *
403 * @seq_info: sequence information buffer
404 * @ref_frame: reference frame buffer
405 * @rec_frame: reconstructed frame buffer
406 * @task: task descriptor
407 */
408 struct hva_h264_ctx {
409 struct hva_buffer *seq_info;
410 struct hva_buffer *ref_frame;
411 struct hva_buffer *rec_frame;
412 struct hva_buffer *task;
413 };
414
hva_h264_fill_slice_header(struct hva_ctx * pctx,u8 * slice_header_addr,struct hva_controls * ctrls,int frame_num,u16 * header_size,u16 * header_offset0,u16 * header_offset1,u16 * header_offset2)415 static int hva_h264_fill_slice_header(struct hva_ctx *pctx,
416 u8 *slice_header_addr,
417 struct hva_controls *ctrls,
418 int frame_num,
419 u16 *header_size,
420 u16 *header_offset0,
421 u16 *header_offset1,
422 u16 *header_offset2)
423 {
424 /*
425 * with this HVA hardware version, part of the slice header is computed
426 * on host and part by hardware.
427 * The part of host is precomputed and available through this array.
428 */
429 struct device *dev = ctx_to_dev(pctx);
430 int cabac = V4L2_MPEG_VIDEO_H264_ENTROPY_MODE_CABAC;
431 static const unsigned char slice_header[] = {
432 0x00, 0x00, 0x00, 0x01,
433 0x41, 0x34, 0x07, 0x00
434 };
435 int idr_pic_id = frame_num % 2;
436 enum hva_picture_coding_type type;
437 u32 frame_order = frame_num % ctrls->gop_size;
438
439 if (!(frame_num % ctrls->gop_size))
440 type = PICTURE_CODING_TYPE_I;
441 else
442 type = PICTURE_CODING_TYPE_P;
443
444 memcpy(slice_header_addr, slice_header, sizeof(slice_header));
445
446 *header_size = 56;
447 *header_offset0 = 40;
448 *header_offset1 = 13;
449 *header_offset2 = 0;
450
451 if (type == PICTURE_CODING_TYPE_I) {
452 slice_header_addr[4] = 0x65;
453 slice_header_addr[5] = 0x11;
454
455 /* toggle the I frame */
456 if ((frame_num / ctrls->gop_size) % 2) {
457 *header_size += 4;
458 *header_offset1 += 4;
459 slice_header_addr[6] = 0x04;
460 slice_header_addr[7] = 0x70;
461
462 } else {
463 *header_size += 2;
464 *header_offset1 += 2;
465 slice_header_addr[6] = 0x09;
466 slice_header_addr[7] = 0xC0;
467 }
468 } else {
469 if (ctrls->entropy_mode == cabac) {
470 *header_size += 1;
471 *header_offset1 += 1;
472 slice_header_addr[7] = 0x80;
473 }
474 /*
475 * update slice header with P frame order
476 * frame order is limited to 16 (coded on 4bits only)
477 */
478 slice_header_addr[5] += ((frame_order & 0x0C) >> 2);
479 slice_header_addr[6] += ((frame_order & 0x03) << 6);
480 }
481
482 dev_dbg(dev,
483 "%s %s slice header order %d idrPicId %d header size %d\n",
484 pctx->name, __func__, frame_order, idr_pic_id, *header_size);
485 return 0;
486 }
487
hva_h264_fill_data_nal(struct hva_ctx * pctx,unsigned int stuffing_bytes,u8 * addr,unsigned int stream_size,unsigned int * size)488 static int hva_h264_fill_data_nal(struct hva_ctx *pctx,
489 unsigned int stuffing_bytes, u8 *addr,
490 unsigned int stream_size, unsigned int *size)
491 {
492 struct device *dev = ctx_to_dev(pctx);
493 static const u8 start[] = { 0x00, 0x00, 0x00, 0x01 };
494
495 dev_dbg(dev, "%s %s stuffing bytes %d\n", pctx->name, __func__,
496 stuffing_bytes);
497
498 if ((*size + stuffing_bytes + H264_FILLER_DATA_SIZE) > stream_size) {
499 dev_dbg(dev, "%s %s too many stuffing bytes %d\n",
500 pctx->name, __func__, stuffing_bytes);
501 return 0;
502 }
503
504 /* start code */
505 memcpy(addr + *size, start, sizeof(start));
506 *size += sizeof(start);
507
508 /* nal_unit_type */
509 addr[*size] = NALU_TYPE_FILLER_DATA;
510 *size += 1;
511
512 memset(addr + *size, 0xff, stuffing_bytes);
513 *size += stuffing_bytes;
514
515 addr[*size] = 0x80;
516 *size += 1;
517
518 return 0;
519 }
520
hva_h264_fill_sei_nal(struct hva_ctx * pctx,enum hva_h264_sei_payload_type type,u8 * addr,u32 * size)521 static int hva_h264_fill_sei_nal(struct hva_ctx *pctx,
522 enum hva_h264_sei_payload_type type,
523 u8 *addr, u32 *size)
524 {
525 struct device *dev = ctx_to_dev(pctx);
526 static const u8 start[] = { 0x00, 0x00, 0x00, 0x01 };
527 struct hva_h264_stereo_video_sei info;
528 u8 offset = 7;
529 u8 msg = 0;
530
531 /* start code */
532 memcpy(addr + *size, start, sizeof(start));
533 *size += sizeof(start);
534
535 /* nal_unit_type */
536 addr[*size] = NALU_TYPE_SEI;
537 *size += 1;
538
539 /* payload type */
540 addr[*size] = type;
541 *size += 1;
542
543 switch (type) {
544 case SEI_STEREO_VIDEO_INFO:
545 memset(&info, 0, sizeof(info));
546
547 /* set to top/bottom frame packing arrangement */
548 info.field_views_flag = 1;
549 info.top_field_is_left_view_flag = 1;
550
551 /* payload size */
552 addr[*size] = 1;
553 *size += 1;
554
555 /* payload */
556 msg = info.field_views_flag << offset--;
557
558 if (info.field_views_flag) {
559 msg |= info.top_field_is_left_view_flag <<
560 offset--;
561 } else {
562 msg |= info.current_frame_is_left_view_flag <<
563 offset--;
564 msg |= info.next_frame_is_second_view_flag <<
565 offset--;
566 }
567 msg |= info.left_view_self_contained_flag << offset--;
568 msg |= info.right_view_self_contained_flag << offset--;
569
570 addr[*size] = msg;
571 *size += 1;
572
573 addr[*size] = 0x80;
574 *size += 1;
575
576 return 0;
577 case SEI_BUFFERING_PERIOD:
578 case SEI_PICTURE_TIMING:
579 case SEI_FRAME_PACKING_ARRANGEMENT:
580 default:
581 dev_err(dev, "%s sei nal type not supported %d\n",
582 pctx->name, type);
583 return -EINVAL;
584 }
585 }
586
hva_h264_prepare_task(struct hva_ctx * pctx,struct hva_h264_task * task,struct hva_frame * frame,struct hva_stream * stream)587 static int hva_h264_prepare_task(struct hva_ctx *pctx,
588 struct hva_h264_task *task,
589 struct hva_frame *frame,
590 struct hva_stream *stream)
591 {
592 struct hva_dev *hva = ctx_to_hdev(pctx);
593 struct device *dev = ctx_to_dev(pctx);
594 struct hva_h264_ctx *ctx = pctx->priv;
595 struct hva_buffer *seq_info = ctx->seq_info;
596 struct hva_buffer *fwd_ref_frame = ctx->ref_frame;
597 struct hva_buffer *loc_rec_frame = ctx->rec_frame;
598 struct hva_h264_td *td = &task->td;
599 struct hva_controls *ctrls = &pctx->ctrls;
600 struct v4l2_fract *time_per_frame = &pctx->ctrls.time_per_frame;
601 int cavlc = V4L2_MPEG_VIDEO_H264_ENTROPY_MODE_CAVLC;
602 u32 frame_num = pctx->stream_num;
603 u32 addr_esram = hva->esram_addr;
604 enum v4l2_mpeg_video_h264_level level;
605 dma_addr_t paddr = 0;
606 u8 *slice_header_vaddr;
607 u32 frame_width = frame->info.aligned_width;
608 u32 frame_height = frame->info.aligned_height;
609 u32 max_cpb_buffer_size;
610 unsigned int payload = stream->bytesused;
611 u32 max_bitrate;
612
613 /* check width and height parameters */
614 if ((frame_width > max(H264_MAX_SIZE_W, H264_MAX_SIZE_H)) ||
615 (frame_height > max(H264_MAX_SIZE_W, H264_MAX_SIZE_H))) {
616 dev_err(dev,
617 "%s width(%d) or height(%d) exceeds limits (%dx%d)\n",
618 pctx->name, frame_width, frame_height,
619 H264_MAX_SIZE_W, H264_MAX_SIZE_H);
620 pctx->frame_errors++;
621 return -EINVAL;
622 }
623
624 level = ctrls->level;
625
626 memset(td, 0, sizeof(struct hva_h264_td));
627
628 td->frame_width = frame_width;
629 td->frame_height = frame_height;
630
631 /* set frame alignment */
632 td->window_width = frame_width;
633 td->window_height = frame_height;
634 td->window_horizontal_offset = 0;
635 td->window_vertical_offset = 0;
636
637 td->first_picture_in_sequence = (!frame_num) ? 1 : 0;
638
639 /* pic_order_cnt_type hard coded to '2' as only I & P frames */
640 td->pic_order_cnt_type = 2;
641
642 /* useConstrainedIntraFlag set to false for better coding efficiency */
643 td->use_constrained_intra_flag = false;
644 td->brc_type = (ctrls->bitrate_mode == V4L2_MPEG_VIDEO_BITRATE_MODE_CBR)
645 ? BRC_TYPE_CBR : BRC_TYPE_VBR;
646
647 td->entropy_coding_mode = (ctrls->entropy_mode == cavlc) ? CAVLC :
648 CABAC;
649
650 td->bit_rate = ctrls->bitrate;
651
652 /* set framerate, framerate = 1 n/ time per frame */
653 if (time_per_frame->numerator >= 536) {
654 /*
655 * due to a hardware bug, framerate denominator can't exceed
656 * 536 (BRC overflow). Compute nearest framerate
657 */
658 td->framerate_den = 1;
659 td->framerate_num = (time_per_frame->denominator +
660 (time_per_frame->numerator >> 1) - 1) /
661 time_per_frame->numerator;
662
663 /*
664 * update bitrate to introduce a correction due to
665 * the new framerate
666 * new bitrate = (old bitrate * new framerate) / old framerate
667 */
668 td->bit_rate /= time_per_frame->numerator;
669 td->bit_rate *= time_per_frame->denominator;
670 td->bit_rate /= td->framerate_num;
671 } else {
672 td->framerate_den = time_per_frame->numerator;
673 td->framerate_num = time_per_frame->denominator;
674 }
675
676 /* compute maximum bitrate depending on profile */
677 if (ctrls->profile >= V4L2_MPEG_VIDEO_H264_PROFILE_HIGH)
678 max_bitrate = h264_infos_list[level].max_bitrate *
679 H264_FACTOR_HIGH;
680 else
681 max_bitrate = h264_infos_list[level].max_bitrate *
682 H264_FACTOR_BASELINE;
683
684 /* check if bitrate doesn't exceed max size */
685 if (td->bit_rate > max_bitrate) {
686 dev_dbg(dev,
687 "%s bitrate (%d) larger than level and profile allow, clip to %d\n",
688 pctx->name, td->bit_rate, max_bitrate);
689 td->bit_rate = max_bitrate;
690 }
691
692 /* convert cpb_buffer_size in bits */
693 td->cpb_buffer_size = ctrls->cpb_size * 8000;
694
695 /* compute maximum cpb buffer size depending on profile */
696 if (ctrls->profile >= V4L2_MPEG_VIDEO_H264_PROFILE_HIGH)
697 max_cpb_buffer_size =
698 h264_infos_list[level].max_cpb_size * H264_FACTOR_HIGH;
699 else
700 max_cpb_buffer_size =
701 h264_infos_list[level].max_cpb_size * H264_FACTOR_BASELINE;
702
703 /* check if cpb buffer size doesn't exceed max size */
704 if (td->cpb_buffer_size > max_cpb_buffer_size) {
705 dev_dbg(dev,
706 "%s cpb size larger than level %d allows, clip to %d\n",
707 pctx->name, td->cpb_buffer_size, max_cpb_buffer_size);
708 td->cpb_buffer_size = max_cpb_buffer_size;
709 }
710
711 /* enable skipping in the Bitrate Controller */
712 td->brc_no_skip = 0;
713
714 /* initial delay */
715 if ((ctrls->bitrate_mode == V4L2_MPEG_VIDEO_BITRATE_MODE_CBR) &&
716 td->bit_rate)
717 td->delay = 1000 * (td->cpb_buffer_size / td->bit_rate);
718 else
719 td->delay = 0;
720
721 switch (frame->info.pixelformat) {
722 case V4L2_PIX_FMT_NV12:
723 td->sampling_mode = SAMPLING_MODE_NV12;
724 break;
725 case V4L2_PIX_FMT_NV21:
726 td->sampling_mode = SAMPLING_MODE_NV21;
727 break;
728 default:
729 dev_err(dev, "%s invalid source pixel format\n",
730 pctx->name);
731 pctx->frame_errors++;
732 return -EINVAL;
733 }
734
735 /*
736 * fill matrix color converter (RGB to YUV)
737 * Y = 0,299 R + 0,587 G + 0,114 B
738 * Cb = -0,1687 R -0,3313 G + 0,5 B + 128
739 * Cr = 0,5 R - 0,4187 G - 0,0813 B + 128
740 */
741 td->rgb2_yuv_y_coeff = 0x12031008;
742 td->rgb2_yuv_u_coeff = 0x800EF7FB;
743 td->rgb2_yuv_v_coeff = 0x80FEF40E;
744
745 /* enable/disable transform mode */
746 td->transform_mode = ctrls->dct8x8;
747
748 /* encoder complexity fix to 2, ENCODE_I_16x16_I_NxN_P_16x16_P_WxH */
749 td->encoder_complexity = 2;
750
751 /* quant fix to 28, default VBR value */
752 td->quant = 28;
753
754 if (td->framerate_den == 0) {
755 dev_err(dev, "%s invalid framerate\n", pctx->name);
756 pctx->frame_errors++;
757 return -EINVAL;
758 }
759
760 /* if automatic framerate, deactivate bitrate controller */
761 if (td->framerate_num == 0)
762 td->brc_type = 0;
763
764 /* compliancy fix to true */
765 td->strict_hrd_compliancy = 1;
766
767 /* set minimum & maximum quantizers */
768 td->qp_min = clamp_val(ctrls->qpmin, 0, 51);
769 td->qp_max = clamp_val(ctrls->qpmax, 0, 51);
770
771 td->addr_source_buffer = frame->paddr;
772 td->addr_fwd_ref_buffer = fwd_ref_frame->paddr;
773 td->addr_rec_buffer = loc_rec_frame->paddr;
774
775 td->addr_output_bitstream_end = (u32)stream->paddr + stream->size;
776
777 td->addr_output_bitstream_start = (u32)stream->paddr;
778 td->bitstream_offset = (((u32)stream->paddr & 0xF) << 3) &
779 BITSTREAM_OFFSET_MASK;
780
781 td->addr_param_out = (u32)ctx->task->paddr +
782 offsetof(struct hva_h264_task, po);
783
784 /* swap spatial and temporal context */
785 if (frame_num % 2) {
786 paddr = seq_info->paddr;
787 td->addr_spatial_context = ALIGN(paddr, 0x100);
788 paddr = seq_info->paddr + DATA_SIZE(frame_width,
789 frame_height);
790 td->addr_temporal_context = ALIGN(paddr, 0x100);
791 } else {
792 paddr = seq_info->paddr;
793 td->addr_temporal_context = ALIGN(paddr, 0x100);
794 paddr = seq_info->paddr + DATA_SIZE(frame_width,
795 frame_height);
796 td->addr_spatial_context = ALIGN(paddr, 0x100);
797 }
798
799 paddr = seq_info->paddr + 2 * DATA_SIZE(frame_width, frame_height);
800
801 td->addr_brc_in_out_parameter = ALIGN(paddr, 0x100);
802
803 paddr = td->addr_brc_in_out_parameter + BRC_DATA_SIZE;
804 td->addr_slice_header = ALIGN(paddr, 0x100);
805 td->addr_external_sw = ALIGN(addr_esram, 0x100);
806
807 addr_esram += SEARCH_WINDOW_BUFFER_MAX_SIZE(frame_width);
808 td->addr_local_rec_buffer = ALIGN(addr_esram, 0x100);
809
810 addr_esram += LOCAL_RECONSTRUCTED_BUFFER_MAX_SIZE(frame_width);
811 td->addr_lctx = ALIGN(addr_esram, 0x100);
812
813 addr_esram += CTX_MB_BUFFER_MAX_SIZE(max(frame_width, frame_height));
814 td->addr_cabac_context_buffer = ALIGN(addr_esram, 0x100);
815
816 if (!(frame_num % ctrls->gop_size)) {
817 td->picture_coding_type = PICTURE_CODING_TYPE_I;
818 stream->vbuf.flags |= V4L2_BUF_FLAG_KEYFRAME;
819 } else {
820 td->picture_coding_type = PICTURE_CODING_TYPE_P;
821 stream->vbuf.flags &= ~V4L2_BUF_FLAG_KEYFRAME;
822 }
823
824 /* fill the slice header part */
825 slice_header_vaddr = seq_info->vaddr + (td->addr_slice_header -
826 seq_info->paddr);
827
828 hva_h264_fill_slice_header(pctx, slice_header_vaddr, ctrls, frame_num,
829 &td->slice_header_size_in_bits,
830 &td->slice_header_offset0,
831 &td->slice_header_offset1,
832 &td->slice_header_offset2);
833
834 td->chroma_qp_index_offset = 2;
835 td->slice_synchro_enable = 0;
836 td->max_slice_number = 1;
837
838 /*
839 * check the sps/pps header size for key frame only
840 * sps/pps header was previously fill by libv4l
841 * during qbuf of stream buffer
842 */
843 if ((stream->vbuf.flags == V4L2_BUF_FLAG_KEYFRAME) &&
844 (payload > MAX_SPS_PPS_SIZE)) {
845 dev_err(dev, "%s invalid sps/pps size %d\n", pctx->name,
846 payload);
847 pctx->frame_errors++;
848 return -EINVAL;
849 }
850
851 if (stream->vbuf.flags != V4L2_BUF_FLAG_KEYFRAME)
852 payload = 0;
853
854 /* add SEI nal (video stereo info) */
855 if (ctrls->sei_fp && hva_h264_fill_sei_nal(pctx, SEI_STEREO_VIDEO_INFO,
856 (u8 *)stream->vaddr,
857 &payload)) {
858 dev_err(dev, "%s fail to get SEI nal\n", pctx->name);
859 pctx->frame_errors++;
860 return -EINVAL;
861 }
862
863 /* fill size of non-VCL NAL units (SPS, PPS, filler and SEI) */
864 td->non_vcl_nalu_size = payload * 8;
865
866 /* compute bitstream offset & new start address of bitstream */
867 td->addr_output_bitstream_start += ((payload >> 4) << 4);
868 td->bitstream_offset += (payload - ((payload >> 4) << 4)) * 8;
869
870 stream->bytesused = payload;
871
872 return 0;
873 }
874
hva_h264_get_stream_size(struct hva_h264_task * task)875 static unsigned int hva_h264_get_stream_size(struct hva_h264_task *task)
876 {
877 struct hva_h264_po *po = &task->po;
878
879 return po->bitstream_size;
880 }
881
hva_h264_get_stuffing_bytes(struct hva_h264_task * task)882 static u32 hva_h264_get_stuffing_bytes(struct hva_h264_task *task)
883 {
884 struct hva_h264_po *po = &task->po;
885
886 return po->stuffing_bits >> 3;
887 }
888
hva_h264_open(struct hva_ctx * pctx)889 static int hva_h264_open(struct hva_ctx *pctx)
890 {
891 struct device *dev = ctx_to_dev(pctx);
892 struct hva_h264_ctx *ctx;
893 struct hva_dev *hva = ctx_to_hdev(pctx);
894 u32 frame_width = pctx->frameinfo.aligned_width;
895 u32 frame_height = pctx->frameinfo.aligned_height;
896 u32 size;
897 int ret;
898
899 /* check esram size necessary to encode a frame */
900 size = SEARCH_WINDOW_BUFFER_MAX_SIZE(frame_width) +
901 LOCAL_RECONSTRUCTED_BUFFER_MAX_SIZE(frame_width) +
902 CTX_MB_BUFFER_MAX_SIZE(max(frame_width, frame_height)) +
903 CABAC_CONTEXT_BUFFER_MAX_SIZE(frame_width);
904
905 if (hva->esram_size < size) {
906 dev_err(dev, "%s not enough esram (max:%d request:%d)\n",
907 pctx->name, hva->esram_size, size);
908 ret = -EINVAL;
909 goto err;
910 }
911
912 /* allocate context for codec */
913 ctx = devm_kzalloc(dev, sizeof(*ctx), GFP_KERNEL);
914 if (!ctx) {
915 ret = -ENOMEM;
916 goto err;
917 }
918
919 /* allocate sequence info buffer */
920 ret = hva_mem_alloc(pctx,
921 2 * DATA_SIZE(frame_width, frame_height) +
922 SLICE_HEADER_SIZE +
923 BRC_DATA_SIZE,
924 "hva sequence info",
925 &ctx->seq_info);
926 if (ret) {
927 dev_err(dev,
928 "%s failed to allocate sequence info buffer\n",
929 pctx->name);
930 goto err_ctx;
931 }
932
933 /* allocate reference frame buffer */
934 ret = hva_mem_alloc(pctx,
935 frame_width * frame_height * 3 / 2,
936 "hva reference frame",
937 &ctx->ref_frame);
938 if (ret) {
939 dev_err(dev, "%s failed to allocate reference frame buffer\n",
940 pctx->name);
941 goto err_seq_info;
942 }
943
944 /* allocate reconstructed frame buffer */
945 ret = hva_mem_alloc(pctx,
946 frame_width * frame_height * 3 / 2,
947 "hva reconstructed frame",
948 &ctx->rec_frame);
949 if (ret) {
950 dev_err(dev,
951 "%s failed to allocate reconstructed frame buffer\n",
952 pctx->name);
953 goto err_ref_frame;
954 }
955
956 /* allocate task descriptor */
957 ret = hva_mem_alloc(pctx,
958 sizeof(struct hva_h264_task),
959 "hva task descriptor",
960 &ctx->task);
961 if (ret) {
962 dev_err(dev,
963 "%s failed to allocate task descriptor\n",
964 pctx->name);
965 goto err_rec_frame;
966 }
967
968 pctx->priv = (void *)ctx;
969
970 return 0;
971
972 err_rec_frame:
973 hva_mem_free(pctx, ctx->rec_frame);
974 err_ref_frame:
975 hva_mem_free(pctx, ctx->ref_frame);
976 err_seq_info:
977 hva_mem_free(pctx, ctx->seq_info);
978 err_ctx:
979 devm_kfree(dev, ctx);
980 err:
981 pctx->sys_errors++;
982 return ret;
983 }
984
hva_h264_close(struct hva_ctx * pctx)985 static int hva_h264_close(struct hva_ctx *pctx)
986 {
987 struct hva_h264_ctx *ctx = pctx->priv;
988 struct device *dev = ctx_to_dev(pctx);
989
990 if (ctx->seq_info)
991 hva_mem_free(pctx, ctx->seq_info);
992
993 if (ctx->ref_frame)
994 hva_mem_free(pctx, ctx->ref_frame);
995
996 if (ctx->rec_frame)
997 hva_mem_free(pctx, ctx->rec_frame);
998
999 if (ctx->task)
1000 hva_mem_free(pctx, ctx->task);
1001
1002 devm_kfree(dev, ctx);
1003
1004 return 0;
1005 }
1006
hva_h264_encode(struct hva_ctx * pctx,struct hva_frame * frame,struct hva_stream * stream)1007 static int hva_h264_encode(struct hva_ctx *pctx, struct hva_frame *frame,
1008 struct hva_stream *stream)
1009 {
1010 struct hva_h264_ctx *ctx = pctx->priv;
1011 struct hva_h264_task *task = ctx->task->vaddr;
1012 u32 stuffing_bytes = 0;
1013 int ret = 0;
1014
1015 ret = hva_h264_prepare_task(pctx, task, frame, stream);
1016 if (ret)
1017 goto err;
1018
1019 ret = hva_hw_execute_task(pctx, H264_ENC, ctx->task);
1020 if (ret)
1021 goto err;
1022
1023 pctx->stream_num++;
1024 stream->bytesused += hva_h264_get_stream_size(task);
1025
1026 stuffing_bytes = hva_h264_get_stuffing_bytes(task);
1027
1028 if (stuffing_bytes)
1029 hva_h264_fill_data_nal(pctx, stuffing_bytes,
1030 (u8 *)stream->vaddr,
1031 stream->size,
1032 &stream->bytesused);
1033
1034 /* switch reference & reconstructed frame */
1035 swap(ctx->ref_frame, ctx->rec_frame);
1036
1037 return 0;
1038 err:
1039 stream->bytesused = 0;
1040 return ret;
1041 }
1042
1043 const struct hva_enc nv12h264enc = {
1044 .name = "H264(NV12)",
1045 .pixelformat = V4L2_PIX_FMT_NV12,
1046 .streamformat = V4L2_PIX_FMT_H264,
1047 .max_width = H264_MAX_SIZE_W,
1048 .max_height = H264_MAX_SIZE_H,
1049 .open = hva_h264_open,
1050 .close = hva_h264_close,
1051 .encode = hva_h264_encode,
1052 };
1053
1054 const struct hva_enc nv21h264enc = {
1055 .name = "H264(NV21)",
1056 .pixelformat = V4L2_PIX_FMT_NV21,
1057 .streamformat = V4L2_PIX_FMT_H264,
1058 .max_width = H264_MAX_SIZE_W,
1059 .max_height = H264_MAX_SIZE_H,
1060 .open = hva_h264_open,
1061 .close = hva_h264_close,
1062 .encode = hva_h264_encode,
1063 };
1064