1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3 * Linux Socket Filter Data Structures
4 */
5 #ifndef __LINUX_FILTER_H__
6 #define __LINUX_FILTER_H__
7
8 #include <linux/atomic.h>
9 #include <linux/bpf.h>
10 #include <linux/refcount.h>
11 #include <linux/compat.h>
12 #include <linux/skbuff.h>
13 #include <linux/linkage.h>
14 #include <linux/printk.h>
15 #include <linux/workqueue.h>
16 #include <linux/sched.h>
17 #include <linux/sched/clock.h>
18 #include <linux/capability.h>
19 #include <linux/set_memory.h>
20 #include <linux/kallsyms.h>
21 #include <linux/if_vlan.h>
22 #include <linux/vmalloc.h>
23 #include <linux/sockptr.h>
24 #include <crypto/sha1.h>
25 #include <linux/u64_stats_sync.h>
26
27 #include <net/sch_generic.h>
28
29 #include <asm/byteorder.h>
30 #include <uapi/linux/filter.h>
31
32 struct sk_buff;
33 struct sock;
34 struct seccomp_data;
35 struct bpf_prog_aux;
36 struct xdp_rxq_info;
37 struct xdp_buff;
38 struct sock_reuseport;
39 struct ctl_table;
40 struct ctl_table_header;
41
42 /* ArgX, context and stack frame pointer register positions. Note,
43 * Arg1, Arg2, Arg3, etc are used as argument mappings of function
44 * calls in BPF_CALL instruction.
45 */
46 #define BPF_REG_ARG1 BPF_REG_1
47 #define BPF_REG_ARG2 BPF_REG_2
48 #define BPF_REG_ARG3 BPF_REG_3
49 #define BPF_REG_ARG4 BPF_REG_4
50 #define BPF_REG_ARG5 BPF_REG_5
51 #define BPF_REG_CTX BPF_REG_6
52 #define BPF_REG_FP BPF_REG_10
53
54 /* Additional register mappings for converted user programs. */
55 #define BPF_REG_A BPF_REG_0
56 #define BPF_REG_X BPF_REG_7
57 #define BPF_REG_TMP BPF_REG_2 /* scratch reg */
58 #define BPF_REG_D BPF_REG_8 /* data, callee-saved */
59 #define BPF_REG_H BPF_REG_9 /* hlen, callee-saved */
60
61 /* Kernel hidden auxiliary/helper register. */
62 #define BPF_REG_AX MAX_BPF_REG
63 #define MAX_BPF_EXT_REG (MAX_BPF_REG + 1)
64 #define MAX_BPF_JIT_REG MAX_BPF_EXT_REG
65
66 /* unused opcode to mark special call to bpf_tail_call() helper */
67 #define BPF_TAIL_CALL 0xf0
68
69 /* unused opcode to mark special load instruction. Same as BPF_ABS */
70 #define BPF_PROBE_MEM 0x20
71
72 /* unused opcode to mark special ldsx instruction. Same as BPF_IND */
73 #define BPF_PROBE_MEMSX 0x40
74
75 /* unused opcode to mark special load instruction. Same as BPF_MSH */
76 #define BPF_PROBE_MEM32 0xa0
77
78 /* unused opcode to mark special atomic instruction */
79 #define BPF_PROBE_ATOMIC 0xe0
80
81 /* unused opcode to mark call to interpreter with arguments */
82 #define BPF_CALL_ARGS 0xe0
83
84 /* unused opcode to mark speculation barrier for mitigating
85 * Speculative Store Bypass
86 */
87 #define BPF_NOSPEC 0xc0
88
89 /* As per nm, we expose JITed images as text (code) section for
90 * kallsyms. That way, tools like perf can find it to match
91 * addresses.
92 */
93 #define BPF_SYM_ELF_TYPE 't'
94
95 /* BPF program can access up to 512 bytes of stack space. */
96 #define MAX_BPF_STACK 512
97
98 /* Helper macros for filter block array initializers. */
99
100 /* ALU ops on registers, bpf_add|sub|...: dst_reg += src_reg */
101
102 #define BPF_ALU64_REG_OFF(OP, DST, SRC, OFF) \
103 ((struct bpf_insn) { \
104 .code = BPF_ALU64 | BPF_OP(OP) | BPF_X, \
105 .dst_reg = DST, \
106 .src_reg = SRC, \
107 .off = OFF, \
108 .imm = 0 })
109
110 #define BPF_ALU64_REG(OP, DST, SRC) \
111 BPF_ALU64_REG_OFF(OP, DST, SRC, 0)
112
113 #define BPF_ALU32_REG_OFF(OP, DST, SRC, OFF) \
114 ((struct bpf_insn) { \
115 .code = BPF_ALU | BPF_OP(OP) | BPF_X, \
116 .dst_reg = DST, \
117 .src_reg = SRC, \
118 .off = OFF, \
119 .imm = 0 })
120
121 #define BPF_ALU32_REG(OP, DST, SRC) \
122 BPF_ALU32_REG_OFF(OP, DST, SRC, 0)
123
124 /* ALU ops on immediates, bpf_add|sub|...: dst_reg += imm32 */
125
126 #define BPF_ALU64_IMM_OFF(OP, DST, IMM, OFF) \
127 ((struct bpf_insn) { \
128 .code = BPF_ALU64 | BPF_OP(OP) | BPF_K, \
129 .dst_reg = DST, \
130 .src_reg = 0, \
131 .off = OFF, \
132 .imm = IMM })
133 #define BPF_ALU64_IMM(OP, DST, IMM) \
134 BPF_ALU64_IMM_OFF(OP, DST, IMM, 0)
135
136 #define BPF_ALU32_IMM_OFF(OP, DST, IMM, OFF) \
137 ((struct bpf_insn) { \
138 .code = BPF_ALU | BPF_OP(OP) | BPF_K, \
139 .dst_reg = DST, \
140 .src_reg = 0, \
141 .off = OFF, \
142 .imm = IMM })
143 #define BPF_ALU32_IMM(OP, DST, IMM) \
144 BPF_ALU32_IMM_OFF(OP, DST, IMM, 0)
145
146 /* Endianess conversion, cpu_to_{l,b}e(), {l,b}e_to_cpu() */
147
148 #define BPF_ENDIAN(TYPE, DST, LEN) \
149 ((struct bpf_insn) { \
150 .code = BPF_ALU | BPF_END | BPF_SRC(TYPE), \
151 .dst_reg = DST, \
152 .src_reg = 0, \
153 .off = 0, \
154 .imm = LEN })
155
156 /* Byte Swap, bswap16/32/64 */
157
158 #define BPF_BSWAP(DST, LEN) \
159 ((struct bpf_insn) { \
160 .code = BPF_ALU64 | BPF_END | BPF_SRC(BPF_TO_LE), \
161 .dst_reg = DST, \
162 .src_reg = 0, \
163 .off = 0, \
164 .imm = LEN })
165
166 /* Short form of mov, dst_reg = src_reg */
167
168 #define BPF_MOV64_REG(DST, SRC) \
169 ((struct bpf_insn) { \
170 .code = BPF_ALU64 | BPF_MOV | BPF_X, \
171 .dst_reg = DST, \
172 .src_reg = SRC, \
173 .off = 0, \
174 .imm = 0 })
175
176 #define BPF_MOV32_REG(DST, SRC) \
177 ((struct bpf_insn) { \
178 .code = BPF_ALU | BPF_MOV | BPF_X, \
179 .dst_reg = DST, \
180 .src_reg = SRC, \
181 .off = 0, \
182 .imm = 0 })
183
184 /* Special (internal-only) form of mov, used to resolve per-CPU addrs:
185 * dst_reg = src_reg + <percpu_base_off>
186 * BPF_ADDR_PERCPU is used as a special insn->off value.
187 */
188 #define BPF_ADDR_PERCPU (-1)
189
190 #define BPF_MOV64_PERCPU_REG(DST, SRC) \
191 ((struct bpf_insn) { \
192 .code = BPF_ALU64 | BPF_MOV | BPF_X, \
193 .dst_reg = DST, \
194 .src_reg = SRC, \
195 .off = BPF_ADDR_PERCPU, \
196 .imm = 0 })
197
insn_is_mov_percpu_addr(const struct bpf_insn * insn)198 static inline bool insn_is_mov_percpu_addr(const struct bpf_insn *insn)
199 {
200 return insn->code == (BPF_ALU64 | BPF_MOV | BPF_X) && insn->off == BPF_ADDR_PERCPU;
201 }
202
203 /* Short form of mov, dst_reg = imm32 */
204
205 #define BPF_MOV64_IMM(DST, IMM) \
206 ((struct bpf_insn) { \
207 .code = BPF_ALU64 | BPF_MOV | BPF_K, \
208 .dst_reg = DST, \
209 .src_reg = 0, \
210 .off = 0, \
211 .imm = IMM })
212
213 #define BPF_MOV32_IMM(DST, IMM) \
214 ((struct bpf_insn) { \
215 .code = BPF_ALU | BPF_MOV | BPF_K, \
216 .dst_reg = DST, \
217 .src_reg = 0, \
218 .off = 0, \
219 .imm = IMM })
220
221 /* Short form of movsx, dst_reg = (s8,s16,s32)src_reg */
222
223 #define BPF_MOVSX64_REG(DST, SRC, OFF) \
224 ((struct bpf_insn) { \
225 .code = BPF_ALU64 | BPF_MOV | BPF_X, \
226 .dst_reg = DST, \
227 .src_reg = SRC, \
228 .off = OFF, \
229 .imm = 0 })
230
231 #define BPF_MOVSX32_REG(DST, SRC, OFF) \
232 ((struct bpf_insn) { \
233 .code = BPF_ALU | BPF_MOV | BPF_X, \
234 .dst_reg = DST, \
235 .src_reg = SRC, \
236 .off = OFF, \
237 .imm = 0 })
238
239 /* Special form of mov32, used for doing explicit zero extension on dst. */
240 #define BPF_ZEXT_REG(DST) \
241 ((struct bpf_insn) { \
242 .code = BPF_ALU | BPF_MOV | BPF_X, \
243 .dst_reg = DST, \
244 .src_reg = DST, \
245 .off = 0, \
246 .imm = 1 })
247
insn_is_zext(const struct bpf_insn * insn)248 static inline bool insn_is_zext(const struct bpf_insn *insn)
249 {
250 return insn->code == (BPF_ALU | BPF_MOV | BPF_X) && insn->imm == 1;
251 }
252
253 /* addr_space_cast from as(0) to as(1) is for converting bpf arena pointers
254 * to pointers in user vma.
255 */
insn_is_cast_user(const struct bpf_insn * insn)256 static inline bool insn_is_cast_user(const struct bpf_insn *insn)
257 {
258 return insn->code == (BPF_ALU64 | BPF_MOV | BPF_X) &&
259 insn->off == BPF_ADDR_SPACE_CAST &&
260 insn->imm == 1U << 16;
261 }
262
263 /* BPF_LD_IMM64 macro encodes single 'load 64-bit immediate' insn */
264 #define BPF_LD_IMM64(DST, IMM) \
265 BPF_LD_IMM64_RAW(DST, 0, IMM)
266
267 #define BPF_LD_IMM64_RAW(DST, SRC, IMM) \
268 ((struct bpf_insn) { \
269 .code = BPF_LD | BPF_DW | BPF_IMM, \
270 .dst_reg = DST, \
271 .src_reg = SRC, \
272 .off = 0, \
273 .imm = (__u32) (IMM) }), \
274 ((struct bpf_insn) { \
275 .code = 0, /* zero is reserved opcode */ \
276 .dst_reg = 0, \
277 .src_reg = 0, \
278 .off = 0, \
279 .imm = ((__u64) (IMM)) >> 32 })
280
281 /* pseudo BPF_LD_IMM64 insn used to refer to process-local map_fd */
282 #define BPF_LD_MAP_FD(DST, MAP_FD) \
283 BPF_LD_IMM64_RAW(DST, BPF_PSEUDO_MAP_FD, MAP_FD)
284
285 /* Short form of mov based on type, BPF_X: dst_reg = src_reg, BPF_K: dst_reg = imm32 */
286
287 #define BPF_MOV64_RAW(TYPE, DST, SRC, IMM) \
288 ((struct bpf_insn) { \
289 .code = BPF_ALU64 | BPF_MOV | BPF_SRC(TYPE), \
290 .dst_reg = DST, \
291 .src_reg = SRC, \
292 .off = 0, \
293 .imm = IMM })
294
295 #define BPF_MOV32_RAW(TYPE, DST, SRC, IMM) \
296 ((struct bpf_insn) { \
297 .code = BPF_ALU | BPF_MOV | BPF_SRC(TYPE), \
298 .dst_reg = DST, \
299 .src_reg = SRC, \
300 .off = 0, \
301 .imm = IMM })
302
303 /* Direct packet access, R0 = *(uint *) (skb->data + imm32) */
304
305 #define BPF_LD_ABS(SIZE, IMM) \
306 ((struct bpf_insn) { \
307 .code = BPF_LD | BPF_SIZE(SIZE) | BPF_ABS, \
308 .dst_reg = 0, \
309 .src_reg = 0, \
310 .off = 0, \
311 .imm = IMM })
312
313 /* Indirect packet access, R0 = *(uint *) (skb->data + src_reg + imm32) */
314
315 #define BPF_LD_IND(SIZE, SRC, IMM) \
316 ((struct bpf_insn) { \
317 .code = BPF_LD | BPF_SIZE(SIZE) | BPF_IND, \
318 .dst_reg = 0, \
319 .src_reg = SRC, \
320 .off = 0, \
321 .imm = IMM })
322
323 /* Memory load, dst_reg = *(uint *) (src_reg + off16) */
324
325 #define BPF_LDX_MEM(SIZE, DST, SRC, OFF) \
326 ((struct bpf_insn) { \
327 .code = BPF_LDX | BPF_SIZE(SIZE) | BPF_MEM, \
328 .dst_reg = DST, \
329 .src_reg = SRC, \
330 .off = OFF, \
331 .imm = 0 })
332
333 /* Memory load, dst_reg = *(signed size *) (src_reg + off16) */
334
335 #define BPF_LDX_MEMSX(SIZE, DST, SRC, OFF) \
336 ((struct bpf_insn) { \
337 .code = BPF_LDX | BPF_SIZE(SIZE) | BPF_MEMSX, \
338 .dst_reg = DST, \
339 .src_reg = SRC, \
340 .off = OFF, \
341 .imm = 0 })
342
343 /* Memory store, *(uint *) (dst_reg + off16) = src_reg */
344
345 #define BPF_STX_MEM(SIZE, DST, SRC, OFF) \
346 ((struct bpf_insn) { \
347 .code = BPF_STX | BPF_SIZE(SIZE) | BPF_MEM, \
348 .dst_reg = DST, \
349 .src_reg = SRC, \
350 .off = OFF, \
351 .imm = 0 })
352
353
354 /*
355 * Atomic operations:
356 *
357 * BPF_ADD *(uint *) (dst_reg + off16) += src_reg
358 * BPF_AND *(uint *) (dst_reg + off16) &= src_reg
359 * BPF_OR *(uint *) (dst_reg + off16) |= src_reg
360 * BPF_XOR *(uint *) (dst_reg + off16) ^= src_reg
361 * BPF_ADD | BPF_FETCH src_reg = atomic_fetch_add(dst_reg + off16, src_reg);
362 * BPF_AND | BPF_FETCH src_reg = atomic_fetch_and(dst_reg + off16, src_reg);
363 * BPF_OR | BPF_FETCH src_reg = atomic_fetch_or(dst_reg + off16, src_reg);
364 * BPF_XOR | BPF_FETCH src_reg = atomic_fetch_xor(dst_reg + off16, src_reg);
365 * BPF_XCHG src_reg = atomic_xchg(dst_reg + off16, src_reg)
366 * BPF_CMPXCHG r0 = atomic_cmpxchg(dst_reg + off16, r0, src_reg)
367 */
368
369 #define BPF_ATOMIC_OP(SIZE, OP, DST, SRC, OFF) \
370 ((struct bpf_insn) { \
371 .code = BPF_STX | BPF_SIZE(SIZE) | BPF_ATOMIC, \
372 .dst_reg = DST, \
373 .src_reg = SRC, \
374 .off = OFF, \
375 .imm = OP })
376
377 /* Legacy alias */
378 #define BPF_STX_XADD(SIZE, DST, SRC, OFF) BPF_ATOMIC_OP(SIZE, BPF_ADD, DST, SRC, OFF)
379
380 /* Memory store, *(uint *) (dst_reg + off16) = imm32 */
381
382 #define BPF_ST_MEM(SIZE, DST, OFF, IMM) \
383 ((struct bpf_insn) { \
384 .code = BPF_ST | BPF_SIZE(SIZE) | BPF_MEM, \
385 .dst_reg = DST, \
386 .src_reg = 0, \
387 .off = OFF, \
388 .imm = IMM })
389
390 /* Conditional jumps against registers, if (dst_reg 'op' src_reg) goto pc + off16 */
391
392 #define BPF_JMP_REG(OP, DST, SRC, OFF) \
393 ((struct bpf_insn) { \
394 .code = BPF_JMP | BPF_OP(OP) | BPF_X, \
395 .dst_reg = DST, \
396 .src_reg = SRC, \
397 .off = OFF, \
398 .imm = 0 })
399
400 /* Conditional jumps against immediates, if (dst_reg 'op' imm32) goto pc + off16 */
401
402 #define BPF_JMP_IMM(OP, DST, IMM, OFF) \
403 ((struct bpf_insn) { \
404 .code = BPF_JMP | BPF_OP(OP) | BPF_K, \
405 .dst_reg = DST, \
406 .src_reg = 0, \
407 .off = OFF, \
408 .imm = IMM })
409
410 /* Like BPF_JMP_REG, but with 32-bit wide operands for comparison. */
411
412 #define BPF_JMP32_REG(OP, DST, SRC, OFF) \
413 ((struct bpf_insn) { \
414 .code = BPF_JMP32 | BPF_OP(OP) | BPF_X, \
415 .dst_reg = DST, \
416 .src_reg = SRC, \
417 .off = OFF, \
418 .imm = 0 })
419
420 /* Like BPF_JMP_IMM, but with 32-bit wide operands for comparison. */
421
422 #define BPF_JMP32_IMM(OP, DST, IMM, OFF) \
423 ((struct bpf_insn) { \
424 .code = BPF_JMP32 | BPF_OP(OP) | BPF_K, \
425 .dst_reg = DST, \
426 .src_reg = 0, \
427 .off = OFF, \
428 .imm = IMM })
429
430 /* Unconditional jumps, goto pc + off16 */
431
432 #define BPF_JMP_A(OFF) \
433 ((struct bpf_insn) { \
434 .code = BPF_JMP | BPF_JA, \
435 .dst_reg = 0, \
436 .src_reg = 0, \
437 .off = OFF, \
438 .imm = 0 })
439
440 /* Unconditional jumps, gotol pc + imm32 */
441
442 #define BPF_JMP32_A(IMM) \
443 ((struct bpf_insn) { \
444 .code = BPF_JMP32 | BPF_JA, \
445 .dst_reg = 0, \
446 .src_reg = 0, \
447 .off = 0, \
448 .imm = IMM })
449
450 /* Relative call */
451
452 #define BPF_CALL_REL(TGT) \
453 ((struct bpf_insn) { \
454 .code = BPF_JMP | BPF_CALL, \
455 .dst_reg = 0, \
456 .src_reg = BPF_PSEUDO_CALL, \
457 .off = 0, \
458 .imm = TGT })
459
460 /* Convert function address to BPF immediate */
461
462 #define BPF_CALL_IMM(x) ((void *)(x) - (void *)__bpf_call_base)
463
464 #define BPF_EMIT_CALL(FUNC) \
465 ((struct bpf_insn) { \
466 .code = BPF_JMP | BPF_CALL, \
467 .dst_reg = 0, \
468 .src_reg = 0, \
469 .off = 0, \
470 .imm = BPF_CALL_IMM(FUNC) })
471
472 /* Raw code statement block */
473
474 #define BPF_RAW_INSN(CODE, DST, SRC, OFF, IMM) \
475 ((struct bpf_insn) { \
476 .code = CODE, \
477 .dst_reg = DST, \
478 .src_reg = SRC, \
479 .off = OFF, \
480 .imm = IMM })
481
482 /* Program exit */
483
484 #define BPF_EXIT_INSN() \
485 ((struct bpf_insn) { \
486 .code = BPF_JMP | BPF_EXIT, \
487 .dst_reg = 0, \
488 .src_reg = 0, \
489 .off = 0, \
490 .imm = 0 })
491
492 /* Speculation barrier */
493
494 #define BPF_ST_NOSPEC() \
495 ((struct bpf_insn) { \
496 .code = BPF_ST | BPF_NOSPEC, \
497 .dst_reg = 0, \
498 .src_reg = 0, \
499 .off = 0, \
500 .imm = 0 })
501
502 /* Internal classic blocks for direct assignment */
503
504 #define __BPF_STMT(CODE, K) \
505 ((struct sock_filter) BPF_STMT(CODE, K))
506
507 #define __BPF_JUMP(CODE, K, JT, JF) \
508 ((struct sock_filter) BPF_JUMP(CODE, K, JT, JF))
509
510 #define bytes_to_bpf_size(bytes) \
511 ({ \
512 int bpf_size = -EINVAL; \
513 \
514 if (bytes == sizeof(u8)) \
515 bpf_size = BPF_B; \
516 else if (bytes == sizeof(u16)) \
517 bpf_size = BPF_H; \
518 else if (bytes == sizeof(u32)) \
519 bpf_size = BPF_W; \
520 else if (bytes == sizeof(u64)) \
521 bpf_size = BPF_DW; \
522 \
523 bpf_size; \
524 })
525
526 #define bpf_size_to_bytes(bpf_size) \
527 ({ \
528 int bytes = -EINVAL; \
529 \
530 if (bpf_size == BPF_B) \
531 bytes = sizeof(u8); \
532 else if (bpf_size == BPF_H) \
533 bytes = sizeof(u16); \
534 else if (bpf_size == BPF_W) \
535 bytes = sizeof(u32); \
536 else if (bpf_size == BPF_DW) \
537 bytes = sizeof(u64); \
538 \
539 bytes; \
540 })
541
542 #define BPF_SIZEOF(type) \
543 ({ \
544 const int __size = bytes_to_bpf_size(sizeof(type)); \
545 BUILD_BUG_ON(__size < 0); \
546 __size; \
547 })
548
549 #define BPF_FIELD_SIZEOF(type, field) \
550 ({ \
551 const int __size = bytes_to_bpf_size(sizeof_field(type, field)); \
552 BUILD_BUG_ON(__size < 0); \
553 __size; \
554 })
555
556 #define BPF_LDST_BYTES(insn) \
557 ({ \
558 const int __size = bpf_size_to_bytes(BPF_SIZE((insn)->code)); \
559 WARN_ON(__size < 0); \
560 __size; \
561 })
562
563 #define __BPF_MAP_0(m, v, ...) v
564 #define __BPF_MAP_1(m, v, t, a, ...) m(t, a)
565 #define __BPF_MAP_2(m, v, t, a, ...) m(t, a), __BPF_MAP_1(m, v, __VA_ARGS__)
566 #define __BPF_MAP_3(m, v, t, a, ...) m(t, a), __BPF_MAP_2(m, v, __VA_ARGS__)
567 #define __BPF_MAP_4(m, v, t, a, ...) m(t, a), __BPF_MAP_3(m, v, __VA_ARGS__)
568 #define __BPF_MAP_5(m, v, t, a, ...) m(t, a), __BPF_MAP_4(m, v, __VA_ARGS__)
569
570 #define __BPF_REG_0(...) __BPF_PAD(5)
571 #define __BPF_REG_1(...) __BPF_MAP(1, __VA_ARGS__), __BPF_PAD(4)
572 #define __BPF_REG_2(...) __BPF_MAP(2, __VA_ARGS__), __BPF_PAD(3)
573 #define __BPF_REG_3(...) __BPF_MAP(3, __VA_ARGS__), __BPF_PAD(2)
574 #define __BPF_REG_4(...) __BPF_MAP(4, __VA_ARGS__), __BPF_PAD(1)
575 #define __BPF_REG_5(...) __BPF_MAP(5, __VA_ARGS__)
576
577 #define __BPF_MAP(n, ...) __BPF_MAP_##n(__VA_ARGS__)
578 #define __BPF_REG(n, ...) __BPF_REG_##n(__VA_ARGS__)
579
580 #define __BPF_CAST(t, a) \
581 (__force t) \
582 (__force \
583 typeof(__builtin_choose_expr(sizeof(t) == sizeof(unsigned long), \
584 (unsigned long)0, (t)0))) a
585 #define __BPF_V void
586 #define __BPF_N
587
588 #define __BPF_DECL_ARGS(t, a) t a
589 #define __BPF_DECL_REGS(t, a) u64 a
590
591 #define __BPF_PAD(n) \
592 __BPF_MAP(n, __BPF_DECL_ARGS, __BPF_N, u64, __ur_1, u64, __ur_2, \
593 u64, __ur_3, u64, __ur_4, u64, __ur_5)
594
595 #define BPF_CALL_x(x, attr, name, ...) \
596 static __always_inline \
597 u64 ____##name(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__)); \
598 typedef u64 (*btf_##name)(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__)); \
599 attr u64 name(__BPF_REG(x, __BPF_DECL_REGS, __BPF_N, __VA_ARGS__)); \
600 attr u64 name(__BPF_REG(x, __BPF_DECL_REGS, __BPF_N, __VA_ARGS__)) \
601 { \
602 return ((btf_##name)____##name)(__BPF_MAP(x,__BPF_CAST,__BPF_N,__VA_ARGS__));\
603 } \
604 static __always_inline \
605 u64 ____##name(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__))
606
607 #define __NOATTR
608 #define BPF_CALL_0(name, ...) BPF_CALL_x(0, __NOATTR, name, __VA_ARGS__)
609 #define BPF_CALL_1(name, ...) BPF_CALL_x(1, __NOATTR, name, __VA_ARGS__)
610 #define BPF_CALL_2(name, ...) BPF_CALL_x(2, __NOATTR, name, __VA_ARGS__)
611 #define BPF_CALL_3(name, ...) BPF_CALL_x(3, __NOATTR, name, __VA_ARGS__)
612 #define BPF_CALL_4(name, ...) BPF_CALL_x(4, __NOATTR, name, __VA_ARGS__)
613 #define BPF_CALL_5(name, ...) BPF_CALL_x(5, __NOATTR, name, __VA_ARGS__)
614
615 #define NOTRACE_BPF_CALL_1(name, ...) BPF_CALL_x(1, notrace, name, __VA_ARGS__)
616
617 #define bpf_ctx_range(TYPE, MEMBER) \
618 offsetof(TYPE, MEMBER) ... offsetofend(TYPE, MEMBER) - 1
619 #define bpf_ctx_range_till(TYPE, MEMBER1, MEMBER2) \
620 offsetof(TYPE, MEMBER1) ... offsetofend(TYPE, MEMBER2) - 1
621 #if BITS_PER_LONG == 64
622 # define bpf_ctx_range_ptr(TYPE, MEMBER) \
623 offsetof(TYPE, MEMBER) ... offsetofend(TYPE, MEMBER) - 1
624 #else
625 # define bpf_ctx_range_ptr(TYPE, MEMBER) \
626 offsetof(TYPE, MEMBER) ... offsetof(TYPE, MEMBER) + 8 - 1
627 #endif /* BITS_PER_LONG == 64 */
628
629 #define bpf_target_off(TYPE, MEMBER, SIZE, PTR_SIZE) \
630 ({ \
631 BUILD_BUG_ON(sizeof_field(TYPE, MEMBER) != (SIZE)); \
632 *(PTR_SIZE) = (SIZE); \
633 offsetof(TYPE, MEMBER); \
634 })
635
636 /* A struct sock_filter is architecture independent. */
637 struct compat_sock_fprog {
638 u16 len;
639 compat_uptr_t filter; /* struct sock_filter * */
640 };
641
642 struct sock_fprog_kern {
643 u16 len;
644 struct sock_filter *filter;
645 };
646
647 /* Some arches need doubleword alignment for their instructions and/or data */
648 #define BPF_IMAGE_ALIGNMENT 8
649
650 struct bpf_binary_header {
651 u32 size;
652 u8 image[] __aligned(BPF_IMAGE_ALIGNMENT);
653 };
654
655 struct bpf_prog_stats {
656 u64_stats_t cnt;
657 u64_stats_t nsecs;
658 u64_stats_t misses;
659 struct u64_stats_sync syncp;
660 } __aligned(2 * sizeof(u64));
661
662 struct sk_filter {
663 refcount_t refcnt;
664 struct rcu_head rcu;
665 struct bpf_prog *prog;
666 };
667
668 DECLARE_STATIC_KEY_FALSE(bpf_stats_enabled_key);
669
670 extern struct mutex nf_conn_btf_access_lock;
671 extern int (*nfct_btf_struct_access)(struct bpf_verifier_log *log,
672 const struct bpf_reg_state *reg,
673 int off, int size);
674
675 typedef unsigned int (*bpf_dispatcher_fn)(const void *ctx,
676 const struct bpf_insn *insnsi,
677 unsigned int (*bpf_func)(const void *,
678 const struct bpf_insn *));
679
__bpf_prog_run(const struct bpf_prog * prog,const void * ctx,bpf_dispatcher_fn dfunc)680 static __always_inline u32 __bpf_prog_run(const struct bpf_prog *prog,
681 const void *ctx,
682 bpf_dispatcher_fn dfunc)
683 {
684 u32 ret;
685
686 cant_migrate();
687 if (static_branch_unlikely(&bpf_stats_enabled_key)) {
688 struct bpf_prog_stats *stats;
689 u64 duration, start = sched_clock();
690 unsigned long flags;
691
692 ret = dfunc(ctx, prog->insnsi, prog->bpf_func);
693
694 duration = sched_clock() - start;
695 stats = this_cpu_ptr(prog->stats);
696 flags = u64_stats_update_begin_irqsave(&stats->syncp);
697 u64_stats_inc(&stats->cnt);
698 u64_stats_add(&stats->nsecs, duration);
699 u64_stats_update_end_irqrestore(&stats->syncp, flags);
700 } else {
701 ret = dfunc(ctx, prog->insnsi, prog->bpf_func);
702 }
703 return ret;
704 }
705
bpf_prog_run(const struct bpf_prog * prog,const void * ctx)706 static __always_inline u32 bpf_prog_run(const struct bpf_prog *prog, const void *ctx)
707 {
708 return __bpf_prog_run(prog, ctx, bpf_dispatcher_nop_func);
709 }
710
711 /*
712 * Use in preemptible and therefore migratable context to make sure that
713 * the execution of the BPF program runs on one CPU.
714 *
715 * This uses migrate_disable/enable() explicitly to document that the
716 * invocation of a BPF program does not require reentrancy protection
717 * against a BPF program which is invoked from a preempting task.
718 */
bpf_prog_run_pin_on_cpu(const struct bpf_prog * prog,const void * ctx)719 static inline u32 bpf_prog_run_pin_on_cpu(const struct bpf_prog *prog,
720 const void *ctx)
721 {
722 u32 ret;
723
724 migrate_disable();
725 ret = bpf_prog_run(prog, ctx);
726 migrate_enable();
727 return ret;
728 }
729
730 #define BPF_SKB_CB_LEN QDISC_CB_PRIV_LEN
731
732 struct bpf_skb_data_end {
733 struct qdisc_skb_cb qdisc_cb;
734 void *data_meta;
735 void *data_end;
736 };
737
738 struct bpf_nh_params {
739 u32 nh_family;
740 union {
741 u32 ipv4_nh;
742 struct in6_addr ipv6_nh;
743 };
744 };
745
746 /* flags for bpf_redirect_info kern_flags */
747 #define BPF_RI_F_RF_NO_DIRECT BIT(0) /* no napi_direct on return_frame */
748 #define BPF_RI_F_RI_INIT BIT(1)
749 #define BPF_RI_F_CPU_MAP_INIT BIT(2)
750 #define BPF_RI_F_DEV_MAP_INIT BIT(3)
751 #define BPF_RI_F_XSK_MAP_INIT BIT(4)
752
753 struct bpf_redirect_info {
754 u64 tgt_index;
755 void *tgt_value;
756 struct bpf_map *map;
757 u32 flags;
758 u32 map_id;
759 enum bpf_map_type map_type;
760 struct bpf_nh_params nh;
761 u32 kern_flags;
762 };
763
764 struct bpf_net_context {
765 struct bpf_redirect_info ri;
766 struct list_head cpu_map_flush_list;
767 struct list_head dev_map_flush_list;
768 struct list_head xskmap_map_flush_list;
769 };
770
bpf_net_ctx_set(struct bpf_net_context * bpf_net_ctx)771 static inline struct bpf_net_context *bpf_net_ctx_set(struct bpf_net_context *bpf_net_ctx)
772 {
773 struct task_struct *tsk = current;
774
775 if (tsk->bpf_net_context != NULL)
776 return NULL;
777 bpf_net_ctx->ri.kern_flags = 0;
778
779 tsk->bpf_net_context = bpf_net_ctx;
780 return bpf_net_ctx;
781 }
782
bpf_net_ctx_clear(struct bpf_net_context * bpf_net_ctx)783 static inline void bpf_net_ctx_clear(struct bpf_net_context *bpf_net_ctx)
784 {
785 if (bpf_net_ctx)
786 current->bpf_net_context = NULL;
787 }
788
bpf_net_ctx_get(void)789 static inline struct bpf_net_context *bpf_net_ctx_get(void)
790 {
791 return current->bpf_net_context;
792 }
793
bpf_net_ctx_get_ri(void)794 static inline struct bpf_redirect_info *bpf_net_ctx_get_ri(void)
795 {
796 struct bpf_net_context *bpf_net_ctx = bpf_net_ctx_get();
797
798 if (!(bpf_net_ctx->ri.kern_flags & BPF_RI_F_RI_INIT)) {
799 memset(&bpf_net_ctx->ri, 0, offsetof(struct bpf_net_context, ri.nh));
800 bpf_net_ctx->ri.kern_flags |= BPF_RI_F_RI_INIT;
801 }
802
803 return &bpf_net_ctx->ri;
804 }
805
bpf_net_ctx_get_cpu_map_flush_list(void)806 static inline struct list_head *bpf_net_ctx_get_cpu_map_flush_list(void)
807 {
808 struct bpf_net_context *bpf_net_ctx = bpf_net_ctx_get();
809
810 if (!(bpf_net_ctx->ri.kern_flags & BPF_RI_F_CPU_MAP_INIT)) {
811 INIT_LIST_HEAD(&bpf_net_ctx->cpu_map_flush_list);
812 bpf_net_ctx->ri.kern_flags |= BPF_RI_F_CPU_MAP_INIT;
813 }
814
815 return &bpf_net_ctx->cpu_map_flush_list;
816 }
817
bpf_net_ctx_get_dev_flush_list(void)818 static inline struct list_head *bpf_net_ctx_get_dev_flush_list(void)
819 {
820 struct bpf_net_context *bpf_net_ctx = bpf_net_ctx_get();
821
822 if (!(bpf_net_ctx->ri.kern_flags & BPF_RI_F_DEV_MAP_INIT)) {
823 INIT_LIST_HEAD(&bpf_net_ctx->dev_map_flush_list);
824 bpf_net_ctx->ri.kern_flags |= BPF_RI_F_DEV_MAP_INIT;
825 }
826
827 return &bpf_net_ctx->dev_map_flush_list;
828 }
829
bpf_net_ctx_get_xskmap_flush_list(void)830 static inline struct list_head *bpf_net_ctx_get_xskmap_flush_list(void)
831 {
832 struct bpf_net_context *bpf_net_ctx = bpf_net_ctx_get();
833
834 if (!(bpf_net_ctx->ri.kern_flags & BPF_RI_F_XSK_MAP_INIT)) {
835 INIT_LIST_HEAD(&bpf_net_ctx->xskmap_map_flush_list);
836 bpf_net_ctx->ri.kern_flags |= BPF_RI_F_XSK_MAP_INIT;
837 }
838
839 return &bpf_net_ctx->xskmap_map_flush_list;
840 }
841
bpf_net_ctx_get_all_used_flush_lists(struct list_head ** lh_map,struct list_head ** lh_dev,struct list_head ** lh_xsk)842 static inline void bpf_net_ctx_get_all_used_flush_lists(struct list_head **lh_map,
843 struct list_head **lh_dev,
844 struct list_head **lh_xsk)
845 {
846 struct bpf_net_context *bpf_net_ctx = bpf_net_ctx_get();
847 u32 kern_flags = bpf_net_ctx->ri.kern_flags;
848 struct list_head *lh;
849
850 *lh_map = *lh_dev = *lh_xsk = NULL;
851
852 if (!IS_ENABLED(CONFIG_BPF_SYSCALL))
853 return;
854
855 lh = &bpf_net_ctx->dev_map_flush_list;
856 if (kern_flags & BPF_RI_F_DEV_MAP_INIT && !list_empty(lh))
857 *lh_dev = lh;
858
859 lh = &bpf_net_ctx->cpu_map_flush_list;
860 if (kern_flags & BPF_RI_F_CPU_MAP_INIT && !list_empty(lh))
861 *lh_map = lh;
862
863 lh = &bpf_net_ctx->xskmap_map_flush_list;
864 if (IS_ENABLED(CONFIG_XDP_SOCKETS) &&
865 kern_flags & BPF_RI_F_XSK_MAP_INIT && !list_empty(lh))
866 *lh_xsk = lh;
867 }
868
869 /* Compute the linear packet data range [data, data_end) which
870 * will be accessed by various program types (cls_bpf, act_bpf,
871 * lwt, ...). Subsystems allowing direct data access must (!)
872 * ensure that cb[] area can be written to when BPF program is
873 * invoked (otherwise cb[] save/restore is necessary).
874 */
bpf_compute_data_pointers(struct sk_buff * skb)875 static inline void bpf_compute_data_pointers(struct sk_buff *skb)
876 {
877 struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb;
878
879 BUILD_BUG_ON(sizeof(*cb) > sizeof_field(struct sk_buff, cb));
880 cb->data_meta = skb->data - skb_metadata_len(skb);
881 cb->data_end = skb->data + skb_headlen(skb);
882 }
883
884 /* Similar to bpf_compute_data_pointers(), except that save orginal
885 * data in cb->data and cb->meta_data for restore.
886 */
bpf_compute_and_save_data_end(struct sk_buff * skb,void ** saved_data_end)887 static inline void bpf_compute_and_save_data_end(
888 struct sk_buff *skb, void **saved_data_end)
889 {
890 struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb;
891
892 *saved_data_end = cb->data_end;
893 cb->data_end = skb->data + skb_headlen(skb);
894 }
895
896 /* Restore data saved by bpf_compute_and_save_data_end(). */
bpf_restore_data_end(struct sk_buff * skb,void * saved_data_end)897 static inline void bpf_restore_data_end(
898 struct sk_buff *skb, void *saved_data_end)
899 {
900 struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb;
901
902 cb->data_end = saved_data_end;
903 }
904
bpf_skb_cb(const struct sk_buff * skb)905 static inline u8 *bpf_skb_cb(const struct sk_buff *skb)
906 {
907 /* eBPF programs may read/write skb->cb[] area to transfer meta
908 * data between tail calls. Since this also needs to work with
909 * tc, that scratch memory is mapped to qdisc_skb_cb's data area.
910 *
911 * In some socket filter cases, the cb unfortunately needs to be
912 * saved/restored so that protocol specific skb->cb[] data won't
913 * be lost. In any case, due to unpriviledged eBPF programs
914 * attached to sockets, we need to clear the bpf_skb_cb() area
915 * to not leak previous contents to user space.
916 */
917 BUILD_BUG_ON(sizeof_field(struct __sk_buff, cb) != BPF_SKB_CB_LEN);
918 BUILD_BUG_ON(sizeof_field(struct __sk_buff, cb) !=
919 sizeof_field(struct qdisc_skb_cb, data));
920
921 return qdisc_skb_cb(skb)->data;
922 }
923
924 /* Must be invoked with migration disabled */
__bpf_prog_run_save_cb(const struct bpf_prog * prog,const void * ctx)925 static inline u32 __bpf_prog_run_save_cb(const struct bpf_prog *prog,
926 const void *ctx)
927 {
928 const struct sk_buff *skb = ctx;
929 u8 *cb_data = bpf_skb_cb(skb);
930 u8 cb_saved[BPF_SKB_CB_LEN];
931 u32 res;
932
933 if (unlikely(prog->cb_access)) {
934 memcpy(cb_saved, cb_data, sizeof(cb_saved));
935 memset(cb_data, 0, sizeof(cb_saved));
936 }
937
938 res = bpf_prog_run(prog, skb);
939
940 if (unlikely(prog->cb_access))
941 memcpy(cb_data, cb_saved, sizeof(cb_saved));
942
943 return res;
944 }
945
bpf_prog_run_save_cb(const struct bpf_prog * prog,struct sk_buff * skb)946 static inline u32 bpf_prog_run_save_cb(const struct bpf_prog *prog,
947 struct sk_buff *skb)
948 {
949 u32 res;
950
951 migrate_disable();
952 res = __bpf_prog_run_save_cb(prog, skb);
953 migrate_enable();
954 return res;
955 }
956
bpf_prog_run_clear_cb(const struct bpf_prog * prog,struct sk_buff * skb)957 static inline u32 bpf_prog_run_clear_cb(const struct bpf_prog *prog,
958 struct sk_buff *skb)
959 {
960 u8 *cb_data = bpf_skb_cb(skb);
961 u32 res;
962
963 if (unlikely(prog->cb_access))
964 memset(cb_data, 0, BPF_SKB_CB_LEN);
965
966 res = bpf_prog_run_pin_on_cpu(prog, skb);
967 return res;
968 }
969
970 DECLARE_BPF_DISPATCHER(xdp)
971
972 DECLARE_STATIC_KEY_FALSE(bpf_master_redirect_enabled_key);
973
974 u32 xdp_master_redirect(struct xdp_buff *xdp);
975
976 void bpf_prog_change_xdp(struct bpf_prog *prev_prog, struct bpf_prog *prog);
977
bpf_prog_insn_size(const struct bpf_prog * prog)978 static inline u32 bpf_prog_insn_size(const struct bpf_prog *prog)
979 {
980 return prog->len * sizeof(struct bpf_insn);
981 }
982
bpf_prog_tag_scratch_size(const struct bpf_prog * prog)983 static inline u32 bpf_prog_tag_scratch_size(const struct bpf_prog *prog)
984 {
985 return round_up(bpf_prog_insn_size(prog) +
986 sizeof(__be64) + 1, SHA1_BLOCK_SIZE);
987 }
988
bpf_prog_size(unsigned int proglen)989 static inline unsigned int bpf_prog_size(unsigned int proglen)
990 {
991 return max(sizeof(struct bpf_prog),
992 offsetof(struct bpf_prog, insns[proglen]));
993 }
994
bpf_prog_was_classic(const struct bpf_prog * prog)995 static inline bool bpf_prog_was_classic(const struct bpf_prog *prog)
996 {
997 /* When classic BPF programs have been loaded and the arch
998 * does not have a classic BPF JIT (anymore), they have been
999 * converted via bpf_migrate_filter() to eBPF and thus always
1000 * have an unspec program type.
1001 */
1002 return prog->type == BPF_PROG_TYPE_UNSPEC;
1003 }
1004
bpf_ctx_off_adjust_machine(u32 size)1005 static inline u32 bpf_ctx_off_adjust_machine(u32 size)
1006 {
1007 const u32 size_machine = sizeof(unsigned long);
1008
1009 if (size > size_machine && size % size_machine == 0)
1010 size = size_machine;
1011
1012 return size;
1013 }
1014
1015 static inline bool
bpf_ctx_narrow_access_ok(u32 off,u32 size,u32 size_default)1016 bpf_ctx_narrow_access_ok(u32 off, u32 size, u32 size_default)
1017 {
1018 return size <= size_default && (size & (size - 1)) == 0;
1019 }
1020
1021 static inline u8
bpf_ctx_narrow_access_offset(u32 off,u32 size,u32 size_default)1022 bpf_ctx_narrow_access_offset(u32 off, u32 size, u32 size_default)
1023 {
1024 u8 access_off = off & (size_default - 1);
1025
1026 #ifdef __LITTLE_ENDIAN
1027 return access_off;
1028 #else
1029 return size_default - (access_off + size);
1030 #endif
1031 }
1032
1033 #define bpf_ctx_wide_access_ok(off, size, type, field) \
1034 (size == sizeof(__u64) && \
1035 off >= offsetof(type, field) && \
1036 off + sizeof(__u64) <= offsetofend(type, field) && \
1037 off % sizeof(__u64) == 0)
1038
1039 #define bpf_classic_proglen(fprog) (fprog->len * sizeof(fprog->filter[0]))
1040
bpf_prog_lock_ro(struct bpf_prog * fp)1041 static inline int __must_check bpf_prog_lock_ro(struct bpf_prog *fp)
1042 {
1043 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
1044 if (!fp->jited) {
1045 set_vm_flush_reset_perms(fp);
1046 return set_memory_ro((unsigned long)fp, fp->pages);
1047 }
1048 #endif
1049 return 0;
1050 }
1051
1052 static inline int __must_check
bpf_jit_binary_lock_ro(struct bpf_binary_header * hdr)1053 bpf_jit_binary_lock_ro(struct bpf_binary_header *hdr)
1054 {
1055 set_vm_flush_reset_perms(hdr);
1056 return set_memory_rox((unsigned long)hdr, hdr->size >> PAGE_SHIFT);
1057 }
1058
1059 int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap);
sk_filter(struct sock * sk,struct sk_buff * skb)1060 static inline int sk_filter(struct sock *sk, struct sk_buff *skb)
1061 {
1062 return sk_filter_trim_cap(sk, skb, 1);
1063 }
1064
1065 struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err);
1066 void bpf_prog_free(struct bpf_prog *fp);
1067
1068 bool bpf_opcode_in_insntable(u8 code);
1069
1070 void bpf_prog_fill_jited_linfo(struct bpf_prog *prog,
1071 const u32 *insn_to_jit_off);
1072 int bpf_prog_alloc_jited_linfo(struct bpf_prog *prog);
1073 void bpf_prog_jit_attempt_done(struct bpf_prog *prog);
1074
1075 struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags);
1076 struct bpf_prog *bpf_prog_alloc_no_stats(unsigned int size, gfp_t gfp_extra_flags);
1077 struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size,
1078 gfp_t gfp_extra_flags);
1079 void __bpf_prog_free(struct bpf_prog *fp);
1080
bpf_prog_unlock_free(struct bpf_prog * fp)1081 static inline void bpf_prog_unlock_free(struct bpf_prog *fp)
1082 {
1083 __bpf_prog_free(fp);
1084 }
1085
1086 typedef int (*bpf_aux_classic_check_t)(struct sock_filter *filter,
1087 unsigned int flen);
1088
1089 int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog);
1090 int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog,
1091 bpf_aux_classic_check_t trans, bool save_orig);
1092 void bpf_prog_destroy(struct bpf_prog *fp);
1093
1094 int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk);
1095 int sk_attach_bpf(u32 ufd, struct sock *sk);
1096 int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk);
1097 int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk);
1098 void sk_reuseport_prog_free(struct bpf_prog *prog);
1099 int sk_detach_filter(struct sock *sk);
1100 int sk_get_filter(struct sock *sk, sockptr_t optval, unsigned int len);
1101
1102 bool sk_filter_charge(struct sock *sk, struct sk_filter *fp);
1103 void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp);
1104
1105 u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
1106 #define __bpf_call_base_args \
1107 ((u64 (*)(u64, u64, u64, u64, u64, const struct bpf_insn *)) \
1108 (void *)__bpf_call_base)
1109
1110 struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog);
1111 void bpf_jit_compile(struct bpf_prog *prog);
1112 bool bpf_jit_needs_zext(void);
1113 bool bpf_jit_inlines_helper_call(s32 imm);
1114 bool bpf_jit_supports_subprog_tailcalls(void);
1115 bool bpf_jit_supports_percpu_insn(void);
1116 bool bpf_jit_supports_kfunc_call(void);
1117 bool bpf_jit_supports_far_kfunc_call(void);
1118 bool bpf_jit_supports_exceptions(void);
1119 bool bpf_jit_supports_ptr_xchg(void);
1120 bool bpf_jit_supports_arena(void);
1121 bool bpf_jit_supports_insn(struct bpf_insn *insn, bool in_arena);
1122 bool bpf_jit_supports_private_stack(void);
1123 u64 bpf_arch_uaddress_limit(void);
1124 void arch_bpf_stack_walk(bool (*consume_fn)(void *cookie, u64 ip, u64 sp, u64 bp), void *cookie);
1125 bool bpf_helper_changes_pkt_data(enum bpf_func_id func_id);
1126
bpf_dump_raw_ok(const struct cred * cred)1127 static inline bool bpf_dump_raw_ok(const struct cred *cred)
1128 {
1129 /* Reconstruction of call-sites is dependent on kallsyms,
1130 * thus make dump the same restriction.
1131 */
1132 return kallsyms_show_value(cred);
1133 }
1134
1135 struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off,
1136 const struct bpf_insn *patch, u32 len);
1137 int bpf_remove_insns(struct bpf_prog *prog, u32 off, u32 cnt);
1138
xdp_return_frame_no_direct(void)1139 static inline bool xdp_return_frame_no_direct(void)
1140 {
1141 struct bpf_redirect_info *ri = bpf_net_ctx_get_ri();
1142
1143 return ri->kern_flags & BPF_RI_F_RF_NO_DIRECT;
1144 }
1145
xdp_set_return_frame_no_direct(void)1146 static inline void xdp_set_return_frame_no_direct(void)
1147 {
1148 struct bpf_redirect_info *ri = bpf_net_ctx_get_ri();
1149
1150 ri->kern_flags |= BPF_RI_F_RF_NO_DIRECT;
1151 }
1152
xdp_clear_return_frame_no_direct(void)1153 static inline void xdp_clear_return_frame_no_direct(void)
1154 {
1155 struct bpf_redirect_info *ri = bpf_net_ctx_get_ri();
1156
1157 ri->kern_flags &= ~BPF_RI_F_RF_NO_DIRECT;
1158 }
1159
xdp_ok_fwd_dev(const struct net_device * fwd,unsigned int pktlen)1160 static inline int xdp_ok_fwd_dev(const struct net_device *fwd,
1161 unsigned int pktlen)
1162 {
1163 unsigned int len;
1164
1165 if (unlikely(!(fwd->flags & IFF_UP)))
1166 return -ENETDOWN;
1167
1168 len = fwd->mtu + fwd->hard_header_len + VLAN_HLEN;
1169 if (pktlen > len)
1170 return -EMSGSIZE;
1171
1172 return 0;
1173 }
1174
1175 /* The pair of xdp_do_redirect and xdp_do_flush MUST be called in the
1176 * same cpu context. Further for best results no more than a single map
1177 * for the do_redirect/do_flush pair should be used. This limitation is
1178 * because we only track one map and force a flush when the map changes.
1179 * This does not appear to be a real limitation for existing software.
1180 */
1181 int xdp_do_generic_redirect(struct net_device *dev, struct sk_buff *skb,
1182 struct xdp_buff *xdp, struct bpf_prog *prog);
1183 int xdp_do_redirect(struct net_device *dev,
1184 struct xdp_buff *xdp,
1185 struct bpf_prog *prog);
1186 int xdp_do_redirect_frame(struct net_device *dev,
1187 struct xdp_buff *xdp,
1188 struct xdp_frame *xdpf,
1189 struct bpf_prog *prog);
1190 void xdp_do_flush(void);
1191
1192 void bpf_warn_invalid_xdp_action(struct net_device *dev, struct bpf_prog *prog, u32 act);
1193
1194 #ifdef CONFIG_INET
1195 struct sock *bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk,
1196 struct bpf_prog *prog, struct sk_buff *skb,
1197 struct sock *migrating_sk,
1198 u32 hash);
1199 #else
1200 static inline struct sock *
bpf_run_sk_reuseport(struct sock_reuseport * reuse,struct sock * sk,struct bpf_prog * prog,struct sk_buff * skb,struct sock * migrating_sk,u32 hash)1201 bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk,
1202 struct bpf_prog *prog, struct sk_buff *skb,
1203 struct sock *migrating_sk,
1204 u32 hash)
1205 {
1206 return NULL;
1207 }
1208 #endif
1209
1210 #ifdef CONFIG_BPF_JIT
1211 extern int bpf_jit_enable;
1212 extern int bpf_jit_harden;
1213 extern int bpf_jit_kallsyms;
1214 extern long bpf_jit_limit;
1215 extern long bpf_jit_limit_max;
1216
1217 typedef void (*bpf_jit_fill_hole_t)(void *area, unsigned int size);
1218
1219 void bpf_jit_fill_hole_with_zero(void *area, unsigned int size);
1220
1221 struct bpf_binary_header *
1222 bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr,
1223 unsigned int alignment,
1224 bpf_jit_fill_hole_t bpf_fill_ill_insns);
1225 void bpf_jit_binary_free(struct bpf_binary_header *hdr);
1226 u64 bpf_jit_alloc_exec_limit(void);
1227 void *bpf_jit_alloc_exec(unsigned long size);
1228 void bpf_jit_free_exec(void *addr);
1229 void bpf_jit_free(struct bpf_prog *fp);
1230 struct bpf_binary_header *
1231 bpf_jit_binary_pack_hdr(const struct bpf_prog *fp);
1232
1233 void *bpf_prog_pack_alloc(u32 size, bpf_jit_fill_hole_t bpf_fill_ill_insns);
1234 void bpf_prog_pack_free(void *ptr, u32 size);
1235
bpf_prog_kallsyms_verify_off(const struct bpf_prog * fp)1236 static inline bool bpf_prog_kallsyms_verify_off(const struct bpf_prog *fp)
1237 {
1238 return list_empty(&fp->aux->ksym.lnode) ||
1239 fp->aux->ksym.lnode.prev == LIST_POISON2;
1240 }
1241
1242 struct bpf_binary_header *
1243 bpf_jit_binary_pack_alloc(unsigned int proglen, u8 **ro_image,
1244 unsigned int alignment,
1245 struct bpf_binary_header **rw_hdr,
1246 u8 **rw_image,
1247 bpf_jit_fill_hole_t bpf_fill_ill_insns);
1248 int bpf_jit_binary_pack_finalize(struct bpf_binary_header *ro_header,
1249 struct bpf_binary_header *rw_header);
1250 void bpf_jit_binary_pack_free(struct bpf_binary_header *ro_header,
1251 struct bpf_binary_header *rw_header);
1252
1253 int bpf_jit_add_poke_descriptor(struct bpf_prog *prog,
1254 struct bpf_jit_poke_descriptor *poke);
1255
1256 int bpf_jit_get_func_addr(const struct bpf_prog *prog,
1257 const struct bpf_insn *insn, bool extra_pass,
1258 u64 *func_addr, bool *func_addr_fixed);
1259
1260 struct bpf_prog *bpf_jit_blind_constants(struct bpf_prog *fp);
1261 void bpf_jit_prog_release_other(struct bpf_prog *fp, struct bpf_prog *fp_other);
1262
bpf_jit_dump(unsigned int flen,unsigned int proglen,u32 pass,void * image)1263 static inline void bpf_jit_dump(unsigned int flen, unsigned int proglen,
1264 u32 pass, void *image)
1265 {
1266 pr_err("flen=%u proglen=%u pass=%u image=%pK from=%s pid=%d\n", flen,
1267 proglen, pass, image, current->comm, task_pid_nr(current));
1268
1269 if (image)
1270 print_hex_dump(KERN_ERR, "JIT code: ", DUMP_PREFIX_OFFSET,
1271 16, 1, image, proglen, false);
1272 }
1273
bpf_jit_is_ebpf(void)1274 static inline bool bpf_jit_is_ebpf(void)
1275 {
1276 # ifdef CONFIG_HAVE_EBPF_JIT
1277 return true;
1278 # else
1279 return false;
1280 # endif
1281 }
1282
ebpf_jit_enabled(void)1283 static inline bool ebpf_jit_enabled(void)
1284 {
1285 return bpf_jit_enable && bpf_jit_is_ebpf();
1286 }
1287
bpf_prog_ebpf_jited(const struct bpf_prog * fp)1288 static inline bool bpf_prog_ebpf_jited(const struct bpf_prog *fp)
1289 {
1290 return fp->jited && bpf_jit_is_ebpf();
1291 }
1292
bpf_jit_blinding_enabled(struct bpf_prog * prog)1293 static inline bool bpf_jit_blinding_enabled(struct bpf_prog *prog)
1294 {
1295 /* These are the prerequisites, should someone ever have the
1296 * idea to call blinding outside of them, we make sure to
1297 * bail out.
1298 */
1299 if (!bpf_jit_is_ebpf())
1300 return false;
1301 if (!prog->jit_requested)
1302 return false;
1303 if (!bpf_jit_harden)
1304 return false;
1305 if (bpf_jit_harden == 1 && bpf_token_capable(prog->aux->token, CAP_BPF))
1306 return false;
1307
1308 return true;
1309 }
1310
bpf_jit_kallsyms_enabled(void)1311 static inline bool bpf_jit_kallsyms_enabled(void)
1312 {
1313 /* There are a couple of corner cases where kallsyms should
1314 * not be enabled f.e. on hardening.
1315 */
1316 if (bpf_jit_harden)
1317 return false;
1318 if (!bpf_jit_kallsyms)
1319 return false;
1320 if (bpf_jit_kallsyms == 1)
1321 return true;
1322
1323 return false;
1324 }
1325
1326 int __bpf_address_lookup(unsigned long addr, unsigned long *size,
1327 unsigned long *off, char *sym);
1328 bool is_bpf_text_address(unsigned long addr);
1329 int bpf_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
1330 char *sym);
1331 struct bpf_prog *bpf_prog_ksym_find(unsigned long addr);
1332
1333 static inline int
bpf_address_lookup(unsigned long addr,unsigned long * size,unsigned long * off,char ** modname,char * sym)1334 bpf_address_lookup(unsigned long addr, unsigned long *size,
1335 unsigned long *off, char **modname, char *sym)
1336 {
1337 int ret = __bpf_address_lookup(addr, size, off, sym);
1338
1339 if (ret && modname)
1340 *modname = NULL;
1341 return ret;
1342 }
1343
1344 void bpf_prog_kallsyms_add(struct bpf_prog *fp);
1345 void bpf_prog_kallsyms_del(struct bpf_prog *fp);
1346
1347 #else /* CONFIG_BPF_JIT */
1348
ebpf_jit_enabled(void)1349 static inline bool ebpf_jit_enabled(void)
1350 {
1351 return false;
1352 }
1353
bpf_jit_blinding_enabled(struct bpf_prog * prog)1354 static inline bool bpf_jit_blinding_enabled(struct bpf_prog *prog)
1355 {
1356 return false;
1357 }
1358
bpf_prog_ebpf_jited(const struct bpf_prog * fp)1359 static inline bool bpf_prog_ebpf_jited(const struct bpf_prog *fp)
1360 {
1361 return false;
1362 }
1363
1364 static inline int
bpf_jit_add_poke_descriptor(struct bpf_prog * prog,struct bpf_jit_poke_descriptor * poke)1365 bpf_jit_add_poke_descriptor(struct bpf_prog *prog,
1366 struct bpf_jit_poke_descriptor *poke)
1367 {
1368 return -ENOTSUPP;
1369 }
1370
bpf_jit_free(struct bpf_prog * fp)1371 static inline void bpf_jit_free(struct bpf_prog *fp)
1372 {
1373 bpf_prog_unlock_free(fp);
1374 }
1375
bpf_jit_kallsyms_enabled(void)1376 static inline bool bpf_jit_kallsyms_enabled(void)
1377 {
1378 return false;
1379 }
1380
1381 static inline int
__bpf_address_lookup(unsigned long addr,unsigned long * size,unsigned long * off,char * sym)1382 __bpf_address_lookup(unsigned long addr, unsigned long *size,
1383 unsigned long *off, char *sym)
1384 {
1385 return 0;
1386 }
1387
is_bpf_text_address(unsigned long addr)1388 static inline bool is_bpf_text_address(unsigned long addr)
1389 {
1390 return false;
1391 }
1392
bpf_get_kallsym(unsigned int symnum,unsigned long * value,char * type,char * sym)1393 static inline int bpf_get_kallsym(unsigned int symnum, unsigned long *value,
1394 char *type, char *sym)
1395 {
1396 return -ERANGE;
1397 }
1398
bpf_prog_ksym_find(unsigned long addr)1399 static inline struct bpf_prog *bpf_prog_ksym_find(unsigned long addr)
1400 {
1401 return NULL;
1402 }
1403
1404 static inline int
bpf_address_lookup(unsigned long addr,unsigned long * size,unsigned long * off,char ** modname,char * sym)1405 bpf_address_lookup(unsigned long addr, unsigned long *size,
1406 unsigned long *off, char **modname, char *sym)
1407 {
1408 return 0;
1409 }
1410
bpf_prog_kallsyms_add(struct bpf_prog * fp)1411 static inline void bpf_prog_kallsyms_add(struct bpf_prog *fp)
1412 {
1413 }
1414
bpf_prog_kallsyms_del(struct bpf_prog * fp)1415 static inline void bpf_prog_kallsyms_del(struct bpf_prog *fp)
1416 {
1417 }
1418
1419 #endif /* CONFIG_BPF_JIT */
1420
1421 void bpf_prog_kallsyms_del_all(struct bpf_prog *fp);
1422
1423 #define BPF_ANC BIT(15)
1424
bpf_needs_clear_a(const struct sock_filter * first)1425 static inline bool bpf_needs_clear_a(const struct sock_filter *first)
1426 {
1427 switch (first->code) {
1428 case BPF_RET | BPF_K:
1429 case BPF_LD | BPF_W | BPF_LEN:
1430 return false;
1431
1432 case BPF_LD | BPF_W | BPF_ABS:
1433 case BPF_LD | BPF_H | BPF_ABS:
1434 case BPF_LD | BPF_B | BPF_ABS:
1435 if (first->k == SKF_AD_OFF + SKF_AD_ALU_XOR_X)
1436 return true;
1437 return false;
1438
1439 default:
1440 return true;
1441 }
1442 }
1443
bpf_anc_helper(const struct sock_filter * ftest)1444 static inline u16 bpf_anc_helper(const struct sock_filter *ftest)
1445 {
1446 BUG_ON(ftest->code & BPF_ANC);
1447
1448 switch (ftest->code) {
1449 case BPF_LD | BPF_W | BPF_ABS:
1450 case BPF_LD | BPF_H | BPF_ABS:
1451 case BPF_LD | BPF_B | BPF_ABS:
1452 #define BPF_ANCILLARY(CODE) case SKF_AD_OFF + SKF_AD_##CODE: \
1453 return BPF_ANC | SKF_AD_##CODE
1454 switch (ftest->k) {
1455 BPF_ANCILLARY(PROTOCOL);
1456 BPF_ANCILLARY(PKTTYPE);
1457 BPF_ANCILLARY(IFINDEX);
1458 BPF_ANCILLARY(NLATTR);
1459 BPF_ANCILLARY(NLATTR_NEST);
1460 BPF_ANCILLARY(MARK);
1461 BPF_ANCILLARY(QUEUE);
1462 BPF_ANCILLARY(HATYPE);
1463 BPF_ANCILLARY(RXHASH);
1464 BPF_ANCILLARY(CPU);
1465 BPF_ANCILLARY(ALU_XOR_X);
1466 BPF_ANCILLARY(VLAN_TAG);
1467 BPF_ANCILLARY(VLAN_TAG_PRESENT);
1468 BPF_ANCILLARY(PAY_OFFSET);
1469 BPF_ANCILLARY(RANDOM);
1470 BPF_ANCILLARY(VLAN_TPID);
1471 }
1472 fallthrough;
1473 default:
1474 return ftest->code;
1475 }
1476 }
1477
1478 void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb,
1479 int k, unsigned int size);
1480
bpf_tell_extensions(void)1481 static inline int bpf_tell_extensions(void)
1482 {
1483 return SKF_AD_MAX;
1484 }
1485
1486 struct bpf_sock_addr_kern {
1487 struct sock *sk;
1488 struct sockaddr *uaddr;
1489 /* Temporary "register" to make indirect stores to nested structures
1490 * defined above. We need three registers to make such a store, but
1491 * only two (src and dst) are available at convert_ctx_access time
1492 */
1493 u64 tmp_reg;
1494 void *t_ctx; /* Attach type specific context. */
1495 u32 uaddrlen;
1496 };
1497
1498 struct bpf_sock_ops_kern {
1499 struct sock *sk;
1500 union {
1501 u32 args[4];
1502 u32 reply;
1503 u32 replylong[4];
1504 };
1505 struct sk_buff *syn_skb;
1506 struct sk_buff *skb;
1507 void *skb_data_end;
1508 u8 op;
1509 u8 is_fullsock;
1510 u8 remaining_opt_len;
1511 u64 temp; /* temp and everything after is not
1512 * initialized to 0 before calling
1513 * the BPF program. New fields that
1514 * should be initialized to 0 should
1515 * be inserted before temp.
1516 * temp is scratch storage used by
1517 * sock_ops_convert_ctx_access
1518 * as temporary storage of a register.
1519 */
1520 };
1521
1522 struct bpf_sysctl_kern {
1523 struct ctl_table_header *head;
1524 const struct ctl_table *table;
1525 void *cur_val;
1526 size_t cur_len;
1527 void *new_val;
1528 size_t new_len;
1529 int new_updated;
1530 int write;
1531 loff_t *ppos;
1532 /* Temporary "register" for indirect stores to ppos. */
1533 u64 tmp_reg;
1534 };
1535
1536 #define BPF_SOCKOPT_KERN_BUF_SIZE 32
1537 struct bpf_sockopt_buf {
1538 u8 data[BPF_SOCKOPT_KERN_BUF_SIZE];
1539 };
1540
1541 struct bpf_sockopt_kern {
1542 struct sock *sk;
1543 u8 *optval;
1544 u8 *optval_end;
1545 s32 level;
1546 s32 optname;
1547 s32 optlen;
1548 /* for retval in struct bpf_cg_run_ctx */
1549 struct task_struct *current_task;
1550 /* Temporary "register" for indirect stores to ppos. */
1551 u64 tmp_reg;
1552 };
1553
1554 int copy_bpf_fprog_from_user(struct sock_fprog *dst, sockptr_t src, int len);
1555
1556 struct bpf_sk_lookup_kern {
1557 u16 family;
1558 u16 protocol;
1559 __be16 sport;
1560 u16 dport;
1561 struct {
1562 __be32 saddr;
1563 __be32 daddr;
1564 } v4;
1565 struct {
1566 const struct in6_addr *saddr;
1567 const struct in6_addr *daddr;
1568 } v6;
1569 struct sock *selected_sk;
1570 u32 ingress_ifindex;
1571 bool no_reuseport;
1572 };
1573
1574 extern struct static_key_false bpf_sk_lookup_enabled;
1575
1576 /* Runners for BPF_SK_LOOKUP programs to invoke on socket lookup.
1577 *
1578 * Allowed return values for a BPF SK_LOOKUP program are SK_PASS and
1579 * SK_DROP. Their meaning is as follows:
1580 *
1581 * SK_PASS && ctx.selected_sk != NULL: use selected_sk as lookup result
1582 * SK_PASS && ctx.selected_sk == NULL: continue to htable-based socket lookup
1583 * SK_DROP : terminate lookup with -ECONNREFUSED
1584 *
1585 * This macro aggregates return values and selected sockets from
1586 * multiple BPF programs according to following rules in order:
1587 *
1588 * 1. If any program returned SK_PASS and a non-NULL ctx.selected_sk,
1589 * macro result is SK_PASS and last ctx.selected_sk is used.
1590 * 2. If any program returned SK_DROP return value,
1591 * macro result is SK_DROP.
1592 * 3. Otherwise result is SK_PASS and ctx.selected_sk is NULL.
1593 *
1594 * Caller must ensure that the prog array is non-NULL, and that the
1595 * array as well as the programs it contains remain valid.
1596 */
1597 #define BPF_PROG_SK_LOOKUP_RUN_ARRAY(array, ctx, func) \
1598 ({ \
1599 struct bpf_sk_lookup_kern *_ctx = &(ctx); \
1600 struct bpf_prog_array_item *_item; \
1601 struct sock *_selected_sk = NULL; \
1602 bool _no_reuseport = false; \
1603 struct bpf_prog *_prog; \
1604 bool _all_pass = true; \
1605 u32 _ret; \
1606 \
1607 migrate_disable(); \
1608 _item = &(array)->items[0]; \
1609 while ((_prog = READ_ONCE(_item->prog))) { \
1610 /* restore most recent selection */ \
1611 _ctx->selected_sk = _selected_sk; \
1612 _ctx->no_reuseport = _no_reuseport; \
1613 \
1614 _ret = func(_prog, _ctx); \
1615 if (_ret == SK_PASS && _ctx->selected_sk) { \
1616 /* remember last non-NULL socket */ \
1617 _selected_sk = _ctx->selected_sk; \
1618 _no_reuseport = _ctx->no_reuseport; \
1619 } else if (_ret == SK_DROP && _all_pass) { \
1620 _all_pass = false; \
1621 } \
1622 _item++; \
1623 } \
1624 _ctx->selected_sk = _selected_sk; \
1625 _ctx->no_reuseport = _no_reuseport; \
1626 migrate_enable(); \
1627 _all_pass || _selected_sk ? SK_PASS : SK_DROP; \
1628 })
1629
bpf_sk_lookup_run_v4(const struct net * net,int protocol,const __be32 saddr,const __be16 sport,const __be32 daddr,const u16 dport,const int ifindex,struct sock ** psk)1630 static inline bool bpf_sk_lookup_run_v4(const struct net *net, int protocol,
1631 const __be32 saddr, const __be16 sport,
1632 const __be32 daddr, const u16 dport,
1633 const int ifindex, struct sock **psk)
1634 {
1635 struct bpf_prog_array *run_array;
1636 struct sock *selected_sk = NULL;
1637 bool no_reuseport = false;
1638
1639 rcu_read_lock();
1640 run_array = rcu_dereference(net->bpf.run_array[NETNS_BPF_SK_LOOKUP]);
1641 if (run_array) {
1642 struct bpf_sk_lookup_kern ctx = {
1643 .family = AF_INET,
1644 .protocol = protocol,
1645 .v4.saddr = saddr,
1646 .v4.daddr = daddr,
1647 .sport = sport,
1648 .dport = dport,
1649 .ingress_ifindex = ifindex,
1650 };
1651 u32 act;
1652
1653 act = BPF_PROG_SK_LOOKUP_RUN_ARRAY(run_array, ctx, bpf_prog_run);
1654 if (act == SK_PASS) {
1655 selected_sk = ctx.selected_sk;
1656 no_reuseport = ctx.no_reuseport;
1657 } else {
1658 selected_sk = ERR_PTR(-ECONNREFUSED);
1659 }
1660 }
1661 rcu_read_unlock();
1662 *psk = selected_sk;
1663 return no_reuseport;
1664 }
1665
1666 #if IS_ENABLED(CONFIG_IPV6)
bpf_sk_lookup_run_v6(const struct net * net,int protocol,const struct in6_addr * saddr,const __be16 sport,const struct in6_addr * daddr,const u16 dport,const int ifindex,struct sock ** psk)1667 static inline bool bpf_sk_lookup_run_v6(const struct net *net, int protocol,
1668 const struct in6_addr *saddr,
1669 const __be16 sport,
1670 const struct in6_addr *daddr,
1671 const u16 dport,
1672 const int ifindex, struct sock **psk)
1673 {
1674 struct bpf_prog_array *run_array;
1675 struct sock *selected_sk = NULL;
1676 bool no_reuseport = false;
1677
1678 rcu_read_lock();
1679 run_array = rcu_dereference(net->bpf.run_array[NETNS_BPF_SK_LOOKUP]);
1680 if (run_array) {
1681 struct bpf_sk_lookup_kern ctx = {
1682 .family = AF_INET6,
1683 .protocol = protocol,
1684 .v6.saddr = saddr,
1685 .v6.daddr = daddr,
1686 .sport = sport,
1687 .dport = dport,
1688 .ingress_ifindex = ifindex,
1689 };
1690 u32 act;
1691
1692 act = BPF_PROG_SK_LOOKUP_RUN_ARRAY(run_array, ctx, bpf_prog_run);
1693 if (act == SK_PASS) {
1694 selected_sk = ctx.selected_sk;
1695 no_reuseport = ctx.no_reuseport;
1696 } else {
1697 selected_sk = ERR_PTR(-ECONNREFUSED);
1698 }
1699 }
1700 rcu_read_unlock();
1701 *psk = selected_sk;
1702 return no_reuseport;
1703 }
1704 #endif /* IS_ENABLED(CONFIG_IPV6) */
1705
__bpf_xdp_redirect_map(struct bpf_map * map,u64 index,u64 flags,const u64 flag_mask,void * lookup_elem (struct bpf_map * map,u32 key))1706 static __always_inline long __bpf_xdp_redirect_map(struct bpf_map *map, u64 index,
1707 u64 flags, const u64 flag_mask,
1708 void *lookup_elem(struct bpf_map *map, u32 key))
1709 {
1710 struct bpf_redirect_info *ri = bpf_net_ctx_get_ri();
1711 const u64 action_mask = XDP_ABORTED | XDP_DROP | XDP_PASS | XDP_TX;
1712
1713 /* Lower bits of the flags are used as return code on lookup failure */
1714 if (unlikely(flags & ~(action_mask | flag_mask)))
1715 return XDP_ABORTED;
1716
1717 ri->tgt_value = lookup_elem(map, index);
1718 if (unlikely(!ri->tgt_value) && !(flags & BPF_F_BROADCAST)) {
1719 /* If the lookup fails we want to clear out the state in the
1720 * redirect_info struct completely, so that if an eBPF program
1721 * performs multiple lookups, the last one always takes
1722 * precedence.
1723 */
1724 ri->map_id = INT_MAX; /* Valid map id idr range: [1,INT_MAX[ */
1725 ri->map_type = BPF_MAP_TYPE_UNSPEC;
1726 return flags & action_mask;
1727 }
1728
1729 ri->tgt_index = index;
1730 ri->map_id = map->id;
1731 ri->map_type = map->map_type;
1732
1733 if (flags & BPF_F_BROADCAST) {
1734 WRITE_ONCE(ri->map, map);
1735 ri->flags = flags;
1736 } else {
1737 WRITE_ONCE(ri->map, NULL);
1738 ri->flags = 0;
1739 }
1740
1741 return XDP_REDIRECT;
1742 }
1743
1744 #ifdef CONFIG_NET
1745 int __bpf_skb_load_bytes(const struct sk_buff *skb, u32 offset, void *to, u32 len);
1746 int __bpf_skb_store_bytes(struct sk_buff *skb, u32 offset, const void *from,
1747 u32 len, u64 flags);
1748 int __bpf_xdp_load_bytes(struct xdp_buff *xdp, u32 offset, void *buf, u32 len);
1749 int __bpf_xdp_store_bytes(struct xdp_buff *xdp, u32 offset, void *buf, u32 len);
1750 void *bpf_xdp_pointer(struct xdp_buff *xdp, u32 offset, u32 len);
1751 void bpf_xdp_copy_buf(struct xdp_buff *xdp, unsigned long off,
1752 void *buf, unsigned long len, bool flush);
1753 #else /* CONFIG_NET */
__bpf_skb_load_bytes(const struct sk_buff * skb,u32 offset,void * to,u32 len)1754 static inline int __bpf_skb_load_bytes(const struct sk_buff *skb, u32 offset,
1755 void *to, u32 len)
1756 {
1757 return -EOPNOTSUPP;
1758 }
1759
__bpf_skb_store_bytes(struct sk_buff * skb,u32 offset,const void * from,u32 len,u64 flags)1760 static inline int __bpf_skb_store_bytes(struct sk_buff *skb, u32 offset,
1761 const void *from, u32 len, u64 flags)
1762 {
1763 return -EOPNOTSUPP;
1764 }
1765
__bpf_xdp_load_bytes(struct xdp_buff * xdp,u32 offset,void * buf,u32 len)1766 static inline int __bpf_xdp_load_bytes(struct xdp_buff *xdp, u32 offset,
1767 void *buf, u32 len)
1768 {
1769 return -EOPNOTSUPP;
1770 }
1771
__bpf_xdp_store_bytes(struct xdp_buff * xdp,u32 offset,void * buf,u32 len)1772 static inline int __bpf_xdp_store_bytes(struct xdp_buff *xdp, u32 offset,
1773 void *buf, u32 len)
1774 {
1775 return -EOPNOTSUPP;
1776 }
1777
bpf_xdp_pointer(struct xdp_buff * xdp,u32 offset,u32 len)1778 static inline void *bpf_xdp_pointer(struct xdp_buff *xdp, u32 offset, u32 len)
1779 {
1780 return NULL;
1781 }
1782
bpf_xdp_copy_buf(struct xdp_buff * xdp,unsigned long off,void * buf,unsigned long len,bool flush)1783 static inline void bpf_xdp_copy_buf(struct xdp_buff *xdp, unsigned long off, void *buf,
1784 unsigned long len, bool flush)
1785 {
1786 }
1787 #endif /* CONFIG_NET */
1788
1789 #endif /* __LINUX_FILTER_H__ */
1790