1 /* Broadcom NetXtreme-C/E network driver. 2 * 3 * Copyright (c) 2014-2016 Broadcom Corporation 4 * Copyright (c) 2016-2019 Broadcom Limited 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation. 9 */ 10 11 #include <linux/module.h> 12 13 #include <linux/stringify.h> 14 #include <linux/kernel.h> 15 #include <linux/timer.h> 16 #include <linux/errno.h> 17 #include <linux/ioport.h> 18 #include <linux/slab.h> 19 #include <linux/vmalloc.h> 20 #include <linux/interrupt.h> 21 #include <linux/pci.h> 22 #include <linux/netdevice.h> 23 #include <linux/etherdevice.h> 24 #include <linux/skbuff.h> 25 #include <linux/dma-mapping.h> 26 #include <linux/bitops.h> 27 #include <linux/io.h> 28 #include <linux/irq.h> 29 #include <linux/delay.h> 30 #include <asm/byteorder.h> 31 #include <asm/page.h> 32 #include <linux/time.h> 33 #include <linux/mii.h> 34 #include <linux/mdio.h> 35 #include <linux/if.h> 36 #include <linux/if_vlan.h> 37 #include <linux/if_bridge.h> 38 #include <linux/rtc.h> 39 #include <linux/bpf.h> 40 #include <net/gro.h> 41 #include <net/ip.h> 42 #include <net/tcp.h> 43 #include <net/udp.h> 44 #include <net/checksum.h> 45 #include <net/ip6_checksum.h> 46 #include <net/udp_tunnel.h> 47 #include <linux/workqueue.h> 48 #include <linux/prefetch.h> 49 #include <linux/cache.h> 50 #include <linux/log2.h> 51 #include <linux/bitmap.h> 52 #include <linux/cpu_rmap.h> 53 #include <linux/cpumask.h> 54 #include <net/pkt_cls.h> 55 #include <net/page_pool/helpers.h> 56 #include <linux/align.h> 57 #include <net/netdev_lock.h> 58 #include <net/netdev_queues.h> 59 #include <net/netdev_rx_queue.h> 60 #include <linux/pci-tph.h> 61 #include <linux/bnxt/hsi.h> 62 63 #include "bnxt.h" 64 #include "bnxt_hwrm.h" 65 #include "bnxt_ulp.h" 66 #include "bnxt_sriov.h" 67 #include "bnxt_ethtool.h" 68 #include "bnxt_dcb.h" 69 #include "bnxt_xdp.h" 70 #include "bnxt_ptp.h" 71 #include "bnxt_vfr.h" 72 #include "bnxt_tc.h" 73 #include "bnxt_devlink.h" 74 #include "bnxt_debugfs.h" 75 #include "bnxt_coredump.h" 76 #include "bnxt_hwmon.h" 77 78 #define BNXT_TX_TIMEOUT (5 * HZ) 79 #define BNXT_DEF_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_HW | \ 80 NETIF_MSG_TX_ERR) 81 82 MODULE_IMPORT_NS("NETDEV_INTERNAL"); 83 MODULE_LICENSE("GPL"); 84 MODULE_DESCRIPTION("Broadcom NetXtreme network driver"); 85 86 #define BNXT_RX_OFFSET (NET_SKB_PAD + NET_IP_ALIGN) 87 #define BNXT_RX_DMA_OFFSET NET_SKB_PAD 88 89 #define BNXT_TX_PUSH_THRESH 164 90 91 /* indexed by enum board_idx */ 92 static const struct { 93 char *name; 94 } board_info[] = { 95 [BCM57301] = { "Broadcom BCM57301 NetXtreme-C 10Gb Ethernet" }, 96 [BCM57302] = { "Broadcom BCM57302 NetXtreme-C 10Gb/25Gb Ethernet" }, 97 [BCM57304] = { "Broadcom BCM57304 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" }, 98 [BCM57417_NPAR] = { "Broadcom BCM57417 NetXtreme-E Ethernet Partition" }, 99 [BCM58700] = { "Broadcom BCM58700 Nitro 1Gb/2.5Gb/10Gb Ethernet" }, 100 [BCM57311] = { "Broadcom BCM57311 NetXtreme-C 10Gb Ethernet" }, 101 [BCM57312] = { "Broadcom BCM57312 NetXtreme-C 10Gb/25Gb Ethernet" }, 102 [BCM57402] = { "Broadcom BCM57402 NetXtreme-E 10Gb Ethernet" }, 103 [BCM57404] = { "Broadcom BCM57404 NetXtreme-E 10Gb/25Gb Ethernet" }, 104 [BCM57406] = { "Broadcom BCM57406 NetXtreme-E 10GBase-T Ethernet" }, 105 [BCM57402_NPAR] = { "Broadcom BCM57402 NetXtreme-E Ethernet Partition" }, 106 [BCM57407] = { "Broadcom BCM57407 NetXtreme-E 10GBase-T Ethernet" }, 107 [BCM57412] = { "Broadcom BCM57412 NetXtreme-E 10Gb Ethernet" }, 108 [BCM57414] = { "Broadcom BCM57414 NetXtreme-E 10Gb/25Gb Ethernet" }, 109 [BCM57416] = { "Broadcom BCM57416 NetXtreme-E 10GBase-T Ethernet" }, 110 [BCM57417] = { "Broadcom BCM57417 NetXtreme-E 10GBase-T Ethernet" }, 111 [BCM57412_NPAR] = { "Broadcom BCM57412 NetXtreme-E Ethernet Partition" }, 112 [BCM57314] = { "Broadcom BCM57314 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" }, 113 [BCM57417_SFP] = { "Broadcom BCM57417 NetXtreme-E 10Gb/25Gb Ethernet" }, 114 [BCM57416_SFP] = { "Broadcom BCM57416 NetXtreme-E 10Gb Ethernet" }, 115 [BCM57404_NPAR] = { "Broadcom BCM57404 NetXtreme-E Ethernet Partition" }, 116 [BCM57406_NPAR] = { "Broadcom BCM57406 NetXtreme-E Ethernet Partition" }, 117 [BCM57407_SFP] = { "Broadcom BCM57407 NetXtreme-E 25Gb Ethernet" }, 118 [BCM57407_NPAR] = { "Broadcom BCM57407 NetXtreme-E Ethernet Partition" }, 119 [BCM57414_NPAR] = { "Broadcom BCM57414 NetXtreme-E Ethernet Partition" }, 120 [BCM57416_NPAR] = { "Broadcom BCM57416 NetXtreme-E Ethernet Partition" }, 121 [BCM57452] = { "Broadcom BCM57452 NetXtreme-E 10Gb/25Gb/40Gb/50Gb Ethernet" }, 122 [BCM57454] = { "Broadcom BCM57454 NetXtreme-E 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" }, 123 [BCM5745x_NPAR] = { "Broadcom BCM5745x NetXtreme-E Ethernet Partition" }, 124 [BCM57508] = { "Broadcom BCM57508 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb Ethernet" }, 125 [BCM57504] = { "Broadcom BCM57504 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb Ethernet" }, 126 [BCM57502] = { "Broadcom BCM57502 NetXtreme-E 10Gb/25Gb/50Gb Ethernet" }, 127 [BCM57608] = { "Broadcom BCM57608 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb/400Gb Ethernet" }, 128 [BCM57604] = { "Broadcom BCM57604 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb Ethernet" }, 129 [BCM57602] = { "Broadcom BCM57602 NetXtreme-E 10Gb/25Gb/50Gb/100Gb Ethernet" }, 130 [BCM57601] = { "Broadcom BCM57601 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb/400Gb Ethernet" }, 131 [BCM57508_NPAR] = { "Broadcom BCM57508 NetXtreme-E Ethernet Partition" }, 132 [BCM57504_NPAR] = { "Broadcom BCM57504 NetXtreme-E Ethernet Partition" }, 133 [BCM57502_NPAR] = { "Broadcom BCM57502 NetXtreme-E Ethernet Partition" }, 134 [BCM58802] = { "Broadcom BCM58802 NetXtreme-S 10Gb/25Gb/40Gb/50Gb Ethernet" }, 135 [BCM58804] = { "Broadcom BCM58804 NetXtreme-S 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" }, 136 [BCM58808] = { "Broadcom BCM58808 NetXtreme-S 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" }, 137 [NETXTREME_E_VF] = { "Broadcom NetXtreme-E Ethernet Virtual Function" }, 138 [NETXTREME_C_VF] = { "Broadcom NetXtreme-C Ethernet Virtual Function" }, 139 [NETXTREME_S_VF] = { "Broadcom NetXtreme-S Ethernet Virtual Function" }, 140 [NETXTREME_C_VF_HV] = { "Broadcom NetXtreme-C Virtual Function for Hyper-V" }, 141 [NETXTREME_E_VF_HV] = { "Broadcom NetXtreme-E Virtual Function for Hyper-V" }, 142 [NETXTREME_E_P5_VF] = { "Broadcom BCM5750X NetXtreme-E Ethernet Virtual Function" }, 143 [NETXTREME_E_P5_VF_HV] = { "Broadcom BCM5750X NetXtreme-E Virtual Function for Hyper-V" }, 144 [NETXTREME_E_P7_VF] = { "Broadcom BCM5760X Virtual Function" }, 145 [NETXTREME_E_P7_VF_HV] = { "Broadcom BCM5760X Virtual Function for Hyper-V" }, 146 }; 147 148 static const struct pci_device_id bnxt_pci_tbl[] = { 149 { PCI_VDEVICE(BROADCOM, 0x1604), .driver_data = BCM5745x_NPAR }, 150 { PCI_VDEVICE(BROADCOM, 0x1605), .driver_data = BCM5745x_NPAR }, 151 { PCI_VDEVICE(BROADCOM, 0x1614), .driver_data = BCM57454 }, 152 { PCI_VDEVICE(BROADCOM, 0x16c0), .driver_data = BCM57417_NPAR }, 153 { PCI_VDEVICE(BROADCOM, 0x16c8), .driver_data = BCM57301 }, 154 { PCI_VDEVICE(BROADCOM, 0x16c9), .driver_data = BCM57302 }, 155 { PCI_VDEVICE(BROADCOM, 0x16ca), .driver_data = BCM57304 }, 156 { PCI_VDEVICE(BROADCOM, 0x16cc), .driver_data = BCM57417_NPAR }, 157 { PCI_VDEVICE(BROADCOM, 0x16cd), .driver_data = BCM58700 }, 158 { PCI_VDEVICE(BROADCOM, 0x16ce), .driver_data = BCM57311 }, 159 { PCI_VDEVICE(BROADCOM, 0x16cf), .driver_data = BCM57312 }, 160 { PCI_VDEVICE(BROADCOM, 0x16d0), .driver_data = BCM57402 }, 161 { PCI_VDEVICE(BROADCOM, 0x16d1), .driver_data = BCM57404 }, 162 { PCI_VDEVICE(BROADCOM, 0x16d2), .driver_data = BCM57406 }, 163 { PCI_VDEVICE(BROADCOM, 0x16d4), .driver_data = BCM57402_NPAR }, 164 { PCI_VDEVICE(BROADCOM, 0x16d5), .driver_data = BCM57407 }, 165 { PCI_VDEVICE(BROADCOM, 0x16d6), .driver_data = BCM57412 }, 166 { PCI_VDEVICE(BROADCOM, 0x16d7), .driver_data = BCM57414 }, 167 { PCI_VDEVICE(BROADCOM, 0x16d8), .driver_data = BCM57416 }, 168 { PCI_VDEVICE(BROADCOM, 0x16d9), .driver_data = BCM57417 }, 169 { PCI_VDEVICE(BROADCOM, 0x16de), .driver_data = BCM57412_NPAR }, 170 { PCI_VDEVICE(BROADCOM, 0x16df), .driver_data = BCM57314 }, 171 { PCI_VDEVICE(BROADCOM, 0x16e2), .driver_data = BCM57417_SFP }, 172 { PCI_VDEVICE(BROADCOM, 0x16e3), .driver_data = BCM57416_SFP }, 173 { PCI_VDEVICE(BROADCOM, 0x16e7), .driver_data = BCM57404_NPAR }, 174 { PCI_VDEVICE(BROADCOM, 0x16e8), .driver_data = BCM57406_NPAR }, 175 { PCI_VDEVICE(BROADCOM, 0x16e9), .driver_data = BCM57407_SFP }, 176 { PCI_VDEVICE(BROADCOM, 0x16ea), .driver_data = BCM57407_NPAR }, 177 { PCI_VDEVICE(BROADCOM, 0x16eb), .driver_data = BCM57412_NPAR }, 178 { PCI_VDEVICE(BROADCOM, 0x16ec), .driver_data = BCM57414_NPAR }, 179 { PCI_VDEVICE(BROADCOM, 0x16ed), .driver_data = BCM57414_NPAR }, 180 { PCI_VDEVICE(BROADCOM, 0x16ee), .driver_data = BCM57416_NPAR }, 181 { PCI_VDEVICE(BROADCOM, 0x16ef), .driver_data = BCM57416_NPAR }, 182 { PCI_VDEVICE(BROADCOM, 0x16f0), .driver_data = BCM58808 }, 183 { PCI_VDEVICE(BROADCOM, 0x16f1), .driver_data = BCM57452 }, 184 { PCI_VDEVICE(BROADCOM, 0x1750), .driver_data = BCM57508 }, 185 { PCI_VDEVICE(BROADCOM, 0x1751), .driver_data = BCM57504 }, 186 { PCI_VDEVICE(BROADCOM, 0x1752), .driver_data = BCM57502 }, 187 { PCI_VDEVICE(BROADCOM, 0x1760), .driver_data = BCM57608 }, 188 { PCI_VDEVICE(BROADCOM, 0x1761), .driver_data = BCM57604 }, 189 { PCI_VDEVICE(BROADCOM, 0x1762), .driver_data = BCM57602 }, 190 { PCI_VDEVICE(BROADCOM, 0x1763), .driver_data = BCM57601 }, 191 { PCI_VDEVICE(BROADCOM, 0x1800), .driver_data = BCM57502_NPAR }, 192 { PCI_VDEVICE(BROADCOM, 0x1801), .driver_data = BCM57504_NPAR }, 193 { PCI_VDEVICE(BROADCOM, 0x1802), .driver_data = BCM57508_NPAR }, 194 { PCI_VDEVICE(BROADCOM, 0x1803), .driver_data = BCM57502_NPAR }, 195 { PCI_VDEVICE(BROADCOM, 0x1804), .driver_data = BCM57504_NPAR }, 196 { PCI_VDEVICE(BROADCOM, 0x1805), .driver_data = BCM57508_NPAR }, 197 { PCI_VDEVICE(BROADCOM, 0xd802), .driver_data = BCM58802 }, 198 { PCI_VDEVICE(BROADCOM, 0xd804), .driver_data = BCM58804 }, 199 #ifdef CONFIG_BNXT_SRIOV 200 { PCI_VDEVICE(BROADCOM, 0x1606), .driver_data = NETXTREME_E_VF }, 201 { PCI_VDEVICE(BROADCOM, 0x1607), .driver_data = NETXTREME_E_VF_HV }, 202 { PCI_VDEVICE(BROADCOM, 0x1608), .driver_data = NETXTREME_E_VF_HV }, 203 { PCI_VDEVICE(BROADCOM, 0x1609), .driver_data = NETXTREME_E_VF }, 204 { PCI_VDEVICE(BROADCOM, 0x16bd), .driver_data = NETXTREME_E_VF_HV }, 205 { PCI_VDEVICE(BROADCOM, 0x16c1), .driver_data = NETXTREME_E_VF }, 206 { PCI_VDEVICE(BROADCOM, 0x16c2), .driver_data = NETXTREME_C_VF_HV }, 207 { PCI_VDEVICE(BROADCOM, 0x16c3), .driver_data = NETXTREME_C_VF_HV }, 208 { PCI_VDEVICE(BROADCOM, 0x16c4), .driver_data = NETXTREME_E_VF_HV }, 209 { PCI_VDEVICE(BROADCOM, 0x16c5), .driver_data = NETXTREME_E_VF_HV }, 210 { PCI_VDEVICE(BROADCOM, 0x16cb), .driver_data = NETXTREME_C_VF }, 211 { PCI_VDEVICE(BROADCOM, 0x16d3), .driver_data = NETXTREME_E_VF }, 212 { PCI_VDEVICE(BROADCOM, 0x16dc), .driver_data = NETXTREME_E_VF }, 213 { PCI_VDEVICE(BROADCOM, 0x16e1), .driver_data = NETXTREME_C_VF }, 214 { PCI_VDEVICE(BROADCOM, 0x16e5), .driver_data = NETXTREME_C_VF }, 215 { PCI_VDEVICE(BROADCOM, 0x16e6), .driver_data = NETXTREME_C_VF_HV }, 216 { PCI_VDEVICE(BROADCOM, 0x1806), .driver_data = NETXTREME_E_P5_VF }, 217 { PCI_VDEVICE(BROADCOM, 0x1807), .driver_data = NETXTREME_E_P5_VF }, 218 { PCI_VDEVICE(BROADCOM, 0x1808), .driver_data = NETXTREME_E_P5_VF_HV }, 219 { PCI_VDEVICE(BROADCOM, 0x1809), .driver_data = NETXTREME_E_P5_VF_HV }, 220 { PCI_VDEVICE(BROADCOM, 0x1819), .driver_data = NETXTREME_E_P7_VF }, 221 { PCI_VDEVICE(BROADCOM, 0x181b), .driver_data = NETXTREME_E_P7_VF_HV }, 222 { PCI_VDEVICE(BROADCOM, 0xd800), .driver_data = NETXTREME_S_VF }, 223 #endif 224 { 0 } 225 }; 226 227 MODULE_DEVICE_TABLE(pci, bnxt_pci_tbl); 228 229 static const u16 bnxt_vf_req_snif[] = { 230 HWRM_FUNC_CFG, 231 HWRM_FUNC_VF_CFG, 232 HWRM_PORT_PHY_QCFG, 233 HWRM_CFA_L2_FILTER_ALLOC, 234 }; 235 236 static const u16 bnxt_async_events_arr[] = { 237 ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE, 238 ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CHANGE, 239 ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD, 240 ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED, 241 ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE, 242 ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE, 243 ASYNC_EVENT_CMPL_EVENT_ID_PORT_PHY_CFG_CHANGE, 244 ASYNC_EVENT_CMPL_EVENT_ID_RESET_NOTIFY, 245 ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY, 246 ASYNC_EVENT_CMPL_EVENT_ID_DEBUG_NOTIFICATION, 247 ASYNC_EVENT_CMPL_EVENT_ID_DEFERRED_RESPONSE, 248 ASYNC_EVENT_CMPL_EVENT_ID_RING_MONITOR_MSG, 249 ASYNC_EVENT_CMPL_EVENT_ID_ECHO_REQUEST, 250 ASYNC_EVENT_CMPL_EVENT_ID_PPS_TIMESTAMP, 251 ASYNC_EVENT_CMPL_EVENT_ID_ERROR_REPORT, 252 ASYNC_EVENT_CMPL_EVENT_ID_PHC_UPDATE, 253 ASYNC_EVENT_CMPL_EVENT_ID_DBG_BUF_PRODUCER, 254 }; 255 256 const u16 bnxt_bstore_to_trace[] = { 257 [BNXT_CTX_SRT] = DBG_LOG_BUFFER_FLUSH_REQ_TYPE_SRT_TRACE, 258 [BNXT_CTX_SRT2] = DBG_LOG_BUFFER_FLUSH_REQ_TYPE_SRT2_TRACE, 259 [BNXT_CTX_CRT] = DBG_LOG_BUFFER_FLUSH_REQ_TYPE_CRT_TRACE, 260 [BNXT_CTX_CRT2] = DBG_LOG_BUFFER_FLUSH_REQ_TYPE_CRT2_TRACE, 261 [BNXT_CTX_RIGP0] = DBG_LOG_BUFFER_FLUSH_REQ_TYPE_RIGP0_TRACE, 262 [BNXT_CTX_L2HWRM] = DBG_LOG_BUFFER_FLUSH_REQ_TYPE_L2_HWRM_TRACE, 263 [BNXT_CTX_REHWRM] = DBG_LOG_BUFFER_FLUSH_REQ_TYPE_ROCE_HWRM_TRACE, 264 [BNXT_CTX_CA0] = DBG_LOG_BUFFER_FLUSH_REQ_TYPE_CA0_TRACE, 265 [BNXT_CTX_CA1] = DBG_LOG_BUFFER_FLUSH_REQ_TYPE_CA1_TRACE, 266 [BNXT_CTX_CA2] = DBG_LOG_BUFFER_FLUSH_REQ_TYPE_CA2_TRACE, 267 [BNXT_CTX_RIGP1] = DBG_LOG_BUFFER_FLUSH_REQ_TYPE_RIGP1_TRACE, 268 [BNXT_CTX_KONG] = DBG_LOG_BUFFER_FLUSH_REQ_TYPE_AFM_KONG_HWRM_TRACE, 269 [BNXT_CTX_QPC] = DBG_LOG_BUFFER_FLUSH_REQ_TYPE_ERR_QPC_TRACE, 270 }; 271 272 static struct workqueue_struct *bnxt_pf_wq; 273 274 #define BNXT_IPV6_MASK_ALL {{{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, \ 275 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }}} 276 #define BNXT_IPV6_MASK_NONE {{{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }}} 277 278 const struct bnxt_flow_masks BNXT_FLOW_MASK_NONE = { 279 .ports = { 280 .src = 0, 281 .dst = 0, 282 }, 283 .addrs = { 284 .v6addrs = { 285 .src = BNXT_IPV6_MASK_NONE, 286 .dst = BNXT_IPV6_MASK_NONE, 287 }, 288 }, 289 }; 290 291 const struct bnxt_flow_masks BNXT_FLOW_IPV6_MASK_ALL = { 292 .ports = { 293 .src = cpu_to_be16(0xffff), 294 .dst = cpu_to_be16(0xffff), 295 }, 296 .addrs = { 297 .v6addrs = { 298 .src = BNXT_IPV6_MASK_ALL, 299 .dst = BNXT_IPV6_MASK_ALL, 300 }, 301 }, 302 }; 303 304 const struct bnxt_flow_masks BNXT_FLOW_IPV4_MASK_ALL = { 305 .ports = { 306 .src = cpu_to_be16(0xffff), 307 .dst = cpu_to_be16(0xffff), 308 }, 309 .addrs = { 310 .v4addrs = { 311 .src = cpu_to_be32(0xffffffff), 312 .dst = cpu_to_be32(0xffffffff), 313 }, 314 }, 315 }; 316 317 static bool bnxt_vf_pciid(enum board_idx idx) 318 { 319 return (idx == NETXTREME_C_VF || idx == NETXTREME_E_VF || 320 idx == NETXTREME_S_VF || idx == NETXTREME_C_VF_HV || 321 idx == NETXTREME_E_VF_HV || idx == NETXTREME_E_P5_VF || 322 idx == NETXTREME_E_P5_VF_HV || idx == NETXTREME_E_P7_VF || 323 idx == NETXTREME_E_P7_VF_HV); 324 } 325 326 #define DB_CP_REARM_FLAGS (DB_KEY_CP | DB_IDX_VALID) 327 #define DB_CP_FLAGS (DB_KEY_CP | DB_IDX_VALID | DB_IRQ_DIS) 328 329 #define BNXT_DB_CQ(db, idx) \ 330 writel(DB_CP_FLAGS | DB_RING_IDX(db, idx), (db)->doorbell) 331 332 #define BNXT_DB_NQ_P5(db, idx) \ 333 bnxt_writeq(bp, (db)->db_key64 | DBR_TYPE_NQ | DB_RING_IDX(db, idx),\ 334 (db)->doorbell) 335 336 #define BNXT_DB_NQ_P7(db, idx) \ 337 bnxt_writeq(bp, (db)->db_key64 | DBR_TYPE_NQ_MASK | \ 338 DB_RING_IDX(db, idx), (db)->doorbell) 339 340 #define BNXT_DB_CQ_ARM(db, idx) \ 341 writel(DB_CP_REARM_FLAGS | DB_RING_IDX(db, idx), (db)->doorbell) 342 343 #define BNXT_DB_NQ_ARM_P5(db, idx) \ 344 bnxt_writeq(bp, (db)->db_key64 | DBR_TYPE_NQ_ARM | \ 345 DB_RING_IDX(db, idx), (db)->doorbell) 346 347 static void bnxt_db_nq(struct bnxt *bp, struct bnxt_db_info *db, u32 idx) 348 { 349 if (bp->flags & BNXT_FLAG_CHIP_P7) 350 BNXT_DB_NQ_P7(db, idx); 351 else if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 352 BNXT_DB_NQ_P5(db, idx); 353 else 354 BNXT_DB_CQ(db, idx); 355 } 356 357 static void bnxt_db_nq_arm(struct bnxt *bp, struct bnxt_db_info *db, u32 idx) 358 { 359 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 360 BNXT_DB_NQ_ARM_P5(db, idx); 361 else 362 BNXT_DB_CQ_ARM(db, idx); 363 } 364 365 static void bnxt_db_cq(struct bnxt *bp, struct bnxt_db_info *db, u32 idx) 366 { 367 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 368 bnxt_writeq(bp, db->db_key64 | DBR_TYPE_CQ_ARMALL | 369 DB_RING_IDX(db, idx), db->doorbell); 370 else 371 BNXT_DB_CQ(db, idx); 372 } 373 374 static void bnxt_queue_fw_reset_work(struct bnxt *bp, unsigned long delay) 375 { 376 if (!(test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))) 377 return; 378 379 if (BNXT_PF(bp)) 380 queue_delayed_work(bnxt_pf_wq, &bp->fw_reset_task, delay); 381 else 382 schedule_delayed_work(&bp->fw_reset_task, delay); 383 } 384 385 static void __bnxt_queue_sp_work(struct bnxt *bp) 386 { 387 if (BNXT_PF(bp)) 388 queue_work(bnxt_pf_wq, &bp->sp_task); 389 else 390 schedule_work(&bp->sp_task); 391 } 392 393 static void bnxt_queue_sp_work(struct bnxt *bp, unsigned int event) 394 { 395 set_bit(event, &bp->sp_event); 396 __bnxt_queue_sp_work(bp); 397 } 398 399 static void bnxt_sched_reset_rxr(struct bnxt *bp, struct bnxt_rx_ring_info *rxr) 400 { 401 if (!rxr->bnapi->in_reset) { 402 rxr->bnapi->in_reset = true; 403 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 404 set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event); 405 else 406 set_bit(BNXT_RST_RING_SP_EVENT, &bp->sp_event); 407 __bnxt_queue_sp_work(bp); 408 } 409 rxr->rx_next_cons = 0xffff; 410 } 411 412 void bnxt_sched_reset_txr(struct bnxt *bp, struct bnxt_tx_ring_info *txr, 413 u16 curr) 414 { 415 struct bnxt_napi *bnapi = txr->bnapi; 416 417 if (bnapi->tx_fault) 418 return; 419 420 netdev_err(bp->dev, "Invalid Tx completion (ring:%d tx_hw_cons:%u cons:%u prod:%u curr:%u)", 421 txr->txq_index, txr->tx_hw_cons, 422 txr->tx_cons, txr->tx_prod, curr); 423 WARN_ON_ONCE(1); 424 bnapi->tx_fault = 1; 425 bnxt_queue_sp_work(bp, BNXT_RESET_TASK_SP_EVENT); 426 } 427 428 const u16 bnxt_lhint_arr[] = { 429 TX_BD_FLAGS_LHINT_512_AND_SMALLER, 430 TX_BD_FLAGS_LHINT_512_TO_1023, 431 TX_BD_FLAGS_LHINT_1024_TO_2047, 432 TX_BD_FLAGS_LHINT_1024_TO_2047, 433 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 434 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 435 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 436 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 437 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 438 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 439 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 440 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 441 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 442 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 443 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 444 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 445 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 446 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 447 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 448 }; 449 450 static u16 bnxt_xmit_get_cfa_action(struct sk_buff *skb) 451 { 452 struct metadata_dst *md_dst = skb_metadata_dst(skb); 453 454 if (!md_dst || md_dst->type != METADATA_HW_PORT_MUX) 455 return 0; 456 457 return md_dst->u.port_info.port_id; 458 } 459 460 static void bnxt_txr_db_kick(struct bnxt *bp, struct bnxt_tx_ring_info *txr, 461 u16 prod) 462 { 463 /* Sync BD data before updating doorbell */ 464 wmb(); 465 bnxt_db_write(bp, &txr->tx_db, prod); 466 txr->kick_pending = 0; 467 } 468 469 static netdev_tx_t bnxt_start_xmit(struct sk_buff *skb, struct net_device *dev) 470 { 471 struct bnxt *bp = netdev_priv(dev); 472 struct tx_bd *txbd, *txbd0; 473 struct tx_bd_ext *txbd1; 474 struct netdev_queue *txq; 475 int i; 476 dma_addr_t mapping; 477 unsigned int length, pad = 0; 478 u32 len, free_size, vlan_tag_flags, cfa_action, flags; 479 struct bnxt_ptp_cfg *ptp = bp->ptp_cfg; 480 struct pci_dev *pdev = bp->pdev; 481 u16 prod, last_frag, txts_prod; 482 struct bnxt_tx_ring_info *txr; 483 struct bnxt_sw_tx_bd *tx_buf; 484 __le32 lflags = 0; 485 skb_frag_t *frag; 486 487 i = skb_get_queue_mapping(skb); 488 if (unlikely(i >= bp->tx_nr_rings)) { 489 dev_kfree_skb_any(skb); 490 dev_core_stats_tx_dropped_inc(dev); 491 return NETDEV_TX_OK; 492 } 493 494 txq = netdev_get_tx_queue(dev, i); 495 txr = &bp->tx_ring[bp->tx_ring_map[i]]; 496 prod = txr->tx_prod; 497 498 #if (MAX_SKB_FRAGS > TX_MAX_FRAGS) 499 if (skb_shinfo(skb)->nr_frags > TX_MAX_FRAGS) { 500 netdev_warn_once(dev, "SKB has too many (%d) fragments, max supported is %d. SKB will be linearized.\n", 501 skb_shinfo(skb)->nr_frags, TX_MAX_FRAGS); 502 if (skb_linearize(skb)) { 503 dev_kfree_skb_any(skb); 504 dev_core_stats_tx_dropped_inc(dev); 505 return NETDEV_TX_OK; 506 } 507 } 508 #endif 509 free_size = bnxt_tx_avail(bp, txr); 510 if (unlikely(free_size < skb_shinfo(skb)->nr_frags + 2)) { 511 /* We must have raced with NAPI cleanup */ 512 if (net_ratelimit() && txr->kick_pending) 513 netif_warn(bp, tx_err, dev, 514 "bnxt: ring busy w/ flush pending!\n"); 515 if (!netif_txq_try_stop(txq, bnxt_tx_avail(bp, txr), 516 bp->tx_wake_thresh)) 517 return NETDEV_TX_BUSY; 518 } 519 520 length = skb->len; 521 len = skb_headlen(skb); 522 last_frag = skb_shinfo(skb)->nr_frags; 523 524 txbd = &txr->tx_desc_ring[TX_RING(bp, prod)][TX_IDX(prod)]; 525 526 tx_buf = &txr->tx_buf_ring[RING_TX(bp, prod)]; 527 tx_buf->skb = skb; 528 tx_buf->nr_frags = last_frag; 529 530 vlan_tag_flags = 0; 531 cfa_action = bnxt_xmit_get_cfa_action(skb); 532 if (skb_vlan_tag_present(skb)) { 533 vlan_tag_flags = TX_BD_CFA_META_KEY_VLAN | 534 skb_vlan_tag_get(skb); 535 /* Currently supports 8021Q, 8021AD vlan offloads 536 * QINQ1, QINQ2, QINQ3 vlan headers are deprecated 537 */ 538 if (skb->vlan_proto == htons(ETH_P_8021Q)) 539 vlan_tag_flags |= 1 << TX_BD_CFA_META_TPID_SHIFT; 540 } 541 542 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && ptp && 543 ptp->tx_tstamp_en) { 544 if (bp->fw_cap & BNXT_FW_CAP_TX_TS_CMP) { 545 lflags |= cpu_to_le32(TX_BD_FLAGS_STAMP); 546 tx_buf->is_ts_pkt = 1; 547 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 548 } else if (!skb_is_gso(skb)) { 549 u16 seq_id, hdr_off; 550 551 if (!bnxt_ptp_parse(skb, &seq_id, &hdr_off) && 552 !bnxt_ptp_get_txts_prod(ptp, &txts_prod)) { 553 if (vlan_tag_flags) 554 hdr_off += VLAN_HLEN; 555 lflags |= cpu_to_le32(TX_BD_FLAGS_STAMP); 556 tx_buf->is_ts_pkt = 1; 557 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 558 559 ptp->txts_req[txts_prod].tx_seqid = seq_id; 560 ptp->txts_req[txts_prod].tx_hdr_off = hdr_off; 561 tx_buf->txts_prod = txts_prod; 562 } 563 } 564 } 565 if (unlikely(skb->no_fcs)) 566 lflags |= cpu_to_le32(TX_BD_FLAGS_NO_CRC); 567 568 if (free_size == bp->tx_ring_size && length <= bp->tx_push_thresh && 569 skb_frags_readable(skb) && !lflags) { 570 struct tx_push_buffer *tx_push_buf = txr->tx_push; 571 struct tx_push_bd *tx_push = &tx_push_buf->push_bd; 572 struct tx_bd_ext *tx_push1 = &tx_push->txbd2; 573 void __iomem *db = txr->tx_db.doorbell; 574 void *pdata = tx_push_buf->data; 575 u64 *end; 576 int j, push_len; 577 578 /* Set COAL_NOW to be ready quickly for the next push */ 579 tx_push->tx_bd_len_flags_type = 580 cpu_to_le32((length << TX_BD_LEN_SHIFT) | 581 TX_BD_TYPE_LONG_TX_BD | 582 TX_BD_FLAGS_LHINT_512_AND_SMALLER | 583 TX_BD_FLAGS_COAL_NOW | 584 TX_BD_FLAGS_PACKET_END | 585 TX_BD_CNT(2)); 586 587 if (skb->ip_summed == CHECKSUM_PARTIAL) 588 tx_push1->tx_bd_hsize_lflags = 589 cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM); 590 else 591 tx_push1->tx_bd_hsize_lflags = 0; 592 593 tx_push1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags); 594 tx_push1->tx_bd_cfa_action = 595 cpu_to_le32(cfa_action << TX_BD_CFA_ACTION_SHIFT); 596 597 end = pdata + length; 598 end = PTR_ALIGN(end, 8) - 1; 599 *end = 0; 600 601 skb_copy_from_linear_data(skb, pdata, len); 602 pdata += len; 603 for (j = 0; j < last_frag; j++) { 604 void *fptr; 605 606 frag = &skb_shinfo(skb)->frags[j]; 607 fptr = skb_frag_address_safe(frag); 608 if (!fptr) 609 goto normal_tx; 610 611 memcpy(pdata, fptr, skb_frag_size(frag)); 612 pdata += skb_frag_size(frag); 613 } 614 615 txbd->tx_bd_len_flags_type = tx_push->tx_bd_len_flags_type; 616 txbd->tx_bd_haddr = txr->data_mapping; 617 txbd->tx_bd_opaque = SET_TX_OPAQUE(bp, txr, prod, 2); 618 prod = NEXT_TX(prod); 619 tx_push->tx_bd_opaque = txbd->tx_bd_opaque; 620 txbd = &txr->tx_desc_ring[TX_RING(bp, prod)][TX_IDX(prod)]; 621 memcpy(txbd, tx_push1, sizeof(*txbd)); 622 prod = NEXT_TX(prod); 623 tx_push->doorbell = 624 cpu_to_le32(DB_KEY_TX_PUSH | DB_LONG_TX_PUSH | 625 DB_RING_IDX(&txr->tx_db, prod)); 626 WRITE_ONCE(txr->tx_prod, prod); 627 628 tx_buf->is_push = 1; 629 netdev_tx_sent_queue(txq, skb->len); 630 wmb(); /* Sync is_push and byte queue before pushing data */ 631 632 push_len = (length + sizeof(*tx_push) + 7) / 8; 633 if (push_len > 16) { 634 __iowrite64_copy(db, tx_push_buf, 16); 635 __iowrite32_copy(db + 4, tx_push_buf + 1, 636 (push_len - 16) << 1); 637 } else { 638 __iowrite64_copy(db, tx_push_buf, push_len); 639 } 640 641 goto tx_done; 642 } 643 644 normal_tx: 645 if (length < BNXT_MIN_PKT_SIZE) { 646 pad = BNXT_MIN_PKT_SIZE - length; 647 if (skb_pad(skb, pad)) 648 /* SKB already freed. */ 649 goto tx_kick_pending; 650 length = BNXT_MIN_PKT_SIZE; 651 } 652 653 mapping = dma_map_single(&pdev->dev, skb->data, len, DMA_TO_DEVICE); 654 655 if (unlikely(dma_mapping_error(&pdev->dev, mapping))) 656 goto tx_free; 657 658 dma_unmap_addr_set(tx_buf, mapping, mapping); 659 flags = (len << TX_BD_LEN_SHIFT) | TX_BD_TYPE_LONG_TX_BD | 660 TX_BD_CNT(last_frag + 2); 661 662 txbd->tx_bd_haddr = cpu_to_le64(mapping); 663 txbd->tx_bd_opaque = SET_TX_OPAQUE(bp, txr, prod, 2 + last_frag); 664 665 prod = NEXT_TX(prod); 666 txbd1 = (struct tx_bd_ext *) 667 &txr->tx_desc_ring[TX_RING(bp, prod)][TX_IDX(prod)]; 668 669 txbd1->tx_bd_hsize_lflags = lflags; 670 if (skb_is_gso(skb)) { 671 bool udp_gso = !!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4); 672 u32 hdr_len; 673 674 if (skb->encapsulation) { 675 if (udp_gso) 676 hdr_len = skb_inner_transport_offset(skb) + 677 sizeof(struct udphdr); 678 else 679 hdr_len = skb_inner_tcp_all_headers(skb); 680 } else if (udp_gso) { 681 hdr_len = skb_transport_offset(skb) + 682 sizeof(struct udphdr); 683 } else { 684 hdr_len = skb_tcp_all_headers(skb); 685 } 686 687 txbd1->tx_bd_hsize_lflags |= cpu_to_le32(TX_BD_FLAGS_LSO | 688 TX_BD_FLAGS_T_IPID | 689 (hdr_len << (TX_BD_HSIZE_SHIFT - 1))); 690 length = skb_shinfo(skb)->gso_size; 691 txbd1->tx_bd_mss = cpu_to_le32(length); 692 length += hdr_len; 693 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { 694 txbd1->tx_bd_hsize_lflags |= 695 cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM); 696 txbd1->tx_bd_mss = 0; 697 } 698 699 length >>= 9; 700 if (unlikely(length >= ARRAY_SIZE(bnxt_lhint_arr))) { 701 dev_warn_ratelimited(&pdev->dev, "Dropped oversize %d bytes TX packet.\n", 702 skb->len); 703 i = 0; 704 goto tx_dma_error; 705 } 706 flags |= bnxt_lhint_arr[length]; 707 txbd->tx_bd_len_flags_type = cpu_to_le32(flags); 708 709 txbd1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags); 710 txbd1->tx_bd_cfa_action = 711 cpu_to_le32(cfa_action << TX_BD_CFA_ACTION_SHIFT); 712 txbd0 = txbd; 713 for (i = 0; i < last_frag; i++) { 714 frag = &skb_shinfo(skb)->frags[i]; 715 prod = NEXT_TX(prod); 716 txbd = &txr->tx_desc_ring[TX_RING(bp, prod)][TX_IDX(prod)]; 717 718 len = skb_frag_size(frag); 719 mapping = skb_frag_dma_map(&pdev->dev, frag, 0, len, 720 DMA_TO_DEVICE); 721 722 if (unlikely(dma_mapping_error(&pdev->dev, mapping))) 723 goto tx_dma_error; 724 725 tx_buf = &txr->tx_buf_ring[RING_TX(bp, prod)]; 726 netmem_dma_unmap_addr_set(skb_frag_netmem(frag), tx_buf, 727 mapping, mapping); 728 729 txbd->tx_bd_haddr = cpu_to_le64(mapping); 730 731 flags = len << TX_BD_LEN_SHIFT; 732 txbd->tx_bd_len_flags_type = cpu_to_le32(flags); 733 } 734 735 flags &= ~TX_BD_LEN; 736 txbd->tx_bd_len_flags_type = 737 cpu_to_le32(((len + pad) << TX_BD_LEN_SHIFT) | flags | 738 TX_BD_FLAGS_PACKET_END); 739 740 netdev_tx_sent_queue(txq, skb->len); 741 742 skb_tx_timestamp(skb); 743 744 prod = NEXT_TX(prod); 745 WRITE_ONCE(txr->tx_prod, prod); 746 747 if (!netdev_xmit_more() || netif_xmit_stopped(txq)) { 748 bnxt_txr_db_kick(bp, txr, prod); 749 } else { 750 if (free_size >= bp->tx_wake_thresh) 751 txbd0->tx_bd_len_flags_type |= 752 cpu_to_le32(TX_BD_FLAGS_NO_CMPL); 753 txr->kick_pending = 1; 754 } 755 756 tx_done: 757 758 if (unlikely(bnxt_tx_avail(bp, txr) <= MAX_SKB_FRAGS + 1)) { 759 if (netdev_xmit_more() && !tx_buf->is_push) { 760 txbd0->tx_bd_len_flags_type &= 761 cpu_to_le32(~TX_BD_FLAGS_NO_CMPL); 762 bnxt_txr_db_kick(bp, txr, prod); 763 } 764 765 netif_txq_try_stop(txq, bnxt_tx_avail(bp, txr), 766 bp->tx_wake_thresh); 767 } 768 return NETDEV_TX_OK; 769 770 tx_dma_error: 771 last_frag = i; 772 773 /* start back at beginning and unmap skb */ 774 prod = txr->tx_prod; 775 tx_buf = &txr->tx_buf_ring[RING_TX(bp, prod)]; 776 dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping), 777 skb_headlen(skb), DMA_TO_DEVICE); 778 prod = NEXT_TX(prod); 779 780 /* unmap remaining mapped pages */ 781 for (i = 0; i < last_frag; i++) { 782 prod = NEXT_TX(prod); 783 tx_buf = &txr->tx_buf_ring[RING_TX(bp, prod)]; 784 frag = &skb_shinfo(skb)->frags[i]; 785 netmem_dma_unmap_page_attrs(&pdev->dev, 786 dma_unmap_addr(tx_buf, mapping), 787 skb_frag_size(frag), 788 DMA_TO_DEVICE, 0); 789 } 790 791 tx_free: 792 dev_kfree_skb_any(skb); 793 tx_kick_pending: 794 if (BNXT_TX_PTP_IS_SET(lflags)) { 795 txr->tx_buf_ring[RING_TX(bp, txr->tx_prod)].is_ts_pkt = 0; 796 atomic64_inc(&bp->ptp_cfg->stats.ts_err); 797 if (!(bp->fw_cap & BNXT_FW_CAP_TX_TS_CMP)) 798 /* set SKB to err so PTP worker will clean up */ 799 ptp->txts_req[txts_prod].tx_skb = ERR_PTR(-EIO); 800 } 801 if (txr->kick_pending) 802 bnxt_txr_db_kick(bp, txr, txr->tx_prod); 803 txr->tx_buf_ring[RING_TX(bp, txr->tx_prod)].skb = NULL; 804 dev_core_stats_tx_dropped_inc(dev); 805 return NETDEV_TX_OK; 806 } 807 808 /* Returns true if some remaining TX packets not processed. */ 809 static bool __bnxt_tx_int(struct bnxt *bp, struct bnxt_tx_ring_info *txr, 810 int budget) 811 { 812 struct netdev_queue *txq = netdev_get_tx_queue(bp->dev, txr->txq_index); 813 struct pci_dev *pdev = bp->pdev; 814 u16 hw_cons = txr->tx_hw_cons; 815 unsigned int tx_bytes = 0; 816 u16 cons = txr->tx_cons; 817 skb_frag_t *frag; 818 int tx_pkts = 0; 819 bool rc = false; 820 821 while (RING_TX(bp, cons) != hw_cons) { 822 struct bnxt_sw_tx_bd *tx_buf; 823 struct sk_buff *skb; 824 bool is_ts_pkt; 825 int j, last; 826 827 tx_buf = &txr->tx_buf_ring[RING_TX(bp, cons)]; 828 skb = tx_buf->skb; 829 830 if (unlikely(!skb)) { 831 bnxt_sched_reset_txr(bp, txr, cons); 832 return rc; 833 } 834 835 is_ts_pkt = tx_buf->is_ts_pkt; 836 if (is_ts_pkt && (bp->fw_cap & BNXT_FW_CAP_TX_TS_CMP)) { 837 rc = true; 838 break; 839 } 840 841 cons = NEXT_TX(cons); 842 tx_pkts++; 843 tx_bytes += skb->len; 844 tx_buf->skb = NULL; 845 tx_buf->is_ts_pkt = 0; 846 847 if (tx_buf->is_push) { 848 tx_buf->is_push = 0; 849 goto next_tx_int; 850 } 851 852 dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping), 853 skb_headlen(skb), DMA_TO_DEVICE); 854 last = tx_buf->nr_frags; 855 856 for (j = 0; j < last; j++) { 857 frag = &skb_shinfo(skb)->frags[j]; 858 cons = NEXT_TX(cons); 859 tx_buf = &txr->tx_buf_ring[RING_TX(bp, cons)]; 860 netmem_dma_unmap_page_attrs(&pdev->dev, 861 dma_unmap_addr(tx_buf, 862 mapping), 863 skb_frag_size(frag), 864 DMA_TO_DEVICE, 0); 865 } 866 if (unlikely(is_ts_pkt)) { 867 if (BNXT_CHIP_P5(bp)) { 868 /* PTP worker takes ownership of the skb */ 869 bnxt_get_tx_ts_p5(bp, skb, tx_buf->txts_prod); 870 skb = NULL; 871 } 872 } 873 874 next_tx_int: 875 cons = NEXT_TX(cons); 876 877 napi_consume_skb(skb, budget); 878 } 879 880 WRITE_ONCE(txr->tx_cons, cons); 881 882 __netif_txq_completed_wake(txq, tx_pkts, tx_bytes, 883 bnxt_tx_avail(bp, txr), bp->tx_wake_thresh, 884 READ_ONCE(txr->dev_state) == BNXT_DEV_STATE_CLOSING); 885 886 return rc; 887 } 888 889 static void bnxt_tx_int(struct bnxt *bp, struct bnxt_napi *bnapi, int budget) 890 { 891 struct bnxt_tx_ring_info *txr; 892 bool more = false; 893 int i; 894 895 bnxt_for_each_napi_tx(i, bnapi, txr) { 896 if (txr->tx_hw_cons != RING_TX(bp, txr->tx_cons)) 897 more |= __bnxt_tx_int(bp, txr, budget); 898 } 899 if (!more) 900 bnapi->events &= ~BNXT_TX_CMP_EVENT; 901 } 902 903 static bool bnxt_separate_head_pool(struct bnxt_rx_ring_info *rxr) 904 { 905 return rxr->need_head_pool || rxr->rx_page_size < PAGE_SIZE; 906 } 907 908 static struct page *__bnxt_alloc_rx_page(struct bnxt *bp, dma_addr_t *mapping, 909 struct bnxt_rx_ring_info *rxr, 910 unsigned int *offset, 911 gfp_t gfp) 912 { 913 struct page *page; 914 915 if (rxr->rx_page_size < PAGE_SIZE) { 916 page = page_pool_dev_alloc_frag(rxr->page_pool, offset, 917 rxr->rx_page_size); 918 } else { 919 page = page_pool_dev_alloc_pages(rxr->page_pool); 920 *offset = 0; 921 } 922 if (!page) 923 return NULL; 924 925 *mapping = page_pool_get_dma_addr(page) + *offset; 926 return page; 927 } 928 929 static netmem_ref __bnxt_alloc_rx_netmem(struct bnxt *bp, dma_addr_t *mapping, 930 struct bnxt_rx_ring_info *rxr, 931 unsigned int *offset, 932 gfp_t gfp) 933 { 934 netmem_ref netmem; 935 936 if (rxr->rx_page_size < PAGE_SIZE) { 937 netmem = page_pool_alloc_frag_netmem(rxr->page_pool, offset, 938 rxr->rx_page_size, gfp); 939 } else { 940 netmem = page_pool_alloc_netmems(rxr->page_pool, gfp); 941 *offset = 0; 942 } 943 if (!netmem) 944 return 0; 945 946 *mapping = page_pool_get_dma_addr_netmem(netmem) + *offset; 947 return netmem; 948 } 949 950 static inline u8 *__bnxt_alloc_rx_frag(struct bnxt *bp, dma_addr_t *mapping, 951 struct bnxt_rx_ring_info *rxr, 952 gfp_t gfp) 953 { 954 unsigned int offset; 955 struct page *page; 956 957 page = page_pool_alloc_frag(rxr->head_pool, &offset, 958 bp->rx_buf_size, gfp); 959 if (!page) 960 return NULL; 961 962 *mapping = page_pool_get_dma_addr(page) + bp->rx_dma_offset + offset; 963 return page_address(page) + offset; 964 } 965 966 int bnxt_alloc_rx_data(struct bnxt *bp, struct bnxt_rx_ring_info *rxr, 967 u16 prod, gfp_t gfp) 968 { 969 struct rx_bd *rxbd = &rxr->rx_desc_ring[RX_RING(bp, prod)][RX_IDX(prod)]; 970 struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[RING_RX(bp, prod)]; 971 dma_addr_t mapping; 972 973 if (BNXT_RX_PAGE_MODE(bp)) { 974 unsigned int offset; 975 struct page *page = 976 __bnxt_alloc_rx_page(bp, &mapping, rxr, &offset, gfp); 977 978 if (!page) 979 return -ENOMEM; 980 981 mapping += bp->rx_dma_offset; 982 rx_buf->data = page; 983 rx_buf->data_ptr = page_address(page) + offset + bp->rx_offset; 984 } else { 985 u8 *data = __bnxt_alloc_rx_frag(bp, &mapping, rxr, gfp); 986 987 if (!data) 988 return -ENOMEM; 989 990 rx_buf->data = data; 991 rx_buf->data_ptr = data + bp->rx_offset; 992 } 993 rx_buf->mapping = mapping; 994 995 rxbd->rx_bd_haddr = cpu_to_le64(mapping); 996 return 0; 997 } 998 999 void bnxt_reuse_rx_data(struct bnxt_rx_ring_info *rxr, u16 cons, void *data) 1000 { 1001 u16 prod = rxr->rx_prod; 1002 struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf; 1003 struct bnxt *bp = rxr->bnapi->bp; 1004 struct rx_bd *cons_bd, *prod_bd; 1005 1006 prod_rx_buf = &rxr->rx_buf_ring[RING_RX(bp, prod)]; 1007 cons_rx_buf = &rxr->rx_buf_ring[cons]; 1008 1009 prod_rx_buf->data = data; 1010 prod_rx_buf->data_ptr = cons_rx_buf->data_ptr; 1011 1012 prod_rx_buf->mapping = cons_rx_buf->mapping; 1013 1014 prod_bd = &rxr->rx_desc_ring[RX_RING(bp, prod)][RX_IDX(prod)]; 1015 cons_bd = &rxr->rx_desc_ring[RX_RING(bp, cons)][RX_IDX(cons)]; 1016 1017 prod_bd->rx_bd_haddr = cons_bd->rx_bd_haddr; 1018 } 1019 1020 static inline u16 bnxt_find_next_agg_idx(struct bnxt_rx_ring_info *rxr, u16 idx) 1021 { 1022 u16 next, max = rxr->rx_agg_bmap_size; 1023 1024 next = find_next_zero_bit(rxr->rx_agg_bmap, max, idx); 1025 if (next >= max) 1026 next = find_first_zero_bit(rxr->rx_agg_bmap, max); 1027 return next; 1028 } 1029 1030 static int bnxt_alloc_rx_netmem(struct bnxt *bp, struct bnxt_rx_ring_info *rxr, 1031 u16 prod, gfp_t gfp) 1032 { 1033 struct rx_bd *rxbd = 1034 &rxr->rx_agg_desc_ring[RX_AGG_RING(bp, prod)][RX_IDX(prod)]; 1035 struct bnxt_sw_rx_agg_bd *rx_agg_buf; 1036 u16 sw_prod = rxr->rx_sw_agg_prod; 1037 unsigned int offset = 0; 1038 dma_addr_t mapping; 1039 netmem_ref netmem; 1040 1041 netmem = __bnxt_alloc_rx_netmem(bp, &mapping, rxr, &offset, gfp); 1042 if (!netmem) 1043 return -ENOMEM; 1044 1045 if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap))) 1046 sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod); 1047 1048 __set_bit(sw_prod, rxr->rx_agg_bmap); 1049 rx_agg_buf = &rxr->rx_agg_ring[sw_prod]; 1050 rxr->rx_sw_agg_prod = RING_RX_AGG(bp, NEXT_RX_AGG(sw_prod)); 1051 1052 rx_agg_buf->netmem = netmem; 1053 rx_agg_buf->offset = offset; 1054 rx_agg_buf->mapping = mapping; 1055 rxbd->rx_bd_haddr = cpu_to_le64(mapping); 1056 rxbd->rx_bd_opaque = sw_prod; 1057 return 0; 1058 } 1059 1060 static struct rx_agg_cmp *bnxt_get_agg(struct bnxt *bp, 1061 struct bnxt_cp_ring_info *cpr, 1062 u16 cp_cons, u16 curr) 1063 { 1064 struct rx_agg_cmp *agg; 1065 1066 cp_cons = RING_CMP(ADV_RAW_CMP(cp_cons, curr)); 1067 agg = (struct rx_agg_cmp *) 1068 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 1069 return agg; 1070 } 1071 1072 static struct rx_agg_cmp *bnxt_get_tpa_agg_p5(struct bnxt *bp, 1073 struct bnxt_rx_ring_info *rxr, 1074 u16 agg_id, u16 curr) 1075 { 1076 struct bnxt_tpa_info *tpa_info = &rxr->rx_tpa[agg_id]; 1077 1078 return &tpa_info->agg_arr[curr]; 1079 } 1080 1081 static void bnxt_reuse_rx_agg_bufs(struct bnxt_cp_ring_info *cpr, u16 idx, 1082 u16 start, u32 agg_bufs, bool tpa) 1083 { 1084 struct bnxt_napi *bnapi = cpr->bnapi; 1085 struct bnxt *bp = bnapi->bp; 1086 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 1087 u16 prod = rxr->rx_agg_prod; 1088 u16 sw_prod = rxr->rx_sw_agg_prod; 1089 bool p5_tpa = false; 1090 u32 i; 1091 1092 if ((bp->flags & BNXT_FLAG_CHIP_P5_PLUS) && tpa) 1093 p5_tpa = true; 1094 1095 for (i = 0; i < agg_bufs; i++) { 1096 struct bnxt_sw_rx_agg_bd *cons_rx_buf, *prod_rx_buf; 1097 struct rx_agg_cmp *agg; 1098 struct rx_bd *prod_bd; 1099 netmem_ref netmem; 1100 u16 cons; 1101 1102 if (p5_tpa) 1103 agg = bnxt_get_tpa_agg_p5(bp, rxr, idx, start + i); 1104 else 1105 agg = bnxt_get_agg(bp, cpr, idx, start + i); 1106 cons = agg->rx_agg_cmp_opaque; 1107 __clear_bit(cons, rxr->rx_agg_bmap); 1108 1109 if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap))) 1110 sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod); 1111 1112 __set_bit(sw_prod, rxr->rx_agg_bmap); 1113 prod_rx_buf = &rxr->rx_agg_ring[sw_prod]; 1114 cons_rx_buf = &rxr->rx_agg_ring[cons]; 1115 1116 /* It is possible for sw_prod to be equal to cons, so 1117 * set cons_rx_buf->netmem to 0 first. 1118 */ 1119 netmem = cons_rx_buf->netmem; 1120 cons_rx_buf->netmem = 0; 1121 prod_rx_buf->netmem = netmem; 1122 prod_rx_buf->offset = cons_rx_buf->offset; 1123 1124 prod_rx_buf->mapping = cons_rx_buf->mapping; 1125 1126 prod_bd = &rxr->rx_agg_desc_ring[RX_AGG_RING(bp, prod)][RX_IDX(prod)]; 1127 1128 prod_bd->rx_bd_haddr = cpu_to_le64(cons_rx_buf->mapping); 1129 prod_bd->rx_bd_opaque = sw_prod; 1130 1131 prod = NEXT_RX_AGG(prod); 1132 sw_prod = RING_RX_AGG(bp, NEXT_RX_AGG(sw_prod)); 1133 } 1134 rxr->rx_agg_prod = prod; 1135 rxr->rx_sw_agg_prod = sw_prod; 1136 } 1137 1138 static struct sk_buff *bnxt_rx_multi_page_skb(struct bnxt *bp, 1139 struct bnxt_rx_ring_info *rxr, 1140 u16 cons, void *data, u8 *data_ptr, 1141 dma_addr_t dma_addr, 1142 unsigned int offset_and_len) 1143 { 1144 unsigned int len = offset_and_len & 0xffff; 1145 struct page *page = data; 1146 u16 prod = rxr->rx_prod; 1147 struct sk_buff *skb; 1148 int err; 1149 1150 err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC); 1151 if (unlikely(err)) { 1152 bnxt_reuse_rx_data(rxr, cons, data); 1153 return NULL; 1154 } 1155 dma_addr -= bp->rx_dma_offset; 1156 dma_sync_single_for_cpu(&bp->pdev->dev, dma_addr, rxr->rx_page_size, 1157 bp->rx_dir); 1158 skb = napi_build_skb(data_ptr - bp->rx_offset, rxr->rx_page_size); 1159 if (!skb) { 1160 page_pool_recycle_direct(rxr->page_pool, page); 1161 return NULL; 1162 } 1163 skb_mark_for_recycle(skb); 1164 skb_reserve(skb, bp->rx_offset); 1165 __skb_put(skb, len); 1166 1167 return skb; 1168 } 1169 1170 static struct sk_buff *bnxt_rx_page_skb(struct bnxt *bp, 1171 struct bnxt_rx_ring_info *rxr, 1172 u16 cons, void *data, u8 *data_ptr, 1173 dma_addr_t dma_addr, 1174 unsigned int offset_and_len) 1175 { 1176 unsigned int payload = offset_and_len >> 16; 1177 unsigned int len = offset_and_len & 0xffff; 1178 skb_frag_t *frag; 1179 struct page *page = data; 1180 u16 prod = rxr->rx_prod; 1181 struct sk_buff *skb; 1182 int off, err; 1183 1184 err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC); 1185 if (unlikely(err)) { 1186 bnxt_reuse_rx_data(rxr, cons, data); 1187 return NULL; 1188 } 1189 dma_addr -= bp->rx_dma_offset; 1190 dma_sync_single_for_cpu(&bp->pdev->dev, dma_addr, rxr->rx_page_size, 1191 bp->rx_dir); 1192 1193 if (unlikely(!payload)) 1194 payload = eth_get_headlen(bp->dev, data_ptr, len); 1195 1196 skb = napi_alloc_skb(&rxr->bnapi->napi, payload); 1197 if (!skb) { 1198 page_pool_recycle_direct(rxr->page_pool, page); 1199 return NULL; 1200 } 1201 1202 skb_mark_for_recycle(skb); 1203 off = (void *)data_ptr - page_address(page); 1204 skb_add_rx_frag(skb, 0, page, off, len, rxr->rx_page_size); 1205 memcpy(skb->data - NET_IP_ALIGN, data_ptr - NET_IP_ALIGN, 1206 payload + NET_IP_ALIGN); 1207 1208 frag = &skb_shinfo(skb)->frags[0]; 1209 skb_frag_size_sub(frag, payload); 1210 skb_frag_off_add(frag, payload); 1211 skb->data_len -= payload; 1212 skb->tail += payload; 1213 1214 return skb; 1215 } 1216 1217 static struct sk_buff *bnxt_rx_skb(struct bnxt *bp, 1218 struct bnxt_rx_ring_info *rxr, u16 cons, 1219 void *data, u8 *data_ptr, 1220 dma_addr_t dma_addr, 1221 unsigned int offset_and_len) 1222 { 1223 u16 prod = rxr->rx_prod; 1224 struct sk_buff *skb; 1225 int err; 1226 1227 err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC); 1228 if (unlikely(err)) { 1229 bnxt_reuse_rx_data(rxr, cons, data); 1230 return NULL; 1231 } 1232 1233 skb = napi_build_skb(data, bp->rx_buf_size); 1234 dma_sync_single_for_cpu(&bp->pdev->dev, dma_addr, bp->rx_buf_use_size, 1235 bp->rx_dir); 1236 if (!skb) { 1237 page_pool_free_va(rxr->head_pool, data, true); 1238 return NULL; 1239 } 1240 1241 skb_mark_for_recycle(skb); 1242 skb_reserve(skb, bp->rx_offset); 1243 skb_put(skb, offset_and_len & 0xffff); 1244 return skb; 1245 } 1246 1247 static u32 __bnxt_rx_agg_netmems(struct bnxt *bp, 1248 struct bnxt_cp_ring_info *cpr, 1249 u16 idx, u32 agg_bufs, bool tpa, 1250 struct sk_buff *skb, 1251 struct xdp_buff *xdp) 1252 { 1253 struct bnxt_napi *bnapi = cpr->bnapi; 1254 struct skb_shared_info *shinfo; 1255 struct bnxt_rx_ring_info *rxr; 1256 u32 i, total_frag_len = 0; 1257 bool p5_tpa = false; 1258 u16 prod; 1259 1260 rxr = bnapi->rx_ring; 1261 prod = rxr->rx_agg_prod; 1262 1263 if ((bp->flags & BNXT_FLAG_CHIP_P5_PLUS) && tpa) 1264 p5_tpa = true; 1265 1266 if (skb) 1267 shinfo = skb_shinfo(skb); 1268 else 1269 shinfo = xdp_get_shared_info_from_buff(xdp); 1270 1271 for (i = 0; i < agg_bufs; i++) { 1272 struct bnxt_sw_rx_agg_bd *cons_rx_buf; 1273 struct rx_agg_cmp *agg; 1274 u16 cons, frag_len; 1275 netmem_ref netmem; 1276 1277 if (p5_tpa) 1278 agg = bnxt_get_tpa_agg_p5(bp, rxr, idx, i); 1279 else 1280 agg = bnxt_get_agg(bp, cpr, idx, i); 1281 cons = agg->rx_agg_cmp_opaque; 1282 frag_len = (le32_to_cpu(agg->rx_agg_cmp_len_flags_type) & 1283 RX_AGG_CMP_LEN) >> RX_AGG_CMP_LEN_SHIFT; 1284 1285 cons_rx_buf = &rxr->rx_agg_ring[cons]; 1286 if (skb) { 1287 skb_add_rx_frag_netmem(skb, i, cons_rx_buf->netmem, 1288 cons_rx_buf->offset, 1289 frag_len, rxr->rx_page_size); 1290 } else { 1291 skb_frag_t *frag = &shinfo->frags[i]; 1292 1293 skb_frag_fill_netmem_desc(frag, cons_rx_buf->netmem, 1294 cons_rx_buf->offset, 1295 frag_len); 1296 shinfo->nr_frags = i + 1; 1297 } 1298 __clear_bit(cons, rxr->rx_agg_bmap); 1299 1300 /* It is possible for bnxt_alloc_rx_netmem() to allocate 1301 * a sw_prod index that equals the cons index, so we 1302 * need to clear the cons entry now. 1303 */ 1304 netmem = cons_rx_buf->netmem; 1305 cons_rx_buf->netmem = 0; 1306 1307 if (xdp && netmem_is_pfmemalloc(netmem)) 1308 xdp_buff_set_frag_pfmemalloc(xdp); 1309 1310 if (bnxt_alloc_rx_netmem(bp, rxr, prod, GFP_ATOMIC) != 0) { 1311 if (skb) { 1312 skb->len -= frag_len; 1313 skb->data_len -= frag_len; 1314 skb->truesize -= rxr->rx_page_size; 1315 } 1316 1317 --shinfo->nr_frags; 1318 cons_rx_buf->netmem = netmem; 1319 1320 /* Update prod since possibly some netmems have been 1321 * allocated already. 1322 */ 1323 rxr->rx_agg_prod = prod; 1324 bnxt_reuse_rx_agg_bufs(cpr, idx, i, agg_bufs - i, tpa); 1325 return 0; 1326 } 1327 1328 page_pool_dma_sync_netmem_for_cpu(rxr->page_pool, netmem, 0, 1329 rxr->rx_page_size); 1330 1331 total_frag_len += frag_len; 1332 prod = NEXT_RX_AGG(prod); 1333 } 1334 rxr->rx_agg_prod = prod; 1335 return total_frag_len; 1336 } 1337 1338 static struct sk_buff *bnxt_rx_agg_netmems_skb(struct bnxt *bp, 1339 struct bnxt_cp_ring_info *cpr, 1340 struct sk_buff *skb, u16 idx, 1341 u32 agg_bufs, bool tpa) 1342 { 1343 u32 total_frag_len = 0; 1344 1345 total_frag_len = __bnxt_rx_agg_netmems(bp, cpr, idx, agg_bufs, tpa, 1346 skb, NULL); 1347 if (!total_frag_len) { 1348 skb_mark_for_recycle(skb); 1349 dev_kfree_skb(skb); 1350 return NULL; 1351 } 1352 1353 return skb; 1354 } 1355 1356 static u32 bnxt_rx_agg_netmems_xdp(struct bnxt *bp, 1357 struct bnxt_cp_ring_info *cpr, 1358 struct xdp_buff *xdp, u16 idx, 1359 u32 agg_bufs, bool tpa) 1360 { 1361 struct skb_shared_info *shinfo = xdp_get_shared_info_from_buff(xdp); 1362 u32 total_frag_len = 0; 1363 1364 if (!xdp_buff_has_frags(xdp)) 1365 shinfo->nr_frags = 0; 1366 1367 total_frag_len = __bnxt_rx_agg_netmems(bp, cpr, idx, agg_bufs, tpa, 1368 NULL, xdp); 1369 if (total_frag_len) { 1370 xdp_buff_set_frags_flag(xdp); 1371 shinfo->nr_frags = agg_bufs; 1372 shinfo->xdp_frags_size = total_frag_len; 1373 } 1374 return total_frag_len; 1375 } 1376 1377 static int bnxt_agg_bufs_valid(struct bnxt *bp, struct bnxt_cp_ring_info *cpr, 1378 u8 agg_bufs, u32 *raw_cons) 1379 { 1380 u16 last; 1381 struct rx_agg_cmp *agg; 1382 1383 *raw_cons = ADV_RAW_CMP(*raw_cons, agg_bufs); 1384 last = RING_CMP(*raw_cons); 1385 agg = (struct rx_agg_cmp *) 1386 &cpr->cp_desc_ring[CP_RING(last)][CP_IDX(last)]; 1387 return RX_AGG_CMP_VALID(agg, *raw_cons); 1388 } 1389 1390 static struct sk_buff *bnxt_copy_data(struct bnxt_napi *bnapi, u8 *data, 1391 unsigned int len, 1392 dma_addr_t mapping) 1393 { 1394 struct bnxt *bp = bnapi->bp; 1395 struct pci_dev *pdev = bp->pdev; 1396 struct sk_buff *skb; 1397 1398 skb = napi_alloc_skb(&bnapi->napi, len); 1399 if (!skb) 1400 return NULL; 1401 1402 dma_sync_single_for_cpu(&pdev->dev, mapping, bp->rx_copybreak, 1403 bp->rx_dir); 1404 1405 memcpy(skb->data - NET_IP_ALIGN, data - NET_IP_ALIGN, 1406 len + NET_IP_ALIGN); 1407 1408 dma_sync_single_for_device(&pdev->dev, mapping, bp->rx_copybreak, 1409 bp->rx_dir); 1410 1411 skb_put(skb, len); 1412 1413 return skb; 1414 } 1415 1416 static struct sk_buff *bnxt_copy_skb(struct bnxt_napi *bnapi, u8 *data, 1417 unsigned int len, 1418 dma_addr_t mapping) 1419 { 1420 return bnxt_copy_data(bnapi, data, len, mapping); 1421 } 1422 1423 static struct sk_buff *bnxt_copy_xdp(struct bnxt_napi *bnapi, 1424 struct xdp_buff *xdp, 1425 unsigned int len, 1426 dma_addr_t mapping) 1427 { 1428 unsigned int metasize = 0; 1429 u8 *data = xdp->data; 1430 struct sk_buff *skb; 1431 1432 len = xdp->data_end - xdp->data_meta; 1433 metasize = xdp->data - xdp->data_meta; 1434 data = xdp->data_meta; 1435 1436 skb = bnxt_copy_data(bnapi, data, len, mapping); 1437 if (!skb) 1438 return skb; 1439 1440 if (metasize) { 1441 skb_metadata_set(skb, metasize); 1442 __skb_pull(skb, metasize); 1443 } 1444 1445 return skb; 1446 } 1447 1448 static int bnxt_discard_rx(struct bnxt *bp, struct bnxt_cp_ring_info *cpr, 1449 u32 *raw_cons, void *cmp) 1450 { 1451 struct rx_cmp *rxcmp = cmp; 1452 u32 tmp_raw_cons = *raw_cons; 1453 u8 cmp_type, agg_bufs = 0; 1454 1455 cmp_type = RX_CMP_TYPE(rxcmp); 1456 1457 if (cmp_type == CMP_TYPE_RX_L2_CMP) { 1458 agg_bufs = (le32_to_cpu(rxcmp->rx_cmp_misc_v1) & 1459 RX_CMP_AGG_BUFS) >> 1460 RX_CMP_AGG_BUFS_SHIFT; 1461 } else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) { 1462 struct rx_tpa_end_cmp *tpa_end = cmp; 1463 1464 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 1465 return 0; 1466 1467 agg_bufs = TPA_END_AGG_BUFS(tpa_end); 1468 } 1469 1470 if (agg_bufs) { 1471 if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons)) 1472 return -EBUSY; 1473 } 1474 *raw_cons = tmp_raw_cons; 1475 return 0; 1476 } 1477 1478 static u16 bnxt_alloc_agg_idx(struct bnxt_rx_ring_info *rxr, u16 agg_id) 1479 { 1480 struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map; 1481 u16 idx = agg_id & MAX_TPA_P5_MASK; 1482 1483 if (test_bit(idx, map->agg_idx_bmap)) { 1484 idx = find_first_zero_bit(map->agg_idx_bmap, MAX_TPA_P5); 1485 if (idx >= MAX_TPA_P5) 1486 return INVALID_HW_RING_ID; 1487 } 1488 __set_bit(idx, map->agg_idx_bmap); 1489 map->agg_id_tbl[agg_id] = idx; 1490 return idx; 1491 } 1492 1493 static void bnxt_free_agg_idx(struct bnxt_rx_ring_info *rxr, u16 idx) 1494 { 1495 struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map; 1496 1497 __clear_bit(idx, map->agg_idx_bmap); 1498 } 1499 1500 static u16 bnxt_lookup_agg_idx(struct bnxt_rx_ring_info *rxr, u16 agg_id) 1501 { 1502 struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map; 1503 1504 return map->agg_id_tbl[agg_id]; 1505 } 1506 1507 static void bnxt_tpa_metadata(struct bnxt_tpa_info *tpa_info, 1508 struct rx_tpa_start_cmp *tpa_start, 1509 struct rx_tpa_start_cmp_ext *tpa_start1) 1510 { 1511 tpa_info->cfa_code_valid = 1; 1512 tpa_info->cfa_code = TPA_START_CFA_CODE(tpa_start1); 1513 tpa_info->vlan_valid = 0; 1514 if (tpa_info->flags2 & RX_CMP_FLAGS2_META_FORMAT_VLAN) { 1515 tpa_info->vlan_valid = 1; 1516 tpa_info->metadata = 1517 le32_to_cpu(tpa_start1->rx_tpa_start_cmp_metadata); 1518 } 1519 } 1520 1521 static void bnxt_tpa_metadata_v2(struct bnxt_tpa_info *tpa_info, 1522 struct rx_tpa_start_cmp *tpa_start, 1523 struct rx_tpa_start_cmp_ext *tpa_start1) 1524 { 1525 tpa_info->vlan_valid = 0; 1526 if (TPA_START_VLAN_VALID(tpa_start)) { 1527 u32 tpid_sel = TPA_START_VLAN_TPID_SEL(tpa_start); 1528 u32 vlan_proto = ETH_P_8021Q; 1529 1530 tpa_info->vlan_valid = 1; 1531 if (tpid_sel == RX_TPA_START_METADATA1_TPID_8021AD) 1532 vlan_proto = ETH_P_8021AD; 1533 tpa_info->metadata = vlan_proto << 16 | 1534 TPA_START_METADATA0_TCI(tpa_start1); 1535 } 1536 } 1537 1538 static void bnxt_tpa_start(struct bnxt *bp, struct bnxt_rx_ring_info *rxr, 1539 u8 cmp_type, struct rx_tpa_start_cmp *tpa_start, 1540 struct rx_tpa_start_cmp_ext *tpa_start1) 1541 { 1542 struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf; 1543 struct bnxt_tpa_info *tpa_info; 1544 u16 cons, prod, agg_id; 1545 struct rx_bd *prod_bd; 1546 dma_addr_t mapping; 1547 1548 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 1549 agg_id = TPA_START_AGG_ID_P5(tpa_start); 1550 agg_id = bnxt_alloc_agg_idx(rxr, agg_id); 1551 if (unlikely(agg_id == INVALID_HW_RING_ID)) { 1552 netdev_warn(bp->dev, "Unable to allocate agg ID for ring %d, agg 0x%x\n", 1553 rxr->bnapi->index, 1554 TPA_START_AGG_ID_P5(tpa_start)); 1555 bnxt_sched_reset_rxr(bp, rxr); 1556 return; 1557 } 1558 } else { 1559 agg_id = TPA_START_AGG_ID(tpa_start); 1560 } 1561 cons = tpa_start->rx_tpa_start_cmp_opaque; 1562 prod = rxr->rx_prod; 1563 cons_rx_buf = &rxr->rx_buf_ring[cons]; 1564 prod_rx_buf = &rxr->rx_buf_ring[RING_RX(bp, prod)]; 1565 tpa_info = &rxr->rx_tpa[agg_id]; 1566 1567 if (unlikely(cons != rxr->rx_next_cons || 1568 TPA_START_ERROR(tpa_start))) { 1569 netdev_warn(bp->dev, "TPA cons %x, expected cons %x, error code %x\n", 1570 cons, rxr->rx_next_cons, 1571 TPA_START_ERROR_CODE(tpa_start1)); 1572 bnxt_sched_reset_rxr(bp, rxr); 1573 return; 1574 } 1575 prod_rx_buf->data = tpa_info->data; 1576 prod_rx_buf->data_ptr = tpa_info->data_ptr; 1577 1578 mapping = tpa_info->mapping; 1579 prod_rx_buf->mapping = mapping; 1580 1581 prod_bd = &rxr->rx_desc_ring[RX_RING(bp, prod)][RX_IDX(prod)]; 1582 1583 prod_bd->rx_bd_haddr = cpu_to_le64(mapping); 1584 1585 tpa_info->data = cons_rx_buf->data; 1586 tpa_info->data_ptr = cons_rx_buf->data_ptr; 1587 cons_rx_buf->data = NULL; 1588 tpa_info->mapping = cons_rx_buf->mapping; 1589 1590 tpa_info->len = 1591 le32_to_cpu(tpa_start->rx_tpa_start_cmp_len_flags_type) >> 1592 RX_TPA_START_CMP_LEN_SHIFT; 1593 if (likely(TPA_START_HASH_VALID(tpa_start))) { 1594 tpa_info->hash_type = PKT_HASH_TYPE_L4; 1595 tpa_info->gso_type = SKB_GSO_TCPV4; 1596 if (TPA_START_IS_IPV6(tpa_start1)) 1597 tpa_info->gso_type = SKB_GSO_TCPV6; 1598 /* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */ 1599 else if (!BNXT_CHIP_P4_PLUS(bp) && 1600 TPA_START_HASH_TYPE(tpa_start) == 3) 1601 tpa_info->gso_type = SKB_GSO_TCPV6; 1602 tpa_info->rss_hash = 1603 le32_to_cpu(tpa_start->rx_tpa_start_cmp_rss_hash); 1604 } else { 1605 tpa_info->hash_type = PKT_HASH_TYPE_NONE; 1606 tpa_info->gso_type = 0; 1607 netif_warn(bp, rx_err, bp->dev, "TPA packet without valid hash\n"); 1608 } 1609 tpa_info->flags2 = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_flags2); 1610 tpa_info->hdr_info = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_hdr_info); 1611 if (cmp_type == CMP_TYPE_RX_L2_TPA_START_CMP) 1612 bnxt_tpa_metadata(tpa_info, tpa_start, tpa_start1); 1613 else 1614 bnxt_tpa_metadata_v2(tpa_info, tpa_start, tpa_start1); 1615 tpa_info->agg_count = 0; 1616 1617 rxr->rx_prod = NEXT_RX(prod); 1618 cons = RING_RX(bp, NEXT_RX(cons)); 1619 rxr->rx_next_cons = RING_RX(bp, NEXT_RX(cons)); 1620 cons_rx_buf = &rxr->rx_buf_ring[cons]; 1621 1622 bnxt_reuse_rx_data(rxr, cons, cons_rx_buf->data); 1623 rxr->rx_prod = NEXT_RX(rxr->rx_prod); 1624 cons_rx_buf->data = NULL; 1625 } 1626 1627 static void bnxt_abort_tpa(struct bnxt_cp_ring_info *cpr, u16 idx, u32 agg_bufs) 1628 { 1629 if (agg_bufs) 1630 bnxt_reuse_rx_agg_bufs(cpr, idx, 0, agg_bufs, true); 1631 } 1632 1633 #ifdef CONFIG_INET 1634 static void bnxt_gro_tunnel(struct sk_buff *skb, __be16 ip_proto) 1635 { 1636 struct udphdr *uh = NULL; 1637 1638 if (ip_proto == htons(ETH_P_IP)) { 1639 struct iphdr *iph = (struct iphdr *)skb->data; 1640 1641 if (iph->protocol == IPPROTO_UDP) 1642 uh = (struct udphdr *)(iph + 1); 1643 } else { 1644 struct ipv6hdr *iph = (struct ipv6hdr *)skb->data; 1645 1646 if (iph->nexthdr == IPPROTO_UDP) 1647 uh = (struct udphdr *)(iph + 1); 1648 } 1649 if (uh) { 1650 if (uh->check) 1651 skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL_CSUM; 1652 else 1653 skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL; 1654 } 1655 } 1656 #endif 1657 1658 static struct sk_buff *bnxt_gro_func_5731x(struct bnxt_tpa_info *tpa_info, 1659 int payload_off, int tcp_ts, 1660 struct sk_buff *skb) 1661 { 1662 #ifdef CONFIG_INET 1663 struct tcphdr *th; 1664 int len, nw_off; 1665 u16 outer_ip_off, inner_ip_off, inner_mac_off; 1666 u32 hdr_info = tpa_info->hdr_info; 1667 bool loopback = false; 1668 1669 inner_ip_off = BNXT_TPA_INNER_L3_OFF(hdr_info); 1670 inner_mac_off = BNXT_TPA_INNER_L2_OFF(hdr_info); 1671 outer_ip_off = BNXT_TPA_OUTER_L3_OFF(hdr_info); 1672 1673 /* If the packet is an internal loopback packet, the offsets will 1674 * have an extra 4 bytes. 1675 */ 1676 if (inner_mac_off == 4) { 1677 loopback = true; 1678 } else if (inner_mac_off > 4) { 1679 __be16 proto = *((__be16 *)(skb->data + inner_ip_off - 1680 ETH_HLEN - 2)); 1681 1682 /* We only support inner iPv4/ipv6. If we don't see the 1683 * correct protocol ID, it must be a loopback packet where 1684 * the offsets are off by 4. 1685 */ 1686 if (proto != htons(ETH_P_IP) && proto != htons(ETH_P_IPV6)) 1687 loopback = true; 1688 } 1689 if (loopback) { 1690 /* internal loopback packet, subtract all offsets by 4 */ 1691 inner_ip_off -= 4; 1692 inner_mac_off -= 4; 1693 outer_ip_off -= 4; 1694 } 1695 1696 nw_off = inner_ip_off - ETH_HLEN; 1697 skb_set_network_header(skb, nw_off); 1698 if (tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_IP_TYPE) { 1699 struct ipv6hdr *iph = ipv6_hdr(skb); 1700 1701 skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr)); 1702 len = skb->len - skb_transport_offset(skb); 1703 th = tcp_hdr(skb); 1704 th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0); 1705 } else { 1706 struct iphdr *iph = ip_hdr(skb); 1707 1708 skb_set_transport_header(skb, nw_off + sizeof(struct iphdr)); 1709 len = skb->len - skb_transport_offset(skb); 1710 th = tcp_hdr(skb); 1711 th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0); 1712 } 1713 1714 if (inner_mac_off) { /* tunnel */ 1715 __be16 proto = *((__be16 *)(skb->data + outer_ip_off - 1716 ETH_HLEN - 2)); 1717 1718 bnxt_gro_tunnel(skb, proto); 1719 } 1720 #endif 1721 return skb; 1722 } 1723 1724 static struct sk_buff *bnxt_gro_func_5750x(struct bnxt_tpa_info *tpa_info, 1725 int payload_off, int tcp_ts, 1726 struct sk_buff *skb) 1727 { 1728 #ifdef CONFIG_INET 1729 u16 outer_ip_off, inner_ip_off, inner_mac_off; 1730 u32 hdr_info = tpa_info->hdr_info; 1731 int iphdr_len, nw_off; 1732 1733 inner_ip_off = BNXT_TPA_INNER_L3_OFF(hdr_info); 1734 inner_mac_off = BNXT_TPA_INNER_L2_OFF(hdr_info); 1735 outer_ip_off = BNXT_TPA_OUTER_L3_OFF(hdr_info); 1736 1737 nw_off = inner_ip_off - ETH_HLEN; 1738 skb_set_network_header(skb, nw_off); 1739 iphdr_len = (tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_IP_TYPE) ? 1740 sizeof(struct ipv6hdr) : sizeof(struct iphdr); 1741 skb_set_transport_header(skb, nw_off + iphdr_len); 1742 1743 if (inner_mac_off) { /* tunnel */ 1744 __be16 proto = *((__be16 *)(skb->data + outer_ip_off - 1745 ETH_HLEN - 2)); 1746 1747 bnxt_gro_tunnel(skb, proto); 1748 } 1749 #endif 1750 return skb; 1751 } 1752 1753 #define BNXT_IPV4_HDR_SIZE (sizeof(struct iphdr) + sizeof(struct tcphdr)) 1754 #define BNXT_IPV6_HDR_SIZE (sizeof(struct ipv6hdr) + sizeof(struct tcphdr)) 1755 1756 static struct sk_buff *bnxt_gro_func_5730x(struct bnxt_tpa_info *tpa_info, 1757 int payload_off, int tcp_ts, 1758 struct sk_buff *skb) 1759 { 1760 #ifdef CONFIG_INET 1761 struct tcphdr *th; 1762 int len, nw_off, tcp_opt_len = 0; 1763 1764 if (tcp_ts) 1765 tcp_opt_len = 12; 1766 1767 if (tpa_info->gso_type == SKB_GSO_TCPV4) { 1768 struct iphdr *iph; 1769 1770 nw_off = payload_off - BNXT_IPV4_HDR_SIZE - tcp_opt_len - 1771 ETH_HLEN; 1772 skb_set_network_header(skb, nw_off); 1773 iph = ip_hdr(skb); 1774 skb_set_transport_header(skb, nw_off + sizeof(struct iphdr)); 1775 len = skb->len - skb_transport_offset(skb); 1776 th = tcp_hdr(skb); 1777 th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0); 1778 } else if (tpa_info->gso_type == SKB_GSO_TCPV6) { 1779 struct ipv6hdr *iph; 1780 1781 nw_off = payload_off - BNXT_IPV6_HDR_SIZE - tcp_opt_len - 1782 ETH_HLEN; 1783 skb_set_network_header(skb, nw_off); 1784 iph = ipv6_hdr(skb); 1785 skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr)); 1786 len = skb->len - skb_transport_offset(skb); 1787 th = tcp_hdr(skb); 1788 th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0); 1789 } else { 1790 dev_kfree_skb_any(skb); 1791 return NULL; 1792 } 1793 1794 if (nw_off) /* tunnel */ 1795 bnxt_gro_tunnel(skb, skb->protocol); 1796 #endif 1797 return skb; 1798 } 1799 1800 static inline struct sk_buff *bnxt_gro_skb(struct bnxt *bp, 1801 struct bnxt_tpa_info *tpa_info, 1802 struct rx_tpa_end_cmp *tpa_end, 1803 struct rx_tpa_end_cmp_ext *tpa_end1, 1804 struct sk_buff *skb, 1805 struct bnxt_rx_sw_stats *rx_stats) 1806 { 1807 #ifdef CONFIG_INET 1808 int payload_off; 1809 u16 segs; 1810 1811 segs = TPA_END_TPA_SEGS(tpa_end); 1812 if (segs == 1) 1813 return skb; 1814 1815 rx_stats->rx_hw_gro_packets++; 1816 rx_stats->rx_hw_gro_wire_packets += segs; 1817 1818 NAPI_GRO_CB(skb)->count = segs; 1819 skb_shinfo(skb)->gso_size = 1820 le32_to_cpu(tpa_end1->rx_tpa_end_cmp_seg_len); 1821 skb_shinfo(skb)->gso_type = tpa_info->gso_type; 1822 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 1823 payload_off = TPA_END_PAYLOAD_OFF_P5(tpa_end1); 1824 else 1825 payload_off = TPA_END_PAYLOAD_OFF(tpa_end); 1826 skb = bp->gro_func(tpa_info, payload_off, TPA_END_GRO_TS(tpa_end), skb); 1827 if (likely(skb)) 1828 tcp_gro_complete(skb); 1829 #endif 1830 return skb; 1831 } 1832 1833 /* Given the cfa_code of a received packet determine which 1834 * netdev (vf-rep or PF) the packet is destined to. 1835 */ 1836 static struct net_device *bnxt_get_pkt_dev(struct bnxt *bp, u16 cfa_code) 1837 { 1838 struct net_device *dev = bnxt_get_vf_rep(bp, cfa_code); 1839 1840 /* if vf-rep dev is NULL, it must belong to the PF */ 1841 return dev ? dev : bp->dev; 1842 } 1843 1844 static inline struct sk_buff *bnxt_tpa_end(struct bnxt *bp, 1845 struct bnxt_cp_ring_info *cpr, 1846 u32 *raw_cons, 1847 struct rx_tpa_end_cmp *tpa_end, 1848 struct rx_tpa_end_cmp_ext *tpa_end1, 1849 u8 *event) 1850 { 1851 struct bnxt_napi *bnapi = cpr->bnapi; 1852 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 1853 struct net_device *dev = bp->dev; 1854 u8 *data_ptr, agg_bufs; 1855 unsigned int len; 1856 struct bnxt_tpa_info *tpa_info; 1857 dma_addr_t mapping; 1858 struct sk_buff *skb; 1859 u16 idx = 0, agg_id; 1860 void *data; 1861 bool gro; 1862 1863 if (unlikely(bnapi->in_reset)) { 1864 int rc = bnxt_discard_rx(bp, cpr, raw_cons, tpa_end); 1865 1866 if (rc < 0) 1867 return ERR_PTR(-EBUSY); 1868 return NULL; 1869 } 1870 1871 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 1872 agg_id = TPA_END_AGG_ID_P5(tpa_end); 1873 agg_id = bnxt_lookup_agg_idx(rxr, agg_id); 1874 agg_bufs = TPA_END_AGG_BUFS_P5(tpa_end1); 1875 tpa_info = &rxr->rx_tpa[agg_id]; 1876 if (unlikely(agg_bufs != tpa_info->agg_count)) { 1877 netdev_warn(bp->dev, "TPA end agg_buf %d != expected agg_bufs %d\n", 1878 agg_bufs, tpa_info->agg_count); 1879 agg_bufs = tpa_info->agg_count; 1880 } 1881 tpa_info->agg_count = 0; 1882 *event |= BNXT_AGG_EVENT; 1883 bnxt_free_agg_idx(rxr, agg_id); 1884 idx = agg_id; 1885 gro = !!(bp->flags & BNXT_FLAG_GRO); 1886 } else { 1887 agg_id = TPA_END_AGG_ID(tpa_end); 1888 agg_bufs = TPA_END_AGG_BUFS(tpa_end); 1889 tpa_info = &rxr->rx_tpa[agg_id]; 1890 idx = RING_CMP(*raw_cons); 1891 if (agg_bufs) { 1892 if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, raw_cons)) 1893 return ERR_PTR(-EBUSY); 1894 1895 *event |= BNXT_AGG_EVENT; 1896 idx = NEXT_CMP(idx); 1897 } 1898 gro = !!TPA_END_GRO(tpa_end); 1899 } 1900 data = tpa_info->data; 1901 data_ptr = tpa_info->data_ptr; 1902 prefetch(data_ptr); 1903 len = tpa_info->len; 1904 mapping = tpa_info->mapping; 1905 1906 if (unlikely(agg_bufs > MAX_SKB_FRAGS || TPA_END_ERRORS(tpa_end1))) { 1907 bnxt_abort_tpa(cpr, idx, agg_bufs); 1908 if (agg_bufs > MAX_SKB_FRAGS) 1909 netdev_warn(bp->dev, "TPA frags %d exceeded MAX_SKB_FRAGS %d\n", 1910 agg_bufs, (int)MAX_SKB_FRAGS); 1911 return NULL; 1912 } 1913 1914 if (len <= bp->rx_copybreak) { 1915 skb = bnxt_copy_skb(bnapi, data_ptr, len, mapping); 1916 if (!skb) { 1917 bnxt_abort_tpa(cpr, idx, agg_bufs); 1918 cpr->sw_stats->rx.rx_oom_discards += 1; 1919 return NULL; 1920 } 1921 } else { 1922 u8 *new_data; 1923 dma_addr_t new_mapping; 1924 1925 new_data = __bnxt_alloc_rx_frag(bp, &new_mapping, rxr, 1926 GFP_ATOMIC); 1927 if (!new_data) { 1928 bnxt_abort_tpa(cpr, idx, agg_bufs); 1929 cpr->sw_stats->rx.rx_oom_discards += 1; 1930 return NULL; 1931 } 1932 1933 tpa_info->data = new_data; 1934 tpa_info->data_ptr = new_data + bp->rx_offset; 1935 tpa_info->mapping = new_mapping; 1936 1937 skb = napi_build_skb(data, bp->rx_buf_size); 1938 dma_sync_single_for_cpu(&bp->pdev->dev, mapping, 1939 bp->rx_buf_use_size, bp->rx_dir); 1940 1941 if (!skb) { 1942 page_pool_free_va(rxr->head_pool, data, true); 1943 bnxt_abort_tpa(cpr, idx, agg_bufs); 1944 cpr->sw_stats->rx.rx_oom_discards += 1; 1945 return NULL; 1946 } 1947 skb_mark_for_recycle(skb); 1948 skb_reserve(skb, bp->rx_offset); 1949 skb_put(skb, len); 1950 } 1951 1952 if (agg_bufs) { 1953 skb = bnxt_rx_agg_netmems_skb(bp, cpr, skb, idx, agg_bufs, 1954 true); 1955 if (!skb) { 1956 /* Page reuse already handled by bnxt_rx_pages(). */ 1957 cpr->sw_stats->rx.rx_oom_discards += 1; 1958 return NULL; 1959 } 1960 } 1961 1962 if (tpa_info->cfa_code_valid) 1963 dev = bnxt_get_pkt_dev(bp, tpa_info->cfa_code); 1964 skb->protocol = eth_type_trans(skb, dev); 1965 1966 if (tpa_info->hash_type != PKT_HASH_TYPE_NONE) 1967 skb_set_hash(skb, tpa_info->rss_hash, tpa_info->hash_type); 1968 1969 if (tpa_info->vlan_valid && 1970 (dev->features & BNXT_HW_FEATURE_VLAN_ALL_RX)) { 1971 __be16 vlan_proto = htons(tpa_info->metadata >> 1972 RX_CMP_FLAGS2_METADATA_TPID_SFT); 1973 u16 vtag = tpa_info->metadata & RX_CMP_FLAGS2_METADATA_TCI_MASK; 1974 1975 if (eth_type_vlan(vlan_proto)) { 1976 __vlan_hwaccel_put_tag(skb, vlan_proto, vtag); 1977 } else { 1978 dev_kfree_skb(skb); 1979 return NULL; 1980 } 1981 } 1982 1983 skb_checksum_none_assert(skb); 1984 if (likely(tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_L4_CS_CALC)) { 1985 skb->ip_summed = CHECKSUM_UNNECESSARY; 1986 skb->csum_level = 1987 (tpa_info->flags2 & RX_CMP_FLAGS2_T_L4_CS_CALC) >> 3; 1988 } 1989 1990 if (gro) 1991 skb = bnxt_gro_skb(bp, tpa_info, tpa_end, tpa_end1, skb, 1992 &cpr->sw_stats->rx); 1993 1994 return skb; 1995 } 1996 1997 static void bnxt_tpa_agg(struct bnxt *bp, struct bnxt_rx_ring_info *rxr, 1998 struct rx_agg_cmp *rx_agg) 1999 { 2000 u16 agg_id = TPA_AGG_AGG_ID(rx_agg); 2001 struct bnxt_tpa_info *tpa_info; 2002 2003 agg_id = bnxt_lookup_agg_idx(rxr, agg_id); 2004 tpa_info = &rxr->rx_tpa[agg_id]; 2005 BUG_ON(tpa_info->agg_count >= MAX_SKB_FRAGS); 2006 tpa_info->agg_arr[tpa_info->agg_count++] = *rx_agg; 2007 } 2008 2009 static void bnxt_deliver_skb(struct bnxt *bp, struct bnxt_napi *bnapi, 2010 struct sk_buff *skb) 2011 { 2012 skb_mark_for_recycle(skb); 2013 2014 if (skb->dev != bp->dev) { 2015 /* this packet belongs to a vf-rep */ 2016 bnxt_vf_rep_rx(bp, skb); 2017 return; 2018 } 2019 skb_record_rx_queue(skb, bnapi->index); 2020 napi_gro_receive(&bnapi->napi, skb); 2021 } 2022 2023 static bool bnxt_rx_ts_valid(struct bnxt *bp, u32 flags, 2024 struct rx_cmp_ext *rxcmp1, u32 *cmpl_ts) 2025 { 2026 u32 ts = le32_to_cpu(rxcmp1->rx_cmp_timestamp); 2027 2028 if (BNXT_PTP_RX_TS_VALID(flags)) 2029 goto ts_valid; 2030 if (!bp->ptp_all_rx_tstamp || !ts || !BNXT_ALL_RX_TS_VALID(flags)) 2031 return false; 2032 2033 ts_valid: 2034 *cmpl_ts = ts; 2035 return true; 2036 } 2037 2038 static struct sk_buff *bnxt_rx_vlan(struct sk_buff *skb, u8 cmp_type, 2039 struct rx_cmp *rxcmp, 2040 struct rx_cmp_ext *rxcmp1) 2041 { 2042 __be16 vlan_proto; 2043 u16 vtag; 2044 2045 if (cmp_type == CMP_TYPE_RX_L2_CMP) { 2046 __le32 flags2 = rxcmp1->rx_cmp_flags2; 2047 u32 meta_data; 2048 2049 if (!(flags2 & cpu_to_le32(RX_CMP_FLAGS2_META_FORMAT_VLAN))) 2050 return skb; 2051 2052 meta_data = le32_to_cpu(rxcmp1->rx_cmp_meta_data); 2053 vtag = meta_data & RX_CMP_FLAGS2_METADATA_TCI_MASK; 2054 vlan_proto = htons(meta_data >> RX_CMP_FLAGS2_METADATA_TPID_SFT); 2055 if (eth_type_vlan(vlan_proto)) 2056 __vlan_hwaccel_put_tag(skb, vlan_proto, vtag); 2057 else 2058 goto vlan_err; 2059 } else if (cmp_type == CMP_TYPE_RX_L2_V3_CMP) { 2060 if (RX_CMP_VLAN_VALID(rxcmp)) { 2061 u32 tpid_sel = RX_CMP_VLAN_TPID_SEL(rxcmp); 2062 2063 if (tpid_sel == RX_CMP_METADATA1_TPID_8021Q) 2064 vlan_proto = htons(ETH_P_8021Q); 2065 else if (tpid_sel == RX_CMP_METADATA1_TPID_8021AD) 2066 vlan_proto = htons(ETH_P_8021AD); 2067 else 2068 goto vlan_err; 2069 vtag = RX_CMP_METADATA0_TCI(rxcmp1); 2070 __vlan_hwaccel_put_tag(skb, vlan_proto, vtag); 2071 } 2072 } 2073 return skb; 2074 vlan_err: 2075 skb_mark_for_recycle(skb); 2076 dev_kfree_skb(skb); 2077 return NULL; 2078 } 2079 2080 static enum pkt_hash_types bnxt_rss_ext_op(struct bnxt *bp, 2081 struct rx_cmp *rxcmp) 2082 { 2083 u8 ext_op; 2084 2085 ext_op = RX_CMP_V3_HASH_TYPE(bp, rxcmp); 2086 switch (ext_op) { 2087 case EXT_OP_INNER_4: 2088 case EXT_OP_OUTER_4: 2089 case EXT_OP_INNFL_3: 2090 case EXT_OP_OUTFL_3: 2091 return PKT_HASH_TYPE_L4; 2092 default: 2093 return PKT_HASH_TYPE_L3; 2094 } 2095 } 2096 2097 /* returns the following: 2098 * 1 - 1 packet successfully received 2099 * 0 - successful TPA_START, packet not completed yet 2100 * -EBUSY - completion ring does not have all the agg buffers yet 2101 * -ENOMEM - packet aborted due to out of memory 2102 * -EIO - packet aborted due to hw error indicated in BD 2103 */ 2104 static int bnxt_rx_pkt(struct bnxt *bp, struct bnxt_cp_ring_info *cpr, 2105 u32 *raw_cons, u8 *event) 2106 { 2107 struct bnxt_napi *bnapi = cpr->bnapi; 2108 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 2109 struct net_device *dev = bp->dev; 2110 struct rx_cmp *rxcmp; 2111 struct rx_cmp_ext *rxcmp1; 2112 u32 tmp_raw_cons = *raw_cons; 2113 u16 cons, prod, cp_cons = RING_CMP(tmp_raw_cons); 2114 struct skb_shared_info *sinfo; 2115 struct bnxt_sw_rx_bd *rx_buf; 2116 unsigned int len; 2117 u8 *data_ptr, agg_bufs, cmp_type; 2118 bool xdp_active = false; 2119 dma_addr_t dma_addr; 2120 struct sk_buff *skb; 2121 struct xdp_buff xdp; 2122 u32 flags, misc; 2123 u32 cmpl_ts; 2124 void *data; 2125 int rc = 0; 2126 2127 rxcmp = (struct rx_cmp *) 2128 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 2129 2130 cmp_type = RX_CMP_TYPE(rxcmp); 2131 2132 if (cmp_type == CMP_TYPE_RX_TPA_AGG_CMP) { 2133 bnxt_tpa_agg(bp, rxr, (struct rx_agg_cmp *)rxcmp); 2134 goto next_rx_no_prod_no_len; 2135 } 2136 2137 tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons); 2138 cp_cons = RING_CMP(tmp_raw_cons); 2139 rxcmp1 = (struct rx_cmp_ext *) 2140 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 2141 2142 if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons)) 2143 return -EBUSY; 2144 2145 /* The valid test of the entry must be done first before 2146 * reading any further. 2147 */ 2148 dma_rmb(); 2149 prod = rxr->rx_prod; 2150 2151 if (cmp_type == CMP_TYPE_RX_L2_TPA_START_CMP || 2152 cmp_type == CMP_TYPE_RX_L2_TPA_START_V3_CMP) { 2153 bnxt_tpa_start(bp, rxr, cmp_type, 2154 (struct rx_tpa_start_cmp *)rxcmp, 2155 (struct rx_tpa_start_cmp_ext *)rxcmp1); 2156 2157 *event |= BNXT_RX_EVENT; 2158 goto next_rx_no_prod_no_len; 2159 2160 } else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) { 2161 skb = bnxt_tpa_end(bp, cpr, &tmp_raw_cons, 2162 (struct rx_tpa_end_cmp *)rxcmp, 2163 (struct rx_tpa_end_cmp_ext *)rxcmp1, event); 2164 2165 if (IS_ERR(skb)) 2166 return -EBUSY; 2167 2168 rc = -ENOMEM; 2169 if (likely(skb)) { 2170 bnxt_deliver_skb(bp, bnapi, skb); 2171 rc = 1; 2172 } 2173 *event |= BNXT_RX_EVENT; 2174 goto next_rx_no_prod_no_len; 2175 } 2176 2177 cons = rxcmp->rx_cmp_opaque; 2178 if (unlikely(cons != rxr->rx_next_cons)) { 2179 int rc1 = bnxt_discard_rx(bp, cpr, &tmp_raw_cons, rxcmp); 2180 2181 /* 0xffff is forced error, don't print it */ 2182 if (rxr->rx_next_cons != 0xffff) 2183 netdev_warn(bp->dev, "RX cons %x != expected cons %x\n", 2184 cons, rxr->rx_next_cons); 2185 bnxt_sched_reset_rxr(bp, rxr); 2186 if (rc1) 2187 return rc1; 2188 goto next_rx_no_prod_no_len; 2189 } 2190 rx_buf = &rxr->rx_buf_ring[cons]; 2191 data = rx_buf->data; 2192 data_ptr = rx_buf->data_ptr; 2193 prefetch(data_ptr); 2194 2195 misc = le32_to_cpu(rxcmp->rx_cmp_misc_v1); 2196 agg_bufs = (misc & RX_CMP_AGG_BUFS) >> RX_CMP_AGG_BUFS_SHIFT; 2197 2198 if (agg_bufs) { 2199 if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons)) 2200 return -EBUSY; 2201 2202 cp_cons = NEXT_CMP(cp_cons); 2203 *event |= BNXT_AGG_EVENT; 2204 } 2205 *event |= BNXT_RX_EVENT; 2206 2207 rx_buf->data = NULL; 2208 if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L2_ERRORS) { 2209 u32 rx_err = le32_to_cpu(rxcmp1->rx_cmp_cfa_code_errors_v2); 2210 2211 bnxt_reuse_rx_data(rxr, cons, data); 2212 if (agg_bufs) 2213 bnxt_reuse_rx_agg_bufs(cpr, cp_cons, 0, agg_bufs, 2214 false); 2215 2216 rc = -EIO; 2217 if (rx_err & RX_CMPL_ERRORS_BUFFER_ERROR_MASK) { 2218 bnapi->cp_ring.sw_stats->rx.rx_buf_errors++; 2219 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS) && 2220 !(bp->fw_cap & BNXT_FW_CAP_RING_MONITOR)) { 2221 netdev_warn_once(bp->dev, "RX buffer error %x\n", 2222 rx_err); 2223 bnxt_sched_reset_rxr(bp, rxr); 2224 } 2225 } 2226 goto next_rx_no_len; 2227 } 2228 2229 flags = le32_to_cpu(rxcmp->rx_cmp_len_flags_type); 2230 len = flags >> RX_CMP_LEN_SHIFT; 2231 dma_addr = rx_buf->mapping; 2232 2233 if (bnxt_xdp_attached(bp, rxr)) { 2234 bnxt_xdp_buff_init(bp, rxr, cons, data_ptr, len, &xdp); 2235 if (agg_bufs) { 2236 u32 frag_len = bnxt_rx_agg_netmems_xdp(bp, cpr, &xdp, 2237 cp_cons, 2238 agg_bufs, 2239 false); 2240 if (!frag_len) 2241 goto oom_next_rx; 2242 2243 } 2244 xdp_active = true; 2245 } 2246 2247 if (xdp_active) { 2248 if (bnxt_rx_xdp(bp, rxr, cons, &xdp, data, &data_ptr, &len, event)) { 2249 rc = 1; 2250 goto next_rx; 2251 } 2252 if (xdp_buff_has_frags(&xdp)) { 2253 sinfo = xdp_get_shared_info_from_buff(&xdp); 2254 agg_bufs = sinfo->nr_frags; 2255 } else { 2256 agg_bufs = 0; 2257 } 2258 } 2259 2260 if (len <= bp->rx_copybreak) { 2261 if (!xdp_active) 2262 skb = bnxt_copy_skb(bnapi, data_ptr, len, dma_addr); 2263 else 2264 skb = bnxt_copy_xdp(bnapi, &xdp, len, dma_addr); 2265 bnxt_reuse_rx_data(rxr, cons, data); 2266 if (!skb) { 2267 if (agg_bufs) { 2268 if (!xdp_active) 2269 bnxt_reuse_rx_agg_bufs(cpr, cp_cons, 0, 2270 agg_bufs, false); 2271 else 2272 bnxt_xdp_buff_frags_free(rxr, &xdp); 2273 } 2274 goto oom_next_rx; 2275 } 2276 } else { 2277 u32 payload; 2278 2279 if (rx_buf->data_ptr == data_ptr) 2280 payload = misc & RX_CMP_PAYLOAD_OFFSET; 2281 else 2282 payload = 0; 2283 skb = bp->rx_skb_func(bp, rxr, cons, data, data_ptr, dma_addr, 2284 payload | len); 2285 if (!skb) 2286 goto oom_next_rx; 2287 } 2288 2289 if (agg_bufs) { 2290 if (!xdp_active) { 2291 skb = bnxt_rx_agg_netmems_skb(bp, cpr, skb, cp_cons, 2292 agg_bufs, false); 2293 if (!skb) 2294 goto oom_next_rx; 2295 } else { 2296 skb = bnxt_xdp_build_skb(bp, skb, agg_bufs, rxr, &xdp); 2297 if (!skb) { 2298 /* we should be able to free the old skb here */ 2299 bnxt_xdp_buff_frags_free(rxr, &xdp); 2300 goto oom_next_rx; 2301 } 2302 } 2303 } 2304 2305 if (RX_CMP_HASH_VALID(rxcmp)) { 2306 enum pkt_hash_types type; 2307 2308 if (cmp_type == CMP_TYPE_RX_L2_V3_CMP) { 2309 type = bnxt_rss_ext_op(bp, rxcmp); 2310 } else { 2311 u32 itypes = RX_CMP_ITYPES(rxcmp); 2312 2313 if (itypes == RX_CMP_FLAGS_ITYPE_TCP || 2314 itypes == RX_CMP_FLAGS_ITYPE_UDP) 2315 type = PKT_HASH_TYPE_L4; 2316 else 2317 type = PKT_HASH_TYPE_L3; 2318 } 2319 skb_set_hash(skb, le32_to_cpu(rxcmp->rx_cmp_rss_hash), type); 2320 } 2321 2322 if (cmp_type == CMP_TYPE_RX_L2_CMP) 2323 dev = bnxt_get_pkt_dev(bp, RX_CMP_CFA_CODE(rxcmp1)); 2324 skb->protocol = eth_type_trans(skb, dev); 2325 2326 if (skb->dev->features & BNXT_HW_FEATURE_VLAN_ALL_RX) { 2327 skb = bnxt_rx_vlan(skb, cmp_type, rxcmp, rxcmp1); 2328 if (!skb) 2329 goto next_rx; 2330 } 2331 2332 skb_checksum_none_assert(skb); 2333 if (RX_CMP_L4_CS_OK(rxcmp1)) { 2334 if (dev->features & NETIF_F_RXCSUM) { 2335 skb->ip_summed = CHECKSUM_UNNECESSARY; 2336 skb->csum_level = RX_CMP_ENCAP(rxcmp1); 2337 } 2338 } else { 2339 if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L4_CS_ERR_BITS) { 2340 if (dev->features & NETIF_F_RXCSUM) 2341 bnapi->cp_ring.sw_stats->rx.rx_l4_csum_errors++; 2342 } 2343 } 2344 2345 if (bnxt_rx_ts_valid(bp, flags, rxcmp1, &cmpl_ts)) { 2346 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 2347 u64 ns, ts; 2348 2349 if (!bnxt_get_rx_ts_p5(bp, &ts, cmpl_ts)) { 2350 struct bnxt_ptp_cfg *ptp = bp->ptp_cfg; 2351 2352 ns = bnxt_timecounter_cyc2time(ptp, ts); 2353 memset(skb_hwtstamps(skb), 0, 2354 sizeof(*skb_hwtstamps(skb))); 2355 skb_hwtstamps(skb)->hwtstamp = ns_to_ktime(ns); 2356 } 2357 } 2358 } 2359 bnxt_deliver_skb(bp, bnapi, skb); 2360 rc = 1; 2361 2362 next_rx: 2363 cpr->rx_packets += 1; 2364 cpr->rx_bytes += len; 2365 2366 next_rx_no_len: 2367 rxr->rx_prod = NEXT_RX(prod); 2368 rxr->rx_next_cons = RING_RX(bp, NEXT_RX(cons)); 2369 2370 next_rx_no_prod_no_len: 2371 *raw_cons = tmp_raw_cons; 2372 2373 return rc; 2374 2375 oom_next_rx: 2376 cpr->sw_stats->rx.rx_oom_discards += 1; 2377 rc = -ENOMEM; 2378 goto next_rx; 2379 } 2380 2381 /* In netpoll mode, if we are using a combined completion ring, we need to 2382 * discard the rx packets and recycle the buffers. 2383 */ 2384 static int bnxt_force_rx_discard(struct bnxt *bp, 2385 struct bnxt_cp_ring_info *cpr, 2386 u32 *raw_cons, u8 *event) 2387 { 2388 u32 tmp_raw_cons = *raw_cons; 2389 struct rx_cmp_ext *rxcmp1; 2390 struct rx_cmp *rxcmp; 2391 u16 cp_cons; 2392 u8 cmp_type; 2393 int rc; 2394 2395 cp_cons = RING_CMP(tmp_raw_cons); 2396 rxcmp = (struct rx_cmp *) 2397 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 2398 2399 tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons); 2400 cp_cons = RING_CMP(tmp_raw_cons); 2401 rxcmp1 = (struct rx_cmp_ext *) 2402 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 2403 2404 if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons)) 2405 return -EBUSY; 2406 2407 /* The valid test of the entry must be done first before 2408 * reading any further. 2409 */ 2410 dma_rmb(); 2411 cmp_type = RX_CMP_TYPE(rxcmp); 2412 if (cmp_type == CMP_TYPE_RX_L2_CMP || 2413 cmp_type == CMP_TYPE_RX_L2_V3_CMP) { 2414 rxcmp1->rx_cmp_cfa_code_errors_v2 |= 2415 cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR); 2416 } else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) { 2417 struct rx_tpa_end_cmp_ext *tpa_end1; 2418 2419 tpa_end1 = (struct rx_tpa_end_cmp_ext *)rxcmp1; 2420 tpa_end1->rx_tpa_end_cmp_errors_v2 |= 2421 cpu_to_le32(RX_TPA_END_CMP_ERRORS); 2422 } 2423 rc = bnxt_rx_pkt(bp, cpr, raw_cons, event); 2424 if (rc && rc != -EBUSY) 2425 cpr->sw_stats->rx.rx_netpoll_discards += 1; 2426 return rc; 2427 } 2428 2429 u32 bnxt_fw_health_readl(struct bnxt *bp, int reg_idx) 2430 { 2431 struct bnxt_fw_health *fw_health = bp->fw_health; 2432 u32 reg = fw_health->regs[reg_idx]; 2433 u32 reg_type, reg_off, val = 0; 2434 2435 reg_type = BNXT_FW_HEALTH_REG_TYPE(reg); 2436 reg_off = BNXT_FW_HEALTH_REG_OFF(reg); 2437 switch (reg_type) { 2438 case BNXT_FW_HEALTH_REG_TYPE_CFG: 2439 pci_read_config_dword(bp->pdev, reg_off, &val); 2440 break; 2441 case BNXT_FW_HEALTH_REG_TYPE_GRC: 2442 reg_off = fw_health->mapped_regs[reg_idx]; 2443 fallthrough; 2444 case BNXT_FW_HEALTH_REG_TYPE_BAR0: 2445 val = readl(bp->bar0 + reg_off); 2446 break; 2447 case BNXT_FW_HEALTH_REG_TYPE_BAR1: 2448 val = readl(bp->bar1 + reg_off); 2449 break; 2450 } 2451 if (reg_idx == BNXT_FW_RESET_INPROG_REG) 2452 val &= fw_health->fw_reset_inprog_reg_mask; 2453 return val; 2454 } 2455 2456 static u16 bnxt_agg_ring_id_to_grp_idx(struct bnxt *bp, u16 ring_id) 2457 { 2458 int i; 2459 2460 for (i = 0; i < bp->rx_nr_rings; i++) { 2461 u16 grp_idx = bp->rx_ring[i].bnapi->index; 2462 struct bnxt_ring_grp_info *grp_info; 2463 2464 grp_info = &bp->grp_info[grp_idx]; 2465 if (grp_info->agg_fw_ring_id == ring_id) 2466 return grp_idx; 2467 } 2468 return INVALID_HW_RING_ID; 2469 } 2470 2471 static u16 bnxt_get_force_speed(struct bnxt_link_info *link_info) 2472 { 2473 struct bnxt *bp = container_of(link_info, struct bnxt, link_info); 2474 2475 if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) 2476 return link_info->force_link_speed2; 2477 if (link_info->req_signal_mode == BNXT_SIG_MODE_PAM4) 2478 return link_info->force_pam4_link_speed; 2479 return link_info->force_link_speed; 2480 } 2481 2482 static void bnxt_set_force_speed(struct bnxt_link_info *link_info) 2483 { 2484 struct bnxt *bp = container_of(link_info, struct bnxt, link_info); 2485 2486 if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) { 2487 link_info->req_link_speed = link_info->force_link_speed2; 2488 link_info->req_signal_mode = BNXT_SIG_MODE_NRZ; 2489 switch (link_info->req_link_speed) { 2490 case BNXT_LINK_SPEED_50GB_PAM4: 2491 case BNXT_LINK_SPEED_100GB_PAM4: 2492 case BNXT_LINK_SPEED_200GB_PAM4: 2493 case BNXT_LINK_SPEED_400GB_PAM4: 2494 link_info->req_signal_mode = BNXT_SIG_MODE_PAM4; 2495 break; 2496 case BNXT_LINK_SPEED_100GB_PAM4_112: 2497 case BNXT_LINK_SPEED_200GB_PAM4_112: 2498 case BNXT_LINK_SPEED_400GB_PAM4_112: 2499 link_info->req_signal_mode = BNXT_SIG_MODE_PAM4_112; 2500 break; 2501 default: 2502 link_info->req_signal_mode = BNXT_SIG_MODE_NRZ; 2503 } 2504 return; 2505 } 2506 link_info->req_link_speed = link_info->force_link_speed; 2507 link_info->req_signal_mode = BNXT_SIG_MODE_NRZ; 2508 if (link_info->force_pam4_link_speed) { 2509 link_info->req_link_speed = link_info->force_pam4_link_speed; 2510 link_info->req_signal_mode = BNXT_SIG_MODE_PAM4; 2511 } 2512 } 2513 2514 static void bnxt_set_auto_speed(struct bnxt_link_info *link_info) 2515 { 2516 struct bnxt *bp = container_of(link_info, struct bnxt, link_info); 2517 2518 if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) { 2519 link_info->advertising = link_info->auto_link_speeds2; 2520 return; 2521 } 2522 link_info->advertising = link_info->auto_link_speeds; 2523 link_info->advertising_pam4 = link_info->auto_pam4_link_speeds; 2524 } 2525 2526 static bool bnxt_force_speed_updated(struct bnxt_link_info *link_info) 2527 { 2528 struct bnxt *bp = container_of(link_info, struct bnxt, link_info); 2529 2530 if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) { 2531 if (link_info->req_link_speed != link_info->force_link_speed2) 2532 return true; 2533 return false; 2534 } 2535 if (link_info->req_signal_mode == BNXT_SIG_MODE_NRZ && 2536 link_info->req_link_speed != link_info->force_link_speed) 2537 return true; 2538 if (link_info->req_signal_mode == BNXT_SIG_MODE_PAM4 && 2539 link_info->req_link_speed != link_info->force_pam4_link_speed) 2540 return true; 2541 return false; 2542 } 2543 2544 static bool bnxt_auto_speed_updated(struct bnxt_link_info *link_info) 2545 { 2546 struct bnxt *bp = container_of(link_info, struct bnxt, link_info); 2547 2548 if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) { 2549 if (link_info->advertising != link_info->auto_link_speeds2) 2550 return true; 2551 return false; 2552 } 2553 if (link_info->advertising != link_info->auto_link_speeds || 2554 link_info->advertising_pam4 != link_info->auto_pam4_link_speeds) 2555 return true; 2556 return false; 2557 } 2558 2559 bool bnxt_bs_trace_avail(struct bnxt *bp, u16 type) 2560 { 2561 u32 flags = bp->ctx->ctx_arr[type].flags; 2562 2563 return (flags & BNXT_CTX_MEM_TYPE_VALID) && 2564 ((flags & BNXT_CTX_MEM_FW_TRACE) || 2565 (flags & BNXT_CTX_MEM_FW_BIN_TRACE)); 2566 } 2567 2568 static void bnxt_bs_trace_init(struct bnxt *bp, struct bnxt_ctx_mem_type *ctxm) 2569 { 2570 u32 mem_size, pages, rem_bytes, magic_byte_offset; 2571 u16 trace_type = bnxt_bstore_to_trace[ctxm->type]; 2572 struct bnxt_ctx_pg_info *ctx_pg = ctxm->pg_info; 2573 struct bnxt_ring_mem_info *rmem, *rmem_pg_tbl; 2574 struct bnxt_bs_trace_info *bs_trace; 2575 int last_pg; 2576 2577 if (ctxm->instance_bmap && ctxm->instance_bmap > 1) 2578 return; 2579 2580 mem_size = ctxm->max_entries * ctxm->entry_size; 2581 rem_bytes = mem_size % BNXT_PAGE_SIZE; 2582 pages = DIV_ROUND_UP(mem_size, BNXT_PAGE_SIZE); 2583 2584 last_pg = (pages - 1) & (MAX_CTX_PAGES - 1); 2585 magic_byte_offset = (rem_bytes ? rem_bytes : BNXT_PAGE_SIZE) - 1; 2586 2587 rmem = &ctx_pg[0].ring_mem; 2588 bs_trace = &bp->bs_trace[trace_type]; 2589 bs_trace->ctx_type = ctxm->type; 2590 bs_trace->trace_type = trace_type; 2591 if (pages > MAX_CTX_PAGES) { 2592 int last_pg_dir = rmem->nr_pages - 1; 2593 2594 rmem_pg_tbl = &ctx_pg[0].ctx_pg_tbl[last_pg_dir]->ring_mem; 2595 bs_trace->magic_byte = rmem_pg_tbl->pg_arr[last_pg]; 2596 } else { 2597 bs_trace->magic_byte = rmem->pg_arr[last_pg]; 2598 } 2599 bs_trace->magic_byte += magic_byte_offset; 2600 *bs_trace->magic_byte = BNXT_TRACE_BUF_MAGIC_BYTE; 2601 } 2602 2603 #define BNXT_EVENT_BUF_PRODUCER_TYPE(data1) \ 2604 (((data1) & ASYNC_EVENT_CMPL_DBG_BUF_PRODUCER_EVENT_DATA1_TYPE_MASK) >>\ 2605 ASYNC_EVENT_CMPL_DBG_BUF_PRODUCER_EVENT_DATA1_TYPE_SFT) 2606 2607 #define BNXT_EVENT_BUF_PRODUCER_OFFSET(data2) \ 2608 (((data2) & \ 2609 ASYNC_EVENT_CMPL_DBG_BUF_PRODUCER_EVENT_DATA2_CURR_OFF_MASK) >>\ 2610 ASYNC_EVENT_CMPL_DBG_BUF_PRODUCER_EVENT_DATA2_CURR_OFF_SFT) 2611 2612 #define BNXT_EVENT_THERMAL_CURRENT_TEMP(data2) \ 2613 ((data2) & \ 2614 ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA2_CURRENT_TEMP_MASK) 2615 2616 #define BNXT_EVENT_THERMAL_THRESHOLD_TEMP(data2) \ 2617 (((data2) & \ 2618 ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA2_THRESHOLD_TEMP_MASK) >>\ 2619 ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA2_THRESHOLD_TEMP_SFT) 2620 2621 #define EVENT_DATA1_THERMAL_THRESHOLD_TYPE(data1) \ 2622 ((data1) & \ 2623 ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA1_THRESHOLD_TYPE_MASK) 2624 2625 #define EVENT_DATA1_THERMAL_THRESHOLD_DIR_INCREASING(data1) \ 2626 (((data1) & \ 2627 ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA1_TRANSITION_DIR) ==\ 2628 ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA1_TRANSITION_DIR_INCREASING) 2629 2630 /* Return true if the workqueue has to be scheduled */ 2631 static bool bnxt_event_error_report(struct bnxt *bp, u32 data1, u32 data2) 2632 { 2633 u32 err_type = BNXT_EVENT_ERROR_REPORT_TYPE(data1); 2634 2635 switch (err_type) { 2636 case ASYNC_EVENT_CMPL_ERROR_REPORT_BASE_EVENT_DATA1_ERROR_TYPE_INVALID_SIGNAL: 2637 netdev_err(bp->dev, "1PPS: Received invalid signal on pin%lu from the external source. Please fix the signal and reconfigure the pin\n", 2638 BNXT_EVENT_INVALID_SIGNAL_DATA(data2)); 2639 break; 2640 case ASYNC_EVENT_CMPL_ERROR_REPORT_BASE_EVENT_DATA1_ERROR_TYPE_PAUSE_STORM: 2641 netdev_warn(bp->dev, "Pause Storm detected!\n"); 2642 break; 2643 case ASYNC_EVENT_CMPL_ERROR_REPORT_BASE_EVENT_DATA1_ERROR_TYPE_DOORBELL_DROP_THRESHOLD: 2644 netdev_warn(bp->dev, "One or more MMIO doorbells dropped by the device!\n"); 2645 break; 2646 case ASYNC_EVENT_CMPL_ERROR_REPORT_BASE_EVENT_DATA1_ERROR_TYPE_THERMAL_THRESHOLD: { 2647 u32 type = EVENT_DATA1_THERMAL_THRESHOLD_TYPE(data1); 2648 char *threshold_type; 2649 bool notify = false; 2650 char *dir_str; 2651 2652 switch (type) { 2653 case ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA1_THRESHOLD_TYPE_WARN: 2654 threshold_type = "warning"; 2655 break; 2656 case ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA1_THRESHOLD_TYPE_CRITICAL: 2657 threshold_type = "critical"; 2658 break; 2659 case ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA1_THRESHOLD_TYPE_FATAL: 2660 threshold_type = "fatal"; 2661 break; 2662 case ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA1_THRESHOLD_TYPE_SHUTDOWN: 2663 threshold_type = "shutdown"; 2664 break; 2665 default: 2666 netdev_err(bp->dev, "Unknown Thermal threshold type event\n"); 2667 return false; 2668 } 2669 if (EVENT_DATA1_THERMAL_THRESHOLD_DIR_INCREASING(data1)) { 2670 dir_str = "above"; 2671 notify = true; 2672 } else { 2673 dir_str = "below"; 2674 } 2675 netdev_warn(bp->dev, "Chip temperature has gone %s the %s thermal threshold!\n", 2676 dir_str, threshold_type); 2677 netdev_warn(bp->dev, "Temperature (In Celsius), Current: %lu, threshold: %lu\n", 2678 BNXT_EVENT_THERMAL_CURRENT_TEMP(data2), 2679 BNXT_EVENT_THERMAL_THRESHOLD_TEMP(data2)); 2680 if (notify) { 2681 bp->thermal_threshold_type = type; 2682 set_bit(BNXT_THERMAL_THRESHOLD_SP_EVENT, &bp->sp_event); 2683 return true; 2684 } 2685 return false; 2686 } 2687 case ASYNC_EVENT_CMPL_ERROR_REPORT_BASE_EVENT_DATA1_ERROR_TYPE_DUAL_DATA_RATE_NOT_SUPPORTED: 2688 netdev_warn(bp->dev, "Speed change not supported with dual rate transceivers on this board\n"); 2689 break; 2690 default: 2691 netdev_err(bp->dev, "FW reported unknown error type %u\n", 2692 err_type); 2693 break; 2694 } 2695 return false; 2696 } 2697 2698 #define BNXT_GET_EVENT_PORT(data) \ 2699 ((data) & \ 2700 ASYNC_EVENT_CMPL_PORT_CONN_NOT_ALLOWED_EVENT_DATA1_PORT_ID_MASK) 2701 2702 #define BNXT_EVENT_RING_TYPE(data2) \ 2703 ((data2) & \ 2704 ASYNC_EVENT_CMPL_RING_MONITOR_MSG_EVENT_DATA2_DISABLE_RING_TYPE_MASK) 2705 2706 #define BNXT_EVENT_RING_TYPE_RX(data2) \ 2707 (BNXT_EVENT_RING_TYPE(data2) == \ 2708 ASYNC_EVENT_CMPL_RING_MONITOR_MSG_EVENT_DATA2_DISABLE_RING_TYPE_RX) 2709 2710 #define BNXT_EVENT_PHC_EVENT_TYPE(data1) \ 2711 (((data1) & ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_FLAGS_MASK) >>\ 2712 ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_FLAGS_SFT) 2713 2714 #define BNXT_EVENT_PHC_RTC_UPDATE(data1) \ 2715 (((data1) & ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_PHC_TIME_MSB_MASK) >>\ 2716 ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_PHC_TIME_MSB_SFT) 2717 2718 #define BNXT_PHC_BITS 48 2719 2720 static int bnxt_async_event_process(struct bnxt *bp, 2721 struct hwrm_async_event_cmpl *cmpl) 2722 { 2723 u16 event_id = le16_to_cpu(cmpl->event_id); 2724 u32 data1 = le32_to_cpu(cmpl->event_data1); 2725 u32 data2 = le32_to_cpu(cmpl->event_data2); 2726 2727 netdev_dbg(bp->dev, "hwrm event 0x%x {0x%x, 0x%x}\n", 2728 event_id, data1, data2); 2729 2730 /* TODO CHIMP_FW: Define event id's for link change, error etc */ 2731 switch (event_id) { 2732 case ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE: { 2733 struct bnxt_link_info *link_info = &bp->link_info; 2734 2735 if (BNXT_VF(bp)) 2736 goto async_event_process_exit; 2737 2738 /* print unsupported speed warning in forced speed mode only */ 2739 if (!(link_info->autoneg & BNXT_AUTONEG_SPEED) && 2740 (data1 & 0x20000)) { 2741 u16 fw_speed = bnxt_get_force_speed(link_info); 2742 u32 speed = bnxt_fw_to_ethtool_speed(fw_speed); 2743 2744 if (speed != SPEED_UNKNOWN) 2745 netdev_warn(bp->dev, "Link speed %d no longer supported\n", 2746 speed); 2747 } 2748 set_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT, &bp->sp_event); 2749 } 2750 fallthrough; 2751 case ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CHANGE: 2752 case ASYNC_EVENT_CMPL_EVENT_ID_PORT_PHY_CFG_CHANGE: 2753 set_bit(BNXT_LINK_CFG_CHANGE_SP_EVENT, &bp->sp_event); 2754 fallthrough; 2755 case ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE: 2756 set_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event); 2757 break; 2758 case ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD: 2759 set_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event); 2760 break; 2761 case ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED: { 2762 u16 port_id = BNXT_GET_EVENT_PORT(data1); 2763 2764 if (BNXT_VF(bp)) 2765 break; 2766 2767 if (bp->pf.port_id != port_id) 2768 break; 2769 2770 set_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event); 2771 break; 2772 } 2773 case ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE: 2774 if (BNXT_PF(bp)) 2775 goto async_event_process_exit; 2776 set_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event); 2777 break; 2778 case ASYNC_EVENT_CMPL_EVENT_ID_RESET_NOTIFY: { 2779 char *type_str = "Solicited"; 2780 2781 if (!bp->fw_health) 2782 goto async_event_process_exit; 2783 2784 bp->fw_reset_timestamp = jiffies; 2785 bp->fw_reset_min_dsecs = cmpl->timestamp_lo; 2786 if (!bp->fw_reset_min_dsecs) 2787 bp->fw_reset_min_dsecs = BNXT_DFLT_FW_RST_MIN_DSECS; 2788 bp->fw_reset_max_dsecs = le16_to_cpu(cmpl->timestamp_hi); 2789 if (!bp->fw_reset_max_dsecs) 2790 bp->fw_reset_max_dsecs = BNXT_DFLT_FW_RST_MAX_DSECS; 2791 if (EVENT_DATA1_RESET_NOTIFY_FW_ACTIVATION(data1)) { 2792 set_bit(BNXT_STATE_FW_ACTIVATE_RESET, &bp->state); 2793 } else if (EVENT_DATA1_RESET_NOTIFY_FATAL(data1)) { 2794 type_str = "Fatal"; 2795 bp->fw_health->fatalities++; 2796 set_bit(BNXT_STATE_FW_FATAL_COND, &bp->state); 2797 } else if (data2 && BNXT_FW_STATUS_HEALTHY != 2798 EVENT_DATA2_RESET_NOTIFY_FW_STATUS_CODE(data2)) { 2799 type_str = "Non-fatal"; 2800 bp->fw_health->survivals++; 2801 set_bit(BNXT_STATE_FW_NON_FATAL_COND, &bp->state); 2802 } 2803 netif_warn(bp, hw, bp->dev, 2804 "%s firmware reset event, data1: 0x%x, data2: 0x%x, min wait %u ms, max wait %u ms\n", 2805 type_str, data1, data2, 2806 bp->fw_reset_min_dsecs * 100, 2807 bp->fw_reset_max_dsecs * 100); 2808 set_bit(BNXT_FW_RESET_NOTIFY_SP_EVENT, &bp->sp_event); 2809 break; 2810 } 2811 case ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY: { 2812 struct bnxt_fw_health *fw_health = bp->fw_health; 2813 char *status_desc = "healthy"; 2814 u32 status; 2815 2816 if (!fw_health) 2817 goto async_event_process_exit; 2818 2819 if (!EVENT_DATA1_RECOVERY_ENABLED(data1)) { 2820 fw_health->enabled = false; 2821 netif_info(bp, drv, bp->dev, "Driver recovery watchdog is disabled\n"); 2822 break; 2823 } 2824 fw_health->primary = EVENT_DATA1_RECOVERY_MASTER_FUNC(data1); 2825 fw_health->tmr_multiplier = 2826 DIV_ROUND_UP(fw_health->polling_dsecs * HZ, 2827 bp->current_interval * 10); 2828 fw_health->tmr_counter = fw_health->tmr_multiplier; 2829 if (!fw_health->enabled) 2830 fw_health->last_fw_heartbeat = 2831 bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG); 2832 fw_health->last_fw_reset_cnt = 2833 bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG); 2834 status = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG); 2835 if (status != BNXT_FW_STATUS_HEALTHY) 2836 status_desc = "unhealthy"; 2837 netif_info(bp, drv, bp->dev, 2838 "Driver recovery watchdog, role: %s, firmware status: 0x%x (%s), resets: %u\n", 2839 fw_health->primary ? "primary" : "backup", status, 2840 status_desc, fw_health->last_fw_reset_cnt); 2841 if (!fw_health->enabled) { 2842 /* Make sure tmr_counter is set and visible to 2843 * bnxt_health_check() before setting enabled to true. 2844 */ 2845 smp_wmb(); 2846 fw_health->enabled = true; 2847 } 2848 goto async_event_process_exit; 2849 } 2850 case ASYNC_EVENT_CMPL_EVENT_ID_DEBUG_NOTIFICATION: 2851 netif_notice(bp, hw, bp->dev, 2852 "Received firmware debug notification, data1: 0x%x, data2: 0x%x\n", 2853 data1, data2); 2854 goto async_event_process_exit; 2855 case ASYNC_EVENT_CMPL_EVENT_ID_RING_MONITOR_MSG: { 2856 struct bnxt_rx_ring_info *rxr; 2857 u16 grp_idx; 2858 2859 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 2860 goto async_event_process_exit; 2861 2862 netdev_warn(bp->dev, "Ring monitor event, ring type %lu id 0x%x\n", 2863 BNXT_EVENT_RING_TYPE(data2), data1); 2864 if (!BNXT_EVENT_RING_TYPE_RX(data2)) 2865 goto async_event_process_exit; 2866 2867 grp_idx = bnxt_agg_ring_id_to_grp_idx(bp, data1); 2868 if (grp_idx == INVALID_HW_RING_ID) { 2869 netdev_warn(bp->dev, "Unknown RX agg ring id 0x%x\n", 2870 data1); 2871 goto async_event_process_exit; 2872 } 2873 rxr = bp->bnapi[grp_idx]->rx_ring; 2874 bnxt_sched_reset_rxr(bp, rxr); 2875 goto async_event_process_exit; 2876 } 2877 case ASYNC_EVENT_CMPL_EVENT_ID_ECHO_REQUEST: { 2878 struct bnxt_fw_health *fw_health = bp->fw_health; 2879 2880 netif_notice(bp, hw, bp->dev, 2881 "Received firmware echo request, data1: 0x%x, data2: 0x%x\n", 2882 data1, data2); 2883 if (fw_health) { 2884 fw_health->echo_req_data1 = data1; 2885 fw_health->echo_req_data2 = data2; 2886 set_bit(BNXT_FW_ECHO_REQUEST_SP_EVENT, &bp->sp_event); 2887 break; 2888 } 2889 goto async_event_process_exit; 2890 } 2891 case ASYNC_EVENT_CMPL_EVENT_ID_PPS_TIMESTAMP: { 2892 bnxt_ptp_pps_event(bp, data1, data2); 2893 goto async_event_process_exit; 2894 } 2895 case ASYNC_EVENT_CMPL_EVENT_ID_ERROR_REPORT: { 2896 if (bnxt_event_error_report(bp, data1, data2)) 2897 break; 2898 goto async_event_process_exit; 2899 } 2900 case ASYNC_EVENT_CMPL_EVENT_ID_PHC_UPDATE: { 2901 switch (BNXT_EVENT_PHC_EVENT_TYPE(data1)) { 2902 case ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_FLAGS_PHC_RTC_UPDATE: 2903 if (BNXT_PTP_USE_RTC(bp)) { 2904 struct bnxt_ptp_cfg *ptp = bp->ptp_cfg; 2905 unsigned long flags; 2906 u64 ns; 2907 2908 if (!ptp) 2909 goto async_event_process_exit; 2910 2911 bnxt_ptp_update_current_time(bp); 2912 ns = (((u64)BNXT_EVENT_PHC_RTC_UPDATE(data1) << 2913 BNXT_PHC_BITS) | ptp->current_time); 2914 write_seqlock_irqsave(&ptp->ptp_lock, flags); 2915 bnxt_ptp_rtc_timecounter_init(ptp, ns); 2916 write_sequnlock_irqrestore(&ptp->ptp_lock, flags); 2917 } 2918 break; 2919 } 2920 goto async_event_process_exit; 2921 } 2922 case ASYNC_EVENT_CMPL_EVENT_ID_DEFERRED_RESPONSE: { 2923 u16 seq_id = le32_to_cpu(cmpl->event_data2) & 0xffff; 2924 2925 hwrm_update_token(bp, seq_id, BNXT_HWRM_DEFERRED); 2926 goto async_event_process_exit; 2927 } 2928 case ASYNC_EVENT_CMPL_EVENT_ID_DBG_BUF_PRODUCER: { 2929 u16 type = (u16)BNXT_EVENT_BUF_PRODUCER_TYPE(data1); 2930 u32 offset = BNXT_EVENT_BUF_PRODUCER_OFFSET(data2); 2931 2932 bnxt_bs_trace_check_wrap(&bp->bs_trace[type], offset); 2933 goto async_event_process_exit; 2934 } 2935 default: 2936 goto async_event_process_exit; 2937 } 2938 __bnxt_queue_sp_work(bp); 2939 async_event_process_exit: 2940 bnxt_ulp_async_events(bp, cmpl); 2941 return 0; 2942 } 2943 2944 static int bnxt_hwrm_handler(struct bnxt *bp, struct tx_cmp *txcmp) 2945 { 2946 u16 cmpl_type = TX_CMP_TYPE(txcmp), vf_id, seq_id; 2947 struct hwrm_cmpl *h_cmpl = (struct hwrm_cmpl *)txcmp; 2948 struct hwrm_fwd_req_cmpl *fwd_req_cmpl = 2949 (struct hwrm_fwd_req_cmpl *)txcmp; 2950 2951 switch (cmpl_type) { 2952 case CMPL_BASE_TYPE_HWRM_DONE: 2953 seq_id = le16_to_cpu(h_cmpl->sequence_id); 2954 hwrm_update_token(bp, seq_id, BNXT_HWRM_COMPLETE); 2955 break; 2956 2957 case CMPL_BASE_TYPE_HWRM_FWD_REQ: 2958 vf_id = le16_to_cpu(fwd_req_cmpl->source_id); 2959 2960 if ((vf_id < bp->pf.first_vf_id) || 2961 (vf_id >= bp->pf.first_vf_id + bp->pf.active_vfs)) { 2962 netdev_err(bp->dev, "Msg contains invalid VF id %x\n", 2963 vf_id); 2964 return -EINVAL; 2965 } 2966 2967 set_bit(vf_id - bp->pf.first_vf_id, bp->pf.vf_event_bmap); 2968 bnxt_queue_sp_work(bp, BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT); 2969 break; 2970 2971 case CMPL_BASE_TYPE_HWRM_ASYNC_EVENT: 2972 bnxt_async_event_process(bp, 2973 (struct hwrm_async_event_cmpl *)txcmp); 2974 break; 2975 2976 default: 2977 break; 2978 } 2979 2980 return 0; 2981 } 2982 2983 static bool bnxt_vnic_is_active(struct bnxt *bp) 2984 { 2985 struct bnxt_vnic_info *vnic = &bp->vnic_info[0]; 2986 2987 return vnic->fw_vnic_id != INVALID_HW_RING_ID && vnic->mru > 0; 2988 } 2989 2990 static irqreturn_t bnxt_msix(int irq, void *dev_instance) 2991 { 2992 struct bnxt_napi *bnapi = dev_instance; 2993 struct bnxt *bp = bnapi->bp; 2994 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 2995 u32 cons = RING_CMP(cpr->cp_raw_cons); 2996 2997 cpr->event_ctr++; 2998 prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]); 2999 napi_schedule(&bnapi->napi); 3000 return IRQ_HANDLED; 3001 } 3002 3003 static inline int bnxt_has_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr) 3004 { 3005 u32 raw_cons = cpr->cp_raw_cons; 3006 u16 cons = RING_CMP(raw_cons); 3007 struct tx_cmp *txcmp; 3008 3009 txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]; 3010 3011 return TX_CMP_VALID(txcmp, raw_cons); 3012 } 3013 3014 static int __bnxt_poll_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr, 3015 int budget) 3016 { 3017 struct bnxt_napi *bnapi = cpr->bnapi; 3018 u32 raw_cons = cpr->cp_raw_cons; 3019 bool flush_xdp = false; 3020 u32 cons; 3021 int rx_pkts = 0; 3022 u8 event = 0; 3023 struct tx_cmp *txcmp; 3024 3025 cpr->has_more_work = 0; 3026 cpr->had_work_done = 1; 3027 while (1) { 3028 u8 cmp_type; 3029 int rc; 3030 3031 cons = RING_CMP(raw_cons); 3032 txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]; 3033 3034 if (!TX_CMP_VALID(txcmp, raw_cons)) 3035 break; 3036 3037 /* The valid test of the entry must be done first before 3038 * reading any further. 3039 */ 3040 dma_rmb(); 3041 cmp_type = TX_CMP_TYPE(txcmp); 3042 if (cmp_type == CMP_TYPE_TX_L2_CMP || 3043 cmp_type == CMP_TYPE_TX_L2_COAL_CMP) { 3044 u32 opaque = txcmp->tx_cmp_opaque; 3045 struct bnxt_tx_ring_info *txr; 3046 u16 tx_freed; 3047 3048 txr = bnapi->tx_ring[TX_OPAQUE_RING(opaque)]; 3049 event |= BNXT_TX_CMP_EVENT; 3050 if (cmp_type == CMP_TYPE_TX_L2_COAL_CMP) 3051 txr->tx_hw_cons = TX_CMP_SQ_CONS_IDX(txcmp); 3052 else 3053 txr->tx_hw_cons = TX_OPAQUE_PROD(bp, opaque); 3054 tx_freed = (txr->tx_hw_cons - txr->tx_cons) & 3055 bp->tx_ring_mask; 3056 /* return full budget so NAPI will complete. */ 3057 if (unlikely(tx_freed >= bp->tx_wake_thresh)) { 3058 rx_pkts = budget; 3059 raw_cons = NEXT_RAW_CMP(raw_cons); 3060 if (budget) 3061 cpr->has_more_work = 1; 3062 break; 3063 } 3064 } else if (cmp_type == CMP_TYPE_TX_L2_PKT_TS_CMP) { 3065 bnxt_tx_ts_cmp(bp, bnapi, (struct tx_ts_cmp *)txcmp); 3066 } else if (cmp_type >= CMP_TYPE_RX_L2_CMP && 3067 cmp_type <= CMP_TYPE_RX_L2_TPA_START_V3_CMP) { 3068 if (likely(budget)) 3069 rc = bnxt_rx_pkt(bp, cpr, &raw_cons, &event); 3070 else 3071 rc = bnxt_force_rx_discard(bp, cpr, &raw_cons, 3072 &event); 3073 if (event & BNXT_REDIRECT_EVENT) 3074 flush_xdp = true; 3075 if (likely(rc >= 0)) 3076 rx_pkts += rc; 3077 /* Increment rx_pkts when rc is -ENOMEM to count towards 3078 * the NAPI budget. Otherwise, we may potentially loop 3079 * here forever if we consistently cannot allocate 3080 * buffers. 3081 */ 3082 else if (rc == -ENOMEM && budget) 3083 rx_pkts++; 3084 else if (rc == -EBUSY) /* partial completion */ 3085 break; 3086 } else if (unlikely(cmp_type == CMPL_BASE_TYPE_HWRM_DONE || 3087 cmp_type == CMPL_BASE_TYPE_HWRM_FWD_REQ || 3088 cmp_type == CMPL_BASE_TYPE_HWRM_ASYNC_EVENT)) { 3089 bnxt_hwrm_handler(bp, txcmp); 3090 } 3091 raw_cons = NEXT_RAW_CMP(raw_cons); 3092 3093 if (rx_pkts && rx_pkts == budget) { 3094 cpr->has_more_work = 1; 3095 break; 3096 } 3097 } 3098 3099 if (flush_xdp) { 3100 xdp_do_flush(); 3101 event &= ~BNXT_REDIRECT_EVENT; 3102 } 3103 3104 if (event & BNXT_TX_EVENT) { 3105 struct bnxt_tx_ring_info *txr = bnapi->tx_ring[0]; 3106 u16 prod = txr->tx_prod; 3107 3108 /* Sync BD data before updating doorbell */ 3109 wmb(); 3110 3111 bnxt_db_write_relaxed(bp, &txr->tx_db, prod); 3112 event &= ~BNXT_TX_EVENT; 3113 } 3114 3115 cpr->cp_raw_cons = raw_cons; 3116 bnapi->events |= event; 3117 return rx_pkts; 3118 } 3119 3120 static void __bnxt_poll_work_done(struct bnxt *bp, struct bnxt_napi *bnapi, 3121 int budget) 3122 { 3123 if ((bnapi->events & BNXT_TX_CMP_EVENT) && !bnapi->tx_fault) 3124 bnapi->tx_int(bp, bnapi, budget); 3125 3126 if ((bnapi->events & BNXT_RX_EVENT) && !(bnapi->in_reset)) { 3127 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 3128 3129 bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod); 3130 bnapi->events &= ~BNXT_RX_EVENT; 3131 } 3132 if (bnapi->events & BNXT_AGG_EVENT) { 3133 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 3134 3135 bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod); 3136 bnapi->events &= ~BNXT_AGG_EVENT; 3137 } 3138 } 3139 3140 static int bnxt_poll_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr, 3141 int budget) 3142 { 3143 struct bnxt_napi *bnapi = cpr->bnapi; 3144 int rx_pkts; 3145 3146 rx_pkts = __bnxt_poll_work(bp, cpr, budget); 3147 3148 /* ACK completion ring before freeing tx ring and producing new 3149 * buffers in rx/agg rings to prevent overflowing the completion 3150 * ring. 3151 */ 3152 bnxt_db_cq(bp, &cpr->cp_db, cpr->cp_raw_cons); 3153 3154 __bnxt_poll_work_done(bp, bnapi, budget); 3155 return rx_pkts; 3156 } 3157 3158 static int bnxt_poll_nitroa0(struct napi_struct *napi, int budget) 3159 { 3160 struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi); 3161 struct bnxt *bp = bnapi->bp; 3162 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 3163 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 3164 struct tx_cmp *txcmp; 3165 struct rx_cmp_ext *rxcmp1; 3166 u32 cp_cons, tmp_raw_cons; 3167 u32 raw_cons = cpr->cp_raw_cons; 3168 bool flush_xdp = false; 3169 u32 rx_pkts = 0; 3170 u8 event = 0; 3171 3172 while (1) { 3173 int rc; 3174 3175 cp_cons = RING_CMP(raw_cons); 3176 txcmp = &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 3177 3178 if (!TX_CMP_VALID(txcmp, raw_cons)) 3179 break; 3180 3181 /* The valid test of the entry must be done first before 3182 * reading any further. 3183 */ 3184 dma_rmb(); 3185 if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) { 3186 tmp_raw_cons = NEXT_RAW_CMP(raw_cons); 3187 cp_cons = RING_CMP(tmp_raw_cons); 3188 rxcmp1 = (struct rx_cmp_ext *) 3189 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 3190 3191 if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons)) 3192 break; 3193 3194 /* force an error to recycle the buffer */ 3195 rxcmp1->rx_cmp_cfa_code_errors_v2 |= 3196 cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR); 3197 3198 rc = bnxt_rx_pkt(bp, cpr, &raw_cons, &event); 3199 if (likely(rc == -EIO) && budget) 3200 rx_pkts++; 3201 else if (rc == -EBUSY) /* partial completion */ 3202 break; 3203 if (event & BNXT_REDIRECT_EVENT) 3204 flush_xdp = true; 3205 } else if (unlikely(TX_CMP_TYPE(txcmp) == 3206 CMPL_BASE_TYPE_HWRM_DONE)) { 3207 bnxt_hwrm_handler(bp, txcmp); 3208 } else { 3209 netdev_err(bp->dev, 3210 "Invalid completion received on special ring\n"); 3211 } 3212 raw_cons = NEXT_RAW_CMP(raw_cons); 3213 3214 if (rx_pkts == budget) 3215 break; 3216 } 3217 3218 cpr->cp_raw_cons = raw_cons; 3219 BNXT_DB_CQ(&cpr->cp_db, cpr->cp_raw_cons); 3220 bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod); 3221 3222 if (event & BNXT_AGG_EVENT) 3223 bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod); 3224 if (flush_xdp) 3225 xdp_do_flush(); 3226 3227 if (!bnxt_has_work(bp, cpr) && rx_pkts < budget) { 3228 napi_complete_done(napi, rx_pkts); 3229 BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons); 3230 } 3231 return rx_pkts; 3232 } 3233 3234 static int bnxt_poll(struct napi_struct *napi, int budget) 3235 { 3236 struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi); 3237 struct bnxt *bp = bnapi->bp; 3238 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 3239 int work_done = 0; 3240 3241 if (unlikely(test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))) { 3242 napi_complete(napi); 3243 return 0; 3244 } 3245 while (1) { 3246 work_done += bnxt_poll_work(bp, cpr, budget - work_done); 3247 3248 if (work_done >= budget) { 3249 if (!budget) 3250 BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons); 3251 break; 3252 } 3253 3254 if (!bnxt_has_work(bp, cpr)) { 3255 if (napi_complete_done(napi, work_done)) 3256 BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons); 3257 break; 3258 } 3259 } 3260 if ((bp->flags & BNXT_FLAG_DIM) && bnxt_vnic_is_active(bp)) { 3261 struct dim_sample dim_sample = {}; 3262 3263 dim_update_sample(cpr->event_ctr, 3264 cpr->rx_packets, 3265 cpr->rx_bytes, 3266 &dim_sample); 3267 net_dim(&cpr->dim, &dim_sample); 3268 } 3269 return work_done; 3270 } 3271 3272 static int __bnxt_poll_cqs(struct bnxt *bp, struct bnxt_napi *bnapi, int budget) 3273 { 3274 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 3275 int i, work_done = 0; 3276 3277 for (i = 0; i < cpr->cp_ring_count; i++) { 3278 struct bnxt_cp_ring_info *cpr2 = &cpr->cp_ring_arr[i]; 3279 3280 if (cpr2->had_nqe_notify) { 3281 work_done += __bnxt_poll_work(bp, cpr2, 3282 budget - work_done); 3283 cpr->has_more_work |= cpr2->has_more_work; 3284 } 3285 } 3286 return work_done; 3287 } 3288 3289 static void __bnxt_poll_cqs_done(struct bnxt *bp, struct bnxt_napi *bnapi, 3290 u64 dbr_type, int budget) 3291 { 3292 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 3293 int i; 3294 3295 for (i = 0; i < cpr->cp_ring_count; i++) { 3296 struct bnxt_cp_ring_info *cpr2 = &cpr->cp_ring_arr[i]; 3297 struct bnxt_db_info *db; 3298 3299 if (cpr2->had_work_done) { 3300 u32 tgl = 0; 3301 3302 if (dbr_type == DBR_TYPE_CQ_ARMALL) { 3303 cpr2->had_nqe_notify = 0; 3304 tgl = cpr2->toggle; 3305 } 3306 db = &cpr2->cp_db; 3307 bnxt_writeq(bp, 3308 db->db_key64 | dbr_type | DB_TOGGLE(tgl) | 3309 DB_RING_IDX(db, cpr2->cp_raw_cons), 3310 db->doorbell); 3311 cpr2->had_work_done = 0; 3312 } 3313 } 3314 __bnxt_poll_work_done(bp, bnapi, budget); 3315 } 3316 3317 static int bnxt_poll_p5(struct napi_struct *napi, int budget) 3318 { 3319 struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi); 3320 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 3321 struct bnxt_cp_ring_info *cpr_rx; 3322 u32 raw_cons = cpr->cp_raw_cons; 3323 struct bnxt *bp = bnapi->bp; 3324 struct nqe_cn *nqcmp; 3325 int work_done = 0; 3326 u32 cons; 3327 3328 if (unlikely(test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))) { 3329 napi_complete(napi); 3330 return 0; 3331 } 3332 if (cpr->has_more_work) { 3333 cpr->has_more_work = 0; 3334 work_done = __bnxt_poll_cqs(bp, bnapi, budget); 3335 } 3336 while (1) { 3337 u16 type; 3338 3339 cons = RING_CMP(raw_cons); 3340 nqcmp = &cpr->nq_desc_ring[CP_RING(cons)][CP_IDX(cons)]; 3341 3342 if (!NQ_CMP_VALID(nqcmp, raw_cons)) { 3343 if (cpr->has_more_work) 3344 break; 3345 3346 __bnxt_poll_cqs_done(bp, bnapi, DBR_TYPE_CQ_ARMALL, 3347 budget); 3348 cpr->cp_raw_cons = raw_cons; 3349 if (napi_complete_done(napi, work_done)) 3350 BNXT_DB_NQ_ARM_P5(&cpr->cp_db, 3351 cpr->cp_raw_cons); 3352 goto poll_done; 3353 } 3354 3355 /* The valid test of the entry must be done first before 3356 * reading any further. 3357 */ 3358 dma_rmb(); 3359 3360 type = le16_to_cpu(nqcmp->type); 3361 if (NQE_CN_TYPE(type) == NQ_CN_TYPE_CQ_NOTIFICATION) { 3362 u32 idx = le32_to_cpu(nqcmp->cq_handle_low); 3363 u32 cq_type = BNXT_NQ_HDL_TYPE(idx); 3364 struct bnxt_cp_ring_info *cpr2; 3365 3366 /* No more budget for RX work */ 3367 if (budget && work_done >= budget && 3368 cq_type == BNXT_NQ_HDL_TYPE_RX) 3369 break; 3370 3371 idx = BNXT_NQ_HDL_IDX(idx); 3372 cpr2 = &cpr->cp_ring_arr[idx]; 3373 cpr2->had_nqe_notify = 1; 3374 cpr2->toggle = NQE_CN_TOGGLE(type); 3375 work_done += __bnxt_poll_work(bp, cpr2, 3376 budget - work_done); 3377 cpr->has_more_work |= cpr2->has_more_work; 3378 } else { 3379 bnxt_hwrm_handler(bp, (struct tx_cmp *)nqcmp); 3380 } 3381 raw_cons = NEXT_RAW_CMP(raw_cons); 3382 } 3383 __bnxt_poll_cqs_done(bp, bnapi, DBR_TYPE_CQ, budget); 3384 if (raw_cons != cpr->cp_raw_cons) { 3385 cpr->cp_raw_cons = raw_cons; 3386 BNXT_DB_NQ_P5(&cpr->cp_db, raw_cons); 3387 } 3388 poll_done: 3389 cpr_rx = &cpr->cp_ring_arr[0]; 3390 if (cpr_rx->cp_ring_type == BNXT_NQ_HDL_TYPE_RX && 3391 (bp->flags & BNXT_FLAG_DIM) && bnxt_vnic_is_active(bp)) { 3392 struct dim_sample dim_sample = {}; 3393 3394 dim_update_sample(cpr->event_ctr, 3395 cpr_rx->rx_packets, 3396 cpr_rx->rx_bytes, 3397 &dim_sample); 3398 net_dim(&cpr->dim, &dim_sample); 3399 } 3400 return work_done; 3401 } 3402 3403 static void bnxt_free_one_tx_ring_skbs(struct bnxt *bp, 3404 struct bnxt_tx_ring_info *txr, int idx) 3405 { 3406 int i, max_idx; 3407 struct pci_dev *pdev = bp->pdev; 3408 3409 max_idx = bp->tx_nr_pages * TX_DESC_CNT; 3410 3411 for (i = 0; i < max_idx;) { 3412 struct bnxt_sw_tx_bd *tx_buf = &txr->tx_buf_ring[i]; 3413 struct sk_buff *skb; 3414 int j, last; 3415 3416 if (idx < bp->tx_nr_rings_xdp && 3417 tx_buf->action == XDP_REDIRECT) { 3418 dma_unmap_single(&pdev->dev, 3419 dma_unmap_addr(tx_buf, mapping), 3420 dma_unmap_len(tx_buf, len), 3421 DMA_TO_DEVICE); 3422 xdp_return_frame(tx_buf->xdpf); 3423 tx_buf->action = 0; 3424 tx_buf->xdpf = NULL; 3425 i++; 3426 continue; 3427 } 3428 3429 skb = tx_buf->skb; 3430 if (!skb) { 3431 i++; 3432 continue; 3433 } 3434 3435 tx_buf->skb = NULL; 3436 3437 if (tx_buf->is_push) { 3438 dev_kfree_skb(skb); 3439 i += 2; 3440 continue; 3441 } 3442 3443 dma_unmap_single(&pdev->dev, 3444 dma_unmap_addr(tx_buf, mapping), 3445 skb_headlen(skb), 3446 DMA_TO_DEVICE); 3447 3448 last = tx_buf->nr_frags; 3449 i += 2; 3450 for (j = 0; j < last; j++, i++) { 3451 int ring_idx = i & bp->tx_ring_mask; 3452 skb_frag_t *frag = &skb_shinfo(skb)->frags[j]; 3453 3454 tx_buf = &txr->tx_buf_ring[ring_idx]; 3455 netmem_dma_unmap_page_attrs(&pdev->dev, 3456 dma_unmap_addr(tx_buf, 3457 mapping), 3458 skb_frag_size(frag), 3459 DMA_TO_DEVICE, 0); 3460 } 3461 dev_kfree_skb(skb); 3462 } 3463 netdev_tx_reset_queue(netdev_get_tx_queue(bp->dev, idx)); 3464 } 3465 3466 static void bnxt_free_tx_skbs(struct bnxt *bp) 3467 { 3468 int i; 3469 3470 if (!bp->tx_ring) 3471 return; 3472 3473 for (i = 0; i < bp->tx_nr_rings; i++) { 3474 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 3475 3476 if (!txr->tx_buf_ring) 3477 continue; 3478 3479 bnxt_free_one_tx_ring_skbs(bp, txr, i); 3480 } 3481 3482 if (bp->ptp_cfg && !(bp->fw_cap & BNXT_FW_CAP_TX_TS_CMP)) 3483 bnxt_ptp_free_txts_skbs(bp->ptp_cfg); 3484 } 3485 3486 static void bnxt_free_one_rx_ring(struct bnxt *bp, struct bnxt_rx_ring_info *rxr) 3487 { 3488 int i, max_idx; 3489 3490 max_idx = bp->rx_nr_pages * RX_DESC_CNT; 3491 3492 for (i = 0; i < max_idx; i++) { 3493 struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[i]; 3494 void *data = rx_buf->data; 3495 3496 if (!data) 3497 continue; 3498 3499 rx_buf->data = NULL; 3500 if (BNXT_RX_PAGE_MODE(bp)) 3501 page_pool_recycle_direct(rxr->page_pool, data); 3502 else 3503 page_pool_free_va(rxr->head_pool, data, true); 3504 } 3505 } 3506 3507 static void bnxt_free_one_rx_agg_ring(struct bnxt *bp, struct bnxt_rx_ring_info *rxr) 3508 { 3509 int i, max_idx; 3510 3511 max_idx = bp->rx_agg_nr_pages * RX_DESC_CNT; 3512 3513 for (i = 0; i < max_idx; i++) { 3514 struct bnxt_sw_rx_agg_bd *rx_agg_buf = &rxr->rx_agg_ring[i]; 3515 netmem_ref netmem = rx_agg_buf->netmem; 3516 3517 if (!netmem) 3518 continue; 3519 3520 rx_agg_buf->netmem = 0; 3521 __clear_bit(i, rxr->rx_agg_bmap); 3522 3523 page_pool_recycle_direct_netmem(rxr->page_pool, netmem); 3524 } 3525 } 3526 3527 static void bnxt_free_one_tpa_info_data(struct bnxt *bp, 3528 struct bnxt_rx_ring_info *rxr) 3529 { 3530 int i; 3531 3532 for (i = 0; i < bp->max_tpa; i++) { 3533 struct bnxt_tpa_info *tpa_info = &rxr->rx_tpa[i]; 3534 u8 *data = tpa_info->data; 3535 3536 if (!data) 3537 continue; 3538 3539 tpa_info->data = NULL; 3540 page_pool_free_va(rxr->head_pool, data, false); 3541 } 3542 } 3543 3544 static void bnxt_free_one_rx_ring_skbs(struct bnxt *bp, 3545 struct bnxt_rx_ring_info *rxr) 3546 { 3547 struct bnxt_tpa_idx_map *map; 3548 3549 if (!rxr->rx_tpa) 3550 goto skip_rx_tpa_free; 3551 3552 bnxt_free_one_tpa_info_data(bp, rxr); 3553 3554 skip_rx_tpa_free: 3555 if (!rxr->rx_buf_ring) 3556 goto skip_rx_buf_free; 3557 3558 bnxt_free_one_rx_ring(bp, rxr); 3559 3560 skip_rx_buf_free: 3561 if (!rxr->rx_agg_ring) 3562 goto skip_rx_agg_free; 3563 3564 bnxt_free_one_rx_agg_ring(bp, rxr); 3565 3566 skip_rx_agg_free: 3567 map = rxr->rx_tpa_idx_map; 3568 if (map) 3569 memset(map->agg_idx_bmap, 0, sizeof(map->agg_idx_bmap)); 3570 } 3571 3572 static void bnxt_free_rx_skbs(struct bnxt *bp) 3573 { 3574 int i; 3575 3576 if (!bp->rx_ring) 3577 return; 3578 3579 for (i = 0; i < bp->rx_nr_rings; i++) 3580 bnxt_free_one_rx_ring_skbs(bp, &bp->rx_ring[i]); 3581 } 3582 3583 static void bnxt_free_skbs(struct bnxt *bp) 3584 { 3585 bnxt_free_tx_skbs(bp); 3586 bnxt_free_rx_skbs(bp); 3587 } 3588 3589 static void bnxt_init_ctx_mem(struct bnxt_ctx_mem_type *ctxm, void *p, int len) 3590 { 3591 u8 init_val = ctxm->init_value; 3592 u16 offset = ctxm->init_offset; 3593 u8 *p2 = p; 3594 int i; 3595 3596 if (!init_val) 3597 return; 3598 if (offset == BNXT_CTX_INIT_INVALID_OFFSET) { 3599 memset(p, init_val, len); 3600 return; 3601 } 3602 for (i = 0; i < len; i += ctxm->entry_size) 3603 *(p2 + i + offset) = init_val; 3604 } 3605 3606 static size_t __bnxt_copy_ring(struct bnxt *bp, struct bnxt_ring_mem_info *rmem, 3607 void *buf, size_t offset, size_t head, 3608 size_t tail) 3609 { 3610 int i, head_page, start_idx, source_offset; 3611 size_t len, rem_len, total_len, max_bytes; 3612 3613 head_page = head / rmem->page_size; 3614 source_offset = head % rmem->page_size; 3615 total_len = (tail - head) & MAX_CTX_BYTES_MASK; 3616 if (!total_len) 3617 total_len = MAX_CTX_BYTES; 3618 start_idx = head_page % MAX_CTX_PAGES; 3619 max_bytes = (rmem->nr_pages - start_idx) * rmem->page_size - 3620 source_offset; 3621 total_len = min(total_len, max_bytes); 3622 rem_len = total_len; 3623 3624 for (i = start_idx; rem_len; i++, source_offset = 0) { 3625 len = min((size_t)(rmem->page_size - source_offset), rem_len); 3626 if (buf) 3627 memcpy(buf + offset, rmem->pg_arr[i] + source_offset, 3628 len); 3629 offset += len; 3630 rem_len -= len; 3631 } 3632 return total_len; 3633 } 3634 3635 static void bnxt_free_ring(struct bnxt *bp, struct bnxt_ring_mem_info *rmem) 3636 { 3637 struct pci_dev *pdev = bp->pdev; 3638 int i; 3639 3640 if (!rmem->pg_arr) 3641 goto skip_pages; 3642 3643 for (i = 0; i < rmem->nr_pages; i++) { 3644 if (!rmem->pg_arr[i]) 3645 continue; 3646 3647 dma_free_coherent(&pdev->dev, rmem->page_size, 3648 rmem->pg_arr[i], rmem->dma_arr[i]); 3649 3650 rmem->pg_arr[i] = NULL; 3651 } 3652 skip_pages: 3653 if (rmem->pg_tbl) { 3654 size_t pg_tbl_size = rmem->nr_pages * 8; 3655 3656 if (rmem->flags & BNXT_RMEM_USE_FULL_PAGE_FLAG) 3657 pg_tbl_size = rmem->page_size; 3658 dma_free_coherent(&pdev->dev, pg_tbl_size, 3659 rmem->pg_tbl, rmem->pg_tbl_map); 3660 rmem->pg_tbl = NULL; 3661 } 3662 if (rmem->vmem_size && *rmem->vmem) { 3663 vfree(*rmem->vmem); 3664 *rmem->vmem = NULL; 3665 } 3666 } 3667 3668 static int bnxt_alloc_ring(struct bnxt *bp, struct bnxt_ring_mem_info *rmem) 3669 { 3670 struct pci_dev *pdev = bp->pdev; 3671 u64 valid_bit = 0; 3672 int i; 3673 3674 if (rmem->flags & (BNXT_RMEM_VALID_PTE_FLAG | BNXT_RMEM_RING_PTE_FLAG)) 3675 valid_bit = PTU_PTE_VALID; 3676 if ((rmem->nr_pages > 1 || rmem->depth > 0) && !rmem->pg_tbl) { 3677 size_t pg_tbl_size = rmem->nr_pages * 8; 3678 3679 if (rmem->flags & BNXT_RMEM_USE_FULL_PAGE_FLAG) 3680 pg_tbl_size = rmem->page_size; 3681 rmem->pg_tbl = dma_alloc_coherent(&pdev->dev, pg_tbl_size, 3682 &rmem->pg_tbl_map, 3683 GFP_KERNEL); 3684 if (!rmem->pg_tbl) 3685 return -ENOMEM; 3686 } 3687 3688 for (i = 0; i < rmem->nr_pages; i++) { 3689 u64 extra_bits = valid_bit; 3690 3691 rmem->pg_arr[i] = dma_alloc_coherent(&pdev->dev, 3692 rmem->page_size, 3693 &rmem->dma_arr[i], 3694 GFP_KERNEL); 3695 if (!rmem->pg_arr[i]) 3696 return -ENOMEM; 3697 3698 if (rmem->ctx_mem) 3699 bnxt_init_ctx_mem(rmem->ctx_mem, rmem->pg_arr[i], 3700 rmem->page_size); 3701 if (rmem->nr_pages > 1 || rmem->depth > 0) { 3702 if (i == rmem->nr_pages - 2 && 3703 (rmem->flags & BNXT_RMEM_RING_PTE_FLAG)) 3704 extra_bits |= PTU_PTE_NEXT_TO_LAST; 3705 else if (i == rmem->nr_pages - 1 && 3706 (rmem->flags & BNXT_RMEM_RING_PTE_FLAG)) 3707 extra_bits |= PTU_PTE_LAST; 3708 rmem->pg_tbl[i] = 3709 cpu_to_le64(rmem->dma_arr[i] | extra_bits); 3710 } 3711 } 3712 3713 if (rmem->vmem_size) { 3714 *rmem->vmem = vzalloc(rmem->vmem_size); 3715 if (!(*rmem->vmem)) 3716 return -ENOMEM; 3717 } 3718 return 0; 3719 } 3720 3721 static void bnxt_free_one_tpa_info(struct bnxt *bp, 3722 struct bnxt_rx_ring_info *rxr) 3723 { 3724 int i; 3725 3726 kfree(rxr->rx_tpa_idx_map); 3727 rxr->rx_tpa_idx_map = NULL; 3728 if (rxr->rx_tpa) { 3729 for (i = 0; i < bp->max_tpa; i++) { 3730 kfree(rxr->rx_tpa[i].agg_arr); 3731 rxr->rx_tpa[i].agg_arr = NULL; 3732 } 3733 } 3734 kfree(rxr->rx_tpa); 3735 rxr->rx_tpa = NULL; 3736 } 3737 3738 static void bnxt_free_tpa_info(struct bnxt *bp) 3739 { 3740 int i; 3741 3742 for (i = 0; i < bp->rx_nr_rings; i++) { 3743 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 3744 3745 bnxt_free_one_tpa_info(bp, rxr); 3746 } 3747 } 3748 3749 static int bnxt_alloc_one_tpa_info(struct bnxt *bp, 3750 struct bnxt_rx_ring_info *rxr) 3751 { 3752 struct rx_agg_cmp *agg; 3753 int i; 3754 3755 rxr->rx_tpa = kcalloc(bp->max_tpa, sizeof(struct bnxt_tpa_info), 3756 GFP_KERNEL); 3757 if (!rxr->rx_tpa) 3758 return -ENOMEM; 3759 3760 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 3761 return 0; 3762 for (i = 0; i < bp->max_tpa; i++) { 3763 agg = kcalloc(MAX_SKB_FRAGS, sizeof(*agg), GFP_KERNEL); 3764 if (!agg) 3765 return -ENOMEM; 3766 rxr->rx_tpa[i].agg_arr = agg; 3767 } 3768 rxr->rx_tpa_idx_map = kzalloc(sizeof(*rxr->rx_tpa_idx_map), 3769 GFP_KERNEL); 3770 if (!rxr->rx_tpa_idx_map) 3771 return -ENOMEM; 3772 3773 return 0; 3774 } 3775 3776 static int bnxt_alloc_tpa_info(struct bnxt *bp) 3777 { 3778 int i, rc; 3779 3780 bp->max_tpa = MAX_TPA; 3781 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 3782 if (!bp->max_tpa_v2) 3783 return 0; 3784 bp->max_tpa = max_t(u16, bp->max_tpa_v2, MAX_TPA_P5); 3785 } 3786 3787 for (i = 0; i < bp->rx_nr_rings; i++) { 3788 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 3789 3790 rc = bnxt_alloc_one_tpa_info(bp, rxr); 3791 if (rc) 3792 return rc; 3793 } 3794 return 0; 3795 } 3796 3797 static void bnxt_free_rx_rings(struct bnxt *bp) 3798 { 3799 int i; 3800 3801 if (!bp->rx_ring) 3802 return; 3803 3804 bnxt_free_tpa_info(bp); 3805 for (i = 0; i < bp->rx_nr_rings; i++) { 3806 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 3807 struct bnxt_ring_struct *ring; 3808 3809 if (rxr->xdp_prog) 3810 bpf_prog_put(rxr->xdp_prog); 3811 3812 if (xdp_rxq_info_is_reg(&rxr->xdp_rxq)) 3813 xdp_rxq_info_unreg(&rxr->xdp_rxq); 3814 3815 page_pool_destroy(rxr->page_pool); 3816 page_pool_destroy(rxr->head_pool); 3817 rxr->page_pool = rxr->head_pool = NULL; 3818 3819 kfree(rxr->rx_agg_bmap); 3820 rxr->rx_agg_bmap = NULL; 3821 3822 ring = &rxr->rx_ring_struct; 3823 bnxt_free_ring(bp, &ring->ring_mem); 3824 3825 ring = &rxr->rx_agg_ring_struct; 3826 bnxt_free_ring(bp, &ring->ring_mem); 3827 } 3828 } 3829 3830 static int bnxt_rx_agg_ring_fill_level(struct bnxt *bp, 3831 struct bnxt_rx_ring_info *rxr) 3832 { 3833 /* User may have chosen larger than default rx_page_size, 3834 * we keep the ring sizes uniform and also want uniform amount 3835 * of bytes consumed per ring, so cap how much of the rings we fill. 3836 */ 3837 int fill_level = bp->rx_agg_ring_size; 3838 3839 if (rxr->rx_page_size > BNXT_RX_PAGE_SIZE) 3840 fill_level /= rxr->rx_page_size / BNXT_RX_PAGE_SIZE; 3841 3842 return fill_level; 3843 } 3844 3845 static int bnxt_alloc_rx_page_pool(struct bnxt *bp, 3846 struct bnxt_rx_ring_info *rxr, 3847 int numa_node) 3848 { 3849 unsigned int agg_size_fac = rxr->rx_page_size / BNXT_RX_PAGE_SIZE; 3850 const unsigned int rx_size_fac = PAGE_SIZE / SZ_4K; 3851 struct page_pool_params pp = { 0 }; 3852 struct page_pool *pool; 3853 3854 pp.pool_size = bnxt_rx_agg_ring_fill_level(bp, rxr) / agg_size_fac; 3855 if (BNXT_RX_PAGE_MODE(bp)) 3856 pp.pool_size += bp->rx_ring_size / rx_size_fac; 3857 3858 pp.order = get_order(rxr->rx_page_size); 3859 pp.nid = numa_node; 3860 pp.netdev = bp->dev; 3861 pp.dev = &bp->pdev->dev; 3862 pp.dma_dir = bp->rx_dir; 3863 pp.max_len = PAGE_SIZE << pp.order; 3864 pp.flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV | 3865 PP_FLAG_ALLOW_UNREADABLE_NETMEM; 3866 pp.queue_idx = rxr->bnapi->index; 3867 3868 pool = page_pool_create(&pp); 3869 if (IS_ERR(pool)) 3870 return PTR_ERR(pool); 3871 rxr->page_pool = pool; 3872 3873 rxr->need_head_pool = page_pool_is_unreadable(pool); 3874 rxr->need_head_pool |= !!pp.order; 3875 if (bnxt_separate_head_pool(rxr)) { 3876 pp.order = 0; 3877 pp.max_len = PAGE_SIZE; 3878 pp.pool_size = min(bp->rx_ring_size / rx_size_fac, 1024); 3879 pp.flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV; 3880 pool = page_pool_create(&pp); 3881 if (IS_ERR(pool)) 3882 goto err_destroy_pp; 3883 } else { 3884 page_pool_get(pool); 3885 } 3886 rxr->head_pool = pool; 3887 3888 return 0; 3889 3890 err_destroy_pp: 3891 page_pool_destroy(rxr->page_pool); 3892 rxr->page_pool = NULL; 3893 return PTR_ERR(pool); 3894 } 3895 3896 static void bnxt_enable_rx_page_pool(struct bnxt_rx_ring_info *rxr) 3897 { 3898 page_pool_enable_direct_recycling(rxr->head_pool, &rxr->bnapi->napi); 3899 page_pool_enable_direct_recycling(rxr->page_pool, &rxr->bnapi->napi); 3900 } 3901 3902 static int bnxt_alloc_rx_agg_bmap(struct bnxt *bp, struct bnxt_rx_ring_info *rxr) 3903 { 3904 u16 mem_size; 3905 3906 rxr->rx_agg_bmap_size = bp->rx_agg_ring_mask + 1; 3907 mem_size = rxr->rx_agg_bmap_size / 8; 3908 rxr->rx_agg_bmap = kzalloc(mem_size, GFP_KERNEL); 3909 if (!rxr->rx_agg_bmap) 3910 return -ENOMEM; 3911 3912 return 0; 3913 } 3914 3915 static int bnxt_alloc_rx_rings(struct bnxt *bp) 3916 { 3917 int numa_node = dev_to_node(&bp->pdev->dev); 3918 int i, rc = 0, agg_rings = 0, cpu; 3919 3920 if (!bp->rx_ring) 3921 return -ENOMEM; 3922 3923 if (bp->flags & BNXT_FLAG_AGG_RINGS) 3924 agg_rings = 1; 3925 3926 for (i = 0; i < bp->rx_nr_rings; i++) { 3927 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 3928 struct bnxt_ring_struct *ring; 3929 int cpu_node; 3930 3931 ring = &rxr->rx_ring_struct; 3932 3933 cpu = cpumask_local_spread(i, numa_node); 3934 cpu_node = cpu_to_node(cpu); 3935 netdev_dbg(bp->dev, "Allocating page pool for rx_ring[%d] on numa_node: %d\n", 3936 i, cpu_node); 3937 rc = bnxt_alloc_rx_page_pool(bp, rxr, cpu_node); 3938 if (rc) 3939 return rc; 3940 bnxt_enable_rx_page_pool(rxr); 3941 3942 rc = xdp_rxq_info_reg(&rxr->xdp_rxq, bp->dev, i, 0); 3943 if (rc < 0) 3944 return rc; 3945 3946 rc = xdp_rxq_info_reg_mem_model(&rxr->xdp_rxq, 3947 MEM_TYPE_PAGE_POOL, 3948 rxr->page_pool); 3949 if (rc) { 3950 xdp_rxq_info_unreg(&rxr->xdp_rxq); 3951 return rc; 3952 } 3953 3954 rc = bnxt_alloc_ring(bp, &ring->ring_mem); 3955 if (rc) 3956 return rc; 3957 3958 ring->grp_idx = i; 3959 if (agg_rings) { 3960 ring = &rxr->rx_agg_ring_struct; 3961 rc = bnxt_alloc_ring(bp, &ring->ring_mem); 3962 if (rc) 3963 return rc; 3964 3965 ring->grp_idx = i; 3966 rc = bnxt_alloc_rx_agg_bmap(bp, rxr); 3967 if (rc) 3968 return rc; 3969 } 3970 } 3971 if (bp->flags & BNXT_FLAG_TPA) 3972 rc = bnxt_alloc_tpa_info(bp); 3973 return rc; 3974 } 3975 3976 static void bnxt_free_tx_rings(struct bnxt *bp) 3977 { 3978 int i; 3979 struct pci_dev *pdev = bp->pdev; 3980 3981 if (!bp->tx_ring) 3982 return; 3983 3984 for (i = 0; i < bp->tx_nr_rings; i++) { 3985 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 3986 struct bnxt_ring_struct *ring; 3987 3988 if (txr->tx_push) { 3989 dma_free_coherent(&pdev->dev, bp->tx_push_size, 3990 txr->tx_push, txr->tx_push_mapping); 3991 txr->tx_push = NULL; 3992 } 3993 3994 ring = &txr->tx_ring_struct; 3995 3996 bnxt_free_ring(bp, &ring->ring_mem); 3997 } 3998 } 3999 4000 #define BNXT_TC_TO_RING_BASE(bp, tc) \ 4001 ((tc) * (bp)->tx_nr_rings_per_tc) 4002 4003 #define BNXT_RING_TO_TC_OFF(bp, tx) \ 4004 ((tx) % (bp)->tx_nr_rings_per_tc) 4005 4006 #define BNXT_RING_TO_TC(bp, tx) \ 4007 ((tx) / (bp)->tx_nr_rings_per_tc) 4008 4009 static int bnxt_alloc_tx_rings(struct bnxt *bp) 4010 { 4011 int i, j, rc; 4012 struct pci_dev *pdev = bp->pdev; 4013 4014 bp->tx_push_size = 0; 4015 if (bp->tx_push_thresh) { 4016 int push_size; 4017 4018 push_size = L1_CACHE_ALIGN(sizeof(struct tx_push_bd) + 4019 bp->tx_push_thresh); 4020 4021 if (push_size > 256) { 4022 push_size = 0; 4023 bp->tx_push_thresh = 0; 4024 } 4025 4026 bp->tx_push_size = push_size; 4027 } 4028 4029 for (i = 0, j = 0; i < bp->tx_nr_rings; i++) { 4030 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 4031 struct bnxt_ring_struct *ring; 4032 u8 qidx; 4033 4034 ring = &txr->tx_ring_struct; 4035 4036 rc = bnxt_alloc_ring(bp, &ring->ring_mem); 4037 if (rc) 4038 return rc; 4039 4040 ring->grp_idx = txr->bnapi->index; 4041 if (bp->tx_push_size) { 4042 dma_addr_t mapping; 4043 4044 /* One pre-allocated DMA buffer to backup 4045 * TX push operation 4046 */ 4047 txr->tx_push = dma_alloc_coherent(&pdev->dev, 4048 bp->tx_push_size, 4049 &txr->tx_push_mapping, 4050 GFP_KERNEL); 4051 4052 if (!txr->tx_push) 4053 return -ENOMEM; 4054 4055 mapping = txr->tx_push_mapping + 4056 sizeof(struct tx_push_bd); 4057 txr->data_mapping = cpu_to_le64(mapping); 4058 } 4059 qidx = bp->tc_to_qidx[j]; 4060 ring->queue_id = bp->q_info[qidx].queue_id; 4061 spin_lock_init(&txr->xdp_tx_lock); 4062 if (i < bp->tx_nr_rings_xdp) 4063 continue; 4064 if (BNXT_RING_TO_TC_OFF(bp, i) == (bp->tx_nr_rings_per_tc - 1)) 4065 j++; 4066 } 4067 return 0; 4068 } 4069 4070 static void bnxt_free_cp_arrays(struct bnxt_cp_ring_info *cpr) 4071 { 4072 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct; 4073 4074 kfree(cpr->cp_desc_ring); 4075 cpr->cp_desc_ring = NULL; 4076 ring->ring_mem.pg_arr = NULL; 4077 kfree(cpr->cp_desc_mapping); 4078 cpr->cp_desc_mapping = NULL; 4079 ring->ring_mem.dma_arr = NULL; 4080 } 4081 4082 static int bnxt_alloc_cp_arrays(struct bnxt_cp_ring_info *cpr, int n) 4083 { 4084 cpr->cp_desc_ring = kcalloc(n, sizeof(*cpr->cp_desc_ring), GFP_KERNEL); 4085 if (!cpr->cp_desc_ring) 4086 return -ENOMEM; 4087 cpr->cp_desc_mapping = kcalloc(n, sizeof(*cpr->cp_desc_mapping), 4088 GFP_KERNEL); 4089 if (!cpr->cp_desc_mapping) 4090 return -ENOMEM; 4091 return 0; 4092 } 4093 4094 static void bnxt_free_all_cp_arrays(struct bnxt *bp) 4095 { 4096 int i; 4097 4098 if (!bp->bnapi) 4099 return; 4100 for (i = 0; i < bp->cp_nr_rings; i++) { 4101 struct bnxt_napi *bnapi = bp->bnapi[i]; 4102 4103 if (!bnapi) 4104 continue; 4105 bnxt_free_cp_arrays(&bnapi->cp_ring); 4106 } 4107 } 4108 4109 static int bnxt_alloc_all_cp_arrays(struct bnxt *bp) 4110 { 4111 int i, n = bp->cp_nr_pages; 4112 4113 for (i = 0; i < bp->cp_nr_rings; i++) { 4114 struct bnxt_napi *bnapi = bp->bnapi[i]; 4115 int rc; 4116 4117 if (!bnapi) 4118 continue; 4119 rc = bnxt_alloc_cp_arrays(&bnapi->cp_ring, n); 4120 if (rc) 4121 return rc; 4122 } 4123 return 0; 4124 } 4125 4126 static void bnxt_free_cp_rings(struct bnxt *bp) 4127 { 4128 int i; 4129 4130 if (!bp->bnapi) 4131 return; 4132 4133 for (i = 0; i < bp->cp_nr_rings; i++) { 4134 struct bnxt_napi *bnapi = bp->bnapi[i]; 4135 struct bnxt_cp_ring_info *cpr; 4136 struct bnxt_ring_struct *ring; 4137 int j; 4138 4139 if (!bnapi) 4140 continue; 4141 4142 cpr = &bnapi->cp_ring; 4143 ring = &cpr->cp_ring_struct; 4144 4145 bnxt_free_ring(bp, &ring->ring_mem); 4146 4147 if (!cpr->cp_ring_arr) 4148 continue; 4149 4150 for (j = 0; j < cpr->cp_ring_count; j++) { 4151 struct bnxt_cp_ring_info *cpr2 = &cpr->cp_ring_arr[j]; 4152 4153 ring = &cpr2->cp_ring_struct; 4154 bnxt_free_ring(bp, &ring->ring_mem); 4155 bnxt_free_cp_arrays(cpr2); 4156 } 4157 kfree(cpr->cp_ring_arr); 4158 cpr->cp_ring_arr = NULL; 4159 cpr->cp_ring_count = 0; 4160 } 4161 } 4162 4163 static int bnxt_alloc_cp_sub_ring(struct bnxt *bp, 4164 struct bnxt_cp_ring_info *cpr) 4165 { 4166 struct bnxt_ring_mem_info *rmem; 4167 struct bnxt_ring_struct *ring; 4168 int rc; 4169 4170 rc = bnxt_alloc_cp_arrays(cpr, bp->cp_nr_pages); 4171 if (rc) { 4172 bnxt_free_cp_arrays(cpr); 4173 return -ENOMEM; 4174 } 4175 ring = &cpr->cp_ring_struct; 4176 rmem = &ring->ring_mem; 4177 rmem->nr_pages = bp->cp_nr_pages; 4178 rmem->page_size = HW_CMPD_RING_SIZE; 4179 rmem->pg_arr = (void **)cpr->cp_desc_ring; 4180 rmem->dma_arr = cpr->cp_desc_mapping; 4181 rmem->flags = BNXT_RMEM_RING_PTE_FLAG; 4182 rc = bnxt_alloc_ring(bp, rmem); 4183 if (rc) { 4184 bnxt_free_ring(bp, rmem); 4185 bnxt_free_cp_arrays(cpr); 4186 } 4187 return rc; 4188 } 4189 4190 static int bnxt_alloc_cp_rings(struct bnxt *bp) 4191 { 4192 bool sh = !!(bp->flags & BNXT_FLAG_SHARED_RINGS); 4193 int i, j, rc, ulp_msix; 4194 int tcs = bp->num_tc; 4195 4196 if (!tcs) 4197 tcs = 1; 4198 ulp_msix = bnxt_get_ulp_msix_num(bp); 4199 for (i = 0, j = 0; i < bp->cp_nr_rings; i++) { 4200 struct bnxt_napi *bnapi = bp->bnapi[i]; 4201 struct bnxt_cp_ring_info *cpr, *cpr2; 4202 struct bnxt_ring_struct *ring; 4203 int cp_count = 0, k; 4204 int rx = 0, tx = 0; 4205 4206 if (!bnapi) 4207 continue; 4208 4209 cpr = &bnapi->cp_ring; 4210 cpr->bnapi = bnapi; 4211 ring = &cpr->cp_ring_struct; 4212 4213 rc = bnxt_alloc_ring(bp, &ring->ring_mem); 4214 if (rc) 4215 return rc; 4216 4217 ring->map_idx = ulp_msix + i; 4218 4219 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 4220 continue; 4221 4222 if (i < bp->rx_nr_rings) { 4223 cp_count++; 4224 rx = 1; 4225 } 4226 if (i < bp->tx_nr_rings_xdp) { 4227 cp_count++; 4228 tx = 1; 4229 } else if ((sh && i < bp->tx_nr_rings) || 4230 (!sh && i >= bp->rx_nr_rings)) { 4231 cp_count += tcs; 4232 tx = 1; 4233 } 4234 4235 cpr->cp_ring_arr = kcalloc(cp_count, sizeof(*cpr), 4236 GFP_KERNEL); 4237 if (!cpr->cp_ring_arr) 4238 return -ENOMEM; 4239 cpr->cp_ring_count = cp_count; 4240 4241 for (k = 0; k < cp_count; k++) { 4242 cpr2 = &cpr->cp_ring_arr[k]; 4243 rc = bnxt_alloc_cp_sub_ring(bp, cpr2); 4244 if (rc) 4245 return rc; 4246 cpr2->bnapi = bnapi; 4247 cpr2->sw_stats = cpr->sw_stats; 4248 cpr2->cp_idx = k; 4249 if (!k && rx) { 4250 bp->rx_ring[i].rx_cpr = cpr2; 4251 cpr2->cp_ring_type = BNXT_NQ_HDL_TYPE_RX; 4252 } else { 4253 int n, tc = k - rx; 4254 4255 n = BNXT_TC_TO_RING_BASE(bp, tc) + j; 4256 bp->tx_ring[n].tx_cpr = cpr2; 4257 cpr2->cp_ring_type = BNXT_NQ_HDL_TYPE_TX; 4258 } 4259 } 4260 if (tx) 4261 j++; 4262 } 4263 return 0; 4264 } 4265 4266 static void bnxt_init_rx_ring_struct(struct bnxt *bp, 4267 struct bnxt_rx_ring_info *rxr) 4268 { 4269 struct bnxt_ring_mem_info *rmem; 4270 struct bnxt_ring_struct *ring; 4271 4272 ring = &rxr->rx_ring_struct; 4273 rmem = &ring->ring_mem; 4274 rmem->nr_pages = bp->rx_nr_pages; 4275 rmem->page_size = HW_RXBD_RING_SIZE; 4276 rmem->pg_arr = (void **)rxr->rx_desc_ring; 4277 rmem->dma_arr = rxr->rx_desc_mapping; 4278 rmem->vmem_size = SW_RXBD_RING_SIZE * bp->rx_nr_pages; 4279 rmem->vmem = (void **)&rxr->rx_buf_ring; 4280 4281 ring = &rxr->rx_agg_ring_struct; 4282 rmem = &ring->ring_mem; 4283 rmem->nr_pages = bp->rx_agg_nr_pages; 4284 rmem->page_size = HW_RXBD_RING_SIZE; 4285 rmem->pg_arr = (void **)rxr->rx_agg_desc_ring; 4286 rmem->dma_arr = rxr->rx_agg_desc_mapping; 4287 rmem->vmem_size = SW_RXBD_AGG_RING_SIZE * bp->rx_agg_nr_pages; 4288 rmem->vmem = (void **)&rxr->rx_agg_ring; 4289 } 4290 4291 static void bnxt_reset_rx_ring_struct(struct bnxt *bp, 4292 struct bnxt_rx_ring_info *rxr) 4293 { 4294 struct bnxt_ring_mem_info *rmem; 4295 struct bnxt_ring_struct *ring; 4296 int i; 4297 4298 rxr->page_pool->p.napi = NULL; 4299 rxr->page_pool = NULL; 4300 rxr->head_pool->p.napi = NULL; 4301 rxr->head_pool = NULL; 4302 memset(&rxr->xdp_rxq, 0, sizeof(struct xdp_rxq_info)); 4303 4304 ring = &rxr->rx_ring_struct; 4305 rmem = &ring->ring_mem; 4306 rmem->pg_tbl = NULL; 4307 rmem->pg_tbl_map = 0; 4308 for (i = 0; i < rmem->nr_pages; i++) { 4309 rmem->pg_arr[i] = NULL; 4310 rmem->dma_arr[i] = 0; 4311 } 4312 *rmem->vmem = NULL; 4313 4314 ring = &rxr->rx_agg_ring_struct; 4315 rmem = &ring->ring_mem; 4316 rmem->pg_tbl = NULL; 4317 rmem->pg_tbl_map = 0; 4318 for (i = 0; i < rmem->nr_pages; i++) { 4319 rmem->pg_arr[i] = NULL; 4320 rmem->dma_arr[i] = 0; 4321 } 4322 *rmem->vmem = NULL; 4323 } 4324 4325 static void bnxt_init_ring_struct(struct bnxt *bp) 4326 { 4327 int i, j; 4328 4329 for (i = 0; i < bp->cp_nr_rings; i++) { 4330 struct bnxt_napi *bnapi = bp->bnapi[i]; 4331 struct netdev_queue_config qcfg; 4332 struct bnxt_ring_mem_info *rmem; 4333 struct bnxt_cp_ring_info *cpr; 4334 struct bnxt_rx_ring_info *rxr; 4335 struct bnxt_tx_ring_info *txr; 4336 struct bnxt_ring_struct *ring; 4337 4338 if (!bnapi) 4339 continue; 4340 4341 cpr = &bnapi->cp_ring; 4342 ring = &cpr->cp_ring_struct; 4343 rmem = &ring->ring_mem; 4344 rmem->nr_pages = bp->cp_nr_pages; 4345 rmem->page_size = HW_CMPD_RING_SIZE; 4346 rmem->pg_arr = (void **)cpr->cp_desc_ring; 4347 rmem->dma_arr = cpr->cp_desc_mapping; 4348 rmem->vmem_size = 0; 4349 4350 rxr = bnapi->rx_ring; 4351 if (!rxr) 4352 goto skip_rx; 4353 4354 netdev_queue_config(bp->dev, i, &qcfg); 4355 rxr->rx_page_size = qcfg.rx_page_size; 4356 4357 ring = &rxr->rx_ring_struct; 4358 rmem = &ring->ring_mem; 4359 rmem->nr_pages = bp->rx_nr_pages; 4360 rmem->page_size = HW_RXBD_RING_SIZE; 4361 rmem->pg_arr = (void **)rxr->rx_desc_ring; 4362 rmem->dma_arr = rxr->rx_desc_mapping; 4363 rmem->vmem_size = SW_RXBD_RING_SIZE * bp->rx_nr_pages; 4364 rmem->vmem = (void **)&rxr->rx_buf_ring; 4365 4366 ring = &rxr->rx_agg_ring_struct; 4367 rmem = &ring->ring_mem; 4368 rmem->nr_pages = bp->rx_agg_nr_pages; 4369 rmem->page_size = HW_RXBD_RING_SIZE; 4370 rmem->pg_arr = (void **)rxr->rx_agg_desc_ring; 4371 rmem->dma_arr = rxr->rx_agg_desc_mapping; 4372 rmem->vmem_size = SW_RXBD_AGG_RING_SIZE * bp->rx_agg_nr_pages; 4373 rmem->vmem = (void **)&rxr->rx_agg_ring; 4374 4375 skip_rx: 4376 bnxt_for_each_napi_tx(j, bnapi, txr) { 4377 ring = &txr->tx_ring_struct; 4378 rmem = &ring->ring_mem; 4379 rmem->nr_pages = bp->tx_nr_pages; 4380 rmem->page_size = HW_TXBD_RING_SIZE; 4381 rmem->pg_arr = (void **)txr->tx_desc_ring; 4382 rmem->dma_arr = txr->tx_desc_mapping; 4383 rmem->vmem_size = SW_TXBD_RING_SIZE * bp->tx_nr_pages; 4384 rmem->vmem = (void **)&txr->tx_buf_ring; 4385 } 4386 } 4387 } 4388 4389 static void bnxt_init_rxbd_pages(struct bnxt_ring_struct *ring, u32 type) 4390 { 4391 int i; 4392 u32 prod; 4393 struct rx_bd **rx_buf_ring; 4394 4395 rx_buf_ring = (struct rx_bd **)ring->ring_mem.pg_arr; 4396 for (i = 0, prod = 0; i < ring->ring_mem.nr_pages; i++) { 4397 int j; 4398 struct rx_bd *rxbd; 4399 4400 rxbd = rx_buf_ring[i]; 4401 if (!rxbd) 4402 continue; 4403 4404 for (j = 0; j < RX_DESC_CNT; j++, rxbd++, prod++) { 4405 rxbd->rx_bd_len_flags_type = cpu_to_le32(type); 4406 rxbd->rx_bd_opaque = prod; 4407 } 4408 } 4409 } 4410 4411 static void bnxt_alloc_one_rx_ring_skb(struct bnxt *bp, 4412 struct bnxt_rx_ring_info *rxr, 4413 int ring_nr) 4414 { 4415 u32 prod; 4416 int i; 4417 4418 prod = rxr->rx_prod; 4419 for (i = 0; i < bp->rx_ring_size; i++) { 4420 if (bnxt_alloc_rx_data(bp, rxr, prod, GFP_KERNEL)) { 4421 netdev_warn(bp->dev, "init'ed rx ring %d with %d/%d skbs only\n", 4422 ring_nr, i, bp->rx_ring_size); 4423 break; 4424 } 4425 prod = NEXT_RX(prod); 4426 } 4427 rxr->rx_prod = prod; 4428 } 4429 4430 static void bnxt_alloc_one_rx_ring_netmem(struct bnxt *bp, 4431 struct bnxt_rx_ring_info *rxr, 4432 int ring_nr) 4433 { 4434 int fill_level, i; 4435 u32 prod; 4436 4437 fill_level = bnxt_rx_agg_ring_fill_level(bp, rxr); 4438 4439 prod = rxr->rx_agg_prod; 4440 for (i = 0; i < fill_level; i++) { 4441 if (bnxt_alloc_rx_netmem(bp, rxr, prod, GFP_KERNEL)) { 4442 netdev_warn(bp->dev, "init'ed rx ring %d with %d/%d pages only\n", 4443 ring_nr, i, bp->rx_agg_ring_size); 4444 break; 4445 } 4446 prod = NEXT_RX_AGG(prod); 4447 } 4448 rxr->rx_agg_prod = prod; 4449 } 4450 4451 static int bnxt_alloc_one_tpa_info_data(struct bnxt *bp, 4452 struct bnxt_rx_ring_info *rxr) 4453 { 4454 dma_addr_t mapping; 4455 u8 *data; 4456 int i; 4457 4458 for (i = 0; i < bp->max_tpa; i++) { 4459 data = __bnxt_alloc_rx_frag(bp, &mapping, rxr, 4460 GFP_KERNEL); 4461 if (!data) 4462 return -ENOMEM; 4463 4464 rxr->rx_tpa[i].data = data; 4465 rxr->rx_tpa[i].data_ptr = data + bp->rx_offset; 4466 rxr->rx_tpa[i].mapping = mapping; 4467 } 4468 4469 return 0; 4470 } 4471 4472 static int bnxt_alloc_one_rx_ring(struct bnxt *bp, int ring_nr) 4473 { 4474 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[ring_nr]; 4475 int rc; 4476 4477 bnxt_alloc_one_rx_ring_skb(bp, rxr, ring_nr); 4478 4479 if (!(bp->flags & BNXT_FLAG_AGG_RINGS)) 4480 return 0; 4481 4482 bnxt_alloc_one_rx_ring_netmem(bp, rxr, ring_nr); 4483 4484 if (rxr->rx_tpa) { 4485 rc = bnxt_alloc_one_tpa_info_data(bp, rxr); 4486 if (rc) 4487 return rc; 4488 } 4489 return 0; 4490 } 4491 4492 static void bnxt_init_one_rx_ring_rxbd(struct bnxt *bp, 4493 struct bnxt_rx_ring_info *rxr) 4494 { 4495 struct bnxt_ring_struct *ring; 4496 u32 type; 4497 4498 type = (bp->rx_buf_use_size << RX_BD_LEN_SHIFT) | 4499 RX_BD_TYPE_RX_PACKET_BD | RX_BD_FLAGS_EOP; 4500 4501 if (NET_IP_ALIGN == 2) 4502 type |= RX_BD_FLAGS_SOP; 4503 4504 ring = &rxr->rx_ring_struct; 4505 bnxt_init_rxbd_pages(ring, type); 4506 ring->fw_ring_id = INVALID_HW_RING_ID; 4507 } 4508 4509 static void bnxt_init_one_rx_agg_ring_rxbd(struct bnxt *bp, 4510 struct bnxt_rx_ring_info *rxr) 4511 { 4512 struct bnxt_ring_struct *ring; 4513 u32 type; 4514 4515 ring = &rxr->rx_agg_ring_struct; 4516 ring->fw_ring_id = INVALID_HW_RING_ID; 4517 if ((bp->flags & BNXT_FLAG_AGG_RINGS)) { 4518 type = ((u32)rxr->rx_page_size << RX_BD_LEN_SHIFT) | 4519 RX_BD_TYPE_RX_AGG_BD; 4520 4521 /* On P7, setting EOP will cause the chip to disable 4522 * Relaxed Ordering (RO) for TPA data. Disable EOP for 4523 * potentially higher performance with RO. 4524 */ 4525 if (BNXT_CHIP_P5_AND_MINUS(bp) || !(bp->flags & BNXT_FLAG_TPA)) 4526 type |= RX_BD_FLAGS_AGG_EOP; 4527 4528 bnxt_init_rxbd_pages(ring, type); 4529 } 4530 } 4531 4532 static int bnxt_init_one_rx_ring(struct bnxt *bp, int ring_nr) 4533 { 4534 struct bnxt_rx_ring_info *rxr; 4535 4536 rxr = &bp->rx_ring[ring_nr]; 4537 bnxt_init_one_rx_ring_rxbd(bp, rxr); 4538 4539 netif_queue_set_napi(bp->dev, ring_nr, NETDEV_QUEUE_TYPE_RX, 4540 &rxr->bnapi->napi); 4541 4542 if (BNXT_RX_PAGE_MODE(bp) && bp->xdp_prog) { 4543 bpf_prog_add(bp->xdp_prog, 1); 4544 rxr->xdp_prog = bp->xdp_prog; 4545 } 4546 4547 bnxt_init_one_rx_agg_ring_rxbd(bp, rxr); 4548 4549 return bnxt_alloc_one_rx_ring(bp, ring_nr); 4550 } 4551 4552 static void bnxt_init_cp_rings(struct bnxt *bp) 4553 { 4554 int i, j; 4555 4556 for (i = 0; i < bp->cp_nr_rings; i++) { 4557 struct bnxt_cp_ring_info *cpr = &bp->bnapi[i]->cp_ring; 4558 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct; 4559 4560 ring->fw_ring_id = INVALID_HW_RING_ID; 4561 cpr->rx_ring_coal.coal_ticks = bp->rx_coal.coal_ticks; 4562 cpr->rx_ring_coal.coal_bufs = bp->rx_coal.coal_bufs; 4563 if (!cpr->cp_ring_arr) 4564 continue; 4565 for (j = 0; j < cpr->cp_ring_count; j++) { 4566 struct bnxt_cp_ring_info *cpr2 = &cpr->cp_ring_arr[j]; 4567 4568 ring = &cpr2->cp_ring_struct; 4569 ring->fw_ring_id = INVALID_HW_RING_ID; 4570 cpr2->rx_ring_coal.coal_ticks = bp->rx_coal.coal_ticks; 4571 cpr2->rx_ring_coal.coal_bufs = bp->rx_coal.coal_bufs; 4572 } 4573 } 4574 } 4575 4576 static int bnxt_init_rx_rings(struct bnxt *bp) 4577 { 4578 int i, rc = 0; 4579 4580 if (BNXT_RX_PAGE_MODE(bp)) { 4581 bp->rx_offset = NET_IP_ALIGN + XDP_PACKET_HEADROOM; 4582 bp->rx_dma_offset = XDP_PACKET_HEADROOM; 4583 } else { 4584 bp->rx_offset = BNXT_RX_OFFSET; 4585 bp->rx_dma_offset = BNXT_RX_DMA_OFFSET; 4586 } 4587 4588 for (i = 0; i < bp->rx_nr_rings; i++) { 4589 rc = bnxt_init_one_rx_ring(bp, i); 4590 if (rc) 4591 break; 4592 } 4593 4594 return rc; 4595 } 4596 4597 static int bnxt_init_tx_rings(struct bnxt *bp) 4598 { 4599 u16 i; 4600 4601 bp->tx_wake_thresh = max_t(int, bp->tx_ring_size / 2, 4602 BNXT_MIN_TX_DESC_CNT); 4603 4604 for (i = 0; i < bp->tx_nr_rings; i++) { 4605 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 4606 struct bnxt_ring_struct *ring = &txr->tx_ring_struct; 4607 4608 ring->fw_ring_id = INVALID_HW_RING_ID; 4609 4610 if (i >= bp->tx_nr_rings_xdp) 4611 netif_queue_set_napi(bp->dev, i - bp->tx_nr_rings_xdp, 4612 NETDEV_QUEUE_TYPE_TX, 4613 &txr->bnapi->napi); 4614 } 4615 4616 return 0; 4617 } 4618 4619 static void bnxt_free_ring_grps(struct bnxt *bp) 4620 { 4621 kfree(bp->grp_info); 4622 bp->grp_info = NULL; 4623 } 4624 4625 static int bnxt_init_ring_grps(struct bnxt *bp, bool irq_re_init) 4626 { 4627 int i; 4628 4629 if (irq_re_init) { 4630 bp->grp_info = kcalloc(bp->cp_nr_rings, 4631 sizeof(struct bnxt_ring_grp_info), 4632 GFP_KERNEL); 4633 if (!bp->grp_info) 4634 return -ENOMEM; 4635 } 4636 for (i = 0; i < bp->cp_nr_rings; i++) { 4637 if (irq_re_init) 4638 bp->grp_info[i].fw_stats_ctx = INVALID_HW_RING_ID; 4639 bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID; 4640 bp->grp_info[i].rx_fw_ring_id = INVALID_HW_RING_ID; 4641 bp->grp_info[i].agg_fw_ring_id = INVALID_HW_RING_ID; 4642 bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID; 4643 } 4644 return 0; 4645 } 4646 4647 static void bnxt_free_vnics(struct bnxt *bp) 4648 { 4649 kfree(bp->vnic_info); 4650 bp->vnic_info = NULL; 4651 bp->nr_vnics = 0; 4652 } 4653 4654 static int bnxt_alloc_vnics(struct bnxt *bp) 4655 { 4656 int num_vnics = 1; 4657 4658 #ifdef CONFIG_RFS_ACCEL 4659 if (bp->flags & BNXT_FLAG_RFS) { 4660 if (BNXT_SUPPORTS_NTUPLE_VNIC(bp)) 4661 num_vnics++; 4662 else if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 4663 num_vnics += bp->rx_nr_rings; 4664 } 4665 #endif 4666 4667 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 4668 num_vnics++; 4669 4670 bp->vnic_info = kcalloc(num_vnics, sizeof(struct bnxt_vnic_info), 4671 GFP_KERNEL); 4672 if (!bp->vnic_info) 4673 return -ENOMEM; 4674 4675 bp->nr_vnics = num_vnics; 4676 return 0; 4677 } 4678 4679 static void bnxt_init_vnics(struct bnxt *bp) 4680 { 4681 struct bnxt_vnic_info *vnic0 = &bp->vnic_info[BNXT_VNIC_DEFAULT]; 4682 int i; 4683 4684 for (i = 0; i < bp->nr_vnics; i++) { 4685 struct bnxt_vnic_info *vnic = &bp->vnic_info[i]; 4686 int j; 4687 4688 vnic->fw_vnic_id = INVALID_HW_RING_ID; 4689 vnic->vnic_id = i; 4690 for (j = 0; j < BNXT_MAX_CTX_PER_VNIC; j++) 4691 vnic->fw_rss_cos_lb_ctx[j] = INVALID_HW_RING_ID; 4692 4693 vnic->fw_l2_ctx_id = INVALID_HW_RING_ID; 4694 4695 if (bp->vnic_info[i].rss_hash_key) { 4696 if (i == BNXT_VNIC_DEFAULT) { 4697 u8 *key = (void *)vnic->rss_hash_key; 4698 int k; 4699 4700 if (!bp->rss_hash_key_valid && 4701 !bp->rss_hash_key_updated) { 4702 get_random_bytes(bp->rss_hash_key, 4703 HW_HASH_KEY_SIZE); 4704 bp->rss_hash_key_updated = true; 4705 } 4706 4707 memcpy(vnic->rss_hash_key, bp->rss_hash_key, 4708 HW_HASH_KEY_SIZE); 4709 4710 if (!bp->rss_hash_key_updated) 4711 continue; 4712 4713 bp->rss_hash_key_updated = false; 4714 bp->rss_hash_key_valid = true; 4715 4716 bp->toeplitz_prefix = 0; 4717 for (k = 0; k < 8; k++) { 4718 bp->toeplitz_prefix <<= 8; 4719 bp->toeplitz_prefix |= key[k]; 4720 } 4721 } else { 4722 memcpy(vnic->rss_hash_key, vnic0->rss_hash_key, 4723 HW_HASH_KEY_SIZE); 4724 } 4725 } 4726 } 4727 } 4728 4729 static int bnxt_calc_nr_ring_pages(u32 ring_size, int desc_per_pg) 4730 { 4731 int pages; 4732 4733 pages = ring_size / desc_per_pg; 4734 4735 if (!pages) 4736 return 1; 4737 4738 pages++; 4739 4740 while (pages & (pages - 1)) 4741 pages++; 4742 4743 return pages; 4744 } 4745 4746 void bnxt_set_tpa_flags(struct bnxt *bp) 4747 { 4748 bp->flags &= ~BNXT_FLAG_TPA; 4749 if (bp->flags & BNXT_FLAG_NO_AGG_RINGS) 4750 return; 4751 if (bp->dev->features & NETIF_F_LRO) 4752 bp->flags |= BNXT_FLAG_LRO; 4753 else if (bp->dev->features & NETIF_F_GRO_HW) 4754 bp->flags |= BNXT_FLAG_GRO; 4755 } 4756 4757 static void bnxt_init_ring_params(struct bnxt *bp) 4758 { 4759 unsigned int rx_size; 4760 4761 bp->rx_copybreak = BNXT_DEFAULT_RX_COPYBREAK; 4762 /* Try to fit 4 chunks into a 4k page */ 4763 rx_size = SZ_1K - 4764 NET_SKB_PAD - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 4765 bp->dev->cfg->hds_thresh = max(BNXT_DEFAULT_RX_COPYBREAK, rx_size); 4766 } 4767 4768 /* bp->rx_ring_size, bp->tx_ring_size, dev->mtu, BNXT_FLAG_{G|L}RO flags must 4769 * be set on entry. 4770 */ 4771 void bnxt_set_ring_params(struct bnxt *bp) 4772 { 4773 u32 ring_size, rx_size, rx_space, max_rx_cmpl; 4774 u32 agg_factor = 0, agg_ring_size = 0; 4775 4776 /* 8 for CRC and VLAN */ 4777 rx_size = SKB_DATA_ALIGN(bp->dev->mtu + ETH_HLEN + NET_IP_ALIGN + 8); 4778 4779 rx_space = rx_size + ALIGN(max(NET_SKB_PAD, XDP_PACKET_HEADROOM), 8) + 4780 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 4781 4782 ring_size = bp->rx_ring_size; 4783 bp->rx_agg_ring_size = 0; 4784 bp->rx_agg_nr_pages = 0; 4785 4786 if (bp->flags & BNXT_FLAG_TPA || bp->flags & BNXT_FLAG_HDS) 4787 agg_factor = min_t(u32, 4, 65536 / BNXT_RX_PAGE_SIZE); 4788 4789 bp->flags &= ~BNXT_FLAG_JUMBO; 4790 if (rx_space > PAGE_SIZE && !(bp->flags & BNXT_FLAG_NO_AGG_RINGS)) { 4791 u32 jumbo_factor; 4792 4793 bp->flags |= BNXT_FLAG_JUMBO; 4794 jumbo_factor = PAGE_ALIGN(bp->dev->mtu - 40) >> PAGE_SHIFT; 4795 if (jumbo_factor > agg_factor) 4796 agg_factor = jumbo_factor; 4797 } 4798 if (agg_factor) { 4799 if (ring_size > BNXT_MAX_RX_DESC_CNT_JUM_ENA) { 4800 ring_size = BNXT_MAX_RX_DESC_CNT_JUM_ENA; 4801 netdev_warn(bp->dev, "RX ring size reduced from %d to %d because the jumbo ring is now enabled\n", 4802 bp->rx_ring_size, ring_size); 4803 bp->rx_ring_size = ring_size; 4804 } 4805 agg_ring_size = ring_size * agg_factor; 4806 4807 bp->rx_agg_nr_pages = bnxt_calc_nr_ring_pages(agg_ring_size, 4808 RX_DESC_CNT); 4809 if (bp->rx_agg_nr_pages > MAX_RX_AGG_PAGES) { 4810 u32 tmp = agg_ring_size; 4811 4812 bp->rx_agg_nr_pages = MAX_RX_AGG_PAGES; 4813 agg_ring_size = MAX_RX_AGG_PAGES * RX_DESC_CNT - 1; 4814 netdev_warn(bp->dev, "rx agg ring size %d reduced to %d.\n", 4815 tmp, agg_ring_size); 4816 } 4817 bp->rx_agg_ring_size = agg_ring_size; 4818 bp->rx_agg_ring_mask = (bp->rx_agg_nr_pages * RX_DESC_CNT) - 1; 4819 4820 if (BNXT_RX_PAGE_MODE(bp)) { 4821 rx_space = PAGE_SIZE; 4822 rx_size = PAGE_SIZE - 4823 ALIGN(max(NET_SKB_PAD, XDP_PACKET_HEADROOM), 8) - 4824 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 4825 } else { 4826 rx_size = max3(BNXT_DEFAULT_RX_COPYBREAK, 4827 bp->rx_copybreak, 4828 bp->dev->cfg_pending->hds_thresh); 4829 rx_size = SKB_DATA_ALIGN(rx_size + NET_IP_ALIGN); 4830 rx_space = rx_size + NET_SKB_PAD + 4831 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 4832 } 4833 } 4834 4835 bp->rx_buf_use_size = rx_size; 4836 bp->rx_buf_size = rx_space; 4837 4838 bp->rx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, RX_DESC_CNT); 4839 bp->rx_ring_mask = (bp->rx_nr_pages * RX_DESC_CNT) - 1; 4840 4841 ring_size = bp->tx_ring_size; 4842 bp->tx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, TX_DESC_CNT); 4843 bp->tx_ring_mask = (bp->tx_nr_pages * TX_DESC_CNT) - 1; 4844 4845 max_rx_cmpl = bp->rx_ring_size; 4846 /* MAX TPA needs to be added because TPA_START completions are 4847 * immediately recycled, so the TPA completions are not bound by 4848 * the RX ring size. 4849 */ 4850 if (bp->flags & BNXT_FLAG_TPA) 4851 max_rx_cmpl += bp->max_tpa; 4852 /* RX and TPA completions are 32-byte, all others are 16-byte */ 4853 ring_size = max_rx_cmpl * 2 + agg_ring_size + bp->tx_ring_size; 4854 bp->cp_ring_size = ring_size; 4855 4856 bp->cp_nr_pages = bnxt_calc_nr_ring_pages(ring_size, CP_DESC_CNT); 4857 if (bp->cp_nr_pages > MAX_CP_PAGES) { 4858 bp->cp_nr_pages = MAX_CP_PAGES; 4859 bp->cp_ring_size = MAX_CP_PAGES * CP_DESC_CNT - 1; 4860 netdev_warn(bp->dev, "completion ring size %d reduced to %d.\n", 4861 ring_size, bp->cp_ring_size); 4862 } 4863 bp->cp_bit = bp->cp_nr_pages * CP_DESC_CNT; 4864 bp->cp_ring_mask = bp->cp_bit - 1; 4865 } 4866 4867 /* Changing allocation mode of RX rings. 4868 * TODO: Update when extending xdp_rxq_info to support allocation modes. 4869 */ 4870 static void __bnxt_set_rx_skb_mode(struct bnxt *bp, bool page_mode) 4871 { 4872 struct net_device *dev = bp->dev; 4873 4874 if (page_mode) { 4875 bp->flags &= ~(BNXT_FLAG_AGG_RINGS | BNXT_FLAG_NO_AGG_RINGS); 4876 bp->flags |= BNXT_FLAG_RX_PAGE_MODE; 4877 4878 if (bp->xdp_prog->aux->xdp_has_frags) 4879 dev->max_mtu = min_t(u16, bp->max_mtu, BNXT_MAX_MTU); 4880 else 4881 dev->max_mtu = 4882 min_t(u16, bp->max_mtu, BNXT_MAX_PAGE_MODE_MTU); 4883 if (dev->mtu > BNXT_MAX_PAGE_MODE_MTU) { 4884 bp->flags |= BNXT_FLAG_JUMBO; 4885 bp->rx_skb_func = bnxt_rx_multi_page_skb; 4886 } else { 4887 bp->flags |= BNXT_FLAG_NO_AGG_RINGS; 4888 bp->rx_skb_func = bnxt_rx_page_skb; 4889 } 4890 bp->rx_dir = DMA_BIDIRECTIONAL; 4891 } else { 4892 dev->max_mtu = bp->max_mtu; 4893 bp->flags &= ~BNXT_FLAG_RX_PAGE_MODE; 4894 bp->rx_dir = DMA_FROM_DEVICE; 4895 bp->rx_skb_func = bnxt_rx_skb; 4896 } 4897 } 4898 4899 void bnxt_set_rx_skb_mode(struct bnxt *bp, bool page_mode) 4900 { 4901 __bnxt_set_rx_skb_mode(bp, page_mode); 4902 4903 if (!page_mode) { 4904 int rx, tx; 4905 4906 bnxt_get_max_rings(bp, &rx, &tx, true); 4907 if (rx > 1) { 4908 bp->flags &= ~BNXT_FLAG_NO_AGG_RINGS; 4909 bp->dev->hw_features |= NETIF_F_LRO; 4910 } 4911 } 4912 4913 /* Update LRO and GRO_HW availability */ 4914 netdev_update_features(bp->dev); 4915 } 4916 4917 static void bnxt_free_vnic_attributes(struct bnxt *bp) 4918 { 4919 int i; 4920 struct bnxt_vnic_info *vnic; 4921 struct pci_dev *pdev = bp->pdev; 4922 4923 if (!bp->vnic_info) 4924 return; 4925 4926 for (i = 0; i < bp->nr_vnics; i++) { 4927 vnic = &bp->vnic_info[i]; 4928 4929 kfree(vnic->fw_grp_ids); 4930 vnic->fw_grp_ids = NULL; 4931 4932 kfree(vnic->uc_list); 4933 vnic->uc_list = NULL; 4934 4935 if (vnic->mc_list) { 4936 dma_free_coherent(&pdev->dev, vnic->mc_list_size, 4937 vnic->mc_list, vnic->mc_list_mapping); 4938 vnic->mc_list = NULL; 4939 } 4940 4941 if (vnic->rss_table) { 4942 dma_free_coherent(&pdev->dev, vnic->rss_table_size, 4943 vnic->rss_table, 4944 vnic->rss_table_dma_addr); 4945 vnic->rss_table = NULL; 4946 } 4947 4948 vnic->rss_hash_key = NULL; 4949 vnic->flags = 0; 4950 } 4951 } 4952 4953 static int bnxt_alloc_vnic_attributes(struct bnxt *bp) 4954 { 4955 int i, rc = 0, size; 4956 struct bnxt_vnic_info *vnic; 4957 struct pci_dev *pdev = bp->pdev; 4958 int max_rings; 4959 4960 for (i = 0; i < bp->nr_vnics; i++) { 4961 vnic = &bp->vnic_info[i]; 4962 4963 if (vnic->flags & BNXT_VNIC_UCAST_FLAG) { 4964 int mem_size = (BNXT_MAX_UC_ADDRS - 1) * ETH_ALEN; 4965 4966 if (mem_size > 0) { 4967 vnic->uc_list = kmalloc(mem_size, GFP_KERNEL); 4968 if (!vnic->uc_list) { 4969 rc = -ENOMEM; 4970 goto out; 4971 } 4972 } 4973 } 4974 4975 if (vnic->flags & BNXT_VNIC_MCAST_FLAG) { 4976 vnic->mc_list_size = BNXT_MAX_MC_ADDRS * ETH_ALEN; 4977 vnic->mc_list = 4978 dma_alloc_coherent(&pdev->dev, 4979 vnic->mc_list_size, 4980 &vnic->mc_list_mapping, 4981 GFP_KERNEL); 4982 if (!vnic->mc_list) { 4983 rc = -ENOMEM; 4984 goto out; 4985 } 4986 } 4987 4988 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 4989 goto vnic_skip_grps; 4990 4991 if (vnic->flags & BNXT_VNIC_RSS_FLAG) 4992 max_rings = bp->rx_nr_rings; 4993 else 4994 max_rings = 1; 4995 4996 vnic->fw_grp_ids = kcalloc(max_rings, sizeof(u16), GFP_KERNEL); 4997 if (!vnic->fw_grp_ids) { 4998 rc = -ENOMEM; 4999 goto out; 5000 } 5001 vnic_skip_grps: 5002 if ((bp->rss_cap & BNXT_RSS_CAP_NEW_RSS_CAP) && 5003 !(vnic->flags & BNXT_VNIC_RSS_FLAG)) 5004 continue; 5005 5006 /* Allocate rss table and hash key */ 5007 size = L1_CACHE_ALIGN(HW_HASH_INDEX_SIZE * sizeof(u16)); 5008 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 5009 size = L1_CACHE_ALIGN(BNXT_MAX_RSS_TABLE_SIZE_P5); 5010 5011 vnic->rss_table_size = size + HW_HASH_KEY_SIZE; 5012 vnic->rss_table = dma_alloc_coherent(&pdev->dev, 5013 vnic->rss_table_size, 5014 &vnic->rss_table_dma_addr, 5015 GFP_KERNEL); 5016 if (!vnic->rss_table) { 5017 rc = -ENOMEM; 5018 goto out; 5019 } 5020 5021 vnic->rss_hash_key = ((void *)vnic->rss_table) + size; 5022 vnic->rss_hash_key_dma_addr = vnic->rss_table_dma_addr + size; 5023 } 5024 return 0; 5025 5026 out: 5027 return rc; 5028 } 5029 5030 static void bnxt_free_hwrm_resources(struct bnxt *bp) 5031 { 5032 struct bnxt_hwrm_wait_token *token; 5033 5034 dma_pool_destroy(bp->hwrm_dma_pool); 5035 bp->hwrm_dma_pool = NULL; 5036 5037 rcu_read_lock(); 5038 hlist_for_each_entry_rcu(token, &bp->hwrm_pending_list, node) 5039 WRITE_ONCE(token->state, BNXT_HWRM_CANCELLED); 5040 rcu_read_unlock(); 5041 } 5042 5043 static int bnxt_alloc_hwrm_resources(struct bnxt *bp) 5044 { 5045 bp->hwrm_dma_pool = dma_pool_create("bnxt_hwrm", &bp->pdev->dev, 5046 BNXT_HWRM_DMA_SIZE, 5047 BNXT_HWRM_DMA_ALIGN, 0); 5048 if (!bp->hwrm_dma_pool) 5049 return -ENOMEM; 5050 5051 INIT_HLIST_HEAD(&bp->hwrm_pending_list); 5052 5053 return 0; 5054 } 5055 5056 static void bnxt_free_stats_mem(struct bnxt *bp, struct bnxt_stats_mem *stats) 5057 { 5058 kfree(stats->hw_masks); 5059 stats->hw_masks = NULL; 5060 kfree(stats->sw_stats); 5061 stats->sw_stats = NULL; 5062 if (stats->hw_stats) { 5063 dma_free_coherent(&bp->pdev->dev, stats->len, stats->hw_stats, 5064 stats->hw_stats_map); 5065 stats->hw_stats = NULL; 5066 } 5067 } 5068 5069 static int bnxt_alloc_stats_mem(struct bnxt *bp, struct bnxt_stats_mem *stats, 5070 bool alloc_masks) 5071 { 5072 stats->hw_stats = dma_alloc_coherent(&bp->pdev->dev, stats->len, 5073 &stats->hw_stats_map, GFP_KERNEL); 5074 if (!stats->hw_stats) 5075 return -ENOMEM; 5076 5077 stats->sw_stats = kzalloc(stats->len, GFP_KERNEL); 5078 if (!stats->sw_stats) 5079 goto stats_mem_err; 5080 5081 if (alloc_masks) { 5082 stats->hw_masks = kzalloc(stats->len, GFP_KERNEL); 5083 if (!stats->hw_masks) 5084 goto stats_mem_err; 5085 } 5086 return 0; 5087 5088 stats_mem_err: 5089 bnxt_free_stats_mem(bp, stats); 5090 return -ENOMEM; 5091 } 5092 5093 static void bnxt_fill_masks(u64 *mask_arr, u64 mask, int count) 5094 { 5095 int i; 5096 5097 for (i = 0; i < count; i++) 5098 mask_arr[i] = mask; 5099 } 5100 5101 static void bnxt_copy_hw_masks(u64 *mask_arr, __le64 *hw_mask_arr, int count) 5102 { 5103 int i; 5104 5105 for (i = 0; i < count; i++) 5106 mask_arr[i] = le64_to_cpu(hw_mask_arr[i]); 5107 } 5108 5109 static int bnxt_hwrm_func_qstat_ext(struct bnxt *bp, 5110 struct bnxt_stats_mem *stats) 5111 { 5112 struct hwrm_func_qstats_ext_output *resp; 5113 struct hwrm_func_qstats_ext_input *req; 5114 __le64 *hw_masks; 5115 int rc; 5116 5117 if (!(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED) || 5118 !(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 5119 return -EOPNOTSUPP; 5120 5121 rc = hwrm_req_init(bp, req, HWRM_FUNC_QSTATS_EXT); 5122 if (rc) 5123 return rc; 5124 5125 req->fid = cpu_to_le16(0xffff); 5126 req->flags = FUNC_QSTATS_EXT_REQ_FLAGS_COUNTER_MASK; 5127 5128 resp = hwrm_req_hold(bp, req); 5129 rc = hwrm_req_send(bp, req); 5130 if (!rc) { 5131 hw_masks = &resp->rx_ucast_pkts; 5132 bnxt_copy_hw_masks(stats->hw_masks, hw_masks, stats->len / 8); 5133 } 5134 hwrm_req_drop(bp, req); 5135 return rc; 5136 } 5137 5138 static int bnxt_hwrm_port_qstats(struct bnxt *bp, u8 flags); 5139 static int bnxt_hwrm_port_qstats_ext(struct bnxt *bp, u8 flags); 5140 5141 static void bnxt_init_stats(struct bnxt *bp) 5142 { 5143 struct bnxt_napi *bnapi = bp->bnapi[0]; 5144 struct bnxt_cp_ring_info *cpr; 5145 struct bnxt_stats_mem *stats; 5146 __le64 *rx_stats, *tx_stats; 5147 int rc, rx_count, tx_count; 5148 u64 *rx_masks, *tx_masks; 5149 u64 mask; 5150 u8 flags; 5151 5152 cpr = &bnapi->cp_ring; 5153 stats = &cpr->stats; 5154 rc = bnxt_hwrm_func_qstat_ext(bp, stats); 5155 if (rc) { 5156 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 5157 mask = (1ULL << 48) - 1; 5158 else 5159 mask = -1ULL; 5160 bnxt_fill_masks(stats->hw_masks, mask, stats->len / 8); 5161 } 5162 if (bp->flags & BNXT_FLAG_PORT_STATS) { 5163 stats = &bp->port_stats; 5164 rx_stats = stats->hw_stats; 5165 rx_masks = stats->hw_masks; 5166 rx_count = sizeof(struct rx_port_stats) / 8; 5167 tx_stats = rx_stats + BNXT_TX_PORT_STATS_BYTE_OFFSET / 8; 5168 tx_masks = rx_masks + BNXT_TX_PORT_STATS_BYTE_OFFSET / 8; 5169 tx_count = sizeof(struct tx_port_stats) / 8; 5170 5171 flags = PORT_QSTATS_REQ_FLAGS_COUNTER_MASK; 5172 rc = bnxt_hwrm_port_qstats(bp, flags); 5173 if (rc) { 5174 mask = (1ULL << 40) - 1; 5175 5176 bnxt_fill_masks(rx_masks, mask, rx_count); 5177 bnxt_fill_masks(tx_masks, mask, tx_count); 5178 } else { 5179 bnxt_copy_hw_masks(rx_masks, rx_stats, rx_count); 5180 bnxt_copy_hw_masks(tx_masks, tx_stats, tx_count); 5181 bnxt_hwrm_port_qstats(bp, 0); 5182 } 5183 } 5184 if (bp->flags & BNXT_FLAG_PORT_STATS_EXT) { 5185 stats = &bp->rx_port_stats_ext; 5186 rx_stats = stats->hw_stats; 5187 rx_masks = stats->hw_masks; 5188 rx_count = sizeof(struct rx_port_stats_ext) / 8; 5189 stats = &bp->tx_port_stats_ext; 5190 tx_stats = stats->hw_stats; 5191 tx_masks = stats->hw_masks; 5192 tx_count = sizeof(struct tx_port_stats_ext) / 8; 5193 5194 flags = PORT_QSTATS_EXT_REQ_FLAGS_COUNTER_MASK; 5195 rc = bnxt_hwrm_port_qstats_ext(bp, flags); 5196 if (rc) { 5197 mask = (1ULL << 40) - 1; 5198 5199 bnxt_fill_masks(rx_masks, mask, rx_count); 5200 if (tx_stats) 5201 bnxt_fill_masks(tx_masks, mask, tx_count); 5202 } else { 5203 bnxt_copy_hw_masks(rx_masks, rx_stats, rx_count); 5204 if (tx_stats) 5205 bnxt_copy_hw_masks(tx_masks, tx_stats, 5206 tx_count); 5207 bnxt_hwrm_port_qstats_ext(bp, 0); 5208 } 5209 } 5210 } 5211 5212 static void bnxt_free_port_stats(struct bnxt *bp) 5213 { 5214 bp->flags &= ~BNXT_FLAG_PORT_STATS; 5215 bp->flags &= ~BNXT_FLAG_PORT_STATS_EXT; 5216 5217 bnxt_free_stats_mem(bp, &bp->port_stats); 5218 bnxt_free_stats_mem(bp, &bp->rx_port_stats_ext); 5219 bnxt_free_stats_mem(bp, &bp->tx_port_stats_ext); 5220 } 5221 5222 static void bnxt_free_ring_stats(struct bnxt *bp) 5223 { 5224 int i; 5225 5226 if (!bp->bnapi) 5227 return; 5228 5229 for (i = 0; i < bp->cp_nr_rings; i++) { 5230 struct bnxt_napi *bnapi = bp->bnapi[i]; 5231 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 5232 5233 bnxt_free_stats_mem(bp, &cpr->stats); 5234 5235 kfree(cpr->sw_stats); 5236 cpr->sw_stats = NULL; 5237 } 5238 } 5239 5240 static int bnxt_alloc_stats(struct bnxt *bp) 5241 { 5242 u32 size, i; 5243 int rc; 5244 5245 size = bp->hw_ring_stats_size; 5246 5247 for (i = 0; i < bp->cp_nr_rings; i++) { 5248 struct bnxt_napi *bnapi = bp->bnapi[i]; 5249 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 5250 5251 cpr->sw_stats = kzalloc(sizeof(*cpr->sw_stats), GFP_KERNEL); 5252 if (!cpr->sw_stats) 5253 return -ENOMEM; 5254 5255 cpr->stats.len = size; 5256 rc = bnxt_alloc_stats_mem(bp, &cpr->stats, !i); 5257 if (rc) 5258 return rc; 5259 5260 cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID; 5261 } 5262 5263 if (BNXT_VF(bp) || bp->chip_num == CHIP_NUM_58700) 5264 return 0; 5265 5266 if (bp->port_stats.hw_stats) 5267 goto alloc_ext_stats; 5268 5269 bp->port_stats.len = BNXT_PORT_STATS_SIZE; 5270 rc = bnxt_alloc_stats_mem(bp, &bp->port_stats, true); 5271 if (rc) 5272 return rc; 5273 5274 bp->flags |= BNXT_FLAG_PORT_STATS; 5275 5276 alloc_ext_stats: 5277 /* Display extended statistics only if FW supports it */ 5278 if (bp->hwrm_spec_code < 0x10804 || bp->hwrm_spec_code == 0x10900) 5279 if (!(bp->fw_cap & BNXT_FW_CAP_EXT_STATS_SUPPORTED)) 5280 return 0; 5281 5282 if (bp->rx_port_stats_ext.hw_stats) 5283 goto alloc_tx_ext_stats; 5284 5285 bp->rx_port_stats_ext.len = sizeof(struct rx_port_stats_ext); 5286 rc = bnxt_alloc_stats_mem(bp, &bp->rx_port_stats_ext, true); 5287 /* Extended stats are optional */ 5288 if (rc) 5289 return 0; 5290 5291 alloc_tx_ext_stats: 5292 if (bp->tx_port_stats_ext.hw_stats) 5293 return 0; 5294 5295 if (bp->hwrm_spec_code >= 0x10902 || 5296 (bp->fw_cap & BNXT_FW_CAP_EXT_STATS_SUPPORTED)) { 5297 bp->tx_port_stats_ext.len = sizeof(struct tx_port_stats_ext); 5298 rc = bnxt_alloc_stats_mem(bp, &bp->tx_port_stats_ext, true); 5299 /* Extended stats are optional */ 5300 if (rc) 5301 return 0; 5302 } 5303 bp->flags |= BNXT_FLAG_PORT_STATS_EXT; 5304 return 0; 5305 } 5306 5307 static void bnxt_clear_ring_indices(struct bnxt *bp) 5308 { 5309 int i, j; 5310 5311 if (!bp->bnapi) 5312 return; 5313 5314 for (i = 0; i < bp->cp_nr_rings; i++) { 5315 struct bnxt_napi *bnapi = bp->bnapi[i]; 5316 struct bnxt_cp_ring_info *cpr; 5317 struct bnxt_rx_ring_info *rxr; 5318 struct bnxt_tx_ring_info *txr; 5319 5320 if (!bnapi) 5321 continue; 5322 5323 cpr = &bnapi->cp_ring; 5324 cpr->cp_raw_cons = 0; 5325 5326 bnxt_for_each_napi_tx(j, bnapi, txr) { 5327 txr->tx_prod = 0; 5328 txr->tx_cons = 0; 5329 txr->tx_hw_cons = 0; 5330 } 5331 5332 rxr = bnapi->rx_ring; 5333 if (rxr) { 5334 rxr->rx_prod = 0; 5335 rxr->rx_agg_prod = 0; 5336 rxr->rx_sw_agg_prod = 0; 5337 rxr->rx_next_cons = 0; 5338 } 5339 bnapi->events = 0; 5340 } 5341 } 5342 5343 void bnxt_insert_usr_fltr(struct bnxt *bp, struct bnxt_filter_base *fltr) 5344 { 5345 u8 type = fltr->type, flags = fltr->flags; 5346 5347 INIT_LIST_HEAD(&fltr->list); 5348 if ((type == BNXT_FLTR_TYPE_L2 && flags & BNXT_ACT_RING_DST) || 5349 (type == BNXT_FLTR_TYPE_NTUPLE && flags & BNXT_ACT_NO_AGING)) 5350 list_add_tail(&fltr->list, &bp->usr_fltr_list); 5351 } 5352 5353 void bnxt_del_one_usr_fltr(struct bnxt *bp, struct bnxt_filter_base *fltr) 5354 { 5355 if (!list_empty(&fltr->list)) 5356 list_del_init(&fltr->list); 5357 } 5358 5359 static void bnxt_clear_usr_fltrs(struct bnxt *bp, bool all) 5360 { 5361 struct bnxt_filter_base *usr_fltr, *tmp; 5362 5363 list_for_each_entry_safe(usr_fltr, tmp, &bp->usr_fltr_list, list) { 5364 if (!all && usr_fltr->type == BNXT_FLTR_TYPE_L2) 5365 continue; 5366 bnxt_del_one_usr_fltr(bp, usr_fltr); 5367 } 5368 } 5369 5370 static void bnxt_del_fltr(struct bnxt *bp, struct bnxt_filter_base *fltr) 5371 { 5372 hlist_del(&fltr->hash); 5373 bnxt_del_one_usr_fltr(bp, fltr); 5374 if (fltr->flags) { 5375 clear_bit(fltr->sw_id, bp->ntp_fltr_bmap); 5376 bp->ntp_fltr_count--; 5377 } 5378 kfree(fltr); 5379 } 5380 5381 static void bnxt_free_ntp_fltrs(struct bnxt *bp, bool all) 5382 { 5383 int i; 5384 5385 netdev_assert_locked_or_invisible(bp->dev); 5386 5387 /* Under netdev instance lock and all our NAPIs have been disabled. 5388 * It's safe to delete the hash table. 5389 */ 5390 for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) { 5391 struct hlist_head *head; 5392 struct hlist_node *tmp; 5393 struct bnxt_ntuple_filter *fltr; 5394 5395 head = &bp->ntp_fltr_hash_tbl[i]; 5396 hlist_for_each_entry_safe(fltr, tmp, head, base.hash) { 5397 bnxt_del_l2_filter(bp, fltr->l2_fltr); 5398 if (!all && ((fltr->base.flags & BNXT_ACT_FUNC_DST) || 5399 !list_empty(&fltr->base.list))) 5400 continue; 5401 bnxt_del_fltr(bp, &fltr->base); 5402 } 5403 } 5404 if (!all) 5405 return; 5406 5407 bitmap_free(bp->ntp_fltr_bmap); 5408 bp->ntp_fltr_bmap = NULL; 5409 bp->ntp_fltr_count = 0; 5410 } 5411 5412 static int bnxt_alloc_ntp_fltrs(struct bnxt *bp) 5413 { 5414 int i, rc = 0; 5415 5416 if (!(bp->flags & BNXT_FLAG_RFS) || bp->ntp_fltr_bmap) 5417 return 0; 5418 5419 for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) 5420 INIT_HLIST_HEAD(&bp->ntp_fltr_hash_tbl[i]); 5421 5422 bp->ntp_fltr_count = 0; 5423 bp->ntp_fltr_bmap = bitmap_zalloc(bp->max_fltr, GFP_KERNEL); 5424 5425 if (!bp->ntp_fltr_bmap) 5426 rc = -ENOMEM; 5427 5428 return rc; 5429 } 5430 5431 static void bnxt_free_l2_filters(struct bnxt *bp, bool all) 5432 { 5433 int i; 5434 5435 for (i = 0; i < BNXT_L2_FLTR_HASH_SIZE; i++) { 5436 struct hlist_head *head; 5437 struct hlist_node *tmp; 5438 struct bnxt_l2_filter *fltr; 5439 5440 head = &bp->l2_fltr_hash_tbl[i]; 5441 hlist_for_each_entry_safe(fltr, tmp, head, base.hash) { 5442 if (!all && ((fltr->base.flags & BNXT_ACT_FUNC_DST) || 5443 !list_empty(&fltr->base.list))) 5444 continue; 5445 bnxt_del_fltr(bp, &fltr->base); 5446 } 5447 } 5448 } 5449 5450 static void bnxt_init_l2_fltr_tbl(struct bnxt *bp) 5451 { 5452 int i; 5453 5454 for (i = 0; i < BNXT_L2_FLTR_HASH_SIZE; i++) 5455 INIT_HLIST_HEAD(&bp->l2_fltr_hash_tbl[i]); 5456 get_random_bytes(&bp->hash_seed, sizeof(bp->hash_seed)); 5457 } 5458 5459 static void bnxt_free_mem(struct bnxt *bp, bool irq_re_init) 5460 { 5461 bnxt_free_vnic_attributes(bp); 5462 bnxt_free_tx_rings(bp); 5463 bnxt_free_rx_rings(bp); 5464 bnxt_free_cp_rings(bp); 5465 bnxt_free_all_cp_arrays(bp); 5466 bnxt_free_ntp_fltrs(bp, false); 5467 bnxt_free_l2_filters(bp, false); 5468 if (irq_re_init) { 5469 bnxt_free_ring_stats(bp); 5470 if (!(bp->phy_flags & BNXT_PHY_FL_PORT_STATS_NO_RESET) || 5471 test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) 5472 bnxt_free_port_stats(bp); 5473 bnxt_free_ring_grps(bp); 5474 bnxt_free_vnics(bp); 5475 kfree(bp->tx_ring_map); 5476 bp->tx_ring_map = NULL; 5477 kfree(bp->tx_ring); 5478 bp->tx_ring = NULL; 5479 kfree(bp->rx_ring); 5480 bp->rx_ring = NULL; 5481 kfree(bp->bnapi); 5482 bp->bnapi = NULL; 5483 } else { 5484 bnxt_clear_ring_indices(bp); 5485 } 5486 } 5487 5488 static int bnxt_alloc_mem(struct bnxt *bp, bool irq_re_init) 5489 { 5490 int i, j, rc, size, arr_size; 5491 void *bnapi; 5492 5493 if (irq_re_init) { 5494 /* Allocate bnapi mem pointer array and mem block for 5495 * all queues 5496 */ 5497 arr_size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi *) * 5498 bp->cp_nr_rings); 5499 size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi)); 5500 bnapi = kzalloc(arr_size + size * bp->cp_nr_rings, GFP_KERNEL); 5501 if (!bnapi) 5502 return -ENOMEM; 5503 5504 bp->bnapi = bnapi; 5505 bnapi += arr_size; 5506 for (i = 0; i < bp->cp_nr_rings; i++, bnapi += size) { 5507 bp->bnapi[i] = bnapi; 5508 bp->bnapi[i]->index = i; 5509 bp->bnapi[i]->bp = bp; 5510 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 5511 struct bnxt_cp_ring_info *cpr = 5512 &bp->bnapi[i]->cp_ring; 5513 5514 cpr->cp_ring_struct.ring_mem.flags = 5515 BNXT_RMEM_RING_PTE_FLAG; 5516 } 5517 } 5518 5519 bp->rx_ring = kcalloc(bp->rx_nr_rings, 5520 sizeof(struct bnxt_rx_ring_info), 5521 GFP_KERNEL); 5522 if (!bp->rx_ring) 5523 return -ENOMEM; 5524 5525 for (i = 0; i < bp->rx_nr_rings; i++) { 5526 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 5527 5528 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 5529 rxr->rx_ring_struct.ring_mem.flags = 5530 BNXT_RMEM_RING_PTE_FLAG; 5531 rxr->rx_agg_ring_struct.ring_mem.flags = 5532 BNXT_RMEM_RING_PTE_FLAG; 5533 } else { 5534 rxr->rx_cpr = &bp->bnapi[i]->cp_ring; 5535 } 5536 rxr->bnapi = bp->bnapi[i]; 5537 bp->bnapi[i]->rx_ring = &bp->rx_ring[i]; 5538 } 5539 5540 bp->tx_ring = kcalloc(bp->tx_nr_rings, 5541 sizeof(struct bnxt_tx_ring_info), 5542 GFP_KERNEL); 5543 if (!bp->tx_ring) 5544 return -ENOMEM; 5545 5546 bp->tx_ring_map = kcalloc(bp->tx_nr_rings, sizeof(u16), 5547 GFP_KERNEL); 5548 5549 if (!bp->tx_ring_map) 5550 return -ENOMEM; 5551 5552 if (bp->flags & BNXT_FLAG_SHARED_RINGS) 5553 j = 0; 5554 else 5555 j = bp->rx_nr_rings; 5556 5557 for (i = 0; i < bp->tx_nr_rings; i++) { 5558 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 5559 struct bnxt_napi *bnapi2; 5560 5561 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 5562 txr->tx_ring_struct.ring_mem.flags = 5563 BNXT_RMEM_RING_PTE_FLAG; 5564 bp->tx_ring_map[i] = bp->tx_nr_rings_xdp + i; 5565 if (i >= bp->tx_nr_rings_xdp) { 5566 int k = j + BNXT_RING_TO_TC_OFF(bp, i); 5567 5568 bnapi2 = bp->bnapi[k]; 5569 txr->txq_index = i - bp->tx_nr_rings_xdp; 5570 txr->tx_napi_idx = 5571 BNXT_RING_TO_TC(bp, txr->txq_index); 5572 bnapi2->tx_ring[txr->tx_napi_idx] = txr; 5573 bnapi2->tx_int = bnxt_tx_int; 5574 } else { 5575 bnapi2 = bp->bnapi[j]; 5576 bnapi2->flags |= BNXT_NAPI_FLAG_XDP; 5577 bnapi2->tx_ring[0] = txr; 5578 bnapi2->tx_int = bnxt_tx_int_xdp; 5579 j++; 5580 } 5581 txr->bnapi = bnapi2; 5582 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 5583 txr->tx_cpr = &bnapi2->cp_ring; 5584 } 5585 5586 rc = bnxt_alloc_stats(bp); 5587 if (rc) 5588 goto alloc_mem_err; 5589 bnxt_init_stats(bp); 5590 5591 rc = bnxt_alloc_ntp_fltrs(bp); 5592 if (rc) 5593 goto alloc_mem_err; 5594 5595 rc = bnxt_alloc_vnics(bp); 5596 if (rc) 5597 goto alloc_mem_err; 5598 } 5599 5600 rc = bnxt_alloc_all_cp_arrays(bp); 5601 if (rc) 5602 goto alloc_mem_err; 5603 5604 bnxt_init_ring_struct(bp); 5605 5606 rc = bnxt_alloc_rx_rings(bp); 5607 if (rc) 5608 goto alloc_mem_err; 5609 5610 rc = bnxt_alloc_tx_rings(bp); 5611 if (rc) 5612 goto alloc_mem_err; 5613 5614 rc = bnxt_alloc_cp_rings(bp); 5615 if (rc) 5616 goto alloc_mem_err; 5617 5618 bp->vnic_info[BNXT_VNIC_DEFAULT].flags |= BNXT_VNIC_RSS_FLAG | 5619 BNXT_VNIC_MCAST_FLAG | 5620 BNXT_VNIC_UCAST_FLAG; 5621 if (BNXT_SUPPORTS_NTUPLE_VNIC(bp) && (bp->flags & BNXT_FLAG_RFS)) 5622 bp->vnic_info[BNXT_VNIC_NTUPLE].flags |= 5623 BNXT_VNIC_RSS_FLAG | BNXT_VNIC_NTUPLE_FLAG; 5624 5625 rc = bnxt_alloc_vnic_attributes(bp); 5626 if (rc) 5627 goto alloc_mem_err; 5628 return 0; 5629 5630 alloc_mem_err: 5631 bnxt_free_mem(bp, true); 5632 return rc; 5633 } 5634 5635 static void bnxt_disable_int(struct bnxt *bp) 5636 { 5637 int i; 5638 5639 if (!bp->bnapi) 5640 return; 5641 5642 for (i = 0; i < bp->cp_nr_rings; i++) { 5643 struct bnxt_napi *bnapi = bp->bnapi[i]; 5644 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 5645 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct; 5646 5647 if (ring->fw_ring_id != INVALID_HW_RING_ID) 5648 bnxt_db_nq(bp, &cpr->cp_db, cpr->cp_raw_cons); 5649 } 5650 } 5651 5652 static int bnxt_cp_num_to_irq_num(struct bnxt *bp, int n) 5653 { 5654 struct bnxt_napi *bnapi = bp->bnapi[n]; 5655 struct bnxt_cp_ring_info *cpr; 5656 5657 cpr = &bnapi->cp_ring; 5658 return cpr->cp_ring_struct.map_idx; 5659 } 5660 5661 static void bnxt_disable_int_sync(struct bnxt *bp) 5662 { 5663 int i; 5664 5665 if (!bp->irq_tbl) 5666 return; 5667 5668 atomic_inc(&bp->intr_sem); 5669 5670 bnxt_disable_int(bp); 5671 for (i = 0; i < bp->cp_nr_rings; i++) { 5672 int map_idx = bnxt_cp_num_to_irq_num(bp, i); 5673 5674 synchronize_irq(bp->irq_tbl[map_idx].vector); 5675 } 5676 } 5677 5678 static void bnxt_enable_int(struct bnxt *bp) 5679 { 5680 int i; 5681 5682 atomic_set(&bp->intr_sem, 0); 5683 for (i = 0; i < bp->cp_nr_rings; i++) { 5684 struct bnxt_napi *bnapi = bp->bnapi[i]; 5685 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 5686 5687 bnxt_db_nq_arm(bp, &cpr->cp_db, cpr->cp_raw_cons); 5688 } 5689 } 5690 5691 int bnxt_hwrm_func_drv_rgtr(struct bnxt *bp, unsigned long *bmap, int bmap_size, 5692 bool async_only) 5693 { 5694 DECLARE_BITMAP(async_events_bmap, 256); 5695 u32 *events = (u32 *)async_events_bmap; 5696 struct hwrm_func_drv_rgtr_output *resp; 5697 struct hwrm_func_drv_rgtr_input *req; 5698 u32 flags; 5699 int rc, i; 5700 5701 rc = hwrm_req_init(bp, req, HWRM_FUNC_DRV_RGTR); 5702 if (rc) 5703 return rc; 5704 5705 req->enables = cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_OS_TYPE | 5706 FUNC_DRV_RGTR_REQ_ENABLES_VER | 5707 FUNC_DRV_RGTR_REQ_ENABLES_ASYNC_EVENT_FWD); 5708 5709 req->os_type = cpu_to_le16(FUNC_DRV_RGTR_REQ_OS_TYPE_LINUX); 5710 flags = FUNC_DRV_RGTR_REQ_FLAGS_16BIT_VER_MODE; 5711 if (bp->fw_cap & BNXT_FW_CAP_HOT_RESET) 5712 flags |= FUNC_DRV_RGTR_REQ_FLAGS_HOT_RESET_SUPPORT; 5713 if (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY) 5714 flags |= FUNC_DRV_RGTR_REQ_FLAGS_ERROR_RECOVERY_SUPPORT | 5715 FUNC_DRV_RGTR_REQ_FLAGS_MASTER_SUPPORT; 5716 if (bp->fw_cap & BNXT_FW_CAP_NPAR_1_2) 5717 flags |= FUNC_DRV_RGTR_REQ_FLAGS_NPAR_1_2_SUPPORT; 5718 req->flags = cpu_to_le32(flags); 5719 req->ver_maj_8b = DRV_VER_MAJ; 5720 req->ver_min_8b = DRV_VER_MIN; 5721 req->ver_upd_8b = DRV_VER_UPD; 5722 req->ver_maj = cpu_to_le16(DRV_VER_MAJ); 5723 req->ver_min = cpu_to_le16(DRV_VER_MIN); 5724 req->ver_upd = cpu_to_le16(DRV_VER_UPD); 5725 5726 if (BNXT_PF(bp)) { 5727 u32 data[8]; 5728 int i; 5729 5730 memset(data, 0, sizeof(data)); 5731 for (i = 0; i < ARRAY_SIZE(bnxt_vf_req_snif); i++) { 5732 u16 cmd = bnxt_vf_req_snif[i]; 5733 unsigned int bit, idx; 5734 5735 if ((bp->fw_cap & BNXT_FW_CAP_LINK_ADMIN) && 5736 cmd == HWRM_PORT_PHY_QCFG) 5737 continue; 5738 5739 idx = cmd / 32; 5740 bit = cmd % 32; 5741 data[idx] |= 1 << bit; 5742 } 5743 5744 for (i = 0; i < 8; i++) 5745 req->vf_req_fwd[i] = cpu_to_le32(data[i]); 5746 5747 req->enables |= 5748 cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_VF_REQ_FWD); 5749 } 5750 5751 if (bp->fw_cap & BNXT_FW_CAP_OVS_64BIT_HANDLE) 5752 req->flags |= cpu_to_le32( 5753 FUNC_DRV_RGTR_REQ_FLAGS_FLOW_HANDLE_64BIT_MODE); 5754 5755 memset(async_events_bmap, 0, sizeof(async_events_bmap)); 5756 for (i = 0; i < ARRAY_SIZE(bnxt_async_events_arr); i++) { 5757 u16 event_id = bnxt_async_events_arr[i]; 5758 5759 if (event_id == ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY && 5760 !(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)) 5761 continue; 5762 if (event_id == ASYNC_EVENT_CMPL_EVENT_ID_PHC_UPDATE && 5763 !bp->ptp_cfg) 5764 continue; 5765 __set_bit(bnxt_async_events_arr[i], async_events_bmap); 5766 } 5767 if (bmap && bmap_size) { 5768 for (i = 0; i < bmap_size; i++) { 5769 if (test_bit(i, bmap)) 5770 __set_bit(i, async_events_bmap); 5771 } 5772 } 5773 for (i = 0; i < 8; i++) 5774 req->async_event_fwd[i] |= cpu_to_le32(events[i]); 5775 5776 if (async_only) 5777 req->enables = 5778 cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_ASYNC_EVENT_FWD); 5779 5780 resp = hwrm_req_hold(bp, req); 5781 rc = hwrm_req_send(bp, req); 5782 if (!rc) { 5783 set_bit(BNXT_STATE_DRV_REGISTERED, &bp->state); 5784 if (resp->flags & 5785 cpu_to_le32(FUNC_DRV_RGTR_RESP_FLAGS_IF_CHANGE_SUPPORTED)) 5786 bp->fw_cap |= BNXT_FW_CAP_IF_CHANGE; 5787 } 5788 hwrm_req_drop(bp, req); 5789 return rc; 5790 } 5791 5792 int bnxt_hwrm_func_drv_unrgtr(struct bnxt *bp) 5793 { 5794 struct hwrm_func_drv_unrgtr_input *req; 5795 int rc; 5796 5797 if (!test_and_clear_bit(BNXT_STATE_DRV_REGISTERED, &bp->state)) 5798 return 0; 5799 5800 rc = hwrm_req_init(bp, req, HWRM_FUNC_DRV_UNRGTR); 5801 if (rc) 5802 return rc; 5803 return hwrm_req_send(bp, req); 5804 } 5805 5806 static int bnxt_set_tpa(struct bnxt *bp, bool set_tpa); 5807 5808 static int bnxt_hwrm_tunnel_dst_port_free(struct bnxt *bp, u8 tunnel_type) 5809 { 5810 struct hwrm_tunnel_dst_port_free_input *req; 5811 int rc; 5812 5813 if (tunnel_type == TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN && 5814 bp->vxlan_fw_dst_port_id == INVALID_HW_RING_ID) 5815 return 0; 5816 if (tunnel_type == TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE && 5817 bp->nge_fw_dst_port_id == INVALID_HW_RING_ID) 5818 return 0; 5819 5820 rc = hwrm_req_init(bp, req, HWRM_TUNNEL_DST_PORT_FREE); 5821 if (rc) 5822 return rc; 5823 5824 req->tunnel_type = tunnel_type; 5825 5826 switch (tunnel_type) { 5827 case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN: 5828 req->tunnel_dst_port_id = cpu_to_le16(bp->vxlan_fw_dst_port_id); 5829 bp->vxlan_port = 0; 5830 bp->vxlan_fw_dst_port_id = INVALID_HW_RING_ID; 5831 break; 5832 case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE: 5833 req->tunnel_dst_port_id = cpu_to_le16(bp->nge_fw_dst_port_id); 5834 bp->nge_port = 0; 5835 bp->nge_fw_dst_port_id = INVALID_HW_RING_ID; 5836 break; 5837 case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN_GPE: 5838 req->tunnel_dst_port_id = cpu_to_le16(bp->vxlan_gpe_fw_dst_port_id); 5839 bp->vxlan_gpe_port = 0; 5840 bp->vxlan_gpe_fw_dst_port_id = INVALID_HW_RING_ID; 5841 break; 5842 default: 5843 break; 5844 } 5845 5846 rc = hwrm_req_send(bp, req); 5847 if (rc) 5848 netdev_err(bp->dev, "hwrm_tunnel_dst_port_free failed. rc:%d\n", 5849 rc); 5850 if (bp->flags & BNXT_FLAG_TPA) 5851 bnxt_set_tpa(bp, true); 5852 return rc; 5853 } 5854 5855 static int bnxt_hwrm_tunnel_dst_port_alloc(struct bnxt *bp, __be16 port, 5856 u8 tunnel_type) 5857 { 5858 struct hwrm_tunnel_dst_port_alloc_output *resp; 5859 struct hwrm_tunnel_dst_port_alloc_input *req; 5860 int rc; 5861 5862 rc = hwrm_req_init(bp, req, HWRM_TUNNEL_DST_PORT_ALLOC); 5863 if (rc) 5864 return rc; 5865 5866 req->tunnel_type = tunnel_type; 5867 req->tunnel_dst_port_val = port; 5868 5869 resp = hwrm_req_hold(bp, req); 5870 rc = hwrm_req_send(bp, req); 5871 if (rc) { 5872 netdev_err(bp->dev, "hwrm_tunnel_dst_port_alloc failed. rc:%d\n", 5873 rc); 5874 goto err_out; 5875 } 5876 5877 switch (tunnel_type) { 5878 case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN: 5879 bp->vxlan_port = port; 5880 bp->vxlan_fw_dst_port_id = 5881 le16_to_cpu(resp->tunnel_dst_port_id); 5882 break; 5883 case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_GENEVE: 5884 bp->nge_port = port; 5885 bp->nge_fw_dst_port_id = le16_to_cpu(resp->tunnel_dst_port_id); 5886 break; 5887 case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN_GPE: 5888 bp->vxlan_gpe_port = port; 5889 bp->vxlan_gpe_fw_dst_port_id = 5890 le16_to_cpu(resp->tunnel_dst_port_id); 5891 break; 5892 default: 5893 break; 5894 } 5895 if (bp->flags & BNXT_FLAG_TPA) 5896 bnxt_set_tpa(bp, true); 5897 5898 err_out: 5899 hwrm_req_drop(bp, req); 5900 return rc; 5901 } 5902 5903 static int bnxt_hwrm_cfa_l2_set_rx_mask(struct bnxt *bp, u16 vnic_id) 5904 { 5905 struct hwrm_cfa_l2_set_rx_mask_input *req; 5906 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id]; 5907 int rc; 5908 5909 rc = hwrm_req_init(bp, req, HWRM_CFA_L2_SET_RX_MASK); 5910 if (rc) 5911 return rc; 5912 5913 req->vnic_id = cpu_to_le32(vnic->fw_vnic_id); 5914 if (vnic->rx_mask & CFA_L2_SET_RX_MASK_REQ_MASK_MCAST) { 5915 req->num_mc_entries = cpu_to_le32(vnic->mc_list_count); 5916 req->mc_tbl_addr = cpu_to_le64(vnic->mc_list_mapping); 5917 } 5918 req->mask = cpu_to_le32(vnic->rx_mask); 5919 return hwrm_req_send_silent(bp, req); 5920 } 5921 5922 void bnxt_del_l2_filter(struct bnxt *bp, struct bnxt_l2_filter *fltr) 5923 { 5924 if (!atomic_dec_and_test(&fltr->refcnt)) 5925 return; 5926 spin_lock_bh(&bp->ntp_fltr_lock); 5927 if (!test_and_clear_bit(BNXT_FLTR_INSERTED, &fltr->base.state)) { 5928 spin_unlock_bh(&bp->ntp_fltr_lock); 5929 return; 5930 } 5931 hlist_del_rcu(&fltr->base.hash); 5932 bnxt_del_one_usr_fltr(bp, &fltr->base); 5933 if (fltr->base.flags) { 5934 clear_bit(fltr->base.sw_id, bp->ntp_fltr_bmap); 5935 bp->ntp_fltr_count--; 5936 } 5937 spin_unlock_bh(&bp->ntp_fltr_lock); 5938 kfree_rcu(fltr, base.rcu); 5939 } 5940 5941 static struct bnxt_l2_filter *__bnxt_lookup_l2_filter(struct bnxt *bp, 5942 struct bnxt_l2_key *key, 5943 u32 idx) 5944 { 5945 struct hlist_head *head = &bp->l2_fltr_hash_tbl[idx]; 5946 struct bnxt_l2_filter *fltr; 5947 5948 hlist_for_each_entry_rcu(fltr, head, base.hash) { 5949 struct bnxt_l2_key *l2_key = &fltr->l2_key; 5950 5951 if (ether_addr_equal(l2_key->dst_mac_addr, key->dst_mac_addr) && 5952 l2_key->vlan == key->vlan) 5953 return fltr; 5954 } 5955 return NULL; 5956 } 5957 5958 static struct bnxt_l2_filter *bnxt_lookup_l2_filter(struct bnxt *bp, 5959 struct bnxt_l2_key *key, 5960 u32 idx) 5961 { 5962 struct bnxt_l2_filter *fltr = NULL; 5963 5964 rcu_read_lock(); 5965 fltr = __bnxt_lookup_l2_filter(bp, key, idx); 5966 if (fltr) 5967 atomic_inc(&fltr->refcnt); 5968 rcu_read_unlock(); 5969 return fltr; 5970 } 5971 5972 #define BNXT_IPV4_4TUPLE(bp, fkeys) \ 5973 (((fkeys)->basic.ip_proto == IPPROTO_TCP && \ 5974 (bp)->rss_hash_cfg & VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV4) || \ 5975 ((fkeys)->basic.ip_proto == IPPROTO_UDP && \ 5976 (bp)->rss_hash_cfg & VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV4)) 5977 5978 #define BNXT_IPV6_4TUPLE(bp, fkeys) \ 5979 (((fkeys)->basic.ip_proto == IPPROTO_TCP && \ 5980 (bp)->rss_hash_cfg & VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV6) || \ 5981 ((fkeys)->basic.ip_proto == IPPROTO_UDP && \ 5982 (bp)->rss_hash_cfg & VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV6)) 5983 5984 static u32 bnxt_get_rss_flow_tuple_len(struct bnxt *bp, struct flow_keys *fkeys) 5985 { 5986 if (fkeys->basic.n_proto == htons(ETH_P_IP)) { 5987 if (BNXT_IPV4_4TUPLE(bp, fkeys)) 5988 return sizeof(fkeys->addrs.v4addrs) + 5989 sizeof(fkeys->ports); 5990 5991 if (bp->rss_hash_cfg & VNIC_RSS_CFG_REQ_HASH_TYPE_IPV4) 5992 return sizeof(fkeys->addrs.v4addrs); 5993 } 5994 5995 if (fkeys->basic.n_proto == htons(ETH_P_IPV6)) { 5996 if (BNXT_IPV6_4TUPLE(bp, fkeys)) 5997 return sizeof(fkeys->addrs.v6addrs) + 5998 sizeof(fkeys->ports); 5999 6000 if (bp->rss_hash_cfg & VNIC_RSS_CFG_REQ_HASH_TYPE_IPV6) 6001 return sizeof(fkeys->addrs.v6addrs); 6002 } 6003 6004 return 0; 6005 } 6006 6007 static u32 bnxt_toeplitz(struct bnxt *bp, struct flow_keys *fkeys, 6008 const unsigned char *key) 6009 { 6010 u64 prefix = bp->toeplitz_prefix, hash = 0; 6011 struct bnxt_ipv4_tuple tuple4; 6012 struct bnxt_ipv6_tuple tuple6; 6013 int i, j, len = 0; 6014 u8 *four_tuple; 6015 6016 len = bnxt_get_rss_flow_tuple_len(bp, fkeys); 6017 if (!len) 6018 return 0; 6019 6020 if (fkeys->basic.n_proto == htons(ETH_P_IP)) { 6021 tuple4.v4addrs = fkeys->addrs.v4addrs; 6022 tuple4.ports = fkeys->ports; 6023 four_tuple = (unsigned char *)&tuple4; 6024 } else { 6025 tuple6.v6addrs = fkeys->addrs.v6addrs; 6026 tuple6.ports = fkeys->ports; 6027 four_tuple = (unsigned char *)&tuple6; 6028 } 6029 6030 for (i = 0, j = 8; i < len; i++, j++) { 6031 u8 byte = four_tuple[i]; 6032 int bit; 6033 6034 for (bit = 0; bit < 8; bit++, prefix <<= 1, byte <<= 1) { 6035 if (byte & 0x80) 6036 hash ^= prefix; 6037 } 6038 prefix |= (j < HW_HASH_KEY_SIZE) ? key[j] : 0; 6039 } 6040 6041 /* The valid part of the hash is in the upper 32 bits. */ 6042 return (hash >> 32) & BNXT_NTP_FLTR_HASH_MASK; 6043 } 6044 6045 #ifdef CONFIG_RFS_ACCEL 6046 static struct bnxt_l2_filter * 6047 bnxt_lookup_l2_filter_from_key(struct bnxt *bp, struct bnxt_l2_key *key) 6048 { 6049 struct bnxt_l2_filter *fltr; 6050 u32 idx; 6051 6052 idx = jhash2(&key->filter_key, BNXT_L2_KEY_SIZE, bp->hash_seed) & 6053 BNXT_L2_FLTR_HASH_MASK; 6054 fltr = bnxt_lookup_l2_filter(bp, key, idx); 6055 return fltr; 6056 } 6057 #endif 6058 6059 static int bnxt_init_l2_filter(struct bnxt *bp, struct bnxt_l2_filter *fltr, 6060 struct bnxt_l2_key *key, u32 idx) 6061 { 6062 struct hlist_head *head; 6063 6064 ether_addr_copy(fltr->l2_key.dst_mac_addr, key->dst_mac_addr); 6065 fltr->l2_key.vlan = key->vlan; 6066 fltr->base.type = BNXT_FLTR_TYPE_L2; 6067 if (fltr->base.flags) { 6068 int bit_id; 6069 6070 bit_id = bitmap_find_free_region(bp->ntp_fltr_bmap, 6071 bp->max_fltr, 0); 6072 if (bit_id < 0) 6073 return -ENOMEM; 6074 fltr->base.sw_id = (u16)bit_id; 6075 bp->ntp_fltr_count++; 6076 } 6077 head = &bp->l2_fltr_hash_tbl[idx]; 6078 hlist_add_head_rcu(&fltr->base.hash, head); 6079 bnxt_insert_usr_fltr(bp, &fltr->base); 6080 set_bit(BNXT_FLTR_INSERTED, &fltr->base.state); 6081 atomic_set(&fltr->refcnt, 1); 6082 return 0; 6083 } 6084 6085 static struct bnxt_l2_filter *bnxt_alloc_l2_filter(struct bnxt *bp, 6086 struct bnxt_l2_key *key, 6087 gfp_t gfp) 6088 { 6089 struct bnxt_l2_filter *fltr; 6090 u32 idx; 6091 int rc; 6092 6093 idx = jhash2(&key->filter_key, BNXT_L2_KEY_SIZE, bp->hash_seed) & 6094 BNXT_L2_FLTR_HASH_MASK; 6095 fltr = bnxt_lookup_l2_filter(bp, key, idx); 6096 if (fltr) 6097 return fltr; 6098 6099 fltr = kzalloc(sizeof(*fltr), gfp); 6100 if (!fltr) 6101 return ERR_PTR(-ENOMEM); 6102 spin_lock_bh(&bp->ntp_fltr_lock); 6103 rc = bnxt_init_l2_filter(bp, fltr, key, idx); 6104 spin_unlock_bh(&bp->ntp_fltr_lock); 6105 if (rc) { 6106 bnxt_del_l2_filter(bp, fltr); 6107 fltr = ERR_PTR(rc); 6108 } 6109 return fltr; 6110 } 6111 6112 struct bnxt_l2_filter *bnxt_alloc_new_l2_filter(struct bnxt *bp, 6113 struct bnxt_l2_key *key, 6114 u16 flags) 6115 { 6116 struct bnxt_l2_filter *fltr; 6117 u32 idx; 6118 int rc; 6119 6120 idx = jhash2(&key->filter_key, BNXT_L2_KEY_SIZE, bp->hash_seed) & 6121 BNXT_L2_FLTR_HASH_MASK; 6122 spin_lock_bh(&bp->ntp_fltr_lock); 6123 fltr = __bnxt_lookup_l2_filter(bp, key, idx); 6124 if (fltr) { 6125 fltr = ERR_PTR(-EEXIST); 6126 goto l2_filter_exit; 6127 } 6128 fltr = kzalloc(sizeof(*fltr), GFP_ATOMIC); 6129 if (!fltr) { 6130 fltr = ERR_PTR(-ENOMEM); 6131 goto l2_filter_exit; 6132 } 6133 fltr->base.flags = flags; 6134 rc = bnxt_init_l2_filter(bp, fltr, key, idx); 6135 if (rc) { 6136 spin_unlock_bh(&bp->ntp_fltr_lock); 6137 bnxt_del_l2_filter(bp, fltr); 6138 return ERR_PTR(rc); 6139 } 6140 6141 l2_filter_exit: 6142 spin_unlock_bh(&bp->ntp_fltr_lock); 6143 return fltr; 6144 } 6145 6146 static u16 bnxt_vf_target_id(struct bnxt_pf_info *pf, u16 vf_idx) 6147 { 6148 #ifdef CONFIG_BNXT_SRIOV 6149 struct bnxt_vf_info *vf = &pf->vf[vf_idx]; 6150 6151 return vf->fw_fid; 6152 #else 6153 return INVALID_HW_RING_ID; 6154 #endif 6155 } 6156 6157 int bnxt_hwrm_l2_filter_free(struct bnxt *bp, struct bnxt_l2_filter *fltr) 6158 { 6159 struct hwrm_cfa_l2_filter_free_input *req; 6160 u16 target_id = 0xffff; 6161 int rc; 6162 6163 if (fltr->base.flags & BNXT_ACT_FUNC_DST) { 6164 struct bnxt_pf_info *pf = &bp->pf; 6165 6166 if (fltr->base.vf_idx >= pf->active_vfs) 6167 return -EINVAL; 6168 6169 target_id = bnxt_vf_target_id(pf, fltr->base.vf_idx); 6170 if (target_id == INVALID_HW_RING_ID) 6171 return -EINVAL; 6172 } 6173 6174 rc = hwrm_req_init(bp, req, HWRM_CFA_L2_FILTER_FREE); 6175 if (rc) 6176 return rc; 6177 6178 req->target_id = cpu_to_le16(target_id); 6179 req->l2_filter_id = fltr->base.filter_id; 6180 return hwrm_req_send(bp, req); 6181 } 6182 6183 int bnxt_hwrm_l2_filter_alloc(struct bnxt *bp, struct bnxt_l2_filter *fltr) 6184 { 6185 struct hwrm_cfa_l2_filter_alloc_output *resp; 6186 struct hwrm_cfa_l2_filter_alloc_input *req; 6187 u16 target_id = 0xffff; 6188 int rc; 6189 6190 if (fltr->base.flags & BNXT_ACT_FUNC_DST) { 6191 struct bnxt_pf_info *pf = &bp->pf; 6192 6193 if (fltr->base.vf_idx >= pf->active_vfs) 6194 return -EINVAL; 6195 6196 target_id = bnxt_vf_target_id(pf, fltr->base.vf_idx); 6197 } 6198 rc = hwrm_req_init(bp, req, HWRM_CFA_L2_FILTER_ALLOC); 6199 if (rc) 6200 return rc; 6201 6202 req->target_id = cpu_to_le16(target_id); 6203 req->flags = cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_PATH_RX); 6204 6205 if (!BNXT_CHIP_TYPE_NITRO_A0(bp)) 6206 req->flags |= 6207 cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_OUTERMOST); 6208 req->dst_id = cpu_to_le16(fltr->base.fw_vnic_id); 6209 req->enables = 6210 cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR | 6211 CFA_L2_FILTER_ALLOC_REQ_ENABLES_DST_ID | 6212 CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR_MASK); 6213 ether_addr_copy(req->l2_addr, fltr->l2_key.dst_mac_addr); 6214 eth_broadcast_addr(req->l2_addr_mask); 6215 6216 if (fltr->l2_key.vlan) { 6217 req->enables |= 6218 cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_IVLAN | 6219 CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_IVLAN_MASK | 6220 CFA_L2_FILTER_ALLOC_REQ_ENABLES_NUM_VLANS); 6221 req->num_vlans = 1; 6222 req->l2_ivlan = cpu_to_le16(fltr->l2_key.vlan); 6223 req->l2_ivlan_mask = cpu_to_le16(0xfff); 6224 } 6225 6226 resp = hwrm_req_hold(bp, req); 6227 rc = hwrm_req_send(bp, req); 6228 if (!rc) { 6229 fltr->base.filter_id = resp->l2_filter_id; 6230 set_bit(BNXT_FLTR_VALID, &fltr->base.state); 6231 } 6232 hwrm_req_drop(bp, req); 6233 return rc; 6234 } 6235 6236 int bnxt_hwrm_cfa_ntuple_filter_free(struct bnxt *bp, 6237 struct bnxt_ntuple_filter *fltr) 6238 { 6239 struct hwrm_cfa_ntuple_filter_free_input *req; 6240 int rc; 6241 6242 set_bit(BNXT_FLTR_FW_DELETED, &fltr->base.state); 6243 rc = hwrm_req_init(bp, req, HWRM_CFA_NTUPLE_FILTER_FREE); 6244 if (rc) 6245 return rc; 6246 6247 req->ntuple_filter_id = fltr->base.filter_id; 6248 return hwrm_req_send(bp, req); 6249 } 6250 6251 #define BNXT_NTP_FLTR_FLAGS \ 6252 (CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_L2_FILTER_ID | \ 6253 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_ETHERTYPE | \ 6254 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IPADDR_TYPE | \ 6255 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR | \ 6256 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR_MASK | \ 6257 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR | \ 6258 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR_MASK | \ 6259 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IP_PROTOCOL | \ 6260 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT | \ 6261 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT_MASK | \ 6262 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT | \ 6263 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT_MASK | \ 6264 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_ID) 6265 6266 #define BNXT_NTP_TUNNEL_FLTR_FLAG \ 6267 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_TUNNEL_TYPE 6268 6269 void bnxt_fill_ipv6_mask(__be32 mask[4]) 6270 { 6271 int i; 6272 6273 for (i = 0; i < 4; i++) 6274 mask[i] = cpu_to_be32(~0); 6275 } 6276 6277 static void 6278 bnxt_cfg_rfs_ring_tbl_idx(struct bnxt *bp, 6279 struct hwrm_cfa_ntuple_filter_alloc_input *req, 6280 struct bnxt_ntuple_filter *fltr) 6281 { 6282 u16 rxq = fltr->base.rxq; 6283 6284 if (fltr->base.flags & BNXT_ACT_RSS_CTX) { 6285 struct ethtool_rxfh_context *ctx; 6286 struct bnxt_rss_ctx *rss_ctx; 6287 struct bnxt_vnic_info *vnic; 6288 6289 ctx = xa_load(&bp->dev->ethtool->rss_ctx, 6290 fltr->base.fw_vnic_id); 6291 if (ctx) { 6292 rss_ctx = ethtool_rxfh_context_priv(ctx); 6293 vnic = &rss_ctx->vnic; 6294 6295 req->dst_id = cpu_to_le16(vnic->fw_vnic_id); 6296 } 6297 return; 6298 } 6299 if (BNXT_SUPPORTS_NTUPLE_VNIC(bp)) { 6300 struct bnxt_vnic_info *vnic; 6301 u32 enables; 6302 6303 vnic = &bp->vnic_info[BNXT_VNIC_NTUPLE]; 6304 req->dst_id = cpu_to_le16(vnic->fw_vnic_id); 6305 enables = CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_RFS_RING_TBL_IDX; 6306 req->enables |= cpu_to_le32(enables); 6307 req->rfs_ring_tbl_idx = cpu_to_le16(rxq); 6308 } else { 6309 u32 flags; 6310 6311 flags = CFA_NTUPLE_FILTER_ALLOC_REQ_FLAGS_DEST_RFS_RING_IDX; 6312 req->flags |= cpu_to_le32(flags); 6313 req->dst_id = cpu_to_le16(rxq); 6314 } 6315 } 6316 6317 int bnxt_hwrm_cfa_ntuple_filter_alloc(struct bnxt *bp, 6318 struct bnxt_ntuple_filter *fltr) 6319 { 6320 struct hwrm_cfa_ntuple_filter_alloc_output *resp; 6321 struct hwrm_cfa_ntuple_filter_alloc_input *req; 6322 struct bnxt_flow_masks *masks = &fltr->fmasks; 6323 struct flow_keys *keys = &fltr->fkeys; 6324 struct bnxt_l2_filter *l2_fltr; 6325 struct bnxt_vnic_info *vnic; 6326 int rc; 6327 6328 rc = hwrm_req_init(bp, req, HWRM_CFA_NTUPLE_FILTER_ALLOC); 6329 if (rc) 6330 return rc; 6331 6332 l2_fltr = fltr->l2_fltr; 6333 req->l2_filter_id = l2_fltr->base.filter_id; 6334 6335 if (fltr->base.flags & BNXT_ACT_DROP) { 6336 req->flags = 6337 cpu_to_le32(CFA_NTUPLE_FILTER_ALLOC_REQ_FLAGS_DROP); 6338 } else if (bp->fw_cap & BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2) { 6339 bnxt_cfg_rfs_ring_tbl_idx(bp, req, fltr); 6340 } else { 6341 vnic = &bp->vnic_info[fltr->base.rxq + 1]; 6342 req->dst_id = cpu_to_le16(vnic->fw_vnic_id); 6343 } 6344 req->enables |= cpu_to_le32(BNXT_NTP_FLTR_FLAGS); 6345 6346 req->ethertype = htons(ETH_P_IP); 6347 req->ip_addr_type = CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV4; 6348 req->ip_protocol = keys->basic.ip_proto; 6349 6350 if (keys->basic.n_proto == htons(ETH_P_IPV6)) { 6351 req->ethertype = htons(ETH_P_IPV6); 6352 req->ip_addr_type = 6353 CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV6; 6354 *(struct in6_addr *)&req->src_ipaddr[0] = keys->addrs.v6addrs.src; 6355 *(struct in6_addr *)&req->src_ipaddr_mask[0] = masks->addrs.v6addrs.src; 6356 *(struct in6_addr *)&req->dst_ipaddr[0] = keys->addrs.v6addrs.dst; 6357 *(struct in6_addr *)&req->dst_ipaddr_mask[0] = masks->addrs.v6addrs.dst; 6358 } else { 6359 req->src_ipaddr[0] = keys->addrs.v4addrs.src; 6360 req->src_ipaddr_mask[0] = masks->addrs.v4addrs.src; 6361 req->dst_ipaddr[0] = keys->addrs.v4addrs.dst; 6362 req->dst_ipaddr_mask[0] = masks->addrs.v4addrs.dst; 6363 } 6364 if (keys->control.flags & FLOW_DIS_ENCAPSULATION) { 6365 req->enables |= cpu_to_le32(BNXT_NTP_TUNNEL_FLTR_FLAG); 6366 req->tunnel_type = 6367 CFA_NTUPLE_FILTER_ALLOC_REQ_TUNNEL_TYPE_ANYTUNNEL; 6368 } 6369 6370 req->src_port = keys->ports.src; 6371 req->src_port_mask = masks->ports.src; 6372 req->dst_port = keys->ports.dst; 6373 req->dst_port_mask = masks->ports.dst; 6374 6375 resp = hwrm_req_hold(bp, req); 6376 rc = hwrm_req_send(bp, req); 6377 if (!rc) 6378 fltr->base.filter_id = resp->ntuple_filter_id; 6379 hwrm_req_drop(bp, req); 6380 return rc; 6381 } 6382 6383 static int bnxt_hwrm_set_vnic_filter(struct bnxt *bp, u16 vnic_id, u16 idx, 6384 const u8 *mac_addr) 6385 { 6386 struct bnxt_l2_filter *fltr; 6387 struct bnxt_l2_key key; 6388 int rc; 6389 6390 ether_addr_copy(key.dst_mac_addr, mac_addr); 6391 key.vlan = 0; 6392 fltr = bnxt_alloc_l2_filter(bp, &key, GFP_KERNEL); 6393 if (IS_ERR(fltr)) 6394 return PTR_ERR(fltr); 6395 6396 fltr->base.fw_vnic_id = bp->vnic_info[vnic_id].fw_vnic_id; 6397 rc = bnxt_hwrm_l2_filter_alloc(bp, fltr); 6398 if (rc) 6399 bnxt_del_l2_filter(bp, fltr); 6400 else 6401 bp->vnic_info[vnic_id].l2_filters[idx] = fltr; 6402 return rc; 6403 } 6404 6405 static void bnxt_hwrm_clear_vnic_filter(struct bnxt *bp) 6406 { 6407 u16 i, j, num_of_vnics = 1; /* only vnic 0 supported */ 6408 6409 /* Any associated ntuple filters will also be cleared by firmware. */ 6410 for (i = 0; i < num_of_vnics; i++) { 6411 struct bnxt_vnic_info *vnic = &bp->vnic_info[i]; 6412 6413 for (j = 0; j < vnic->uc_filter_count; j++) { 6414 struct bnxt_l2_filter *fltr = vnic->l2_filters[j]; 6415 6416 bnxt_hwrm_l2_filter_free(bp, fltr); 6417 bnxt_del_l2_filter(bp, fltr); 6418 } 6419 vnic->uc_filter_count = 0; 6420 } 6421 } 6422 6423 #define BNXT_DFLT_TUNL_TPA_BMAP \ 6424 (VNIC_TPA_CFG_REQ_TNL_TPA_EN_BITMAP_GRE | \ 6425 VNIC_TPA_CFG_REQ_TNL_TPA_EN_BITMAP_IPV4 | \ 6426 VNIC_TPA_CFG_REQ_TNL_TPA_EN_BITMAP_IPV6) 6427 6428 static void bnxt_hwrm_vnic_update_tunl_tpa(struct bnxt *bp, 6429 struct hwrm_vnic_tpa_cfg_input *req) 6430 { 6431 u32 tunl_tpa_bmap = BNXT_DFLT_TUNL_TPA_BMAP; 6432 6433 if (!(bp->fw_cap & BNXT_FW_CAP_VNIC_TUNNEL_TPA)) 6434 return; 6435 6436 if (bp->vxlan_port) 6437 tunl_tpa_bmap |= VNIC_TPA_CFG_REQ_TNL_TPA_EN_BITMAP_VXLAN; 6438 if (bp->vxlan_gpe_port) 6439 tunl_tpa_bmap |= VNIC_TPA_CFG_REQ_TNL_TPA_EN_BITMAP_VXLAN_GPE; 6440 if (bp->nge_port) 6441 tunl_tpa_bmap |= VNIC_TPA_CFG_REQ_TNL_TPA_EN_BITMAP_GENEVE; 6442 6443 req->enables |= cpu_to_le32(VNIC_TPA_CFG_REQ_ENABLES_TNL_TPA_EN); 6444 req->tnl_tpa_en_bitmap = cpu_to_le32(tunl_tpa_bmap); 6445 } 6446 6447 int bnxt_hwrm_vnic_set_tpa(struct bnxt *bp, struct bnxt_vnic_info *vnic, 6448 u32 tpa_flags) 6449 { 6450 u16 max_aggs = VNIC_TPA_CFG_REQ_MAX_AGGS_MAX; 6451 struct hwrm_vnic_tpa_cfg_input *req; 6452 int rc; 6453 6454 if (vnic->fw_vnic_id == INVALID_HW_RING_ID) 6455 return 0; 6456 6457 rc = hwrm_req_init(bp, req, HWRM_VNIC_TPA_CFG); 6458 if (rc) 6459 return rc; 6460 6461 if (tpa_flags) { 6462 u16 mss = bp->dev->mtu - 40; 6463 u32 nsegs, n, segs = 0, flags; 6464 6465 flags = VNIC_TPA_CFG_REQ_FLAGS_TPA | 6466 VNIC_TPA_CFG_REQ_FLAGS_ENCAP_TPA | 6467 VNIC_TPA_CFG_REQ_FLAGS_RSC_WND_UPDATE | 6468 VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_ECN | 6469 VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_SAME_GRE_SEQ; 6470 if (tpa_flags & BNXT_FLAG_GRO) 6471 flags |= VNIC_TPA_CFG_REQ_FLAGS_GRO; 6472 6473 req->flags = cpu_to_le32(flags); 6474 6475 req->enables = 6476 cpu_to_le32(VNIC_TPA_CFG_REQ_ENABLES_MAX_AGG_SEGS | 6477 VNIC_TPA_CFG_REQ_ENABLES_MAX_AGGS | 6478 VNIC_TPA_CFG_REQ_ENABLES_MIN_AGG_LEN); 6479 6480 /* Number of segs are log2 units, and first packet is not 6481 * included as part of this units. 6482 */ 6483 if (mss <= BNXT_RX_PAGE_SIZE) { 6484 n = BNXT_RX_PAGE_SIZE / mss; 6485 nsegs = (MAX_SKB_FRAGS - 1) * n; 6486 } else { 6487 n = mss / BNXT_RX_PAGE_SIZE; 6488 if (mss & (BNXT_RX_PAGE_SIZE - 1)) 6489 n++; 6490 nsegs = (MAX_SKB_FRAGS - n) / n; 6491 } 6492 6493 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 6494 segs = MAX_TPA_SEGS_P5; 6495 max_aggs = bp->max_tpa; 6496 } else { 6497 segs = ilog2(nsegs); 6498 } 6499 req->max_agg_segs = cpu_to_le16(segs); 6500 req->max_aggs = cpu_to_le16(max_aggs); 6501 6502 req->min_agg_len = cpu_to_le32(512); 6503 bnxt_hwrm_vnic_update_tunl_tpa(bp, req); 6504 } 6505 req->vnic_id = cpu_to_le16(vnic->fw_vnic_id); 6506 6507 return hwrm_req_send(bp, req); 6508 } 6509 6510 static u16 bnxt_cp_ring_from_grp(struct bnxt *bp, struct bnxt_ring_struct *ring) 6511 { 6512 struct bnxt_ring_grp_info *grp_info; 6513 6514 grp_info = &bp->grp_info[ring->grp_idx]; 6515 return grp_info->cp_fw_ring_id; 6516 } 6517 6518 static u16 bnxt_cp_ring_for_rx(struct bnxt *bp, struct bnxt_rx_ring_info *rxr) 6519 { 6520 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 6521 return rxr->rx_cpr->cp_ring_struct.fw_ring_id; 6522 else 6523 return bnxt_cp_ring_from_grp(bp, &rxr->rx_ring_struct); 6524 } 6525 6526 static u16 bnxt_cp_ring_for_tx(struct bnxt *bp, struct bnxt_tx_ring_info *txr) 6527 { 6528 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 6529 return txr->tx_cpr->cp_ring_struct.fw_ring_id; 6530 else 6531 return bnxt_cp_ring_from_grp(bp, &txr->tx_ring_struct); 6532 } 6533 6534 static int bnxt_alloc_rss_indir_tbl(struct bnxt *bp) 6535 { 6536 int entries; 6537 6538 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 6539 entries = BNXT_MAX_RSS_TABLE_ENTRIES_P5; 6540 else 6541 entries = HW_HASH_INDEX_SIZE; 6542 6543 bp->rss_indir_tbl_entries = entries; 6544 bp->rss_indir_tbl = 6545 kmalloc_array(entries, sizeof(*bp->rss_indir_tbl), GFP_KERNEL); 6546 if (!bp->rss_indir_tbl) 6547 return -ENOMEM; 6548 6549 return 0; 6550 } 6551 6552 void bnxt_set_dflt_rss_indir_tbl(struct bnxt *bp, 6553 struct ethtool_rxfh_context *rss_ctx) 6554 { 6555 u16 max_rings, max_entries, pad, i; 6556 u32 *rss_indir_tbl; 6557 6558 if (!bp->rx_nr_rings) 6559 return; 6560 6561 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 6562 max_rings = bp->rx_nr_rings - 1; 6563 else 6564 max_rings = bp->rx_nr_rings; 6565 6566 max_entries = bnxt_get_rxfh_indir_size(bp->dev); 6567 if (rss_ctx) 6568 rss_indir_tbl = ethtool_rxfh_context_indir(rss_ctx); 6569 else 6570 rss_indir_tbl = &bp->rss_indir_tbl[0]; 6571 6572 for (i = 0; i < max_entries; i++) 6573 rss_indir_tbl[i] = ethtool_rxfh_indir_default(i, max_rings); 6574 6575 pad = bp->rss_indir_tbl_entries - max_entries; 6576 if (pad) 6577 memset(&rss_indir_tbl[i], 0, pad * sizeof(*rss_indir_tbl)); 6578 } 6579 6580 static u16 bnxt_get_max_rss_ring(struct bnxt *bp) 6581 { 6582 u32 i, tbl_size, max_ring = 0; 6583 6584 if (!bp->rss_indir_tbl) 6585 return 0; 6586 6587 tbl_size = bnxt_get_rxfh_indir_size(bp->dev); 6588 for (i = 0; i < tbl_size; i++) 6589 max_ring = max(max_ring, bp->rss_indir_tbl[i]); 6590 return max_ring; 6591 } 6592 6593 int bnxt_get_nr_rss_ctxs(struct bnxt *bp, int rx_rings) 6594 { 6595 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 6596 if (!rx_rings) 6597 return 0; 6598 if (bp->rss_cap & BNXT_RSS_CAP_LARGE_RSS_CTX) 6599 return BNXT_RSS_TABLE_MAX_TBL_P5; 6600 6601 return bnxt_calc_nr_ring_pages(rx_rings - 1, 6602 BNXT_RSS_TABLE_ENTRIES_P5); 6603 } 6604 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 6605 return 2; 6606 return 1; 6607 } 6608 6609 static void bnxt_fill_hw_rss_tbl(struct bnxt *bp, struct bnxt_vnic_info *vnic) 6610 { 6611 bool no_rss = !(vnic->flags & BNXT_VNIC_RSS_FLAG); 6612 u16 i, j; 6613 6614 /* Fill the RSS indirection table with ring group ids */ 6615 for (i = 0, j = 0; i < HW_HASH_INDEX_SIZE; i++) { 6616 if (!no_rss) 6617 j = bp->rss_indir_tbl[i]; 6618 vnic->rss_table[i] = cpu_to_le16(vnic->fw_grp_ids[j]); 6619 } 6620 } 6621 6622 static void bnxt_fill_hw_rss_tbl_p5(struct bnxt *bp, 6623 struct bnxt_vnic_info *vnic) 6624 { 6625 __le16 *ring_tbl = vnic->rss_table; 6626 struct bnxt_rx_ring_info *rxr; 6627 u16 tbl_size, i; 6628 6629 tbl_size = bnxt_get_rxfh_indir_size(bp->dev); 6630 6631 for (i = 0; i < tbl_size; i++) { 6632 u16 ring_id, j; 6633 6634 if (vnic->flags & BNXT_VNIC_NTUPLE_FLAG) 6635 j = ethtool_rxfh_indir_default(i, bp->rx_nr_rings); 6636 else if (vnic->flags & BNXT_VNIC_RSSCTX_FLAG) 6637 j = ethtool_rxfh_context_indir(vnic->rss_ctx)[i]; 6638 else 6639 j = bp->rss_indir_tbl[i]; 6640 rxr = &bp->rx_ring[j]; 6641 6642 ring_id = rxr->rx_ring_struct.fw_ring_id; 6643 *ring_tbl++ = cpu_to_le16(ring_id); 6644 ring_id = bnxt_cp_ring_for_rx(bp, rxr); 6645 *ring_tbl++ = cpu_to_le16(ring_id); 6646 } 6647 } 6648 6649 static void 6650 __bnxt_hwrm_vnic_set_rss(struct bnxt *bp, struct hwrm_vnic_rss_cfg_input *req, 6651 struct bnxt_vnic_info *vnic) 6652 { 6653 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 6654 bnxt_fill_hw_rss_tbl_p5(bp, vnic); 6655 if (bp->flags & BNXT_FLAG_CHIP_P7) 6656 req->flags |= VNIC_RSS_CFG_REQ_FLAGS_IPSEC_HASH_TYPE_CFG_SUPPORT; 6657 } else { 6658 bnxt_fill_hw_rss_tbl(bp, vnic); 6659 } 6660 6661 if (bp->rss_hash_delta) { 6662 req->hash_type = cpu_to_le32(bp->rss_hash_delta); 6663 if (bp->rss_hash_cfg & bp->rss_hash_delta) 6664 req->flags |= VNIC_RSS_CFG_REQ_FLAGS_HASH_TYPE_INCLUDE; 6665 else 6666 req->flags |= VNIC_RSS_CFG_REQ_FLAGS_HASH_TYPE_EXCLUDE; 6667 } else { 6668 req->hash_type = cpu_to_le32(bp->rss_hash_cfg); 6669 } 6670 req->hash_mode_flags = VNIC_RSS_CFG_REQ_HASH_MODE_FLAGS_DEFAULT; 6671 req->ring_grp_tbl_addr = cpu_to_le64(vnic->rss_table_dma_addr); 6672 req->hash_key_tbl_addr = cpu_to_le64(vnic->rss_hash_key_dma_addr); 6673 } 6674 6675 static int bnxt_hwrm_vnic_set_rss(struct bnxt *bp, struct bnxt_vnic_info *vnic, 6676 bool set_rss) 6677 { 6678 struct hwrm_vnic_rss_cfg_input *req; 6679 int rc; 6680 6681 if ((bp->flags & BNXT_FLAG_CHIP_P5_PLUS) || 6682 vnic->fw_rss_cos_lb_ctx[0] == INVALID_HW_RING_ID) 6683 return 0; 6684 6685 rc = hwrm_req_init(bp, req, HWRM_VNIC_RSS_CFG); 6686 if (rc) 6687 return rc; 6688 6689 if (set_rss) 6690 __bnxt_hwrm_vnic_set_rss(bp, req, vnic); 6691 req->rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]); 6692 return hwrm_req_send(bp, req); 6693 } 6694 6695 static int bnxt_hwrm_vnic_set_rss_p5(struct bnxt *bp, 6696 struct bnxt_vnic_info *vnic, bool set_rss) 6697 { 6698 struct hwrm_vnic_rss_cfg_input *req; 6699 dma_addr_t ring_tbl_map; 6700 u32 i, nr_ctxs; 6701 int rc; 6702 6703 rc = hwrm_req_init(bp, req, HWRM_VNIC_RSS_CFG); 6704 if (rc) 6705 return rc; 6706 6707 req->vnic_id = cpu_to_le16(vnic->fw_vnic_id); 6708 if (!set_rss) 6709 return hwrm_req_send(bp, req); 6710 6711 __bnxt_hwrm_vnic_set_rss(bp, req, vnic); 6712 ring_tbl_map = vnic->rss_table_dma_addr; 6713 nr_ctxs = bnxt_get_nr_rss_ctxs(bp, bp->rx_nr_rings); 6714 6715 hwrm_req_hold(bp, req); 6716 for (i = 0; i < nr_ctxs; ring_tbl_map += BNXT_RSS_TABLE_SIZE_P5, i++) { 6717 req->ring_grp_tbl_addr = cpu_to_le64(ring_tbl_map); 6718 req->ring_table_pair_index = i; 6719 req->rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[i]); 6720 rc = hwrm_req_send(bp, req); 6721 if (rc) 6722 goto exit; 6723 } 6724 6725 exit: 6726 hwrm_req_drop(bp, req); 6727 return rc; 6728 } 6729 6730 static void bnxt_hwrm_update_rss_hash_cfg(struct bnxt *bp) 6731 { 6732 struct bnxt_vnic_info *vnic = &bp->vnic_info[BNXT_VNIC_DEFAULT]; 6733 struct hwrm_vnic_rss_qcfg_output *resp; 6734 struct hwrm_vnic_rss_qcfg_input *req; 6735 6736 if (hwrm_req_init(bp, req, HWRM_VNIC_RSS_QCFG)) 6737 return; 6738 6739 req->vnic_id = cpu_to_le16(vnic->fw_vnic_id); 6740 /* all contexts configured to same hash_type, zero always exists */ 6741 req->rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]); 6742 resp = hwrm_req_hold(bp, req); 6743 if (!hwrm_req_send(bp, req)) { 6744 bp->rss_hash_cfg = le32_to_cpu(resp->hash_type) ?: bp->rss_hash_cfg; 6745 bp->rss_hash_delta = 0; 6746 } 6747 hwrm_req_drop(bp, req); 6748 } 6749 6750 static int bnxt_hwrm_vnic_set_hds(struct bnxt *bp, struct bnxt_vnic_info *vnic) 6751 { 6752 u16 hds_thresh = (u16)bp->dev->cfg_pending->hds_thresh; 6753 struct hwrm_vnic_plcmodes_cfg_input *req; 6754 int rc; 6755 6756 rc = hwrm_req_init(bp, req, HWRM_VNIC_PLCMODES_CFG); 6757 if (rc) 6758 return rc; 6759 6760 req->flags = cpu_to_le32(VNIC_PLCMODES_CFG_REQ_FLAGS_JUMBO_PLACEMENT); 6761 req->enables = cpu_to_le32(VNIC_PLCMODES_CFG_REQ_ENABLES_JUMBO_THRESH_VALID); 6762 req->jumbo_thresh = cpu_to_le16(bp->rx_buf_use_size); 6763 6764 if (!BNXT_RX_PAGE_MODE(bp) && (bp->flags & BNXT_FLAG_AGG_RINGS)) { 6765 req->flags |= cpu_to_le32(VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV4 | 6766 VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV6); 6767 req->enables |= 6768 cpu_to_le32(VNIC_PLCMODES_CFG_REQ_ENABLES_HDS_THRESHOLD_VALID); 6769 req->hds_threshold = cpu_to_le16(hds_thresh); 6770 } 6771 req->vnic_id = cpu_to_le32(vnic->fw_vnic_id); 6772 return hwrm_req_send(bp, req); 6773 } 6774 6775 static void bnxt_hwrm_vnic_ctx_free_one(struct bnxt *bp, 6776 struct bnxt_vnic_info *vnic, 6777 u16 ctx_idx) 6778 { 6779 struct hwrm_vnic_rss_cos_lb_ctx_free_input *req; 6780 6781 if (hwrm_req_init(bp, req, HWRM_VNIC_RSS_COS_LB_CTX_FREE)) 6782 return; 6783 6784 req->rss_cos_lb_ctx_id = 6785 cpu_to_le16(vnic->fw_rss_cos_lb_ctx[ctx_idx]); 6786 6787 hwrm_req_send(bp, req); 6788 vnic->fw_rss_cos_lb_ctx[ctx_idx] = INVALID_HW_RING_ID; 6789 } 6790 6791 static void bnxt_hwrm_vnic_ctx_free(struct bnxt *bp) 6792 { 6793 int i, j; 6794 6795 for (i = 0; i < bp->nr_vnics; i++) { 6796 struct bnxt_vnic_info *vnic = &bp->vnic_info[i]; 6797 6798 for (j = 0; j < BNXT_MAX_CTX_PER_VNIC; j++) { 6799 if (vnic->fw_rss_cos_lb_ctx[j] != INVALID_HW_RING_ID) 6800 bnxt_hwrm_vnic_ctx_free_one(bp, vnic, j); 6801 } 6802 } 6803 bp->rsscos_nr_ctxs = 0; 6804 } 6805 6806 static int bnxt_hwrm_vnic_ctx_alloc(struct bnxt *bp, 6807 struct bnxt_vnic_info *vnic, u16 ctx_idx) 6808 { 6809 struct hwrm_vnic_rss_cos_lb_ctx_alloc_output *resp; 6810 struct hwrm_vnic_rss_cos_lb_ctx_alloc_input *req; 6811 int rc; 6812 6813 rc = hwrm_req_init(bp, req, HWRM_VNIC_RSS_COS_LB_CTX_ALLOC); 6814 if (rc) 6815 return rc; 6816 6817 resp = hwrm_req_hold(bp, req); 6818 rc = hwrm_req_send(bp, req); 6819 if (!rc) 6820 vnic->fw_rss_cos_lb_ctx[ctx_idx] = 6821 le16_to_cpu(resp->rss_cos_lb_ctx_id); 6822 hwrm_req_drop(bp, req); 6823 6824 return rc; 6825 } 6826 6827 static u32 bnxt_get_roce_vnic_mode(struct bnxt *bp) 6828 { 6829 if (bp->flags & BNXT_FLAG_ROCE_MIRROR_CAP) 6830 return VNIC_CFG_REQ_FLAGS_ROCE_MIRRORING_CAPABLE_VNIC_MODE; 6831 return VNIC_CFG_REQ_FLAGS_ROCE_DUAL_VNIC_MODE; 6832 } 6833 6834 int bnxt_hwrm_vnic_cfg(struct bnxt *bp, struct bnxt_vnic_info *vnic) 6835 { 6836 struct bnxt_vnic_info *vnic0 = &bp->vnic_info[BNXT_VNIC_DEFAULT]; 6837 struct hwrm_vnic_cfg_input *req; 6838 unsigned int ring = 0, grp_idx; 6839 u16 def_vlan = 0; 6840 int rc; 6841 6842 rc = hwrm_req_init(bp, req, HWRM_VNIC_CFG); 6843 if (rc) 6844 return rc; 6845 6846 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 6847 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[0]; 6848 6849 req->default_rx_ring_id = 6850 cpu_to_le16(rxr->rx_ring_struct.fw_ring_id); 6851 req->default_cmpl_ring_id = 6852 cpu_to_le16(bnxt_cp_ring_for_rx(bp, rxr)); 6853 req->enables = 6854 cpu_to_le32(VNIC_CFG_REQ_ENABLES_DEFAULT_RX_RING_ID | 6855 VNIC_CFG_REQ_ENABLES_DEFAULT_CMPL_RING_ID); 6856 goto vnic_mru; 6857 } 6858 req->enables = cpu_to_le32(VNIC_CFG_REQ_ENABLES_DFLT_RING_GRP); 6859 /* Only RSS support for now TBD: COS & LB */ 6860 if (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID) { 6861 req->rss_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]); 6862 req->enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE | 6863 VNIC_CFG_REQ_ENABLES_MRU); 6864 } else if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG) { 6865 req->rss_rule = cpu_to_le16(vnic0->fw_rss_cos_lb_ctx[0]); 6866 req->enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE | 6867 VNIC_CFG_REQ_ENABLES_MRU); 6868 req->flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_RSS_DFLT_CR_MODE); 6869 } else { 6870 req->rss_rule = cpu_to_le16(0xffff); 6871 } 6872 6873 if (BNXT_CHIP_TYPE_NITRO_A0(bp) && 6874 (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID)) { 6875 req->cos_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[1]); 6876 req->enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_COS_RULE); 6877 } else { 6878 req->cos_rule = cpu_to_le16(0xffff); 6879 } 6880 6881 if (vnic->flags & BNXT_VNIC_RSS_FLAG) 6882 ring = 0; 6883 else if (vnic->flags & BNXT_VNIC_RFS_FLAG) 6884 ring = vnic->vnic_id - 1; 6885 else if ((vnic->vnic_id == 1) && BNXT_CHIP_TYPE_NITRO_A0(bp)) 6886 ring = bp->rx_nr_rings - 1; 6887 6888 grp_idx = bp->rx_ring[ring].bnapi->index; 6889 req->dflt_ring_grp = cpu_to_le16(bp->grp_info[grp_idx].fw_grp_id); 6890 req->lb_rule = cpu_to_le16(0xffff); 6891 vnic_mru: 6892 vnic->mru = bp->dev->mtu + VLAN_ETH_HLEN; 6893 req->mru = cpu_to_le16(vnic->mru); 6894 6895 req->vnic_id = cpu_to_le16(vnic->fw_vnic_id); 6896 #ifdef CONFIG_BNXT_SRIOV 6897 if (BNXT_VF(bp)) 6898 def_vlan = bp->vf.vlan; 6899 #endif 6900 if ((bp->flags & BNXT_FLAG_STRIP_VLAN) || def_vlan) 6901 req->flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_VLAN_STRIP_MODE); 6902 if (vnic->vnic_id == BNXT_VNIC_DEFAULT && bnxt_ulp_registered(bp->edev)) 6903 req->flags |= cpu_to_le32(bnxt_get_roce_vnic_mode(bp)); 6904 6905 return hwrm_req_send(bp, req); 6906 } 6907 6908 static void bnxt_hwrm_vnic_free_one(struct bnxt *bp, 6909 struct bnxt_vnic_info *vnic) 6910 { 6911 if (vnic->fw_vnic_id != INVALID_HW_RING_ID) { 6912 struct hwrm_vnic_free_input *req; 6913 6914 if (hwrm_req_init(bp, req, HWRM_VNIC_FREE)) 6915 return; 6916 6917 req->vnic_id = cpu_to_le32(vnic->fw_vnic_id); 6918 6919 hwrm_req_send(bp, req); 6920 vnic->fw_vnic_id = INVALID_HW_RING_ID; 6921 } 6922 } 6923 6924 static void bnxt_hwrm_vnic_free(struct bnxt *bp) 6925 { 6926 u16 i; 6927 6928 for (i = 0; i < bp->nr_vnics; i++) 6929 bnxt_hwrm_vnic_free_one(bp, &bp->vnic_info[i]); 6930 } 6931 6932 int bnxt_hwrm_vnic_alloc(struct bnxt *bp, struct bnxt_vnic_info *vnic, 6933 unsigned int start_rx_ring_idx, 6934 unsigned int nr_rings) 6935 { 6936 unsigned int i, j, grp_idx, end_idx = start_rx_ring_idx + nr_rings; 6937 struct hwrm_vnic_alloc_output *resp; 6938 struct hwrm_vnic_alloc_input *req; 6939 int rc; 6940 6941 rc = hwrm_req_init(bp, req, HWRM_VNIC_ALLOC); 6942 if (rc) 6943 return rc; 6944 6945 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 6946 goto vnic_no_ring_grps; 6947 6948 /* map ring groups to this vnic */ 6949 for (i = start_rx_ring_idx, j = 0; i < end_idx; i++, j++) { 6950 grp_idx = bp->rx_ring[i].bnapi->index; 6951 if (bp->grp_info[grp_idx].fw_grp_id == INVALID_HW_RING_ID) { 6952 netdev_err(bp->dev, "Not enough ring groups avail:%x req:%x\n", 6953 j, nr_rings); 6954 break; 6955 } 6956 vnic->fw_grp_ids[j] = bp->grp_info[grp_idx].fw_grp_id; 6957 } 6958 6959 vnic_no_ring_grps: 6960 for (i = 0; i < BNXT_MAX_CTX_PER_VNIC; i++) 6961 vnic->fw_rss_cos_lb_ctx[i] = INVALID_HW_RING_ID; 6962 if (vnic->vnic_id == BNXT_VNIC_DEFAULT) 6963 req->flags = cpu_to_le32(VNIC_ALLOC_REQ_FLAGS_DEFAULT); 6964 6965 resp = hwrm_req_hold(bp, req); 6966 rc = hwrm_req_send(bp, req); 6967 if (!rc) 6968 vnic->fw_vnic_id = le32_to_cpu(resp->vnic_id); 6969 hwrm_req_drop(bp, req); 6970 return rc; 6971 } 6972 6973 static int bnxt_hwrm_vnic_qcaps(struct bnxt *bp) 6974 { 6975 struct hwrm_vnic_qcaps_output *resp; 6976 struct hwrm_vnic_qcaps_input *req; 6977 int rc; 6978 6979 bp->hw_ring_stats_size = sizeof(struct ctx_hw_stats); 6980 bp->flags &= ~BNXT_FLAG_ROCE_MIRROR_CAP; 6981 bp->rss_cap &= ~BNXT_RSS_CAP_NEW_RSS_CAP; 6982 if (bp->hwrm_spec_code < 0x10600) 6983 return 0; 6984 6985 rc = hwrm_req_init(bp, req, HWRM_VNIC_QCAPS); 6986 if (rc) 6987 return rc; 6988 6989 resp = hwrm_req_hold(bp, req); 6990 rc = hwrm_req_send(bp, req); 6991 if (!rc) { 6992 u32 flags = le32_to_cpu(resp->flags); 6993 6994 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS) && 6995 (flags & VNIC_QCAPS_RESP_FLAGS_RSS_DFLT_CR_CAP)) 6996 bp->rss_cap |= BNXT_RSS_CAP_NEW_RSS_CAP; 6997 if (flags & 6998 VNIC_QCAPS_RESP_FLAGS_ROCE_MIRRORING_CAPABLE_VNIC_CAP) 6999 bp->flags |= BNXT_FLAG_ROCE_MIRROR_CAP; 7000 7001 /* Older P5 fw before EXT_HW_STATS support did not set 7002 * VLAN_STRIP_CAP properly. 7003 */ 7004 if ((flags & VNIC_QCAPS_RESP_FLAGS_VLAN_STRIP_CAP) || 7005 (BNXT_CHIP_P5(bp) && 7006 !(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED))) 7007 bp->fw_cap |= BNXT_FW_CAP_VLAN_RX_STRIP; 7008 if (flags & VNIC_QCAPS_RESP_FLAGS_RSS_HASH_TYPE_DELTA_CAP) 7009 bp->rss_cap |= BNXT_RSS_CAP_RSS_HASH_TYPE_DELTA; 7010 if (flags & VNIC_QCAPS_RESP_FLAGS_RSS_PROF_TCAM_MODE_ENABLED) 7011 bp->rss_cap |= BNXT_RSS_CAP_RSS_TCAM; 7012 bp->max_tpa_v2 = le16_to_cpu(resp->max_aggs_supported); 7013 if (bp->max_tpa_v2) { 7014 if (BNXT_CHIP_P5(bp)) 7015 bp->hw_ring_stats_size = BNXT_RING_STATS_SIZE_P5; 7016 else 7017 bp->hw_ring_stats_size = BNXT_RING_STATS_SIZE_P7; 7018 } 7019 if (flags & VNIC_QCAPS_RESP_FLAGS_HW_TUNNEL_TPA_CAP) 7020 bp->fw_cap |= BNXT_FW_CAP_VNIC_TUNNEL_TPA; 7021 if (flags & VNIC_QCAPS_RESP_FLAGS_RSS_IPSEC_AH_SPI_IPV4_CAP) 7022 bp->rss_cap |= BNXT_RSS_CAP_AH_V4_RSS_CAP; 7023 if (flags & VNIC_QCAPS_RESP_FLAGS_RSS_IPSEC_AH_SPI_IPV6_CAP) 7024 bp->rss_cap |= BNXT_RSS_CAP_AH_V6_RSS_CAP; 7025 if (flags & VNIC_QCAPS_RESP_FLAGS_RSS_IPSEC_ESP_SPI_IPV4_CAP) 7026 bp->rss_cap |= BNXT_RSS_CAP_ESP_V4_RSS_CAP; 7027 if (flags & VNIC_QCAPS_RESP_FLAGS_RSS_IPSEC_ESP_SPI_IPV6_CAP) 7028 bp->rss_cap |= BNXT_RSS_CAP_ESP_V6_RSS_CAP; 7029 if (flags & VNIC_QCAPS_RESP_FLAGS_RSS_IPV6_FLOW_LABEL_CAP) 7030 bp->rss_cap |= BNXT_RSS_CAP_IPV6_FLOW_LABEL_RSS_CAP; 7031 if (flags & VNIC_QCAPS_RESP_FLAGS_RE_FLUSH_CAP) 7032 bp->fw_cap |= BNXT_FW_CAP_VNIC_RE_FLUSH; 7033 } 7034 hwrm_req_drop(bp, req); 7035 return rc; 7036 } 7037 7038 static int bnxt_hwrm_ring_grp_alloc(struct bnxt *bp) 7039 { 7040 struct hwrm_ring_grp_alloc_output *resp; 7041 struct hwrm_ring_grp_alloc_input *req; 7042 int rc; 7043 u16 i; 7044 7045 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 7046 return 0; 7047 7048 rc = hwrm_req_init(bp, req, HWRM_RING_GRP_ALLOC); 7049 if (rc) 7050 return rc; 7051 7052 resp = hwrm_req_hold(bp, req); 7053 for (i = 0; i < bp->rx_nr_rings; i++) { 7054 unsigned int grp_idx = bp->rx_ring[i].bnapi->index; 7055 7056 req->cr = cpu_to_le16(bp->grp_info[grp_idx].cp_fw_ring_id); 7057 req->rr = cpu_to_le16(bp->grp_info[grp_idx].rx_fw_ring_id); 7058 req->ar = cpu_to_le16(bp->grp_info[grp_idx].agg_fw_ring_id); 7059 req->sc = cpu_to_le16(bp->grp_info[grp_idx].fw_stats_ctx); 7060 7061 rc = hwrm_req_send(bp, req); 7062 7063 if (rc) 7064 break; 7065 7066 bp->grp_info[grp_idx].fw_grp_id = 7067 le32_to_cpu(resp->ring_group_id); 7068 } 7069 hwrm_req_drop(bp, req); 7070 return rc; 7071 } 7072 7073 static void bnxt_hwrm_ring_grp_free(struct bnxt *bp) 7074 { 7075 struct hwrm_ring_grp_free_input *req; 7076 u16 i; 7077 7078 if (!bp->grp_info || (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 7079 return; 7080 7081 if (hwrm_req_init(bp, req, HWRM_RING_GRP_FREE)) 7082 return; 7083 7084 hwrm_req_hold(bp, req); 7085 for (i = 0; i < bp->cp_nr_rings; i++) { 7086 if (bp->grp_info[i].fw_grp_id == INVALID_HW_RING_ID) 7087 continue; 7088 req->ring_group_id = 7089 cpu_to_le32(bp->grp_info[i].fw_grp_id); 7090 7091 hwrm_req_send(bp, req); 7092 bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID; 7093 } 7094 hwrm_req_drop(bp, req); 7095 } 7096 7097 static void bnxt_set_rx_ring_params_p5(struct bnxt *bp, u32 ring_type, 7098 struct hwrm_ring_alloc_input *req, 7099 struct bnxt_rx_ring_info *rxr, 7100 struct bnxt_ring_struct *ring) 7101 { 7102 struct bnxt_ring_grp_info *grp_info = &bp->grp_info[ring->grp_idx]; 7103 u32 enables = RING_ALLOC_REQ_ENABLES_RX_BUF_SIZE_VALID | 7104 RING_ALLOC_REQ_ENABLES_NQ_RING_ID_VALID; 7105 7106 if (ring_type == HWRM_RING_ALLOC_AGG) { 7107 req->ring_type = RING_ALLOC_REQ_RING_TYPE_RX_AGG; 7108 req->rx_ring_id = cpu_to_le16(grp_info->rx_fw_ring_id); 7109 req->rx_buf_size = cpu_to_le16(rxr->rx_page_size); 7110 enables |= RING_ALLOC_REQ_ENABLES_RX_RING_ID_VALID; 7111 } else { 7112 req->rx_buf_size = cpu_to_le16(bp->rx_buf_use_size); 7113 if (NET_IP_ALIGN == 2) 7114 req->flags = 7115 cpu_to_le16(RING_ALLOC_REQ_FLAGS_RX_SOP_PAD); 7116 } 7117 req->stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx); 7118 req->nq_ring_id = cpu_to_le16(grp_info->cp_fw_ring_id); 7119 req->enables |= cpu_to_le32(enables); 7120 } 7121 7122 static int hwrm_ring_alloc_send_msg(struct bnxt *bp, 7123 struct bnxt_rx_ring_info *rxr, 7124 struct bnxt_ring_struct *ring, 7125 u32 ring_type, u32 map_index) 7126 { 7127 struct hwrm_ring_alloc_output *resp; 7128 struct hwrm_ring_alloc_input *req; 7129 struct bnxt_ring_mem_info *rmem = &ring->ring_mem; 7130 struct bnxt_ring_grp_info *grp_info; 7131 int rc, err = 0; 7132 u16 ring_id; 7133 7134 rc = hwrm_req_init(bp, req, HWRM_RING_ALLOC); 7135 if (rc) 7136 goto exit; 7137 7138 req->enables = 0; 7139 if (rmem->nr_pages > 1) { 7140 req->page_tbl_addr = cpu_to_le64(rmem->pg_tbl_map); 7141 /* Page size is in log2 units */ 7142 req->page_size = BNXT_PAGE_SHIFT; 7143 req->page_tbl_depth = 1; 7144 } else { 7145 req->page_tbl_addr = cpu_to_le64(rmem->dma_arr[0]); 7146 } 7147 req->fbo = 0; 7148 /* Association of ring index with doorbell index and MSIX number */ 7149 req->logical_id = cpu_to_le16(map_index); 7150 7151 switch (ring_type) { 7152 case HWRM_RING_ALLOC_TX: { 7153 struct bnxt_tx_ring_info *txr; 7154 u16 flags = 0; 7155 7156 txr = container_of(ring, struct bnxt_tx_ring_info, 7157 tx_ring_struct); 7158 req->ring_type = RING_ALLOC_REQ_RING_TYPE_TX; 7159 /* Association of transmit ring with completion ring */ 7160 grp_info = &bp->grp_info[ring->grp_idx]; 7161 req->cmpl_ring_id = cpu_to_le16(bnxt_cp_ring_for_tx(bp, txr)); 7162 req->length = cpu_to_le32(bp->tx_ring_mask + 1); 7163 req->stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx); 7164 req->queue_id = cpu_to_le16(ring->queue_id); 7165 if (bp->flags & BNXT_FLAG_TX_COAL_CMPL) 7166 req->cmpl_coal_cnt = 7167 RING_ALLOC_REQ_CMPL_COAL_CNT_COAL_64; 7168 if ((bp->fw_cap & BNXT_FW_CAP_TX_TS_CMP) && bp->ptp_cfg) 7169 flags |= RING_ALLOC_REQ_FLAGS_TX_PKT_TS_CMPL_ENABLE; 7170 req->flags = cpu_to_le16(flags); 7171 break; 7172 } 7173 case HWRM_RING_ALLOC_RX: 7174 case HWRM_RING_ALLOC_AGG: 7175 req->ring_type = RING_ALLOC_REQ_RING_TYPE_RX; 7176 req->length = (ring_type == HWRM_RING_ALLOC_RX) ? 7177 cpu_to_le32(bp->rx_ring_mask + 1) : 7178 cpu_to_le32(bp->rx_agg_ring_mask + 1); 7179 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 7180 bnxt_set_rx_ring_params_p5(bp, ring_type, req, 7181 rxr, ring); 7182 break; 7183 case HWRM_RING_ALLOC_CMPL: 7184 req->ring_type = RING_ALLOC_REQ_RING_TYPE_L2_CMPL; 7185 req->length = cpu_to_le32(bp->cp_ring_mask + 1); 7186 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 7187 /* Association of cp ring with nq */ 7188 grp_info = &bp->grp_info[map_index]; 7189 req->nq_ring_id = cpu_to_le16(grp_info->cp_fw_ring_id); 7190 req->cq_handle = cpu_to_le64(ring->handle); 7191 req->enables |= cpu_to_le32( 7192 RING_ALLOC_REQ_ENABLES_NQ_RING_ID_VALID); 7193 } else { 7194 req->int_mode = RING_ALLOC_REQ_INT_MODE_MSIX; 7195 } 7196 break; 7197 case HWRM_RING_ALLOC_NQ: 7198 req->ring_type = RING_ALLOC_REQ_RING_TYPE_NQ; 7199 req->length = cpu_to_le32(bp->cp_ring_mask + 1); 7200 req->int_mode = RING_ALLOC_REQ_INT_MODE_MSIX; 7201 break; 7202 default: 7203 netdev_err(bp->dev, "hwrm alloc invalid ring type %d\n", 7204 ring_type); 7205 return -EINVAL; 7206 } 7207 7208 resp = hwrm_req_hold(bp, req); 7209 rc = hwrm_req_send(bp, req); 7210 err = le16_to_cpu(resp->error_code); 7211 ring_id = le16_to_cpu(resp->ring_id); 7212 hwrm_req_drop(bp, req); 7213 7214 exit: 7215 if (rc || err) { 7216 netdev_err(bp->dev, "hwrm_ring_alloc type %d failed. rc:%x err:%x\n", 7217 ring_type, rc, err); 7218 return -EIO; 7219 } 7220 ring->fw_ring_id = ring_id; 7221 return rc; 7222 } 7223 7224 static int bnxt_hwrm_set_async_event_cr(struct bnxt *bp, int idx) 7225 { 7226 int rc; 7227 7228 if (BNXT_PF(bp)) { 7229 struct hwrm_func_cfg_input *req; 7230 7231 rc = bnxt_hwrm_func_cfg_short_req_init(bp, &req); 7232 if (rc) 7233 return rc; 7234 7235 req->fid = cpu_to_le16(0xffff); 7236 req->enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_ASYNC_EVENT_CR); 7237 req->async_event_cr = cpu_to_le16(idx); 7238 return hwrm_req_send(bp, req); 7239 } else { 7240 struct hwrm_func_vf_cfg_input *req; 7241 7242 rc = hwrm_req_init(bp, req, HWRM_FUNC_VF_CFG); 7243 if (rc) 7244 return rc; 7245 7246 req->enables = 7247 cpu_to_le32(FUNC_VF_CFG_REQ_ENABLES_ASYNC_EVENT_CR); 7248 req->async_event_cr = cpu_to_le16(idx); 7249 return hwrm_req_send(bp, req); 7250 } 7251 } 7252 7253 static void bnxt_set_db_mask(struct bnxt *bp, struct bnxt_db_info *db, 7254 u32 ring_type) 7255 { 7256 switch (ring_type) { 7257 case HWRM_RING_ALLOC_TX: 7258 db->db_ring_mask = bp->tx_ring_mask; 7259 break; 7260 case HWRM_RING_ALLOC_RX: 7261 db->db_ring_mask = bp->rx_ring_mask; 7262 break; 7263 case HWRM_RING_ALLOC_AGG: 7264 db->db_ring_mask = bp->rx_agg_ring_mask; 7265 break; 7266 case HWRM_RING_ALLOC_CMPL: 7267 case HWRM_RING_ALLOC_NQ: 7268 db->db_ring_mask = bp->cp_ring_mask; 7269 break; 7270 } 7271 if (bp->flags & BNXT_FLAG_CHIP_P7) { 7272 db->db_epoch_mask = db->db_ring_mask + 1; 7273 db->db_epoch_shift = DBR_EPOCH_SFT - ilog2(db->db_epoch_mask); 7274 } 7275 } 7276 7277 static void bnxt_set_db(struct bnxt *bp, struct bnxt_db_info *db, u32 ring_type, 7278 u32 map_idx, u32 xid) 7279 { 7280 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 7281 switch (ring_type) { 7282 case HWRM_RING_ALLOC_TX: 7283 db->db_key64 = DBR_PATH_L2 | DBR_TYPE_SQ; 7284 break; 7285 case HWRM_RING_ALLOC_RX: 7286 case HWRM_RING_ALLOC_AGG: 7287 db->db_key64 = DBR_PATH_L2 | DBR_TYPE_SRQ; 7288 break; 7289 case HWRM_RING_ALLOC_CMPL: 7290 db->db_key64 = DBR_PATH_L2; 7291 break; 7292 case HWRM_RING_ALLOC_NQ: 7293 db->db_key64 = DBR_PATH_L2; 7294 break; 7295 } 7296 db->db_key64 |= (u64)xid << DBR_XID_SFT; 7297 7298 if (bp->flags & BNXT_FLAG_CHIP_P7) 7299 db->db_key64 |= DBR_VALID; 7300 7301 db->doorbell = bp->bar1 + bp->db_offset; 7302 } else { 7303 db->doorbell = bp->bar1 + map_idx * 0x80; 7304 switch (ring_type) { 7305 case HWRM_RING_ALLOC_TX: 7306 db->db_key32 = DB_KEY_TX; 7307 break; 7308 case HWRM_RING_ALLOC_RX: 7309 case HWRM_RING_ALLOC_AGG: 7310 db->db_key32 = DB_KEY_RX; 7311 break; 7312 case HWRM_RING_ALLOC_CMPL: 7313 db->db_key32 = DB_KEY_CP; 7314 break; 7315 } 7316 } 7317 bnxt_set_db_mask(bp, db, ring_type); 7318 } 7319 7320 static int bnxt_hwrm_rx_ring_alloc(struct bnxt *bp, 7321 struct bnxt_rx_ring_info *rxr) 7322 { 7323 struct bnxt_ring_struct *ring = &rxr->rx_ring_struct; 7324 struct bnxt_napi *bnapi = rxr->bnapi; 7325 u32 type = HWRM_RING_ALLOC_RX; 7326 u32 map_idx = bnapi->index; 7327 int rc; 7328 7329 rc = hwrm_ring_alloc_send_msg(bp, rxr, ring, type, map_idx); 7330 if (rc) 7331 return rc; 7332 7333 bnxt_set_db(bp, &rxr->rx_db, type, map_idx, ring->fw_ring_id); 7334 bp->grp_info[map_idx].rx_fw_ring_id = ring->fw_ring_id; 7335 7336 return 0; 7337 } 7338 7339 static int bnxt_hwrm_rx_agg_ring_alloc(struct bnxt *bp, 7340 struct bnxt_rx_ring_info *rxr) 7341 { 7342 struct bnxt_ring_struct *ring = &rxr->rx_agg_ring_struct; 7343 u32 type = HWRM_RING_ALLOC_AGG; 7344 u32 grp_idx = ring->grp_idx; 7345 u32 map_idx; 7346 int rc; 7347 7348 map_idx = grp_idx + bp->rx_nr_rings; 7349 rc = hwrm_ring_alloc_send_msg(bp, rxr, ring, type, map_idx); 7350 if (rc) 7351 return rc; 7352 7353 bnxt_set_db(bp, &rxr->rx_agg_db, type, map_idx, 7354 ring->fw_ring_id); 7355 bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod); 7356 bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod); 7357 bp->grp_info[grp_idx].agg_fw_ring_id = ring->fw_ring_id; 7358 7359 return 0; 7360 } 7361 7362 static int bnxt_hwrm_cp_ring_alloc_p5(struct bnxt *bp, 7363 struct bnxt_cp_ring_info *cpr) 7364 { 7365 const u32 type = HWRM_RING_ALLOC_CMPL; 7366 struct bnxt_napi *bnapi = cpr->bnapi; 7367 struct bnxt_ring_struct *ring; 7368 u32 map_idx = bnapi->index; 7369 int rc; 7370 7371 ring = &cpr->cp_ring_struct; 7372 ring->handle = BNXT_SET_NQ_HDL(cpr); 7373 rc = hwrm_ring_alloc_send_msg(bp, NULL, ring, type, map_idx); 7374 if (rc) 7375 return rc; 7376 bnxt_set_db(bp, &cpr->cp_db, type, map_idx, ring->fw_ring_id); 7377 bnxt_db_cq(bp, &cpr->cp_db, cpr->cp_raw_cons); 7378 return 0; 7379 } 7380 7381 static int bnxt_hwrm_tx_ring_alloc(struct bnxt *bp, 7382 struct bnxt_tx_ring_info *txr, u32 tx_idx) 7383 { 7384 struct bnxt_ring_struct *ring = &txr->tx_ring_struct; 7385 const u32 type = HWRM_RING_ALLOC_TX; 7386 int rc; 7387 7388 rc = hwrm_ring_alloc_send_msg(bp, NULL, ring, type, tx_idx); 7389 if (rc) 7390 return rc; 7391 bnxt_set_db(bp, &txr->tx_db, type, tx_idx, ring->fw_ring_id); 7392 return 0; 7393 } 7394 7395 static int bnxt_hwrm_ring_alloc(struct bnxt *bp) 7396 { 7397 bool agg_rings = !!(bp->flags & BNXT_FLAG_AGG_RINGS); 7398 int i, rc = 0; 7399 u32 type; 7400 7401 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 7402 type = HWRM_RING_ALLOC_NQ; 7403 else 7404 type = HWRM_RING_ALLOC_CMPL; 7405 for (i = 0; i < bp->cp_nr_rings; i++) { 7406 struct bnxt_napi *bnapi = bp->bnapi[i]; 7407 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 7408 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct; 7409 u32 map_idx = ring->map_idx; 7410 unsigned int vector; 7411 7412 vector = bp->irq_tbl[map_idx].vector; 7413 disable_irq_nosync(vector); 7414 rc = hwrm_ring_alloc_send_msg(bp, NULL, ring, type, map_idx); 7415 if (rc) { 7416 enable_irq(vector); 7417 goto err_out; 7418 } 7419 bnxt_set_db(bp, &cpr->cp_db, type, map_idx, ring->fw_ring_id); 7420 bnxt_db_nq(bp, &cpr->cp_db, cpr->cp_raw_cons); 7421 enable_irq(vector); 7422 bp->grp_info[i].cp_fw_ring_id = ring->fw_ring_id; 7423 7424 if (!i) { 7425 rc = bnxt_hwrm_set_async_event_cr(bp, ring->fw_ring_id); 7426 if (rc) 7427 netdev_warn(bp->dev, "Failed to set async event completion ring.\n"); 7428 } 7429 } 7430 7431 for (i = 0; i < bp->tx_nr_rings; i++) { 7432 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 7433 7434 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 7435 rc = bnxt_hwrm_cp_ring_alloc_p5(bp, txr->tx_cpr); 7436 if (rc) 7437 goto err_out; 7438 } 7439 rc = bnxt_hwrm_tx_ring_alloc(bp, txr, i); 7440 if (rc) 7441 goto err_out; 7442 } 7443 7444 for (i = 0; i < bp->rx_nr_rings; i++) { 7445 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 7446 7447 rc = bnxt_hwrm_rx_ring_alloc(bp, rxr); 7448 if (rc) 7449 goto err_out; 7450 /* If we have agg rings, post agg buffers first. */ 7451 if (!agg_rings) 7452 bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod); 7453 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 7454 rc = bnxt_hwrm_cp_ring_alloc_p5(bp, rxr->rx_cpr); 7455 if (rc) 7456 goto err_out; 7457 } 7458 } 7459 7460 if (agg_rings) { 7461 for (i = 0; i < bp->rx_nr_rings; i++) { 7462 rc = bnxt_hwrm_rx_agg_ring_alloc(bp, &bp->rx_ring[i]); 7463 if (rc) 7464 goto err_out; 7465 } 7466 } 7467 err_out: 7468 return rc; 7469 } 7470 7471 static void bnxt_cancel_dim(struct bnxt *bp) 7472 { 7473 int i; 7474 7475 /* DIM work is initialized in bnxt_enable_napi(). Proceed only 7476 * if NAPI is enabled. 7477 */ 7478 if (!bp->bnapi || test_bit(BNXT_STATE_NAPI_DISABLED, &bp->state)) 7479 return; 7480 7481 /* Make sure NAPI sees that the VNIC is disabled */ 7482 synchronize_net(); 7483 for (i = 0; i < bp->rx_nr_rings; i++) { 7484 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 7485 struct bnxt_napi *bnapi = rxr->bnapi; 7486 7487 cancel_work_sync(&bnapi->cp_ring.dim.work); 7488 } 7489 } 7490 7491 static int hwrm_ring_free_send_msg(struct bnxt *bp, 7492 struct bnxt_ring_struct *ring, 7493 u32 ring_type, int cmpl_ring_id) 7494 { 7495 struct hwrm_ring_free_output *resp; 7496 struct hwrm_ring_free_input *req; 7497 u16 error_code = 0; 7498 int rc; 7499 7500 if (BNXT_NO_FW_ACCESS(bp)) 7501 return 0; 7502 7503 rc = hwrm_req_init(bp, req, HWRM_RING_FREE); 7504 if (rc) 7505 goto exit; 7506 7507 req->cmpl_ring = cpu_to_le16(cmpl_ring_id); 7508 req->ring_type = ring_type; 7509 req->ring_id = cpu_to_le16(ring->fw_ring_id); 7510 7511 resp = hwrm_req_hold(bp, req); 7512 rc = hwrm_req_send(bp, req); 7513 error_code = le16_to_cpu(resp->error_code); 7514 hwrm_req_drop(bp, req); 7515 exit: 7516 if (rc || error_code) { 7517 netdev_err(bp->dev, "hwrm_ring_free type %d failed. rc:%x err:%x\n", 7518 ring_type, rc, error_code); 7519 return -EIO; 7520 } 7521 return 0; 7522 } 7523 7524 static void bnxt_hwrm_tx_ring_free(struct bnxt *bp, 7525 struct bnxt_tx_ring_info *txr, 7526 bool close_path) 7527 { 7528 struct bnxt_ring_struct *ring = &txr->tx_ring_struct; 7529 u32 cmpl_ring_id; 7530 7531 if (ring->fw_ring_id == INVALID_HW_RING_ID) 7532 return; 7533 7534 cmpl_ring_id = close_path ? bnxt_cp_ring_for_tx(bp, txr) : 7535 INVALID_HW_RING_ID; 7536 hwrm_ring_free_send_msg(bp, ring, RING_FREE_REQ_RING_TYPE_TX, 7537 cmpl_ring_id); 7538 ring->fw_ring_id = INVALID_HW_RING_ID; 7539 } 7540 7541 static void bnxt_hwrm_rx_ring_free(struct bnxt *bp, 7542 struct bnxt_rx_ring_info *rxr, 7543 bool close_path) 7544 { 7545 struct bnxt_ring_struct *ring = &rxr->rx_ring_struct; 7546 u32 grp_idx = rxr->bnapi->index; 7547 u32 cmpl_ring_id; 7548 7549 if (ring->fw_ring_id == INVALID_HW_RING_ID) 7550 return; 7551 7552 cmpl_ring_id = bnxt_cp_ring_for_rx(bp, rxr); 7553 hwrm_ring_free_send_msg(bp, ring, 7554 RING_FREE_REQ_RING_TYPE_RX, 7555 close_path ? cmpl_ring_id : 7556 INVALID_HW_RING_ID); 7557 ring->fw_ring_id = INVALID_HW_RING_ID; 7558 bp->grp_info[grp_idx].rx_fw_ring_id = INVALID_HW_RING_ID; 7559 } 7560 7561 static void bnxt_hwrm_rx_agg_ring_free(struct bnxt *bp, 7562 struct bnxt_rx_ring_info *rxr, 7563 bool close_path) 7564 { 7565 struct bnxt_ring_struct *ring = &rxr->rx_agg_ring_struct; 7566 u32 grp_idx = rxr->bnapi->index; 7567 u32 type, cmpl_ring_id; 7568 7569 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 7570 type = RING_FREE_REQ_RING_TYPE_RX_AGG; 7571 else 7572 type = RING_FREE_REQ_RING_TYPE_RX; 7573 7574 if (ring->fw_ring_id == INVALID_HW_RING_ID) 7575 return; 7576 7577 cmpl_ring_id = bnxt_cp_ring_for_rx(bp, rxr); 7578 hwrm_ring_free_send_msg(bp, ring, type, 7579 close_path ? cmpl_ring_id : 7580 INVALID_HW_RING_ID); 7581 ring->fw_ring_id = INVALID_HW_RING_ID; 7582 bp->grp_info[grp_idx].agg_fw_ring_id = INVALID_HW_RING_ID; 7583 } 7584 7585 static void bnxt_hwrm_cp_ring_free(struct bnxt *bp, 7586 struct bnxt_cp_ring_info *cpr) 7587 { 7588 struct bnxt_ring_struct *ring; 7589 7590 ring = &cpr->cp_ring_struct; 7591 if (ring->fw_ring_id == INVALID_HW_RING_ID) 7592 return; 7593 7594 hwrm_ring_free_send_msg(bp, ring, RING_FREE_REQ_RING_TYPE_L2_CMPL, 7595 INVALID_HW_RING_ID); 7596 ring->fw_ring_id = INVALID_HW_RING_ID; 7597 } 7598 7599 static void bnxt_clear_one_cp_ring(struct bnxt *bp, struct bnxt_cp_ring_info *cpr) 7600 { 7601 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct; 7602 int i, size = ring->ring_mem.page_size; 7603 7604 cpr->cp_raw_cons = 0; 7605 cpr->toggle = 0; 7606 7607 for (i = 0; i < bp->cp_nr_pages; i++) 7608 if (cpr->cp_desc_ring[i]) 7609 memset(cpr->cp_desc_ring[i], 0, size); 7610 } 7611 7612 static void bnxt_hwrm_ring_free(struct bnxt *bp, bool close_path) 7613 { 7614 u32 type; 7615 int i; 7616 7617 if (!bp->bnapi) 7618 return; 7619 7620 for (i = 0; i < bp->tx_nr_rings; i++) 7621 bnxt_hwrm_tx_ring_free(bp, &bp->tx_ring[i], close_path); 7622 7623 bnxt_cancel_dim(bp); 7624 for (i = 0; i < bp->rx_nr_rings; i++) { 7625 bnxt_hwrm_rx_ring_free(bp, &bp->rx_ring[i], close_path); 7626 bnxt_hwrm_rx_agg_ring_free(bp, &bp->rx_ring[i], close_path); 7627 } 7628 7629 /* The completion rings are about to be freed. After that the 7630 * IRQ doorbell will not work anymore. So we need to disable 7631 * IRQ here. 7632 */ 7633 bnxt_disable_int_sync(bp); 7634 7635 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 7636 type = RING_FREE_REQ_RING_TYPE_NQ; 7637 else 7638 type = RING_FREE_REQ_RING_TYPE_L2_CMPL; 7639 for (i = 0; i < bp->cp_nr_rings; i++) { 7640 struct bnxt_napi *bnapi = bp->bnapi[i]; 7641 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 7642 struct bnxt_ring_struct *ring; 7643 int j; 7644 7645 for (j = 0; j < cpr->cp_ring_count && cpr->cp_ring_arr; j++) 7646 bnxt_hwrm_cp_ring_free(bp, &cpr->cp_ring_arr[j]); 7647 7648 ring = &cpr->cp_ring_struct; 7649 if (ring->fw_ring_id != INVALID_HW_RING_ID) { 7650 hwrm_ring_free_send_msg(bp, ring, type, 7651 INVALID_HW_RING_ID); 7652 ring->fw_ring_id = INVALID_HW_RING_ID; 7653 bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID; 7654 } 7655 } 7656 } 7657 7658 static int __bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max, 7659 bool shared); 7660 static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max, 7661 bool shared); 7662 7663 static int bnxt_hwrm_get_rings(struct bnxt *bp) 7664 { 7665 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 7666 struct hwrm_func_qcfg_output *resp; 7667 struct hwrm_func_qcfg_input *req; 7668 int rc; 7669 7670 if (bp->hwrm_spec_code < 0x10601) 7671 return 0; 7672 7673 rc = hwrm_req_init(bp, req, HWRM_FUNC_QCFG); 7674 if (rc) 7675 return rc; 7676 7677 req->fid = cpu_to_le16(0xffff); 7678 resp = hwrm_req_hold(bp, req); 7679 rc = hwrm_req_send(bp, req); 7680 if (rc) { 7681 hwrm_req_drop(bp, req); 7682 return rc; 7683 } 7684 7685 hw_resc->resv_tx_rings = le16_to_cpu(resp->alloc_tx_rings); 7686 if (BNXT_NEW_RM(bp)) { 7687 u16 cp, stats; 7688 7689 hw_resc->resv_rx_rings = le16_to_cpu(resp->alloc_rx_rings); 7690 hw_resc->resv_hw_ring_grps = 7691 le32_to_cpu(resp->alloc_hw_ring_grps); 7692 hw_resc->resv_vnics = le16_to_cpu(resp->alloc_vnics); 7693 hw_resc->resv_rsscos_ctxs = le16_to_cpu(resp->alloc_rsscos_ctx); 7694 cp = le16_to_cpu(resp->alloc_cmpl_rings); 7695 stats = le16_to_cpu(resp->alloc_stat_ctx); 7696 hw_resc->resv_irqs = cp; 7697 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 7698 int rx = hw_resc->resv_rx_rings; 7699 int tx = hw_resc->resv_tx_rings; 7700 7701 if (bp->flags & BNXT_FLAG_AGG_RINGS) 7702 rx >>= 1; 7703 if (cp < (rx + tx)) { 7704 rc = __bnxt_trim_rings(bp, &rx, &tx, cp, false); 7705 if (rc) 7706 goto get_rings_exit; 7707 if (bp->flags & BNXT_FLAG_AGG_RINGS) 7708 rx <<= 1; 7709 hw_resc->resv_rx_rings = rx; 7710 hw_resc->resv_tx_rings = tx; 7711 } 7712 hw_resc->resv_irqs = le16_to_cpu(resp->alloc_msix); 7713 hw_resc->resv_hw_ring_grps = rx; 7714 } 7715 hw_resc->resv_cp_rings = cp; 7716 hw_resc->resv_stat_ctxs = stats; 7717 } 7718 get_rings_exit: 7719 hwrm_req_drop(bp, req); 7720 return rc; 7721 } 7722 7723 int __bnxt_hwrm_get_tx_rings(struct bnxt *bp, u16 fid, int *tx_rings) 7724 { 7725 struct hwrm_func_qcfg_output *resp; 7726 struct hwrm_func_qcfg_input *req; 7727 int rc; 7728 7729 if (bp->hwrm_spec_code < 0x10601) 7730 return 0; 7731 7732 rc = hwrm_req_init(bp, req, HWRM_FUNC_QCFG); 7733 if (rc) 7734 return rc; 7735 7736 req->fid = cpu_to_le16(fid); 7737 resp = hwrm_req_hold(bp, req); 7738 rc = hwrm_req_send(bp, req); 7739 if (!rc) 7740 *tx_rings = le16_to_cpu(resp->alloc_tx_rings); 7741 7742 hwrm_req_drop(bp, req); 7743 return rc; 7744 } 7745 7746 static bool bnxt_rfs_supported(struct bnxt *bp); 7747 7748 static struct hwrm_func_cfg_input * 7749 __bnxt_hwrm_reserve_pf_rings(struct bnxt *bp, struct bnxt_hw_rings *hwr) 7750 { 7751 struct hwrm_func_cfg_input *req; 7752 u32 enables = 0; 7753 7754 if (bnxt_hwrm_func_cfg_short_req_init(bp, &req)) 7755 return NULL; 7756 7757 req->fid = cpu_to_le16(0xffff); 7758 enables |= hwr->tx ? FUNC_CFG_REQ_ENABLES_NUM_TX_RINGS : 0; 7759 req->num_tx_rings = cpu_to_le16(hwr->tx); 7760 if (BNXT_NEW_RM(bp)) { 7761 enables |= hwr->rx ? FUNC_CFG_REQ_ENABLES_NUM_RX_RINGS : 0; 7762 enables |= hwr->stat ? FUNC_CFG_REQ_ENABLES_NUM_STAT_CTXS : 0; 7763 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 7764 enables |= hwr->cp ? FUNC_CFG_REQ_ENABLES_NUM_MSIX : 0; 7765 enables |= hwr->cp_p5 ? 7766 FUNC_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0; 7767 } else { 7768 enables |= hwr->cp ? 7769 FUNC_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0; 7770 enables |= hwr->grp ? 7771 FUNC_CFG_REQ_ENABLES_NUM_HW_RING_GRPS : 0; 7772 } 7773 enables |= hwr->vnic ? FUNC_CFG_REQ_ENABLES_NUM_VNICS : 0; 7774 enables |= hwr->rss_ctx ? FUNC_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 7775 0; 7776 req->num_rx_rings = cpu_to_le16(hwr->rx); 7777 req->num_rsscos_ctxs = cpu_to_le16(hwr->rss_ctx); 7778 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 7779 req->num_cmpl_rings = cpu_to_le16(hwr->cp_p5); 7780 req->num_msix = cpu_to_le16(hwr->cp); 7781 } else { 7782 req->num_cmpl_rings = cpu_to_le16(hwr->cp); 7783 req->num_hw_ring_grps = cpu_to_le16(hwr->grp); 7784 } 7785 req->num_stat_ctxs = cpu_to_le16(hwr->stat); 7786 req->num_vnics = cpu_to_le16(hwr->vnic); 7787 } 7788 req->enables = cpu_to_le32(enables); 7789 return req; 7790 } 7791 7792 static struct hwrm_func_vf_cfg_input * 7793 __bnxt_hwrm_reserve_vf_rings(struct bnxt *bp, struct bnxt_hw_rings *hwr) 7794 { 7795 struct hwrm_func_vf_cfg_input *req; 7796 u32 enables = 0; 7797 7798 if (hwrm_req_init(bp, req, HWRM_FUNC_VF_CFG)) 7799 return NULL; 7800 7801 enables |= hwr->tx ? FUNC_VF_CFG_REQ_ENABLES_NUM_TX_RINGS : 0; 7802 enables |= hwr->rx ? FUNC_VF_CFG_REQ_ENABLES_NUM_RX_RINGS | 7803 FUNC_VF_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0; 7804 enables |= hwr->stat ? FUNC_VF_CFG_REQ_ENABLES_NUM_STAT_CTXS : 0; 7805 enables |= hwr->rss_ctx ? FUNC_VF_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0; 7806 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 7807 enables |= hwr->cp_p5 ? 7808 FUNC_VF_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0; 7809 } else { 7810 enables |= hwr->cp ? FUNC_VF_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0; 7811 enables |= hwr->grp ? 7812 FUNC_VF_CFG_REQ_ENABLES_NUM_HW_RING_GRPS : 0; 7813 } 7814 enables |= hwr->vnic ? FUNC_VF_CFG_REQ_ENABLES_NUM_VNICS : 0; 7815 enables |= FUNC_VF_CFG_REQ_ENABLES_NUM_L2_CTXS; 7816 7817 req->num_l2_ctxs = cpu_to_le16(BNXT_VF_MAX_L2_CTX); 7818 req->num_tx_rings = cpu_to_le16(hwr->tx); 7819 req->num_rx_rings = cpu_to_le16(hwr->rx); 7820 req->num_rsscos_ctxs = cpu_to_le16(hwr->rss_ctx); 7821 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 7822 req->num_cmpl_rings = cpu_to_le16(hwr->cp_p5); 7823 } else { 7824 req->num_cmpl_rings = cpu_to_le16(hwr->cp); 7825 req->num_hw_ring_grps = cpu_to_le16(hwr->grp); 7826 } 7827 req->num_stat_ctxs = cpu_to_le16(hwr->stat); 7828 req->num_vnics = cpu_to_le16(hwr->vnic); 7829 7830 req->enables = cpu_to_le32(enables); 7831 return req; 7832 } 7833 7834 static int 7835 bnxt_hwrm_reserve_pf_rings(struct bnxt *bp, struct bnxt_hw_rings *hwr) 7836 { 7837 struct hwrm_func_cfg_input *req; 7838 int rc; 7839 7840 req = __bnxt_hwrm_reserve_pf_rings(bp, hwr); 7841 if (!req) 7842 return -ENOMEM; 7843 7844 if (!req->enables) { 7845 hwrm_req_drop(bp, req); 7846 return 0; 7847 } 7848 7849 rc = hwrm_req_send(bp, req); 7850 if (rc) 7851 return rc; 7852 7853 if (bp->hwrm_spec_code < 0x10601) 7854 bp->hw_resc.resv_tx_rings = hwr->tx; 7855 7856 return bnxt_hwrm_get_rings(bp); 7857 } 7858 7859 static int 7860 bnxt_hwrm_reserve_vf_rings(struct bnxt *bp, struct bnxt_hw_rings *hwr) 7861 { 7862 struct hwrm_func_vf_cfg_input *req; 7863 int rc; 7864 7865 if (!BNXT_NEW_RM(bp)) { 7866 bp->hw_resc.resv_tx_rings = hwr->tx; 7867 return 0; 7868 } 7869 7870 req = __bnxt_hwrm_reserve_vf_rings(bp, hwr); 7871 if (!req) 7872 return -ENOMEM; 7873 7874 rc = hwrm_req_send(bp, req); 7875 if (rc) 7876 return rc; 7877 7878 return bnxt_hwrm_get_rings(bp); 7879 } 7880 7881 static int bnxt_hwrm_reserve_rings(struct bnxt *bp, struct bnxt_hw_rings *hwr) 7882 { 7883 if (BNXT_PF(bp)) 7884 return bnxt_hwrm_reserve_pf_rings(bp, hwr); 7885 else 7886 return bnxt_hwrm_reserve_vf_rings(bp, hwr); 7887 } 7888 7889 int bnxt_nq_rings_in_use(struct bnxt *bp) 7890 { 7891 return bp->cp_nr_rings + bnxt_get_ulp_msix_num(bp); 7892 } 7893 7894 static int bnxt_cp_rings_in_use(struct bnxt *bp) 7895 { 7896 int cp; 7897 7898 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 7899 return bnxt_nq_rings_in_use(bp); 7900 7901 cp = bp->tx_nr_rings + bp->rx_nr_rings; 7902 return cp; 7903 } 7904 7905 static int bnxt_get_func_stat_ctxs(struct bnxt *bp) 7906 { 7907 return bp->cp_nr_rings + bnxt_get_ulp_stat_ctxs(bp); 7908 } 7909 7910 static int bnxt_get_total_rss_ctxs(struct bnxt *bp, struct bnxt_hw_rings *hwr) 7911 { 7912 if (!hwr->grp) 7913 return 0; 7914 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 7915 int rss_ctx = bnxt_get_nr_rss_ctxs(bp, hwr->grp); 7916 7917 if (BNXT_SUPPORTS_NTUPLE_VNIC(bp)) 7918 rss_ctx *= hwr->vnic; 7919 return rss_ctx; 7920 } 7921 if (BNXT_VF(bp)) 7922 return BNXT_VF_MAX_RSS_CTX; 7923 if (!(bp->rss_cap & BNXT_RSS_CAP_NEW_RSS_CAP) && bnxt_rfs_supported(bp)) 7924 return hwr->grp + 1; 7925 return 1; 7926 } 7927 7928 /* Check if a default RSS map needs to be setup. This function is only 7929 * used on older firmware that does not require reserving RX rings. 7930 */ 7931 static void bnxt_check_rss_tbl_no_rmgr(struct bnxt *bp) 7932 { 7933 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 7934 7935 /* The RSS map is valid for RX rings set to resv_rx_rings */ 7936 if (hw_resc->resv_rx_rings != bp->rx_nr_rings) { 7937 hw_resc->resv_rx_rings = bp->rx_nr_rings; 7938 if (!netif_is_rxfh_configured(bp->dev)) 7939 bnxt_set_dflt_rss_indir_tbl(bp, NULL); 7940 } 7941 } 7942 7943 static int bnxt_get_total_vnics(struct bnxt *bp, int rx_rings) 7944 { 7945 if (bp->flags & BNXT_FLAG_RFS) { 7946 if (BNXT_SUPPORTS_NTUPLE_VNIC(bp)) 7947 return 2 + bp->num_rss_ctx; 7948 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 7949 return rx_rings + 1; 7950 } 7951 return 1; 7952 } 7953 7954 static void bnxt_get_total_resources(struct bnxt *bp, struct bnxt_hw_rings *hwr) 7955 { 7956 hwr->cp = bnxt_nq_rings_in_use(bp); 7957 hwr->cp_p5 = 0; 7958 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 7959 hwr->cp_p5 = bnxt_cp_rings_in_use(bp); 7960 hwr->tx = bp->tx_nr_rings; 7961 hwr->rx = bp->rx_nr_rings; 7962 hwr->grp = hwr->rx; 7963 hwr->vnic = bnxt_get_total_vnics(bp, hwr->rx); 7964 hwr->rss_ctx = bnxt_get_total_rss_ctxs(bp, hwr); 7965 if (bp->flags & BNXT_FLAG_AGG_RINGS) 7966 hwr->rx <<= 1; 7967 hwr->stat = bnxt_get_func_stat_ctxs(bp); 7968 } 7969 7970 static bool bnxt_need_reserve_rings(struct bnxt *bp) 7971 { 7972 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 7973 struct bnxt_hw_rings hwr; 7974 7975 bnxt_get_total_resources(bp, &hwr); 7976 7977 /* Old firmware does not need RX ring reservations but we still 7978 * need to setup a default RSS map when needed. With new firmware 7979 * we go through RX ring reservations first and then set up the 7980 * RSS map for the successfully reserved RX rings when needed. 7981 */ 7982 if (!BNXT_NEW_RM(bp)) 7983 bnxt_check_rss_tbl_no_rmgr(bp); 7984 7985 if (hw_resc->resv_tx_rings != hwr.tx && bp->hwrm_spec_code >= 0x10601) 7986 return true; 7987 7988 if (!BNXT_NEW_RM(bp)) 7989 return false; 7990 7991 if (hw_resc->resv_rx_rings != hwr.rx || 7992 hw_resc->resv_vnics != hwr.vnic || 7993 hw_resc->resv_stat_ctxs != hwr.stat || 7994 hw_resc->resv_rsscos_ctxs != hwr.rss_ctx || 7995 (hw_resc->resv_hw_ring_grps != hwr.grp && 7996 !(bp->flags & BNXT_FLAG_CHIP_P5_PLUS))) 7997 return true; 7998 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 7999 if (hw_resc->resv_cp_rings != hwr.cp_p5) 8000 return true; 8001 } else if (hw_resc->resv_cp_rings != hwr.cp) { 8002 return true; 8003 } 8004 if ((bp->flags & BNXT_FLAG_CHIP_P5_PLUS) && BNXT_PF(bp) && 8005 hw_resc->resv_irqs != hwr.cp) 8006 return true; 8007 return false; 8008 } 8009 8010 static void bnxt_copy_reserved_rings(struct bnxt *bp, struct bnxt_hw_rings *hwr) 8011 { 8012 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 8013 8014 hwr->tx = hw_resc->resv_tx_rings; 8015 if (BNXT_NEW_RM(bp)) { 8016 hwr->rx = hw_resc->resv_rx_rings; 8017 hwr->cp = hw_resc->resv_irqs; 8018 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 8019 hwr->cp_p5 = hw_resc->resv_cp_rings; 8020 hwr->grp = hw_resc->resv_hw_ring_grps; 8021 hwr->vnic = hw_resc->resv_vnics; 8022 hwr->stat = hw_resc->resv_stat_ctxs; 8023 hwr->rss_ctx = hw_resc->resv_rsscos_ctxs; 8024 } 8025 } 8026 8027 static bool bnxt_rings_ok(struct bnxt *bp, struct bnxt_hw_rings *hwr) 8028 { 8029 return hwr->tx && hwr->rx && hwr->cp && hwr->grp && hwr->vnic && 8030 hwr->stat && (hwr->cp_p5 || !(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)); 8031 } 8032 8033 static int bnxt_get_avail_msix(struct bnxt *bp, int num); 8034 8035 static int __bnxt_reserve_rings(struct bnxt *bp) 8036 { 8037 struct bnxt_hw_rings hwr = {0}; 8038 int rx_rings, old_rx_rings, rc; 8039 int cp = bp->cp_nr_rings; 8040 int ulp_msix = 0; 8041 bool sh = false; 8042 int tx_cp; 8043 8044 if (!bnxt_need_reserve_rings(bp)) 8045 return 0; 8046 8047 if (BNXT_NEW_RM(bp) && !bnxt_ulp_registered(bp->edev)) { 8048 ulp_msix = bnxt_get_avail_msix(bp, bp->ulp_num_msix_want); 8049 if (!ulp_msix) 8050 bnxt_set_ulp_stat_ctxs(bp, 0); 8051 8052 if (ulp_msix > bp->ulp_num_msix_want) 8053 ulp_msix = bp->ulp_num_msix_want; 8054 hwr.cp = cp + ulp_msix; 8055 } else { 8056 hwr.cp = bnxt_nq_rings_in_use(bp); 8057 } 8058 8059 hwr.tx = bp->tx_nr_rings; 8060 hwr.rx = bp->rx_nr_rings; 8061 if (bp->flags & BNXT_FLAG_SHARED_RINGS) 8062 sh = true; 8063 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 8064 hwr.cp_p5 = hwr.rx + hwr.tx; 8065 8066 hwr.vnic = bnxt_get_total_vnics(bp, hwr.rx); 8067 8068 if (bp->flags & BNXT_FLAG_AGG_RINGS) 8069 hwr.rx <<= 1; 8070 hwr.grp = bp->rx_nr_rings; 8071 hwr.rss_ctx = bnxt_get_total_rss_ctxs(bp, &hwr); 8072 hwr.stat = bnxt_get_func_stat_ctxs(bp); 8073 old_rx_rings = bp->hw_resc.resv_rx_rings; 8074 8075 rc = bnxt_hwrm_reserve_rings(bp, &hwr); 8076 if (rc) 8077 return rc; 8078 8079 bnxt_copy_reserved_rings(bp, &hwr); 8080 8081 rx_rings = hwr.rx; 8082 if (bp->flags & BNXT_FLAG_AGG_RINGS) { 8083 if (hwr.rx >= 2) { 8084 rx_rings = hwr.rx >> 1; 8085 } else { 8086 if (netif_running(bp->dev)) 8087 return -ENOMEM; 8088 8089 bp->flags &= ~BNXT_FLAG_AGG_RINGS; 8090 bp->flags |= BNXT_FLAG_NO_AGG_RINGS; 8091 bp->dev->hw_features &= ~NETIF_F_LRO; 8092 bp->dev->features &= ~NETIF_F_LRO; 8093 bnxt_set_ring_params(bp); 8094 } 8095 } 8096 rx_rings = min_t(int, rx_rings, hwr.grp); 8097 hwr.cp = min_t(int, hwr.cp, bp->cp_nr_rings); 8098 if (bnxt_ulp_registered(bp->edev) && 8099 hwr.stat > bnxt_get_ulp_stat_ctxs(bp)) 8100 hwr.stat -= bnxt_get_ulp_stat_ctxs(bp); 8101 hwr.cp = min_t(int, hwr.cp, hwr.stat); 8102 rc = bnxt_trim_rings(bp, &rx_rings, &hwr.tx, hwr.cp, sh); 8103 if (bp->flags & BNXT_FLAG_AGG_RINGS) 8104 hwr.rx = rx_rings << 1; 8105 tx_cp = bnxt_num_tx_to_cp(bp, hwr.tx); 8106 hwr.cp = sh ? max_t(int, tx_cp, rx_rings) : tx_cp + rx_rings; 8107 if (hwr.tx != bp->tx_nr_rings) { 8108 netdev_warn(bp->dev, 8109 "Able to reserve only %d out of %d requested TX rings\n", 8110 hwr.tx, bp->tx_nr_rings); 8111 } 8112 bp->tx_nr_rings = hwr.tx; 8113 8114 /* If we cannot reserve all the RX rings, reset the RSS map only 8115 * if absolutely necessary 8116 */ 8117 if (rx_rings != bp->rx_nr_rings) { 8118 netdev_warn(bp->dev, "Able to reserve only %d out of %d requested RX rings\n", 8119 rx_rings, bp->rx_nr_rings); 8120 if (netif_is_rxfh_configured(bp->dev) && 8121 (bnxt_get_nr_rss_ctxs(bp, bp->rx_nr_rings) != 8122 bnxt_get_nr_rss_ctxs(bp, rx_rings) || 8123 bnxt_get_max_rss_ring(bp) >= rx_rings)) { 8124 netdev_warn(bp->dev, "RSS table entries reverting to default\n"); 8125 bp->dev->priv_flags &= ~IFF_RXFH_CONFIGURED; 8126 } 8127 } 8128 bp->rx_nr_rings = rx_rings; 8129 bp->cp_nr_rings = hwr.cp; 8130 8131 /* Fall back if we cannot reserve enough HW RSS contexts */ 8132 if ((bp->rss_cap & BNXT_RSS_CAP_LARGE_RSS_CTX) && 8133 hwr.rss_ctx < bnxt_get_total_rss_ctxs(bp, &hwr)) 8134 bp->rss_cap &= ~BNXT_RSS_CAP_LARGE_RSS_CTX; 8135 8136 if (!bnxt_rings_ok(bp, &hwr)) 8137 return -ENOMEM; 8138 8139 if (old_rx_rings != bp->hw_resc.resv_rx_rings && 8140 !netif_is_rxfh_configured(bp->dev)) 8141 bnxt_set_dflt_rss_indir_tbl(bp, NULL); 8142 8143 if (!bnxt_ulp_registered(bp->edev) && BNXT_NEW_RM(bp)) { 8144 int resv_msix, resv_ctx, ulp_ctxs; 8145 struct bnxt_hw_resc *hw_resc; 8146 8147 hw_resc = &bp->hw_resc; 8148 resv_msix = hw_resc->resv_irqs - bp->cp_nr_rings; 8149 ulp_msix = min_t(int, resv_msix, ulp_msix); 8150 bnxt_set_ulp_msix_num(bp, ulp_msix); 8151 resv_ctx = hw_resc->resv_stat_ctxs - bp->cp_nr_rings; 8152 ulp_ctxs = min(resv_ctx, bnxt_get_ulp_stat_ctxs(bp)); 8153 bnxt_set_ulp_stat_ctxs(bp, ulp_ctxs); 8154 } 8155 8156 return rc; 8157 } 8158 8159 static int bnxt_hwrm_check_vf_rings(struct bnxt *bp, struct bnxt_hw_rings *hwr) 8160 { 8161 struct hwrm_func_vf_cfg_input *req; 8162 u32 flags; 8163 8164 if (!BNXT_NEW_RM(bp)) 8165 return 0; 8166 8167 req = __bnxt_hwrm_reserve_vf_rings(bp, hwr); 8168 flags = FUNC_VF_CFG_REQ_FLAGS_TX_ASSETS_TEST | 8169 FUNC_VF_CFG_REQ_FLAGS_RX_ASSETS_TEST | 8170 FUNC_VF_CFG_REQ_FLAGS_CMPL_ASSETS_TEST | 8171 FUNC_VF_CFG_REQ_FLAGS_STAT_CTX_ASSETS_TEST | 8172 FUNC_VF_CFG_REQ_FLAGS_VNIC_ASSETS_TEST | 8173 FUNC_VF_CFG_REQ_FLAGS_RSSCOS_CTX_ASSETS_TEST; 8174 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 8175 flags |= FUNC_VF_CFG_REQ_FLAGS_RING_GRP_ASSETS_TEST; 8176 8177 req->flags = cpu_to_le32(flags); 8178 return hwrm_req_send_silent(bp, req); 8179 } 8180 8181 static int bnxt_hwrm_check_pf_rings(struct bnxt *bp, struct bnxt_hw_rings *hwr) 8182 { 8183 struct hwrm_func_cfg_input *req; 8184 u32 flags; 8185 8186 req = __bnxt_hwrm_reserve_pf_rings(bp, hwr); 8187 flags = FUNC_CFG_REQ_FLAGS_TX_ASSETS_TEST; 8188 if (BNXT_NEW_RM(bp)) { 8189 flags |= FUNC_CFG_REQ_FLAGS_RX_ASSETS_TEST | 8190 FUNC_CFG_REQ_FLAGS_CMPL_ASSETS_TEST | 8191 FUNC_CFG_REQ_FLAGS_STAT_CTX_ASSETS_TEST | 8192 FUNC_CFG_REQ_FLAGS_VNIC_ASSETS_TEST; 8193 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 8194 flags |= FUNC_CFG_REQ_FLAGS_RSSCOS_CTX_ASSETS_TEST | 8195 FUNC_CFG_REQ_FLAGS_NQ_ASSETS_TEST; 8196 else 8197 flags |= FUNC_CFG_REQ_FLAGS_RING_GRP_ASSETS_TEST; 8198 } 8199 8200 req->flags = cpu_to_le32(flags); 8201 return hwrm_req_send_silent(bp, req); 8202 } 8203 8204 static int bnxt_hwrm_check_rings(struct bnxt *bp, struct bnxt_hw_rings *hwr) 8205 { 8206 if (bp->hwrm_spec_code < 0x10801) 8207 return 0; 8208 8209 if (BNXT_PF(bp)) 8210 return bnxt_hwrm_check_pf_rings(bp, hwr); 8211 8212 return bnxt_hwrm_check_vf_rings(bp, hwr); 8213 } 8214 8215 static void bnxt_hwrm_coal_params_qcaps(struct bnxt *bp) 8216 { 8217 struct bnxt_coal_cap *coal_cap = &bp->coal_cap; 8218 struct hwrm_ring_aggint_qcaps_output *resp; 8219 struct hwrm_ring_aggint_qcaps_input *req; 8220 int rc; 8221 8222 coal_cap->cmpl_params = BNXT_LEGACY_COAL_CMPL_PARAMS; 8223 coal_cap->num_cmpl_dma_aggr_max = 63; 8224 coal_cap->num_cmpl_dma_aggr_during_int_max = 63; 8225 coal_cap->cmpl_aggr_dma_tmr_max = 65535; 8226 coal_cap->cmpl_aggr_dma_tmr_during_int_max = 65535; 8227 coal_cap->int_lat_tmr_min_max = 65535; 8228 coal_cap->int_lat_tmr_max_max = 65535; 8229 coal_cap->num_cmpl_aggr_int_max = 65535; 8230 coal_cap->timer_units = 80; 8231 8232 if (bp->hwrm_spec_code < 0x10902) 8233 return; 8234 8235 if (hwrm_req_init(bp, req, HWRM_RING_AGGINT_QCAPS)) 8236 return; 8237 8238 resp = hwrm_req_hold(bp, req); 8239 rc = hwrm_req_send_silent(bp, req); 8240 if (!rc) { 8241 coal_cap->cmpl_params = le32_to_cpu(resp->cmpl_params); 8242 coal_cap->nq_params = le32_to_cpu(resp->nq_params); 8243 coal_cap->num_cmpl_dma_aggr_max = 8244 le16_to_cpu(resp->num_cmpl_dma_aggr_max); 8245 coal_cap->num_cmpl_dma_aggr_during_int_max = 8246 le16_to_cpu(resp->num_cmpl_dma_aggr_during_int_max); 8247 coal_cap->cmpl_aggr_dma_tmr_max = 8248 le16_to_cpu(resp->cmpl_aggr_dma_tmr_max); 8249 coal_cap->cmpl_aggr_dma_tmr_during_int_max = 8250 le16_to_cpu(resp->cmpl_aggr_dma_tmr_during_int_max); 8251 coal_cap->int_lat_tmr_min_max = 8252 le16_to_cpu(resp->int_lat_tmr_min_max); 8253 coal_cap->int_lat_tmr_max_max = 8254 le16_to_cpu(resp->int_lat_tmr_max_max); 8255 coal_cap->num_cmpl_aggr_int_max = 8256 le16_to_cpu(resp->num_cmpl_aggr_int_max); 8257 coal_cap->timer_units = le16_to_cpu(resp->timer_units); 8258 } 8259 hwrm_req_drop(bp, req); 8260 } 8261 8262 static u16 bnxt_usec_to_coal_tmr(struct bnxt *bp, u16 usec) 8263 { 8264 struct bnxt_coal_cap *coal_cap = &bp->coal_cap; 8265 8266 return usec * 1000 / coal_cap->timer_units; 8267 } 8268 8269 static void bnxt_hwrm_set_coal_params(struct bnxt *bp, 8270 struct bnxt_coal *hw_coal, 8271 struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req) 8272 { 8273 struct bnxt_coal_cap *coal_cap = &bp->coal_cap; 8274 u16 val, tmr, max, flags = hw_coal->flags; 8275 u32 cmpl_params = coal_cap->cmpl_params; 8276 8277 max = hw_coal->bufs_per_record * 128; 8278 if (hw_coal->budget) 8279 max = hw_coal->bufs_per_record * hw_coal->budget; 8280 max = min_t(u16, max, coal_cap->num_cmpl_aggr_int_max); 8281 8282 val = clamp_t(u16, hw_coal->coal_bufs, 1, max); 8283 req->num_cmpl_aggr_int = cpu_to_le16(val); 8284 8285 val = min_t(u16, val, coal_cap->num_cmpl_dma_aggr_max); 8286 req->num_cmpl_dma_aggr = cpu_to_le16(val); 8287 8288 val = clamp_t(u16, hw_coal->coal_bufs_irq, 1, 8289 coal_cap->num_cmpl_dma_aggr_during_int_max); 8290 req->num_cmpl_dma_aggr_during_int = cpu_to_le16(val); 8291 8292 tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks); 8293 tmr = clamp_t(u16, tmr, 1, coal_cap->int_lat_tmr_max_max); 8294 req->int_lat_tmr_max = cpu_to_le16(tmr); 8295 8296 /* min timer set to 1/2 of interrupt timer */ 8297 if (cmpl_params & RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_INT_LAT_TMR_MIN) { 8298 val = tmr / 2; 8299 val = clamp_t(u16, val, 1, coal_cap->int_lat_tmr_min_max); 8300 req->int_lat_tmr_min = cpu_to_le16(val); 8301 req->enables |= cpu_to_le16(BNXT_COAL_CMPL_MIN_TMR_ENABLE); 8302 } 8303 8304 /* buf timer set to 1/4 of interrupt timer */ 8305 val = clamp_t(u16, tmr / 4, 1, coal_cap->cmpl_aggr_dma_tmr_max); 8306 req->cmpl_aggr_dma_tmr = cpu_to_le16(val); 8307 8308 if (cmpl_params & 8309 RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_NUM_CMPL_DMA_AGGR_DURING_INT) { 8310 tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks_irq); 8311 val = clamp_t(u16, tmr, 1, 8312 coal_cap->cmpl_aggr_dma_tmr_during_int_max); 8313 req->cmpl_aggr_dma_tmr_during_int = cpu_to_le16(val); 8314 req->enables |= 8315 cpu_to_le16(BNXT_COAL_CMPL_AGGR_TMR_DURING_INT_ENABLE); 8316 } 8317 8318 if ((cmpl_params & RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_RING_IDLE) && 8319 hw_coal->idle_thresh && hw_coal->coal_ticks < hw_coal->idle_thresh) 8320 flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_RING_IDLE; 8321 req->flags = cpu_to_le16(flags); 8322 req->enables |= cpu_to_le16(BNXT_COAL_CMPL_ENABLES); 8323 } 8324 8325 static int __bnxt_hwrm_set_coal_nq(struct bnxt *bp, struct bnxt_napi *bnapi, 8326 struct bnxt_coal *hw_coal) 8327 { 8328 struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req; 8329 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 8330 struct bnxt_coal_cap *coal_cap = &bp->coal_cap; 8331 u32 nq_params = coal_cap->nq_params; 8332 u16 tmr; 8333 int rc; 8334 8335 if (!(nq_params & RING_AGGINT_QCAPS_RESP_NQ_PARAMS_INT_LAT_TMR_MIN)) 8336 return 0; 8337 8338 rc = hwrm_req_init(bp, req, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS); 8339 if (rc) 8340 return rc; 8341 8342 req->ring_id = cpu_to_le16(cpr->cp_ring_struct.fw_ring_id); 8343 req->flags = 8344 cpu_to_le16(RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_IS_NQ); 8345 8346 tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks) / 2; 8347 tmr = clamp_t(u16, tmr, 1, coal_cap->int_lat_tmr_min_max); 8348 req->int_lat_tmr_min = cpu_to_le16(tmr); 8349 req->enables |= cpu_to_le16(BNXT_COAL_CMPL_MIN_TMR_ENABLE); 8350 return hwrm_req_send(bp, req); 8351 } 8352 8353 int bnxt_hwrm_set_ring_coal(struct bnxt *bp, struct bnxt_napi *bnapi) 8354 { 8355 struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req_rx; 8356 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 8357 struct bnxt_coal coal; 8358 int rc; 8359 8360 /* Tick values in micro seconds. 8361 * 1 coal_buf x bufs_per_record = 1 completion record. 8362 */ 8363 memcpy(&coal, &bp->rx_coal, sizeof(struct bnxt_coal)); 8364 8365 coal.coal_ticks = cpr->rx_ring_coal.coal_ticks; 8366 coal.coal_bufs = cpr->rx_ring_coal.coal_bufs; 8367 8368 if (!bnapi->rx_ring) 8369 return -ENODEV; 8370 8371 rc = hwrm_req_init(bp, req_rx, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS); 8372 if (rc) 8373 return rc; 8374 8375 bnxt_hwrm_set_coal_params(bp, &coal, req_rx); 8376 8377 req_rx->ring_id = cpu_to_le16(bnxt_cp_ring_for_rx(bp, bnapi->rx_ring)); 8378 8379 return hwrm_req_send(bp, req_rx); 8380 } 8381 8382 static int 8383 bnxt_hwrm_set_rx_coal(struct bnxt *bp, struct bnxt_napi *bnapi, 8384 struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req) 8385 { 8386 u16 ring_id = bnxt_cp_ring_for_rx(bp, bnapi->rx_ring); 8387 8388 req->ring_id = cpu_to_le16(ring_id); 8389 return hwrm_req_send(bp, req); 8390 } 8391 8392 static int 8393 bnxt_hwrm_set_tx_coal(struct bnxt *bp, struct bnxt_napi *bnapi, 8394 struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req) 8395 { 8396 struct bnxt_tx_ring_info *txr; 8397 int i, rc; 8398 8399 bnxt_for_each_napi_tx(i, bnapi, txr) { 8400 u16 ring_id; 8401 8402 ring_id = bnxt_cp_ring_for_tx(bp, txr); 8403 req->ring_id = cpu_to_le16(ring_id); 8404 rc = hwrm_req_send(bp, req); 8405 if (rc) 8406 return rc; 8407 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 8408 return 0; 8409 } 8410 return 0; 8411 } 8412 8413 int bnxt_hwrm_set_coal(struct bnxt *bp) 8414 { 8415 struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req_rx, *req_tx; 8416 int i, rc; 8417 8418 rc = hwrm_req_init(bp, req_rx, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS); 8419 if (rc) 8420 return rc; 8421 8422 rc = hwrm_req_init(bp, req_tx, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS); 8423 if (rc) { 8424 hwrm_req_drop(bp, req_rx); 8425 return rc; 8426 } 8427 8428 bnxt_hwrm_set_coal_params(bp, &bp->rx_coal, req_rx); 8429 bnxt_hwrm_set_coal_params(bp, &bp->tx_coal, req_tx); 8430 8431 hwrm_req_hold(bp, req_rx); 8432 hwrm_req_hold(bp, req_tx); 8433 for (i = 0; i < bp->cp_nr_rings; i++) { 8434 struct bnxt_napi *bnapi = bp->bnapi[i]; 8435 struct bnxt_coal *hw_coal; 8436 8437 if (!bnapi->rx_ring) 8438 rc = bnxt_hwrm_set_tx_coal(bp, bnapi, req_tx); 8439 else 8440 rc = bnxt_hwrm_set_rx_coal(bp, bnapi, req_rx); 8441 if (rc) 8442 break; 8443 8444 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 8445 continue; 8446 8447 if (bnapi->rx_ring && bnapi->tx_ring[0]) { 8448 rc = bnxt_hwrm_set_tx_coal(bp, bnapi, req_tx); 8449 if (rc) 8450 break; 8451 } 8452 if (bnapi->rx_ring) 8453 hw_coal = &bp->rx_coal; 8454 else 8455 hw_coal = &bp->tx_coal; 8456 __bnxt_hwrm_set_coal_nq(bp, bnapi, hw_coal); 8457 } 8458 hwrm_req_drop(bp, req_rx); 8459 hwrm_req_drop(bp, req_tx); 8460 return rc; 8461 } 8462 8463 static void bnxt_hwrm_stat_ctx_free(struct bnxt *bp) 8464 { 8465 struct hwrm_stat_ctx_clr_stats_input *req0 = NULL; 8466 struct hwrm_stat_ctx_free_input *req; 8467 int i; 8468 8469 if (!bp->bnapi) 8470 return; 8471 8472 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 8473 return; 8474 8475 if (hwrm_req_init(bp, req, HWRM_STAT_CTX_FREE)) 8476 return; 8477 if (BNXT_FW_MAJ(bp) <= 20) { 8478 if (hwrm_req_init(bp, req0, HWRM_STAT_CTX_CLR_STATS)) { 8479 hwrm_req_drop(bp, req); 8480 return; 8481 } 8482 hwrm_req_hold(bp, req0); 8483 } 8484 hwrm_req_hold(bp, req); 8485 for (i = 0; i < bp->cp_nr_rings; i++) { 8486 struct bnxt_napi *bnapi = bp->bnapi[i]; 8487 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 8488 8489 if (cpr->hw_stats_ctx_id != INVALID_STATS_CTX_ID) { 8490 req->stat_ctx_id = cpu_to_le32(cpr->hw_stats_ctx_id); 8491 if (req0) { 8492 req0->stat_ctx_id = req->stat_ctx_id; 8493 hwrm_req_send(bp, req0); 8494 } 8495 hwrm_req_send(bp, req); 8496 8497 cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID; 8498 } 8499 } 8500 hwrm_req_drop(bp, req); 8501 if (req0) 8502 hwrm_req_drop(bp, req0); 8503 } 8504 8505 static int bnxt_hwrm_stat_ctx_alloc(struct bnxt *bp) 8506 { 8507 struct hwrm_stat_ctx_alloc_output *resp; 8508 struct hwrm_stat_ctx_alloc_input *req; 8509 int rc, i; 8510 8511 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 8512 return 0; 8513 8514 rc = hwrm_req_init(bp, req, HWRM_STAT_CTX_ALLOC); 8515 if (rc) 8516 return rc; 8517 8518 req->stats_dma_length = cpu_to_le16(bp->hw_ring_stats_size); 8519 req->update_period_ms = cpu_to_le32(bp->stats_coal_ticks / 1000); 8520 8521 resp = hwrm_req_hold(bp, req); 8522 for (i = 0; i < bp->cp_nr_rings; i++) { 8523 struct bnxt_napi *bnapi = bp->bnapi[i]; 8524 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 8525 8526 req->stats_dma_addr = cpu_to_le64(cpr->stats.hw_stats_map); 8527 8528 rc = hwrm_req_send(bp, req); 8529 if (rc) 8530 break; 8531 8532 cpr->hw_stats_ctx_id = le32_to_cpu(resp->stat_ctx_id); 8533 8534 bp->grp_info[i].fw_stats_ctx = cpr->hw_stats_ctx_id; 8535 } 8536 hwrm_req_drop(bp, req); 8537 return rc; 8538 } 8539 8540 static int bnxt_hwrm_func_qcfg(struct bnxt *bp) 8541 { 8542 struct hwrm_func_qcfg_output *resp; 8543 struct hwrm_func_qcfg_input *req; 8544 u16 flags; 8545 int rc; 8546 8547 rc = hwrm_req_init(bp, req, HWRM_FUNC_QCFG); 8548 if (rc) 8549 return rc; 8550 8551 req->fid = cpu_to_le16(0xffff); 8552 resp = hwrm_req_hold(bp, req); 8553 rc = hwrm_req_send(bp, req); 8554 if (rc) 8555 goto func_qcfg_exit; 8556 8557 flags = le16_to_cpu(resp->flags); 8558 #ifdef CONFIG_BNXT_SRIOV 8559 if (BNXT_VF(bp)) { 8560 struct bnxt_vf_info *vf = &bp->vf; 8561 8562 vf->vlan = le16_to_cpu(resp->vlan) & VLAN_VID_MASK; 8563 if (flags & FUNC_QCFG_RESP_FLAGS_TRUSTED_VF) 8564 vf->flags |= BNXT_VF_TRUST; 8565 else 8566 vf->flags &= ~BNXT_VF_TRUST; 8567 } else { 8568 bp->pf.registered_vfs = le16_to_cpu(resp->registered_vfs); 8569 } 8570 #endif 8571 if (flags & (FUNC_QCFG_RESP_FLAGS_FW_DCBX_AGENT_ENABLED | 8572 FUNC_QCFG_RESP_FLAGS_FW_LLDP_AGENT_ENABLED)) { 8573 bp->fw_cap |= BNXT_FW_CAP_LLDP_AGENT; 8574 if (flags & FUNC_QCFG_RESP_FLAGS_FW_DCBX_AGENT_ENABLED) 8575 bp->fw_cap |= BNXT_FW_CAP_DCBX_AGENT; 8576 } 8577 if (BNXT_PF(bp) && (flags & FUNC_QCFG_RESP_FLAGS_MULTI_HOST)) 8578 bp->flags |= BNXT_FLAG_MULTI_HOST; 8579 8580 if (flags & FUNC_QCFG_RESP_FLAGS_RING_MONITOR_ENABLED) 8581 bp->fw_cap |= BNXT_FW_CAP_RING_MONITOR; 8582 8583 if (flags & FUNC_QCFG_RESP_FLAGS_ENABLE_RDMA_SRIOV) 8584 bp->fw_cap |= BNXT_FW_CAP_ENABLE_RDMA_SRIOV; 8585 if (resp->roce_bidi_opt_mode & 8586 FUNC_QCFG_RESP_ROCE_BIDI_OPT_MODE_DEDICATED) 8587 bp->cos0_cos1_shared = 1; 8588 else 8589 bp->cos0_cos1_shared = 0; 8590 8591 switch (resp->port_partition_type) { 8592 case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_0: 8593 case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_2: 8594 case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_5: 8595 case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR2_0: 8596 bp->port_partition_type = resp->port_partition_type; 8597 break; 8598 } 8599 if (bp->hwrm_spec_code < 0x10707 || 8600 resp->evb_mode == FUNC_QCFG_RESP_EVB_MODE_VEB) 8601 bp->br_mode = BRIDGE_MODE_VEB; 8602 else if (resp->evb_mode == FUNC_QCFG_RESP_EVB_MODE_VEPA) 8603 bp->br_mode = BRIDGE_MODE_VEPA; 8604 else 8605 bp->br_mode = BRIDGE_MODE_UNDEF; 8606 8607 bp->max_mtu = le16_to_cpu(resp->max_mtu_configured); 8608 if (!bp->max_mtu) 8609 bp->max_mtu = BNXT_MAX_MTU; 8610 8611 if (bp->db_size) 8612 goto func_qcfg_exit; 8613 8614 bp->db_offset = le16_to_cpu(resp->legacy_l2_db_size_kb) * 1024; 8615 if (BNXT_CHIP_P5(bp)) { 8616 if (BNXT_PF(bp)) 8617 bp->db_offset = DB_PF_OFFSET_P5; 8618 else 8619 bp->db_offset = DB_VF_OFFSET_P5; 8620 } 8621 bp->db_size = PAGE_ALIGN(le16_to_cpu(resp->l2_doorbell_bar_size_kb) * 8622 1024); 8623 if (!bp->db_size || bp->db_size > pci_resource_len(bp->pdev, 2) || 8624 bp->db_size <= bp->db_offset) 8625 bp->db_size = pci_resource_len(bp->pdev, 2); 8626 8627 func_qcfg_exit: 8628 hwrm_req_drop(bp, req); 8629 return rc; 8630 } 8631 8632 static void bnxt_init_ctx_initializer(struct bnxt_ctx_mem_type *ctxm, 8633 u8 init_val, u8 init_offset, 8634 bool init_mask_set) 8635 { 8636 ctxm->init_value = init_val; 8637 ctxm->init_offset = BNXT_CTX_INIT_INVALID_OFFSET; 8638 if (init_mask_set) 8639 ctxm->init_offset = init_offset * 4; 8640 else 8641 ctxm->init_value = 0; 8642 } 8643 8644 static int bnxt_alloc_all_ctx_pg_info(struct bnxt *bp, int ctx_max) 8645 { 8646 struct bnxt_ctx_mem_info *ctx = bp->ctx; 8647 u16 type; 8648 8649 for (type = 0; type < ctx_max; type++) { 8650 struct bnxt_ctx_mem_type *ctxm = &ctx->ctx_arr[type]; 8651 int n = 1; 8652 8653 if (!ctxm->max_entries || ctxm->pg_info) 8654 continue; 8655 8656 if (ctxm->instance_bmap) 8657 n = hweight32(ctxm->instance_bmap); 8658 ctxm->pg_info = kcalloc(n, sizeof(*ctxm->pg_info), GFP_KERNEL); 8659 if (!ctxm->pg_info) 8660 return -ENOMEM; 8661 } 8662 return 0; 8663 } 8664 8665 static void bnxt_free_one_ctx_mem(struct bnxt *bp, 8666 struct bnxt_ctx_mem_type *ctxm, bool force); 8667 8668 #define BNXT_CTX_INIT_VALID(flags) \ 8669 (!!((flags) & \ 8670 FUNC_BACKING_STORE_QCAPS_V2_RESP_FLAGS_ENABLE_CTX_KIND_INIT)) 8671 8672 static int bnxt_hwrm_func_backing_store_qcaps_v2(struct bnxt *bp) 8673 { 8674 struct hwrm_func_backing_store_qcaps_v2_output *resp; 8675 struct hwrm_func_backing_store_qcaps_v2_input *req; 8676 struct bnxt_ctx_mem_info *ctx = bp->ctx; 8677 u16 type; 8678 int rc; 8679 8680 rc = hwrm_req_init(bp, req, HWRM_FUNC_BACKING_STORE_QCAPS_V2); 8681 if (rc) 8682 return rc; 8683 8684 if (!ctx) { 8685 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 8686 if (!ctx) 8687 return -ENOMEM; 8688 bp->ctx = ctx; 8689 } 8690 8691 resp = hwrm_req_hold(bp, req); 8692 8693 for (type = 0; type < BNXT_CTX_V2_MAX; ) { 8694 struct bnxt_ctx_mem_type *ctxm = &ctx->ctx_arr[type]; 8695 u8 init_val, init_off, i; 8696 u32 max_entries; 8697 u16 entry_size; 8698 __le32 *p; 8699 u32 flags; 8700 8701 req->type = cpu_to_le16(type); 8702 rc = hwrm_req_send(bp, req); 8703 if (rc) 8704 goto ctx_done; 8705 flags = le32_to_cpu(resp->flags); 8706 type = le16_to_cpu(resp->next_valid_type); 8707 if (!(flags & BNXT_CTX_MEM_TYPE_VALID)) { 8708 bnxt_free_one_ctx_mem(bp, ctxm, true); 8709 continue; 8710 } 8711 entry_size = le16_to_cpu(resp->entry_size); 8712 max_entries = le32_to_cpu(resp->max_num_entries); 8713 if (ctxm->mem_valid) { 8714 if (!(flags & BNXT_CTX_MEM_PERSIST) || 8715 ctxm->entry_size != entry_size || 8716 ctxm->max_entries != max_entries) 8717 bnxt_free_one_ctx_mem(bp, ctxm, true); 8718 else 8719 continue; 8720 } 8721 ctxm->type = le16_to_cpu(resp->type); 8722 ctxm->entry_size = entry_size; 8723 ctxm->flags = flags; 8724 ctxm->instance_bmap = le32_to_cpu(resp->instance_bit_map); 8725 ctxm->entry_multiple = resp->entry_multiple; 8726 ctxm->max_entries = max_entries; 8727 ctxm->min_entries = le32_to_cpu(resp->min_num_entries); 8728 init_val = resp->ctx_init_value; 8729 init_off = resp->ctx_init_offset; 8730 bnxt_init_ctx_initializer(ctxm, init_val, init_off, 8731 BNXT_CTX_INIT_VALID(flags)); 8732 ctxm->split_entry_cnt = min_t(u8, resp->subtype_valid_cnt, 8733 BNXT_MAX_SPLIT_ENTRY); 8734 for (i = 0, p = &resp->split_entry_0; i < ctxm->split_entry_cnt; 8735 i++, p++) 8736 ctxm->split[i] = le32_to_cpu(*p); 8737 } 8738 rc = bnxt_alloc_all_ctx_pg_info(bp, BNXT_CTX_V2_MAX); 8739 8740 ctx_done: 8741 hwrm_req_drop(bp, req); 8742 return rc; 8743 } 8744 8745 static int bnxt_hwrm_func_backing_store_qcaps(struct bnxt *bp) 8746 { 8747 struct hwrm_func_backing_store_qcaps_output *resp; 8748 struct hwrm_func_backing_store_qcaps_input *req; 8749 int rc; 8750 8751 if (bp->hwrm_spec_code < 0x10902 || BNXT_VF(bp) || 8752 (bp->ctx && bp->ctx->flags & BNXT_CTX_FLAG_INITED)) 8753 return 0; 8754 8755 if (bp->fw_cap & BNXT_FW_CAP_BACKING_STORE_V2) 8756 return bnxt_hwrm_func_backing_store_qcaps_v2(bp); 8757 8758 rc = hwrm_req_init(bp, req, HWRM_FUNC_BACKING_STORE_QCAPS); 8759 if (rc) 8760 return rc; 8761 8762 resp = hwrm_req_hold(bp, req); 8763 rc = hwrm_req_send_silent(bp, req); 8764 if (!rc) { 8765 struct bnxt_ctx_mem_type *ctxm; 8766 struct bnxt_ctx_mem_info *ctx; 8767 u8 init_val, init_idx = 0; 8768 u16 init_mask; 8769 8770 ctx = bp->ctx; 8771 if (!ctx) { 8772 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 8773 if (!ctx) { 8774 rc = -ENOMEM; 8775 goto ctx_err; 8776 } 8777 bp->ctx = ctx; 8778 } 8779 init_val = resp->ctx_kind_initializer; 8780 init_mask = le16_to_cpu(resp->ctx_init_mask); 8781 8782 ctxm = &ctx->ctx_arr[BNXT_CTX_QP]; 8783 ctxm->max_entries = le32_to_cpu(resp->qp_max_entries); 8784 ctxm->qp_qp1_entries = le16_to_cpu(resp->qp_min_qp1_entries); 8785 ctxm->qp_l2_entries = le16_to_cpu(resp->qp_max_l2_entries); 8786 ctxm->qp_fast_qpmd_entries = le16_to_cpu(resp->fast_qpmd_qp_num_entries); 8787 ctxm->entry_size = le16_to_cpu(resp->qp_entry_size); 8788 bnxt_init_ctx_initializer(ctxm, init_val, resp->qp_init_offset, 8789 (init_mask & (1 << init_idx++)) != 0); 8790 8791 ctxm = &ctx->ctx_arr[BNXT_CTX_SRQ]; 8792 ctxm->srq_l2_entries = le16_to_cpu(resp->srq_max_l2_entries); 8793 ctxm->max_entries = le32_to_cpu(resp->srq_max_entries); 8794 ctxm->entry_size = le16_to_cpu(resp->srq_entry_size); 8795 bnxt_init_ctx_initializer(ctxm, init_val, resp->srq_init_offset, 8796 (init_mask & (1 << init_idx++)) != 0); 8797 8798 ctxm = &ctx->ctx_arr[BNXT_CTX_CQ]; 8799 ctxm->cq_l2_entries = le16_to_cpu(resp->cq_max_l2_entries); 8800 ctxm->max_entries = le32_to_cpu(resp->cq_max_entries); 8801 ctxm->entry_size = le16_to_cpu(resp->cq_entry_size); 8802 bnxt_init_ctx_initializer(ctxm, init_val, resp->cq_init_offset, 8803 (init_mask & (1 << init_idx++)) != 0); 8804 8805 ctxm = &ctx->ctx_arr[BNXT_CTX_VNIC]; 8806 ctxm->vnic_entries = le16_to_cpu(resp->vnic_max_vnic_entries); 8807 ctxm->max_entries = ctxm->vnic_entries + 8808 le16_to_cpu(resp->vnic_max_ring_table_entries); 8809 ctxm->entry_size = le16_to_cpu(resp->vnic_entry_size); 8810 bnxt_init_ctx_initializer(ctxm, init_val, 8811 resp->vnic_init_offset, 8812 (init_mask & (1 << init_idx++)) != 0); 8813 8814 ctxm = &ctx->ctx_arr[BNXT_CTX_STAT]; 8815 ctxm->max_entries = le32_to_cpu(resp->stat_max_entries); 8816 ctxm->entry_size = le16_to_cpu(resp->stat_entry_size); 8817 bnxt_init_ctx_initializer(ctxm, init_val, 8818 resp->stat_init_offset, 8819 (init_mask & (1 << init_idx++)) != 0); 8820 8821 ctxm = &ctx->ctx_arr[BNXT_CTX_STQM]; 8822 ctxm->entry_size = le16_to_cpu(resp->tqm_entry_size); 8823 ctxm->min_entries = le32_to_cpu(resp->tqm_min_entries_per_ring); 8824 ctxm->max_entries = le32_to_cpu(resp->tqm_max_entries_per_ring); 8825 ctxm->entry_multiple = resp->tqm_entries_multiple; 8826 if (!ctxm->entry_multiple) 8827 ctxm->entry_multiple = 1; 8828 8829 memcpy(&ctx->ctx_arr[BNXT_CTX_FTQM], ctxm, sizeof(*ctxm)); 8830 8831 ctxm = &ctx->ctx_arr[BNXT_CTX_MRAV]; 8832 ctxm->max_entries = le32_to_cpu(resp->mrav_max_entries); 8833 ctxm->entry_size = le16_to_cpu(resp->mrav_entry_size); 8834 ctxm->mrav_num_entries_units = 8835 le16_to_cpu(resp->mrav_num_entries_units); 8836 bnxt_init_ctx_initializer(ctxm, init_val, 8837 resp->mrav_init_offset, 8838 (init_mask & (1 << init_idx++)) != 0); 8839 8840 ctxm = &ctx->ctx_arr[BNXT_CTX_TIM]; 8841 ctxm->entry_size = le16_to_cpu(resp->tim_entry_size); 8842 ctxm->max_entries = le32_to_cpu(resp->tim_max_entries); 8843 8844 ctx->tqm_fp_rings_count = resp->tqm_fp_rings_count; 8845 if (!ctx->tqm_fp_rings_count) 8846 ctx->tqm_fp_rings_count = bp->max_q; 8847 else if (ctx->tqm_fp_rings_count > BNXT_MAX_TQM_FP_RINGS) 8848 ctx->tqm_fp_rings_count = BNXT_MAX_TQM_FP_RINGS; 8849 8850 ctxm = &ctx->ctx_arr[BNXT_CTX_FTQM]; 8851 memcpy(ctxm, &ctx->ctx_arr[BNXT_CTX_STQM], sizeof(*ctxm)); 8852 ctxm->instance_bmap = (1 << ctx->tqm_fp_rings_count) - 1; 8853 8854 rc = bnxt_alloc_all_ctx_pg_info(bp, BNXT_CTX_MAX); 8855 } else { 8856 rc = 0; 8857 } 8858 ctx_err: 8859 hwrm_req_drop(bp, req); 8860 return rc; 8861 } 8862 8863 static void bnxt_hwrm_set_pg_attr(struct bnxt_ring_mem_info *rmem, u8 *pg_attr, 8864 __le64 *pg_dir) 8865 { 8866 if (!rmem->nr_pages) 8867 return; 8868 8869 BNXT_SET_CTX_PAGE_ATTR(*pg_attr); 8870 if (rmem->depth >= 1) { 8871 if (rmem->depth == 2) 8872 *pg_attr |= 2; 8873 else 8874 *pg_attr |= 1; 8875 *pg_dir = cpu_to_le64(rmem->pg_tbl_map); 8876 } else { 8877 *pg_dir = cpu_to_le64(rmem->dma_arr[0]); 8878 } 8879 } 8880 8881 #define FUNC_BACKING_STORE_CFG_REQ_DFLT_ENABLES \ 8882 (FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP | \ 8883 FUNC_BACKING_STORE_CFG_REQ_ENABLES_SRQ | \ 8884 FUNC_BACKING_STORE_CFG_REQ_ENABLES_CQ | \ 8885 FUNC_BACKING_STORE_CFG_REQ_ENABLES_VNIC | \ 8886 FUNC_BACKING_STORE_CFG_REQ_ENABLES_STAT) 8887 8888 static int bnxt_hwrm_func_backing_store_cfg(struct bnxt *bp, u32 enables) 8889 { 8890 struct hwrm_func_backing_store_cfg_input *req; 8891 struct bnxt_ctx_mem_info *ctx = bp->ctx; 8892 struct bnxt_ctx_pg_info *ctx_pg; 8893 struct bnxt_ctx_mem_type *ctxm; 8894 void **__req = (void **)&req; 8895 u32 req_len = sizeof(*req); 8896 __le32 *num_entries; 8897 __le64 *pg_dir; 8898 u32 flags = 0; 8899 u8 *pg_attr; 8900 u32 ena; 8901 int rc; 8902 int i; 8903 8904 if (!ctx) 8905 return 0; 8906 8907 if (req_len > bp->hwrm_max_ext_req_len) 8908 req_len = BNXT_BACKING_STORE_CFG_LEGACY_LEN; 8909 rc = __hwrm_req_init(bp, __req, HWRM_FUNC_BACKING_STORE_CFG, req_len); 8910 if (rc) 8911 return rc; 8912 8913 req->enables = cpu_to_le32(enables); 8914 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP) { 8915 ctxm = &ctx->ctx_arr[BNXT_CTX_QP]; 8916 ctx_pg = ctxm->pg_info; 8917 req->qp_num_entries = cpu_to_le32(ctx_pg->entries); 8918 req->qp_num_qp1_entries = cpu_to_le16(ctxm->qp_qp1_entries); 8919 req->qp_num_l2_entries = cpu_to_le16(ctxm->qp_l2_entries); 8920 req->qp_entry_size = cpu_to_le16(ctxm->entry_size); 8921 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 8922 &req->qpc_pg_size_qpc_lvl, 8923 &req->qpc_page_dir); 8924 8925 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP_FAST_QPMD) 8926 req->qp_num_fast_qpmd_entries = cpu_to_le16(ctxm->qp_fast_qpmd_entries); 8927 } 8928 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_SRQ) { 8929 ctxm = &ctx->ctx_arr[BNXT_CTX_SRQ]; 8930 ctx_pg = ctxm->pg_info; 8931 req->srq_num_entries = cpu_to_le32(ctx_pg->entries); 8932 req->srq_num_l2_entries = cpu_to_le16(ctxm->srq_l2_entries); 8933 req->srq_entry_size = cpu_to_le16(ctxm->entry_size); 8934 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 8935 &req->srq_pg_size_srq_lvl, 8936 &req->srq_page_dir); 8937 } 8938 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_CQ) { 8939 ctxm = &ctx->ctx_arr[BNXT_CTX_CQ]; 8940 ctx_pg = ctxm->pg_info; 8941 req->cq_num_entries = cpu_to_le32(ctx_pg->entries); 8942 req->cq_num_l2_entries = cpu_to_le16(ctxm->cq_l2_entries); 8943 req->cq_entry_size = cpu_to_le16(ctxm->entry_size); 8944 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 8945 &req->cq_pg_size_cq_lvl, 8946 &req->cq_page_dir); 8947 } 8948 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_VNIC) { 8949 ctxm = &ctx->ctx_arr[BNXT_CTX_VNIC]; 8950 ctx_pg = ctxm->pg_info; 8951 req->vnic_num_vnic_entries = cpu_to_le16(ctxm->vnic_entries); 8952 req->vnic_num_ring_table_entries = 8953 cpu_to_le16(ctxm->max_entries - ctxm->vnic_entries); 8954 req->vnic_entry_size = cpu_to_le16(ctxm->entry_size); 8955 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 8956 &req->vnic_pg_size_vnic_lvl, 8957 &req->vnic_page_dir); 8958 } 8959 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_STAT) { 8960 ctxm = &ctx->ctx_arr[BNXT_CTX_STAT]; 8961 ctx_pg = ctxm->pg_info; 8962 req->stat_num_entries = cpu_to_le32(ctxm->max_entries); 8963 req->stat_entry_size = cpu_to_le16(ctxm->entry_size); 8964 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 8965 &req->stat_pg_size_stat_lvl, 8966 &req->stat_page_dir); 8967 } 8968 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_MRAV) { 8969 u32 units; 8970 8971 ctxm = &ctx->ctx_arr[BNXT_CTX_MRAV]; 8972 ctx_pg = ctxm->pg_info; 8973 req->mrav_num_entries = cpu_to_le32(ctx_pg->entries); 8974 units = ctxm->mrav_num_entries_units; 8975 if (units) { 8976 u32 num_mr, num_ah = ctxm->mrav_av_entries; 8977 u32 entries; 8978 8979 num_mr = ctx_pg->entries - num_ah; 8980 entries = ((num_mr / units) << 16) | (num_ah / units); 8981 req->mrav_num_entries = cpu_to_le32(entries); 8982 flags |= FUNC_BACKING_STORE_CFG_REQ_FLAGS_MRAV_RESERVATION_SPLIT; 8983 } 8984 req->mrav_entry_size = cpu_to_le16(ctxm->entry_size); 8985 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 8986 &req->mrav_pg_size_mrav_lvl, 8987 &req->mrav_page_dir); 8988 } 8989 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_TIM) { 8990 ctxm = &ctx->ctx_arr[BNXT_CTX_TIM]; 8991 ctx_pg = ctxm->pg_info; 8992 req->tim_num_entries = cpu_to_le32(ctx_pg->entries); 8993 req->tim_entry_size = cpu_to_le16(ctxm->entry_size); 8994 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 8995 &req->tim_pg_size_tim_lvl, 8996 &req->tim_page_dir); 8997 } 8998 ctxm = &ctx->ctx_arr[BNXT_CTX_STQM]; 8999 for (i = 0, num_entries = &req->tqm_sp_num_entries, 9000 pg_attr = &req->tqm_sp_pg_size_tqm_sp_lvl, 9001 pg_dir = &req->tqm_sp_page_dir, 9002 ena = FUNC_BACKING_STORE_CFG_REQ_ENABLES_TQM_SP, 9003 ctx_pg = ctxm->pg_info; 9004 i < BNXT_MAX_TQM_RINGS; 9005 ctx_pg = &ctx->ctx_arr[BNXT_CTX_FTQM].pg_info[i], 9006 i++, num_entries++, pg_attr++, pg_dir++, ena <<= 1) { 9007 if (!(enables & ena)) 9008 continue; 9009 9010 req->tqm_entry_size = cpu_to_le16(ctxm->entry_size); 9011 *num_entries = cpu_to_le32(ctx_pg->entries); 9012 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, pg_attr, pg_dir); 9013 } 9014 req->flags = cpu_to_le32(flags); 9015 return hwrm_req_send(bp, req); 9016 } 9017 9018 static int bnxt_alloc_ctx_mem_blk(struct bnxt *bp, 9019 struct bnxt_ctx_pg_info *ctx_pg) 9020 { 9021 struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem; 9022 9023 rmem->page_size = BNXT_PAGE_SIZE; 9024 rmem->pg_arr = ctx_pg->ctx_pg_arr; 9025 rmem->dma_arr = ctx_pg->ctx_dma_arr; 9026 rmem->flags = BNXT_RMEM_VALID_PTE_FLAG; 9027 if (rmem->depth >= 1) 9028 rmem->flags |= BNXT_RMEM_USE_FULL_PAGE_FLAG; 9029 return bnxt_alloc_ring(bp, rmem); 9030 } 9031 9032 static int bnxt_alloc_ctx_pg_tbls(struct bnxt *bp, 9033 struct bnxt_ctx_pg_info *ctx_pg, u32 mem_size, 9034 u8 depth, struct bnxt_ctx_mem_type *ctxm) 9035 { 9036 struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem; 9037 int rc; 9038 9039 if (!mem_size) 9040 return -EINVAL; 9041 9042 ctx_pg->nr_pages = DIV_ROUND_UP(mem_size, BNXT_PAGE_SIZE); 9043 if (ctx_pg->nr_pages > MAX_CTX_TOTAL_PAGES) { 9044 ctx_pg->nr_pages = 0; 9045 return -EINVAL; 9046 } 9047 if (ctx_pg->nr_pages > MAX_CTX_PAGES || depth > 1) { 9048 int nr_tbls, i; 9049 9050 rmem->depth = 2; 9051 ctx_pg->ctx_pg_tbl = kcalloc(MAX_CTX_PAGES, sizeof(ctx_pg), 9052 GFP_KERNEL); 9053 if (!ctx_pg->ctx_pg_tbl) 9054 return -ENOMEM; 9055 nr_tbls = DIV_ROUND_UP(ctx_pg->nr_pages, MAX_CTX_PAGES); 9056 rmem->nr_pages = nr_tbls; 9057 rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg); 9058 if (rc) 9059 return rc; 9060 for (i = 0; i < nr_tbls; i++) { 9061 struct bnxt_ctx_pg_info *pg_tbl; 9062 9063 pg_tbl = kzalloc(sizeof(*pg_tbl), GFP_KERNEL); 9064 if (!pg_tbl) 9065 return -ENOMEM; 9066 ctx_pg->ctx_pg_tbl[i] = pg_tbl; 9067 rmem = &pg_tbl->ring_mem; 9068 rmem->pg_tbl = ctx_pg->ctx_pg_arr[i]; 9069 rmem->pg_tbl_map = ctx_pg->ctx_dma_arr[i]; 9070 rmem->depth = 1; 9071 rmem->nr_pages = MAX_CTX_PAGES; 9072 rmem->ctx_mem = ctxm; 9073 if (i == (nr_tbls - 1)) { 9074 int rem = ctx_pg->nr_pages % MAX_CTX_PAGES; 9075 9076 if (rem) 9077 rmem->nr_pages = rem; 9078 } 9079 rc = bnxt_alloc_ctx_mem_blk(bp, pg_tbl); 9080 if (rc) 9081 break; 9082 } 9083 } else { 9084 rmem->nr_pages = DIV_ROUND_UP(mem_size, BNXT_PAGE_SIZE); 9085 if (rmem->nr_pages > 1 || depth) 9086 rmem->depth = 1; 9087 rmem->ctx_mem = ctxm; 9088 rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg); 9089 } 9090 return rc; 9091 } 9092 9093 static size_t bnxt_copy_ctx_pg_tbls(struct bnxt *bp, 9094 struct bnxt_ctx_pg_info *ctx_pg, 9095 void *buf, size_t offset, size_t head, 9096 size_t tail) 9097 { 9098 struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem; 9099 size_t nr_pages = ctx_pg->nr_pages; 9100 int page_size = rmem->page_size; 9101 size_t len = 0, total_len = 0; 9102 u16 depth = rmem->depth; 9103 9104 tail %= nr_pages * page_size; 9105 do { 9106 if (depth > 1) { 9107 int i = head / (page_size * MAX_CTX_PAGES); 9108 struct bnxt_ctx_pg_info *pg_tbl; 9109 9110 pg_tbl = ctx_pg->ctx_pg_tbl[i]; 9111 rmem = &pg_tbl->ring_mem; 9112 } 9113 len = __bnxt_copy_ring(bp, rmem, buf, offset, head, tail); 9114 head += len; 9115 offset += len; 9116 total_len += len; 9117 if (head >= nr_pages * page_size) 9118 head = 0; 9119 } while (head != tail); 9120 return total_len; 9121 } 9122 9123 static void bnxt_free_ctx_pg_tbls(struct bnxt *bp, 9124 struct bnxt_ctx_pg_info *ctx_pg) 9125 { 9126 struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem; 9127 9128 if (rmem->depth > 1 || ctx_pg->nr_pages > MAX_CTX_PAGES || 9129 ctx_pg->ctx_pg_tbl) { 9130 int i, nr_tbls = rmem->nr_pages; 9131 9132 for (i = 0; i < nr_tbls; i++) { 9133 struct bnxt_ctx_pg_info *pg_tbl; 9134 struct bnxt_ring_mem_info *rmem2; 9135 9136 pg_tbl = ctx_pg->ctx_pg_tbl[i]; 9137 if (!pg_tbl) 9138 continue; 9139 rmem2 = &pg_tbl->ring_mem; 9140 bnxt_free_ring(bp, rmem2); 9141 ctx_pg->ctx_pg_arr[i] = NULL; 9142 kfree(pg_tbl); 9143 ctx_pg->ctx_pg_tbl[i] = NULL; 9144 } 9145 kfree(ctx_pg->ctx_pg_tbl); 9146 ctx_pg->ctx_pg_tbl = NULL; 9147 } 9148 bnxt_free_ring(bp, rmem); 9149 ctx_pg->nr_pages = 0; 9150 } 9151 9152 static int bnxt_setup_ctxm_pg_tbls(struct bnxt *bp, 9153 struct bnxt_ctx_mem_type *ctxm, u32 entries, 9154 u8 pg_lvl) 9155 { 9156 struct bnxt_ctx_pg_info *ctx_pg = ctxm->pg_info; 9157 int i, rc = 0, n = 1; 9158 u32 mem_size; 9159 9160 if (!ctxm->entry_size || !ctx_pg) 9161 return -EINVAL; 9162 if (ctxm->instance_bmap) 9163 n = hweight32(ctxm->instance_bmap); 9164 if (ctxm->entry_multiple) 9165 entries = roundup(entries, ctxm->entry_multiple); 9166 entries = clamp_t(u32, entries, ctxm->min_entries, ctxm->max_entries); 9167 mem_size = entries * ctxm->entry_size; 9168 for (i = 0; i < n && !rc; i++) { 9169 ctx_pg[i].entries = entries; 9170 rc = bnxt_alloc_ctx_pg_tbls(bp, &ctx_pg[i], mem_size, pg_lvl, 9171 ctxm->init_value ? ctxm : NULL); 9172 } 9173 if (!rc) 9174 ctxm->mem_valid = 1; 9175 return rc; 9176 } 9177 9178 static int bnxt_hwrm_func_backing_store_cfg_v2(struct bnxt *bp, 9179 struct bnxt_ctx_mem_type *ctxm, 9180 bool last) 9181 { 9182 struct hwrm_func_backing_store_cfg_v2_input *req; 9183 u32 instance_bmap = ctxm->instance_bmap; 9184 int i, j, rc = 0, n = 1; 9185 __le32 *p; 9186 9187 if (!(ctxm->flags & BNXT_CTX_MEM_TYPE_VALID) || !ctxm->pg_info) 9188 return 0; 9189 9190 if (instance_bmap) 9191 n = hweight32(ctxm->instance_bmap); 9192 else 9193 instance_bmap = 1; 9194 9195 rc = hwrm_req_init(bp, req, HWRM_FUNC_BACKING_STORE_CFG_V2); 9196 if (rc) 9197 return rc; 9198 hwrm_req_hold(bp, req); 9199 req->type = cpu_to_le16(ctxm->type); 9200 req->entry_size = cpu_to_le16(ctxm->entry_size); 9201 if ((ctxm->flags & BNXT_CTX_MEM_PERSIST) && 9202 bnxt_bs_trace_avail(bp, ctxm->type)) { 9203 struct bnxt_bs_trace_info *bs_trace; 9204 u32 enables; 9205 9206 enables = FUNC_BACKING_STORE_CFG_V2_REQ_ENABLES_NEXT_BS_OFFSET; 9207 req->enables = cpu_to_le32(enables); 9208 bs_trace = &bp->bs_trace[bnxt_bstore_to_trace[ctxm->type]]; 9209 req->next_bs_offset = cpu_to_le32(bs_trace->last_offset); 9210 } 9211 req->subtype_valid_cnt = ctxm->split_entry_cnt; 9212 for (i = 0, p = &req->split_entry_0; i < ctxm->split_entry_cnt; i++) 9213 p[i] = cpu_to_le32(ctxm->split[i]); 9214 for (i = 0, j = 0; j < n && !rc; i++) { 9215 struct bnxt_ctx_pg_info *ctx_pg; 9216 9217 if (!(instance_bmap & (1 << i))) 9218 continue; 9219 req->instance = cpu_to_le16(i); 9220 ctx_pg = &ctxm->pg_info[j++]; 9221 if (!ctx_pg->entries) 9222 continue; 9223 req->num_entries = cpu_to_le32(ctx_pg->entries); 9224 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 9225 &req->page_size_pbl_level, 9226 &req->page_dir); 9227 if (last && j == n) 9228 req->flags = 9229 cpu_to_le32(FUNC_BACKING_STORE_CFG_V2_REQ_FLAGS_BS_CFG_ALL_DONE); 9230 rc = hwrm_req_send(bp, req); 9231 } 9232 hwrm_req_drop(bp, req); 9233 return rc; 9234 } 9235 9236 static int bnxt_backing_store_cfg_v2(struct bnxt *bp) 9237 { 9238 struct bnxt_ctx_mem_info *ctx = bp->ctx; 9239 struct bnxt_ctx_mem_type *ctxm; 9240 u16 last_type = BNXT_CTX_INV; 9241 int rc = 0; 9242 u16 type; 9243 9244 for (type = BNXT_CTX_SRT; type <= BNXT_CTX_QPC; type++) { 9245 ctxm = &ctx->ctx_arr[type]; 9246 if (!bnxt_bs_trace_avail(bp, type)) 9247 continue; 9248 if (!ctxm->mem_valid) { 9249 rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, 9250 ctxm->max_entries, 1); 9251 if (rc) { 9252 netdev_warn(bp->dev, "Unable to setup ctx page for type:0x%x.\n", 9253 type); 9254 continue; 9255 } 9256 bnxt_bs_trace_init(bp, ctxm); 9257 } 9258 last_type = type; 9259 } 9260 9261 if (last_type == BNXT_CTX_INV) { 9262 for (type = 0; type < BNXT_CTX_MAX; type++) { 9263 ctxm = &ctx->ctx_arr[type]; 9264 if (ctxm->mem_valid) 9265 last_type = type; 9266 } 9267 if (last_type == BNXT_CTX_INV) 9268 return 0; 9269 } 9270 ctx->ctx_arr[last_type].last = 1; 9271 9272 for (type = 0 ; type < BNXT_CTX_V2_MAX; type++) { 9273 ctxm = &ctx->ctx_arr[type]; 9274 9275 if (!ctxm->mem_valid) 9276 continue; 9277 rc = bnxt_hwrm_func_backing_store_cfg_v2(bp, ctxm, ctxm->last); 9278 if (rc) 9279 return rc; 9280 } 9281 return 0; 9282 } 9283 9284 /** 9285 * __bnxt_copy_ctx_mem - copy host context memory 9286 * @bp: The driver context 9287 * @ctxm: The pointer to the context memory type 9288 * @buf: The destination buffer or NULL to just obtain the length 9289 * @offset: The buffer offset to copy the data to 9290 * @head: The head offset of context memory to copy from 9291 * @tail: The tail offset (last byte + 1) of context memory to end the copy 9292 * 9293 * This function is called for debugging purposes to dump the host context 9294 * used by the chip. 9295 * 9296 * Return: Length of memory copied 9297 */ 9298 static size_t __bnxt_copy_ctx_mem(struct bnxt *bp, 9299 struct bnxt_ctx_mem_type *ctxm, void *buf, 9300 size_t offset, size_t head, size_t tail) 9301 { 9302 struct bnxt_ctx_pg_info *ctx_pg = ctxm->pg_info; 9303 size_t len = 0, total_len = 0; 9304 int i, n = 1; 9305 9306 if (!ctx_pg) 9307 return 0; 9308 9309 if (ctxm->instance_bmap) 9310 n = hweight32(ctxm->instance_bmap); 9311 for (i = 0; i < n; i++) { 9312 len = bnxt_copy_ctx_pg_tbls(bp, &ctx_pg[i], buf, offset, head, 9313 tail); 9314 offset += len; 9315 total_len += len; 9316 } 9317 return total_len; 9318 } 9319 9320 size_t bnxt_copy_ctx_mem(struct bnxt *bp, struct bnxt_ctx_mem_type *ctxm, 9321 void *buf, size_t offset) 9322 { 9323 size_t tail = ctxm->max_entries * ctxm->entry_size; 9324 9325 return __bnxt_copy_ctx_mem(bp, ctxm, buf, offset, 0, tail); 9326 } 9327 9328 static void bnxt_free_one_ctx_mem(struct bnxt *bp, 9329 struct bnxt_ctx_mem_type *ctxm, bool force) 9330 { 9331 struct bnxt_ctx_pg_info *ctx_pg; 9332 int i, n = 1; 9333 9334 ctxm->last = 0; 9335 9336 if (ctxm->mem_valid && !force && (ctxm->flags & BNXT_CTX_MEM_PERSIST)) 9337 return; 9338 9339 ctx_pg = ctxm->pg_info; 9340 if (ctx_pg) { 9341 if (ctxm->instance_bmap) 9342 n = hweight32(ctxm->instance_bmap); 9343 for (i = 0; i < n; i++) 9344 bnxt_free_ctx_pg_tbls(bp, &ctx_pg[i]); 9345 9346 kfree(ctx_pg); 9347 ctxm->pg_info = NULL; 9348 ctxm->mem_valid = 0; 9349 } 9350 memset(ctxm, 0, sizeof(*ctxm)); 9351 } 9352 9353 void bnxt_free_ctx_mem(struct bnxt *bp, bool force) 9354 { 9355 struct bnxt_ctx_mem_info *ctx = bp->ctx; 9356 u16 type; 9357 9358 if (!ctx) 9359 return; 9360 9361 for (type = 0; type < BNXT_CTX_V2_MAX; type++) 9362 bnxt_free_one_ctx_mem(bp, &ctx->ctx_arr[type], force); 9363 9364 ctx->flags &= ~BNXT_CTX_FLAG_INITED; 9365 if (force) { 9366 kfree(ctx); 9367 bp->ctx = NULL; 9368 } 9369 } 9370 9371 static int bnxt_alloc_ctx_mem(struct bnxt *bp) 9372 { 9373 struct bnxt_ctx_mem_type *ctxm; 9374 struct bnxt_ctx_mem_info *ctx; 9375 u32 l2_qps, qp1_qps, max_qps; 9376 u32 ena, entries_sp, entries; 9377 u32 srqs, max_srqs, min; 9378 u32 num_mr, num_ah; 9379 u32 extra_srqs = 0; 9380 u32 extra_qps = 0; 9381 u32 fast_qpmd_qps; 9382 u8 pg_lvl = 1; 9383 int i, rc; 9384 9385 rc = bnxt_hwrm_func_backing_store_qcaps(bp); 9386 if (rc) { 9387 netdev_err(bp->dev, "Failed querying context mem capability, rc = %d.\n", 9388 rc); 9389 return rc; 9390 } 9391 ctx = bp->ctx; 9392 if (!ctx || (ctx->flags & BNXT_CTX_FLAG_INITED)) 9393 return 0; 9394 9395 ena = 0; 9396 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 9397 goto skip_legacy; 9398 9399 ctxm = &ctx->ctx_arr[BNXT_CTX_QP]; 9400 l2_qps = ctxm->qp_l2_entries; 9401 qp1_qps = ctxm->qp_qp1_entries; 9402 fast_qpmd_qps = ctxm->qp_fast_qpmd_entries; 9403 max_qps = ctxm->max_entries; 9404 ctxm = &ctx->ctx_arr[BNXT_CTX_SRQ]; 9405 srqs = ctxm->srq_l2_entries; 9406 max_srqs = ctxm->max_entries; 9407 if ((bp->flags & BNXT_FLAG_ROCE_CAP) && !is_kdump_kernel()) { 9408 pg_lvl = 2; 9409 if (BNXT_SW_RES_LMT(bp)) { 9410 extra_qps = max_qps - l2_qps - qp1_qps; 9411 extra_srqs = max_srqs - srqs; 9412 } else { 9413 extra_qps = min_t(u32, 65536, 9414 max_qps - l2_qps - qp1_qps); 9415 /* allocate extra qps if fw supports RoCE fast qp 9416 * destroy feature 9417 */ 9418 extra_qps += fast_qpmd_qps; 9419 extra_srqs = min_t(u32, 8192, max_srqs - srqs); 9420 } 9421 if (fast_qpmd_qps) 9422 ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP_FAST_QPMD; 9423 } 9424 9425 ctxm = &ctx->ctx_arr[BNXT_CTX_QP]; 9426 rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, l2_qps + qp1_qps + extra_qps, 9427 pg_lvl); 9428 if (rc) 9429 return rc; 9430 9431 ctxm = &ctx->ctx_arr[BNXT_CTX_SRQ]; 9432 rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, srqs + extra_srqs, pg_lvl); 9433 if (rc) 9434 return rc; 9435 9436 ctxm = &ctx->ctx_arr[BNXT_CTX_CQ]; 9437 rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, ctxm->cq_l2_entries + 9438 extra_qps * 2, pg_lvl); 9439 if (rc) 9440 return rc; 9441 9442 ctxm = &ctx->ctx_arr[BNXT_CTX_VNIC]; 9443 rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, ctxm->max_entries, 1); 9444 if (rc) 9445 return rc; 9446 9447 ctxm = &ctx->ctx_arr[BNXT_CTX_STAT]; 9448 rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, ctxm->max_entries, 1); 9449 if (rc) 9450 return rc; 9451 9452 if (!(bp->flags & BNXT_FLAG_ROCE_CAP)) 9453 goto skip_rdma; 9454 9455 ctxm = &ctx->ctx_arr[BNXT_CTX_MRAV]; 9456 if (BNXT_SW_RES_LMT(bp) && 9457 ctxm->split_entry_cnt == BNXT_CTX_MRAV_AV_SPLIT_ENTRY + 1) { 9458 num_ah = ctxm->mrav_av_entries; 9459 num_mr = ctxm->max_entries - num_ah; 9460 } else { 9461 /* 128K extra is needed to accommodate static AH context 9462 * allocation by f/w. 9463 */ 9464 num_mr = min_t(u32, ctxm->max_entries / 2, 1024 * 256); 9465 num_ah = min_t(u32, num_mr, 1024 * 128); 9466 ctxm->split_entry_cnt = BNXT_CTX_MRAV_AV_SPLIT_ENTRY + 1; 9467 if (!ctxm->mrav_av_entries || ctxm->mrav_av_entries > num_ah) 9468 ctxm->mrav_av_entries = num_ah; 9469 } 9470 9471 rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, num_mr + num_ah, 2); 9472 if (rc) 9473 return rc; 9474 ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_MRAV; 9475 9476 ctxm = &ctx->ctx_arr[BNXT_CTX_TIM]; 9477 rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, l2_qps + qp1_qps + extra_qps, 1); 9478 if (rc) 9479 return rc; 9480 ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_TIM; 9481 9482 skip_rdma: 9483 ctxm = &ctx->ctx_arr[BNXT_CTX_STQM]; 9484 min = ctxm->min_entries; 9485 entries_sp = ctx->ctx_arr[BNXT_CTX_VNIC].vnic_entries + l2_qps + 9486 2 * (extra_qps + qp1_qps) + min; 9487 rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, entries_sp, 2); 9488 if (rc) 9489 return rc; 9490 9491 ctxm = &ctx->ctx_arr[BNXT_CTX_FTQM]; 9492 entries = l2_qps + 2 * (extra_qps + qp1_qps); 9493 rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, entries, 2); 9494 if (rc) 9495 return rc; 9496 for (i = 0; i < ctx->tqm_fp_rings_count + 1; i++) 9497 ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_TQM_SP << i; 9498 ena |= FUNC_BACKING_STORE_CFG_REQ_DFLT_ENABLES; 9499 9500 skip_legacy: 9501 if (bp->fw_cap & BNXT_FW_CAP_BACKING_STORE_V2) 9502 rc = bnxt_backing_store_cfg_v2(bp); 9503 else 9504 rc = bnxt_hwrm_func_backing_store_cfg(bp, ena); 9505 if (rc) { 9506 netdev_err(bp->dev, "Failed configuring context mem, rc = %d.\n", 9507 rc); 9508 return rc; 9509 } 9510 ctx->flags |= BNXT_CTX_FLAG_INITED; 9511 return 0; 9512 } 9513 9514 static int bnxt_hwrm_crash_dump_mem_cfg(struct bnxt *bp) 9515 { 9516 struct hwrm_dbg_crashdump_medium_cfg_input *req; 9517 u16 page_attr; 9518 int rc; 9519 9520 if (!(bp->fw_dbg_cap & DBG_QCAPS_RESP_FLAGS_CRASHDUMP_HOST_DDR)) 9521 return 0; 9522 9523 rc = hwrm_req_init(bp, req, HWRM_DBG_CRASHDUMP_MEDIUM_CFG); 9524 if (rc) 9525 return rc; 9526 9527 if (BNXT_PAGE_SIZE == 0x2000) 9528 page_attr = DBG_CRASHDUMP_MEDIUM_CFG_REQ_PG_SIZE_PG_8K; 9529 else if (BNXT_PAGE_SIZE == 0x10000) 9530 page_attr = DBG_CRASHDUMP_MEDIUM_CFG_REQ_PG_SIZE_PG_64K; 9531 else 9532 page_attr = DBG_CRASHDUMP_MEDIUM_CFG_REQ_PG_SIZE_PG_4K; 9533 req->pg_size_lvl = cpu_to_le16(page_attr | 9534 bp->fw_crash_mem->ring_mem.depth); 9535 req->pbl = cpu_to_le64(bp->fw_crash_mem->ring_mem.pg_tbl_map); 9536 req->size = cpu_to_le32(bp->fw_crash_len); 9537 req->output_dest_flags = cpu_to_le16(BNXT_DBG_CR_DUMP_MDM_CFG_DDR); 9538 return hwrm_req_send(bp, req); 9539 } 9540 9541 static void bnxt_free_crash_dump_mem(struct bnxt *bp) 9542 { 9543 if (bp->fw_crash_mem) { 9544 bnxt_free_ctx_pg_tbls(bp, bp->fw_crash_mem); 9545 kfree(bp->fw_crash_mem); 9546 bp->fw_crash_mem = NULL; 9547 } 9548 } 9549 9550 static int bnxt_alloc_crash_dump_mem(struct bnxt *bp) 9551 { 9552 u32 mem_size = 0; 9553 int rc; 9554 9555 if (!(bp->fw_dbg_cap & DBG_QCAPS_RESP_FLAGS_CRASHDUMP_HOST_DDR)) 9556 return 0; 9557 9558 rc = bnxt_hwrm_get_dump_len(bp, BNXT_DUMP_CRASH, &mem_size); 9559 if (rc) 9560 return rc; 9561 9562 mem_size = round_up(mem_size, 4); 9563 9564 /* keep and use the existing pages */ 9565 if (bp->fw_crash_mem && 9566 mem_size <= bp->fw_crash_mem->nr_pages * BNXT_PAGE_SIZE) 9567 goto alloc_done; 9568 9569 if (bp->fw_crash_mem) 9570 bnxt_free_ctx_pg_tbls(bp, bp->fw_crash_mem); 9571 else 9572 bp->fw_crash_mem = kzalloc(sizeof(*bp->fw_crash_mem), 9573 GFP_KERNEL); 9574 if (!bp->fw_crash_mem) 9575 return -ENOMEM; 9576 9577 rc = bnxt_alloc_ctx_pg_tbls(bp, bp->fw_crash_mem, mem_size, 1, NULL); 9578 if (rc) { 9579 bnxt_free_crash_dump_mem(bp); 9580 return rc; 9581 } 9582 9583 alloc_done: 9584 bp->fw_crash_len = mem_size; 9585 return 0; 9586 } 9587 9588 int bnxt_hwrm_func_resc_qcaps(struct bnxt *bp, bool all) 9589 { 9590 struct hwrm_func_resource_qcaps_output *resp; 9591 struct hwrm_func_resource_qcaps_input *req; 9592 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 9593 int rc; 9594 9595 rc = hwrm_req_init(bp, req, HWRM_FUNC_RESOURCE_QCAPS); 9596 if (rc) 9597 return rc; 9598 9599 req->fid = cpu_to_le16(0xffff); 9600 resp = hwrm_req_hold(bp, req); 9601 rc = hwrm_req_send_silent(bp, req); 9602 if (rc) 9603 goto hwrm_func_resc_qcaps_exit; 9604 9605 hw_resc->max_tx_sch_inputs = le16_to_cpu(resp->max_tx_scheduler_inputs); 9606 if (!all) 9607 goto hwrm_func_resc_qcaps_exit; 9608 9609 hw_resc->min_rsscos_ctxs = le16_to_cpu(resp->min_rsscos_ctx); 9610 hw_resc->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx); 9611 hw_resc->min_cp_rings = le16_to_cpu(resp->min_cmpl_rings); 9612 hw_resc->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings); 9613 hw_resc->min_tx_rings = le16_to_cpu(resp->min_tx_rings); 9614 hw_resc->max_tx_rings = le16_to_cpu(resp->max_tx_rings); 9615 hw_resc->min_rx_rings = le16_to_cpu(resp->min_rx_rings); 9616 hw_resc->max_rx_rings = le16_to_cpu(resp->max_rx_rings); 9617 hw_resc->min_hw_ring_grps = le16_to_cpu(resp->min_hw_ring_grps); 9618 hw_resc->max_hw_ring_grps = le16_to_cpu(resp->max_hw_ring_grps); 9619 hw_resc->min_l2_ctxs = le16_to_cpu(resp->min_l2_ctxs); 9620 hw_resc->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs); 9621 hw_resc->min_vnics = le16_to_cpu(resp->min_vnics); 9622 hw_resc->max_vnics = le16_to_cpu(resp->max_vnics); 9623 hw_resc->min_stat_ctxs = le16_to_cpu(resp->min_stat_ctx); 9624 hw_resc->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx); 9625 9626 if (hw_resc->max_rsscos_ctxs >= 9627 hw_resc->max_vnics * BNXT_LARGE_RSS_TO_VNIC_RATIO) 9628 bp->rss_cap |= BNXT_RSS_CAP_LARGE_RSS_CTX; 9629 9630 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 9631 u16 max_msix = le16_to_cpu(resp->max_msix); 9632 9633 hw_resc->max_nqs = max_msix; 9634 hw_resc->max_hw_ring_grps = hw_resc->max_rx_rings; 9635 } 9636 9637 if (BNXT_PF(bp)) { 9638 struct bnxt_pf_info *pf = &bp->pf; 9639 9640 pf->vf_resv_strategy = 9641 le16_to_cpu(resp->vf_reservation_strategy); 9642 if (pf->vf_resv_strategy > BNXT_VF_RESV_STRATEGY_MINIMAL_STATIC) 9643 pf->vf_resv_strategy = BNXT_VF_RESV_STRATEGY_MAXIMAL; 9644 } 9645 hwrm_func_resc_qcaps_exit: 9646 hwrm_req_drop(bp, req); 9647 return rc; 9648 } 9649 9650 static int __bnxt_hwrm_ptp_qcfg(struct bnxt *bp) 9651 { 9652 struct hwrm_port_mac_ptp_qcfg_output *resp; 9653 struct hwrm_port_mac_ptp_qcfg_input *req; 9654 struct bnxt_ptp_cfg *ptp = bp->ptp_cfg; 9655 u8 flags; 9656 int rc; 9657 9658 if (bp->hwrm_spec_code < 0x10801 || !BNXT_CHIP_P5_PLUS(bp)) { 9659 rc = -ENODEV; 9660 goto no_ptp; 9661 } 9662 9663 rc = hwrm_req_init(bp, req, HWRM_PORT_MAC_PTP_QCFG); 9664 if (rc) 9665 goto no_ptp; 9666 9667 req->port_id = cpu_to_le16(bp->pf.port_id); 9668 resp = hwrm_req_hold(bp, req); 9669 rc = hwrm_req_send(bp, req); 9670 if (rc) 9671 goto exit; 9672 9673 flags = resp->flags; 9674 if (BNXT_CHIP_P5_AND_MINUS(bp) && 9675 !(flags & PORT_MAC_PTP_QCFG_RESP_FLAGS_HWRM_ACCESS)) { 9676 rc = -ENODEV; 9677 goto exit; 9678 } 9679 if (!ptp) { 9680 ptp = kzalloc(sizeof(*ptp), GFP_KERNEL); 9681 if (!ptp) { 9682 rc = -ENOMEM; 9683 goto exit; 9684 } 9685 ptp->bp = bp; 9686 bp->ptp_cfg = ptp; 9687 } 9688 9689 if (flags & 9690 (PORT_MAC_PTP_QCFG_RESP_FLAGS_PARTIAL_DIRECT_ACCESS_REF_CLOCK | 9691 PORT_MAC_PTP_QCFG_RESP_FLAGS_64B_PHC_TIME)) { 9692 ptp->refclk_regs[0] = le32_to_cpu(resp->ts_ref_clock_reg_lower); 9693 ptp->refclk_regs[1] = le32_to_cpu(resp->ts_ref_clock_reg_upper); 9694 } else if (BNXT_CHIP_P5(bp)) { 9695 ptp->refclk_regs[0] = BNXT_TS_REG_TIMESYNC_TS0_LOWER; 9696 ptp->refclk_regs[1] = BNXT_TS_REG_TIMESYNC_TS0_UPPER; 9697 } else { 9698 rc = -ENODEV; 9699 goto exit; 9700 } 9701 ptp->rtc_configured = 9702 (flags & PORT_MAC_PTP_QCFG_RESP_FLAGS_RTC_CONFIGURED) != 0; 9703 rc = bnxt_ptp_init(bp); 9704 if (rc) 9705 netdev_warn(bp->dev, "PTP initialization failed.\n"); 9706 exit: 9707 hwrm_req_drop(bp, req); 9708 if (!rc) 9709 return 0; 9710 9711 no_ptp: 9712 bnxt_ptp_clear(bp); 9713 kfree(ptp); 9714 bp->ptp_cfg = NULL; 9715 return rc; 9716 } 9717 9718 static int __bnxt_hwrm_func_qcaps(struct bnxt *bp) 9719 { 9720 u32 flags, flags_ext, flags_ext2, flags_ext3; 9721 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 9722 struct hwrm_func_qcaps_output *resp; 9723 struct hwrm_func_qcaps_input *req; 9724 int rc; 9725 9726 rc = hwrm_req_init(bp, req, HWRM_FUNC_QCAPS); 9727 if (rc) 9728 return rc; 9729 9730 req->fid = cpu_to_le16(0xffff); 9731 resp = hwrm_req_hold(bp, req); 9732 rc = hwrm_req_send(bp, req); 9733 if (rc) 9734 goto hwrm_func_qcaps_exit; 9735 9736 flags = le32_to_cpu(resp->flags); 9737 if (flags & FUNC_QCAPS_RESP_FLAGS_ROCE_V1_SUPPORTED) 9738 bp->flags |= BNXT_FLAG_ROCEV1_CAP; 9739 if (flags & FUNC_QCAPS_RESP_FLAGS_ROCE_V2_SUPPORTED) 9740 bp->flags |= BNXT_FLAG_ROCEV2_CAP; 9741 if (flags & FUNC_QCAPS_RESP_FLAGS_LINK_ADMIN_STATUS_SUPPORTED) 9742 bp->fw_cap |= BNXT_FW_CAP_LINK_ADMIN; 9743 if (flags & FUNC_QCAPS_RESP_FLAGS_PCIE_STATS_SUPPORTED) 9744 bp->fw_cap |= BNXT_FW_CAP_PCIE_STATS_SUPPORTED; 9745 if (flags & FUNC_QCAPS_RESP_FLAGS_HOT_RESET_CAPABLE) 9746 bp->fw_cap |= BNXT_FW_CAP_HOT_RESET; 9747 if (flags & FUNC_QCAPS_RESP_FLAGS_EXT_STATS_SUPPORTED) 9748 bp->fw_cap |= BNXT_FW_CAP_EXT_STATS_SUPPORTED; 9749 if (flags & FUNC_QCAPS_RESP_FLAGS_ERROR_RECOVERY_CAPABLE) 9750 bp->fw_cap |= BNXT_FW_CAP_ERROR_RECOVERY; 9751 if (flags & FUNC_QCAPS_RESP_FLAGS_ERR_RECOVER_RELOAD) 9752 bp->fw_cap |= BNXT_FW_CAP_ERR_RECOVER_RELOAD; 9753 if (!(flags & FUNC_QCAPS_RESP_FLAGS_VLAN_ACCELERATION_TX_DISABLED)) 9754 bp->fw_cap |= BNXT_FW_CAP_VLAN_TX_INSERT; 9755 if (flags & FUNC_QCAPS_RESP_FLAGS_DBG_QCAPS_CMD_SUPPORTED) 9756 bp->fw_cap |= BNXT_FW_CAP_DBG_QCAPS; 9757 9758 flags_ext = le32_to_cpu(resp->flags_ext); 9759 if (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_EXT_HW_STATS_SUPPORTED) 9760 bp->fw_cap |= BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED; 9761 if (BNXT_PF(bp) && (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_PTP_PPS_SUPPORTED)) 9762 bp->fw_cap |= BNXT_FW_CAP_PTP_PPS; 9763 if (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_PTP_PTM_SUPPORTED) 9764 bp->fw_cap |= BNXT_FW_CAP_PTP_PTM; 9765 if (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_PTP_64BIT_RTC_SUPPORTED) 9766 bp->fw_cap |= BNXT_FW_CAP_PTP_RTC; 9767 if (BNXT_PF(bp) && (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_HOT_RESET_IF_SUPPORT)) 9768 bp->fw_cap |= BNXT_FW_CAP_HOT_RESET_IF; 9769 if (BNXT_PF(bp) && (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_FW_LIVEPATCH_SUPPORTED)) 9770 bp->fw_cap |= BNXT_FW_CAP_LIVEPATCH; 9771 if (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_NPAR_1_2_SUPPORTED) 9772 bp->fw_cap |= BNXT_FW_CAP_NPAR_1_2; 9773 if (BNXT_PF(bp) && (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_DFLT_VLAN_TPID_PCP_SUPPORTED)) 9774 bp->fw_cap |= BNXT_FW_CAP_DFLT_VLAN_TPID_PCP; 9775 if (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_BS_V2_SUPPORTED) 9776 bp->fw_cap |= BNXT_FW_CAP_BACKING_STORE_V2; 9777 if (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_TX_COAL_CMPL_CAP) 9778 bp->flags |= BNXT_FLAG_TX_COAL_CMPL; 9779 9780 flags_ext2 = le32_to_cpu(resp->flags_ext2); 9781 if (flags_ext2 & FUNC_QCAPS_RESP_FLAGS_EXT2_RX_ALL_PKTS_TIMESTAMPS_SUPPORTED) 9782 bp->fw_cap |= BNXT_FW_CAP_RX_ALL_PKT_TS; 9783 if (flags_ext2 & FUNC_QCAPS_RESP_FLAGS_EXT2_UDP_GSO_SUPPORTED) 9784 bp->flags |= BNXT_FLAG_UDP_GSO_CAP; 9785 if (flags_ext2 & FUNC_QCAPS_RESP_FLAGS_EXT2_TX_PKT_TS_CMPL_SUPPORTED) 9786 bp->fw_cap |= BNXT_FW_CAP_TX_TS_CMP; 9787 if (flags_ext2 & 9788 FUNC_QCAPS_RESP_FLAGS_EXT2_SW_MAX_RESOURCE_LIMITS_SUPPORTED) 9789 bp->fw_cap |= BNXT_FW_CAP_SW_MAX_RESOURCE_LIMITS; 9790 if (BNXT_PF(bp) && 9791 (flags_ext2 & FUNC_QCAPS_RESP_FLAGS_EXT2_ROCE_VF_RESOURCE_MGMT_SUPPORTED)) 9792 bp->fw_cap |= BNXT_FW_CAP_ROCE_VF_RESC_MGMT_SUPPORTED; 9793 9794 flags_ext3 = le32_to_cpu(resp->flags_ext3); 9795 if (flags_ext3 & FUNC_QCAPS_RESP_FLAGS_EXT3_ROCE_VF_DYN_ALLOC_SUPPORT) 9796 bp->fw_cap |= BNXT_FW_CAP_ROCE_VF_DYN_ALLOC_SUPPORT; 9797 if (flags_ext3 & FUNC_QCAPS_RESP_FLAGS_EXT3_MIRROR_ON_ROCE_SUPPORTED) 9798 bp->fw_cap |= BNXT_FW_CAP_MIRROR_ON_ROCE; 9799 9800 bp->tx_push_thresh = 0; 9801 if ((flags & FUNC_QCAPS_RESP_FLAGS_PUSH_MODE_SUPPORTED) && 9802 BNXT_FW_MAJ(bp) > 217) 9803 bp->tx_push_thresh = BNXT_TX_PUSH_THRESH; 9804 9805 hw_resc->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx); 9806 hw_resc->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings); 9807 hw_resc->max_tx_rings = le16_to_cpu(resp->max_tx_rings); 9808 hw_resc->max_rx_rings = le16_to_cpu(resp->max_rx_rings); 9809 hw_resc->max_hw_ring_grps = le32_to_cpu(resp->max_hw_ring_grps); 9810 if (!hw_resc->max_hw_ring_grps) 9811 hw_resc->max_hw_ring_grps = hw_resc->max_tx_rings; 9812 hw_resc->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs); 9813 hw_resc->max_vnics = le16_to_cpu(resp->max_vnics); 9814 hw_resc->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx); 9815 9816 hw_resc->max_encap_records = le32_to_cpu(resp->max_encap_records); 9817 hw_resc->max_decap_records = le32_to_cpu(resp->max_decap_records); 9818 hw_resc->max_tx_em_flows = le32_to_cpu(resp->max_tx_em_flows); 9819 hw_resc->max_tx_wm_flows = le32_to_cpu(resp->max_tx_wm_flows); 9820 hw_resc->max_rx_em_flows = le32_to_cpu(resp->max_rx_em_flows); 9821 hw_resc->max_rx_wm_flows = le32_to_cpu(resp->max_rx_wm_flows); 9822 9823 if (BNXT_PF(bp)) { 9824 struct bnxt_pf_info *pf = &bp->pf; 9825 9826 pf->fw_fid = le16_to_cpu(resp->fid); 9827 pf->port_id = le16_to_cpu(resp->port_id); 9828 memcpy(pf->mac_addr, resp->mac_address, ETH_ALEN); 9829 pf->first_vf_id = le16_to_cpu(resp->first_vf_id); 9830 pf->max_vfs = le16_to_cpu(resp->max_vfs); 9831 bp->flags &= ~BNXT_FLAG_WOL_CAP; 9832 if (flags & FUNC_QCAPS_RESP_FLAGS_WOL_MAGICPKT_SUPPORTED) 9833 bp->flags |= BNXT_FLAG_WOL_CAP; 9834 if (flags & FUNC_QCAPS_RESP_FLAGS_PTP_SUPPORTED) { 9835 bp->fw_cap |= BNXT_FW_CAP_PTP; 9836 } else { 9837 bnxt_ptp_clear(bp); 9838 kfree(bp->ptp_cfg); 9839 bp->ptp_cfg = NULL; 9840 } 9841 } else { 9842 #ifdef CONFIG_BNXT_SRIOV 9843 struct bnxt_vf_info *vf = &bp->vf; 9844 9845 vf->fw_fid = le16_to_cpu(resp->fid); 9846 memcpy(vf->mac_addr, resp->mac_address, ETH_ALEN); 9847 #endif 9848 } 9849 bp->tso_max_segs = le16_to_cpu(resp->max_tso_segs); 9850 9851 hwrm_func_qcaps_exit: 9852 hwrm_req_drop(bp, req); 9853 return rc; 9854 } 9855 9856 static void bnxt_hwrm_dbg_qcaps(struct bnxt *bp) 9857 { 9858 struct hwrm_dbg_qcaps_output *resp; 9859 struct hwrm_dbg_qcaps_input *req; 9860 int rc; 9861 9862 bp->fw_dbg_cap = 0; 9863 if (!(bp->fw_cap & BNXT_FW_CAP_DBG_QCAPS)) 9864 return; 9865 9866 rc = hwrm_req_init(bp, req, HWRM_DBG_QCAPS); 9867 if (rc) 9868 return; 9869 9870 req->fid = cpu_to_le16(0xffff); 9871 resp = hwrm_req_hold(bp, req); 9872 rc = hwrm_req_send(bp, req); 9873 if (rc) 9874 goto hwrm_dbg_qcaps_exit; 9875 9876 bp->fw_dbg_cap = le32_to_cpu(resp->flags); 9877 9878 hwrm_dbg_qcaps_exit: 9879 hwrm_req_drop(bp, req); 9880 } 9881 9882 static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp); 9883 9884 int bnxt_hwrm_func_qcaps(struct bnxt *bp) 9885 { 9886 int rc; 9887 9888 rc = __bnxt_hwrm_func_qcaps(bp); 9889 if (rc) 9890 return rc; 9891 9892 bnxt_hwrm_dbg_qcaps(bp); 9893 9894 rc = bnxt_hwrm_queue_qportcfg(bp); 9895 if (rc) { 9896 netdev_err(bp->dev, "hwrm query qportcfg failure rc: %d\n", rc); 9897 return rc; 9898 } 9899 if (bp->hwrm_spec_code >= 0x10803) { 9900 rc = bnxt_alloc_ctx_mem(bp); 9901 if (rc) 9902 return rc; 9903 rc = bnxt_hwrm_func_resc_qcaps(bp, true); 9904 if (!rc) 9905 bp->fw_cap |= BNXT_FW_CAP_NEW_RM; 9906 } 9907 return 0; 9908 } 9909 9910 static int bnxt_hwrm_cfa_adv_flow_mgnt_qcaps(struct bnxt *bp) 9911 { 9912 struct hwrm_cfa_adv_flow_mgnt_qcaps_output *resp; 9913 struct hwrm_cfa_adv_flow_mgnt_qcaps_input *req; 9914 u32 flags; 9915 int rc; 9916 9917 if (!(bp->fw_cap & BNXT_FW_CAP_CFA_ADV_FLOW)) 9918 return 0; 9919 9920 rc = hwrm_req_init(bp, req, HWRM_CFA_ADV_FLOW_MGNT_QCAPS); 9921 if (rc) 9922 return rc; 9923 9924 resp = hwrm_req_hold(bp, req); 9925 rc = hwrm_req_send(bp, req); 9926 if (rc) 9927 goto hwrm_cfa_adv_qcaps_exit; 9928 9929 flags = le32_to_cpu(resp->flags); 9930 if (flags & 9931 CFA_ADV_FLOW_MGNT_QCAPS_RESP_FLAGS_RFS_RING_TBL_IDX_V2_SUPPORTED) 9932 bp->fw_cap |= BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2; 9933 9934 if (flags & 9935 CFA_ADV_FLOW_MGNT_QCAPS_RESP_FLAGS_RFS_RING_TBL_IDX_V3_SUPPORTED) 9936 bp->fw_cap |= BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V3; 9937 9938 if (flags & 9939 CFA_ADV_FLOW_MGNT_QCAPS_RESP_FLAGS_NTUPLE_FLOW_RX_EXT_IP_PROTO_SUPPORTED) 9940 bp->fw_cap |= BNXT_FW_CAP_CFA_NTUPLE_RX_EXT_IP_PROTO; 9941 9942 hwrm_cfa_adv_qcaps_exit: 9943 hwrm_req_drop(bp, req); 9944 return rc; 9945 } 9946 9947 static int __bnxt_alloc_fw_health(struct bnxt *bp) 9948 { 9949 if (bp->fw_health) 9950 return 0; 9951 9952 bp->fw_health = kzalloc(sizeof(*bp->fw_health), GFP_KERNEL); 9953 if (!bp->fw_health) 9954 return -ENOMEM; 9955 9956 mutex_init(&bp->fw_health->lock); 9957 return 0; 9958 } 9959 9960 static int bnxt_alloc_fw_health(struct bnxt *bp) 9961 { 9962 int rc; 9963 9964 if (!(bp->fw_cap & BNXT_FW_CAP_HOT_RESET) && 9965 !(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)) 9966 return 0; 9967 9968 rc = __bnxt_alloc_fw_health(bp); 9969 if (rc) { 9970 bp->fw_cap &= ~BNXT_FW_CAP_HOT_RESET; 9971 bp->fw_cap &= ~BNXT_FW_CAP_ERROR_RECOVERY; 9972 return rc; 9973 } 9974 9975 return 0; 9976 } 9977 9978 static void __bnxt_map_fw_health_reg(struct bnxt *bp, u32 reg) 9979 { 9980 writel(reg & BNXT_GRC_BASE_MASK, bp->bar0 + 9981 BNXT_GRCPF_REG_WINDOW_BASE_OUT + 9982 BNXT_FW_HEALTH_WIN_MAP_OFF); 9983 } 9984 9985 static void bnxt_inv_fw_health_reg(struct bnxt *bp) 9986 { 9987 struct bnxt_fw_health *fw_health = bp->fw_health; 9988 u32 reg_type; 9989 9990 if (!fw_health) 9991 return; 9992 9993 reg_type = BNXT_FW_HEALTH_REG_TYPE(fw_health->regs[BNXT_FW_HEALTH_REG]); 9994 if (reg_type == BNXT_FW_HEALTH_REG_TYPE_GRC) 9995 fw_health->status_reliable = false; 9996 9997 reg_type = BNXT_FW_HEALTH_REG_TYPE(fw_health->regs[BNXT_FW_RESET_CNT_REG]); 9998 if (reg_type == BNXT_FW_HEALTH_REG_TYPE_GRC) 9999 fw_health->resets_reliable = false; 10000 } 10001 10002 static void bnxt_try_map_fw_health_reg(struct bnxt *bp) 10003 { 10004 void __iomem *hs; 10005 u32 status_loc; 10006 u32 reg_type; 10007 u32 sig; 10008 10009 if (bp->fw_health) 10010 bp->fw_health->status_reliable = false; 10011 10012 __bnxt_map_fw_health_reg(bp, HCOMM_STATUS_STRUCT_LOC); 10013 hs = bp->bar0 + BNXT_FW_HEALTH_WIN_OFF(HCOMM_STATUS_STRUCT_LOC); 10014 10015 sig = readl(hs + offsetof(struct hcomm_status, sig_ver)); 10016 if ((sig & HCOMM_STATUS_SIGNATURE_MASK) != HCOMM_STATUS_SIGNATURE_VAL) { 10017 if (!bp->chip_num) { 10018 __bnxt_map_fw_health_reg(bp, BNXT_GRC_REG_BASE); 10019 bp->chip_num = readl(bp->bar0 + 10020 BNXT_FW_HEALTH_WIN_BASE + 10021 BNXT_GRC_REG_CHIP_NUM); 10022 } 10023 if (!BNXT_CHIP_P5_PLUS(bp)) 10024 return; 10025 10026 status_loc = BNXT_GRC_REG_STATUS_P5 | 10027 BNXT_FW_HEALTH_REG_TYPE_BAR0; 10028 } else { 10029 status_loc = readl(hs + offsetof(struct hcomm_status, 10030 fw_status_loc)); 10031 } 10032 10033 if (__bnxt_alloc_fw_health(bp)) { 10034 netdev_warn(bp->dev, "no memory for firmware status checks\n"); 10035 return; 10036 } 10037 10038 bp->fw_health->regs[BNXT_FW_HEALTH_REG] = status_loc; 10039 reg_type = BNXT_FW_HEALTH_REG_TYPE(status_loc); 10040 if (reg_type == BNXT_FW_HEALTH_REG_TYPE_GRC) { 10041 __bnxt_map_fw_health_reg(bp, status_loc); 10042 bp->fw_health->mapped_regs[BNXT_FW_HEALTH_REG] = 10043 BNXT_FW_HEALTH_WIN_OFF(status_loc); 10044 } 10045 10046 bp->fw_health->status_reliable = true; 10047 } 10048 10049 static int bnxt_map_fw_health_regs(struct bnxt *bp) 10050 { 10051 struct bnxt_fw_health *fw_health = bp->fw_health; 10052 u32 reg_base = 0xffffffff; 10053 int i; 10054 10055 bp->fw_health->status_reliable = false; 10056 bp->fw_health->resets_reliable = false; 10057 /* Only pre-map the monitoring GRC registers using window 3 */ 10058 for (i = 0; i < 4; i++) { 10059 u32 reg = fw_health->regs[i]; 10060 10061 if (BNXT_FW_HEALTH_REG_TYPE(reg) != BNXT_FW_HEALTH_REG_TYPE_GRC) 10062 continue; 10063 if (reg_base == 0xffffffff) 10064 reg_base = reg & BNXT_GRC_BASE_MASK; 10065 if ((reg & BNXT_GRC_BASE_MASK) != reg_base) 10066 return -ERANGE; 10067 fw_health->mapped_regs[i] = BNXT_FW_HEALTH_WIN_OFF(reg); 10068 } 10069 bp->fw_health->status_reliable = true; 10070 bp->fw_health->resets_reliable = true; 10071 if (reg_base == 0xffffffff) 10072 return 0; 10073 10074 __bnxt_map_fw_health_reg(bp, reg_base); 10075 return 0; 10076 } 10077 10078 static void bnxt_remap_fw_health_regs(struct bnxt *bp) 10079 { 10080 if (!bp->fw_health) 10081 return; 10082 10083 if (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY) { 10084 bp->fw_health->status_reliable = true; 10085 bp->fw_health->resets_reliable = true; 10086 } else { 10087 bnxt_try_map_fw_health_reg(bp); 10088 } 10089 } 10090 10091 static int bnxt_hwrm_error_recovery_qcfg(struct bnxt *bp) 10092 { 10093 struct bnxt_fw_health *fw_health = bp->fw_health; 10094 struct hwrm_error_recovery_qcfg_output *resp; 10095 struct hwrm_error_recovery_qcfg_input *req; 10096 int rc, i; 10097 10098 if (!(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)) 10099 return 0; 10100 10101 rc = hwrm_req_init(bp, req, HWRM_ERROR_RECOVERY_QCFG); 10102 if (rc) 10103 return rc; 10104 10105 resp = hwrm_req_hold(bp, req); 10106 rc = hwrm_req_send(bp, req); 10107 if (rc) 10108 goto err_recovery_out; 10109 fw_health->flags = le32_to_cpu(resp->flags); 10110 if ((fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU) && 10111 !(bp->fw_cap & BNXT_FW_CAP_KONG_MB_CHNL)) { 10112 rc = -EINVAL; 10113 goto err_recovery_out; 10114 } 10115 fw_health->polling_dsecs = le32_to_cpu(resp->driver_polling_freq); 10116 fw_health->master_func_wait_dsecs = 10117 le32_to_cpu(resp->master_func_wait_period); 10118 fw_health->normal_func_wait_dsecs = 10119 le32_to_cpu(resp->normal_func_wait_period); 10120 fw_health->post_reset_wait_dsecs = 10121 le32_to_cpu(resp->master_func_wait_period_after_reset); 10122 fw_health->post_reset_max_wait_dsecs = 10123 le32_to_cpu(resp->max_bailout_time_after_reset); 10124 fw_health->regs[BNXT_FW_HEALTH_REG] = 10125 le32_to_cpu(resp->fw_health_status_reg); 10126 fw_health->regs[BNXT_FW_HEARTBEAT_REG] = 10127 le32_to_cpu(resp->fw_heartbeat_reg); 10128 fw_health->regs[BNXT_FW_RESET_CNT_REG] = 10129 le32_to_cpu(resp->fw_reset_cnt_reg); 10130 fw_health->regs[BNXT_FW_RESET_INPROG_REG] = 10131 le32_to_cpu(resp->reset_inprogress_reg); 10132 fw_health->fw_reset_inprog_reg_mask = 10133 le32_to_cpu(resp->reset_inprogress_reg_mask); 10134 fw_health->fw_reset_seq_cnt = resp->reg_array_cnt; 10135 if (fw_health->fw_reset_seq_cnt >= 16) { 10136 rc = -EINVAL; 10137 goto err_recovery_out; 10138 } 10139 for (i = 0; i < fw_health->fw_reset_seq_cnt; i++) { 10140 fw_health->fw_reset_seq_regs[i] = 10141 le32_to_cpu(resp->reset_reg[i]); 10142 fw_health->fw_reset_seq_vals[i] = 10143 le32_to_cpu(resp->reset_reg_val[i]); 10144 fw_health->fw_reset_seq_delay_msec[i] = 10145 resp->delay_after_reset[i]; 10146 } 10147 err_recovery_out: 10148 hwrm_req_drop(bp, req); 10149 if (!rc) 10150 rc = bnxt_map_fw_health_regs(bp); 10151 if (rc) 10152 bp->fw_cap &= ~BNXT_FW_CAP_ERROR_RECOVERY; 10153 return rc; 10154 } 10155 10156 static int bnxt_hwrm_func_reset(struct bnxt *bp) 10157 { 10158 struct hwrm_func_reset_input *req; 10159 int rc; 10160 10161 rc = hwrm_req_init(bp, req, HWRM_FUNC_RESET); 10162 if (rc) 10163 return rc; 10164 10165 req->enables = 0; 10166 hwrm_req_timeout(bp, req, HWRM_RESET_TIMEOUT); 10167 return hwrm_req_send(bp, req); 10168 } 10169 10170 static void bnxt_nvm_cfg_ver_get(struct bnxt *bp) 10171 { 10172 struct hwrm_nvm_get_dev_info_output nvm_info; 10173 10174 if (!bnxt_hwrm_nvm_get_dev_info(bp, &nvm_info)) 10175 snprintf(bp->nvm_cfg_ver, FW_VER_STR_LEN, "%d.%d.%d", 10176 nvm_info.nvm_cfg_ver_maj, nvm_info.nvm_cfg_ver_min, 10177 nvm_info.nvm_cfg_ver_upd); 10178 } 10179 10180 static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp) 10181 { 10182 struct hwrm_queue_qportcfg_output *resp; 10183 struct hwrm_queue_qportcfg_input *req; 10184 u8 i, j, *qptr; 10185 bool no_rdma; 10186 int rc = 0; 10187 10188 rc = hwrm_req_init(bp, req, HWRM_QUEUE_QPORTCFG); 10189 if (rc) 10190 return rc; 10191 10192 resp = hwrm_req_hold(bp, req); 10193 rc = hwrm_req_send(bp, req); 10194 if (rc) 10195 goto qportcfg_exit; 10196 10197 if (!resp->max_configurable_queues) { 10198 rc = -EINVAL; 10199 goto qportcfg_exit; 10200 } 10201 bp->max_tc = resp->max_configurable_queues; 10202 bp->max_lltc = resp->max_configurable_lossless_queues; 10203 if (bp->max_tc > BNXT_MAX_QUEUE) 10204 bp->max_tc = BNXT_MAX_QUEUE; 10205 10206 no_rdma = !(bp->flags & BNXT_FLAG_ROCE_CAP); 10207 qptr = &resp->queue_id0; 10208 for (i = 0, j = 0; i < bp->max_tc; i++) { 10209 bp->q_info[j].queue_id = *qptr; 10210 bp->q_ids[i] = *qptr++; 10211 bp->q_info[j].queue_profile = *qptr++; 10212 bp->tc_to_qidx[j] = j; 10213 if (!BNXT_CNPQ(bp->q_info[j].queue_profile) || 10214 (no_rdma && BNXT_PF(bp))) 10215 j++; 10216 } 10217 bp->max_q = bp->max_tc; 10218 bp->max_tc = max_t(u8, j, 1); 10219 10220 if (resp->queue_cfg_info & QUEUE_QPORTCFG_RESP_QUEUE_CFG_INFO_ASYM_CFG) 10221 bp->max_tc = 1; 10222 10223 if (bp->max_lltc > bp->max_tc) 10224 bp->max_lltc = bp->max_tc; 10225 10226 qportcfg_exit: 10227 hwrm_req_drop(bp, req); 10228 return rc; 10229 } 10230 10231 static int bnxt_hwrm_poll(struct bnxt *bp) 10232 { 10233 struct hwrm_ver_get_input *req; 10234 int rc; 10235 10236 rc = hwrm_req_init(bp, req, HWRM_VER_GET); 10237 if (rc) 10238 return rc; 10239 10240 req->hwrm_intf_maj = HWRM_VERSION_MAJOR; 10241 req->hwrm_intf_min = HWRM_VERSION_MINOR; 10242 req->hwrm_intf_upd = HWRM_VERSION_UPDATE; 10243 10244 hwrm_req_flags(bp, req, BNXT_HWRM_CTX_SILENT | BNXT_HWRM_FULL_WAIT); 10245 rc = hwrm_req_send(bp, req); 10246 return rc; 10247 } 10248 10249 static int bnxt_hwrm_ver_get(struct bnxt *bp) 10250 { 10251 struct hwrm_ver_get_output *resp; 10252 struct hwrm_ver_get_input *req; 10253 u16 fw_maj, fw_min, fw_bld, fw_rsv; 10254 u32 dev_caps_cfg, hwrm_ver; 10255 int rc, len, max_tmo_secs; 10256 10257 rc = hwrm_req_init(bp, req, HWRM_VER_GET); 10258 if (rc) 10259 return rc; 10260 10261 hwrm_req_flags(bp, req, BNXT_HWRM_FULL_WAIT); 10262 bp->hwrm_max_req_len = HWRM_MAX_REQ_LEN; 10263 req->hwrm_intf_maj = HWRM_VERSION_MAJOR; 10264 req->hwrm_intf_min = HWRM_VERSION_MINOR; 10265 req->hwrm_intf_upd = HWRM_VERSION_UPDATE; 10266 10267 resp = hwrm_req_hold(bp, req); 10268 rc = hwrm_req_send(bp, req); 10269 if (rc) 10270 goto hwrm_ver_get_exit; 10271 10272 memcpy(&bp->ver_resp, resp, sizeof(struct hwrm_ver_get_output)); 10273 10274 bp->hwrm_spec_code = resp->hwrm_intf_maj_8b << 16 | 10275 resp->hwrm_intf_min_8b << 8 | 10276 resp->hwrm_intf_upd_8b; 10277 if (resp->hwrm_intf_maj_8b < 1) { 10278 netdev_warn(bp->dev, "HWRM interface %d.%d.%d is older than 1.0.0.\n", 10279 resp->hwrm_intf_maj_8b, resp->hwrm_intf_min_8b, 10280 resp->hwrm_intf_upd_8b); 10281 netdev_warn(bp->dev, "Please update firmware with HWRM interface 1.0.0 or newer.\n"); 10282 } 10283 10284 hwrm_ver = HWRM_VERSION_MAJOR << 16 | HWRM_VERSION_MINOR << 8 | 10285 HWRM_VERSION_UPDATE; 10286 10287 if (bp->hwrm_spec_code > hwrm_ver) 10288 snprintf(bp->hwrm_ver_supp, FW_VER_STR_LEN, "%d.%d.%d", 10289 HWRM_VERSION_MAJOR, HWRM_VERSION_MINOR, 10290 HWRM_VERSION_UPDATE); 10291 else 10292 snprintf(bp->hwrm_ver_supp, FW_VER_STR_LEN, "%d.%d.%d", 10293 resp->hwrm_intf_maj_8b, resp->hwrm_intf_min_8b, 10294 resp->hwrm_intf_upd_8b); 10295 10296 fw_maj = le16_to_cpu(resp->hwrm_fw_major); 10297 if (bp->hwrm_spec_code > 0x10803 && fw_maj) { 10298 fw_min = le16_to_cpu(resp->hwrm_fw_minor); 10299 fw_bld = le16_to_cpu(resp->hwrm_fw_build); 10300 fw_rsv = le16_to_cpu(resp->hwrm_fw_patch); 10301 len = FW_VER_STR_LEN; 10302 } else { 10303 fw_maj = resp->hwrm_fw_maj_8b; 10304 fw_min = resp->hwrm_fw_min_8b; 10305 fw_bld = resp->hwrm_fw_bld_8b; 10306 fw_rsv = resp->hwrm_fw_rsvd_8b; 10307 len = BC_HWRM_STR_LEN; 10308 } 10309 bp->fw_ver_code = BNXT_FW_VER_CODE(fw_maj, fw_min, fw_bld, fw_rsv); 10310 snprintf(bp->fw_ver_str, len, "%d.%d.%d.%d", fw_maj, fw_min, fw_bld, 10311 fw_rsv); 10312 10313 if (strlen(resp->active_pkg_name)) { 10314 int fw_ver_len = strlen(bp->fw_ver_str); 10315 10316 snprintf(bp->fw_ver_str + fw_ver_len, 10317 FW_VER_STR_LEN - fw_ver_len - 1, "/pkg %s", 10318 resp->active_pkg_name); 10319 bp->fw_cap |= BNXT_FW_CAP_PKG_VER; 10320 } 10321 10322 bp->hwrm_cmd_timeout = le16_to_cpu(resp->def_req_timeout); 10323 if (!bp->hwrm_cmd_timeout) 10324 bp->hwrm_cmd_timeout = DFLT_HWRM_CMD_TIMEOUT; 10325 bp->hwrm_cmd_max_timeout = le16_to_cpu(resp->max_req_timeout) * 1000; 10326 if (!bp->hwrm_cmd_max_timeout) 10327 bp->hwrm_cmd_max_timeout = HWRM_CMD_MAX_TIMEOUT; 10328 max_tmo_secs = bp->hwrm_cmd_max_timeout / 1000; 10329 #ifdef CONFIG_DETECT_HUNG_TASK 10330 if (bp->hwrm_cmd_max_timeout > HWRM_CMD_MAX_TIMEOUT || 10331 max_tmo_secs > CONFIG_DEFAULT_HUNG_TASK_TIMEOUT) { 10332 netdev_warn(bp->dev, "Device requests max timeout of %d seconds, may trigger hung task watchdog (kernel default %ds)\n", 10333 max_tmo_secs, CONFIG_DEFAULT_HUNG_TASK_TIMEOUT); 10334 } 10335 #endif 10336 10337 if (resp->hwrm_intf_maj_8b >= 1) { 10338 bp->hwrm_max_req_len = le16_to_cpu(resp->max_req_win_len); 10339 bp->hwrm_max_ext_req_len = le16_to_cpu(resp->max_ext_req_len); 10340 } 10341 if (bp->hwrm_max_ext_req_len < HWRM_MAX_REQ_LEN) 10342 bp->hwrm_max_ext_req_len = HWRM_MAX_REQ_LEN; 10343 10344 bp->chip_num = le16_to_cpu(resp->chip_num); 10345 bp->chip_rev = resp->chip_rev; 10346 if (bp->chip_num == CHIP_NUM_58700 && !resp->chip_rev && 10347 !resp->chip_metal) 10348 bp->flags |= BNXT_FLAG_CHIP_NITRO_A0; 10349 10350 dev_caps_cfg = le32_to_cpu(resp->dev_caps_cfg); 10351 if ((dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_SHORT_CMD_SUPPORTED) && 10352 (dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_SHORT_CMD_REQUIRED)) 10353 bp->fw_cap |= BNXT_FW_CAP_SHORT_CMD; 10354 10355 if (dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_KONG_MB_CHNL_SUPPORTED) 10356 bp->fw_cap |= BNXT_FW_CAP_KONG_MB_CHNL; 10357 10358 if (dev_caps_cfg & 10359 VER_GET_RESP_DEV_CAPS_CFG_FLOW_HANDLE_64BIT_SUPPORTED) 10360 bp->fw_cap |= BNXT_FW_CAP_OVS_64BIT_HANDLE; 10361 10362 if (dev_caps_cfg & 10363 VER_GET_RESP_DEV_CAPS_CFG_TRUSTED_VF_SUPPORTED) 10364 bp->fw_cap |= BNXT_FW_CAP_TRUSTED_VF; 10365 10366 if (dev_caps_cfg & 10367 VER_GET_RESP_DEV_CAPS_CFG_CFA_ADV_FLOW_MGNT_SUPPORTED) 10368 bp->fw_cap |= BNXT_FW_CAP_CFA_ADV_FLOW; 10369 10370 hwrm_ver_get_exit: 10371 hwrm_req_drop(bp, req); 10372 return rc; 10373 } 10374 10375 int bnxt_hwrm_fw_set_time(struct bnxt *bp) 10376 { 10377 struct hwrm_fw_set_time_input *req; 10378 struct tm tm; 10379 time64_t now = ktime_get_real_seconds(); 10380 int rc; 10381 10382 if ((BNXT_VF(bp) && bp->hwrm_spec_code < 0x10901) || 10383 bp->hwrm_spec_code < 0x10400) 10384 return -EOPNOTSUPP; 10385 10386 time64_to_tm(now, 0, &tm); 10387 rc = hwrm_req_init(bp, req, HWRM_FW_SET_TIME); 10388 if (rc) 10389 return rc; 10390 10391 req->year = cpu_to_le16(1900 + tm.tm_year); 10392 req->month = 1 + tm.tm_mon; 10393 req->day = tm.tm_mday; 10394 req->hour = tm.tm_hour; 10395 req->minute = tm.tm_min; 10396 req->second = tm.tm_sec; 10397 return hwrm_req_send(bp, req); 10398 } 10399 10400 static void bnxt_add_one_ctr(u64 hw, u64 *sw, u64 mask) 10401 { 10402 u64 sw_tmp; 10403 10404 hw &= mask; 10405 sw_tmp = (*sw & ~mask) | hw; 10406 if (hw < (*sw & mask)) 10407 sw_tmp += mask + 1; 10408 WRITE_ONCE(*sw, sw_tmp); 10409 } 10410 10411 static void __bnxt_accumulate_stats(__le64 *hw_stats, u64 *sw_stats, u64 *masks, 10412 int count, bool ignore_zero) 10413 { 10414 int i; 10415 10416 for (i = 0; i < count; i++) { 10417 u64 hw = le64_to_cpu(READ_ONCE(hw_stats[i])); 10418 10419 if (ignore_zero && !hw) 10420 continue; 10421 10422 if (masks[i] == -1ULL) 10423 sw_stats[i] = hw; 10424 else 10425 bnxt_add_one_ctr(hw, &sw_stats[i], masks[i]); 10426 } 10427 } 10428 10429 static void bnxt_accumulate_stats(struct bnxt_stats_mem *stats) 10430 { 10431 if (!stats->hw_stats) 10432 return; 10433 10434 __bnxt_accumulate_stats(stats->hw_stats, stats->sw_stats, 10435 stats->hw_masks, stats->len / 8, false); 10436 } 10437 10438 static void bnxt_accumulate_all_stats(struct bnxt *bp) 10439 { 10440 struct bnxt_stats_mem *ring0_stats; 10441 bool ignore_zero = false; 10442 int i; 10443 10444 /* Chip bug. Counter intermittently becomes 0. */ 10445 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 10446 ignore_zero = true; 10447 10448 for (i = 0; i < bp->cp_nr_rings; i++) { 10449 struct bnxt_napi *bnapi = bp->bnapi[i]; 10450 struct bnxt_cp_ring_info *cpr; 10451 struct bnxt_stats_mem *stats; 10452 10453 cpr = &bnapi->cp_ring; 10454 stats = &cpr->stats; 10455 if (!i) 10456 ring0_stats = stats; 10457 __bnxt_accumulate_stats(stats->hw_stats, stats->sw_stats, 10458 ring0_stats->hw_masks, 10459 ring0_stats->len / 8, ignore_zero); 10460 } 10461 if (bp->flags & BNXT_FLAG_PORT_STATS) { 10462 struct bnxt_stats_mem *stats = &bp->port_stats; 10463 __le64 *hw_stats = stats->hw_stats; 10464 u64 *sw_stats = stats->sw_stats; 10465 u64 *masks = stats->hw_masks; 10466 int cnt; 10467 10468 cnt = sizeof(struct rx_port_stats) / 8; 10469 __bnxt_accumulate_stats(hw_stats, sw_stats, masks, cnt, false); 10470 10471 hw_stats += BNXT_TX_PORT_STATS_BYTE_OFFSET / 8; 10472 sw_stats += BNXT_TX_PORT_STATS_BYTE_OFFSET / 8; 10473 masks += BNXT_TX_PORT_STATS_BYTE_OFFSET / 8; 10474 cnt = sizeof(struct tx_port_stats) / 8; 10475 __bnxt_accumulate_stats(hw_stats, sw_stats, masks, cnt, false); 10476 } 10477 if (bp->flags & BNXT_FLAG_PORT_STATS_EXT) { 10478 bnxt_accumulate_stats(&bp->rx_port_stats_ext); 10479 bnxt_accumulate_stats(&bp->tx_port_stats_ext); 10480 } 10481 } 10482 10483 static int bnxt_hwrm_port_qstats(struct bnxt *bp, u8 flags) 10484 { 10485 struct hwrm_port_qstats_input *req; 10486 struct bnxt_pf_info *pf = &bp->pf; 10487 int rc; 10488 10489 if (!(bp->flags & BNXT_FLAG_PORT_STATS)) 10490 return 0; 10491 10492 if (flags && !(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED)) 10493 return -EOPNOTSUPP; 10494 10495 rc = hwrm_req_init(bp, req, HWRM_PORT_QSTATS); 10496 if (rc) 10497 return rc; 10498 10499 req->flags = flags; 10500 req->port_id = cpu_to_le16(pf->port_id); 10501 req->tx_stat_host_addr = cpu_to_le64(bp->port_stats.hw_stats_map + 10502 BNXT_TX_PORT_STATS_BYTE_OFFSET); 10503 req->rx_stat_host_addr = cpu_to_le64(bp->port_stats.hw_stats_map); 10504 return hwrm_req_send(bp, req); 10505 } 10506 10507 static int bnxt_hwrm_port_qstats_ext(struct bnxt *bp, u8 flags) 10508 { 10509 struct hwrm_queue_pri2cos_qcfg_output *resp_qc; 10510 struct hwrm_queue_pri2cos_qcfg_input *req_qc; 10511 struct hwrm_port_qstats_ext_output *resp_qs; 10512 struct hwrm_port_qstats_ext_input *req_qs; 10513 struct bnxt_pf_info *pf = &bp->pf; 10514 u32 tx_stat_size; 10515 int rc; 10516 10517 if (!(bp->flags & BNXT_FLAG_PORT_STATS_EXT)) 10518 return 0; 10519 10520 if (flags && !(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED)) 10521 return -EOPNOTSUPP; 10522 10523 rc = hwrm_req_init(bp, req_qs, HWRM_PORT_QSTATS_EXT); 10524 if (rc) 10525 return rc; 10526 10527 req_qs->flags = flags; 10528 req_qs->port_id = cpu_to_le16(pf->port_id); 10529 req_qs->rx_stat_size = cpu_to_le16(sizeof(struct rx_port_stats_ext)); 10530 req_qs->rx_stat_host_addr = cpu_to_le64(bp->rx_port_stats_ext.hw_stats_map); 10531 tx_stat_size = bp->tx_port_stats_ext.hw_stats ? 10532 sizeof(struct tx_port_stats_ext) : 0; 10533 req_qs->tx_stat_size = cpu_to_le16(tx_stat_size); 10534 req_qs->tx_stat_host_addr = cpu_to_le64(bp->tx_port_stats_ext.hw_stats_map); 10535 resp_qs = hwrm_req_hold(bp, req_qs); 10536 rc = hwrm_req_send(bp, req_qs); 10537 if (!rc) { 10538 bp->fw_rx_stats_ext_size = 10539 le16_to_cpu(resp_qs->rx_stat_size) / 8; 10540 if (BNXT_FW_MAJ(bp) < 220 && 10541 bp->fw_rx_stats_ext_size > BNXT_RX_STATS_EXT_NUM_LEGACY) 10542 bp->fw_rx_stats_ext_size = BNXT_RX_STATS_EXT_NUM_LEGACY; 10543 10544 bp->fw_tx_stats_ext_size = tx_stat_size ? 10545 le16_to_cpu(resp_qs->tx_stat_size) / 8 : 0; 10546 } else { 10547 bp->fw_rx_stats_ext_size = 0; 10548 bp->fw_tx_stats_ext_size = 0; 10549 } 10550 hwrm_req_drop(bp, req_qs); 10551 10552 if (flags) 10553 return rc; 10554 10555 if (bp->fw_tx_stats_ext_size <= 10556 offsetof(struct tx_port_stats_ext, pfc_pri0_tx_duration_us) / 8) { 10557 bp->pri2cos_valid = 0; 10558 return rc; 10559 } 10560 10561 rc = hwrm_req_init(bp, req_qc, HWRM_QUEUE_PRI2COS_QCFG); 10562 if (rc) 10563 return rc; 10564 10565 req_qc->flags = cpu_to_le32(QUEUE_PRI2COS_QCFG_REQ_FLAGS_IVLAN); 10566 10567 resp_qc = hwrm_req_hold(bp, req_qc); 10568 rc = hwrm_req_send(bp, req_qc); 10569 if (!rc) { 10570 u8 *pri2cos; 10571 int i, j; 10572 10573 pri2cos = &resp_qc->pri0_cos_queue_id; 10574 for (i = 0; i < 8; i++) { 10575 u8 queue_id = pri2cos[i]; 10576 u8 queue_idx; 10577 10578 /* Per port queue IDs start from 0, 10, 20, etc */ 10579 queue_idx = queue_id % 10; 10580 if (queue_idx > BNXT_MAX_QUEUE) { 10581 bp->pri2cos_valid = false; 10582 hwrm_req_drop(bp, req_qc); 10583 return rc; 10584 } 10585 for (j = 0; j < bp->max_q; j++) { 10586 if (bp->q_ids[j] == queue_id) 10587 bp->pri2cos_idx[i] = queue_idx; 10588 } 10589 } 10590 bp->pri2cos_valid = true; 10591 } 10592 hwrm_req_drop(bp, req_qc); 10593 10594 return rc; 10595 } 10596 10597 static void bnxt_hwrm_free_tunnel_ports(struct bnxt *bp) 10598 { 10599 bnxt_hwrm_tunnel_dst_port_free(bp, 10600 TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN); 10601 bnxt_hwrm_tunnel_dst_port_free(bp, 10602 TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE); 10603 } 10604 10605 static int bnxt_set_tpa(struct bnxt *bp, bool set_tpa) 10606 { 10607 int rc, i; 10608 u32 tpa_flags = 0; 10609 10610 if (set_tpa) 10611 tpa_flags = bp->flags & BNXT_FLAG_TPA; 10612 else if (BNXT_NO_FW_ACCESS(bp)) 10613 return 0; 10614 for (i = 0; i < bp->nr_vnics; i++) { 10615 rc = bnxt_hwrm_vnic_set_tpa(bp, &bp->vnic_info[i], tpa_flags); 10616 if (rc) { 10617 netdev_err(bp->dev, "hwrm vnic set tpa failure rc for vnic %d: %x\n", 10618 i, rc); 10619 return rc; 10620 } 10621 } 10622 return 0; 10623 } 10624 10625 static void bnxt_hwrm_clear_vnic_rss(struct bnxt *bp) 10626 { 10627 int i; 10628 10629 for (i = 0; i < bp->nr_vnics; i++) 10630 bnxt_hwrm_vnic_set_rss(bp, &bp->vnic_info[i], false); 10631 } 10632 10633 static void bnxt_clear_vnic(struct bnxt *bp) 10634 { 10635 if (!bp->vnic_info) 10636 return; 10637 10638 bnxt_hwrm_clear_vnic_filter(bp); 10639 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) { 10640 /* clear all RSS setting before free vnic ctx */ 10641 bnxt_hwrm_clear_vnic_rss(bp); 10642 bnxt_hwrm_vnic_ctx_free(bp); 10643 } 10644 /* before free the vnic, undo the vnic tpa settings */ 10645 if (bp->flags & BNXT_FLAG_TPA) 10646 bnxt_set_tpa(bp, false); 10647 bnxt_hwrm_vnic_free(bp); 10648 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 10649 bnxt_hwrm_vnic_ctx_free(bp); 10650 } 10651 10652 static void bnxt_hwrm_resource_free(struct bnxt *bp, bool close_path, 10653 bool irq_re_init) 10654 { 10655 bnxt_clear_vnic(bp); 10656 bnxt_hwrm_ring_free(bp, close_path); 10657 bnxt_hwrm_ring_grp_free(bp); 10658 if (irq_re_init) { 10659 bnxt_hwrm_stat_ctx_free(bp); 10660 bnxt_hwrm_free_tunnel_ports(bp); 10661 } 10662 } 10663 10664 static int bnxt_hwrm_set_br_mode(struct bnxt *bp, u16 br_mode) 10665 { 10666 struct hwrm_func_cfg_input *req; 10667 u8 evb_mode; 10668 int rc; 10669 10670 if (br_mode == BRIDGE_MODE_VEB) 10671 evb_mode = FUNC_CFG_REQ_EVB_MODE_VEB; 10672 else if (br_mode == BRIDGE_MODE_VEPA) 10673 evb_mode = FUNC_CFG_REQ_EVB_MODE_VEPA; 10674 else 10675 return -EINVAL; 10676 10677 rc = bnxt_hwrm_func_cfg_short_req_init(bp, &req); 10678 if (rc) 10679 return rc; 10680 10681 req->fid = cpu_to_le16(0xffff); 10682 req->enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_EVB_MODE); 10683 req->evb_mode = evb_mode; 10684 return hwrm_req_send(bp, req); 10685 } 10686 10687 static int bnxt_hwrm_set_cache_line_size(struct bnxt *bp, int size) 10688 { 10689 struct hwrm_func_cfg_input *req; 10690 int rc; 10691 10692 if (BNXT_VF(bp) || bp->hwrm_spec_code < 0x10803) 10693 return 0; 10694 10695 rc = bnxt_hwrm_func_cfg_short_req_init(bp, &req); 10696 if (rc) 10697 return rc; 10698 10699 req->fid = cpu_to_le16(0xffff); 10700 req->enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_CACHE_LINESIZE); 10701 req->options = FUNC_CFG_REQ_OPTIONS_CACHE_LINESIZE_SIZE_64; 10702 if (size == 128) 10703 req->options = FUNC_CFG_REQ_OPTIONS_CACHE_LINESIZE_SIZE_128; 10704 10705 return hwrm_req_send(bp, req); 10706 } 10707 10708 static int __bnxt_setup_vnic(struct bnxt *bp, struct bnxt_vnic_info *vnic) 10709 { 10710 int rc; 10711 10712 if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG) 10713 goto skip_rss_ctx; 10714 10715 /* allocate context for vnic */ 10716 rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic, 0); 10717 if (rc) { 10718 netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n", 10719 vnic->vnic_id, rc); 10720 goto vnic_setup_err; 10721 } 10722 bp->rsscos_nr_ctxs++; 10723 10724 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) { 10725 rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic, 1); 10726 if (rc) { 10727 netdev_err(bp->dev, "hwrm vnic %d cos ctx alloc failure rc: %x\n", 10728 vnic->vnic_id, rc); 10729 goto vnic_setup_err; 10730 } 10731 bp->rsscos_nr_ctxs++; 10732 } 10733 10734 skip_rss_ctx: 10735 /* configure default vnic, ring grp */ 10736 rc = bnxt_hwrm_vnic_cfg(bp, vnic); 10737 if (rc) { 10738 netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n", 10739 vnic->vnic_id, rc); 10740 goto vnic_setup_err; 10741 } 10742 10743 /* Enable RSS hashing on vnic */ 10744 rc = bnxt_hwrm_vnic_set_rss(bp, vnic, true); 10745 if (rc) { 10746 netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %x\n", 10747 vnic->vnic_id, rc); 10748 goto vnic_setup_err; 10749 } 10750 10751 if (bp->flags & BNXT_FLAG_AGG_RINGS) { 10752 rc = bnxt_hwrm_vnic_set_hds(bp, vnic); 10753 if (rc) { 10754 netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n", 10755 vnic->vnic_id, rc); 10756 } 10757 } 10758 10759 vnic_setup_err: 10760 return rc; 10761 } 10762 10763 int bnxt_hwrm_vnic_update(struct bnxt *bp, struct bnxt_vnic_info *vnic, 10764 u8 valid) 10765 { 10766 struct hwrm_vnic_update_input *req; 10767 int rc; 10768 10769 rc = hwrm_req_init(bp, req, HWRM_VNIC_UPDATE); 10770 if (rc) 10771 return rc; 10772 10773 req->vnic_id = cpu_to_le32(vnic->fw_vnic_id); 10774 10775 if (valid & VNIC_UPDATE_REQ_ENABLES_MRU_VALID) 10776 req->mru = cpu_to_le16(vnic->mru); 10777 10778 req->enables = cpu_to_le32(valid); 10779 10780 return hwrm_req_send(bp, req); 10781 } 10782 10783 int bnxt_hwrm_vnic_rss_cfg_p5(struct bnxt *bp, struct bnxt_vnic_info *vnic) 10784 { 10785 int rc; 10786 10787 rc = bnxt_hwrm_vnic_set_rss_p5(bp, vnic, true); 10788 if (rc) { 10789 netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %d\n", 10790 vnic->vnic_id, rc); 10791 return rc; 10792 } 10793 rc = bnxt_hwrm_vnic_cfg(bp, vnic); 10794 if (rc) 10795 netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n", 10796 vnic->vnic_id, rc); 10797 return rc; 10798 } 10799 10800 int __bnxt_setup_vnic_p5(struct bnxt *bp, struct bnxt_vnic_info *vnic) 10801 { 10802 int rc, i, nr_ctxs; 10803 10804 nr_ctxs = bnxt_get_nr_rss_ctxs(bp, bp->rx_nr_rings); 10805 for (i = 0; i < nr_ctxs; i++) { 10806 rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic, i); 10807 if (rc) { 10808 netdev_err(bp->dev, "hwrm vnic %d ctx %d alloc failure rc: %x\n", 10809 vnic->vnic_id, i, rc); 10810 break; 10811 } 10812 bp->rsscos_nr_ctxs++; 10813 } 10814 if (i < nr_ctxs) 10815 return -ENOMEM; 10816 10817 rc = bnxt_hwrm_vnic_rss_cfg_p5(bp, vnic); 10818 if (rc) 10819 return rc; 10820 10821 if (bp->flags & BNXT_FLAG_AGG_RINGS) { 10822 rc = bnxt_hwrm_vnic_set_hds(bp, vnic); 10823 if (rc) { 10824 netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n", 10825 vnic->vnic_id, rc); 10826 } 10827 } 10828 return rc; 10829 } 10830 10831 static int bnxt_setup_vnic(struct bnxt *bp, struct bnxt_vnic_info *vnic) 10832 { 10833 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 10834 return __bnxt_setup_vnic_p5(bp, vnic); 10835 else 10836 return __bnxt_setup_vnic(bp, vnic); 10837 } 10838 10839 static int bnxt_alloc_and_setup_vnic(struct bnxt *bp, 10840 struct bnxt_vnic_info *vnic, 10841 u16 start_rx_ring_idx, int rx_rings) 10842 { 10843 int rc; 10844 10845 rc = bnxt_hwrm_vnic_alloc(bp, vnic, start_rx_ring_idx, rx_rings); 10846 if (rc) { 10847 netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n", 10848 vnic->vnic_id, rc); 10849 return rc; 10850 } 10851 return bnxt_setup_vnic(bp, vnic); 10852 } 10853 10854 static int bnxt_alloc_rfs_vnics(struct bnxt *bp) 10855 { 10856 struct bnxt_vnic_info *vnic; 10857 int i, rc = 0; 10858 10859 if (BNXT_SUPPORTS_NTUPLE_VNIC(bp)) { 10860 vnic = &bp->vnic_info[BNXT_VNIC_NTUPLE]; 10861 return bnxt_alloc_and_setup_vnic(bp, vnic, 0, bp->rx_nr_rings); 10862 } 10863 10864 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 10865 return 0; 10866 10867 for (i = 0; i < bp->rx_nr_rings; i++) { 10868 u16 vnic_id = i + 1; 10869 u16 ring_id = i; 10870 10871 if (vnic_id >= bp->nr_vnics) 10872 break; 10873 10874 vnic = &bp->vnic_info[vnic_id]; 10875 vnic->flags |= BNXT_VNIC_RFS_FLAG; 10876 if (bp->rss_cap & BNXT_RSS_CAP_NEW_RSS_CAP) 10877 vnic->flags |= BNXT_VNIC_RFS_NEW_RSS_FLAG; 10878 if (bnxt_alloc_and_setup_vnic(bp, &bp->vnic_info[vnic_id], ring_id, 1)) 10879 break; 10880 } 10881 return rc; 10882 } 10883 10884 void bnxt_del_one_rss_ctx(struct bnxt *bp, struct bnxt_rss_ctx *rss_ctx, 10885 bool all) 10886 { 10887 struct bnxt_vnic_info *vnic = &rss_ctx->vnic; 10888 struct bnxt_filter_base *usr_fltr, *tmp; 10889 struct bnxt_ntuple_filter *ntp_fltr; 10890 int i; 10891 10892 if (netif_running(bp->dev)) { 10893 bnxt_hwrm_vnic_free_one(bp, &rss_ctx->vnic); 10894 for (i = 0; i < BNXT_MAX_CTX_PER_VNIC; i++) { 10895 if (vnic->fw_rss_cos_lb_ctx[i] != INVALID_HW_RING_ID) 10896 bnxt_hwrm_vnic_ctx_free_one(bp, vnic, i); 10897 } 10898 } 10899 if (!all) 10900 return; 10901 10902 list_for_each_entry_safe(usr_fltr, tmp, &bp->usr_fltr_list, list) { 10903 if ((usr_fltr->flags & BNXT_ACT_RSS_CTX) && 10904 usr_fltr->fw_vnic_id == rss_ctx->index) { 10905 ntp_fltr = container_of(usr_fltr, 10906 struct bnxt_ntuple_filter, 10907 base); 10908 bnxt_hwrm_cfa_ntuple_filter_free(bp, ntp_fltr); 10909 bnxt_del_ntp_filter(bp, ntp_fltr); 10910 bnxt_del_one_usr_fltr(bp, usr_fltr); 10911 } 10912 } 10913 10914 if (vnic->rss_table) 10915 dma_free_coherent(&bp->pdev->dev, vnic->rss_table_size, 10916 vnic->rss_table, 10917 vnic->rss_table_dma_addr); 10918 bp->num_rss_ctx--; 10919 } 10920 10921 static bool bnxt_vnic_has_rx_ring(struct bnxt *bp, struct bnxt_vnic_info *vnic, 10922 int rxr_id) 10923 { 10924 u16 tbl_size = bnxt_get_rxfh_indir_size(bp->dev); 10925 int i, vnic_rx; 10926 10927 /* Ntuple VNIC always has all the rx rings. Any change of ring id 10928 * must be updated because a future filter may use it. 10929 */ 10930 if (vnic->flags & BNXT_VNIC_NTUPLE_FLAG) 10931 return true; 10932 10933 for (i = 0; i < tbl_size; i++) { 10934 if (vnic->flags & BNXT_VNIC_RSSCTX_FLAG) 10935 vnic_rx = ethtool_rxfh_context_indir(vnic->rss_ctx)[i]; 10936 else 10937 vnic_rx = bp->rss_indir_tbl[i]; 10938 10939 if (rxr_id == vnic_rx) 10940 return true; 10941 } 10942 10943 return false; 10944 } 10945 10946 static int bnxt_set_vnic_mru_p5(struct bnxt *bp, struct bnxt_vnic_info *vnic, 10947 u16 mru, int rxr_id) 10948 { 10949 int rc; 10950 10951 if (!bnxt_vnic_has_rx_ring(bp, vnic, rxr_id)) 10952 return 0; 10953 10954 if (mru) { 10955 rc = bnxt_hwrm_vnic_set_rss_p5(bp, vnic, true); 10956 if (rc) { 10957 netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %d\n", 10958 vnic->vnic_id, rc); 10959 return rc; 10960 } 10961 } 10962 vnic->mru = mru; 10963 bnxt_hwrm_vnic_update(bp, vnic, 10964 VNIC_UPDATE_REQ_ENABLES_MRU_VALID); 10965 10966 return 0; 10967 } 10968 10969 static int bnxt_set_rss_ctx_vnic_mru(struct bnxt *bp, u16 mru, int rxr_id) 10970 { 10971 struct ethtool_rxfh_context *ctx; 10972 unsigned long context; 10973 int rc; 10974 10975 xa_for_each(&bp->dev->ethtool->rss_ctx, context, ctx) { 10976 struct bnxt_rss_ctx *rss_ctx = ethtool_rxfh_context_priv(ctx); 10977 struct bnxt_vnic_info *vnic = &rss_ctx->vnic; 10978 10979 rc = bnxt_set_vnic_mru_p5(bp, vnic, mru, rxr_id); 10980 if (rc) 10981 return rc; 10982 } 10983 10984 return 0; 10985 } 10986 10987 static void bnxt_hwrm_realloc_rss_ctx_vnic(struct bnxt *bp) 10988 { 10989 bool set_tpa = !!(bp->flags & BNXT_FLAG_TPA); 10990 struct ethtool_rxfh_context *ctx; 10991 unsigned long context; 10992 10993 xa_for_each(&bp->dev->ethtool->rss_ctx, context, ctx) { 10994 struct bnxt_rss_ctx *rss_ctx = ethtool_rxfh_context_priv(ctx); 10995 struct bnxt_vnic_info *vnic = &rss_ctx->vnic; 10996 10997 if (bnxt_hwrm_vnic_alloc(bp, vnic, 0, bp->rx_nr_rings) || 10998 bnxt_hwrm_vnic_set_tpa(bp, vnic, set_tpa) || 10999 __bnxt_setup_vnic_p5(bp, vnic)) { 11000 netdev_err(bp->dev, "Failed to restore RSS ctx %d\n", 11001 rss_ctx->index); 11002 bnxt_del_one_rss_ctx(bp, rss_ctx, true); 11003 ethtool_rxfh_context_lost(bp->dev, rss_ctx->index); 11004 } 11005 } 11006 } 11007 11008 static void bnxt_clear_rss_ctxs(struct bnxt *bp) 11009 { 11010 struct ethtool_rxfh_context *ctx; 11011 unsigned long context; 11012 11013 xa_for_each(&bp->dev->ethtool->rss_ctx, context, ctx) { 11014 struct bnxt_rss_ctx *rss_ctx = ethtool_rxfh_context_priv(ctx); 11015 11016 bnxt_del_one_rss_ctx(bp, rss_ctx, false); 11017 } 11018 } 11019 11020 /* Allow PF, trusted VFs and VFs with default VLAN to be in promiscuous mode */ 11021 static bool bnxt_promisc_ok(struct bnxt *bp) 11022 { 11023 #ifdef CONFIG_BNXT_SRIOV 11024 if (BNXT_VF(bp) && !bp->vf.vlan && !bnxt_is_trusted_vf(bp, &bp->vf)) 11025 return false; 11026 #endif 11027 return true; 11028 } 11029 11030 static int bnxt_setup_nitroa0_vnic(struct bnxt *bp) 11031 { 11032 struct bnxt_vnic_info *vnic = &bp->vnic_info[1]; 11033 unsigned int rc = 0; 11034 11035 rc = bnxt_hwrm_vnic_alloc(bp, vnic, bp->rx_nr_rings - 1, 1); 11036 if (rc) { 11037 netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n", 11038 rc); 11039 return rc; 11040 } 11041 11042 rc = bnxt_hwrm_vnic_cfg(bp, vnic); 11043 if (rc) { 11044 netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n", 11045 rc); 11046 return rc; 11047 } 11048 return rc; 11049 } 11050 11051 static int bnxt_cfg_rx_mode(struct bnxt *); 11052 static bool bnxt_mc_list_updated(struct bnxt *, u32 *); 11053 11054 static int bnxt_init_chip(struct bnxt *bp, bool irq_re_init) 11055 { 11056 struct bnxt_vnic_info *vnic = &bp->vnic_info[BNXT_VNIC_DEFAULT]; 11057 int rc = 0; 11058 unsigned int rx_nr_rings = bp->rx_nr_rings; 11059 11060 if (irq_re_init) { 11061 rc = bnxt_hwrm_stat_ctx_alloc(bp); 11062 if (rc) { 11063 netdev_err(bp->dev, "hwrm stat ctx alloc failure rc: %x\n", 11064 rc); 11065 goto err_out; 11066 } 11067 } 11068 11069 rc = bnxt_hwrm_ring_alloc(bp); 11070 if (rc) { 11071 netdev_err(bp->dev, "hwrm ring alloc failure rc: %x\n", rc); 11072 goto err_out; 11073 } 11074 11075 rc = bnxt_hwrm_ring_grp_alloc(bp); 11076 if (rc) { 11077 netdev_err(bp->dev, "hwrm_ring_grp alloc failure: %x\n", rc); 11078 goto err_out; 11079 } 11080 11081 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 11082 rx_nr_rings--; 11083 11084 /* default vnic 0 */ 11085 rc = bnxt_hwrm_vnic_alloc(bp, vnic, 0, rx_nr_rings); 11086 if (rc) { 11087 netdev_err(bp->dev, "hwrm vnic alloc failure rc: %x\n", rc); 11088 goto err_out; 11089 } 11090 11091 if (BNXT_VF(bp)) 11092 bnxt_hwrm_func_qcfg(bp); 11093 11094 rc = bnxt_setup_vnic(bp, vnic); 11095 if (rc) 11096 goto err_out; 11097 if (bp->rss_cap & BNXT_RSS_CAP_RSS_HASH_TYPE_DELTA) 11098 bnxt_hwrm_update_rss_hash_cfg(bp); 11099 11100 if (bp->flags & BNXT_FLAG_RFS) { 11101 rc = bnxt_alloc_rfs_vnics(bp); 11102 if (rc) 11103 goto err_out; 11104 } 11105 11106 if (bp->flags & BNXT_FLAG_TPA) { 11107 rc = bnxt_set_tpa(bp, true); 11108 if (rc) 11109 goto err_out; 11110 } 11111 11112 if (BNXT_VF(bp)) 11113 bnxt_update_vf_mac(bp); 11114 11115 /* Filter for default vnic 0 */ 11116 rc = bnxt_hwrm_set_vnic_filter(bp, 0, 0, bp->dev->dev_addr); 11117 if (rc) { 11118 if (BNXT_VF(bp) && rc == -ENODEV) 11119 netdev_err(bp->dev, "Cannot configure L2 filter while PF is unavailable\n"); 11120 else 11121 netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n", rc); 11122 goto err_out; 11123 } 11124 vnic->uc_filter_count = 1; 11125 11126 vnic->rx_mask = 0; 11127 if (test_bit(BNXT_STATE_HALF_OPEN, &bp->state)) 11128 goto skip_rx_mask; 11129 11130 if (bp->dev->flags & IFF_BROADCAST) 11131 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_BCAST; 11132 11133 if (bp->dev->flags & IFF_PROMISC) 11134 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS; 11135 11136 if (bp->dev->flags & IFF_ALLMULTI) { 11137 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST; 11138 vnic->mc_list_count = 0; 11139 } else if (bp->dev->flags & IFF_MULTICAST) { 11140 u32 mask = 0; 11141 11142 bnxt_mc_list_updated(bp, &mask); 11143 vnic->rx_mask |= mask; 11144 } 11145 11146 rc = bnxt_cfg_rx_mode(bp); 11147 if (rc) 11148 goto err_out; 11149 11150 skip_rx_mask: 11151 rc = bnxt_hwrm_set_coal(bp); 11152 if (rc) 11153 netdev_warn(bp->dev, "HWRM set coalescing failure rc: %x\n", 11154 rc); 11155 11156 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) { 11157 rc = bnxt_setup_nitroa0_vnic(bp); 11158 if (rc) 11159 netdev_err(bp->dev, "Special vnic setup failure for NS2 A0 rc: %x\n", 11160 rc); 11161 } 11162 11163 if (BNXT_VF(bp)) { 11164 bnxt_hwrm_func_qcfg(bp); 11165 netdev_update_features(bp->dev); 11166 } 11167 11168 return 0; 11169 11170 err_out: 11171 bnxt_hwrm_resource_free(bp, 0, true); 11172 11173 return rc; 11174 } 11175 11176 static int bnxt_shutdown_nic(struct bnxt *bp, bool irq_re_init) 11177 { 11178 bnxt_hwrm_resource_free(bp, 1, irq_re_init); 11179 return 0; 11180 } 11181 11182 static int bnxt_init_nic(struct bnxt *bp, bool irq_re_init) 11183 { 11184 bnxt_init_cp_rings(bp); 11185 bnxt_init_rx_rings(bp); 11186 bnxt_init_tx_rings(bp); 11187 bnxt_init_ring_grps(bp, irq_re_init); 11188 bnxt_init_vnics(bp); 11189 11190 return bnxt_init_chip(bp, irq_re_init); 11191 } 11192 11193 static int bnxt_set_real_num_queues(struct bnxt *bp) 11194 { 11195 int rc; 11196 struct net_device *dev = bp->dev; 11197 11198 rc = netif_set_real_num_tx_queues(dev, bp->tx_nr_rings - 11199 bp->tx_nr_rings_xdp); 11200 if (rc) 11201 return rc; 11202 11203 rc = netif_set_real_num_rx_queues(dev, bp->rx_nr_rings); 11204 if (rc) 11205 return rc; 11206 11207 #ifdef CONFIG_RFS_ACCEL 11208 if (bp->flags & BNXT_FLAG_RFS) 11209 dev->rx_cpu_rmap = alloc_irq_cpu_rmap(bp->rx_nr_rings); 11210 #endif 11211 11212 return rc; 11213 } 11214 11215 static int __bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max, 11216 bool shared) 11217 { 11218 int _rx = *rx, _tx = *tx; 11219 11220 if (shared) { 11221 *rx = min_t(int, _rx, max); 11222 *tx = min_t(int, _tx, max); 11223 } else { 11224 if (max < 2) 11225 return -ENOMEM; 11226 11227 while (_rx + _tx > max) { 11228 if (_rx > _tx && _rx > 1) 11229 _rx--; 11230 else if (_tx > 1) 11231 _tx--; 11232 } 11233 *rx = _rx; 11234 *tx = _tx; 11235 } 11236 return 0; 11237 } 11238 11239 static int __bnxt_num_tx_to_cp(struct bnxt *bp, int tx, int tx_sets, int tx_xdp) 11240 { 11241 return (tx - tx_xdp) / tx_sets + tx_xdp; 11242 } 11243 11244 int bnxt_num_tx_to_cp(struct bnxt *bp, int tx) 11245 { 11246 int tcs = bp->num_tc; 11247 11248 if (!tcs) 11249 tcs = 1; 11250 return __bnxt_num_tx_to_cp(bp, tx, tcs, bp->tx_nr_rings_xdp); 11251 } 11252 11253 static int bnxt_num_cp_to_tx(struct bnxt *bp, int tx_cp) 11254 { 11255 int tcs = bp->num_tc; 11256 11257 return (tx_cp - bp->tx_nr_rings_xdp) * tcs + 11258 bp->tx_nr_rings_xdp; 11259 } 11260 11261 static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max, 11262 bool sh) 11263 { 11264 int tx_cp = bnxt_num_tx_to_cp(bp, *tx); 11265 11266 if (tx_cp != *tx) { 11267 int tx_saved = tx_cp, rc; 11268 11269 rc = __bnxt_trim_rings(bp, rx, &tx_cp, max, sh); 11270 if (rc) 11271 return rc; 11272 if (tx_cp != tx_saved) 11273 *tx = bnxt_num_cp_to_tx(bp, tx_cp); 11274 return 0; 11275 } 11276 return __bnxt_trim_rings(bp, rx, tx, max, sh); 11277 } 11278 11279 static void bnxt_setup_msix(struct bnxt *bp) 11280 { 11281 const int len = sizeof(bp->irq_tbl[0].name); 11282 struct net_device *dev = bp->dev; 11283 int tcs, i; 11284 11285 tcs = bp->num_tc; 11286 if (tcs) { 11287 int i, off, count; 11288 11289 for (i = 0; i < tcs; i++) { 11290 count = bp->tx_nr_rings_per_tc; 11291 off = BNXT_TC_TO_RING_BASE(bp, i); 11292 netdev_set_tc_queue(dev, i, count, off); 11293 } 11294 } 11295 11296 for (i = 0; i < bp->cp_nr_rings; i++) { 11297 int map_idx = bnxt_cp_num_to_irq_num(bp, i); 11298 char *attr; 11299 11300 if (bp->flags & BNXT_FLAG_SHARED_RINGS) 11301 attr = "TxRx"; 11302 else if (i < bp->rx_nr_rings) 11303 attr = "rx"; 11304 else 11305 attr = "tx"; 11306 11307 snprintf(bp->irq_tbl[map_idx].name, len, "%s-%s-%d", dev->name, 11308 attr, i); 11309 bp->irq_tbl[map_idx].handler = bnxt_msix; 11310 } 11311 } 11312 11313 static int bnxt_init_int_mode(struct bnxt *bp); 11314 11315 static int bnxt_change_msix(struct bnxt *bp, int total) 11316 { 11317 struct msi_map map; 11318 int i; 11319 11320 /* add MSIX to the end if needed */ 11321 for (i = bp->total_irqs; i < total; i++) { 11322 map = pci_msix_alloc_irq_at(bp->pdev, i, NULL); 11323 if (map.index < 0) 11324 return bp->total_irqs; 11325 bp->irq_tbl[i].vector = map.virq; 11326 bp->total_irqs++; 11327 } 11328 11329 /* trim MSIX from the end if needed */ 11330 for (i = bp->total_irqs; i > total; i--) { 11331 map.index = i - 1; 11332 map.virq = bp->irq_tbl[i - 1].vector; 11333 pci_msix_free_irq(bp->pdev, map); 11334 bp->total_irqs--; 11335 } 11336 return bp->total_irqs; 11337 } 11338 11339 static int bnxt_setup_int_mode(struct bnxt *bp) 11340 { 11341 int rc; 11342 11343 if (!bp->irq_tbl) { 11344 rc = bnxt_init_int_mode(bp); 11345 if (rc || !bp->irq_tbl) 11346 return rc ?: -ENODEV; 11347 } 11348 11349 bnxt_setup_msix(bp); 11350 11351 rc = bnxt_set_real_num_queues(bp); 11352 return rc; 11353 } 11354 11355 static unsigned int bnxt_get_max_func_rss_ctxs(struct bnxt *bp) 11356 { 11357 return bp->hw_resc.max_rsscos_ctxs; 11358 } 11359 11360 static unsigned int bnxt_get_max_func_vnics(struct bnxt *bp) 11361 { 11362 return bp->hw_resc.max_vnics; 11363 } 11364 11365 unsigned int bnxt_get_max_func_stat_ctxs(struct bnxt *bp) 11366 { 11367 return bp->hw_resc.max_stat_ctxs; 11368 } 11369 11370 unsigned int bnxt_get_max_func_cp_rings(struct bnxt *bp) 11371 { 11372 return bp->hw_resc.max_cp_rings; 11373 } 11374 11375 static unsigned int bnxt_get_max_func_cp_rings_for_en(struct bnxt *bp) 11376 { 11377 unsigned int cp = bp->hw_resc.max_cp_rings; 11378 11379 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 11380 cp -= bnxt_get_ulp_msix_num(bp); 11381 11382 return cp; 11383 } 11384 11385 static unsigned int bnxt_get_max_func_irqs(struct bnxt *bp) 11386 { 11387 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 11388 11389 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 11390 return min_t(unsigned int, hw_resc->max_irqs, hw_resc->max_nqs); 11391 11392 return min_t(unsigned int, hw_resc->max_irqs, hw_resc->max_cp_rings); 11393 } 11394 11395 static void bnxt_set_max_func_irqs(struct bnxt *bp, unsigned int max_irqs) 11396 { 11397 bp->hw_resc.max_irqs = max_irqs; 11398 } 11399 11400 unsigned int bnxt_get_avail_cp_rings_for_en(struct bnxt *bp) 11401 { 11402 unsigned int cp; 11403 11404 cp = bnxt_get_max_func_cp_rings_for_en(bp); 11405 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 11406 return cp - bp->rx_nr_rings - bp->tx_nr_rings; 11407 else 11408 return cp - bp->cp_nr_rings; 11409 } 11410 11411 unsigned int bnxt_get_avail_stat_ctxs_for_en(struct bnxt *bp) 11412 { 11413 return bnxt_get_max_func_stat_ctxs(bp) - bnxt_get_func_stat_ctxs(bp); 11414 } 11415 11416 static int bnxt_get_avail_msix(struct bnxt *bp, int num) 11417 { 11418 int max_irq = bnxt_get_max_func_irqs(bp); 11419 int total_req = bp->cp_nr_rings + num; 11420 11421 if (max_irq < total_req) { 11422 num = max_irq - bp->cp_nr_rings; 11423 if (num <= 0) 11424 return 0; 11425 } 11426 return num; 11427 } 11428 11429 static int bnxt_get_num_msix(struct bnxt *bp) 11430 { 11431 if (!BNXT_NEW_RM(bp)) 11432 return bnxt_get_max_func_irqs(bp); 11433 11434 return bnxt_nq_rings_in_use(bp); 11435 } 11436 11437 static int bnxt_init_int_mode(struct bnxt *bp) 11438 { 11439 int i, total_vecs, max, rc = 0, min = 1, ulp_msix, tx_cp, tbl_size; 11440 11441 total_vecs = bnxt_get_num_msix(bp); 11442 max = bnxt_get_max_func_irqs(bp); 11443 if (total_vecs > max) 11444 total_vecs = max; 11445 11446 if (!total_vecs) 11447 return 0; 11448 11449 if (!(bp->flags & BNXT_FLAG_SHARED_RINGS)) 11450 min = 2; 11451 11452 total_vecs = pci_alloc_irq_vectors(bp->pdev, min, total_vecs, 11453 PCI_IRQ_MSIX); 11454 ulp_msix = bnxt_get_ulp_msix_num(bp); 11455 if (total_vecs < 0 || total_vecs < ulp_msix) { 11456 rc = -ENODEV; 11457 goto msix_setup_exit; 11458 } 11459 11460 tbl_size = total_vecs; 11461 if (pci_msix_can_alloc_dyn(bp->pdev)) 11462 tbl_size = max; 11463 bp->irq_tbl = kcalloc(tbl_size, sizeof(*bp->irq_tbl), GFP_KERNEL); 11464 if (bp->irq_tbl) { 11465 for (i = 0; i < total_vecs; i++) 11466 bp->irq_tbl[i].vector = pci_irq_vector(bp->pdev, i); 11467 11468 bp->total_irqs = total_vecs; 11469 /* Trim rings based upon num of vectors allocated */ 11470 rc = bnxt_trim_rings(bp, &bp->rx_nr_rings, &bp->tx_nr_rings, 11471 total_vecs - ulp_msix, min == 1); 11472 if (rc) 11473 goto msix_setup_exit; 11474 11475 tx_cp = bnxt_num_tx_to_cp(bp, bp->tx_nr_rings); 11476 bp->cp_nr_rings = (min == 1) ? 11477 max_t(int, tx_cp, bp->rx_nr_rings) : 11478 tx_cp + bp->rx_nr_rings; 11479 11480 } else { 11481 rc = -ENOMEM; 11482 goto msix_setup_exit; 11483 } 11484 return 0; 11485 11486 msix_setup_exit: 11487 netdev_err(bp->dev, "bnxt_init_int_mode err: %x\n", rc); 11488 kfree(bp->irq_tbl); 11489 bp->irq_tbl = NULL; 11490 pci_free_irq_vectors(bp->pdev); 11491 return rc; 11492 } 11493 11494 static void bnxt_clear_int_mode(struct bnxt *bp) 11495 { 11496 pci_free_irq_vectors(bp->pdev); 11497 11498 kfree(bp->irq_tbl); 11499 bp->irq_tbl = NULL; 11500 } 11501 11502 int bnxt_reserve_rings(struct bnxt *bp, bool irq_re_init) 11503 { 11504 bool irq_cleared = false; 11505 bool irq_change = false; 11506 int tcs = bp->num_tc; 11507 int irqs_required; 11508 int rc; 11509 11510 if (!bnxt_need_reserve_rings(bp)) 11511 return 0; 11512 11513 if (BNXT_NEW_RM(bp) && !bnxt_ulp_registered(bp->edev)) { 11514 int ulp_msix = bnxt_get_avail_msix(bp, bp->ulp_num_msix_want); 11515 11516 if (ulp_msix > bp->ulp_num_msix_want) 11517 ulp_msix = bp->ulp_num_msix_want; 11518 irqs_required = ulp_msix + bp->cp_nr_rings; 11519 } else { 11520 irqs_required = bnxt_get_num_msix(bp); 11521 } 11522 11523 if (irq_re_init && BNXT_NEW_RM(bp) && irqs_required != bp->total_irqs) { 11524 irq_change = true; 11525 if (!pci_msix_can_alloc_dyn(bp->pdev)) { 11526 bnxt_ulp_irq_stop(bp); 11527 bnxt_clear_int_mode(bp); 11528 irq_cleared = true; 11529 } 11530 } 11531 rc = __bnxt_reserve_rings(bp); 11532 if (irq_cleared) { 11533 if (!rc) 11534 rc = bnxt_init_int_mode(bp); 11535 bnxt_ulp_irq_restart(bp, rc); 11536 } else if (irq_change && !rc) { 11537 if (bnxt_change_msix(bp, irqs_required) != irqs_required) 11538 rc = -ENOSPC; 11539 } 11540 if (rc) { 11541 netdev_err(bp->dev, "ring reservation/IRQ init failure rc: %d\n", rc); 11542 return rc; 11543 } 11544 if (tcs && (bp->tx_nr_rings_per_tc * tcs != 11545 bp->tx_nr_rings - bp->tx_nr_rings_xdp)) { 11546 netdev_err(bp->dev, "tx ring reservation failure\n"); 11547 netdev_reset_tc(bp->dev); 11548 bp->num_tc = 0; 11549 if (bp->tx_nr_rings_xdp) 11550 bp->tx_nr_rings_per_tc = bp->tx_nr_rings_xdp; 11551 else 11552 bp->tx_nr_rings_per_tc = bp->tx_nr_rings; 11553 return -ENOMEM; 11554 } 11555 return 0; 11556 } 11557 11558 static void bnxt_tx_queue_stop(struct bnxt *bp, int idx) 11559 { 11560 struct bnxt_tx_ring_info *txr; 11561 struct netdev_queue *txq; 11562 struct bnxt_napi *bnapi; 11563 int i; 11564 11565 bnapi = bp->bnapi[idx]; 11566 bnxt_for_each_napi_tx(i, bnapi, txr) { 11567 WRITE_ONCE(txr->dev_state, BNXT_DEV_STATE_CLOSING); 11568 synchronize_net(); 11569 11570 if (!(bnapi->flags & BNXT_NAPI_FLAG_XDP)) { 11571 txq = netdev_get_tx_queue(bp->dev, txr->txq_index); 11572 if (txq) { 11573 __netif_tx_lock_bh(txq); 11574 netif_tx_stop_queue(txq); 11575 __netif_tx_unlock_bh(txq); 11576 } 11577 } 11578 11579 if (!bp->tph_mode) 11580 continue; 11581 11582 bnxt_hwrm_tx_ring_free(bp, txr, true); 11583 bnxt_hwrm_cp_ring_free(bp, txr->tx_cpr); 11584 bnxt_free_one_tx_ring_skbs(bp, txr, txr->txq_index); 11585 bnxt_clear_one_cp_ring(bp, txr->tx_cpr); 11586 } 11587 } 11588 11589 static int bnxt_tx_queue_start(struct bnxt *bp, int idx) 11590 { 11591 struct bnxt_tx_ring_info *txr; 11592 struct netdev_queue *txq; 11593 struct bnxt_napi *bnapi; 11594 int rc, i; 11595 11596 bnapi = bp->bnapi[idx]; 11597 /* All rings have been reserved and previously allocated. 11598 * Reallocating with the same parameters should never fail. 11599 */ 11600 bnxt_for_each_napi_tx(i, bnapi, txr) { 11601 if (!bp->tph_mode) 11602 goto start_tx; 11603 11604 rc = bnxt_hwrm_cp_ring_alloc_p5(bp, txr->tx_cpr); 11605 if (rc) 11606 return rc; 11607 11608 rc = bnxt_hwrm_tx_ring_alloc(bp, txr, false); 11609 if (rc) 11610 return rc; 11611 11612 txr->tx_prod = 0; 11613 txr->tx_cons = 0; 11614 txr->tx_hw_cons = 0; 11615 start_tx: 11616 WRITE_ONCE(txr->dev_state, 0); 11617 synchronize_net(); 11618 11619 if (bnapi->flags & BNXT_NAPI_FLAG_XDP) 11620 continue; 11621 11622 txq = netdev_get_tx_queue(bp->dev, txr->txq_index); 11623 if (txq) 11624 netif_tx_start_queue(txq); 11625 } 11626 11627 return 0; 11628 } 11629 11630 static void bnxt_irq_affinity_notify(struct irq_affinity_notify *notify, 11631 const cpumask_t *mask) 11632 { 11633 struct bnxt_irq *irq; 11634 u16 tag; 11635 int err; 11636 11637 irq = container_of(notify, struct bnxt_irq, affinity_notify); 11638 11639 if (!irq->bp->tph_mode) 11640 return; 11641 11642 cpumask_copy(irq->cpu_mask, mask); 11643 11644 if (irq->ring_nr >= irq->bp->rx_nr_rings) 11645 return; 11646 11647 if (pcie_tph_get_cpu_st(irq->bp->pdev, TPH_MEM_TYPE_VM, 11648 cpumask_first(irq->cpu_mask), &tag)) 11649 return; 11650 11651 if (pcie_tph_set_st_entry(irq->bp->pdev, irq->msix_nr, tag)) 11652 return; 11653 11654 netdev_lock(irq->bp->dev); 11655 if (netif_running(irq->bp->dev)) { 11656 err = netdev_rx_queue_restart(irq->bp->dev, irq->ring_nr); 11657 if (err) 11658 netdev_err(irq->bp->dev, 11659 "RX queue restart failed: err=%d\n", err); 11660 } 11661 netdev_unlock(irq->bp->dev); 11662 } 11663 11664 static void bnxt_irq_affinity_release(struct kref *ref) 11665 { 11666 struct irq_affinity_notify *notify = 11667 container_of(ref, struct irq_affinity_notify, kref); 11668 struct bnxt_irq *irq; 11669 11670 irq = container_of(notify, struct bnxt_irq, affinity_notify); 11671 11672 if (!irq->bp->tph_mode) 11673 return; 11674 11675 if (pcie_tph_set_st_entry(irq->bp->pdev, irq->msix_nr, 0)) { 11676 netdev_err(irq->bp->dev, 11677 "Setting ST=0 for MSIX entry %d failed\n", 11678 irq->msix_nr); 11679 return; 11680 } 11681 } 11682 11683 static void bnxt_release_irq_notifier(struct bnxt_irq *irq) 11684 { 11685 irq_set_affinity_notifier(irq->vector, NULL); 11686 } 11687 11688 static void bnxt_register_irq_notifier(struct bnxt *bp, struct bnxt_irq *irq) 11689 { 11690 struct irq_affinity_notify *notify; 11691 11692 irq->bp = bp; 11693 11694 /* Nothing to do if TPH is not enabled */ 11695 if (!bp->tph_mode) 11696 return; 11697 11698 /* Register IRQ affinity notifier */ 11699 notify = &irq->affinity_notify; 11700 notify->irq = irq->vector; 11701 notify->notify = bnxt_irq_affinity_notify; 11702 notify->release = bnxt_irq_affinity_release; 11703 11704 irq_set_affinity_notifier(irq->vector, notify); 11705 } 11706 11707 static void bnxt_free_irq(struct bnxt *bp) 11708 { 11709 struct bnxt_irq *irq; 11710 int i; 11711 11712 #ifdef CONFIG_RFS_ACCEL 11713 free_irq_cpu_rmap(bp->dev->rx_cpu_rmap); 11714 bp->dev->rx_cpu_rmap = NULL; 11715 #endif 11716 if (!bp->irq_tbl || !bp->bnapi) 11717 return; 11718 11719 for (i = 0; i < bp->cp_nr_rings; i++) { 11720 int map_idx = bnxt_cp_num_to_irq_num(bp, i); 11721 11722 irq = &bp->irq_tbl[map_idx]; 11723 if (irq->requested) { 11724 if (irq->have_cpumask) { 11725 irq_update_affinity_hint(irq->vector, NULL); 11726 free_cpumask_var(irq->cpu_mask); 11727 irq->have_cpumask = 0; 11728 } 11729 11730 bnxt_release_irq_notifier(irq); 11731 11732 free_irq(irq->vector, bp->bnapi[i]); 11733 } 11734 11735 irq->requested = 0; 11736 } 11737 11738 /* Disable TPH support */ 11739 pcie_disable_tph(bp->pdev); 11740 bp->tph_mode = 0; 11741 } 11742 11743 static int bnxt_request_irq(struct bnxt *bp) 11744 { 11745 struct cpu_rmap *rmap = NULL; 11746 int i, j, rc = 0; 11747 unsigned long flags = 0; 11748 11749 rc = bnxt_setup_int_mode(bp); 11750 if (rc) { 11751 netdev_err(bp->dev, "bnxt_setup_int_mode err: %x\n", 11752 rc); 11753 return rc; 11754 } 11755 #ifdef CONFIG_RFS_ACCEL 11756 rmap = bp->dev->rx_cpu_rmap; 11757 #endif 11758 11759 /* Enable TPH support as part of IRQ request */ 11760 rc = pcie_enable_tph(bp->pdev, PCI_TPH_ST_IV_MODE); 11761 if (!rc) 11762 bp->tph_mode = PCI_TPH_ST_IV_MODE; 11763 11764 for (i = 0, j = 0; i < bp->cp_nr_rings; i++) { 11765 int map_idx = bnxt_cp_num_to_irq_num(bp, i); 11766 struct bnxt_irq *irq = &bp->irq_tbl[map_idx]; 11767 11768 if (IS_ENABLED(CONFIG_RFS_ACCEL) && 11769 rmap && bp->bnapi[i]->rx_ring) { 11770 rc = irq_cpu_rmap_add(rmap, irq->vector); 11771 if (rc) 11772 netdev_warn(bp->dev, "failed adding irq rmap for ring %d\n", 11773 j); 11774 j++; 11775 } 11776 11777 rc = request_irq(irq->vector, irq->handler, flags, irq->name, 11778 bp->bnapi[i]); 11779 if (rc) 11780 break; 11781 11782 netif_napi_set_irq_locked(&bp->bnapi[i]->napi, irq->vector); 11783 irq->requested = 1; 11784 11785 if (zalloc_cpumask_var(&irq->cpu_mask, GFP_KERNEL)) { 11786 int numa_node = dev_to_node(&bp->pdev->dev); 11787 u16 tag; 11788 11789 irq->have_cpumask = 1; 11790 irq->msix_nr = map_idx; 11791 irq->ring_nr = i; 11792 cpumask_set_cpu(cpumask_local_spread(i, numa_node), 11793 irq->cpu_mask); 11794 rc = irq_update_affinity_hint(irq->vector, irq->cpu_mask); 11795 if (rc) { 11796 netdev_warn(bp->dev, 11797 "Update affinity hint failed, IRQ = %d\n", 11798 irq->vector); 11799 break; 11800 } 11801 11802 bnxt_register_irq_notifier(bp, irq); 11803 11804 /* Init ST table entry */ 11805 if (pcie_tph_get_cpu_st(irq->bp->pdev, TPH_MEM_TYPE_VM, 11806 cpumask_first(irq->cpu_mask), 11807 &tag)) 11808 continue; 11809 11810 pcie_tph_set_st_entry(irq->bp->pdev, irq->msix_nr, tag); 11811 } 11812 } 11813 return rc; 11814 } 11815 11816 static void bnxt_del_napi(struct bnxt *bp) 11817 { 11818 int i; 11819 11820 if (!bp->bnapi) 11821 return; 11822 11823 for (i = 0; i < bp->rx_nr_rings; i++) 11824 netif_queue_set_napi(bp->dev, i, NETDEV_QUEUE_TYPE_RX, NULL); 11825 for (i = 0; i < bp->tx_nr_rings - bp->tx_nr_rings_xdp; i++) 11826 netif_queue_set_napi(bp->dev, i, NETDEV_QUEUE_TYPE_TX, NULL); 11827 11828 for (i = 0; i < bp->cp_nr_rings; i++) { 11829 struct bnxt_napi *bnapi = bp->bnapi[i]; 11830 11831 __netif_napi_del_locked(&bnapi->napi); 11832 } 11833 /* We called __netif_napi_del_locked(), we need 11834 * to respect an RCU grace period before freeing napi structures. 11835 */ 11836 synchronize_net(); 11837 } 11838 11839 static void bnxt_init_napi(struct bnxt *bp) 11840 { 11841 int (*poll_fn)(struct napi_struct *, int) = bnxt_poll; 11842 unsigned int cp_nr_rings = bp->cp_nr_rings; 11843 struct bnxt_napi *bnapi; 11844 int i; 11845 11846 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 11847 poll_fn = bnxt_poll_p5; 11848 else if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 11849 cp_nr_rings--; 11850 11851 set_bit(BNXT_STATE_NAPI_DISABLED, &bp->state); 11852 11853 for (i = 0; i < cp_nr_rings; i++) { 11854 bnapi = bp->bnapi[i]; 11855 netif_napi_add_config_locked(bp->dev, &bnapi->napi, poll_fn, 11856 bnapi->index); 11857 } 11858 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) { 11859 bnapi = bp->bnapi[cp_nr_rings]; 11860 netif_napi_add_locked(bp->dev, &bnapi->napi, bnxt_poll_nitroa0); 11861 } 11862 } 11863 11864 static void bnxt_disable_napi(struct bnxt *bp) 11865 { 11866 int i; 11867 11868 if (!bp->bnapi || 11869 test_and_set_bit(BNXT_STATE_NAPI_DISABLED, &bp->state)) 11870 return; 11871 11872 for (i = 0; i < bp->cp_nr_rings; i++) { 11873 struct bnxt_napi *bnapi = bp->bnapi[i]; 11874 struct bnxt_cp_ring_info *cpr; 11875 11876 cpr = &bnapi->cp_ring; 11877 if (bnapi->tx_fault) 11878 cpr->sw_stats->tx.tx_resets++; 11879 if (bnapi->in_reset) 11880 cpr->sw_stats->rx.rx_resets++; 11881 napi_disable_locked(&bnapi->napi); 11882 } 11883 } 11884 11885 static void bnxt_enable_napi(struct bnxt *bp) 11886 { 11887 int i; 11888 11889 clear_bit(BNXT_STATE_NAPI_DISABLED, &bp->state); 11890 for (i = 0; i < bp->cp_nr_rings; i++) { 11891 struct bnxt_napi *bnapi = bp->bnapi[i]; 11892 struct bnxt_cp_ring_info *cpr; 11893 11894 bnapi->tx_fault = 0; 11895 11896 cpr = &bnapi->cp_ring; 11897 bnapi->in_reset = false; 11898 11899 if (bnapi->rx_ring) { 11900 INIT_WORK(&cpr->dim.work, bnxt_dim_work); 11901 cpr->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 11902 } 11903 napi_enable_locked(&bnapi->napi); 11904 } 11905 } 11906 11907 void bnxt_tx_disable(struct bnxt *bp) 11908 { 11909 int i; 11910 struct bnxt_tx_ring_info *txr; 11911 11912 if (bp->tx_ring) { 11913 for (i = 0; i < bp->tx_nr_rings; i++) { 11914 txr = &bp->tx_ring[i]; 11915 WRITE_ONCE(txr->dev_state, BNXT_DEV_STATE_CLOSING); 11916 } 11917 } 11918 /* Make sure napi polls see @dev_state change */ 11919 synchronize_net(); 11920 /* Drop carrier first to prevent TX timeout */ 11921 netif_carrier_off(bp->dev); 11922 /* Stop all TX queues */ 11923 netif_tx_disable(bp->dev); 11924 } 11925 11926 void bnxt_tx_enable(struct bnxt *bp) 11927 { 11928 int i; 11929 struct bnxt_tx_ring_info *txr; 11930 11931 for (i = 0; i < bp->tx_nr_rings; i++) { 11932 txr = &bp->tx_ring[i]; 11933 WRITE_ONCE(txr->dev_state, 0); 11934 } 11935 /* Make sure napi polls see @dev_state change */ 11936 synchronize_net(); 11937 netif_tx_wake_all_queues(bp->dev); 11938 if (BNXT_LINK_IS_UP(bp)) 11939 netif_carrier_on(bp->dev); 11940 } 11941 11942 static char *bnxt_report_fec(struct bnxt_link_info *link_info) 11943 { 11944 u8 active_fec = link_info->active_fec_sig_mode & 11945 PORT_PHY_QCFG_RESP_ACTIVE_FEC_MASK; 11946 11947 switch (active_fec) { 11948 default: 11949 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_NONE_ACTIVE: 11950 return "None"; 11951 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_CLAUSE74_ACTIVE: 11952 return "Clause 74 BaseR"; 11953 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_CLAUSE91_ACTIVE: 11954 return "Clause 91 RS(528,514)"; 11955 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS544_1XN_ACTIVE: 11956 return "Clause 91 RS544_1XN"; 11957 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS544_IEEE_ACTIVE: 11958 return "Clause 91 RS(544,514)"; 11959 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS272_1XN_ACTIVE: 11960 return "Clause 91 RS272_1XN"; 11961 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS272_IEEE_ACTIVE: 11962 return "Clause 91 RS(272,257)"; 11963 } 11964 } 11965 11966 static char *bnxt_link_down_reason(struct bnxt_link_info *link_info) 11967 { 11968 u8 reason = link_info->link_down_reason; 11969 11970 /* Multiple bits can be set, we report 1 bit only in order of 11971 * priority. 11972 */ 11973 if (reason & PORT_PHY_QCFG_RESP_LINK_DOWN_REASON_RF) 11974 return "(Remote fault)"; 11975 if (reason & PORT_PHY_QCFG_RESP_LINK_DOWN_REASON_OTP_SPEED_VIOLATION) 11976 return "(OTP Speed limit violation)"; 11977 if (reason & PORT_PHY_QCFG_RESP_LINK_DOWN_REASON_CABLE_REMOVED) 11978 return "(Cable removed)"; 11979 if (reason & PORT_PHY_QCFG_RESP_LINK_DOWN_REASON_MODULE_FAULT) 11980 return "(Module fault)"; 11981 if (reason & PORT_PHY_QCFG_RESP_LINK_DOWN_REASON_BMC_REQUEST) 11982 return "(BMC request down)"; 11983 return ""; 11984 } 11985 11986 void bnxt_report_link(struct bnxt *bp) 11987 { 11988 if (BNXT_LINK_IS_UP(bp)) { 11989 const char *signal = ""; 11990 const char *flow_ctrl; 11991 const char *duplex; 11992 u32 speed; 11993 u16 fec; 11994 11995 netif_carrier_on(bp->dev); 11996 speed = bnxt_fw_to_ethtool_speed(bp->link_info.link_speed); 11997 if (speed == SPEED_UNKNOWN) { 11998 netdev_info(bp->dev, "NIC Link is Up, speed unknown\n"); 11999 return; 12000 } 12001 if (bp->link_info.duplex == BNXT_LINK_DUPLEX_FULL) 12002 duplex = "full"; 12003 else 12004 duplex = "half"; 12005 if (bp->link_info.pause == BNXT_LINK_PAUSE_BOTH) 12006 flow_ctrl = "ON - receive & transmit"; 12007 else if (bp->link_info.pause == BNXT_LINK_PAUSE_TX) 12008 flow_ctrl = "ON - transmit"; 12009 else if (bp->link_info.pause == BNXT_LINK_PAUSE_RX) 12010 flow_ctrl = "ON - receive"; 12011 else 12012 flow_ctrl = "none"; 12013 if (bp->link_info.phy_qcfg_resp.option_flags & 12014 PORT_PHY_QCFG_RESP_OPTION_FLAGS_SIGNAL_MODE_KNOWN) { 12015 u8 sig_mode = bp->link_info.active_fec_sig_mode & 12016 PORT_PHY_QCFG_RESP_SIGNAL_MODE_MASK; 12017 switch (sig_mode) { 12018 case PORT_PHY_QCFG_RESP_SIGNAL_MODE_NRZ: 12019 signal = "(NRZ) "; 12020 break; 12021 case PORT_PHY_QCFG_RESP_SIGNAL_MODE_PAM4: 12022 signal = "(PAM4 56Gbps) "; 12023 break; 12024 case PORT_PHY_QCFG_RESP_SIGNAL_MODE_PAM4_112: 12025 signal = "(PAM4 112Gbps) "; 12026 break; 12027 default: 12028 break; 12029 } 12030 } 12031 netdev_info(bp->dev, "NIC Link is Up, %u Mbps %s%s duplex, Flow control: %s\n", 12032 speed, signal, duplex, flow_ctrl); 12033 if (bp->phy_flags & BNXT_PHY_FL_EEE_CAP) 12034 netdev_info(bp->dev, "EEE is %s\n", 12035 bp->eee.eee_active ? "active" : 12036 "not active"); 12037 fec = bp->link_info.fec_cfg; 12038 if (!(fec & PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED)) 12039 netdev_info(bp->dev, "FEC autoneg %s encoding: %s\n", 12040 (fec & BNXT_FEC_AUTONEG) ? "on" : "off", 12041 bnxt_report_fec(&bp->link_info)); 12042 } else { 12043 char *str = bnxt_link_down_reason(&bp->link_info); 12044 12045 netif_carrier_off(bp->dev); 12046 netdev_err(bp->dev, "NIC Link is Down %s\n", str); 12047 } 12048 } 12049 12050 static bool bnxt_phy_qcaps_no_speed(struct hwrm_port_phy_qcaps_output *resp) 12051 { 12052 if (!resp->supported_speeds_auto_mode && 12053 !resp->supported_speeds_force_mode && 12054 !resp->supported_pam4_speeds_auto_mode && 12055 !resp->supported_pam4_speeds_force_mode && 12056 !resp->supported_speeds2_auto_mode && 12057 !resp->supported_speeds2_force_mode) 12058 return true; 12059 return false; 12060 } 12061 12062 static int bnxt_hwrm_phy_qcaps(struct bnxt *bp) 12063 { 12064 struct bnxt_link_info *link_info = &bp->link_info; 12065 struct hwrm_port_phy_qcaps_output *resp; 12066 struct hwrm_port_phy_qcaps_input *req; 12067 int rc = 0; 12068 12069 if (bp->hwrm_spec_code < 0x10201) 12070 return 0; 12071 12072 rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_QCAPS); 12073 if (rc) 12074 return rc; 12075 12076 resp = hwrm_req_hold(bp, req); 12077 rc = hwrm_req_send(bp, req); 12078 if (rc) 12079 goto hwrm_phy_qcaps_exit; 12080 12081 bp->phy_flags = resp->flags | (le16_to_cpu(resp->flags2) << 8); 12082 if (resp->flags & PORT_PHY_QCAPS_RESP_FLAGS_EEE_SUPPORTED) { 12083 struct ethtool_keee *eee = &bp->eee; 12084 u16 fw_speeds = le16_to_cpu(resp->supported_speeds_eee_mode); 12085 12086 _bnxt_fw_to_linkmode(eee->supported, fw_speeds); 12087 bp->lpi_tmr_lo = le32_to_cpu(resp->tx_lpi_timer_low) & 12088 PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_LOW_MASK; 12089 bp->lpi_tmr_hi = le32_to_cpu(resp->valid_tx_lpi_timer_high) & 12090 PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_HIGH_MASK; 12091 } 12092 12093 if (bp->hwrm_spec_code >= 0x10a01) { 12094 if (bnxt_phy_qcaps_no_speed(resp)) { 12095 link_info->phy_state = BNXT_PHY_STATE_DISABLED; 12096 netdev_warn(bp->dev, "Ethernet link disabled\n"); 12097 } else if (link_info->phy_state == BNXT_PHY_STATE_DISABLED) { 12098 link_info->phy_state = BNXT_PHY_STATE_ENABLED; 12099 netdev_info(bp->dev, "Ethernet link enabled\n"); 12100 /* Phy re-enabled, reprobe the speeds */ 12101 link_info->support_auto_speeds = 0; 12102 link_info->support_pam4_auto_speeds = 0; 12103 link_info->support_auto_speeds2 = 0; 12104 } 12105 } 12106 if (resp->supported_speeds_auto_mode) 12107 link_info->support_auto_speeds = 12108 le16_to_cpu(resp->supported_speeds_auto_mode); 12109 if (resp->supported_pam4_speeds_auto_mode) 12110 link_info->support_pam4_auto_speeds = 12111 le16_to_cpu(resp->supported_pam4_speeds_auto_mode); 12112 if (resp->supported_speeds2_auto_mode) 12113 link_info->support_auto_speeds2 = 12114 le16_to_cpu(resp->supported_speeds2_auto_mode); 12115 12116 bp->port_count = resp->port_cnt; 12117 12118 hwrm_phy_qcaps_exit: 12119 hwrm_req_drop(bp, req); 12120 return rc; 12121 } 12122 12123 static void bnxt_hwrm_mac_qcaps(struct bnxt *bp) 12124 { 12125 struct hwrm_port_mac_qcaps_output *resp; 12126 struct hwrm_port_mac_qcaps_input *req; 12127 int rc; 12128 12129 if (bp->hwrm_spec_code < 0x10a03) 12130 return; 12131 12132 rc = hwrm_req_init(bp, req, HWRM_PORT_MAC_QCAPS); 12133 if (rc) 12134 return; 12135 12136 resp = hwrm_req_hold(bp, req); 12137 rc = hwrm_req_send_silent(bp, req); 12138 if (!rc) 12139 bp->mac_flags = resp->flags; 12140 hwrm_req_drop(bp, req); 12141 } 12142 12143 static bool bnxt_support_dropped(u16 advertising, u16 supported) 12144 { 12145 u16 diff = advertising ^ supported; 12146 12147 return ((supported | diff) != supported); 12148 } 12149 12150 static bool bnxt_support_speed_dropped(struct bnxt_link_info *link_info) 12151 { 12152 struct bnxt *bp = container_of(link_info, struct bnxt, link_info); 12153 12154 /* Check if any advertised speeds are no longer supported. The caller 12155 * holds the link_lock mutex, so we can modify link_info settings. 12156 */ 12157 if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) { 12158 if (bnxt_support_dropped(link_info->advertising, 12159 link_info->support_auto_speeds2)) { 12160 link_info->advertising = link_info->support_auto_speeds2; 12161 return true; 12162 } 12163 return false; 12164 } 12165 if (bnxt_support_dropped(link_info->advertising, 12166 link_info->support_auto_speeds)) { 12167 link_info->advertising = link_info->support_auto_speeds; 12168 return true; 12169 } 12170 if (bnxt_support_dropped(link_info->advertising_pam4, 12171 link_info->support_pam4_auto_speeds)) { 12172 link_info->advertising_pam4 = link_info->support_pam4_auto_speeds; 12173 return true; 12174 } 12175 return false; 12176 } 12177 12178 int bnxt_update_link(struct bnxt *bp, bool chng_link_state) 12179 { 12180 struct bnxt_link_info *link_info = &bp->link_info; 12181 struct hwrm_port_phy_qcfg_output *resp; 12182 struct hwrm_port_phy_qcfg_input *req; 12183 u8 link_state = link_info->link_state; 12184 bool support_changed; 12185 int rc; 12186 12187 rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_QCFG); 12188 if (rc) 12189 return rc; 12190 12191 resp = hwrm_req_hold(bp, req); 12192 rc = hwrm_req_send(bp, req); 12193 if (rc) { 12194 hwrm_req_drop(bp, req); 12195 if (BNXT_VF(bp) && rc == -ENODEV) { 12196 netdev_warn(bp->dev, "Cannot obtain link state while PF unavailable.\n"); 12197 rc = 0; 12198 } 12199 return rc; 12200 } 12201 12202 memcpy(&link_info->phy_qcfg_resp, resp, sizeof(*resp)); 12203 link_info->phy_link_status = resp->link; 12204 link_info->duplex = resp->duplex_cfg; 12205 if (bp->hwrm_spec_code >= 0x10800) 12206 link_info->duplex = resp->duplex_state; 12207 link_info->pause = resp->pause; 12208 link_info->auto_mode = resp->auto_mode; 12209 link_info->auto_pause_setting = resp->auto_pause; 12210 link_info->lp_pause = resp->link_partner_adv_pause; 12211 link_info->force_pause_setting = resp->force_pause; 12212 link_info->duplex_setting = resp->duplex_cfg; 12213 if (link_info->phy_link_status == BNXT_LINK_LINK) { 12214 link_info->link_speed = le16_to_cpu(resp->link_speed); 12215 if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) 12216 link_info->active_lanes = resp->active_lanes; 12217 } else { 12218 link_info->link_speed = 0; 12219 link_info->active_lanes = 0; 12220 } 12221 link_info->force_link_speed = le16_to_cpu(resp->force_link_speed); 12222 link_info->force_pam4_link_speed = 12223 le16_to_cpu(resp->force_pam4_link_speed); 12224 link_info->force_link_speed2 = le16_to_cpu(resp->force_link_speeds2); 12225 link_info->support_speeds = le16_to_cpu(resp->support_speeds); 12226 link_info->support_pam4_speeds = le16_to_cpu(resp->support_pam4_speeds); 12227 link_info->support_speeds2 = le16_to_cpu(resp->support_speeds2); 12228 link_info->auto_link_speeds = le16_to_cpu(resp->auto_link_speed_mask); 12229 link_info->auto_pam4_link_speeds = 12230 le16_to_cpu(resp->auto_pam4_link_speed_mask); 12231 link_info->auto_link_speeds2 = le16_to_cpu(resp->auto_link_speeds2); 12232 link_info->lp_auto_link_speeds = 12233 le16_to_cpu(resp->link_partner_adv_speeds); 12234 link_info->lp_auto_pam4_link_speeds = 12235 resp->link_partner_pam4_adv_speeds; 12236 link_info->preemphasis = le32_to_cpu(resp->preemphasis); 12237 link_info->phy_ver[0] = resp->phy_maj; 12238 link_info->phy_ver[1] = resp->phy_min; 12239 link_info->phy_ver[2] = resp->phy_bld; 12240 link_info->media_type = resp->media_type; 12241 link_info->phy_type = resp->phy_type; 12242 link_info->transceiver = resp->xcvr_pkg_type; 12243 link_info->phy_addr = resp->eee_config_phy_addr & 12244 PORT_PHY_QCFG_RESP_PHY_ADDR_MASK; 12245 link_info->module_status = resp->module_status; 12246 link_info->link_down_reason = resp->link_down_reason; 12247 12248 if (bp->phy_flags & BNXT_PHY_FL_EEE_CAP) { 12249 struct ethtool_keee *eee = &bp->eee; 12250 u16 fw_speeds; 12251 12252 eee->eee_active = 0; 12253 if (resp->eee_config_phy_addr & 12254 PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ACTIVE) { 12255 eee->eee_active = 1; 12256 fw_speeds = le16_to_cpu( 12257 resp->link_partner_adv_eee_link_speed_mask); 12258 _bnxt_fw_to_linkmode(eee->lp_advertised, fw_speeds); 12259 } 12260 12261 /* Pull initial EEE config */ 12262 if (!chng_link_state) { 12263 if (resp->eee_config_phy_addr & 12264 PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ENABLED) 12265 eee->eee_enabled = 1; 12266 12267 fw_speeds = le16_to_cpu(resp->adv_eee_link_speed_mask); 12268 _bnxt_fw_to_linkmode(eee->advertised, fw_speeds); 12269 12270 if (resp->eee_config_phy_addr & 12271 PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_TX_LPI) { 12272 __le32 tmr; 12273 12274 eee->tx_lpi_enabled = 1; 12275 tmr = resp->xcvr_identifier_type_tx_lpi_timer; 12276 eee->tx_lpi_timer = le32_to_cpu(tmr) & 12277 PORT_PHY_QCFG_RESP_TX_LPI_TIMER_MASK; 12278 } 12279 } 12280 } 12281 12282 link_info->fec_cfg = PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED; 12283 if (bp->hwrm_spec_code >= 0x10504) { 12284 link_info->fec_cfg = le16_to_cpu(resp->fec_cfg); 12285 link_info->active_fec_sig_mode = resp->active_fec_signal_mode; 12286 } 12287 /* TODO: need to add more logic to report VF link */ 12288 if (chng_link_state) { 12289 if (link_info->phy_link_status == BNXT_LINK_LINK) 12290 link_info->link_state = BNXT_LINK_STATE_UP; 12291 else 12292 link_info->link_state = BNXT_LINK_STATE_DOWN; 12293 if (link_state != link_info->link_state) 12294 bnxt_report_link(bp); 12295 } else { 12296 /* always link down if not require to update link state */ 12297 link_info->link_state = BNXT_LINK_STATE_DOWN; 12298 } 12299 hwrm_req_drop(bp, req); 12300 12301 if (!BNXT_PHY_CFG_ABLE(bp)) 12302 return 0; 12303 12304 support_changed = bnxt_support_speed_dropped(link_info); 12305 if (support_changed && (link_info->autoneg & BNXT_AUTONEG_SPEED)) 12306 bnxt_hwrm_set_link_setting(bp, true, false); 12307 return 0; 12308 } 12309 12310 static void bnxt_get_port_module_status(struct bnxt *bp) 12311 { 12312 struct bnxt_link_info *link_info = &bp->link_info; 12313 struct hwrm_port_phy_qcfg_output *resp = &link_info->phy_qcfg_resp; 12314 u8 module_status; 12315 12316 if (bnxt_update_link(bp, true)) 12317 return; 12318 12319 module_status = link_info->module_status; 12320 switch (module_status) { 12321 case PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX: 12322 case PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN: 12323 case PORT_PHY_QCFG_RESP_MODULE_STATUS_WARNINGMSG: 12324 netdev_warn(bp->dev, "Unqualified SFP+ module detected on port %d\n", 12325 bp->pf.port_id); 12326 if (bp->hwrm_spec_code >= 0x10201) { 12327 netdev_warn(bp->dev, "Module part number %s\n", 12328 resp->phy_vendor_partnumber); 12329 } 12330 if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX) 12331 netdev_warn(bp->dev, "TX is disabled\n"); 12332 if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN) 12333 netdev_warn(bp->dev, "SFP+ module is shutdown\n"); 12334 } 12335 } 12336 12337 static void 12338 bnxt_hwrm_set_pause_common(struct bnxt *bp, struct hwrm_port_phy_cfg_input *req) 12339 { 12340 if (bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) { 12341 if (bp->hwrm_spec_code >= 0x10201) 12342 req->auto_pause = 12343 PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE; 12344 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX) 12345 req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_RX; 12346 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX) 12347 req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_TX; 12348 req->enables |= 12349 cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE); 12350 } else { 12351 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX) 12352 req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_RX; 12353 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX) 12354 req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_TX; 12355 req->enables |= 12356 cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_PAUSE); 12357 if (bp->hwrm_spec_code >= 0x10201) { 12358 req->auto_pause = req->force_pause; 12359 req->enables |= cpu_to_le32( 12360 PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE); 12361 } 12362 } 12363 } 12364 12365 static void bnxt_hwrm_set_link_common(struct bnxt *bp, struct hwrm_port_phy_cfg_input *req) 12366 { 12367 if (bp->link_info.autoneg & BNXT_AUTONEG_SPEED) { 12368 req->auto_mode |= PORT_PHY_CFG_REQ_AUTO_MODE_SPEED_MASK; 12369 if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) { 12370 req->enables |= 12371 cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_LINK_SPEEDS2_MASK); 12372 req->auto_link_speeds2_mask = cpu_to_le16(bp->link_info.advertising); 12373 } else if (bp->link_info.advertising) { 12374 req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_LINK_SPEED_MASK); 12375 req->auto_link_speed_mask = cpu_to_le16(bp->link_info.advertising); 12376 } 12377 if (bp->link_info.advertising_pam4) { 12378 req->enables |= 12379 cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_PAM4_LINK_SPEED_MASK); 12380 req->auto_link_pam4_speed_mask = 12381 cpu_to_le16(bp->link_info.advertising_pam4); 12382 } 12383 req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_MODE); 12384 req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESTART_AUTONEG); 12385 } else { 12386 req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE); 12387 if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) { 12388 req->force_link_speeds2 = cpu_to_le16(bp->link_info.req_link_speed); 12389 req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_LINK_SPEEDS2); 12390 netif_info(bp, link, bp->dev, "Forcing FW speed2: %d\n", 12391 (u32)bp->link_info.req_link_speed); 12392 } else if (bp->link_info.req_signal_mode == BNXT_SIG_MODE_PAM4) { 12393 req->force_pam4_link_speed = cpu_to_le16(bp->link_info.req_link_speed); 12394 req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_PAM4_LINK_SPEED); 12395 } else { 12396 req->force_link_speed = cpu_to_le16(bp->link_info.req_link_speed); 12397 } 12398 } 12399 12400 /* tell chimp that the setting takes effect immediately */ 12401 req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESET_PHY); 12402 } 12403 12404 int bnxt_hwrm_set_pause(struct bnxt *bp) 12405 { 12406 struct hwrm_port_phy_cfg_input *req; 12407 int rc; 12408 12409 rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_CFG); 12410 if (rc) 12411 return rc; 12412 12413 bnxt_hwrm_set_pause_common(bp, req); 12414 12415 if ((bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) || 12416 bp->link_info.force_link_chng) 12417 bnxt_hwrm_set_link_common(bp, req); 12418 12419 rc = hwrm_req_send(bp, req); 12420 if (!rc && !(bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL)) { 12421 /* since changing of pause setting doesn't trigger any link 12422 * change event, the driver needs to update the current pause 12423 * result upon successfully return of the phy_cfg command 12424 */ 12425 bp->link_info.pause = 12426 bp->link_info.force_pause_setting = bp->link_info.req_flow_ctrl; 12427 bp->link_info.auto_pause_setting = 0; 12428 if (!bp->link_info.force_link_chng) 12429 bnxt_report_link(bp); 12430 } 12431 bp->link_info.force_link_chng = false; 12432 return rc; 12433 } 12434 12435 static void bnxt_hwrm_set_eee(struct bnxt *bp, 12436 struct hwrm_port_phy_cfg_input *req) 12437 { 12438 struct ethtool_keee *eee = &bp->eee; 12439 12440 if (eee->eee_enabled) { 12441 u16 eee_speeds; 12442 u32 flags = PORT_PHY_CFG_REQ_FLAGS_EEE_ENABLE; 12443 12444 if (eee->tx_lpi_enabled) 12445 flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_ENABLE; 12446 else 12447 flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_DISABLE; 12448 12449 req->flags |= cpu_to_le32(flags); 12450 eee_speeds = bnxt_get_fw_auto_link_speeds(eee->advertised); 12451 req->eee_link_speed_mask = cpu_to_le16(eee_speeds); 12452 req->tx_lpi_timer = cpu_to_le32(eee->tx_lpi_timer); 12453 } else { 12454 req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_EEE_DISABLE); 12455 } 12456 } 12457 12458 int bnxt_hwrm_set_link_setting(struct bnxt *bp, bool set_pause, bool set_eee) 12459 { 12460 struct hwrm_port_phy_cfg_input *req; 12461 int rc; 12462 12463 rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_CFG); 12464 if (rc) 12465 return rc; 12466 12467 if (set_pause) 12468 bnxt_hwrm_set_pause_common(bp, req); 12469 12470 bnxt_hwrm_set_link_common(bp, req); 12471 12472 if (set_eee) 12473 bnxt_hwrm_set_eee(bp, req); 12474 return hwrm_req_send(bp, req); 12475 } 12476 12477 static int bnxt_hwrm_shutdown_link(struct bnxt *bp) 12478 { 12479 struct hwrm_port_phy_cfg_input *req; 12480 int rc; 12481 12482 if (!BNXT_SINGLE_PF(bp)) 12483 return 0; 12484 12485 if (pci_num_vf(bp->pdev) && 12486 !(bp->phy_flags & BNXT_PHY_FL_FW_MANAGED_LKDN)) 12487 return 0; 12488 12489 rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_CFG); 12490 if (rc) 12491 return rc; 12492 12493 req->flags = cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE_LINK_DWN); 12494 rc = hwrm_req_send(bp, req); 12495 if (!rc) { 12496 mutex_lock(&bp->link_lock); 12497 /* Device is not obliged link down in certain scenarios, even 12498 * when forced. Setting the state unknown is consistent with 12499 * driver startup and will force link state to be reported 12500 * during subsequent open based on PORT_PHY_QCFG. 12501 */ 12502 bp->link_info.link_state = BNXT_LINK_STATE_UNKNOWN; 12503 mutex_unlock(&bp->link_lock); 12504 } 12505 return rc; 12506 } 12507 12508 static int bnxt_fw_reset_via_optee(struct bnxt *bp) 12509 { 12510 #ifdef CONFIG_TEE_BNXT_FW 12511 int rc = tee_bnxt_fw_load(); 12512 12513 if (rc) 12514 netdev_err(bp->dev, "Failed FW reset via OP-TEE, rc=%d\n", rc); 12515 12516 return rc; 12517 #else 12518 netdev_err(bp->dev, "OP-TEE not supported\n"); 12519 return -ENODEV; 12520 #endif 12521 } 12522 12523 static int bnxt_try_recover_fw(struct bnxt *bp) 12524 { 12525 if (bp->fw_health && bp->fw_health->status_reliable) { 12526 int retry = 0, rc; 12527 u32 sts; 12528 12529 do { 12530 sts = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG); 12531 rc = bnxt_hwrm_poll(bp); 12532 if (!BNXT_FW_IS_BOOTING(sts) && 12533 !BNXT_FW_IS_RECOVERING(sts)) 12534 break; 12535 retry++; 12536 } while (rc == -EBUSY && retry < BNXT_FW_RETRY); 12537 12538 if (!BNXT_FW_IS_HEALTHY(sts)) { 12539 netdev_err(bp->dev, 12540 "Firmware not responding, status: 0x%x\n", 12541 sts); 12542 rc = -ENODEV; 12543 } 12544 if (sts & FW_STATUS_REG_CRASHED_NO_MASTER) { 12545 netdev_warn(bp->dev, "Firmware recover via OP-TEE requested\n"); 12546 return bnxt_fw_reset_via_optee(bp); 12547 } 12548 return rc; 12549 } 12550 12551 return -ENODEV; 12552 } 12553 12554 void bnxt_clear_reservations(struct bnxt *bp, bool fw_reset) 12555 { 12556 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 12557 12558 if (!BNXT_NEW_RM(bp)) 12559 return; /* no resource reservations required */ 12560 12561 hw_resc->resv_cp_rings = 0; 12562 hw_resc->resv_stat_ctxs = 0; 12563 hw_resc->resv_irqs = 0; 12564 hw_resc->resv_tx_rings = 0; 12565 hw_resc->resv_rx_rings = 0; 12566 hw_resc->resv_hw_ring_grps = 0; 12567 hw_resc->resv_vnics = 0; 12568 hw_resc->resv_rsscos_ctxs = 0; 12569 if (!fw_reset) { 12570 bp->tx_nr_rings = 0; 12571 bp->rx_nr_rings = 0; 12572 } 12573 } 12574 12575 int bnxt_cancel_reservations(struct bnxt *bp, bool fw_reset) 12576 { 12577 int rc; 12578 12579 if (!BNXT_NEW_RM(bp)) 12580 return 0; /* no resource reservations required */ 12581 12582 rc = bnxt_hwrm_func_resc_qcaps(bp, true); 12583 if (rc) 12584 netdev_err(bp->dev, "resc_qcaps failed\n"); 12585 12586 bnxt_clear_reservations(bp, fw_reset); 12587 12588 return rc; 12589 } 12590 12591 static int bnxt_hwrm_if_change(struct bnxt *bp, bool up) 12592 { 12593 struct hwrm_func_drv_if_change_output *resp; 12594 struct hwrm_func_drv_if_change_input *req; 12595 bool resc_reinit = false; 12596 bool caps_change = false; 12597 int rc, retry = 0; 12598 bool fw_reset; 12599 u32 flags = 0; 12600 12601 fw_reset = (bp->fw_reset_state == BNXT_FW_RESET_STATE_ABORT); 12602 bp->fw_reset_state = 0; 12603 12604 if (!(bp->fw_cap & BNXT_FW_CAP_IF_CHANGE)) 12605 return 0; 12606 12607 rc = hwrm_req_init(bp, req, HWRM_FUNC_DRV_IF_CHANGE); 12608 if (rc) 12609 return rc; 12610 12611 if (up) 12612 req->flags = cpu_to_le32(FUNC_DRV_IF_CHANGE_REQ_FLAGS_UP); 12613 resp = hwrm_req_hold(bp, req); 12614 12615 hwrm_req_flags(bp, req, BNXT_HWRM_FULL_WAIT); 12616 while (retry < BNXT_FW_IF_RETRY) { 12617 rc = hwrm_req_send(bp, req); 12618 if (rc != -EAGAIN) 12619 break; 12620 12621 msleep(50); 12622 retry++; 12623 } 12624 12625 if (rc == -EAGAIN) { 12626 hwrm_req_drop(bp, req); 12627 return rc; 12628 } else if (!rc) { 12629 flags = le32_to_cpu(resp->flags); 12630 } else if (up) { 12631 rc = bnxt_try_recover_fw(bp); 12632 fw_reset = true; 12633 } 12634 hwrm_req_drop(bp, req); 12635 if (rc) 12636 return rc; 12637 12638 if (!up) { 12639 bnxt_inv_fw_health_reg(bp); 12640 return 0; 12641 } 12642 12643 if (flags & FUNC_DRV_IF_CHANGE_RESP_FLAGS_RESC_CHANGE) 12644 resc_reinit = true; 12645 if (flags & FUNC_DRV_IF_CHANGE_RESP_FLAGS_HOT_FW_RESET_DONE || 12646 test_bit(BNXT_STATE_FW_RESET_DET, &bp->state)) 12647 fw_reset = true; 12648 else 12649 bnxt_remap_fw_health_regs(bp); 12650 12651 if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state) && !fw_reset) { 12652 netdev_err(bp->dev, "RESET_DONE not set during FW reset.\n"); 12653 set_bit(BNXT_STATE_ABORT_ERR, &bp->state); 12654 return -ENODEV; 12655 } 12656 if (flags & FUNC_DRV_IF_CHANGE_RESP_FLAGS_CAPS_CHANGE) 12657 caps_change = true; 12658 12659 if (resc_reinit || fw_reset || caps_change) { 12660 if (fw_reset || caps_change) { 12661 set_bit(BNXT_STATE_FW_RESET_DET, &bp->state); 12662 if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) 12663 bnxt_ulp_irq_stop(bp); 12664 bnxt_free_ctx_mem(bp, false); 12665 bnxt_dcb_free(bp); 12666 rc = bnxt_fw_init_one(bp); 12667 if (rc) { 12668 clear_bit(BNXT_STATE_FW_RESET_DET, &bp->state); 12669 set_bit(BNXT_STATE_ABORT_ERR, &bp->state); 12670 return rc; 12671 } 12672 /* IRQ will be initialized later in bnxt_request_irq()*/ 12673 bnxt_clear_int_mode(bp); 12674 } 12675 rc = bnxt_cancel_reservations(bp, fw_reset); 12676 } 12677 return rc; 12678 } 12679 12680 static int bnxt_hwrm_port_led_qcaps(struct bnxt *bp) 12681 { 12682 struct hwrm_port_led_qcaps_output *resp; 12683 struct hwrm_port_led_qcaps_input *req; 12684 struct bnxt_pf_info *pf = &bp->pf; 12685 int rc; 12686 12687 bp->num_leds = 0; 12688 if (BNXT_VF(bp) || bp->hwrm_spec_code < 0x10601) 12689 return 0; 12690 12691 rc = hwrm_req_init(bp, req, HWRM_PORT_LED_QCAPS); 12692 if (rc) 12693 return rc; 12694 12695 req->port_id = cpu_to_le16(pf->port_id); 12696 resp = hwrm_req_hold(bp, req); 12697 rc = hwrm_req_send(bp, req); 12698 if (rc) { 12699 hwrm_req_drop(bp, req); 12700 return rc; 12701 } 12702 if (resp->num_leds > 0 && resp->num_leds < BNXT_MAX_LED) { 12703 int i; 12704 12705 bp->num_leds = resp->num_leds; 12706 memcpy(bp->leds, &resp->led0_id, sizeof(bp->leds[0]) * 12707 bp->num_leds); 12708 for (i = 0; i < bp->num_leds; i++) { 12709 struct bnxt_led_info *led = &bp->leds[i]; 12710 __le16 caps = led->led_state_caps; 12711 12712 if (!led->led_group_id || 12713 !BNXT_LED_ALT_BLINK_CAP(caps)) { 12714 bp->num_leds = 0; 12715 break; 12716 } 12717 } 12718 } 12719 hwrm_req_drop(bp, req); 12720 return 0; 12721 } 12722 12723 int bnxt_hwrm_alloc_wol_fltr(struct bnxt *bp) 12724 { 12725 struct hwrm_wol_filter_alloc_output *resp; 12726 struct hwrm_wol_filter_alloc_input *req; 12727 int rc; 12728 12729 rc = hwrm_req_init(bp, req, HWRM_WOL_FILTER_ALLOC); 12730 if (rc) 12731 return rc; 12732 12733 req->port_id = cpu_to_le16(bp->pf.port_id); 12734 req->wol_type = WOL_FILTER_ALLOC_REQ_WOL_TYPE_MAGICPKT; 12735 req->enables = cpu_to_le32(WOL_FILTER_ALLOC_REQ_ENABLES_MAC_ADDRESS); 12736 memcpy(req->mac_address, bp->dev->dev_addr, ETH_ALEN); 12737 12738 resp = hwrm_req_hold(bp, req); 12739 rc = hwrm_req_send(bp, req); 12740 if (!rc) 12741 bp->wol_filter_id = resp->wol_filter_id; 12742 hwrm_req_drop(bp, req); 12743 return rc; 12744 } 12745 12746 int bnxt_hwrm_free_wol_fltr(struct bnxt *bp) 12747 { 12748 struct hwrm_wol_filter_free_input *req; 12749 int rc; 12750 12751 rc = hwrm_req_init(bp, req, HWRM_WOL_FILTER_FREE); 12752 if (rc) 12753 return rc; 12754 12755 req->port_id = cpu_to_le16(bp->pf.port_id); 12756 req->enables = cpu_to_le32(WOL_FILTER_FREE_REQ_ENABLES_WOL_FILTER_ID); 12757 req->wol_filter_id = bp->wol_filter_id; 12758 12759 return hwrm_req_send(bp, req); 12760 } 12761 12762 static u16 bnxt_hwrm_get_wol_fltrs(struct bnxt *bp, u16 handle) 12763 { 12764 struct hwrm_wol_filter_qcfg_output *resp; 12765 struct hwrm_wol_filter_qcfg_input *req; 12766 u16 next_handle = 0; 12767 int rc; 12768 12769 rc = hwrm_req_init(bp, req, HWRM_WOL_FILTER_QCFG); 12770 if (rc) 12771 return rc; 12772 12773 req->port_id = cpu_to_le16(bp->pf.port_id); 12774 req->handle = cpu_to_le16(handle); 12775 resp = hwrm_req_hold(bp, req); 12776 rc = hwrm_req_send(bp, req); 12777 if (!rc) { 12778 next_handle = le16_to_cpu(resp->next_handle); 12779 if (next_handle != 0) { 12780 if (resp->wol_type == 12781 WOL_FILTER_ALLOC_REQ_WOL_TYPE_MAGICPKT) { 12782 bp->wol = 1; 12783 bp->wol_filter_id = resp->wol_filter_id; 12784 } 12785 } 12786 } 12787 hwrm_req_drop(bp, req); 12788 return next_handle; 12789 } 12790 12791 static void bnxt_get_wol_settings(struct bnxt *bp) 12792 { 12793 u16 handle = 0; 12794 12795 bp->wol = 0; 12796 if (!BNXT_PF(bp) || !(bp->flags & BNXT_FLAG_WOL_CAP)) 12797 return; 12798 12799 do { 12800 handle = bnxt_hwrm_get_wol_fltrs(bp, handle); 12801 } while (handle && handle != 0xffff); 12802 } 12803 12804 static bool bnxt_eee_config_ok(struct bnxt *bp) 12805 { 12806 struct ethtool_keee *eee = &bp->eee; 12807 struct bnxt_link_info *link_info = &bp->link_info; 12808 12809 if (!(bp->phy_flags & BNXT_PHY_FL_EEE_CAP)) 12810 return true; 12811 12812 if (eee->eee_enabled) { 12813 __ETHTOOL_DECLARE_LINK_MODE_MASK(advertising); 12814 __ETHTOOL_DECLARE_LINK_MODE_MASK(tmp); 12815 12816 _bnxt_fw_to_linkmode(advertising, link_info->advertising); 12817 12818 if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) { 12819 eee->eee_enabled = 0; 12820 return false; 12821 } 12822 if (linkmode_andnot(tmp, eee->advertised, advertising)) { 12823 linkmode_and(eee->advertised, advertising, 12824 eee->supported); 12825 return false; 12826 } 12827 } 12828 return true; 12829 } 12830 12831 static int bnxt_update_phy_setting(struct bnxt *bp) 12832 { 12833 int rc; 12834 bool update_link = false; 12835 bool update_pause = false; 12836 bool update_eee = false; 12837 struct bnxt_link_info *link_info = &bp->link_info; 12838 12839 rc = bnxt_update_link(bp, true); 12840 if (rc) { 12841 netdev_err(bp->dev, "failed to update link (rc: %x)\n", 12842 rc); 12843 return rc; 12844 } 12845 if (!BNXT_SINGLE_PF(bp)) 12846 return 0; 12847 12848 if ((link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) && 12849 (link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH) != 12850 link_info->req_flow_ctrl) 12851 update_pause = true; 12852 if (!(link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) && 12853 link_info->force_pause_setting != link_info->req_flow_ctrl) 12854 update_pause = true; 12855 if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) { 12856 if (BNXT_AUTO_MODE(link_info->auto_mode)) 12857 update_link = true; 12858 if (bnxt_force_speed_updated(link_info)) 12859 update_link = true; 12860 if (link_info->req_duplex != link_info->duplex_setting) 12861 update_link = true; 12862 } else { 12863 if (link_info->auto_mode == BNXT_LINK_AUTO_NONE) 12864 update_link = true; 12865 if (bnxt_auto_speed_updated(link_info)) 12866 update_link = true; 12867 } 12868 12869 /* The last close may have shutdown the link, so need to call 12870 * PHY_CFG to bring it back up. 12871 */ 12872 if (!BNXT_LINK_IS_UP(bp)) 12873 update_link = true; 12874 12875 if (!bnxt_eee_config_ok(bp)) 12876 update_eee = true; 12877 12878 if (update_link) 12879 rc = bnxt_hwrm_set_link_setting(bp, update_pause, update_eee); 12880 else if (update_pause) 12881 rc = bnxt_hwrm_set_pause(bp); 12882 if (rc) { 12883 netdev_err(bp->dev, "failed to update phy setting (rc: %x)\n", 12884 rc); 12885 return rc; 12886 } 12887 12888 return rc; 12889 } 12890 12891 static int bnxt_init_dflt_ring_mode(struct bnxt *bp); 12892 12893 static int bnxt_reinit_after_abort(struct bnxt *bp) 12894 { 12895 int rc; 12896 12897 if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) 12898 return -EBUSY; 12899 12900 if (bp->dev->reg_state == NETREG_UNREGISTERED) 12901 return -ENODEV; 12902 12903 rc = bnxt_fw_init_one(bp); 12904 if (!rc) { 12905 bnxt_clear_int_mode(bp); 12906 rc = bnxt_init_int_mode(bp); 12907 if (!rc) { 12908 clear_bit(BNXT_STATE_ABORT_ERR, &bp->state); 12909 set_bit(BNXT_STATE_FW_RESET_DET, &bp->state); 12910 } 12911 } 12912 return rc; 12913 } 12914 12915 static void bnxt_cfg_one_usr_fltr(struct bnxt *bp, struct bnxt_filter_base *fltr) 12916 { 12917 struct bnxt_ntuple_filter *ntp_fltr; 12918 struct bnxt_l2_filter *l2_fltr; 12919 12920 if (list_empty(&fltr->list)) 12921 return; 12922 12923 if (fltr->type == BNXT_FLTR_TYPE_NTUPLE) { 12924 ntp_fltr = container_of(fltr, struct bnxt_ntuple_filter, base); 12925 l2_fltr = bp->vnic_info[BNXT_VNIC_DEFAULT].l2_filters[0]; 12926 atomic_inc(&l2_fltr->refcnt); 12927 ntp_fltr->l2_fltr = l2_fltr; 12928 if (bnxt_hwrm_cfa_ntuple_filter_alloc(bp, ntp_fltr)) { 12929 bnxt_del_ntp_filter(bp, ntp_fltr); 12930 netdev_err(bp->dev, "restoring previously configured ntuple filter id %d failed\n", 12931 fltr->sw_id); 12932 } 12933 } else if (fltr->type == BNXT_FLTR_TYPE_L2) { 12934 l2_fltr = container_of(fltr, struct bnxt_l2_filter, base); 12935 if (bnxt_hwrm_l2_filter_alloc(bp, l2_fltr)) { 12936 bnxt_del_l2_filter(bp, l2_fltr); 12937 netdev_err(bp->dev, "restoring previously configured l2 filter id %d failed\n", 12938 fltr->sw_id); 12939 } 12940 } 12941 } 12942 12943 static void bnxt_cfg_usr_fltrs(struct bnxt *bp) 12944 { 12945 struct bnxt_filter_base *usr_fltr, *tmp; 12946 12947 list_for_each_entry_safe(usr_fltr, tmp, &bp->usr_fltr_list, list) 12948 bnxt_cfg_one_usr_fltr(bp, usr_fltr); 12949 } 12950 12951 static int bnxt_set_xps_mapping(struct bnxt *bp) 12952 { 12953 int numa_node = dev_to_node(&bp->pdev->dev); 12954 unsigned int q_idx, map_idx, cpu, i; 12955 const struct cpumask *cpu_mask_ptr; 12956 int nr_cpus = num_online_cpus(); 12957 cpumask_t *q_map; 12958 int rc = 0; 12959 12960 q_map = kcalloc(bp->tx_nr_rings_per_tc, sizeof(*q_map), GFP_KERNEL); 12961 if (!q_map) 12962 return -ENOMEM; 12963 12964 /* Create CPU mask for all TX queues across MQPRIO traffic classes. 12965 * Each TC has the same number of TX queues. The nth TX queue for each 12966 * TC will have the same CPU mask. 12967 */ 12968 for (i = 0; i < nr_cpus; i++) { 12969 map_idx = i % bp->tx_nr_rings_per_tc; 12970 cpu = cpumask_local_spread(i, numa_node); 12971 cpu_mask_ptr = get_cpu_mask(cpu); 12972 cpumask_or(&q_map[map_idx], &q_map[map_idx], cpu_mask_ptr); 12973 } 12974 12975 /* Register CPU mask for each TX queue except the ones marked for XDP */ 12976 for (q_idx = 0; q_idx < bp->dev->real_num_tx_queues; q_idx++) { 12977 map_idx = q_idx % bp->tx_nr_rings_per_tc; 12978 rc = netif_set_xps_queue(bp->dev, &q_map[map_idx], q_idx); 12979 if (rc) { 12980 netdev_warn(bp->dev, "Error setting XPS for q:%d\n", 12981 q_idx); 12982 break; 12983 } 12984 } 12985 12986 kfree(q_map); 12987 12988 return rc; 12989 } 12990 12991 static int bnxt_tx_nr_rings(struct bnxt *bp) 12992 { 12993 return bp->num_tc ? bp->tx_nr_rings_per_tc * bp->num_tc : 12994 bp->tx_nr_rings_per_tc; 12995 } 12996 12997 static int bnxt_tx_nr_rings_per_tc(struct bnxt *bp) 12998 { 12999 return bp->num_tc ? bp->tx_nr_rings / bp->num_tc : bp->tx_nr_rings; 13000 } 13001 13002 static int __bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init) 13003 { 13004 int rc = 0; 13005 13006 netif_carrier_off(bp->dev); 13007 if (irq_re_init) { 13008 /* Reserve rings now if none were reserved at driver probe. */ 13009 rc = bnxt_init_dflt_ring_mode(bp); 13010 if (rc) { 13011 netdev_err(bp->dev, "Failed to reserve default rings at open\n"); 13012 return rc; 13013 } 13014 } 13015 rc = bnxt_reserve_rings(bp, irq_re_init); 13016 if (rc) 13017 return rc; 13018 13019 /* Make adjustments if reserved TX rings are less than requested */ 13020 bp->tx_nr_rings -= bp->tx_nr_rings_xdp; 13021 bp->tx_nr_rings_per_tc = bnxt_tx_nr_rings_per_tc(bp); 13022 if (bp->tx_nr_rings_xdp) { 13023 bp->tx_nr_rings_xdp = bp->tx_nr_rings_per_tc; 13024 bp->tx_nr_rings += bp->tx_nr_rings_xdp; 13025 } 13026 rc = bnxt_alloc_mem(bp, irq_re_init); 13027 if (rc) { 13028 netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc); 13029 goto open_err_free_mem; 13030 } 13031 13032 if (irq_re_init) { 13033 bnxt_init_napi(bp); 13034 rc = bnxt_request_irq(bp); 13035 if (rc) { 13036 netdev_err(bp->dev, "bnxt_request_irq err: %x\n", rc); 13037 goto open_err_irq; 13038 } 13039 } 13040 13041 rc = bnxt_init_nic(bp, irq_re_init); 13042 if (rc) { 13043 netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc); 13044 goto open_err_irq; 13045 } 13046 13047 bnxt_enable_napi(bp); 13048 bnxt_debug_dev_init(bp); 13049 13050 if (link_re_init) { 13051 mutex_lock(&bp->link_lock); 13052 rc = bnxt_update_phy_setting(bp); 13053 mutex_unlock(&bp->link_lock); 13054 if (rc) { 13055 netdev_warn(bp->dev, "failed to update phy settings\n"); 13056 if (BNXT_SINGLE_PF(bp)) { 13057 bp->link_info.phy_retry = true; 13058 bp->link_info.phy_retry_expires = 13059 jiffies + 5 * HZ; 13060 } 13061 } 13062 } 13063 13064 if (irq_re_init) { 13065 udp_tunnel_nic_reset_ntf(bp->dev); 13066 rc = bnxt_set_xps_mapping(bp); 13067 if (rc) 13068 netdev_warn(bp->dev, "failed to set xps mapping\n"); 13069 } 13070 13071 if (bp->tx_nr_rings_xdp < num_possible_cpus()) { 13072 if (!static_key_enabled(&bnxt_xdp_locking_key)) 13073 static_branch_enable(&bnxt_xdp_locking_key); 13074 } else if (static_key_enabled(&bnxt_xdp_locking_key)) { 13075 static_branch_disable(&bnxt_xdp_locking_key); 13076 } 13077 set_bit(BNXT_STATE_OPEN, &bp->state); 13078 bnxt_enable_int(bp); 13079 /* Enable TX queues */ 13080 bnxt_tx_enable(bp); 13081 mod_timer(&bp->timer, jiffies + bp->current_interval); 13082 /* Poll link status and check for SFP+ module status */ 13083 mutex_lock(&bp->link_lock); 13084 bnxt_get_port_module_status(bp); 13085 mutex_unlock(&bp->link_lock); 13086 13087 /* VF-reps may need to be re-opened after the PF is re-opened */ 13088 if (BNXT_PF(bp)) 13089 bnxt_vf_reps_open(bp); 13090 bnxt_ptp_init_rtc(bp, true); 13091 bnxt_ptp_cfg_tstamp_filters(bp); 13092 if (BNXT_SUPPORTS_MULTI_RSS_CTX(bp)) 13093 bnxt_hwrm_realloc_rss_ctx_vnic(bp); 13094 bnxt_cfg_usr_fltrs(bp); 13095 return 0; 13096 13097 open_err_irq: 13098 bnxt_del_napi(bp); 13099 13100 open_err_free_mem: 13101 bnxt_free_skbs(bp); 13102 bnxt_free_irq(bp); 13103 bnxt_free_mem(bp, true); 13104 return rc; 13105 } 13106 13107 int bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init) 13108 { 13109 int rc = 0; 13110 13111 if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) 13112 rc = -EIO; 13113 if (!rc) 13114 rc = __bnxt_open_nic(bp, irq_re_init, link_re_init); 13115 if (rc) { 13116 netdev_err(bp->dev, "nic open fail (rc: %x)\n", rc); 13117 netif_close(bp->dev); 13118 } 13119 return rc; 13120 } 13121 13122 /* netdev instance lock held, open the NIC half way by allocating all 13123 * resources, but NAPI, IRQ, and TX are not enabled. This is mainly used 13124 * for offline self tests. 13125 */ 13126 int bnxt_half_open_nic(struct bnxt *bp) 13127 { 13128 int rc = 0; 13129 13130 if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) { 13131 netdev_err(bp->dev, "A previous firmware reset has not completed, aborting half open\n"); 13132 rc = -ENODEV; 13133 goto half_open_err; 13134 } 13135 13136 rc = bnxt_alloc_mem(bp, true); 13137 if (rc) { 13138 netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc); 13139 goto half_open_err; 13140 } 13141 bnxt_init_napi(bp); 13142 set_bit(BNXT_STATE_HALF_OPEN, &bp->state); 13143 rc = bnxt_init_nic(bp, true); 13144 if (rc) { 13145 clear_bit(BNXT_STATE_HALF_OPEN, &bp->state); 13146 bnxt_del_napi(bp); 13147 netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc); 13148 goto half_open_err; 13149 } 13150 return 0; 13151 13152 half_open_err: 13153 bnxt_free_skbs(bp); 13154 bnxt_free_mem(bp, true); 13155 netif_close(bp->dev); 13156 return rc; 13157 } 13158 13159 /* netdev instance lock held, this call can only be made after a previous 13160 * successful call to bnxt_half_open_nic(). 13161 */ 13162 void bnxt_half_close_nic(struct bnxt *bp) 13163 { 13164 bnxt_hwrm_resource_free(bp, false, true); 13165 bnxt_del_napi(bp); 13166 bnxt_free_skbs(bp); 13167 bnxt_free_mem(bp, true); 13168 clear_bit(BNXT_STATE_HALF_OPEN, &bp->state); 13169 } 13170 13171 void bnxt_reenable_sriov(struct bnxt *bp) 13172 { 13173 if (BNXT_PF(bp)) { 13174 struct bnxt_pf_info *pf = &bp->pf; 13175 int n = pf->active_vfs; 13176 13177 if (n) 13178 bnxt_cfg_hw_sriov(bp, &n, true); 13179 } 13180 } 13181 13182 static int bnxt_open(struct net_device *dev) 13183 { 13184 struct bnxt *bp = netdev_priv(dev); 13185 int rc; 13186 13187 if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) { 13188 rc = bnxt_reinit_after_abort(bp); 13189 if (rc) { 13190 if (rc == -EBUSY) 13191 netdev_err(bp->dev, "A previous firmware reset has not completed, aborting\n"); 13192 else 13193 netdev_err(bp->dev, "Failed to reinitialize after aborted firmware reset\n"); 13194 return -ENODEV; 13195 } 13196 } 13197 13198 rc = bnxt_hwrm_if_change(bp, true); 13199 if (rc) 13200 return rc; 13201 13202 rc = __bnxt_open_nic(bp, true, true); 13203 if (rc) { 13204 bnxt_hwrm_if_change(bp, false); 13205 } else { 13206 if (test_and_clear_bit(BNXT_STATE_FW_RESET_DET, &bp->state)) { 13207 if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) 13208 bnxt_queue_sp_work(bp, 13209 BNXT_RESTART_ULP_SP_EVENT); 13210 } 13211 } 13212 13213 return rc; 13214 } 13215 13216 static bool bnxt_drv_busy(struct bnxt *bp) 13217 { 13218 return (test_bit(BNXT_STATE_IN_SP_TASK, &bp->state) || 13219 test_bit(BNXT_STATE_READ_STATS, &bp->state)); 13220 } 13221 13222 static void bnxt_get_ring_stats(struct bnxt *bp, 13223 struct rtnl_link_stats64 *stats); 13224 13225 static void __bnxt_close_nic(struct bnxt *bp, bool irq_re_init, 13226 bool link_re_init) 13227 { 13228 /* Close the VF-reps before closing PF */ 13229 if (BNXT_PF(bp)) 13230 bnxt_vf_reps_close(bp); 13231 13232 /* Change device state to avoid TX queue wake up's */ 13233 bnxt_tx_disable(bp); 13234 13235 clear_bit(BNXT_STATE_OPEN, &bp->state); 13236 smp_mb__after_atomic(); 13237 while (bnxt_drv_busy(bp)) 13238 msleep(20); 13239 13240 if (BNXT_SUPPORTS_MULTI_RSS_CTX(bp)) 13241 bnxt_clear_rss_ctxs(bp); 13242 /* Flush rings and disable interrupts */ 13243 bnxt_shutdown_nic(bp, irq_re_init); 13244 13245 /* TODO CHIMP_FW: Link/PHY related cleanup if (link_re_init) */ 13246 13247 bnxt_debug_dev_exit(bp); 13248 bnxt_disable_napi(bp); 13249 timer_delete_sync(&bp->timer); 13250 bnxt_free_skbs(bp); 13251 13252 /* Save ring stats before shutdown */ 13253 if (bp->bnapi && irq_re_init) { 13254 bnxt_get_ring_stats(bp, &bp->net_stats_prev); 13255 bnxt_get_ring_err_stats(bp, &bp->ring_err_stats_prev); 13256 } 13257 if (irq_re_init) { 13258 bnxt_free_irq(bp); 13259 bnxt_del_napi(bp); 13260 } 13261 bnxt_free_mem(bp, irq_re_init); 13262 } 13263 13264 void bnxt_close_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init) 13265 { 13266 if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) { 13267 /* If we get here, it means firmware reset is in progress 13268 * while we are trying to close. We can safely proceed with 13269 * the close because we are holding netdev instance lock. 13270 * Some firmware messages may fail as we proceed to close. 13271 * We set the ABORT_ERR flag here so that the FW reset thread 13272 * will later abort when it gets the netdev instance lock 13273 * and sees the flag. 13274 */ 13275 netdev_warn(bp->dev, "FW reset in progress during close, FW reset will be aborted\n"); 13276 set_bit(BNXT_STATE_ABORT_ERR, &bp->state); 13277 } 13278 13279 #ifdef CONFIG_BNXT_SRIOV 13280 if (bp->sriov_cfg) { 13281 int rc; 13282 13283 rc = wait_event_interruptible_timeout(bp->sriov_cfg_wait, 13284 !bp->sriov_cfg, 13285 BNXT_SRIOV_CFG_WAIT_TMO); 13286 if (!rc) 13287 netdev_warn(bp->dev, "timeout waiting for SRIOV config operation to complete, proceeding to close!\n"); 13288 else if (rc < 0) 13289 netdev_warn(bp->dev, "SRIOV config operation interrupted, proceeding to close!\n"); 13290 } 13291 #endif 13292 __bnxt_close_nic(bp, irq_re_init, link_re_init); 13293 } 13294 13295 static int bnxt_close(struct net_device *dev) 13296 { 13297 struct bnxt *bp = netdev_priv(dev); 13298 13299 bnxt_close_nic(bp, true, true); 13300 bnxt_hwrm_shutdown_link(bp); 13301 bnxt_hwrm_if_change(bp, false); 13302 return 0; 13303 } 13304 13305 static int bnxt_hwrm_port_phy_read(struct bnxt *bp, u16 phy_addr, u16 reg, 13306 u16 *val) 13307 { 13308 struct hwrm_port_phy_mdio_read_output *resp; 13309 struct hwrm_port_phy_mdio_read_input *req; 13310 int rc; 13311 13312 if (bp->hwrm_spec_code < 0x10a00) 13313 return -EOPNOTSUPP; 13314 13315 rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_MDIO_READ); 13316 if (rc) 13317 return rc; 13318 13319 req->port_id = cpu_to_le16(bp->pf.port_id); 13320 req->phy_addr = phy_addr; 13321 req->reg_addr = cpu_to_le16(reg & 0x1f); 13322 if (mdio_phy_id_is_c45(phy_addr)) { 13323 req->cl45_mdio = 1; 13324 req->phy_addr = mdio_phy_id_prtad(phy_addr); 13325 req->dev_addr = mdio_phy_id_devad(phy_addr); 13326 req->reg_addr = cpu_to_le16(reg); 13327 } 13328 13329 resp = hwrm_req_hold(bp, req); 13330 rc = hwrm_req_send(bp, req); 13331 if (!rc) 13332 *val = le16_to_cpu(resp->reg_data); 13333 hwrm_req_drop(bp, req); 13334 return rc; 13335 } 13336 13337 static int bnxt_hwrm_port_phy_write(struct bnxt *bp, u16 phy_addr, u16 reg, 13338 u16 val) 13339 { 13340 struct hwrm_port_phy_mdio_write_input *req; 13341 int rc; 13342 13343 if (bp->hwrm_spec_code < 0x10a00) 13344 return -EOPNOTSUPP; 13345 13346 rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_MDIO_WRITE); 13347 if (rc) 13348 return rc; 13349 13350 req->port_id = cpu_to_le16(bp->pf.port_id); 13351 req->phy_addr = phy_addr; 13352 req->reg_addr = cpu_to_le16(reg & 0x1f); 13353 if (mdio_phy_id_is_c45(phy_addr)) { 13354 req->cl45_mdio = 1; 13355 req->phy_addr = mdio_phy_id_prtad(phy_addr); 13356 req->dev_addr = mdio_phy_id_devad(phy_addr); 13357 req->reg_addr = cpu_to_le16(reg); 13358 } 13359 req->reg_data = cpu_to_le16(val); 13360 13361 return hwrm_req_send(bp, req); 13362 } 13363 13364 /* netdev instance lock held */ 13365 static int bnxt_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 13366 { 13367 struct mii_ioctl_data *mdio = if_mii(ifr); 13368 struct bnxt *bp = netdev_priv(dev); 13369 int rc; 13370 13371 switch (cmd) { 13372 case SIOCGMIIPHY: 13373 mdio->phy_id = bp->link_info.phy_addr; 13374 13375 fallthrough; 13376 case SIOCGMIIREG: { 13377 u16 mii_regval = 0; 13378 13379 if (!netif_running(dev)) 13380 return -EAGAIN; 13381 13382 rc = bnxt_hwrm_port_phy_read(bp, mdio->phy_id, mdio->reg_num, 13383 &mii_regval); 13384 mdio->val_out = mii_regval; 13385 return rc; 13386 } 13387 13388 case SIOCSMIIREG: 13389 if (!netif_running(dev)) 13390 return -EAGAIN; 13391 13392 return bnxt_hwrm_port_phy_write(bp, mdio->phy_id, mdio->reg_num, 13393 mdio->val_in); 13394 13395 default: 13396 /* do nothing */ 13397 break; 13398 } 13399 return -EOPNOTSUPP; 13400 } 13401 13402 static void bnxt_get_ring_stats(struct bnxt *bp, 13403 struct rtnl_link_stats64 *stats) 13404 { 13405 int i; 13406 13407 for (i = 0; i < bp->cp_nr_rings; i++) { 13408 struct bnxt_napi *bnapi = bp->bnapi[i]; 13409 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 13410 u64 *sw = cpr->stats.sw_stats; 13411 13412 stats->rx_packets += BNXT_GET_RING_STATS64(sw, rx_ucast_pkts); 13413 stats->rx_packets += BNXT_GET_RING_STATS64(sw, rx_mcast_pkts); 13414 stats->rx_packets += BNXT_GET_RING_STATS64(sw, rx_bcast_pkts); 13415 13416 stats->tx_packets += BNXT_GET_RING_STATS64(sw, tx_ucast_pkts); 13417 stats->tx_packets += BNXT_GET_RING_STATS64(sw, tx_mcast_pkts); 13418 stats->tx_packets += BNXT_GET_RING_STATS64(sw, tx_bcast_pkts); 13419 13420 stats->rx_bytes += BNXT_GET_RING_STATS64(sw, rx_ucast_bytes); 13421 stats->rx_bytes += BNXT_GET_RING_STATS64(sw, rx_mcast_bytes); 13422 stats->rx_bytes += BNXT_GET_RING_STATS64(sw, rx_bcast_bytes); 13423 13424 stats->tx_bytes += BNXT_GET_RING_STATS64(sw, tx_ucast_bytes); 13425 stats->tx_bytes += BNXT_GET_RING_STATS64(sw, tx_mcast_bytes); 13426 stats->tx_bytes += BNXT_GET_RING_STATS64(sw, tx_bcast_bytes); 13427 13428 stats->rx_missed_errors += 13429 BNXT_GET_RING_STATS64(sw, rx_discard_pkts); 13430 13431 stats->multicast += BNXT_GET_RING_STATS64(sw, rx_mcast_pkts); 13432 13433 stats->tx_dropped += BNXT_GET_RING_STATS64(sw, tx_error_pkts); 13434 13435 stats->rx_dropped += 13436 cpr->sw_stats->rx.rx_netpoll_discards + 13437 cpr->sw_stats->rx.rx_oom_discards; 13438 } 13439 } 13440 13441 static void bnxt_add_prev_stats(struct bnxt *bp, 13442 struct rtnl_link_stats64 *stats) 13443 { 13444 struct rtnl_link_stats64 *prev_stats = &bp->net_stats_prev; 13445 13446 stats->rx_packets += prev_stats->rx_packets; 13447 stats->tx_packets += prev_stats->tx_packets; 13448 stats->rx_bytes += prev_stats->rx_bytes; 13449 stats->tx_bytes += prev_stats->tx_bytes; 13450 stats->rx_missed_errors += prev_stats->rx_missed_errors; 13451 stats->multicast += prev_stats->multicast; 13452 stats->rx_dropped += prev_stats->rx_dropped; 13453 stats->tx_dropped += prev_stats->tx_dropped; 13454 } 13455 13456 static void 13457 bnxt_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats) 13458 { 13459 struct bnxt *bp = netdev_priv(dev); 13460 13461 set_bit(BNXT_STATE_READ_STATS, &bp->state); 13462 /* Make sure bnxt_close_nic() sees that we are reading stats before 13463 * we check the BNXT_STATE_OPEN flag. 13464 */ 13465 smp_mb__after_atomic(); 13466 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) { 13467 clear_bit(BNXT_STATE_READ_STATS, &bp->state); 13468 *stats = bp->net_stats_prev; 13469 return; 13470 } 13471 13472 bnxt_get_ring_stats(bp, stats); 13473 bnxt_add_prev_stats(bp, stats); 13474 13475 if (bp->flags & BNXT_FLAG_PORT_STATS) { 13476 u64 *rx = bp->port_stats.sw_stats; 13477 u64 *tx = bp->port_stats.sw_stats + 13478 BNXT_TX_PORT_STATS_BYTE_OFFSET / 8; 13479 13480 stats->rx_crc_errors = 13481 BNXT_GET_RX_PORT_STATS64(rx, rx_fcs_err_frames); 13482 stats->rx_frame_errors = 13483 BNXT_GET_RX_PORT_STATS64(rx, rx_align_err_frames); 13484 stats->rx_length_errors = 13485 BNXT_GET_RX_PORT_STATS64(rx, rx_undrsz_frames) + 13486 BNXT_GET_RX_PORT_STATS64(rx, rx_ovrsz_frames) + 13487 BNXT_GET_RX_PORT_STATS64(rx, rx_runt_frames); 13488 stats->rx_errors = 13489 BNXT_GET_RX_PORT_STATS64(rx, rx_false_carrier_frames) + 13490 BNXT_GET_RX_PORT_STATS64(rx, rx_jbr_frames); 13491 stats->collisions = 13492 BNXT_GET_TX_PORT_STATS64(tx, tx_total_collisions); 13493 stats->tx_fifo_errors = 13494 BNXT_GET_TX_PORT_STATS64(tx, tx_fifo_underruns); 13495 stats->tx_errors = BNXT_GET_TX_PORT_STATS64(tx, tx_err); 13496 } 13497 clear_bit(BNXT_STATE_READ_STATS, &bp->state); 13498 } 13499 13500 static void bnxt_get_one_ring_err_stats(struct bnxt *bp, 13501 struct bnxt_total_ring_err_stats *stats, 13502 struct bnxt_cp_ring_info *cpr) 13503 { 13504 struct bnxt_sw_stats *sw_stats = cpr->sw_stats; 13505 u64 *hw_stats = cpr->stats.sw_stats; 13506 13507 stats->rx_total_l4_csum_errors += sw_stats->rx.rx_l4_csum_errors; 13508 stats->rx_total_resets += sw_stats->rx.rx_resets; 13509 stats->rx_total_buf_errors += sw_stats->rx.rx_buf_errors; 13510 stats->rx_total_oom_discards += sw_stats->rx.rx_oom_discards; 13511 stats->rx_total_netpoll_discards += sw_stats->rx.rx_netpoll_discards; 13512 stats->rx_total_ring_discards += 13513 BNXT_GET_RING_STATS64(hw_stats, rx_discard_pkts); 13514 stats->rx_total_hw_gro_packets += sw_stats->rx.rx_hw_gro_packets; 13515 stats->rx_total_hw_gro_wire_packets += sw_stats->rx.rx_hw_gro_wire_packets; 13516 stats->tx_total_resets += sw_stats->tx.tx_resets; 13517 stats->tx_total_ring_discards += 13518 BNXT_GET_RING_STATS64(hw_stats, tx_discard_pkts); 13519 stats->total_missed_irqs += sw_stats->cmn.missed_irqs; 13520 } 13521 13522 void bnxt_get_ring_err_stats(struct bnxt *bp, 13523 struct bnxt_total_ring_err_stats *stats) 13524 { 13525 int i; 13526 13527 for (i = 0; i < bp->cp_nr_rings; i++) 13528 bnxt_get_one_ring_err_stats(bp, stats, &bp->bnapi[i]->cp_ring); 13529 } 13530 13531 static bool bnxt_mc_list_updated(struct bnxt *bp, u32 *rx_mask) 13532 { 13533 struct bnxt_vnic_info *vnic = &bp->vnic_info[BNXT_VNIC_DEFAULT]; 13534 struct net_device *dev = bp->dev; 13535 struct netdev_hw_addr *ha; 13536 u8 *haddr; 13537 int mc_count = 0; 13538 bool update = false; 13539 int off = 0; 13540 13541 netdev_for_each_mc_addr(ha, dev) { 13542 if (mc_count >= BNXT_MAX_MC_ADDRS) { 13543 *rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST; 13544 vnic->mc_list_count = 0; 13545 return false; 13546 } 13547 haddr = ha->addr; 13548 if (!ether_addr_equal(haddr, vnic->mc_list + off)) { 13549 memcpy(vnic->mc_list + off, haddr, ETH_ALEN); 13550 update = true; 13551 } 13552 off += ETH_ALEN; 13553 mc_count++; 13554 } 13555 if (mc_count) 13556 *rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_MCAST; 13557 13558 if (mc_count != vnic->mc_list_count) { 13559 vnic->mc_list_count = mc_count; 13560 update = true; 13561 } 13562 return update; 13563 } 13564 13565 static bool bnxt_uc_list_updated(struct bnxt *bp) 13566 { 13567 struct net_device *dev = bp->dev; 13568 struct bnxt_vnic_info *vnic = &bp->vnic_info[BNXT_VNIC_DEFAULT]; 13569 struct netdev_hw_addr *ha; 13570 int off = 0; 13571 13572 if (netdev_uc_count(dev) != (vnic->uc_filter_count - 1)) 13573 return true; 13574 13575 netdev_for_each_uc_addr(ha, dev) { 13576 if (!ether_addr_equal(ha->addr, vnic->uc_list + off)) 13577 return true; 13578 13579 off += ETH_ALEN; 13580 } 13581 return false; 13582 } 13583 13584 static void bnxt_set_rx_mode(struct net_device *dev) 13585 { 13586 struct bnxt *bp = netdev_priv(dev); 13587 struct bnxt_vnic_info *vnic; 13588 bool mc_update = false; 13589 bool uc_update; 13590 u32 mask; 13591 13592 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) 13593 return; 13594 13595 vnic = &bp->vnic_info[BNXT_VNIC_DEFAULT]; 13596 mask = vnic->rx_mask; 13597 mask &= ~(CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS | 13598 CFA_L2_SET_RX_MASK_REQ_MASK_MCAST | 13599 CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST | 13600 CFA_L2_SET_RX_MASK_REQ_MASK_BCAST); 13601 13602 if (dev->flags & IFF_PROMISC) 13603 mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS; 13604 13605 uc_update = bnxt_uc_list_updated(bp); 13606 13607 if (dev->flags & IFF_BROADCAST) 13608 mask |= CFA_L2_SET_RX_MASK_REQ_MASK_BCAST; 13609 if (dev->flags & IFF_ALLMULTI) { 13610 mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST; 13611 vnic->mc_list_count = 0; 13612 } else if (dev->flags & IFF_MULTICAST) { 13613 mc_update = bnxt_mc_list_updated(bp, &mask); 13614 } 13615 13616 if (mask != vnic->rx_mask || uc_update || mc_update) { 13617 vnic->rx_mask = mask; 13618 13619 bnxt_queue_sp_work(bp, BNXT_RX_MASK_SP_EVENT); 13620 } 13621 } 13622 13623 static int bnxt_cfg_rx_mode(struct bnxt *bp) 13624 { 13625 struct net_device *dev = bp->dev; 13626 struct bnxt_vnic_info *vnic = &bp->vnic_info[BNXT_VNIC_DEFAULT]; 13627 struct netdev_hw_addr *ha; 13628 int i, off = 0, rc; 13629 bool uc_update; 13630 13631 netif_addr_lock_bh(dev); 13632 uc_update = bnxt_uc_list_updated(bp); 13633 netif_addr_unlock_bh(dev); 13634 13635 if (!uc_update) 13636 goto skip_uc; 13637 13638 for (i = 1; i < vnic->uc_filter_count; i++) { 13639 struct bnxt_l2_filter *fltr = vnic->l2_filters[i]; 13640 13641 bnxt_hwrm_l2_filter_free(bp, fltr); 13642 bnxt_del_l2_filter(bp, fltr); 13643 } 13644 13645 vnic->uc_filter_count = 1; 13646 13647 netif_addr_lock_bh(dev); 13648 if (netdev_uc_count(dev) > (BNXT_MAX_UC_ADDRS - 1)) { 13649 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS; 13650 } else { 13651 netdev_for_each_uc_addr(ha, dev) { 13652 memcpy(vnic->uc_list + off, ha->addr, ETH_ALEN); 13653 off += ETH_ALEN; 13654 vnic->uc_filter_count++; 13655 } 13656 } 13657 netif_addr_unlock_bh(dev); 13658 13659 for (i = 1, off = 0; i < vnic->uc_filter_count; i++, off += ETH_ALEN) { 13660 rc = bnxt_hwrm_set_vnic_filter(bp, 0, i, vnic->uc_list + off); 13661 if (rc) { 13662 if (BNXT_VF(bp) && rc == -ENODEV) { 13663 if (!test_and_set_bit(BNXT_STATE_L2_FILTER_RETRY, &bp->state)) 13664 netdev_warn(bp->dev, "Cannot configure L2 filters while PF is unavailable, will retry\n"); 13665 else 13666 netdev_dbg(bp->dev, "PF still unavailable while configuring L2 filters.\n"); 13667 rc = 0; 13668 } else { 13669 netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n", rc); 13670 } 13671 vnic->uc_filter_count = i; 13672 return rc; 13673 } 13674 } 13675 if (test_and_clear_bit(BNXT_STATE_L2_FILTER_RETRY, &bp->state)) 13676 netdev_notice(bp->dev, "Retry of L2 filter configuration successful.\n"); 13677 13678 skip_uc: 13679 if ((vnic->rx_mask & CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS) && 13680 !bnxt_promisc_ok(bp)) 13681 vnic->rx_mask &= ~CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS; 13682 rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0); 13683 if (rc && (vnic->rx_mask & CFA_L2_SET_RX_MASK_REQ_MASK_MCAST)) { 13684 netdev_info(bp->dev, "Failed setting MC filters rc: %d, turning on ALL_MCAST mode\n", 13685 rc); 13686 vnic->rx_mask &= ~CFA_L2_SET_RX_MASK_REQ_MASK_MCAST; 13687 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST; 13688 vnic->mc_list_count = 0; 13689 rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0); 13690 } 13691 if (rc) 13692 netdev_err(bp->dev, "HWRM cfa l2 rx mask failure rc: %d\n", 13693 rc); 13694 13695 return rc; 13696 } 13697 13698 static bool bnxt_can_reserve_rings(struct bnxt *bp) 13699 { 13700 #ifdef CONFIG_BNXT_SRIOV 13701 if (BNXT_NEW_RM(bp) && BNXT_VF(bp)) { 13702 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 13703 13704 /* No minimum rings were provisioned by the PF. Don't 13705 * reserve rings by default when device is down. 13706 */ 13707 if (hw_resc->min_tx_rings || hw_resc->resv_tx_rings) 13708 return true; 13709 13710 if (!netif_running(bp->dev)) 13711 return false; 13712 } 13713 #endif 13714 return true; 13715 } 13716 13717 /* If the chip and firmware supports RFS */ 13718 static bool bnxt_rfs_supported(struct bnxt *bp) 13719 { 13720 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 13721 if (bp->fw_cap & BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2) 13722 return true; 13723 return false; 13724 } 13725 /* 212 firmware is broken for aRFS */ 13726 if (BNXT_FW_MAJ(bp) == 212) 13727 return false; 13728 if (BNXT_PF(bp) && !BNXT_CHIP_TYPE_NITRO_A0(bp)) 13729 return true; 13730 if (bp->rss_cap & BNXT_RSS_CAP_NEW_RSS_CAP) 13731 return true; 13732 return false; 13733 } 13734 13735 /* If runtime conditions support RFS */ 13736 bool bnxt_rfs_capable(struct bnxt *bp, bool new_rss_ctx) 13737 { 13738 struct bnxt_hw_rings hwr = {0}; 13739 int max_vnics, max_rss_ctxs; 13740 13741 if ((bp->flags & BNXT_FLAG_CHIP_P5_PLUS) && 13742 !BNXT_SUPPORTS_NTUPLE_VNIC(bp)) 13743 return bnxt_rfs_supported(bp); 13744 13745 if (!bnxt_can_reserve_rings(bp) || !bp->rx_nr_rings) 13746 return false; 13747 13748 hwr.grp = bp->rx_nr_rings; 13749 hwr.vnic = bnxt_get_total_vnics(bp, bp->rx_nr_rings); 13750 if (new_rss_ctx) 13751 hwr.vnic++; 13752 hwr.rss_ctx = bnxt_get_total_rss_ctxs(bp, &hwr); 13753 max_vnics = bnxt_get_max_func_vnics(bp); 13754 max_rss_ctxs = bnxt_get_max_func_rss_ctxs(bp); 13755 13756 if (hwr.vnic > max_vnics || hwr.rss_ctx > max_rss_ctxs) { 13757 if (bp->rx_nr_rings > 1) 13758 netdev_warn(bp->dev, 13759 "Not enough resources to support NTUPLE filters, enough resources for up to %d rx rings\n", 13760 min(max_rss_ctxs - 1, max_vnics - 1)); 13761 return false; 13762 } 13763 13764 if (!BNXT_NEW_RM(bp)) 13765 return true; 13766 13767 /* Do not reduce VNIC and RSS ctx reservations. There is a FW 13768 * issue that will mess up the default VNIC if we reduce the 13769 * reservations. 13770 */ 13771 if (hwr.vnic <= bp->hw_resc.resv_vnics && 13772 hwr.rss_ctx <= bp->hw_resc.resv_rsscos_ctxs) 13773 return true; 13774 13775 bnxt_hwrm_reserve_rings(bp, &hwr); 13776 if (hwr.vnic <= bp->hw_resc.resv_vnics && 13777 hwr.rss_ctx <= bp->hw_resc.resv_rsscos_ctxs) 13778 return true; 13779 13780 netdev_warn(bp->dev, "Unable to reserve resources to support NTUPLE filters.\n"); 13781 hwr.vnic = 1; 13782 hwr.rss_ctx = 0; 13783 bnxt_hwrm_reserve_rings(bp, &hwr); 13784 return false; 13785 } 13786 13787 static netdev_features_t bnxt_fix_features(struct net_device *dev, 13788 netdev_features_t features) 13789 { 13790 struct bnxt *bp = netdev_priv(dev); 13791 netdev_features_t vlan_features; 13792 13793 if ((features & NETIF_F_NTUPLE) && !bnxt_rfs_capable(bp, false)) 13794 features &= ~NETIF_F_NTUPLE; 13795 13796 if ((bp->flags & BNXT_FLAG_NO_AGG_RINGS) || bp->xdp_prog) 13797 features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW); 13798 13799 if (!(features & NETIF_F_GRO)) 13800 features &= ~NETIF_F_GRO_HW; 13801 13802 if (features & NETIF_F_GRO_HW) 13803 features &= ~NETIF_F_LRO; 13804 13805 /* Both CTAG and STAG VLAN acceleration on the RX side have to be 13806 * turned on or off together. 13807 */ 13808 vlan_features = features & BNXT_HW_FEATURE_VLAN_ALL_RX; 13809 if (vlan_features != BNXT_HW_FEATURE_VLAN_ALL_RX) { 13810 if (dev->features & BNXT_HW_FEATURE_VLAN_ALL_RX) 13811 features &= ~BNXT_HW_FEATURE_VLAN_ALL_RX; 13812 else if (vlan_features) 13813 features |= BNXT_HW_FEATURE_VLAN_ALL_RX; 13814 } 13815 #ifdef CONFIG_BNXT_SRIOV 13816 if (BNXT_VF(bp) && bp->vf.vlan) 13817 features &= ~BNXT_HW_FEATURE_VLAN_ALL_RX; 13818 #endif 13819 return features; 13820 } 13821 13822 static int bnxt_reinit_features(struct bnxt *bp, bool irq_re_init, 13823 bool link_re_init, u32 flags, bool update_tpa) 13824 { 13825 bnxt_close_nic(bp, irq_re_init, link_re_init); 13826 bp->flags = flags; 13827 if (update_tpa) 13828 bnxt_set_ring_params(bp); 13829 return bnxt_open_nic(bp, irq_re_init, link_re_init); 13830 } 13831 13832 static int bnxt_set_features(struct net_device *dev, netdev_features_t features) 13833 { 13834 bool update_tpa = false, update_ntuple = false; 13835 struct bnxt *bp = netdev_priv(dev); 13836 u32 flags = bp->flags; 13837 u32 changes; 13838 int rc = 0; 13839 bool re_init = false; 13840 13841 flags &= ~BNXT_FLAG_ALL_CONFIG_FEATS; 13842 if (features & NETIF_F_GRO_HW) 13843 flags |= BNXT_FLAG_GRO; 13844 else if (features & NETIF_F_LRO) 13845 flags |= BNXT_FLAG_LRO; 13846 13847 if (bp->flags & BNXT_FLAG_NO_AGG_RINGS) 13848 flags &= ~BNXT_FLAG_TPA; 13849 13850 if (features & BNXT_HW_FEATURE_VLAN_ALL_RX) 13851 flags |= BNXT_FLAG_STRIP_VLAN; 13852 13853 if (features & NETIF_F_NTUPLE) 13854 flags |= BNXT_FLAG_RFS; 13855 else 13856 bnxt_clear_usr_fltrs(bp, true); 13857 13858 changes = flags ^ bp->flags; 13859 if (changes & BNXT_FLAG_TPA) { 13860 update_tpa = true; 13861 if ((bp->flags & BNXT_FLAG_TPA) == 0 || 13862 (flags & BNXT_FLAG_TPA) == 0 || 13863 (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 13864 re_init = true; 13865 } 13866 13867 if (changes & ~BNXT_FLAG_TPA) 13868 re_init = true; 13869 13870 if (changes & BNXT_FLAG_RFS) 13871 update_ntuple = true; 13872 13873 if (flags != bp->flags) { 13874 u32 old_flags = bp->flags; 13875 13876 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) { 13877 bp->flags = flags; 13878 if (update_tpa) 13879 bnxt_set_ring_params(bp); 13880 return rc; 13881 } 13882 13883 if (update_ntuple) 13884 return bnxt_reinit_features(bp, true, false, flags, update_tpa); 13885 13886 if (re_init) 13887 return bnxt_reinit_features(bp, false, false, flags, update_tpa); 13888 13889 if (update_tpa) { 13890 bp->flags = flags; 13891 rc = bnxt_set_tpa(bp, 13892 (flags & BNXT_FLAG_TPA) ? 13893 true : false); 13894 if (rc) 13895 bp->flags = old_flags; 13896 } 13897 } 13898 return rc; 13899 } 13900 13901 static bool bnxt_exthdr_check(struct bnxt *bp, struct sk_buff *skb, int nw_off, 13902 u8 **nextp) 13903 { 13904 struct ipv6hdr *ip6h = (struct ipv6hdr *)(skb->data + nw_off); 13905 int hdr_count = 0; 13906 u8 *nexthdr; 13907 int start; 13908 13909 /* Check that there are at most 2 IPv6 extension headers, no 13910 * fragment header, and each is <= 64 bytes. 13911 */ 13912 start = nw_off + sizeof(*ip6h); 13913 nexthdr = &ip6h->nexthdr; 13914 while (ipv6_ext_hdr(*nexthdr)) { 13915 struct ipv6_opt_hdr *hp; 13916 int hdrlen; 13917 13918 if (hdr_count >= 3 || *nexthdr == NEXTHDR_NONE || 13919 *nexthdr == NEXTHDR_FRAGMENT) 13920 return false; 13921 hp = __skb_header_pointer(NULL, start, sizeof(*hp), skb->data, 13922 skb_headlen(skb), NULL); 13923 if (!hp) 13924 return false; 13925 if (*nexthdr == NEXTHDR_AUTH) 13926 hdrlen = ipv6_authlen(hp); 13927 else 13928 hdrlen = ipv6_optlen(hp); 13929 13930 if (hdrlen > 64) 13931 return false; 13932 13933 hdr_count++; 13934 nexthdr = &hp->nexthdr; 13935 start += hdrlen; 13936 } 13937 if (nextp) { 13938 /* Caller will check inner protocol */ 13939 if (skb->encapsulation) { 13940 *nextp = nexthdr; 13941 return true; 13942 } 13943 *nextp = NULL; 13944 } 13945 /* Only support TCP/UDP for non-tunneled ipv6 and inner ipv6 */ 13946 return *nexthdr == IPPROTO_TCP || *nexthdr == IPPROTO_UDP; 13947 } 13948 13949 /* For UDP, we can only handle 1 Vxlan port and 1 Geneve port. */ 13950 static bool bnxt_udp_tunl_check(struct bnxt *bp, struct sk_buff *skb) 13951 { 13952 struct udphdr *uh = udp_hdr(skb); 13953 __be16 udp_port = uh->dest; 13954 13955 if (udp_port != bp->vxlan_port && udp_port != bp->nge_port && 13956 udp_port != bp->vxlan_gpe_port) 13957 return false; 13958 if (skb->inner_protocol == htons(ETH_P_TEB)) { 13959 struct ethhdr *eh = inner_eth_hdr(skb); 13960 13961 switch (eh->h_proto) { 13962 case htons(ETH_P_IP): 13963 return true; 13964 case htons(ETH_P_IPV6): 13965 return bnxt_exthdr_check(bp, skb, 13966 skb_inner_network_offset(skb), 13967 NULL); 13968 } 13969 } else if (skb->inner_protocol == htons(ETH_P_IP)) { 13970 return true; 13971 } else if (skb->inner_protocol == htons(ETH_P_IPV6)) { 13972 return bnxt_exthdr_check(bp, skb, skb_inner_network_offset(skb), 13973 NULL); 13974 } 13975 return false; 13976 } 13977 13978 static bool bnxt_tunl_check(struct bnxt *bp, struct sk_buff *skb, u8 l4_proto) 13979 { 13980 switch (l4_proto) { 13981 case IPPROTO_UDP: 13982 return bnxt_udp_tunl_check(bp, skb); 13983 case IPPROTO_IPIP: 13984 return true; 13985 case IPPROTO_GRE: { 13986 switch (skb->inner_protocol) { 13987 default: 13988 return false; 13989 case htons(ETH_P_IP): 13990 return true; 13991 case htons(ETH_P_IPV6): 13992 fallthrough; 13993 } 13994 } 13995 case IPPROTO_IPV6: 13996 /* Check ext headers of inner ipv6 */ 13997 return bnxt_exthdr_check(bp, skb, skb_inner_network_offset(skb), 13998 NULL); 13999 } 14000 return false; 14001 } 14002 14003 static netdev_features_t bnxt_features_check(struct sk_buff *skb, 14004 struct net_device *dev, 14005 netdev_features_t features) 14006 { 14007 struct bnxt *bp = netdev_priv(dev); 14008 u8 *l4_proto; 14009 14010 features = vlan_features_check(skb, features); 14011 switch (vlan_get_protocol(skb)) { 14012 case htons(ETH_P_IP): 14013 if (!skb->encapsulation) 14014 return features; 14015 l4_proto = &ip_hdr(skb)->protocol; 14016 if (bnxt_tunl_check(bp, skb, *l4_proto)) 14017 return features; 14018 break; 14019 case htons(ETH_P_IPV6): 14020 if (!bnxt_exthdr_check(bp, skb, skb_network_offset(skb), 14021 &l4_proto)) 14022 break; 14023 if (!l4_proto || bnxt_tunl_check(bp, skb, *l4_proto)) 14024 return features; 14025 break; 14026 } 14027 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 14028 } 14029 14030 int bnxt_dbg_hwrm_rd_reg(struct bnxt *bp, u32 reg_off, u16 num_words, 14031 u32 *reg_buf) 14032 { 14033 struct hwrm_dbg_read_direct_output *resp; 14034 struct hwrm_dbg_read_direct_input *req; 14035 __le32 *dbg_reg_buf; 14036 dma_addr_t mapping; 14037 int rc, i; 14038 14039 rc = hwrm_req_init(bp, req, HWRM_DBG_READ_DIRECT); 14040 if (rc) 14041 return rc; 14042 14043 dbg_reg_buf = hwrm_req_dma_slice(bp, req, num_words * 4, 14044 &mapping); 14045 if (!dbg_reg_buf) { 14046 rc = -ENOMEM; 14047 goto dbg_rd_reg_exit; 14048 } 14049 14050 req->host_dest_addr = cpu_to_le64(mapping); 14051 14052 resp = hwrm_req_hold(bp, req); 14053 req->read_addr = cpu_to_le32(reg_off + CHIMP_REG_VIEW_ADDR); 14054 req->read_len32 = cpu_to_le32(num_words); 14055 14056 rc = hwrm_req_send(bp, req); 14057 if (rc || resp->error_code) { 14058 rc = -EIO; 14059 goto dbg_rd_reg_exit; 14060 } 14061 for (i = 0; i < num_words; i++) 14062 reg_buf[i] = le32_to_cpu(dbg_reg_buf[i]); 14063 14064 dbg_rd_reg_exit: 14065 hwrm_req_drop(bp, req); 14066 return rc; 14067 } 14068 14069 static int bnxt_dbg_hwrm_ring_info_get(struct bnxt *bp, u8 ring_type, 14070 u32 ring_id, u32 *prod, u32 *cons) 14071 { 14072 struct hwrm_dbg_ring_info_get_output *resp; 14073 struct hwrm_dbg_ring_info_get_input *req; 14074 int rc; 14075 14076 rc = hwrm_req_init(bp, req, HWRM_DBG_RING_INFO_GET); 14077 if (rc) 14078 return rc; 14079 14080 req->ring_type = ring_type; 14081 req->fw_ring_id = cpu_to_le32(ring_id); 14082 resp = hwrm_req_hold(bp, req); 14083 rc = hwrm_req_send(bp, req); 14084 if (!rc) { 14085 *prod = le32_to_cpu(resp->producer_index); 14086 *cons = le32_to_cpu(resp->consumer_index); 14087 } 14088 hwrm_req_drop(bp, req); 14089 return rc; 14090 } 14091 14092 static void bnxt_dump_tx_sw_state(struct bnxt_napi *bnapi) 14093 { 14094 struct bnxt_tx_ring_info *txr; 14095 int i = bnapi->index, j; 14096 14097 bnxt_for_each_napi_tx(j, bnapi, txr) 14098 netdev_info(bnapi->bp->dev, "[%d.%d]: tx{fw_ring: %d prod: %x cons: %x}\n", 14099 i, j, txr->tx_ring_struct.fw_ring_id, txr->tx_prod, 14100 txr->tx_cons); 14101 } 14102 14103 static void bnxt_dump_rx_sw_state(struct bnxt_napi *bnapi) 14104 { 14105 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 14106 int i = bnapi->index; 14107 14108 if (!rxr) 14109 return; 14110 14111 netdev_info(bnapi->bp->dev, "[%d]: rx{fw_ring: %d prod: %x} rx_agg{fw_ring: %d agg_prod: %x sw_agg_prod: %x}\n", 14112 i, rxr->rx_ring_struct.fw_ring_id, rxr->rx_prod, 14113 rxr->rx_agg_ring_struct.fw_ring_id, rxr->rx_agg_prod, 14114 rxr->rx_sw_agg_prod); 14115 } 14116 14117 static void bnxt_dump_cp_sw_state(struct bnxt_napi *bnapi) 14118 { 14119 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring, *cpr2; 14120 int i = bnapi->index, j; 14121 14122 netdev_info(bnapi->bp->dev, "[%d]: cp{fw_ring: %d raw_cons: %x}\n", 14123 i, cpr->cp_ring_struct.fw_ring_id, cpr->cp_raw_cons); 14124 for (j = 0; j < cpr->cp_ring_count; j++) { 14125 cpr2 = &cpr->cp_ring_arr[j]; 14126 if (!cpr2->bnapi) 14127 continue; 14128 netdev_info(bnapi->bp->dev, "[%d.%d]: cp{fw_ring: %d raw_cons: %x}\n", 14129 i, j, cpr2->cp_ring_struct.fw_ring_id, 14130 cpr2->cp_raw_cons); 14131 } 14132 } 14133 14134 static void bnxt_dbg_dump_states(struct bnxt *bp) 14135 { 14136 int i; 14137 struct bnxt_napi *bnapi; 14138 14139 for (i = 0; i < bp->cp_nr_rings; i++) { 14140 bnapi = bp->bnapi[i]; 14141 if (netif_msg_drv(bp)) { 14142 bnxt_dump_tx_sw_state(bnapi); 14143 bnxt_dump_rx_sw_state(bnapi); 14144 bnxt_dump_cp_sw_state(bnapi); 14145 } 14146 } 14147 } 14148 14149 static int bnxt_hwrm_rx_ring_reset(struct bnxt *bp, int ring_nr) 14150 { 14151 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[ring_nr]; 14152 struct hwrm_ring_reset_input *req; 14153 struct bnxt_napi *bnapi = rxr->bnapi; 14154 struct bnxt_cp_ring_info *cpr; 14155 u16 cp_ring_id; 14156 int rc; 14157 14158 rc = hwrm_req_init(bp, req, HWRM_RING_RESET); 14159 if (rc) 14160 return rc; 14161 14162 cpr = &bnapi->cp_ring; 14163 cp_ring_id = cpr->cp_ring_struct.fw_ring_id; 14164 req->cmpl_ring = cpu_to_le16(cp_ring_id); 14165 req->ring_type = RING_RESET_REQ_RING_TYPE_RX_RING_GRP; 14166 req->ring_id = cpu_to_le16(bp->grp_info[bnapi->index].fw_grp_id); 14167 return hwrm_req_send_silent(bp, req); 14168 } 14169 14170 static void bnxt_reset_task(struct bnxt *bp, bool silent) 14171 { 14172 if (!silent) 14173 bnxt_dbg_dump_states(bp); 14174 if (netif_running(bp->dev)) { 14175 bnxt_close_nic(bp, !silent, false); 14176 bnxt_open_nic(bp, !silent, false); 14177 } 14178 } 14179 14180 static void bnxt_tx_timeout(struct net_device *dev, unsigned int txqueue) 14181 { 14182 struct bnxt *bp = netdev_priv(dev); 14183 14184 netdev_err(bp->dev, "TX timeout detected, starting reset task!\n"); 14185 bnxt_queue_sp_work(bp, BNXT_RESET_TASK_SP_EVENT); 14186 } 14187 14188 static void bnxt_fw_health_check(struct bnxt *bp) 14189 { 14190 struct bnxt_fw_health *fw_health = bp->fw_health; 14191 struct pci_dev *pdev = bp->pdev; 14192 u32 val; 14193 14194 if (!fw_health->enabled || test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) 14195 return; 14196 14197 /* Make sure it is enabled before checking the tmr_counter. */ 14198 smp_rmb(); 14199 if (fw_health->tmr_counter) { 14200 fw_health->tmr_counter--; 14201 return; 14202 } 14203 14204 val = bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG); 14205 if (val == fw_health->last_fw_heartbeat && pci_device_is_present(pdev)) { 14206 fw_health->arrests++; 14207 goto fw_reset; 14208 } 14209 14210 fw_health->last_fw_heartbeat = val; 14211 14212 val = bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG); 14213 if (val != fw_health->last_fw_reset_cnt && pci_device_is_present(pdev)) { 14214 fw_health->discoveries++; 14215 goto fw_reset; 14216 } 14217 14218 fw_health->tmr_counter = fw_health->tmr_multiplier; 14219 return; 14220 14221 fw_reset: 14222 bnxt_queue_sp_work(bp, BNXT_FW_EXCEPTION_SP_EVENT); 14223 } 14224 14225 static void bnxt_timer(struct timer_list *t) 14226 { 14227 struct bnxt *bp = timer_container_of(bp, t, timer); 14228 struct net_device *dev = bp->dev; 14229 14230 if (!netif_running(dev) || !test_bit(BNXT_STATE_OPEN, &bp->state)) 14231 return; 14232 14233 if (atomic_read(&bp->intr_sem) != 0) 14234 goto bnxt_restart_timer; 14235 14236 if (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY) 14237 bnxt_fw_health_check(bp); 14238 14239 if (BNXT_LINK_IS_UP(bp) && bp->stats_coal_ticks) 14240 bnxt_queue_sp_work(bp, BNXT_PERIODIC_STATS_SP_EVENT); 14241 14242 if (bnxt_tc_flower_enabled(bp)) 14243 bnxt_queue_sp_work(bp, BNXT_FLOW_STATS_SP_EVENT); 14244 14245 #ifdef CONFIG_RFS_ACCEL 14246 if ((bp->flags & BNXT_FLAG_RFS) && bp->ntp_fltr_count) 14247 bnxt_queue_sp_work(bp, BNXT_RX_NTP_FLTR_SP_EVENT); 14248 #endif /*CONFIG_RFS_ACCEL*/ 14249 14250 if (bp->link_info.phy_retry) { 14251 if (time_after(jiffies, bp->link_info.phy_retry_expires)) { 14252 bp->link_info.phy_retry = false; 14253 netdev_warn(bp->dev, "failed to update phy settings after maximum retries.\n"); 14254 } else { 14255 bnxt_queue_sp_work(bp, BNXT_UPDATE_PHY_SP_EVENT); 14256 } 14257 } 14258 14259 if (test_bit(BNXT_STATE_L2_FILTER_RETRY, &bp->state)) 14260 bnxt_queue_sp_work(bp, BNXT_RX_MASK_SP_EVENT); 14261 14262 if ((BNXT_CHIP_P5(bp)) && !bp->chip_rev && netif_carrier_ok(dev)) 14263 bnxt_queue_sp_work(bp, BNXT_RING_COAL_NOW_SP_EVENT); 14264 14265 bnxt_restart_timer: 14266 mod_timer(&bp->timer, jiffies + bp->current_interval); 14267 } 14268 14269 static void bnxt_lock_sp(struct bnxt *bp) 14270 { 14271 /* We are called from bnxt_sp_task which has BNXT_STATE_IN_SP_TASK 14272 * set. If the device is being closed, bnxt_close() may be holding 14273 * netdev instance lock and waiting for BNXT_STATE_IN_SP_TASK to clear. 14274 * So we must clear BNXT_STATE_IN_SP_TASK before holding netdev 14275 * instance lock. 14276 */ 14277 clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state); 14278 netdev_lock(bp->dev); 14279 } 14280 14281 static void bnxt_unlock_sp(struct bnxt *bp) 14282 { 14283 set_bit(BNXT_STATE_IN_SP_TASK, &bp->state); 14284 netdev_unlock(bp->dev); 14285 } 14286 14287 /* Only called from bnxt_sp_task() */ 14288 static void bnxt_reset(struct bnxt *bp, bool silent) 14289 { 14290 bnxt_lock_sp(bp); 14291 if (test_bit(BNXT_STATE_OPEN, &bp->state)) 14292 bnxt_reset_task(bp, silent); 14293 bnxt_unlock_sp(bp); 14294 } 14295 14296 /* Only called from bnxt_sp_task() */ 14297 static void bnxt_rx_ring_reset(struct bnxt *bp) 14298 { 14299 int i; 14300 14301 bnxt_lock_sp(bp); 14302 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) { 14303 bnxt_unlock_sp(bp); 14304 return; 14305 } 14306 /* Disable and flush TPA before resetting the RX ring */ 14307 if (bp->flags & BNXT_FLAG_TPA) 14308 bnxt_set_tpa(bp, false); 14309 for (i = 0; i < bp->rx_nr_rings; i++) { 14310 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 14311 struct bnxt_cp_ring_info *cpr; 14312 int rc; 14313 14314 if (!rxr->bnapi->in_reset) 14315 continue; 14316 14317 rc = bnxt_hwrm_rx_ring_reset(bp, i); 14318 if (rc) { 14319 if (rc == -EINVAL || rc == -EOPNOTSUPP) 14320 netdev_info_once(bp->dev, "RX ring reset not supported by firmware, falling back to global reset\n"); 14321 else 14322 netdev_warn(bp->dev, "RX ring reset failed, rc = %d, falling back to global reset\n", 14323 rc); 14324 bnxt_reset_task(bp, true); 14325 break; 14326 } 14327 bnxt_free_one_rx_ring_skbs(bp, rxr); 14328 rxr->rx_prod = 0; 14329 rxr->rx_agg_prod = 0; 14330 rxr->rx_sw_agg_prod = 0; 14331 rxr->rx_next_cons = 0; 14332 rxr->bnapi->in_reset = false; 14333 bnxt_alloc_one_rx_ring(bp, i); 14334 cpr = &rxr->bnapi->cp_ring; 14335 cpr->sw_stats->rx.rx_resets++; 14336 if (bp->flags & BNXT_FLAG_AGG_RINGS) 14337 bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod); 14338 bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod); 14339 } 14340 if (bp->flags & BNXT_FLAG_TPA) 14341 bnxt_set_tpa(bp, true); 14342 bnxt_unlock_sp(bp); 14343 } 14344 14345 static void bnxt_fw_fatal_close(struct bnxt *bp) 14346 { 14347 bnxt_tx_disable(bp); 14348 bnxt_disable_napi(bp); 14349 bnxt_disable_int_sync(bp); 14350 bnxt_free_irq(bp); 14351 bnxt_clear_int_mode(bp); 14352 pci_disable_device(bp->pdev); 14353 } 14354 14355 static void bnxt_fw_reset_close(struct bnxt *bp) 14356 { 14357 /* When firmware is in fatal state, quiesce device and disable 14358 * bus master to prevent any potential bad DMAs before freeing 14359 * kernel memory. 14360 */ 14361 if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state)) { 14362 u16 val = 0; 14363 14364 pci_read_config_word(bp->pdev, PCI_SUBSYSTEM_ID, &val); 14365 if (val == 0xffff) 14366 bp->fw_reset_min_dsecs = 0; 14367 bnxt_fw_fatal_close(bp); 14368 } 14369 __bnxt_close_nic(bp, true, false); 14370 bnxt_vf_reps_free(bp); 14371 bnxt_clear_int_mode(bp); 14372 bnxt_hwrm_func_drv_unrgtr(bp); 14373 if (pci_is_enabled(bp->pdev)) 14374 pci_disable_device(bp->pdev); 14375 bnxt_free_ctx_mem(bp, false); 14376 } 14377 14378 static bool is_bnxt_fw_ok(struct bnxt *bp) 14379 { 14380 struct bnxt_fw_health *fw_health = bp->fw_health; 14381 bool no_heartbeat = false, has_reset = false; 14382 u32 val; 14383 14384 val = bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG); 14385 if (val == fw_health->last_fw_heartbeat) 14386 no_heartbeat = true; 14387 14388 val = bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG); 14389 if (val != fw_health->last_fw_reset_cnt) 14390 has_reset = true; 14391 14392 if (!no_heartbeat && has_reset) 14393 return true; 14394 14395 return false; 14396 } 14397 14398 /* netdev instance lock is acquired before calling this function */ 14399 static void bnxt_force_fw_reset(struct bnxt *bp) 14400 { 14401 struct bnxt_fw_health *fw_health = bp->fw_health; 14402 struct bnxt_ptp_cfg *ptp = bp->ptp_cfg; 14403 u32 wait_dsecs; 14404 14405 if (!test_bit(BNXT_STATE_OPEN, &bp->state) || 14406 test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) 14407 return; 14408 14409 /* we have to serialize with bnxt_refclk_read()*/ 14410 if (ptp) { 14411 unsigned long flags; 14412 14413 write_seqlock_irqsave(&ptp->ptp_lock, flags); 14414 set_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 14415 write_sequnlock_irqrestore(&ptp->ptp_lock, flags); 14416 } else { 14417 set_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 14418 } 14419 bnxt_fw_reset_close(bp); 14420 wait_dsecs = fw_health->master_func_wait_dsecs; 14421 if (fw_health->primary) { 14422 if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU) 14423 wait_dsecs = 0; 14424 bp->fw_reset_state = BNXT_FW_RESET_STATE_RESET_FW; 14425 } else { 14426 bp->fw_reset_timestamp = jiffies + wait_dsecs * HZ / 10; 14427 wait_dsecs = fw_health->normal_func_wait_dsecs; 14428 bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV; 14429 } 14430 14431 bp->fw_reset_min_dsecs = fw_health->post_reset_wait_dsecs; 14432 bp->fw_reset_max_dsecs = fw_health->post_reset_max_wait_dsecs; 14433 bnxt_queue_fw_reset_work(bp, wait_dsecs * HZ / 10); 14434 } 14435 14436 void bnxt_fw_exception(struct bnxt *bp) 14437 { 14438 netdev_warn(bp->dev, "Detected firmware fatal condition, initiating reset\n"); 14439 set_bit(BNXT_STATE_FW_FATAL_COND, &bp->state); 14440 bnxt_ulp_stop(bp); 14441 bnxt_lock_sp(bp); 14442 bnxt_force_fw_reset(bp); 14443 bnxt_unlock_sp(bp); 14444 } 14445 14446 /* Returns the number of registered VFs, or 1 if VF configuration is pending, or 14447 * < 0 on error. 14448 */ 14449 static int bnxt_get_registered_vfs(struct bnxt *bp) 14450 { 14451 #ifdef CONFIG_BNXT_SRIOV 14452 int rc; 14453 14454 if (!BNXT_PF(bp)) 14455 return 0; 14456 14457 rc = bnxt_hwrm_func_qcfg(bp); 14458 if (rc) { 14459 netdev_err(bp->dev, "func_qcfg cmd failed, rc = %d\n", rc); 14460 return rc; 14461 } 14462 if (bp->pf.registered_vfs) 14463 return bp->pf.registered_vfs; 14464 if (bp->sriov_cfg) 14465 return 1; 14466 #endif 14467 return 0; 14468 } 14469 14470 void bnxt_fw_reset(struct bnxt *bp) 14471 { 14472 bnxt_ulp_stop(bp); 14473 bnxt_lock_sp(bp); 14474 if (test_bit(BNXT_STATE_OPEN, &bp->state) && 14475 !test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) { 14476 struct bnxt_ptp_cfg *ptp = bp->ptp_cfg; 14477 int n = 0, tmo; 14478 14479 /* we have to serialize with bnxt_refclk_read()*/ 14480 if (ptp) { 14481 unsigned long flags; 14482 14483 write_seqlock_irqsave(&ptp->ptp_lock, flags); 14484 set_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 14485 write_sequnlock_irqrestore(&ptp->ptp_lock, flags); 14486 } else { 14487 set_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 14488 } 14489 if (bp->pf.active_vfs && 14490 !test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state)) 14491 n = bnxt_get_registered_vfs(bp); 14492 if (n < 0) { 14493 netdev_err(bp->dev, "Firmware reset aborted, rc = %d\n", 14494 n); 14495 clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 14496 netif_close(bp->dev); 14497 goto fw_reset_exit; 14498 } else if (n > 0) { 14499 u16 vf_tmo_dsecs = n * 10; 14500 14501 if (bp->fw_reset_max_dsecs < vf_tmo_dsecs) 14502 bp->fw_reset_max_dsecs = vf_tmo_dsecs; 14503 bp->fw_reset_state = 14504 BNXT_FW_RESET_STATE_POLL_VF; 14505 bnxt_queue_fw_reset_work(bp, HZ / 10); 14506 goto fw_reset_exit; 14507 } 14508 bnxt_fw_reset_close(bp); 14509 if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) { 14510 bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW_DOWN; 14511 tmo = HZ / 10; 14512 } else { 14513 bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV; 14514 tmo = bp->fw_reset_min_dsecs * HZ / 10; 14515 } 14516 bnxt_queue_fw_reset_work(bp, tmo); 14517 } 14518 fw_reset_exit: 14519 bnxt_unlock_sp(bp); 14520 } 14521 14522 static void bnxt_chk_missed_irq(struct bnxt *bp) 14523 { 14524 int i; 14525 14526 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 14527 return; 14528 14529 for (i = 0; i < bp->cp_nr_rings; i++) { 14530 struct bnxt_napi *bnapi = bp->bnapi[i]; 14531 struct bnxt_cp_ring_info *cpr; 14532 u32 fw_ring_id; 14533 int j; 14534 14535 if (!bnapi) 14536 continue; 14537 14538 cpr = &bnapi->cp_ring; 14539 for (j = 0; j < cpr->cp_ring_count; j++) { 14540 struct bnxt_cp_ring_info *cpr2 = &cpr->cp_ring_arr[j]; 14541 u32 val[2]; 14542 14543 if (cpr2->has_more_work || !bnxt_has_work(bp, cpr2)) 14544 continue; 14545 14546 if (cpr2->cp_raw_cons != cpr2->last_cp_raw_cons) { 14547 cpr2->last_cp_raw_cons = cpr2->cp_raw_cons; 14548 continue; 14549 } 14550 fw_ring_id = cpr2->cp_ring_struct.fw_ring_id; 14551 bnxt_dbg_hwrm_ring_info_get(bp, 14552 DBG_RING_INFO_GET_REQ_RING_TYPE_L2_CMPL, 14553 fw_ring_id, &val[0], &val[1]); 14554 cpr->sw_stats->cmn.missed_irqs++; 14555 } 14556 } 14557 } 14558 14559 static void bnxt_cfg_ntp_filters(struct bnxt *); 14560 14561 static void bnxt_init_ethtool_link_settings(struct bnxt *bp) 14562 { 14563 struct bnxt_link_info *link_info = &bp->link_info; 14564 14565 if (BNXT_AUTO_MODE(link_info->auto_mode)) { 14566 link_info->autoneg = BNXT_AUTONEG_SPEED; 14567 if (bp->hwrm_spec_code >= 0x10201) { 14568 if (link_info->auto_pause_setting & 14569 PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE) 14570 link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL; 14571 } else { 14572 link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL; 14573 } 14574 bnxt_set_auto_speed(link_info); 14575 } else { 14576 bnxt_set_force_speed(link_info); 14577 link_info->req_duplex = link_info->duplex_setting; 14578 } 14579 if (link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) 14580 link_info->req_flow_ctrl = 14581 link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH; 14582 else 14583 link_info->req_flow_ctrl = link_info->force_pause_setting; 14584 } 14585 14586 static void bnxt_fw_echo_reply(struct bnxt *bp) 14587 { 14588 struct bnxt_fw_health *fw_health = bp->fw_health; 14589 struct hwrm_func_echo_response_input *req; 14590 int rc; 14591 14592 rc = hwrm_req_init(bp, req, HWRM_FUNC_ECHO_RESPONSE); 14593 if (rc) 14594 return; 14595 req->event_data1 = cpu_to_le32(fw_health->echo_req_data1); 14596 req->event_data2 = cpu_to_le32(fw_health->echo_req_data2); 14597 hwrm_req_send(bp, req); 14598 } 14599 14600 static void bnxt_ulp_restart(struct bnxt *bp) 14601 { 14602 bnxt_ulp_stop(bp); 14603 bnxt_ulp_start(bp, 0); 14604 } 14605 14606 static void bnxt_sp_task(struct work_struct *work) 14607 { 14608 struct bnxt *bp = container_of(work, struct bnxt, sp_task); 14609 14610 set_bit(BNXT_STATE_IN_SP_TASK, &bp->state); 14611 smp_mb__after_atomic(); 14612 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) { 14613 clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state); 14614 return; 14615 } 14616 14617 if (test_and_clear_bit(BNXT_RESTART_ULP_SP_EVENT, &bp->sp_event)) { 14618 bnxt_ulp_restart(bp); 14619 bnxt_reenable_sriov(bp); 14620 } 14621 14622 if (test_and_clear_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event)) 14623 bnxt_cfg_rx_mode(bp); 14624 14625 if (test_and_clear_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event)) 14626 bnxt_cfg_ntp_filters(bp); 14627 if (test_and_clear_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event)) 14628 bnxt_hwrm_exec_fwd_req(bp); 14629 if (test_and_clear_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event)) 14630 netdev_info(bp->dev, "Receive PF driver unload event!\n"); 14631 if (test_and_clear_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event)) { 14632 bnxt_hwrm_port_qstats(bp, 0); 14633 bnxt_hwrm_port_qstats_ext(bp, 0); 14634 bnxt_accumulate_all_stats(bp); 14635 } 14636 14637 if (test_and_clear_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event)) { 14638 int rc; 14639 14640 mutex_lock(&bp->link_lock); 14641 if (test_and_clear_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT, 14642 &bp->sp_event)) 14643 bnxt_hwrm_phy_qcaps(bp); 14644 14645 rc = bnxt_update_link(bp, true); 14646 if (rc) 14647 netdev_err(bp->dev, "SP task can't update link (rc: %x)\n", 14648 rc); 14649 14650 if (test_and_clear_bit(BNXT_LINK_CFG_CHANGE_SP_EVENT, 14651 &bp->sp_event)) 14652 bnxt_init_ethtool_link_settings(bp); 14653 mutex_unlock(&bp->link_lock); 14654 } 14655 if (test_and_clear_bit(BNXT_UPDATE_PHY_SP_EVENT, &bp->sp_event)) { 14656 int rc; 14657 14658 mutex_lock(&bp->link_lock); 14659 rc = bnxt_update_phy_setting(bp); 14660 mutex_unlock(&bp->link_lock); 14661 if (rc) { 14662 netdev_warn(bp->dev, "update phy settings retry failed\n"); 14663 } else { 14664 bp->link_info.phy_retry = false; 14665 netdev_info(bp->dev, "update phy settings retry succeeded\n"); 14666 } 14667 } 14668 if (test_and_clear_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event)) { 14669 mutex_lock(&bp->link_lock); 14670 bnxt_get_port_module_status(bp); 14671 mutex_unlock(&bp->link_lock); 14672 } 14673 14674 if (test_and_clear_bit(BNXT_FLOW_STATS_SP_EVENT, &bp->sp_event)) 14675 bnxt_tc_flow_stats_work(bp); 14676 14677 if (test_and_clear_bit(BNXT_RING_COAL_NOW_SP_EVENT, &bp->sp_event)) 14678 bnxt_chk_missed_irq(bp); 14679 14680 if (test_and_clear_bit(BNXT_FW_ECHO_REQUEST_SP_EVENT, &bp->sp_event)) 14681 bnxt_fw_echo_reply(bp); 14682 14683 if (test_and_clear_bit(BNXT_THERMAL_THRESHOLD_SP_EVENT, &bp->sp_event)) 14684 bnxt_hwmon_notify_event(bp); 14685 14686 /* These functions below will clear BNXT_STATE_IN_SP_TASK. They 14687 * must be the last functions to be called before exiting. 14688 */ 14689 if (test_and_clear_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event)) 14690 bnxt_reset(bp, false); 14691 14692 if (test_and_clear_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event)) 14693 bnxt_reset(bp, true); 14694 14695 if (test_and_clear_bit(BNXT_RST_RING_SP_EVENT, &bp->sp_event)) 14696 bnxt_rx_ring_reset(bp); 14697 14698 if (test_and_clear_bit(BNXT_FW_RESET_NOTIFY_SP_EVENT, &bp->sp_event)) { 14699 if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state) || 14700 test_bit(BNXT_STATE_FW_NON_FATAL_COND, &bp->state)) 14701 bnxt_devlink_health_fw_report(bp); 14702 else 14703 bnxt_fw_reset(bp); 14704 } 14705 14706 if (test_and_clear_bit(BNXT_FW_EXCEPTION_SP_EVENT, &bp->sp_event)) { 14707 if (!is_bnxt_fw_ok(bp)) 14708 bnxt_devlink_health_fw_report(bp); 14709 } 14710 14711 smp_mb__before_atomic(); 14712 clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state); 14713 } 14714 14715 static void _bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx, 14716 int *max_cp); 14717 14718 /* Under netdev instance lock */ 14719 int bnxt_check_rings(struct bnxt *bp, int tx, int rx, bool sh, int tcs, 14720 int tx_xdp) 14721 { 14722 int max_rx, max_tx, max_cp, tx_sets = 1, tx_cp; 14723 struct bnxt_hw_rings hwr = {0}; 14724 int rx_rings = rx; 14725 int rc; 14726 14727 if (tcs) 14728 tx_sets = tcs; 14729 14730 _bnxt_get_max_rings(bp, &max_rx, &max_tx, &max_cp); 14731 14732 if (max_rx < rx_rings) 14733 return -ENOMEM; 14734 14735 if (bp->flags & BNXT_FLAG_AGG_RINGS) 14736 rx_rings <<= 1; 14737 14738 hwr.rx = rx_rings; 14739 hwr.tx = tx * tx_sets + tx_xdp; 14740 if (max_tx < hwr.tx) 14741 return -ENOMEM; 14742 14743 hwr.vnic = bnxt_get_total_vnics(bp, rx); 14744 14745 tx_cp = __bnxt_num_tx_to_cp(bp, hwr.tx, tx_sets, tx_xdp); 14746 hwr.cp = sh ? max_t(int, tx_cp, rx) : tx_cp + rx; 14747 if (max_cp < hwr.cp) 14748 return -ENOMEM; 14749 hwr.stat = hwr.cp; 14750 if (BNXT_NEW_RM(bp)) { 14751 hwr.cp += bnxt_get_ulp_msix_num_in_use(bp); 14752 hwr.stat += bnxt_get_ulp_stat_ctxs_in_use(bp); 14753 hwr.grp = rx; 14754 hwr.rss_ctx = bnxt_get_total_rss_ctxs(bp, &hwr); 14755 } 14756 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 14757 hwr.cp_p5 = hwr.tx + rx; 14758 rc = bnxt_hwrm_check_rings(bp, &hwr); 14759 if (!rc && pci_msix_can_alloc_dyn(bp->pdev)) { 14760 if (!bnxt_ulp_registered(bp->edev)) { 14761 hwr.cp += bnxt_get_ulp_msix_num(bp); 14762 hwr.cp = min_t(int, hwr.cp, bnxt_get_max_func_irqs(bp)); 14763 } 14764 if (hwr.cp > bp->total_irqs) { 14765 int total_msix = bnxt_change_msix(bp, hwr.cp); 14766 14767 if (total_msix < hwr.cp) { 14768 netdev_warn(bp->dev, "Unable to allocate %d MSIX vectors, maximum available %d\n", 14769 hwr.cp, total_msix); 14770 rc = -ENOSPC; 14771 } 14772 } 14773 } 14774 return rc; 14775 } 14776 14777 static void bnxt_unmap_bars(struct bnxt *bp, struct pci_dev *pdev) 14778 { 14779 if (bp->bar2) { 14780 pci_iounmap(pdev, bp->bar2); 14781 bp->bar2 = NULL; 14782 } 14783 14784 if (bp->bar1) { 14785 pci_iounmap(pdev, bp->bar1); 14786 bp->bar1 = NULL; 14787 } 14788 14789 if (bp->bar0) { 14790 pci_iounmap(pdev, bp->bar0); 14791 bp->bar0 = NULL; 14792 } 14793 } 14794 14795 static void bnxt_cleanup_pci(struct bnxt *bp) 14796 { 14797 bnxt_unmap_bars(bp, bp->pdev); 14798 pci_release_regions(bp->pdev); 14799 if (pci_is_enabled(bp->pdev)) 14800 pci_disable_device(bp->pdev); 14801 } 14802 14803 static void bnxt_init_dflt_coal(struct bnxt *bp) 14804 { 14805 struct bnxt_coal_cap *coal_cap = &bp->coal_cap; 14806 struct bnxt_coal *coal; 14807 u16 flags = 0; 14808 14809 if (coal_cap->cmpl_params & 14810 RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_TIMER_RESET) 14811 flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_TIMER_RESET; 14812 14813 /* Tick values in micro seconds. 14814 * 1 coal_buf x bufs_per_record = 1 completion record. 14815 */ 14816 coal = &bp->rx_coal; 14817 coal->coal_ticks = 10; 14818 coal->coal_bufs = 30; 14819 coal->coal_ticks_irq = 1; 14820 coal->coal_bufs_irq = 2; 14821 coal->idle_thresh = 50; 14822 coal->bufs_per_record = 2; 14823 coal->budget = 64; /* NAPI budget */ 14824 coal->flags = flags; 14825 14826 coal = &bp->tx_coal; 14827 coal->coal_ticks = 28; 14828 coal->coal_bufs = 30; 14829 coal->coal_ticks_irq = 2; 14830 coal->coal_bufs_irq = 2; 14831 coal->bufs_per_record = 1; 14832 coal->flags = flags; 14833 14834 bp->stats_coal_ticks = BNXT_DEF_STATS_COAL_TICKS; 14835 } 14836 14837 /* FW that pre-reserves 1 VNIC per function */ 14838 static bool bnxt_fw_pre_resv_vnics(struct bnxt *bp) 14839 { 14840 u16 fw_maj = BNXT_FW_MAJ(bp), fw_bld = BNXT_FW_BLD(bp); 14841 14842 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS) && 14843 (fw_maj > 218 || (fw_maj == 218 && fw_bld >= 18))) 14844 return true; 14845 if ((bp->flags & BNXT_FLAG_CHIP_P5_PLUS) && 14846 (fw_maj > 216 || (fw_maj == 216 && fw_bld >= 172))) 14847 return true; 14848 return false; 14849 } 14850 14851 static void bnxt_hwrm_pfcwd_qcaps(struct bnxt *bp) 14852 { 14853 struct hwrm_queue_pfcwd_timeout_qcaps_output *resp; 14854 struct hwrm_queue_pfcwd_timeout_qcaps_input *req; 14855 int rc; 14856 14857 bp->max_pfcwd_tmo_ms = 0; 14858 rc = hwrm_req_init(bp, req, HWRM_QUEUE_PFCWD_TIMEOUT_QCAPS); 14859 if (rc) 14860 return; 14861 resp = hwrm_req_hold(bp, req); 14862 rc = hwrm_req_send_silent(bp, req); 14863 if (!rc) 14864 bp->max_pfcwd_tmo_ms = le16_to_cpu(resp->max_pfcwd_timeout); 14865 hwrm_req_drop(bp, req); 14866 } 14867 14868 static int bnxt_fw_init_one_p1(struct bnxt *bp) 14869 { 14870 int rc; 14871 14872 bp->fw_cap = 0; 14873 rc = bnxt_hwrm_ver_get(bp); 14874 /* FW may be unresponsive after FLR. FLR must complete within 100 msec 14875 * so wait before continuing with recovery. 14876 */ 14877 if (rc) 14878 msleep(100); 14879 bnxt_try_map_fw_health_reg(bp); 14880 if (rc) { 14881 rc = bnxt_try_recover_fw(bp); 14882 if (rc) 14883 return rc; 14884 rc = bnxt_hwrm_ver_get(bp); 14885 if (rc) 14886 return rc; 14887 } 14888 14889 bnxt_nvm_cfg_ver_get(bp); 14890 14891 rc = bnxt_hwrm_func_reset(bp); 14892 if (rc) 14893 return -ENODEV; 14894 14895 bnxt_hwrm_fw_set_time(bp); 14896 return 0; 14897 } 14898 14899 static int bnxt_fw_init_one_p2(struct bnxt *bp) 14900 { 14901 int rc; 14902 14903 /* Get the MAX capabilities for this function */ 14904 rc = bnxt_hwrm_func_qcaps(bp); 14905 if (rc) { 14906 netdev_err(bp->dev, "hwrm query capability failure rc: %x\n", 14907 rc); 14908 return -ENODEV; 14909 } 14910 14911 rc = bnxt_hwrm_cfa_adv_flow_mgnt_qcaps(bp); 14912 if (rc) 14913 netdev_warn(bp->dev, "hwrm query adv flow mgnt failure rc: %d\n", 14914 rc); 14915 14916 if (bnxt_alloc_fw_health(bp)) { 14917 netdev_warn(bp->dev, "no memory for firmware error recovery\n"); 14918 } else { 14919 rc = bnxt_hwrm_error_recovery_qcfg(bp); 14920 if (rc) 14921 netdev_warn(bp->dev, "hwrm query error recovery failure rc: %d\n", 14922 rc); 14923 } 14924 14925 rc = bnxt_hwrm_func_drv_rgtr(bp, NULL, 0, false); 14926 if (rc) 14927 return -ENODEV; 14928 14929 rc = bnxt_alloc_crash_dump_mem(bp); 14930 if (rc) 14931 netdev_warn(bp->dev, "crash dump mem alloc failure rc: %d\n", 14932 rc); 14933 if (!rc) { 14934 rc = bnxt_hwrm_crash_dump_mem_cfg(bp); 14935 if (rc) { 14936 bnxt_free_crash_dump_mem(bp); 14937 netdev_warn(bp->dev, 14938 "hwrm crash dump mem failure rc: %d\n", rc); 14939 } 14940 } 14941 14942 if (bnxt_fw_pre_resv_vnics(bp)) 14943 bp->fw_cap |= BNXT_FW_CAP_PRE_RESV_VNICS; 14944 14945 bnxt_hwrm_pfcwd_qcaps(bp); 14946 bnxt_hwrm_func_qcfg(bp); 14947 bnxt_hwrm_vnic_qcaps(bp); 14948 bnxt_hwrm_port_led_qcaps(bp); 14949 bnxt_ethtool_init(bp); 14950 if (bp->fw_cap & BNXT_FW_CAP_PTP) 14951 __bnxt_hwrm_ptp_qcfg(bp); 14952 bnxt_dcb_init(bp); 14953 bnxt_hwmon_init(bp); 14954 return 0; 14955 } 14956 14957 static void bnxt_set_dflt_rss_hash_type(struct bnxt *bp) 14958 { 14959 bp->rss_cap &= ~BNXT_RSS_CAP_UDP_RSS_CAP; 14960 bp->rss_hash_cfg = VNIC_RSS_CFG_REQ_HASH_TYPE_IPV4 | 14961 VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV4 | 14962 VNIC_RSS_CFG_REQ_HASH_TYPE_IPV6 | 14963 VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV6; 14964 if (bp->rss_cap & BNXT_RSS_CAP_RSS_HASH_TYPE_DELTA) 14965 bp->rss_hash_delta = bp->rss_hash_cfg; 14966 if (BNXT_CHIP_P4_PLUS(bp) && bp->hwrm_spec_code >= 0x10501) { 14967 bp->rss_cap |= BNXT_RSS_CAP_UDP_RSS_CAP; 14968 bp->rss_hash_cfg |= VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV4 | 14969 VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV6; 14970 } 14971 } 14972 14973 static void bnxt_set_dflt_rfs(struct bnxt *bp) 14974 { 14975 struct net_device *dev = bp->dev; 14976 14977 dev->hw_features &= ~NETIF_F_NTUPLE; 14978 dev->features &= ~NETIF_F_NTUPLE; 14979 bp->flags &= ~BNXT_FLAG_RFS; 14980 if (bnxt_rfs_supported(bp)) { 14981 dev->hw_features |= NETIF_F_NTUPLE; 14982 if (bnxt_rfs_capable(bp, false)) { 14983 bp->flags |= BNXT_FLAG_RFS; 14984 dev->features |= NETIF_F_NTUPLE; 14985 } 14986 } 14987 } 14988 14989 static void bnxt_fw_init_one_p3(struct bnxt *bp) 14990 { 14991 struct pci_dev *pdev = bp->pdev; 14992 14993 bnxt_set_dflt_rss_hash_type(bp); 14994 bnxt_set_dflt_rfs(bp); 14995 14996 bnxt_get_wol_settings(bp); 14997 if (bp->flags & BNXT_FLAG_WOL_CAP) 14998 device_set_wakeup_enable(&pdev->dev, bp->wol); 14999 else 15000 device_set_wakeup_capable(&pdev->dev, false); 15001 15002 bnxt_hwrm_set_cache_line_size(bp, cache_line_size()); 15003 bnxt_hwrm_coal_params_qcaps(bp); 15004 } 15005 15006 static int bnxt_probe_phy(struct bnxt *bp, bool fw_dflt); 15007 15008 int bnxt_fw_init_one(struct bnxt *bp) 15009 { 15010 int rc; 15011 15012 rc = bnxt_fw_init_one_p1(bp); 15013 if (rc) { 15014 netdev_err(bp->dev, "Firmware init phase 1 failed\n"); 15015 return rc; 15016 } 15017 rc = bnxt_fw_init_one_p2(bp); 15018 if (rc) { 15019 netdev_err(bp->dev, "Firmware init phase 2 failed\n"); 15020 return rc; 15021 } 15022 rc = bnxt_probe_phy(bp, false); 15023 if (rc) 15024 return rc; 15025 rc = bnxt_approve_mac(bp, bp->dev->dev_addr, false); 15026 if (rc) 15027 return rc; 15028 15029 bnxt_fw_init_one_p3(bp); 15030 return 0; 15031 } 15032 15033 static void bnxt_fw_reset_writel(struct bnxt *bp, int reg_idx) 15034 { 15035 struct bnxt_fw_health *fw_health = bp->fw_health; 15036 u32 reg = fw_health->fw_reset_seq_regs[reg_idx]; 15037 u32 val = fw_health->fw_reset_seq_vals[reg_idx]; 15038 u32 reg_type, reg_off, delay_msecs; 15039 15040 delay_msecs = fw_health->fw_reset_seq_delay_msec[reg_idx]; 15041 reg_type = BNXT_FW_HEALTH_REG_TYPE(reg); 15042 reg_off = BNXT_FW_HEALTH_REG_OFF(reg); 15043 switch (reg_type) { 15044 case BNXT_FW_HEALTH_REG_TYPE_CFG: 15045 pci_write_config_dword(bp->pdev, reg_off, val); 15046 break; 15047 case BNXT_FW_HEALTH_REG_TYPE_GRC: 15048 writel(reg_off & BNXT_GRC_BASE_MASK, 15049 bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 4); 15050 reg_off = (reg_off & BNXT_GRC_OFFSET_MASK) + 0x2000; 15051 fallthrough; 15052 case BNXT_FW_HEALTH_REG_TYPE_BAR0: 15053 writel(val, bp->bar0 + reg_off); 15054 break; 15055 case BNXT_FW_HEALTH_REG_TYPE_BAR1: 15056 writel(val, bp->bar1 + reg_off); 15057 break; 15058 } 15059 if (delay_msecs) { 15060 pci_read_config_dword(bp->pdev, 0, &val); 15061 msleep(delay_msecs); 15062 } 15063 } 15064 15065 bool bnxt_hwrm_reset_permitted(struct bnxt *bp) 15066 { 15067 struct hwrm_func_qcfg_output *resp; 15068 struct hwrm_func_qcfg_input *req; 15069 bool result = true; /* firmware will enforce if unknown */ 15070 15071 if (~bp->fw_cap & BNXT_FW_CAP_HOT_RESET_IF) 15072 return result; 15073 15074 if (hwrm_req_init(bp, req, HWRM_FUNC_QCFG)) 15075 return result; 15076 15077 req->fid = cpu_to_le16(0xffff); 15078 resp = hwrm_req_hold(bp, req); 15079 if (!hwrm_req_send(bp, req)) 15080 result = !!(le16_to_cpu(resp->flags) & 15081 FUNC_QCFG_RESP_FLAGS_HOT_RESET_ALLOWED); 15082 hwrm_req_drop(bp, req); 15083 return result; 15084 } 15085 15086 static void bnxt_reset_all(struct bnxt *bp) 15087 { 15088 struct bnxt_fw_health *fw_health = bp->fw_health; 15089 int i, rc; 15090 15091 if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) { 15092 bnxt_fw_reset_via_optee(bp); 15093 bp->fw_reset_timestamp = jiffies; 15094 return; 15095 } 15096 15097 if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_HOST) { 15098 for (i = 0; i < fw_health->fw_reset_seq_cnt; i++) 15099 bnxt_fw_reset_writel(bp, i); 15100 } else if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU) { 15101 struct hwrm_fw_reset_input *req; 15102 15103 rc = hwrm_req_init(bp, req, HWRM_FW_RESET); 15104 if (!rc) { 15105 req->target_id = cpu_to_le16(HWRM_TARGET_ID_KONG); 15106 req->embedded_proc_type = FW_RESET_REQ_EMBEDDED_PROC_TYPE_CHIP; 15107 req->selfrst_status = FW_RESET_REQ_SELFRST_STATUS_SELFRSTASAP; 15108 req->flags = FW_RESET_REQ_FLAGS_RESET_GRACEFUL; 15109 rc = hwrm_req_send(bp, req); 15110 } 15111 if (rc != -ENODEV) 15112 netdev_warn(bp->dev, "Unable to reset FW rc=%d\n", rc); 15113 } 15114 bp->fw_reset_timestamp = jiffies; 15115 } 15116 15117 static bool bnxt_fw_reset_timeout(struct bnxt *bp) 15118 { 15119 return time_after(jiffies, bp->fw_reset_timestamp + 15120 (bp->fw_reset_max_dsecs * HZ / 10)); 15121 } 15122 15123 static void bnxt_fw_reset_abort(struct bnxt *bp, int rc) 15124 { 15125 clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 15126 if (bp->fw_reset_state != BNXT_FW_RESET_STATE_POLL_VF) 15127 bnxt_dl_health_fw_status_update(bp, false); 15128 bp->fw_reset_state = BNXT_FW_RESET_STATE_ABORT; 15129 netif_close(bp->dev); 15130 } 15131 15132 static void bnxt_fw_reset_task(struct work_struct *work) 15133 { 15134 struct bnxt *bp = container_of(work, struct bnxt, fw_reset_task.work); 15135 int rc = 0; 15136 15137 if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) { 15138 netdev_err(bp->dev, "bnxt_fw_reset_task() called when not in fw reset mode!\n"); 15139 return; 15140 } 15141 15142 switch (bp->fw_reset_state) { 15143 case BNXT_FW_RESET_STATE_POLL_VF: { 15144 int n = bnxt_get_registered_vfs(bp); 15145 int tmo; 15146 15147 if (n < 0) { 15148 netdev_err(bp->dev, "Firmware reset aborted, subsequent func_qcfg cmd failed, rc = %d, %d msecs since reset timestamp\n", 15149 n, jiffies_to_msecs(jiffies - 15150 bp->fw_reset_timestamp)); 15151 goto fw_reset_abort; 15152 } else if (n > 0) { 15153 if (bnxt_fw_reset_timeout(bp)) { 15154 clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 15155 bp->fw_reset_state = 0; 15156 netdev_err(bp->dev, "Firmware reset aborted, bnxt_get_registered_vfs() returns %d\n", 15157 n); 15158 goto ulp_start; 15159 } 15160 bnxt_queue_fw_reset_work(bp, HZ / 10); 15161 return; 15162 } 15163 bp->fw_reset_timestamp = jiffies; 15164 netdev_lock(bp->dev); 15165 if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) { 15166 bnxt_fw_reset_abort(bp, rc); 15167 netdev_unlock(bp->dev); 15168 goto ulp_start; 15169 } 15170 bnxt_fw_reset_close(bp); 15171 if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) { 15172 bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW_DOWN; 15173 tmo = HZ / 10; 15174 } else { 15175 bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV; 15176 tmo = bp->fw_reset_min_dsecs * HZ / 10; 15177 } 15178 netdev_unlock(bp->dev); 15179 bnxt_queue_fw_reset_work(bp, tmo); 15180 return; 15181 } 15182 case BNXT_FW_RESET_STATE_POLL_FW_DOWN: { 15183 u32 val; 15184 15185 val = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG); 15186 if (!(val & BNXT_FW_STATUS_SHUTDOWN) && 15187 !bnxt_fw_reset_timeout(bp)) { 15188 bnxt_queue_fw_reset_work(bp, HZ / 5); 15189 return; 15190 } 15191 15192 if (!bp->fw_health->primary) { 15193 u32 wait_dsecs = bp->fw_health->normal_func_wait_dsecs; 15194 15195 bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV; 15196 bnxt_queue_fw_reset_work(bp, wait_dsecs * HZ / 10); 15197 return; 15198 } 15199 bp->fw_reset_state = BNXT_FW_RESET_STATE_RESET_FW; 15200 } 15201 fallthrough; 15202 case BNXT_FW_RESET_STATE_RESET_FW: 15203 bnxt_reset_all(bp); 15204 bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV; 15205 bnxt_queue_fw_reset_work(bp, bp->fw_reset_min_dsecs * HZ / 10); 15206 return; 15207 case BNXT_FW_RESET_STATE_ENABLE_DEV: 15208 bnxt_inv_fw_health_reg(bp); 15209 if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state) && 15210 !bp->fw_reset_min_dsecs) { 15211 u16 val; 15212 15213 pci_read_config_word(bp->pdev, PCI_SUBSYSTEM_ID, &val); 15214 if (val == 0xffff) { 15215 if (bnxt_fw_reset_timeout(bp)) { 15216 netdev_err(bp->dev, "Firmware reset aborted, PCI config space invalid\n"); 15217 rc = -ETIMEDOUT; 15218 goto fw_reset_abort; 15219 } 15220 bnxt_queue_fw_reset_work(bp, HZ / 1000); 15221 return; 15222 } 15223 } 15224 clear_bit(BNXT_STATE_FW_FATAL_COND, &bp->state); 15225 clear_bit(BNXT_STATE_FW_NON_FATAL_COND, &bp->state); 15226 if (test_and_clear_bit(BNXT_STATE_FW_ACTIVATE_RESET, &bp->state) && 15227 !test_bit(BNXT_STATE_FW_ACTIVATE, &bp->state)) 15228 bnxt_dl_remote_reload(bp); 15229 if (pci_enable_device(bp->pdev)) { 15230 netdev_err(bp->dev, "Cannot re-enable PCI device\n"); 15231 rc = -ENODEV; 15232 goto fw_reset_abort; 15233 } 15234 pci_set_master(bp->pdev); 15235 bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW; 15236 fallthrough; 15237 case BNXT_FW_RESET_STATE_POLL_FW: 15238 bp->hwrm_cmd_timeout = SHORT_HWRM_CMD_TIMEOUT; 15239 rc = bnxt_hwrm_poll(bp); 15240 if (rc) { 15241 if (bnxt_fw_reset_timeout(bp)) { 15242 netdev_err(bp->dev, "Firmware reset aborted\n"); 15243 goto fw_reset_abort_status; 15244 } 15245 bnxt_queue_fw_reset_work(bp, HZ / 5); 15246 return; 15247 } 15248 bp->hwrm_cmd_timeout = DFLT_HWRM_CMD_TIMEOUT; 15249 bp->fw_reset_state = BNXT_FW_RESET_STATE_OPENING; 15250 fallthrough; 15251 case BNXT_FW_RESET_STATE_OPENING: 15252 while (!netdev_trylock(bp->dev)) { 15253 bnxt_queue_fw_reset_work(bp, HZ / 10); 15254 return; 15255 } 15256 rc = bnxt_open(bp->dev); 15257 if (rc) { 15258 netdev_err(bp->dev, "bnxt_open() failed during FW reset\n"); 15259 bnxt_fw_reset_abort(bp, rc); 15260 netdev_unlock(bp->dev); 15261 goto ulp_start; 15262 } 15263 15264 if ((bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY) && 15265 bp->fw_health->enabled) { 15266 bp->fw_health->last_fw_reset_cnt = 15267 bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG); 15268 } 15269 bp->fw_reset_state = 0; 15270 /* Make sure fw_reset_state is 0 before clearing the flag */ 15271 smp_mb__before_atomic(); 15272 clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 15273 bnxt_ptp_reapply_pps(bp); 15274 clear_bit(BNXT_STATE_FW_ACTIVATE, &bp->state); 15275 if (test_and_clear_bit(BNXT_STATE_RECOVER, &bp->state)) { 15276 bnxt_dl_health_fw_recovery_done(bp); 15277 bnxt_dl_health_fw_status_update(bp, true); 15278 } 15279 netdev_unlock(bp->dev); 15280 bnxt_ulp_start(bp, 0); 15281 bnxt_reenable_sriov(bp); 15282 netdev_lock(bp->dev); 15283 bnxt_vf_reps_alloc(bp); 15284 bnxt_vf_reps_open(bp); 15285 netdev_unlock(bp->dev); 15286 break; 15287 } 15288 return; 15289 15290 fw_reset_abort_status: 15291 if (bp->fw_health->status_reliable || 15292 (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)) { 15293 u32 sts = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG); 15294 15295 netdev_err(bp->dev, "fw_health_status 0x%x\n", sts); 15296 } 15297 fw_reset_abort: 15298 netdev_lock(bp->dev); 15299 bnxt_fw_reset_abort(bp, rc); 15300 netdev_unlock(bp->dev); 15301 ulp_start: 15302 bnxt_ulp_start(bp, rc); 15303 } 15304 15305 static int bnxt_init_board(struct pci_dev *pdev, struct net_device *dev) 15306 { 15307 int rc; 15308 struct bnxt *bp = netdev_priv(dev); 15309 15310 SET_NETDEV_DEV(dev, &pdev->dev); 15311 15312 /* enable device (incl. PCI PM wakeup), and bus-mastering */ 15313 rc = pci_enable_device(pdev); 15314 if (rc) { 15315 dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n"); 15316 goto init_err; 15317 } 15318 15319 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) { 15320 dev_err(&pdev->dev, 15321 "Cannot find PCI device base address, aborting\n"); 15322 rc = -ENODEV; 15323 goto init_err_disable; 15324 } 15325 15326 rc = pci_request_regions(pdev, DRV_MODULE_NAME); 15327 if (rc) { 15328 dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n"); 15329 goto init_err_disable; 15330 } 15331 15332 if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)) != 0 && 15333 dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)) != 0) { 15334 dev_err(&pdev->dev, "System does not support DMA, aborting\n"); 15335 rc = -EIO; 15336 goto init_err_release; 15337 } 15338 15339 pci_set_master(pdev); 15340 15341 bp->dev = dev; 15342 bp->pdev = pdev; 15343 15344 /* Doorbell BAR bp->bar1 is mapped after bnxt_fw_init_one_p2() 15345 * determines the BAR size. 15346 */ 15347 bp->bar0 = pci_ioremap_bar(pdev, 0); 15348 if (!bp->bar0) { 15349 dev_err(&pdev->dev, "Cannot map device registers, aborting\n"); 15350 rc = -ENOMEM; 15351 goto init_err_release; 15352 } 15353 15354 bp->bar2 = pci_ioremap_bar(pdev, 4); 15355 if (!bp->bar2) { 15356 dev_err(&pdev->dev, "Cannot map bar4 registers, aborting\n"); 15357 rc = -ENOMEM; 15358 goto init_err_release; 15359 } 15360 15361 INIT_WORK(&bp->sp_task, bnxt_sp_task); 15362 INIT_DELAYED_WORK(&bp->fw_reset_task, bnxt_fw_reset_task); 15363 15364 spin_lock_init(&bp->ntp_fltr_lock); 15365 #if BITS_PER_LONG == 32 15366 spin_lock_init(&bp->db_lock); 15367 #endif 15368 15369 bp->rx_ring_size = BNXT_DEFAULT_RX_RING_SIZE; 15370 bp->tx_ring_size = BNXT_DEFAULT_TX_RING_SIZE; 15371 15372 timer_setup(&bp->timer, bnxt_timer, 0); 15373 bp->current_interval = BNXT_TIMER_INTERVAL; 15374 15375 bp->vxlan_fw_dst_port_id = INVALID_HW_RING_ID; 15376 bp->nge_fw_dst_port_id = INVALID_HW_RING_ID; 15377 15378 clear_bit(BNXT_STATE_OPEN, &bp->state); 15379 return 0; 15380 15381 init_err_release: 15382 bnxt_unmap_bars(bp, pdev); 15383 pci_release_regions(pdev); 15384 15385 init_err_disable: 15386 pci_disable_device(pdev); 15387 15388 init_err: 15389 return rc; 15390 } 15391 15392 static int bnxt_change_mac_addr(struct net_device *dev, void *p) 15393 { 15394 struct sockaddr *addr = p; 15395 struct bnxt *bp = netdev_priv(dev); 15396 int rc = 0; 15397 15398 netdev_assert_locked(dev); 15399 15400 if (!is_valid_ether_addr(addr->sa_data)) 15401 return -EADDRNOTAVAIL; 15402 15403 if (ether_addr_equal(addr->sa_data, dev->dev_addr)) 15404 return 0; 15405 15406 rc = bnxt_approve_mac(bp, addr->sa_data, true); 15407 if (rc) 15408 return rc; 15409 15410 eth_hw_addr_set(dev, addr->sa_data); 15411 bnxt_clear_usr_fltrs(bp, true); 15412 if (netif_running(dev)) { 15413 bnxt_close_nic(bp, false, false); 15414 rc = bnxt_open_nic(bp, false, false); 15415 } 15416 15417 return rc; 15418 } 15419 15420 static int bnxt_change_mtu(struct net_device *dev, int new_mtu) 15421 { 15422 struct bnxt *bp = netdev_priv(dev); 15423 15424 netdev_assert_locked(dev); 15425 15426 if (netif_running(dev)) 15427 bnxt_close_nic(bp, true, false); 15428 15429 WRITE_ONCE(dev->mtu, new_mtu); 15430 15431 /* MTU change may change the AGG ring settings if an XDP multi-buffer 15432 * program is attached. We need to set the AGG rings settings and 15433 * rx_skb_func accordingly. 15434 */ 15435 if (READ_ONCE(bp->xdp_prog)) 15436 bnxt_set_rx_skb_mode(bp, true); 15437 15438 bnxt_set_ring_params(bp); 15439 15440 if (netif_running(dev)) 15441 return bnxt_open_nic(bp, true, false); 15442 15443 return 0; 15444 } 15445 15446 int bnxt_setup_mq_tc(struct net_device *dev, u8 tc) 15447 { 15448 struct bnxt *bp = netdev_priv(dev); 15449 bool sh = false; 15450 int rc, tx_cp; 15451 15452 if (tc > bp->max_tc) { 15453 netdev_err(dev, "Too many traffic classes requested: %d. Max supported is %d.\n", 15454 tc, bp->max_tc); 15455 return -EINVAL; 15456 } 15457 15458 if (bp->num_tc == tc) 15459 return 0; 15460 15461 if (bp->flags & BNXT_FLAG_SHARED_RINGS) 15462 sh = true; 15463 15464 rc = bnxt_check_rings(bp, bp->tx_nr_rings_per_tc, bp->rx_nr_rings, 15465 sh, tc, bp->tx_nr_rings_xdp); 15466 if (rc) 15467 return rc; 15468 15469 /* Needs to close the device and do hw resource re-allocations */ 15470 if (netif_running(bp->dev)) 15471 bnxt_close_nic(bp, true, false); 15472 15473 if (tc) { 15474 bp->tx_nr_rings = bp->tx_nr_rings_per_tc * tc; 15475 netdev_set_num_tc(dev, tc); 15476 bp->num_tc = tc; 15477 } else { 15478 bp->tx_nr_rings = bp->tx_nr_rings_per_tc; 15479 netdev_reset_tc(dev); 15480 bp->num_tc = 0; 15481 } 15482 bp->tx_nr_rings += bp->tx_nr_rings_xdp; 15483 tx_cp = bnxt_num_tx_to_cp(bp, bp->tx_nr_rings); 15484 bp->cp_nr_rings = sh ? max_t(int, tx_cp, bp->rx_nr_rings) : 15485 tx_cp + bp->rx_nr_rings; 15486 15487 if (netif_running(bp->dev)) 15488 return bnxt_open_nic(bp, true, false); 15489 15490 return 0; 15491 } 15492 15493 static int bnxt_setup_tc_block_cb(enum tc_setup_type type, void *type_data, 15494 void *cb_priv) 15495 { 15496 struct bnxt *bp = cb_priv; 15497 15498 if (!bnxt_tc_flower_enabled(bp) || 15499 !tc_cls_can_offload_and_chain0(bp->dev, type_data)) 15500 return -EOPNOTSUPP; 15501 15502 switch (type) { 15503 case TC_SETUP_CLSFLOWER: 15504 return bnxt_tc_setup_flower(bp, bp->pf.fw_fid, type_data); 15505 default: 15506 return -EOPNOTSUPP; 15507 } 15508 } 15509 15510 LIST_HEAD(bnxt_block_cb_list); 15511 15512 static int bnxt_setup_tc(struct net_device *dev, enum tc_setup_type type, 15513 void *type_data) 15514 { 15515 struct bnxt *bp = netdev_priv(dev); 15516 15517 switch (type) { 15518 case TC_SETUP_BLOCK: 15519 return flow_block_cb_setup_simple(type_data, 15520 &bnxt_block_cb_list, 15521 bnxt_setup_tc_block_cb, 15522 bp, bp, true); 15523 case TC_SETUP_QDISC_MQPRIO: { 15524 struct tc_mqprio_qopt *mqprio = type_data; 15525 15526 mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS; 15527 15528 return bnxt_setup_mq_tc(dev, mqprio->num_tc); 15529 } 15530 default: 15531 return -EOPNOTSUPP; 15532 } 15533 } 15534 15535 u32 bnxt_get_ntp_filter_idx(struct bnxt *bp, struct flow_keys *fkeys, 15536 const struct sk_buff *skb) 15537 { 15538 struct bnxt_vnic_info *vnic; 15539 15540 if (skb) 15541 return skb_get_hash_raw(skb) & BNXT_NTP_FLTR_HASH_MASK; 15542 15543 vnic = &bp->vnic_info[BNXT_VNIC_DEFAULT]; 15544 return bnxt_toeplitz(bp, fkeys, (void *)vnic->rss_hash_key); 15545 } 15546 15547 int bnxt_insert_ntp_filter(struct bnxt *bp, struct bnxt_ntuple_filter *fltr, 15548 u32 idx) 15549 { 15550 struct hlist_head *head; 15551 int bit_id; 15552 15553 spin_lock_bh(&bp->ntp_fltr_lock); 15554 bit_id = bitmap_find_free_region(bp->ntp_fltr_bmap, bp->max_fltr, 0); 15555 if (bit_id < 0) { 15556 spin_unlock_bh(&bp->ntp_fltr_lock); 15557 return -ENOMEM; 15558 } 15559 15560 fltr->base.sw_id = (u16)bit_id; 15561 fltr->base.type = BNXT_FLTR_TYPE_NTUPLE; 15562 fltr->base.flags |= BNXT_ACT_RING_DST; 15563 head = &bp->ntp_fltr_hash_tbl[idx]; 15564 hlist_add_head_rcu(&fltr->base.hash, head); 15565 set_bit(BNXT_FLTR_INSERTED, &fltr->base.state); 15566 bnxt_insert_usr_fltr(bp, &fltr->base); 15567 bp->ntp_fltr_count++; 15568 spin_unlock_bh(&bp->ntp_fltr_lock); 15569 return 0; 15570 } 15571 15572 static bool bnxt_fltr_match(struct bnxt_ntuple_filter *f1, 15573 struct bnxt_ntuple_filter *f2) 15574 { 15575 struct bnxt_flow_masks *masks1 = &f1->fmasks; 15576 struct bnxt_flow_masks *masks2 = &f2->fmasks; 15577 struct flow_keys *keys1 = &f1->fkeys; 15578 struct flow_keys *keys2 = &f2->fkeys; 15579 15580 if (keys1->basic.n_proto != keys2->basic.n_proto || 15581 keys1->basic.ip_proto != keys2->basic.ip_proto) 15582 return false; 15583 15584 if (keys1->basic.n_proto == htons(ETH_P_IP)) { 15585 if (keys1->addrs.v4addrs.src != keys2->addrs.v4addrs.src || 15586 masks1->addrs.v4addrs.src != masks2->addrs.v4addrs.src || 15587 keys1->addrs.v4addrs.dst != keys2->addrs.v4addrs.dst || 15588 masks1->addrs.v4addrs.dst != masks2->addrs.v4addrs.dst) 15589 return false; 15590 } else { 15591 if (!ipv6_addr_equal(&keys1->addrs.v6addrs.src, 15592 &keys2->addrs.v6addrs.src) || 15593 !ipv6_addr_equal(&masks1->addrs.v6addrs.src, 15594 &masks2->addrs.v6addrs.src) || 15595 !ipv6_addr_equal(&keys1->addrs.v6addrs.dst, 15596 &keys2->addrs.v6addrs.dst) || 15597 !ipv6_addr_equal(&masks1->addrs.v6addrs.dst, 15598 &masks2->addrs.v6addrs.dst)) 15599 return false; 15600 } 15601 15602 return keys1->ports.src == keys2->ports.src && 15603 masks1->ports.src == masks2->ports.src && 15604 keys1->ports.dst == keys2->ports.dst && 15605 masks1->ports.dst == masks2->ports.dst && 15606 keys1->control.flags == keys2->control.flags && 15607 f1->l2_fltr == f2->l2_fltr; 15608 } 15609 15610 struct bnxt_ntuple_filter * 15611 bnxt_lookup_ntp_filter_from_idx(struct bnxt *bp, 15612 struct bnxt_ntuple_filter *fltr, u32 idx) 15613 { 15614 struct bnxt_ntuple_filter *f; 15615 struct hlist_head *head; 15616 15617 head = &bp->ntp_fltr_hash_tbl[idx]; 15618 hlist_for_each_entry_rcu(f, head, base.hash) { 15619 if (bnxt_fltr_match(f, fltr)) 15620 return f; 15621 } 15622 return NULL; 15623 } 15624 15625 #ifdef CONFIG_RFS_ACCEL 15626 static int bnxt_rx_flow_steer(struct net_device *dev, const struct sk_buff *skb, 15627 u16 rxq_index, u32 flow_id) 15628 { 15629 struct bnxt *bp = netdev_priv(dev); 15630 struct bnxt_ntuple_filter *fltr, *new_fltr; 15631 struct flow_keys *fkeys; 15632 struct ethhdr *eth = (struct ethhdr *)skb_mac_header(skb); 15633 struct bnxt_l2_filter *l2_fltr; 15634 int rc = 0, idx; 15635 u32 flags; 15636 15637 if (ether_addr_equal(dev->dev_addr, eth->h_dest)) { 15638 l2_fltr = bp->vnic_info[BNXT_VNIC_DEFAULT].l2_filters[0]; 15639 atomic_inc(&l2_fltr->refcnt); 15640 } else { 15641 struct bnxt_l2_key key; 15642 15643 ether_addr_copy(key.dst_mac_addr, eth->h_dest); 15644 key.vlan = 0; 15645 l2_fltr = bnxt_lookup_l2_filter_from_key(bp, &key); 15646 if (!l2_fltr) 15647 return -EINVAL; 15648 if (l2_fltr->base.flags & BNXT_ACT_FUNC_DST) { 15649 bnxt_del_l2_filter(bp, l2_fltr); 15650 return -EINVAL; 15651 } 15652 } 15653 new_fltr = kzalloc(sizeof(*new_fltr), GFP_ATOMIC); 15654 if (!new_fltr) { 15655 bnxt_del_l2_filter(bp, l2_fltr); 15656 return -ENOMEM; 15657 } 15658 15659 fkeys = &new_fltr->fkeys; 15660 if (!skb_flow_dissect_flow_keys(skb, fkeys, 0)) { 15661 rc = -EPROTONOSUPPORT; 15662 goto err_free; 15663 } 15664 15665 if ((fkeys->basic.n_proto != htons(ETH_P_IP) && 15666 fkeys->basic.n_proto != htons(ETH_P_IPV6)) || 15667 ((fkeys->basic.ip_proto != IPPROTO_TCP) && 15668 (fkeys->basic.ip_proto != IPPROTO_UDP))) { 15669 rc = -EPROTONOSUPPORT; 15670 goto err_free; 15671 } 15672 new_fltr->fmasks = BNXT_FLOW_IPV4_MASK_ALL; 15673 if (fkeys->basic.n_proto == htons(ETH_P_IPV6)) { 15674 if (bp->hwrm_spec_code < 0x10601) { 15675 rc = -EPROTONOSUPPORT; 15676 goto err_free; 15677 } 15678 new_fltr->fmasks = BNXT_FLOW_IPV6_MASK_ALL; 15679 } 15680 flags = fkeys->control.flags; 15681 if (((flags & FLOW_DIS_ENCAPSULATION) && 15682 bp->hwrm_spec_code < 0x10601) || (flags & FLOW_DIS_IS_FRAGMENT)) { 15683 rc = -EPROTONOSUPPORT; 15684 goto err_free; 15685 } 15686 new_fltr->l2_fltr = l2_fltr; 15687 15688 idx = bnxt_get_ntp_filter_idx(bp, fkeys, skb); 15689 rcu_read_lock(); 15690 fltr = bnxt_lookup_ntp_filter_from_idx(bp, new_fltr, idx); 15691 if (fltr) { 15692 rc = fltr->base.sw_id; 15693 rcu_read_unlock(); 15694 goto err_free; 15695 } 15696 rcu_read_unlock(); 15697 15698 new_fltr->flow_id = flow_id; 15699 new_fltr->base.rxq = rxq_index; 15700 rc = bnxt_insert_ntp_filter(bp, new_fltr, idx); 15701 if (!rc) { 15702 bnxt_queue_sp_work(bp, BNXT_RX_NTP_FLTR_SP_EVENT); 15703 return new_fltr->base.sw_id; 15704 } 15705 15706 err_free: 15707 bnxt_del_l2_filter(bp, l2_fltr); 15708 kfree(new_fltr); 15709 return rc; 15710 } 15711 #endif 15712 15713 void bnxt_del_ntp_filter(struct bnxt *bp, struct bnxt_ntuple_filter *fltr) 15714 { 15715 spin_lock_bh(&bp->ntp_fltr_lock); 15716 if (!test_and_clear_bit(BNXT_FLTR_INSERTED, &fltr->base.state)) { 15717 spin_unlock_bh(&bp->ntp_fltr_lock); 15718 return; 15719 } 15720 hlist_del_rcu(&fltr->base.hash); 15721 bnxt_del_one_usr_fltr(bp, &fltr->base); 15722 bp->ntp_fltr_count--; 15723 spin_unlock_bh(&bp->ntp_fltr_lock); 15724 bnxt_del_l2_filter(bp, fltr->l2_fltr); 15725 clear_bit(fltr->base.sw_id, bp->ntp_fltr_bmap); 15726 kfree_rcu(fltr, base.rcu); 15727 } 15728 15729 static void bnxt_cfg_ntp_filters(struct bnxt *bp) 15730 { 15731 #ifdef CONFIG_RFS_ACCEL 15732 int i; 15733 15734 for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) { 15735 struct hlist_head *head; 15736 struct hlist_node *tmp; 15737 struct bnxt_ntuple_filter *fltr; 15738 int rc; 15739 15740 head = &bp->ntp_fltr_hash_tbl[i]; 15741 hlist_for_each_entry_safe(fltr, tmp, head, base.hash) { 15742 bool del = false; 15743 15744 if (test_bit(BNXT_FLTR_VALID, &fltr->base.state)) { 15745 if (fltr->base.flags & BNXT_ACT_NO_AGING) 15746 continue; 15747 if (rps_may_expire_flow(bp->dev, fltr->base.rxq, 15748 fltr->flow_id, 15749 fltr->base.sw_id)) { 15750 bnxt_hwrm_cfa_ntuple_filter_free(bp, 15751 fltr); 15752 del = true; 15753 } 15754 } else { 15755 rc = bnxt_hwrm_cfa_ntuple_filter_alloc(bp, 15756 fltr); 15757 if (rc) 15758 del = true; 15759 else 15760 set_bit(BNXT_FLTR_VALID, &fltr->base.state); 15761 } 15762 15763 if (del) 15764 bnxt_del_ntp_filter(bp, fltr); 15765 } 15766 } 15767 #endif 15768 } 15769 15770 static int bnxt_udp_tunnel_set_port(struct net_device *netdev, unsigned int table, 15771 unsigned int entry, struct udp_tunnel_info *ti) 15772 { 15773 struct bnxt *bp = netdev_priv(netdev); 15774 unsigned int cmd; 15775 15776 if (ti->type == UDP_TUNNEL_TYPE_VXLAN) 15777 cmd = TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN; 15778 else if (ti->type == UDP_TUNNEL_TYPE_GENEVE) 15779 cmd = TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_GENEVE; 15780 else 15781 cmd = TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN_GPE; 15782 15783 return bnxt_hwrm_tunnel_dst_port_alloc(bp, ti->port, cmd); 15784 } 15785 15786 static int bnxt_udp_tunnel_unset_port(struct net_device *netdev, unsigned int table, 15787 unsigned int entry, struct udp_tunnel_info *ti) 15788 { 15789 struct bnxt *bp = netdev_priv(netdev); 15790 unsigned int cmd; 15791 15792 if (ti->type == UDP_TUNNEL_TYPE_VXLAN) 15793 cmd = TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN; 15794 else if (ti->type == UDP_TUNNEL_TYPE_GENEVE) 15795 cmd = TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE; 15796 else 15797 cmd = TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN_GPE; 15798 15799 return bnxt_hwrm_tunnel_dst_port_free(bp, cmd); 15800 } 15801 15802 static const struct udp_tunnel_nic_info bnxt_udp_tunnels = { 15803 .set_port = bnxt_udp_tunnel_set_port, 15804 .unset_port = bnxt_udp_tunnel_unset_port, 15805 .flags = UDP_TUNNEL_NIC_INFO_OPEN_ONLY, 15806 .tables = { 15807 { .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_VXLAN, }, 15808 { .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_GENEVE, }, 15809 }, 15810 }, bnxt_udp_tunnels_p7 = { 15811 .set_port = bnxt_udp_tunnel_set_port, 15812 .unset_port = bnxt_udp_tunnel_unset_port, 15813 .flags = UDP_TUNNEL_NIC_INFO_OPEN_ONLY, 15814 .tables = { 15815 { .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_VXLAN, }, 15816 { .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_GENEVE, }, 15817 { .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_VXLAN_GPE, }, 15818 }, 15819 }; 15820 15821 static int bnxt_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq, 15822 struct net_device *dev, u32 filter_mask, 15823 int nlflags) 15824 { 15825 struct bnxt *bp = netdev_priv(dev); 15826 15827 return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bp->br_mode, 0, 0, 15828 nlflags, filter_mask, NULL); 15829 } 15830 15831 static int bnxt_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh, 15832 u16 flags, struct netlink_ext_ack *extack) 15833 { 15834 struct bnxt *bp = netdev_priv(dev); 15835 struct nlattr *attr, *br_spec; 15836 int rem, rc = 0; 15837 15838 if (bp->hwrm_spec_code < 0x10708 || !BNXT_SINGLE_PF(bp)) 15839 return -EOPNOTSUPP; 15840 15841 br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC); 15842 if (!br_spec) 15843 return -EINVAL; 15844 15845 nla_for_each_nested_type(attr, IFLA_BRIDGE_MODE, br_spec, rem) { 15846 u16 mode; 15847 15848 mode = nla_get_u16(attr); 15849 if (mode == bp->br_mode) 15850 break; 15851 15852 rc = bnxt_hwrm_set_br_mode(bp, mode); 15853 if (!rc) 15854 bp->br_mode = mode; 15855 break; 15856 } 15857 return rc; 15858 } 15859 15860 int bnxt_get_port_parent_id(struct net_device *dev, 15861 struct netdev_phys_item_id *ppid) 15862 { 15863 struct bnxt *bp = netdev_priv(dev); 15864 15865 if (bp->eswitch_mode != DEVLINK_ESWITCH_MODE_SWITCHDEV) 15866 return -EOPNOTSUPP; 15867 15868 /* The PF and it's VF-reps only support the switchdev framework */ 15869 if (!BNXT_PF(bp) || !(bp->flags & BNXT_FLAG_DSN_VALID)) 15870 return -EOPNOTSUPP; 15871 15872 ppid->id_len = sizeof(bp->dsn); 15873 memcpy(ppid->id, bp->dsn, ppid->id_len); 15874 15875 return 0; 15876 } 15877 15878 static const struct net_device_ops bnxt_netdev_ops = { 15879 .ndo_open = bnxt_open, 15880 .ndo_start_xmit = bnxt_start_xmit, 15881 .ndo_stop = bnxt_close, 15882 .ndo_get_stats64 = bnxt_get_stats64, 15883 .ndo_set_rx_mode = bnxt_set_rx_mode, 15884 .ndo_eth_ioctl = bnxt_ioctl, 15885 .ndo_validate_addr = eth_validate_addr, 15886 .ndo_set_mac_address = bnxt_change_mac_addr, 15887 .ndo_change_mtu = bnxt_change_mtu, 15888 .ndo_fix_features = bnxt_fix_features, 15889 .ndo_set_features = bnxt_set_features, 15890 .ndo_features_check = bnxt_features_check, 15891 .ndo_tx_timeout = bnxt_tx_timeout, 15892 #ifdef CONFIG_BNXT_SRIOV 15893 .ndo_get_vf_config = bnxt_get_vf_config, 15894 .ndo_set_vf_mac = bnxt_set_vf_mac, 15895 .ndo_set_vf_vlan = bnxt_set_vf_vlan, 15896 .ndo_set_vf_rate = bnxt_set_vf_bw, 15897 .ndo_set_vf_link_state = bnxt_set_vf_link_state, 15898 .ndo_set_vf_spoofchk = bnxt_set_vf_spoofchk, 15899 .ndo_set_vf_trust = bnxt_set_vf_trust, 15900 #endif 15901 .ndo_setup_tc = bnxt_setup_tc, 15902 #ifdef CONFIG_RFS_ACCEL 15903 .ndo_rx_flow_steer = bnxt_rx_flow_steer, 15904 #endif 15905 .ndo_bpf = bnxt_xdp, 15906 .ndo_xdp_xmit = bnxt_xdp_xmit, 15907 .ndo_bridge_getlink = bnxt_bridge_getlink, 15908 .ndo_bridge_setlink = bnxt_bridge_setlink, 15909 .ndo_hwtstamp_get = bnxt_hwtstamp_get, 15910 .ndo_hwtstamp_set = bnxt_hwtstamp_set, 15911 }; 15912 15913 static void bnxt_get_queue_stats_rx(struct net_device *dev, int i, 15914 struct netdev_queue_stats_rx *stats) 15915 { 15916 struct bnxt *bp = netdev_priv(dev); 15917 struct bnxt_cp_ring_info *cpr; 15918 u64 *sw; 15919 15920 if (!bp->bnapi) 15921 return; 15922 15923 cpr = &bp->bnapi[i]->cp_ring; 15924 sw = cpr->stats.sw_stats; 15925 15926 stats->packets = 0; 15927 stats->packets += BNXT_GET_RING_STATS64(sw, rx_ucast_pkts); 15928 stats->packets += BNXT_GET_RING_STATS64(sw, rx_mcast_pkts); 15929 stats->packets += BNXT_GET_RING_STATS64(sw, rx_bcast_pkts); 15930 15931 stats->bytes = 0; 15932 stats->bytes += BNXT_GET_RING_STATS64(sw, rx_ucast_bytes); 15933 stats->bytes += BNXT_GET_RING_STATS64(sw, rx_mcast_bytes); 15934 stats->bytes += BNXT_GET_RING_STATS64(sw, rx_bcast_bytes); 15935 15936 stats->alloc_fail = cpr->sw_stats->rx.rx_oom_discards; 15937 stats->hw_gro_packets = cpr->sw_stats->rx.rx_hw_gro_packets; 15938 stats->hw_gro_wire_packets = cpr->sw_stats->rx.rx_hw_gro_wire_packets; 15939 } 15940 15941 static void bnxt_get_queue_stats_tx(struct net_device *dev, int i, 15942 struct netdev_queue_stats_tx *stats) 15943 { 15944 struct bnxt *bp = netdev_priv(dev); 15945 struct bnxt_napi *bnapi; 15946 u64 *sw; 15947 15948 if (!bp->tx_ring) 15949 return; 15950 15951 bnapi = bp->tx_ring[bp->tx_ring_map[i]].bnapi; 15952 sw = bnapi->cp_ring.stats.sw_stats; 15953 15954 stats->packets = 0; 15955 stats->packets += BNXT_GET_RING_STATS64(sw, tx_ucast_pkts); 15956 stats->packets += BNXT_GET_RING_STATS64(sw, tx_mcast_pkts); 15957 stats->packets += BNXT_GET_RING_STATS64(sw, tx_bcast_pkts); 15958 15959 stats->bytes = 0; 15960 stats->bytes += BNXT_GET_RING_STATS64(sw, tx_ucast_bytes); 15961 stats->bytes += BNXT_GET_RING_STATS64(sw, tx_mcast_bytes); 15962 stats->bytes += BNXT_GET_RING_STATS64(sw, tx_bcast_bytes); 15963 } 15964 15965 static void bnxt_get_base_stats(struct net_device *dev, 15966 struct netdev_queue_stats_rx *rx, 15967 struct netdev_queue_stats_tx *tx) 15968 { 15969 struct bnxt *bp = netdev_priv(dev); 15970 15971 rx->packets = bp->net_stats_prev.rx_packets; 15972 rx->bytes = bp->net_stats_prev.rx_bytes; 15973 rx->alloc_fail = bp->ring_err_stats_prev.rx_total_oom_discards; 15974 rx->hw_gro_packets = bp->ring_err_stats_prev.rx_total_hw_gro_packets; 15975 rx->hw_gro_wire_packets = bp->ring_err_stats_prev.rx_total_hw_gro_wire_packets; 15976 15977 tx->packets = bp->net_stats_prev.tx_packets; 15978 tx->bytes = bp->net_stats_prev.tx_bytes; 15979 } 15980 15981 static const struct netdev_stat_ops bnxt_stat_ops = { 15982 .get_queue_stats_rx = bnxt_get_queue_stats_rx, 15983 .get_queue_stats_tx = bnxt_get_queue_stats_tx, 15984 .get_base_stats = bnxt_get_base_stats, 15985 }; 15986 15987 static void bnxt_queue_default_qcfg(struct net_device *dev, 15988 struct netdev_queue_config *qcfg) 15989 { 15990 qcfg->rx_page_size = BNXT_RX_PAGE_SIZE; 15991 } 15992 15993 static int bnxt_validate_qcfg(struct net_device *dev, 15994 struct netdev_queue_config *qcfg, 15995 struct netlink_ext_ack *extack) 15996 { 15997 struct bnxt *bp = netdev_priv(dev); 15998 15999 /* Older chips need MSS calc so rx_page_size is not supported */ 16000 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS) && 16001 qcfg->rx_page_size != BNXT_RX_PAGE_SIZE) 16002 return -EINVAL; 16003 16004 if (!is_power_of_2(qcfg->rx_page_size)) 16005 return -ERANGE; 16006 16007 if (qcfg->rx_page_size < BNXT_RX_PAGE_SIZE || 16008 qcfg->rx_page_size > BNXT_MAX_RX_PAGE_SIZE) 16009 return -ERANGE; 16010 16011 return 0; 16012 } 16013 16014 static int bnxt_queue_mem_alloc(struct net_device *dev, 16015 struct netdev_queue_config *qcfg, 16016 void *qmem, int idx) 16017 { 16018 struct bnxt_rx_ring_info *rxr, *clone; 16019 struct bnxt *bp = netdev_priv(dev); 16020 struct bnxt_ring_struct *ring; 16021 int rc; 16022 16023 if (!bp->rx_ring) 16024 return -ENETDOWN; 16025 16026 rxr = &bp->rx_ring[idx]; 16027 clone = qmem; 16028 memcpy(clone, rxr, sizeof(*rxr)); 16029 bnxt_init_rx_ring_struct(bp, clone); 16030 bnxt_reset_rx_ring_struct(bp, clone); 16031 16032 clone->rx_prod = 0; 16033 clone->rx_agg_prod = 0; 16034 clone->rx_sw_agg_prod = 0; 16035 clone->rx_next_cons = 0; 16036 clone->need_head_pool = false; 16037 clone->rx_page_size = qcfg->rx_page_size; 16038 16039 rc = bnxt_alloc_rx_page_pool(bp, clone, rxr->page_pool->p.nid); 16040 if (rc) 16041 return rc; 16042 16043 rc = xdp_rxq_info_reg(&clone->xdp_rxq, bp->dev, idx, 0); 16044 if (rc < 0) 16045 goto err_page_pool_destroy; 16046 16047 rc = xdp_rxq_info_reg_mem_model(&clone->xdp_rxq, 16048 MEM_TYPE_PAGE_POOL, 16049 clone->page_pool); 16050 if (rc) 16051 goto err_rxq_info_unreg; 16052 16053 ring = &clone->rx_ring_struct; 16054 rc = bnxt_alloc_ring(bp, &ring->ring_mem); 16055 if (rc) 16056 goto err_free_rx_ring; 16057 16058 if (bp->flags & BNXT_FLAG_AGG_RINGS) { 16059 ring = &clone->rx_agg_ring_struct; 16060 rc = bnxt_alloc_ring(bp, &ring->ring_mem); 16061 if (rc) 16062 goto err_free_rx_agg_ring; 16063 16064 rc = bnxt_alloc_rx_agg_bmap(bp, clone); 16065 if (rc) 16066 goto err_free_rx_agg_ring; 16067 } 16068 16069 if (bp->flags & BNXT_FLAG_TPA) { 16070 rc = bnxt_alloc_one_tpa_info(bp, clone); 16071 if (rc) 16072 goto err_free_tpa_info; 16073 } 16074 16075 bnxt_init_one_rx_ring_rxbd(bp, clone); 16076 bnxt_init_one_rx_agg_ring_rxbd(bp, clone); 16077 16078 bnxt_alloc_one_rx_ring_skb(bp, clone, idx); 16079 if (bp->flags & BNXT_FLAG_AGG_RINGS) 16080 bnxt_alloc_one_rx_ring_netmem(bp, clone, idx); 16081 if (bp->flags & BNXT_FLAG_TPA) 16082 bnxt_alloc_one_tpa_info_data(bp, clone); 16083 16084 return 0; 16085 16086 err_free_tpa_info: 16087 bnxt_free_one_tpa_info(bp, clone); 16088 err_free_rx_agg_ring: 16089 bnxt_free_ring(bp, &clone->rx_agg_ring_struct.ring_mem); 16090 err_free_rx_ring: 16091 bnxt_free_ring(bp, &clone->rx_ring_struct.ring_mem); 16092 err_rxq_info_unreg: 16093 xdp_rxq_info_unreg(&clone->xdp_rxq); 16094 err_page_pool_destroy: 16095 page_pool_destroy(clone->page_pool); 16096 page_pool_destroy(clone->head_pool); 16097 clone->page_pool = NULL; 16098 clone->head_pool = NULL; 16099 return rc; 16100 } 16101 16102 static void bnxt_queue_mem_free(struct net_device *dev, void *qmem) 16103 { 16104 struct bnxt_rx_ring_info *rxr = qmem; 16105 struct bnxt *bp = netdev_priv(dev); 16106 struct bnxt_ring_struct *ring; 16107 16108 bnxt_free_one_rx_ring_skbs(bp, rxr); 16109 bnxt_free_one_tpa_info(bp, rxr); 16110 16111 xdp_rxq_info_unreg(&rxr->xdp_rxq); 16112 16113 page_pool_destroy(rxr->page_pool); 16114 page_pool_destroy(rxr->head_pool); 16115 rxr->page_pool = NULL; 16116 rxr->head_pool = NULL; 16117 16118 ring = &rxr->rx_ring_struct; 16119 bnxt_free_ring(bp, &ring->ring_mem); 16120 16121 ring = &rxr->rx_agg_ring_struct; 16122 bnxt_free_ring(bp, &ring->ring_mem); 16123 16124 kfree(rxr->rx_agg_bmap); 16125 rxr->rx_agg_bmap = NULL; 16126 } 16127 16128 static void bnxt_copy_rx_ring(struct bnxt *bp, 16129 struct bnxt_rx_ring_info *dst, 16130 struct bnxt_rx_ring_info *src) 16131 { 16132 struct bnxt_ring_mem_info *dst_rmem, *src_rmem; 16133 struct bnxt_ring_struct *dst_ring, *src_ring; 16134 int i; 16135 16136 dst_ring = &dst->rx_ring_struct; 16137 dst_rmem = &dst_ring->ring_mem; 16138 src_ring = &src->rx_ring_struct; 16139 src_rmem = &src_ring->ring_mem; 16140 16141 WARN_ON(dst_rmem->nr_pages != src_rmem->nr_pages); 16142 WARN_ON(dst_rmem->page_size != src_rmem->page_size); 16143 WARN_ON(dst_rmem->flags != src_rmem->flags); 16144 WARN_ON(dst_rmem->depth != src_rmem->depth); 16145 WARN_ON(dst_rmem->vmem_size != src_rmem->vmem_size); 16146 WARN_ON(dst_rmem->ctx_mem != src_rmem->ctx_mem); 16147 16148 dst_rmem->pg_tbl = src_rmem->pg_tbl; 16149 dst_rmem->pg_tbl_map = src_rmem->pg_tbl_map; 16150 *dst_rmem->vmem = *src_rmem->vmem; 16151 for (i = 0; i < dst_rmem->nr_pages; i++) { 16152 dst_rmem->pg_arr[i] = src_rmem->pg_arr[i]; 16153 dst_rmem->dma_arr[i] = src_rmem->dma_arr[i]; 16154 } 16155 16156 if (!(bp->flags & BNXT_FLAG_AGG_RINGS)) 16157 return; 16158 16159 dst_ring = &dst->rx_agg_ring_struct; 16160 dst_rmem = &dst_ring->ring_mem; 16161 src_ring = &src->rx_agg_ring_struct; 16162 src_rmem = &src_ring->ring_mem; 16163 16164 dst->rx_page_size = src->rx_page_size; 16165 16166 WARN_ON(dst_rmem->nr_pages != src_rmem->nr_pages); 16167 WARN_ON(dst_rmem->page_size != src_rmem->page_size); 16168 WARN_ON(dst_rmem->flags != src_rmem->flags); 16169 WARN_ON(dst_rmem->depth != src_rmem->depth); 16170 WARN_ON(dst_rmem->vmem_size != src_rmem->vmem_size); 16171 WARN_ON(dst_rmem->ctx_mem != src_rmem->ctx_mem); 16172 WARN_ON(dst->rx_agg_bmap_size != src->rx_agg_bmap_size); 16173 16174 dst_rmem->pg_tbl = src_rmem->pg_tbl; 16175 dst_rmem->pg_tbl_map = src_rmem->pg_tbl_map; 16176 *dst_rmem->vmem = *src_rmem->vmem; 16177 for (i = 0; i < dst_rmem->nr_pages; i++) { 16178 dst_rmem->pg_arr[i] = src_rmem->pg_arr[i]; 16179 dst_rmem->dma_arr[i] = src_rmem->dma_arr[i]; 16180 } 16181 16182 dst->rx_agg_bmap = src->rx_agg_bmap; 16183 } 16184 16185 static int bnxt_queue_start(struct net_device *dev, 16186 struct netdev_queue_config *qcfg, 16187 void *qmem, int idx) 16188 { 16189 struct bnxt *bp = netdev_priv(dev); 16190 struct bnxt_rx_ring_info *rxr, *clone; 16191 struct bnxt_cp_ring_info *cpr; 16192 struct bnxt_vnic_info *vnic; 16193 struct bnxt_napi *bnapi; 16194 int i, rc; 16195 u16 mru; 16196 16197 rxr = &bp->rx_ring[idx]; 16198 clone = qmem; 16199 16200 rxr->rx_prod = clone->rx_prod; 16201 rxr->rx_agg_prod = clone->rx_agg_prod; 16202 rxr->rx_sw_agg_prod = clone->rx_sw_agg_prod; 16203 rxr->rx_next_cons = clone->rx_next_cons; 16204 rxr->rx_tpa = clone->rx_tpa; 16205 rxr->rx_tpa_idx_map = clone->rx_tpa_idx_map; 16206 rxr->page_pool = clone->page_pool; 16207 rxr->head_pool = clone->head_pool; 16208 rxr->xdp_rxq = clone->xdp_rxq; 16209 rxr->need_head_pool = clone->need_head_pool; 16210 16211 bnxt_copy_rx_ring(bp, rxr, clone); 16212 16213 bnapi = rxr->bnapi; 16214 cpr = &bnapi->cp_ring; 16215 16216 /* All rings have been reserved and previously allocated. 16217 * Reallocating with the same parameters should never fail. 16218 */ 16219 rc = bnxt_hwrm_rx_ring_alloc(bp, rxr); 16220 if (rc) 16221 goto err_reset; 16222 16223 if (bp->tph_mode) { 16224 rc = bnxt_hwrm_cp_ring_alloc_p5(bp, rxr->rx_cpr); 16225 if (rc) 16226 goto err_reset; 16227 } 16228 16229 rc = bnxt_hwrm_rx_agg_ring_alloc(bp, rxr); 16230 if (rc) 16231 goto err_reset; 16232 16233 bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod); 16234 if (bp->flags & BNXT_FLAG_AGG_RINGS) 16235 bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod); 16236 16237 if (bp->flags & BNXT_FLAG_SHARED_RINGS) { 16238 rc = bnxt_tx_queue_start(bp, idx); 16239 if (rc) 16240 goto err_reset; 16241 } 16242 16243 bnxt_enable_rx_page_pool(rxr); 16244 napi_enable_locked(&bnapi->napi); 16245 bnxt_db_nq_arm(bp, &cpr->cp_db, cpr->cp_raw_cons); 16246 16247 mru = bp->dev->mtu + VLAN_ETH_HLEN; 16248 for (i = 0; i < bp->nr_vnics; i++) { 16249 vnic = &bp->vnic_info[i]; 16250 16251 rc = bnxt_set_vnic_mru_p5(bp, vnic, mru, idx); 16252 if (rc) 16253 return rc; 16254 } 16255 return bnxt_set_rss_ctx_vnic_mru(bp, mru, idx); 16256 16257 err_reset: 16258 netdev_err(bp->dev, "Unexpected HWRM error during queue start rc: %d\n", 16259 rc); 16260 napi_enable_locked(&bnapi->napi); 16261 bnxt_db_nq_arm(bp, &cpr->cp_db, cpr->cp_raw_cons); 16262 bnxt_reset_task(bp, true); 16263 return rc; 16264 } 16265 16266 static int bnxt_queue_stop(struct net_device *dev, void *qmem, int idx) 16267 { 16268 struct bnxt *bp = netdev_priv(dev); 16269 struct bnxt_rx_ring_info *rxr; 16270 struct bnxt_cp_ring_info *cpr; 16271 struct bnxt_vnic_info *vnic; 16272 struct bnxt_napi *bnapi; 16273 int i; 16274 16275 for (i = 0; i < bp->nr_vnics; i++) { 16276 vnic = &bp->vnic_info[i]; 16277 16278 bnxt_set_vnic_mru_p5(bp, vnic, 0, idx); 16279 } 16280 bnxt_set_rss_ctx_vnic_mru(bp, 0, idx); 16281 /* Make sure NAPI sees that the VNIC is disabled */ 16282 synchronize_net(); 16283 rxr = &bp->rx_ring[idx]; 16284 bnapi = rxr->bnapi; 16285 cpr = &bnapi->cp_ring; 16286 cancel_work_sync(&cpr->dim.work); 16287 bnxt_hwrm_rx_ring_free(bp, rxr, false); 16288 bnxt_hwrm_rx_agg_ring_free(bp, rxr, false); 16289 page_pool_disable_direct_recycling(rxr->page_pool); 16290 if (bnxt_separate_head_pool(rxr)) 16291 page_pool_disable_direct_recycling(rxr->head_pool); 16292 16293 if (bp->flags & BNXT_FLAG_SHARED_RINGS) 16294 bnxt_tx_queue_stop(bp, idx); 16295 16296 /* Disable NAPI now after freeing the rings because HWRM_RING_FREE 16297 * completion is handled in NAPI to guarantee no more DMA on that ring 16298 * after seeing the completion. 16299 */ 16300 napi_disable_locked(&bnapi->napi); 16301 16302 if (bp->tph_mode) { 16303 bnxt_hwrm_cp_ring_free(bp, rxr->rx_cpr); 16304 bnxt_clear_one_cp_ring(bp, rxr->rx_cpr); 16305 } 16306 bnxt_db_nq(bp, &cpr->cp_db, cpr->cp_raw_cons); 16307 16308 memcpy(qmem, rxr, sizeof(*rxr)); 16309 bnxt_init_rx_ring_struct(bp, qmem); 16310 16311 return 0; 16312 } 16313 16314 static const struct netdev_queue_mgmt_ops bnxt_queue_mgmt_ops = { 16315 .ndo_queue_mem_size = sizeof(struct bnxt_rx_ring_info), 16316 .ndo_queue_mem_alloc = bnxt_queue_mem_alloc, 16317 .ndo_queue_mem_free = bnxt_queue_mem_free, 16318 .ndo_queue_start = bnxt_queue_start, 16319 .ndo_queue_stop = bnxt_queue_stop, 16320 .ndo_default_qcfg = bnxt_queue_default_qcfg, 16321 .ndo_validate_qcfg = bnxt_validate_qcfg, 16322 .supported_params = QCFG_RX_PAGE_SIZE, 16323 }; 16324 16325 static const struct netdev_queue_mgmt_ops bnxt_queue_mgmt_ops_unsupp = { 16326 .ndo_default_qcfg = bnxt_queue_default_qcfg, 16327 }; 16328 16329 static void bnxt_remove_one(struct pci_dev *pdev) 16330 { 16331 struct net_device *dev = pci_get_drvdata(pdev); 16332 struct bnxt *bp = netdev_priv(dev); 16333 16334 if (BNXT_PF(bp)) 16335 __bnxt_sriov_disable(bp); 16336 16337 bnxt_rdma_aux_device_del(bp); 16338 16339 unregister_netdev(dev); 16340 bnxt_ptp_clear(bp); 16341 16342 bnxt_rdma_aux_device_uninit(bp); 16343 16344 bnxt_free_l2_filters(bp, true); 16345 bnxt_free_ntp_fltrs(bp, true); 16346 WARN_ON(bp->num_rss_ctx); 16347 clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 16348 /* Flush any pending tasks */ 16349 cancel_work_sync(&bp->sp_task); 16350 cancel_delayed_work_sync(&bp->fw_reset_task); 16351 bp->sp_event = 0; 16352 16353 bnxt_dl_fw_reporters_destroy(bp); 16354 bnxt_dl_unregister(bp); 16355 bnxt_shutdown_tc(bp); 16356 16357 bnxt_clear_int_mode(bp); 16358 bnxt_hwrm_func_drv_unrgtr(bp); 16359 bnxt_free_hwrm_resources(bp); 16360 bnxt_hwmon_uninit(bp); 16361 bnxt_ethtool_free(bp); 16362 bnxt_dcb_free(bp); 16363 kfree(bp->ptp_cfg); 16364 bp->ptp_cfg = NULL; 16365 kfree(bp->fw_health); 16366 bp->fw_health = NULL; 16367 bnxt_cleanup_pci(bp); 16368 bnxt_free_ctx_mem(bp, true); 16369 bnxt_free_crash_dump_mem(bp); 16370 kfree(bp->rss_indir_tbl); 16371 bp->rss_indir_tbl = NULL; 16372 bnxt_free_port_stats(bp); 16373 free_netdev(dev); 16374 } 16375 16376 static int bnxt_probe_phy(struct bnxt *bp, bool fw_dflt) 16377 { 16378 int rc = 0; 16379 struct bnxt_link_info *link_info = &bp->link_info; 16380 16381 bp->phy_flags = 0; 16382 rc = bnxt_hwrm_phy_qcaps(bp); 16383 if (rc) { 16384 netdev_err(bp->dev, "Probe phy can't get phy capabilities (rc: %x)\n", 16385 rc); 16386 return rc; 16387 } 16388 if (bp->phy_flags & BNXT_PHY_FL_NO_FCS) 16389 bp->dev->priv_flags |= IFF_SUPP_NOFCS; 16390 else 16391 bp->dev->priv_flags &= ~IFF_SUPP_NOFCS; 16392 16393 bp->mac_flags = 0; 16394 bnxt_hwrm_mac_qcaps(bp); 16395 16396 if (!fw_dflt) 16397 return 0; 16398 16399 mutex_lock(&bp->link_lock); 16400 rc = bnxt_update_link(bp, false); 16401 if (rc) { 16402 mutex_unlock(&bp->link_lock); 16403 netdev_err(bp->dev, "Probe phy can't update link (rc: %x)\n", 16404 rc); 16405 return rc; 16406 } 16407 16408 /* Older firmware does not have supported_auto_speeds, so assume 16409 * that all supported speeds can be autonegotiated. 16410 */ 16411 if (link_info->auto_link_speeds && !link_info->support_auto_speeds) 16412 link_info->support_auto_speeds = link_info->support_speeds; 16413 16414 bnxt_init_ethtool_link_settings(bp); 16415 mutex_unlock(&bp->link_lock); 16416 return 0; 16417 } 16418 16419 static int bnxt_get_max_irq(struct pci_dev *pdev) 16420 { 16421 u16 ctrl; 16422 16423 if (!pdev->msix_cap) 16424 return 1; 16425 16426 pci_read_config_word(pdev, pdev->msix_cap + PCI_MSIX_FLAGS, &ctrl); 16427 return (ctrl & PCI_MSIX_FLAGS_QSIZE) + 1; 16428 } 16429 16430 static void _bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx, 16431 int *max_cp) 16432 { 16433 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 16434 int max_ring_grps = 0, max_irq; 16435 16436 *max_tx = hw_resc->max_tx_rings; 16437 *max_rx = hw_resc->max_rx_rings; 16438 *max_cp = bnxt_get_max_func_cp_rings_for_en(bp); 16439 max_irq = min_t(int, bnxt_get_max_func_irqs(bp) - 16440 bnxt_get_ulp_msix_num_in_use(bp), 16441 hw_resc->max_stat_ctxs - 16442 bnxt_get_ulp_stat_ctxs_in_use(bp)); 16443 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 16444 *max_cp = min_t(int, *max_cp, max_irq); 16445 max_ring_grps = hw_resc->max_hw_ring_grps; 16446 if (BNXT_CHIP_TYPE_NITRO_A0(bp) && BNXT_PF(bp)) { 16447 *max_cp -= 1; 16448 *max_rx -= 2; 16449 } 16450 if (bp->flags & BNXT_FLAG_AGG_RINGS) 16451 *max_rx >>= 1; 16452 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 16453 int rc; 16454 16455 rc = __bnxt_trim_rings(bp, max_rx, max_tx, *max_cp, false); 16456 if (rc) { 16457 *max_rx = 0; 16458 *max_tx = 0; 16459 } 16460 /* On P5 chips, max_cp output param should be available NQs */ 16461 *max_cp = max_irq; 16462 } 16463 *max_rx = min_t(int, *max_rx, max_ring_grps); 16464 } 16465 16466 int bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx, bool shared) 16467 { 16468 int rx, tx, cp; 16469 16470 _bnxt_get_max_rings(bp, &rx, &tx, &cp); 16471 *max_rx = rx; 16472 *max_tx = tx; 16473 if (!rx || !tx || !cp) 16474 return -ENOMEM; 16475 16476 return bnxt_trim_rings(bp, max_rx, max_tx, cp, shared); 16477 } 16478 16479 static int bnxt_get_dflt_rings(struct bnxt *bp, int *max_rx, int *max_tx, 16480 bool shared) 16481 { 16482 int rc; 16483 16484 rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared); 16485 if (rc && (bp->flags & BNXT_FLAG_AGG_RINGS)) { 16486 /* Not enough rings, try disabling agg rings. */ 16487 bp->flags &= ~BNXT_FLAG_AGG_RINGS; 16488 rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared); 16489 if (rc) { 16490 /* set BNXT_FLAG_AGG_RINGS back for consistency */ 16491 bp->flags |= BNXT_FLAG_AGG_RINGS; 16492 return rc; 16493 } 16494 bp->flags |= BNXT_FLAG_NO_AGG_RINGS; 16495 bp->dev->hw_features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW); 16496 bp->dev->features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW); 16497 bnxt_set_ring_params(bp); 16498 } 16499 16500 if (bp->flags & BNXT_FLAG_ROCE_CAP) { 16501 int max_cp, max_stat, max_irq; 16502 16503 /* Reserve minimum resources for RoCE */ 16504 max_cp = bnxt_get_max_func_cp_rings(bp); 16505 max_stat = bnxt_get_max_func_stat_ctxs(bp); 16506 max_irq = bnxt_get_max_func_irqs(bp); 16507 if (max_cp <= BNXT_MIN_ROCE_CP_RINGS || 16508 max_irq <= BNXT_MIN_ROCE_CP_RINGS || 16509 max_stat <= BNXT_MIN_ROCE_STAT_CTXS) 16510 return 0; 16511 16512 max_cp -= BNXT_MIN_ROCE_CP_RINGS; 16513 max_irq -= BNXT_MIN_ROCE_CP_RINGS; 16514 max_stat -= BNXT_MIN_ROCE_STAT_CTXS; 16515 max_cp = min_t(int, max_cp, max_irq); 16516 max_cp = min_t(int, max_cp, max_stat); 16517 rc = bnxt_trim_rings(bp, max_rx, max_tx, max_cp, shared); 16518 if (rc) 16519 rc = 0; 16520 } 16521 return rc; 16522 } 16523 16524 /* In initial default shared ring setting, each shared ring must have a 16525 * RX/TX ring pair. 16526 */ 16527 static void bnxt_trim_dflt_sh_rings(struct bnxt *bp) 16528 { 16529 bp->cp_nr_rings = min_t(int, bp->tx_nr_rings_per_tc, bp->rx_nr_rings); 16530 bp->rx_nr_rings = bp->cp_nr_rings; 16531 bp->tx_nr_rings_per_tc = bp->cp_nr_rings; 16532 bp->tx_nr_rings = bnxt_tx_nr_rings(bp); 16533 } 16534 16535 static int bnxt_set_dflt_rings(struct bnxt *bp, bool sh) 16536 { 16537 int dflt_rings, max_rx_rings, max_tx_rings, rc; 16538 int avail_msix; 16539 16540 if (!bnxt_can_reserve_rings(bp)) 16541 return 0; 16542 16543 if (sh) 16544 bp->flags |= BNXT_FLAG_SHARED_RINGS; 16545 dflt_rings = is_kdump_kernel() ? 1 : netif_get_num_default_rss_queues(); 16546 /* Reduce default rings on multi-port cards so that total default 16547 * rings do not exceed CPU count. 16548 */ 16549 if (bp->port_count > 1) { 16550 int max_rings = 16551 max_t(int, num_online_cpus() / bp->port_count, 1); 16552 16553 dflt_rings = min_t(int, dflt_rings, max_rings); 16554 } 16555 rc = bnxt_get_dflt_rings(bp, &max_rx_rings, &max_tx_rings, sh); 16556 if (rc) 16557 return rc; 16558 bp->rx_nr_rings = min_t(int, dflt_rings, max_rx_rings); 16559 bp->tx_nr_rings_per_tc = min_t(int, dflt_rings, max_tx_rings); 16560 if (sh) 16561 bnxt_trim_dflt_sh_rings(bp); 16562 else 16563 bp->cp_nr_rings = bp->tx_nr_rings_per_tc + bp->rx_nr_rings; 16564 bp->tx_nr_rings = bnxt_tx_nr_rings(bp); 16565 16566 avail_msix = bnxt_get_max_func_irqs(bp) - bp->cp_nr_rings; 16567 if (avail_msix >= BNXT_MIN_ROCE_CP_RINGS) { 16568 int ulp_num_msix = min(avail_msix, bp->ulp_num_msix_want); 16569 16570 bnxt_set_ulp_msix_num(bp, ulp_num_msix); 16571 bnxt_set_dflt_ulp_stat_ctxs(bp); 16572 } 16573 16574 rc = __bnxt_reserve_rings(bp); 16575 if (rc && rc != -ENODEV) 16576 netdev_warn(bp->dev, "Unable to reserve tx rings\n"); 16577 bp->tx_nr_rings_per_tc = bnxt_tx_nr_rings_per_tc(bp); 16578 if (sh) 16579 bnxt_trim_dflt_sh_rings(bp); 16580 16581 /* Rings may have been trimmed, re-reserve the trimmed rings. */ 16582 if (bnxt_need_reserve_rings(bp)) { 16583 rc = __bnxt_reserve_rings(bp); 16584 if (rc && rc != -ENODEV) 16585 netdev_warn(bp->dev, "2nd rings reservation failed.\n"); 16586 bp->tx_nr_rings_per_tc = bnxt_tx_nr_rings_per_tc(bp); 16587 } 16588 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) { 16589 bp->rx_nr_rings++; 16590 bp->cp_nr_rings++; 16591 } 16592 if (rc) { 16593 bp->tx_nr_rings = 0; 16594 bp->rx_nr_rings = 0; 16595 } 16596 return rc; 16597 } 16598 16599 static int bnxt_init_dflt_ring_mode(struct bnxt *bp) 16600 { 16601 int rc; 16602 16603 if (bp->tx_nr_rings) 16604 return 0; 16605 16606 bnxt_ulp_irq_stop(bp); 16607 bnxt_clear_int_mode(bp); 16608 rc = bnxt_set_dflt_rings(bp, true); 16609 if (rc) { 16610 if (BNXT_VF(bp) && rc == -ENODEV) 16611 netdev_err(bp->dev, "Cannot configure VF rings while PF is unavailable.\n"); 16612 else 16613 netdev_err(bp->dev, "Not enough rings available.\n"); 16614 goto init_dflt_ring_err; 16615 } 16616 rc = bnxt_init_int_mode(bp); 16617 if (rc) 16618 goto init_dflt_ring_err; 16619 16620 bp->tx_nr_rings_per_tc = bnxt_tx_nr_rings_per_tc(bp); 16621 16622 bnxt_set_dflt_rfs(bp); 16623 16624 init_dflt_ring_err: 16625 bnxt_ulp_irq_restart(bp, rc); 16626 return rc; 16627 } 16628 16629 int bnxt_restore_pf_fw_resources(struct bnxt *bp) 16630 { 16631 int rc; 16632 16633 netdev_ops_assert_locked(bp->dev); 16634 bnxt_hwrm_func_qcaps(bp); 16635 16636 if (netif_running(bp->dev)) 16637 __bnxt_close_nic(bp, true, false); 16638 16639 bnxt_ulp_irq_stop(bp); 16640 bnxt_clear_int_mode(bp); 16641 rc = bnxt_init_int_mode(bp); 16642 bnxt_ulp_irq_restart(bp, rc); 16643 16644 if (netif_running(bp->dev)) { 16645 if (rc) 16646 netif_close(bp->dev); 16647 else 16648 rc = bnxt_open_nic(bp, true, false); 16649 } 16650 16651 return rc; 16652 } 16653 16654 static int bnxt_init_mac_addr(struct bnxt *bp) 16655 { 16656 int rc = 0; 16657 16658 if (BNXT_PF(bp)) { 16659 eth_hw_addr_set(bp->dev, bp->pf.mac_addr); 16660 } else { 16661 #ifdef CONFIG_BNXT_SRIOV 16662 struct bnxt_vf_info *vf = &bp->vf; 16663 bool strict_approval = true; 16664 16665 if (is_valid_ether_addr(vf->mac_addr)) { 16666 /* overwrite netdev dev_addr with admin VF MAC */ 16667 eth_hw_addr_set(bp->dev, vf->mac_addr); 16668 /* Older PF driver or firmware may not approve this 16669 * correctly. 16670 */ 16671 strict_approval = false; 16672 } else { 16673 eth_hw_addr_random(bp->dev); 16674 } 16675 rc = bnxt_approve_mac(bp, bp->dev->dev_addr, strict_approval); 16676 #endif 16677 } 16678 return rc; 16679 } 16680 16681 static void bnxt_vpd_read_info(struct bnxt *bp) 16682 { 16683 struct pci_dev *pdev = bp->pdev; 16684 unsigned int vpd_size, kw_len; 16685 int pos, size; 16686 u8 *vpd_data; 16687 16688 vpd_data = pci_vpd_alloc(pdev, &vpd_size); 16689 if (IS_ERR(vpd_data)) { 16690 pci_warn(pdev, "Unable to read VPD\n"); 16691 return; 16692 } 16693 16694 pos = pci_vpd_find_ro_info_keyword(vpd_data, vpd_size, 16695 PCI_VPD_RO_KEYWORD_PARTNO, &kw_len); 16696 if (pos < 0) 16697 goto read_sn; 16698 16699 size = min_t(int, kw_len, BNXT_VPD_FLD_LEN - 1); 16700 memcpy(bp->board_partno, &vpd_data[pos], size); 16701 16702 read_sn: 16703 pos = pci_vpd_find_ro_info_keyword(vpd_data, vpd_size, 16704 PCI_VPD_RO_KEYWORD_SERIALNO, 16705 &kw_len); 16706 if (pos < 0) 16707 goto exit; 16708 16709 size = min_t(int, kw_len, BNXT_VPD_FLD_LEN - 1); 16710 memcpy(bp->board_serialno, &vpd_data[pos], size); 16711 exit: 16712 kfree(vpd_data); 16713 } 16714 16715 static int bnxt_pcie_dsn_get(struct bnxt *bp, u8 dsn[]) 16716 { 16717 struct pci_dev *pdev = bp->pdev; 16718 u64 qword; 16719 16720 qword = pci_get_dsn(pdev); 16721 if (!qword) { 16722 netdev_info(bp->dev, "Unable to read adapter's DSN\n"); 16723 return -EOPNOTSUPP; 16724 } 16725 16726 put_unaligned_le64(qword, dsn); 16727 16728 bp->flags |= BNXT_FLAG_DSN_VALID; 16729 return 0; 16730 } 16731 16732 static int bnxt_map_db_bar(struct bnxt *bp) 16733 { 16734 if (!bp->db_size) 16735 return -ENODEV; 16736 bp->bar1 = pci_iomap(bp->pdev, 2, bp->db_size); 16737 if (!bp->bar1) 16738 return -ENOMEM; 16739 return 0; 16740 } 16741 16742 void bnxt_print_device_info(struct bnxt *bp) 16743 { 16744 netdev_info(bp->dev, "%s found at mem %lx, node addr %pM\n", 16745 board_info[bp->board_idx].name, 16746 (long)pci_resource_start(bp->pdev, 0), bp->dev->dev_addr); 16747 16748 pcie_print_link_status(bp->pdev); 16749 } 16750 16751 static int bnxt_init_one(struct pci_dev *pdev, const struct pci_device_id *ent) 16752 { 16753 struct bnxt_hw_resc *hw_resc; 16754 struct net_device *dev; 16755 struct bnxt *bp; 16756 int rc, max_irqs; 16757 16758 if (pci_is_bridge(pdev)) 16759 return -ENODEV; 16760 16761 if (!pdev->msix_cap) { 16762 dev_err(&pdev->dev, "MSIX capability not found, aborting\n"); 16763 return -ENODEV; 16764 } 16765 16766 /* Clear any pending DMA transactions from crash kernel 16767 * while loading driver in capture kernel. 16768 */ 16769 if (is_kdump_kernel()) { 16770 pci_clear_master(pdev); 16771 pcie_flr(pdev); 16772 } 16773 16774 max_irqs = bnxt_get_max_irq(pdev); 16775 dev = alloc_etherdev_mqs(sizeof(*bp), max_irqs * BNXT_MAX_QUEUE, 16776 max_irqs); 16777 if (!dev) 16778 return -ENOMEM; 16779 16780 bp = netdev_priv(dev); 16781 bp->board_idx = ent->driver_data; 16782 bp->msg_enable = BNXT_DEF_MSG_ENABLE; 16783 bnxt_set_max_func_irqs(bp, max_irqs); 16784 16785 if (bnxt_vf_pciid(bp->board_idx)) 16786 bp->flags |= BNXT_FLAG_VF; 16787 16788 /* No devlink port registration in case of a VF */ 16789 if (BNXT_PF(bp)) 16790 SET_NETDEV_DEVLINK_PORT(dev, &bp->dl_port); 16791 16792 rc = bnxt_init_board(pdev, dev); 16793 if (rc < 0) 16794 goto init_err_free; 16795 16796 dev->netdev_ops = &bnxt_netdev_ops; 16797 dev->stat_ops = &bnxt_stat_ops; 16798 dev->watchdog_timeo = BNXT_TX_TIMEOUT; 16799 dev->ethtool_ops = &bnxt_ethtool_ops; 16800 pci_set_drvdata(pdev, dev); 16801 16802 rc = bnxt_alloc_hwrm_resources(bp); 16803 if (rc) 16804 goto init_err_pci_clean; 16805 16806 mutex_init(&bp->hwrm_cmd_lock); 16807 mutex_init(&bp->link_lock); 16808 16809 rc = bnxt_fw_init_one_p1(bp); 16810 if (rc) 16811 goto init_err_pci_clean; 16812 16813 if (BNXT_PF(bp)) 16814 bnxt_vpd_read_info(bp); 16815 16816 if (BNXT_CHIP_P5_PLUS(bp)) { 16817 bp->flags |= BNXT_FLAG_CHIP_P5_PLUS; 16818 if (BNXT_CHIP_P7(bp)) 16819 bp->flags |= BNXT_FLAG_CHIP_P7; 16820 } 16821 16822 rc = bnxt_alloc_rss_indir_tbl(bp); 16823 if (rc) 16824 goto init_err_pci_clean; 16825 16826 rc = bnxt_fw_init_one_p2(bp); 16827 if (rc) 16828 goto init_err_pci_clean; 16829 16830 rc = bnxt_map_db_bar(bp); 16831 if (rc) { 16832 dev_err(&pdev->dev, "Cannot map doorbell BAR rc = %d, aborting\n", 16833 rc); 16834 goto init_err_pci_clean; 16835 } 16836 16837 dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG | 16838 NETIF_F_TSO | NETIF_F_TSO6 | 16839 NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE | 16840 NETIF_F_GSO_IPXIP4 | 16841 NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM | 16842 NETIF_F_GSO_PARTIAL | NETIF_F_RXHASH | 16843 NETIF_F_RXCSUM | NETIF_F_GRO; 16844 if (bp->flags & BNXT_FLAG_UDP_GSO_CAP) 16845 dev->hw_features |= NETIF_F_GSO_UDP_L4; 16846 16847 if (BNXT_SUPPORTS_TPA(bp)) 16848 dev->hw_features |= NETIF_F_LRO; 16849 16850 dev->hw_enc_features = 16851 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG | 16852 NETIF_F_TSO | NETIF_F_TSO6 | 16853 NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE | 16854 NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM | 16855 NETIF_F_GSO_IPXIP4 | NETIF_F_GSO_PARTIAL; 16856 if (bp->flags & BNXT_FLAG_UDP_GSO_CAP) 16857 dev->hw_enc_features |= NETIF_F_GSO_UDP_L4; 16858 if (bp->flags & BNXT_FLAG_CHIP_P7) 16859 dev->udp_tunnel_nic_info = &bnxt_udp_tunnels_p7; 16860 else 16861 dev->udp_tunnel_nic_info = &bnxt_udp_tunnels; 16862 16863 dev->gso_partial_features = NETIF_F_GSO_UDP_TUNNEL_CSUM | 16864 NETIF_F_GSO_GRE_CSUM; 16865 dev->vlan_features = dev->hw_features | NETIF_F_HIGHDMA; 16866 if (bp->fw_cap & BNXT_FW_CAP_VLAN_RX_STRIP) 16867 dev->hw_features |= BNXT_HW_FEATURE_VLAN_ALL_RX; 16868 if (bp->fw_cap & BNXT_FW_CAP_VLAN_TX_INSERT) 16869 dev->hw_features |= BNXT_HW_FEATURE_VLAN_ALL_TX; 16870 if (BNXT_SUPPORTS_TPA(bp)) 16871 dev->hw_features |= NETIF_F_GRO_HW; 16872 dev->features |= dev->hw_features | NETIF_F_HIGHDMA; 16873 if (dev->features & NETIF_F_GRO_HW) 16874 dev->features &= ~NETIF_F_LRO; 16875 dev->priv_flags |= IFF_UNICAST_FLT; 16876 16877 netif_set_tso_max_size(dev, GSO_MAX_SIZE); 16878 if (bp->tso_max_segs) 16879 netif_set_tso_max_segs(dev, bp->tso_max_segs); 16880 16881 dev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT | 16882 NETDEV_XDP_ACT_RX_SG; 16883 16884 #ifdef CONFIG_BNXT_SRIOV 16885 init_waitqueue_head(&bp->sriov_cfg_wait); 16886 #endif 16887 if (BNXT_SUPPORTS_TPA(bp)) { 16888 bp->gro_func = bnxt_gro_func_5730x; 16889 if (BNXT_CHIP_P4(bp)) 16890 bp->gro_func = bnxt_gro_func_5731x; 16891 else if (BNXT_CHIP_P5_PLUS(bp)) 16892 bp->gro_func = bnxt_gro_func_5750x; 16893 } 16894 if (!BNXT_CHIP_P4_PLUS(bp)) 16895 bp->flags |= BNXT_FLAG_DOUBLE_DB; 16896 16897 rc = bnxt_init_mac_addr(bp); 16898 if (rc) { 16899 dev_err(&pdev->dev, "Unable to initialize mac address.\n"); 16900 rc = -EADDRNOTAVAIL; 16901 goto init_err_pci_clean; 16902 } 16903 16904 if (BNXT_PF(bp)) { 16905 /* Read the adapter's DSN to use as the eswitch switch_id */ 16906 rc = bnxt_pcie_dsn_get(bp, bp->dsn); 16907 } 16908 16909 /* MTU range: 60 - FW defined max */ 16910 dev->min_mtu = ETH_ZLEN; 16911 dev->max_mtu = bp->max_mtu; 16912 16913 rc = bnxt_probe_phy(bp, true); 16914 if (rc) 16915 goto init_err_pci_clean; 16916 16917 hw_resc = &bp->hw_resc; 16918 bp->max_fltr = hw_resc->max_rx_em_flows + hw_resc->max_rx_wm_flows + 16919 BNXT_L2_FLTR_MAX_FLTR; 16920 /* Older firmware may not report these filters properly */ 16921 if (bp->max_fltr < BNXT_MAX_FLTR) 16922 bp->max_fltr = BNXT_MAX_FLTR; 16923 bnxt_init_l2_fltr_tbl(bp); 16924 __bnxt_set_rx_skb_mode(bp, false); 16925 bnxt_set_tpa_flags(bp); 16926 bnxt_init_ring_params(bp); 16927 bnxt_set_ring_params(bp); 16928 bnxt_rdma_aux_device_init(bp); 16929 rc = bnxt_set_dflt_rings(bp, true); 16930 if (rc) { 16931 if (BNXT_VF(bp) && rc == -ENODEV) { 16932 netdev_err(bp->dev, "Cannot configure VF rings while PF is unavailable.\n"); 16933 } else { 16934 netdev_err(bp->dev, "Not enough rings available.\n"); 16935 rc = -ENOMEM; 16936 } 16937 goto init_err_pci_clean; 16938 } 16939 16940 bnxt_fw_init_one_p3(bp); 16941 16942 bnxt_init_dflt_coal(bp); 16943 16944 if (dev->hw_features & BNXT_HW_FEATURE_VLAN_ALL_RX) 16945 bp->flags |= BNXT_FLAG_STRIP_VLAN; 16946 16947 rc = bnxt_init_int_mode(bp); 16948 if (rc) 16949 goto init_err_pci_clean; 16950 16951 /* No TC has been set yet and rings may have been trimmed due to 16952 * limited MSIX, so we re-initialize the TX rings per TC. 16953 */ 16954 bp->tx_nr_rings_per_tc = bp->tx_nr_rings; 16955 16956 if (BNXT_PF(bp)) { 16957 if (!bnxt_pf_wq) { 16958 bnxt_pf_wq = 16959 create_singlethread_workqueue("bnxt_pf_wq"); 16960 if (!bnxt_pf_wq) { 16961 dev_err(&pdev->dev, "Unable to create workqueue.\n"); 16962 rc = -ENOMEM; 16963 goto init_err_pci_clean; 16964 } 16965 } 16966 rc = bnxt_init_tc(bp); 16967 if (rc) 16968 netdev_err(dev, "Failed to initialize TC flower offload, err = %d.\n", 16969 rc); 16970 } 16971 16972 bnxt_inv_fw_health_reg(bp); 16973 rc = bnxt_dl_register(bp); 16974 if (rc) 16975 goto init_err_dl; 16976 16977 INIT_LIST_HEAD(&bp->usr_fltr_list); 16978 16979 if (BNXT_SUPPORTS_NTUPLE_VNIC(bp)) 16980 bp->rss_cap |= BNXT_RSS_CAP_MULTI_RSS_CTX; 16981 16982 dev->queue_mgmt_ops = &bnxt_queue_mgmt_ops_unsupp; 16983 if (BNXT_SUPPORTS_QUEUE_API(bp)) 16984 dev->queue_mgmt_ops = &bnxt_queue_mgmt_ops; 16985 dev->netmem_tx = true; 16986 16987 rc = register_netdev(dev); 16988 if (rc) 16989 goto init_err_cleanup; 16990 16991 bnxt_dl_fw_reporters_create(bp); 16992 16993 bnxt_rdma_aux_device_add(bp); 16994 16995 bnxt_print_device_info(bp); 16996 16997 pci_save_state(pdev); 16998 16999 return 0; 17000 init_err_cleanup: 17001 bnxt_rdma_aux_device_uninit(bp); 17002 bnxt_dl_unregister(bp); 17003 init_err_dl: 17004 bnxt_shutdown_tc(bp); 17005 bnxt_clear_int_mode(bp); 17006 17007 init_err_pci_clean: 17008 bnxt_hwrm_func_drv_unrgtr(bp); 17009 bnxt_ptp_clear(bp); 17010 kfree(bp->ptp_cfg); 17011 bp->ptp_cfg = NULL; 17012 bnxt_free_hwrm_resources(bp); 17013 bnxt_hwmon_uninit(bp); 17014 bnxt_ethtool_free(bp); 17015 kfree(bp->fw_health); 17016 bp->fw_health = NULL; 17017 bnxt_cleanup_pci(bp); 17018 bnxt_free_ctx_mem(bp, true); 17019 bnxt_free_crash_dump_mem(bp); 17020 kfree(bp->rss_indir_tbl); 17021 bp->rss_indir_tbl = NULL; 17022 17023 init_err_free: 17024 free_netdev(dev); 17025 return rc; 17026 } 17027 17028 static void bnxt_shutdown(struct pci_dev *pdev) 17029 { 17030 struct net_device *dev = pci_get_drvdata(pdev); 17031 struct bnxt *bp; 17032 17033 if (!dev) 17034 return; 17035 17036 rtnl_lock(); 17037 netdev_lock(dev); 17038 bp = netdev_priv(dev); 17039 if (!bp) 17040 goto shutdown_exit; 17041 17042 if (netif_running(dev)) 17043 netif_close(dev); 17044 17045 if (bnxt_hwrm_func_drv_unrgtr(bp)) { 17046 pcie_flr(pdev); 17047 goto shutdown_exit; 17048 } 17049 bnxt_ptp_clear(bp); 17050 bnxt_clear_int_mode(bp); 17051 pci_disable_device(pdev); 17052 17053 if (system_state == SYSTEM_POWER_OFF) { 17054 pci_wake_from_d3(pdev, bp->wol); 17055 pci_set_power_state(pdev, PCI_D3hot); 17056 } 17057 17058 shutdown_exit: 17059 netdev_unlock(dev); 17060 rtnl_unlock(); 17061 } 17062 17063 #ifdef CONFIG_PM_SLEEP 17064 static int bnxt_suspend(struct device *device) 17065 { 17066 struct net_device *dev = dev_get_drvdata(device); 17067 struct bnxt *bp = netdev_priv(dev); 17068 int rc = 0; 17069 17070 bnxt_ulp_stop(bp); 17071 17072 netdev_lock(dev); 17073 if (netif_running(dev)) { 17074 netif_device_detach(dev); 17075 rc = bnxt_close(dev); 17076 } 17077 bnxt_hwrm_func_drv_unrgtr(bp); 17078 bnxt_ptp_clear(bp); 17079 pci_disable_device(bp->pdev); 17080 bnxt_free_ctx_mem(bp, false); 17081 netdev_unlock(dev); 17082 return rc; 17083 } 17084 17085 static int bnxt_resume(struct device *device) 17086 { 17087 struct net_device *dev = dev_get_drvdata(device); 17088 struct bnxt *bp = netdev_priv(dev); 17089 int rc = 0; 17090 17091 netdev_lock(dev); 17092 rc = pci_enable_device(bp->pdev); 17093 if (rc) { 17094 netdev_err(dev, "Cannot re-enable PCI device during resume, err = %d\n", 17095 rc); 17096 goto resume_exit; 17097 } 17098 pci_set_master(bp->pdev); 17099 if (bnxt_hwrm_ver_get(bp)) { 17100 rc = -ENODEV; 17101 goto resume_exit; 17102 } 17103 rc = bnxt_hwrm_func_reset(bp); 17104 if (rc) { 17105 rc = -EBUSY; 17106 goto resume_exit; 17107 } 17108 17109 rc = bnxt_hwrm_func_qcaps(bp); 17110 if (rc) 17111 goto resume_exit; 17112 17113 bnxt_clear_reservations(bp, true); 17114 17115 if (bnxt_hwrm_func_drv_rgtr(bp, NULL, 0, false)) { 17116 rc = -ENODEV; 17117 goto resume_exit; 17118 } 17119 if (bp->fw_crash_mem) 17120 bnxt_hwrm_crash_dump_mem_cfg(bp); 17121 17122 if (bnxt_ptp_init(bp)) { 17123 kfree(bp->ptp_cfg); 17124 bp->ptp_cfg = NULL; 17125 } 17126 bnxt_get_wol_settings(bp); 17127 if (netif_running(dev)) { 17128 rc = bnxt_open(dev); 17129 if (!rc) 17130 netif_device_attach(dev); 17131 } 17132 17133 resume_exit: 17134 netdev_unlock(bp->dev); 17135 bnxt_ulp_start(bp, rc); 17136 if (!rc) 17137 bnxt_reenable_sriov(bp); 17138 return rc; 17139 } 17140 17141 static SIMPLE_DEV_PM_OPS(bnxt_pm_ops, bnxt_suspend, bnxt_resume); 17142 #define BNXT_PM_OPS (&bnxt_pm_ops) 17143 17144 #else 17145 17146 #define BNXT_PM_OPS NULL 17147 17148 #endif /* CONFIG_PM_SLEEP */ 17149 17150 /** 17151 * bnxt_io_error_detected - called when PCI error is detected 17152 * @pdev: Pointer to PCI device 17153 * @state: The current pci connection state 17154 * 17155 * This function is called after a PCI bus error affecting 17156 * this device has been detected. 17157 */ 17158 static pci_ers_result_t bnxt_io_error_detected(struct pci_dev *pdev, 17159 pci_channel_state_t state) 17160 { 17161 struct net_device *netdev = pci_get_drvdata(pdev); 17162 struct bnxt *bp = netdev_priv(netdev); 17163 bool abort = false; 17164 17165 netdev_info(netdev, "PCI I/O error detected\n"); 17166 17167 bnxt_ulp_stop(bp); 17168 17169 netdev_lock(netdev); 17170 netif_device_detach(netdev); 17171 17172 if (test_and_set_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) { 17173 netdev_err(bp->dev, "Firmware reset already in progress\n"); 17174 abort = true; 17175 } 17176 17177 if (abort || state == pci_channel_io_perm_failure) { 17178 netdev_unlock(netdev); 17179 return PCI_ERS_RESULT_DISCONNECT; 17180 } 17181 17182 /* Link is not reliable anymore if state is pci_channel_io_frozen 17183 * so we disable bus master to prevent any potential bad DMAs before 17184 * freeing kernel memory. 17185 */ 17186 if (state == pci_channel_io_frozen) { 17187 set_bit(BNXT_STATE_PCI_CHANNEL_IO_FROZEN, &bp->state); 17188 bnxt_fw_fatal_close(bp); 17189 } 17190 17191 if (netif_running(netdev)) 17192 __bnxt_close_nic(bp, true, true); 17193 17194 if (pci_is_enabled(pdev)) 17195 pci_disable_device(pdev); 17196 bnxt_free_ctx_mem(bp, false); 17197 netdev_unlock(netdev); 17198 17199 /* Request a slot reset. */ 17200 return PCI_ERS_RESULT_NEED_RESET; 17201 } 17202 17203 /** 17204 * bnxt_io_slot_reset - called after the pci bus has been reset. 17205 * @pdev: Pointer to PCI device 17206 * 17207 * Restart the card from scratch, as if from a cold-boot. 17208 * At this point, the card has experienced a hard reset, 17209 * followed by fixups by BIOS, and has its config space 17210 * set up identically to what it was at cold boot. 17211 */ 17212 static pci_ers_result_t bnxt_io_slot_reset(struct pci_dev *pdev) 17213 { 17214 pci_ers_result_t result = PCI_ERS_RESULT_DISCONNECT; 17215 struct net_device *netdev = pci_get_drvdata(pdev); 17216 struct bnxt *bp = netdev_priv(netdev); 17217 int retry = 0; 17218 int err = 0; 17219 int off; 17220 17221 netdev_info(bp->dev, "PCI Slot Reset\n"); 17222 17223 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS) && 17224 test_bit(BNXT_STATE_PCI_CHANNEL_IO_FROZEN, &bp->state)) 17225 msleep(900); 17226 17227 netdev_lock(netdev); 17228 17229 if (pci_enable_device(pdev)) { 17230 dev_err(&pdev->dev, 17231 "Cannot re-enable PCI device after reset.\n"); 17232 } else { 17233 pci_set_master(pdev); 17234 /* Upon fatal error, our device internal logic that latches to 17235 * BAR value is getting reset and will restore only upon 17236 * rewriting the BARs. 17237 * 17238 * As pci_restore_state() does not re-write the BARs if the 17239 * value is same as saved value earlier, driver needs to 17240 * write the BARs to 0 to force restore, in case of fatal error. 17241 */ 17242 if (test_and_clear_bit(BNXT_STATE_PCI_CHANNEL_IO_FROZEN, 17243 &bp->state)) { 17244 for (off = PCI_BASE_ADDRESS_0; 17245 off <= PCI_BASE_ADDRESS_5; off += 4) 17246 pci_write_config_dword(bp->pdev, off, 0); 17247 } 17248 pci_restore_state(pdev); 17249 pci_save_state(pdev); 17250 17251 bnxt_inv_fw_health_reg(bp); 17252 bnxt_try_map_fw_health_reg(bp); 17253 17254 /* In some PCIe AER scenarios, firmware may take up to 17255 * 10 seconds to become ready in the worst case. 17256 */ 17257 do { 17258 err = bnxt_try_recover_fw(bp); 17259 if (!err) 17260 break; 17261 retry++; 17262 } while (retry < BNXT_FW_SLOT_RESET_RETRY); 17263 17264 if (err) { 17265 dev_err(&pdev->dev, "Firmware not ready\n"); 17266 goto reset_exit; 17267 } 17268 17269 err = bnxt_hwrm_func_reset(bp); 17270 if (!err) 17271 result = PCI_ERS_RESULT_RECOVERED; 17272 17273 /* IRQ will be initialized later in bnxt_io_resume */ 17274 bnxt_ulp_irq_stop(bp); 17275 bnxt_clear_int_mode(bp); 17276 } 17277 17278 reset_exit: 17279 clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 17280 bnxt_clear_reservations(bp, true); 17281 netdev_unlock(netdev); 17282 17283 return result; 17284 } 17285 17286 /** 17287 * bnxt_io_resume - called when traffic can start flowing again. 17288 * @pdev: Pointer to PCI device 17289 * 17290 * This callback is called when the error recovery driver tells 17291 * us that its OK to resume normal operation. 17292 */ 17293 static void bnxt_io_resume(struct pci_dev *pdev) 17294 { 17295 struct net_device *netdev = pci_get_drvdata(pdev); 17296 struct bnxt *bp = netdev_priv(netdev); 17297 int err; 17298 17299 netdev_info(bp->dev, "PCI Slot Resume\n"); 17300 netdev_lock(netdev); 17301 17302 err = bnxt_hwrm_func_qcaps(bp); 17303 if (!err) { 17304 if (netif_running(netdev)) { 17305 err = bnxt_open(netdev); 17306 } else { 17307 err = bnxt_reserve_rings(bp, true); 17308 if (!err) 17309 err = bnxt_init_int_mode(bp); 17310 } 17311 } 17312 17313 if (!err) 17314 netif_device_attach(netdev); 17315 17316 netdev_unlock(netdev); 17317 bnxt_ulp_start(bp, err); 17318 if (!err) 17319 bnxt_reenable_sriov(bp); 17320 } 17321 17322 static const struct pci_error_handlers bnxt_err_handler = { 17323 .error_detected = bnxt_io_error_detected, 17324 .slot_reset = bnxt_io_slot_reset, 17325 .resume = bnxt_io_resume 17326 }; 17327 17328 static struct pci_driver bnxt_pci_driver = { 17329 .name = DRV_MODULE_NAME, 17330 .id_table = bnxt_pci_tbl, 17331 .probe = bnxt_init_one, 17332 .remove = bnxt_remove_one, 17333 .shutdown = bnxt_shutdown, 17334 .driver.pm = BNXT_PM_OPS, 17335 .err_handler = &bnxt_err_handler, 17336 #if defined(CONFIG_BNXT_SRIOV) 17337 .sriov_configure = bnxt_sriov_configure, 17338 #endif 17339 }; 17340 17341 static int __init bnxt_init(void) 17342 { 17343 int err; 17344 17345 bnxt_debug_init(); 17346 err = pci_register_driver(&bnxt_pci_driver); 17347 if (err) { 17348 bnxt_debug_exit(); 17349 return err; 17350 } 17351 17352 return 0; 17353 } 17354 17355 static void __exit bnxt_exit(void) 17356 { 17357 pci_unregister_driver(&bnxt_pci_driver); 17358 if (bnxt_pf_wq) 17359 destroy_workqueue(bnxt_pf_wq); 17360 bnxt_debug_exit(); 17361 } 17362 17363 module_init(bnxt_init); 17364 module_exit(bnxt_exit); 17365