xref: /linux/drivers/iio/imu/bno055/bno055.c (revision 22c5696e3fe029f4fc2decbe7cc6663b5d281223)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * IIO driver for Bosch BNO055 IMU
4  *
5  * Copyright (C) 2021-2022 Istituto Italiano di Tecnologia
6  * Electronic Design Laboratory
7  * Written by Andrea Merello <andrea.merello@iit.it>
8  *
9  * Portions of this driver are taken from the BNO055 driver patch
10  * from Vlad Dogaru which is Copyright (c) 2016, Intel Corporation.
11  *
12  * This driver is also based on BMI160 driver, which is:
13  *	Copyright (c) 2016, Intel Corporation.
14  *	Copyright (c) 2019, Martin Kelly.
15  */
16 
17 #include <linux/bitfield.h>
18 #include <linux/bitmap.h>
19 #include <linux/clk.h>
20 #include <linux/debugfs.h>
21 #include <linux/device.h>
22 #include <linux/firmware.h>
23 #include <linux/gpio/consumer.h>
24 #include <linux/module.h>
25 #include <linux/mutex.h>
26 #include <linux/regmap.h>
27 #include <linux/util_macros.h>
28 
29 #include <linux/iio/buffer.h>
30 #include <linux/iio/iio.h>
31 #include <linux/iio/sysfs.h>
32 #include <linux/iio/trigger_consumer.h>
33 #include <linux/iio/triggered_buffer.h>
34 
35 #include "bno055.h"
36 
37 #define BNO055_FW_UID_FMT "bno055-caldata-%*phN.dat"
38 #define BNO055_FW_GENERIC_NAME "bno055-caldata.dat"
39 
40 /* common registers */
41 #define BNO055_PAGESEL_REG		0x7
42 
43 /* page 0 registers */
44 #define BNO055_CHIP_ID_REG		0x0
45 #define BNO055_CHIP_ID_MAGIC 0xA0
46 #define BNO055_SW_REV_LSB_REG		0x4
47 #define BNO055_SW_REV_MSB_REG		0x5
48 #define BNO055_ACC_DATA_X_LSB_REG	0x8
49 #define BNO055_ACC_DATA_Y_LSB_REG	0xA
50 #define BNO055_ACC_DATA_Z_LSB_REG	0xC
51 #define BNO055_MAG_DATA_X_LSB_REG	0xE
52 #define BNO055_MAG_DATA_Y_LSB_REG	0x10
53 #define BNO055_MAG_DATA_Z_LSB_REG	0x12
54 #define BNO055_GYR_DATA_X_LSB_REG	0x14
55 #define BNO055_GYR_DATA_Y_LSB_REG	0x16
56 #define BNO055_GYR_DATA_Z_LSB_REG	0x18
57 #define BNO055_EUL_DATA_X_LSB_REG	0x1A
58 #define BNO055_EUL_DATA_Y_LSB_REG	0x1C
59 #define BNO055_EUL_DATA_Z_LSB_REG	0x1E
60 #define BNO055_QUAT_DATA_W_LSB_REG	0x20
61 #define BNO055_LIA_DATA_X_LSB_REG	0x28
62 #define BNO055_LIA_DATA_Y_LSB_REG	0x2A
63 #define BNO055_LIA_DATA_Z_LSB_REG	0x2C
64 #define BNO055_GRAVITY_DATA_X_LSB_REG	0x2E
65 #define BNO055_GRAVITY_DATA_Y_LSB_REG	0x30
66 #define BNO055_GRAVITY_DATA_Z_LSB_REG	0x32
67 #define BNO055_SCAN_CH_COUNT ((BNO055_GRAVITY_DATA_Z_LSB_REG - BNO055_ACC_DATA_X_LSB_REG) / 2)
68 #define BNO055_TEMP_REG			0x34
69 #define BNO055_CALIB_STAT_REG		0x35
70 #define BNO055_CALIB_STAT_MAGN_SHIFT 0
71 #define BNO055_CALIB_STAT_ACCEL_SHIFT 2
72 #define BNO055_CALIB_STAT_GYRO_SHIFT 4
73 #define BNO055_CALIB_STAT_SYS_SHIFT 6
74 #define BNO055_SYS_ERR_REG		0x3A
75 #define BNO055_POWER_MODE_REG		0x3E
76 #define BNO055_POWER_MODE_NORMAL 0
77 #define BNO055_SYS_TRIGGER_REG		0x3F
78 #define BNO055_SYS_TRIGGER_RST_SYS BIT(5)
79 #define BNO055_SYS_TRIGGER_CLK_SEL BIT(7)
80 #define BNO055_OPR_MODE_REG		0x3D
81 #define BNO055_OPR_MODE_CONFIG 0x0
82 #define BNO055_OPR_MODE_AMG 0x7
83 #define BNO055_OPR_MODE_FUSION_FMC_OFF 0xB
84 #define BNO055_OPR_MODE_FUSION 0xC
85 #define BNO055_UNIT_SEL_REG		0x3B
86 /* Android orientation mode means: pitch value decreases turning clockwise */
87 #define BNO055_UNIT_SEL_ANDROID BIT(7)
88 #define BNO055_UNIT_SEL_GYR_RPS BIT(1)
89 #define BNO055_CALDATA_START		0x55
90 #define BNO055_CALDATA_END		0x6A
91 #define BNO055_CALDATA_LEN 22
92 
93 /*
94  * The difference in address between the register that contains the
95  * value and the register that contains the offset.  This applies for
96  * accel, gyro and magn channels.
97  */
98 #define BNO055_REG_OFFSET_ADDR		0x4D
99 
100 /* page 1 registers */
101 #define BNO055_PG1(x) ((x) | 0x80)
102 #define BNO055_ACC_CONFIG_REG		BNO055_PG1(0x8)
103 #define BNO055_ACC_CONFIG_LPF_MASK GENMASK(4, 2)
104 #define BNO055_ACC_CONFIG_RANGE_MASK GENMASK(1, 0)
105 #define BNO055_MAG_CONFIG_REG		BNO055_PG1(0x9)
106 #define BNO055_MAG_CONFIG_HIGHACCURACY 0x18
107 #define BNO055_MAG_CONFIG_ODR_MASK GENMASK(2, 0)
108 #define BNO055_GYR_CONFIG_REG		BNO055_PG1(0xA)
109 #define BNO055_GYR_CONFIG_RANGE_MASK GENMASK(2, 0)
110 #define BNO055_GYR_CONFIG_LPF_MASK GENMASK(5, 3)
111 #define BNO055_GYR_AM_SET_REG		BNO055_PG1(0x1F)
112 #define BNO055_UID_LOWER_REG		BNO055_PG1(0x50)
113 #define BNO055_UID_HIGHER_REG		BNO055_PG1(0x5F)
114 #define BNO055_UID_LEN 16
115 
116 struct bno055_sysfs_attr {
117 	const int *vals;
118 	int len;
119 	const int *fusion_vals;
120 	const int *hw_xlate;
121 	int hw_xlate_len;
122 	int type;
123 };
124 
125 static const int bno055_acc_lpf_vals[] = {
126 	7, 810000, 15, 630000, 31, 250000, 62, 500000,
127 	125, 0, 250, 0, 500, 0, 1000, 0,
128 };
129 
130 static const struct bno055_sysfs_attr bno055_acc_lpf = {
131 	.vals = bno055_acc_lpf_vals,
132 	.len = ARRAY_SIZE(bno055_acc_lpf_vals),
133 	.fusion_vals = (const int[]){62, 500000},
134 	.type = IIO_VAL_INT_PLUS_MICRO,
135 };
136 
137 static const int bno055_acc_range_vals[] = {
138   /* G:    2,    4,    8,    16 */
139 	1962, 3924, 7848, 15696
140 };
141 
142 static const struct bno055_sysfs_attr bno055_acc_range = {
143 	.vals = bno055_acc_range_vals,
144 	.len = ARRAY_SIZE(bno055_acc_range_vals),
145 	.fusion_vals = (const int[]){3924}, /* 4G */
146 	.type = IIO_VAL_INT,
147 };
148 
149 /*
150  * Theoretically the IMU should return data in a given (i.e. fixed) unit
151  * regardless of the range setting. This happens for the accelerometer, but not
152  * for the gyroscope; the gyroscope range setting affects the scale.
153  * This is probably due to this[0] bug.
154  * For this reason we map the internal range setting onto the standard IIO scale
155  * attribute for gyro.
156  * Since the bug[0] may be fixed in future, we check for the IMU FW version and
157  * eventually warn the user.
158  * Currently we just don't care about "range" attributes for gyro.
159  *
160  * [0]  https://community.bosch-sensortec.com/t5/MEMS-sensors-forum/BNO055-Wrong-sensitivity-resolution-in-datasheet/td-p/10266
161  */
162 
163 /*
164  * dps = hwval * (dps_range/2^15)
165  * rps = hwval * (rps_range/2^15)
166  *     = hwval * (dps_range/(2^15 * k))
167  * where k is rad-to-deg factor
168  */
169 static const int bno055_gyr_scale_vals[] = {
170 	125, 1877467, 250, 1877467, 500, 1877467,
171 	1000, 1877467, 2000, 1877467,
172 };
173 
174 static const int bno055_gyr_scale_hw_xlate[] = {0, 1, 2, 3, 4};
175 static const struct bno055_sysfs_attr bno055_gyr_scale = {
176 	.vals = bno055_gyr_scale_vals,
177 	.len = ARRAY_SIZE(bno055_gyr_scale_vals),
178 	.fusion_vals = (const int[]){1, 900},
179 	.hw_xlate = bno055_gyr_scale_hw_xlate,
180 	.hw_xlate_len = ARRAY_SIZE(bno055_gyr_scale_hw_xlate),
181 	.type = IIO_VAL_FRACTIONAL,
182 };
183 
184 static const int bno055_gyr_lpf_vals[] = {12, 23, 32, 47, 64, 116, 230, 523};
185 static const int bno055_gyr_lpf_hw_xlate[] = {5, 4, 7, 3, 6, 2, 1, 0};
186 static const struct bno055_sysfs_attr bno055_gyr_lpf = {
187 	.vals = bno055_gyr_lpf_vals,
188 	.len = ARRAY_SIZE(bno055_gyr_lpf_vals),
189 	.fusion_vals = (const int[]){32},
190 	.hw_xlate = bno055_gyr_lpf_hw_xlate,
191 	.hw_xlate_len = ARRAY_SIZE(bno055_gyr_lpf_hw_xlate),
192 	.type = IIO_VAL_INT,
193 };
194 
195 static const int bno055_mag_odr_vals[] = {2, 6, 8, 10, 15, 20, 25, 30};
196 static const struct bno055_sysfs_attr bno055_mag_odr = {
197 	.vals = bno055_mag_odr_vals,
198 	.len =  ARRAY_SIZE(bno055_mag_odr_vals),
199 	.fusion_vals = (const int[]){20},
200 	.type = IIO_VAL_INT,
201 };
202 
203 struct bno055_priv {
204 	struct regmap *regmap;
205 	struct device *dev;
206 	struct clk *clk;
207 	int operation_mode;
208 	int xfer_burst_break_thr;
209 	struct mutex lock;
210 	u8 uid[BNO055_UID_LEN];
211 	struct gpio_desc *reset_gpio;
212 	bool sw_reset;
213 	struct {
214 		__le16 chans[BNO055_SCAN_CH_COUNT];
215 		aligned_s64 timestamp;
216 	} buf;
217 	struct dentry *debugfs;
218 };
219 
bno055_regmap_volatile(struct device * dev,unsigned int reg)220 static bool bno055_regmap_volatile(struct device *dev, unsigned int reg)
221 {
222 	/* data and status registers */
223 	if (reg >= BNO055_ACC_DATA_X_LSB_REG && reg <= BNO055_SYS_ERR_REG)
224 		return true;
225 
226 	/* when in fusion mode, config is updated by chip */
227 	if (reg == BNO055_MAG_CONFIG_REG ||
228 	    reg == BNO055_ACC_CONFIG_REG ||
229 	    reg == BNO055_GYR_CONFIG_REG)
230 		return true;
231 
232 	/* calibration data may be updated by the IMU */
233 	if (reg >= BNO055_CALDATA_START && reg <= BNO055_CALDATA_END)
234 		return true;
235 
236 	return false;
237 }
238 
bno055_regmap_readable(struct device * dev,unsigned int reg)239 static bool bno055_regmap_readable(struct device *dev, unsigned int reg)
240 {
241 	/* unnamed PG0 reserved areas */
242 	if ((reg < BNO055_PG1(0) && reg > BNO055_CALDATA_END) ||
243 	    reg == 0x3C)
244 		return false;
245 
246 	/* unnamed PG1 reserved areas */
247 	if (reg > BNO055_PG1(BNO055_UID_HIGHER_REG) ||
248 	    (reg < BNO055_PG1(BNO055_UID_LOWER_REG) && reg > BNO055_PG1(BNO055_GYR_AM_SET_REG)) ||
249 	    reg == BNO055_PG1(0xE) ||
250 	    (reg < BNO055_PG1(BNO055_PAGESEL_REG) && reg >= BNO055_PG1(0x0)))
251 		return false;
252 	return true;
253 }
254 
bno055_regmap_writeable(struct device * dev,unsigned int reg)255 static bool bno055_regmap_writeable(struct device *dev, unsigned int reg)
256 {
257 	/*
258 	 * Unreadable registers are indeed reserved; there are no WO regs
259 	 * (except for a single bit in SYS_TRIGGER register)
260 	 */
261 	if (!bno055_regmap_readable(dev, reg))
262 		return false;
263 
264 	/* data and status registers */
265 	if (reg >= BNO055_ACC_DATA_X_LSB_REG && reg <= BNO055_SYS_ERR_REG)
266 		return false;
267 
268 	/* ID areas */
269 	if (reg < BNO055_PAGESEL_REG ||
270 	    (reg <= BNO055_UID_HIGHER_REG && reg >= BNO055_UID_LOWER_REG))
271 		return false;
272 
273 	return true;
274 }
275 
276 static const struct regmap_range_cfg bno055_regmap_ranges[] = {
277 	{
278 		.range_min = 0,
279 		.range_max = 0x7f * 2,
280 		.selector_reg = BNO055_PAGESEL_REG,
281 		.selector_mask = GENMASK(7, 0),
282 		.selector_shift = 0,
283 		.window_start = 0,
284 		.window_len = 0x80,
285 	},
286 };
287 
288 const struct regmap_config bno055_regmap_config = {
289 	.name = "bno055",
290 	.reg_bits = 8,
291 	.val_bits = 8,
292 	.ranges = bno055_regmap_ranges,
293 	.num_ranges = 1,
294 	.volatile_reg = bno055_regmap_volatile,
295 	.max_register = 0x80 * 2,
296 	.writeable_reg = bno055_regmap_writeable,
297 	.readable_reg = bno055_regmap_readable,
298 	.cache_type = REGCACHE_MAPLE,
299 };
300 EXPORT_SYMBOL_NS_GPL(bno055_regmap_config, "IIO_BNO055");
301 
302 /* must be called in configuration mode */
bno055_calibration_load(struct bno055_priv * priv,const u8 * data,int len)303 static int bno055_calibration_load(struct bno055_priv *priv, const u8 *data, int len)
304 {
305 	if (len != BNO055_CALDATA_LEN) {
306 		dev_dbg(priv->dev, "Invalid calibration file size %d (expected %d)",
307 			len, BNO055_CALDATA_LEN);
308 		return -EINVAL;
309 	}
310 
311 	dev_dbg(priv->dev, "loading cal data: %*ph", BNO055_CALDATA_LEN, data);
312 	return regmap_bulk_write(priv->regmap, BNO055_CALDATA_START,
313 				 data, BNO055_CALDATA_LEN);
314 }
315 
bno055_operation_mode_do_set(struct bno055_priv * priv,int operation_mode)316 static int bno055_operation_mode_do_set(struct bno055_priv *priv,
317 					int operation_mode)
318 {
319 	int ret;
320 
321 	ret = regmap_write(priv->regmap, BNO055_OPR_MODE_REG,
322 			   operation_mode);
323 	if (ret)
324 		return ret;
325 
326 	/* Following datasheet specifications: sensor takes 7mS up to 19 mS to switch mode */
327 	msleep(20);
328 
329 	return 0;
330 }
331 
bno055_system_reset(struct bno055_priv * priv)332 static int bno055_system_reset(struct bno055_priv *priv)
333 {
334 	int ret;
335 
336 	if (priv->reset_gpio) {
337 		gpiod_set_value_cansleep(priv->reset_gpio, 0);
338 		usleep_range(5000, 10000);
339 		gpiod_set_value_cansleep(priv->reset_gpio, 1);
340 	} else if (priv->sw_reset) {
341 		ret = regmap_write(priv->regmap, BNO055_SYS_TRIGGER_REG,
342 				   BNO055_SYS_TRIGGER_RST_SYS);
343 		if (ret)
344 			return ret;
345 	} else {
346 		return 0;
347 	}
348 
349 	regcache_drop_region(priv->regmap, 0x0, 0xff);
350 	usleep_range(650000, 700000);
351 
352 	return 0;
353 }
354 
bno055_init(struct bno055_priv * priv,const u8 * caldata,int len)355 static int bno055_init(struct bno055_priv *priv, const u8 *caldata, int len)
356 {
357 	int ret;
358 
359 	ret = bno055_operation_mode_do_set(priv, BNO055_OPR_MODE_CONFIG);
360 	if (ret)
361 		return ret;
362 
363 	ret = regmap_write(priv->regmap, BNO055_POWER_MODE_REG,
364 			   BNO055_POWER_MODE_NORMAL);
365 	if (ret)
366 		return ret;
367 
368 	ret = regmap_write(priv->regmap, BNO055_SYS_TRIGGER_REG,
369 			   priv->clk ? BNO055_SYS_TRIGGER_CLK_SEL : 0);
370 	if (ret)
371 		return ret;
372 
373 	/* use standard SI units */
374 	ret = regmap_write(priv->regmap, BNO055_UNIT_SEL_REG,
375 			   BNO055_UNIT_SEL_ANDROID | BNO055_UNIT_SEL_GYR_RPS);
376 	if (ret)
377 		return ret;
378 
379 	if (caldata) {
380 		ret = bno055_calibration_load(priv, caldata, len);
381 		if (ret)
382 			dev_warn(priv->dev, "failed to load calibration data with error %d\n",
383 				 ret);
384 	}
385 
386 	return 0;
387 }
388 
bno055_operation_mode_set(struct bno055_priv * priv,int operation_mode)389 static ssize_t bno055_operation_mode_set(struct bno055_priv *priv,
390 					 int operation_mode)
391 {
392 	u8 caldata[BNO055_CALDATA_LEN];
393 	int ret;
394 
395 	mutex_lock(&priv->lock);
396 
397 	ret = bno055_operation_mode_do_set(priv, BNO055_OPR_MODE_CONFIG);
398 	if (ret)
399 		goto exit_unlock;
400 
401 	if (operation_mode == BNO055_OPR_MODE_FUSION ||
402 	    operation_mode == BNO055_OPR_MODE_FUSION_FMC_OFF) {
403 		/* for entering fusion mode, reset the chip to clear the algo state */
404 		ret = regmap_bulk_read(priv->regmap, BNO055_CALDATA_START, caldata,
405 				       BNO055_CALDATA_LEN);
406 		if (ret)
407 			goto exit_unlock;
408 
409 		ret = bno055_system_reset(priv);
410 		if (ret)
411 			goto exit_unlock;
412 
413 		ret = bno055_init(priv, caldata, BNO055_CALDATA_LEN);
414 		if (ret)
415 			goto exit_unlock;
416 	}
417 
418 	ret = bno055_operation_mode_do_set(priv, operation_mode);
419 	if (ret)
420 		goto exit_unlock;
421 
422 	priv->operation_mode = operation_mode;
423 
424 exit_unlock:
425 	mutex_unlock(&priv->lock);
426 	return ret;
427 }
428 
bno055_uninit(void * arg)429 static void bno055_uninit(void *arg)
430 {
431 	struct bno055_priv *priv = arg;
432 
433 	/* stop the IMU */
434 	bno055_operation_mode_do_set(priv, BNO055_OPR_MODE_CONFIG);
435 }
436 
437 #define BNO055_CHANNEL(_type, _axis, _index, _address, _sep, _sh, _avail) {	\
438 	.address = _address,							\
439 	.type = _type,								\
440 	.modified = 1,								\
441 	.channel2 = IIO_MOD_##_axis,						\
442 	.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | (_sep),			\
443 	.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) | (_sh),		\
444 	.info_mask_shared_by_type_available = _avail,				\
445 	.scan_index = _index,							\
446 	.scan_type = {								\
447 		.sign = 's',							\
448 		.realbits = 16,							\
449 		.storagebits = 16,						\
450 		.endianness = IIO_LE,						\
451 		.repeat = IIO_MOD_##_axis == IIO_MOD_QUATERNION ? 4 : 0,        \
452 	},									\
453 }
454 
455 /* scan indexes follow DATA register order */
456 enum bno055_scan_axis {
457 	BNO055_SCAN_ACCEL_X,
458 	BNO055_SCAN_ACCEL_Y,
459 	BNO055_SCAN_ACCEL_Z,
460 	BNO055_SCAN_MAGN_X,
461 	BNO055_SCAN_MAGN_Y,
462 	BNO055_SCAN_MAGN_Z,
463 	BNO055_SCAN_GYRO_X,
464 	BNO055_SCAN_GYRO_Y,
465 	BNO055_SCAN_GYRO_Z,
466 	BNO055_SCAN_YAW,
467 	BNO055_SCAN_ROLL,
468 	BNO055_SCAN_PITCH,
469 	BNO055_SCAN_QUATERNION,
470 	BNO055_SCAN_LIA_X,
471 	BNO055_SCAN_LIA_Y,
472 	BNO055_SCAN_LIA_Z,
473 	BNO055_SCAN_GRAVITY_X,
474 	BNO055_SCAN_GRAVITY_Y,
475 	BNO055_SCAN_GRAVITY_Z,
476 	BNO055_SCAN_TIMESTAMP,
477 	_BNO055_SCAN_MAX
478 };
479 
480 static const struct iio_chan_spec bno055_channels[] = {
481 	/* accelerometer */
482 	BNO055_CHANNEL(IIO_ACCEL, X, BNO055_SCAN_ACCEL_X,
483 		       BNO055_ACC_DATA_X_LSB_REG, BIT(IIO_CHAN_INFO_OFFSET),
484 		       BIT(IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY),
485 		       BIT(IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY)),
486 	BNO055_CHANNEL(IIO_ACCEL, Y, BNO055_SCAN_ACCEL_Y,
487 		       BNO055_ACC_DATA_Y_LSB_REG, BIT(IIO_CHAN_INFO_OFFSET),
488 		       BIT(IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY),
489 		       BIT(IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY)),
490 	BNO055_CHANNEL(IIO_ACCEL, Z, BNO055_SCAN_ACCEL_Z,
491 		       BNO055_ACC_DATA_Z_LSB_REG, BIT(IIO_CHAN_INFO_OFFSET),
492 		       BIT(IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY),
493 		       BIT(IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY)),
494 	/* gyroscope */
495 	BNO055_CHANNEL(IIO_ANGL_VEL, X, BNO055_SCAN_GYRO_X,
496 		       BNO055_GYR_DATA_X_LSB_REG, BIT(IIO_CHAN_INFO_OFFSET),
497 		       BIT(IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY),
498 		       BIT(IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY) |
499 		       BIT(IIO_CHAN_INFO_SCALE)),
500 	BNO055_CHANNEL(IIO_ANGL_VEL, Y, BNO055_SCAN_GYRO_Y,
501 		       BNO055_GYR_DATA_Y_LSB_REG, BIT(IIO_CHAN_INFO_OFFSET),
502 		       BIT(IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY),
503 		       BIT(IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY) |
504 		       BIT(IIO_CHAN_INFO_SCALE)),
505 	BNO055_CHANNEL(IIO_ANGL_VEL, Z, BNO055_SCAN_GYRO_Z,
506 		       BNO055_GYR_DATA_Z_LSB_REG, BIT(IIO_CHAN_INFO_OFFSET),
507 		       BIT(IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY),
508 		       BIT(IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY) |
509 		       BIT(IIO_CHAN_INFO_SCALE)),
510 	/* magnetometer */
511 	BNO055_CHANNEL(IIO_MAGN, X, BNO055_SCAN_MAGN_X,
512 		       BNO055_MAG_DATA_X_LSB_REG, BIT(IIO_CHAN_INFO_OFFSET),
513 		       BIT(IIO_CHAN_INFO_SAMP_FREQ), BIT(IIO_CHAN_INFO_SAMP_FREQ)),
514 	BNO055_CHANNEL(IIO_MAGN, Y, BNO055_SCAN_MAGN_Y,
515 		       BNO055_MAG_DATA_Y_LSB_REG, BIT(IIO_CHAN_INFO_OFFSET),
516 		       BIT(IIO_CHAN_INFO_SAMP_FREQ), BIT(IIO_CHAN_INFO_SAMP_FREQ)),
517 	BNO055_CHANNEL(IIO_MAGN, Z, BNO055_SCAN_MAGN_Z,
518 		       BNO055_MAG_DATA_Z_LSB_REG, BIT(IIO_CHAN_INFO_OFFSET),
519 		       BIT(IIO_CHAN_INFO_SAMP_FREQ), BIT(IIO_CHAN_INFO_SAMP_FREQ)),
520 	/* euler angle */
521 	BNO055_CHANNEL(IIO_ROT, YAW, BNO055_SCAN_YAW,
522 		       BNO055_EUL_DATA_X_LSB_REG, 0, 0, 0),
523 	BNO055_CHANNEL(IIO_ROT, ROLL, BNO055_SCAN_ROLL,
524 		       BNO055_EUL_DATA_Y_LSB_REG, 0, 0, 0),
525 	BNO055_CHANNEL(IIO_ROT, PITCH, BNO055_SCAN_PITCH,
526 		       BNO055_EUL_DATA_Z_LSB_REG, 0, 0, 0),
527 	/* quaternion */
528 	BNO055_CHANNEL(IIO_ROT, QUATERNION, BNO055_SCAN_QUATERNION,
529 		       BNO055_QUAT_DATA_W_LSB_REG, 0, 0, 0),
530 
531 	/* linear acceleration */
532 	BNO055_CHANNEL(IIO_ACCEL, LINEAR_X, BNO055_SCAN_LIA_X,
533 		       BNO055_LIA_DATA_X_LSB_REG, 0, 0, 0),
534 	BNO055_CHANNEL(IIO_ACCEL, LINEAR_Y, BNO055_SCAN_LIA_Y,
535 		       BNO055_LIA_DATA_Y_LSB_REG, 0, 0, 0),
536 	BNO055_CHANNEL(IIO_ACCEL, LINEAR_Z, BNO055_SCAN_LIA_Z,
537 		       BNO055_LIA_DATA_Z_LSB_REG, 0, 0, 0),
538 
539 	/* gravity vector */
540 	BNO055_CHANNEL(IIO_GRAVITY, X, BNO055_SCAN_GRAVITY_X,
541 		       BNO055_GRAVITY_DATA_X_LSB_REG, 0, 0, 0),
542 	BNO055_CHANNEL(IIO_GRAVITY, Y, BNO055_SCAN_GRAVITY_Y,
543 		       BNO055_GRAVITY_DATA_Y_LSB_REG, 0, 0, 0),
544 	BNO055_CHANNEL(IIO_GRAVITY, Z, BNO055_SCAN_GRAVITY_Z,
545 		       BNO055_GRAVITY_DATA_Z_LSB_REG, 0, 0, 0),
546 
547 	{
548 		.type = IIO_TEMP,
549 		.info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED),
550 		.scan_index = -1,
551 	},
552 	IIO_CHAN_SOFT_TIMESTAMP(BNO055_SCAN_TIMESTAMP),
553 };
554 
bno055_get_regmask(struct bno055_priv * priv,int * val,int * val2,int reg,int mask,const struct bno055_sysfs_attr * attr)555 static int bno055_get_regmask(struct bno055_priv *priv, int *val, int *val2,
556 			      int reg, int mask,
557 			      const struct bno055_sysfs_attr *attr)
558 {
559 	const int shift = __ffs(mask);
560 	int hwval, idx;
561 	int ret;
562 	int i;
563 
564 	ret = regmap_read(priv->regmap, reg, &hwval);
565 	if (ret)
566 		return ret;
567 
568 	idx = (hwval & mask) >> shift;
569 	if (attr->hw_xlate)
570 		for (i = 0; i < attr->hw_xlate_len; i++)
571 			if (attr->hw_xlate[i] == idx) {
572 				idx = i;
573 				break;
574 			}
575 	if (attr->type == IIO_VAL_INT) {
576 		*val = attr->vals[idx];
577 	} else { /* IIO_VAL_INT_PLUS_MICRO or IIO_VAL_FRACTIONAL */
578 		*val = attr->vals[idx * 2];
579 		*val2 = attr->vals[idx * 2 + 1];
580 	}
581 
582 	return attr->type;
583 }
584 
bno055_set_regmask(struct bno055_priv * priv,int val,int val2,int reg,int mask,const struct bno055_sysfs_attr * attr)585 static int bno055_set_regmask(struct bno055_priv *priv, int val, int val2,
586 			      int reg, int mask,
587 			      const struct bno055_sysfs_attr *attr)
588 {
589 	const int shift = __ffs(mask);
590 	int best_delta;
591 	int req_val;
592 	int tbl_val;
593 	bool first;
594 	int delta;
595 	int hwval;
596 	int ret;
597 	int len;
598 	int i;
599 
600 	/*
601 	 * The closest value the HW supports is only one in fusion mode,
602 	 * and it is autoselected, so don't do anything, just return OK,
603 	 * as the closest possible value has been (virtually) selected
604 	 */
605 	if (priv->operation_mode != BNO055_OPR_MODE_AMG)
606 		return 0;
607 
608 	len = attr->len;
609 
610 	/*
611 	 * We always get a request in INT_PLUS_MICRO, but we
612 	 * take care of the micro part only when we really have
613 	 * non-integer tables. This prevents 32-bit overflow with
614 	 * larger integers contained in integer tables.
615 	 */
616 	req_val = val;
617 	if (attr->type != IIO_VAL_INT) {
618 		len /= 2;
619 		req_val = min(val, 2147) * 1000000 + val2;
620 	}
621 
622 	first = true;
623 	for (i = 0; i < len; i++) {
624 		switch (attr->type) {
625 		case IIO_VAL_INT:
626 			tbl_val = attr->vals[i];
627 			break;
628 		case IIO_VAL_INT_PLUS_MICRO:
629 			WARN_ON(attr->vals[i * 2] > 2147);
630 			tbl_val = attr->vals[i * 2] * 1000000 +
631 				attr->vals[i * 2 + 1];
632 			break;
633 		case IIO_VAL_FRACTIONAL:
634 			WARN_ON(attr->vals[i * 2] > 4294);
635 			tbl_val = attr->vals[i * 2] * 1000000 /
636 				attr->vals[i * 2 + 1];
637 			break;
638 		default:
639 			return -EINVAL;
640 		}
641 		delta = abs(tbl_val - req_val);
642 		if (first || delta < best_delta) {
643 			best_delta = delta;
644 			hwval = i;
645 			first = false;
646 		}
647 	}
648 
649 	if (attr->hw_xlate)
650 		hwval = attr->hw_xlate[hwval];
651 
652 	ret = bno055_operation_mode_do_set(priv, BNO055_OPR_MODE_CONFIG);
653 	if (ret)
654 		return ret;
655 
656 	ret = regmap_update_bits(priv->regmap, reg, mask, hwval << shift);
657 	if (ret)
658 		return ret;
659 
660 	return bno055_operation_mode_do_set(priv, BNO055_OPR_MODE_AMG);
661 }
662 
bno055_read_simple_chan(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,int * val,int * val2,long mask)663 static int bno055_read_simple_chan(struct iio_dev *indio_dev,
664 				   struct iio_chan_spec const *chan,
665 				   int *val, int *val2, long mask)
666 {
667 	struct bno055_priv *priv = iio_priv(indio_dev);
668 	__le16 raw_val;
669 	int ret;
670 
671 	switch (mask) {
672 	case IIO_CHAN_INFO_RAW:
673 		ret = regmap_bulk_read(priv->regmap, chan->address,
674 				       &raw_val, sizeof(raw_val));
675 		if (ret < 0)
676 			return ret;
677 		*val = sign_extend32(le16_to_cpu(raw_val), 15);
678 		return IIO_VAL_INT;
679 	case IIO_CHAN_INFO_OFFSET:
680 		if (priv->operation_mode != BNO055_OPR_MODE_AMG) {
681 			*val = 0;
682 		} else {
683 			ret = regmap_bulk_read(priv->regmap,
684 					       chan->address +
685 					       BNO055_REG_OFFSET_ADDR,
686 					       &raw_val, sizeof(raw_val));
687 			if (ret < 0)
688 				return ret;
689 			/*
690 			 * IMU reports sensor offsets; IIO wants correction
691 			 * offsets, thus we need the 'minus' here.
692 			 */
693 			*val = -sign_extend32(le16_to_cpu(raw_val), 15);
694 		}
695 		return IIO_VAL_INT;
696 	case IIO_CHAN_INFO_SCALE:
697 		*val = 1;
698 		switch (chan->type) {
699 		case IIO_GRAVITY:
700 			/* Table 3-35: 1 m/s^2 = 100 LSB */
701 		case IIO_ACCEL:
702 			/* Table 3-17: 1 m/s^2 = 100 LSB */
703 			*val2 = 100;
704 			break;
705 		case IIO_MAGN:
706 			/*
707 			 * Table 3-19: 1 uT = 16 LSB.  But we need
708 			 * Gauss: 1G = 0.1 uT.
709 			 */
710 			*val2 = 160;
711 			break;
712 		case IIO_ANGL_VEL:
713 			/*
714 			 * Table 3-22: 1 Rps = 900 LSB
715 			 * .. but this is not exactly true. See comment at the
716 			 * beginning of this file.
717 			 */
718 			if (priv->operation_mode != BNO055_OPR_MODE_AMG) {
719 				*val = bno055_gyr_scale.fusion_vals[0];
720 				*val2 = bno055_gyr_scale.fusion_vals[1];
721 				return IIO_VAL_FRACTIONAL;
722 			}
723 
724 			return bno055_get_regmask(priv, val, val2,
725 						  BNO055_GYR_CONFIG_REG,
726 						  BNO055_GYR_CONFIG_RANGE_MASK,
727 						  &bno055_gyr_scale);
728 			break;
729 		case IIO_ROT:
730 			/* Table 3-28: 1 degree = 16 LSB */
731 			*val2 = 16;
732 			break;
733 		default:
734 			return -EINVAL;
735 		}
736 		return IIO_VAL_FRACTIONAL;
737 
738 	case IIO_CHAN_INFO_SAMP_FREQ:
739 		if (chan->type != IIO_MAGN)
740 			return -EINVAL;
741 
742 		return bno055_get_regmask(priv, val, val2,
743 					  BNO055_MAG_CONFIG_REG,
744 					  BNO055_MAG_CONFIG_ODR_MASK,
745 					  &bno055_mag_odr);
746 
747 	case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY:
748 		switch (chan->type) {
749 		case IIO_ANGL_VEL:
750 			return bno055_get_regmask(priv, val, val2,
751 						  BNO055_GYR_CONFIG_REG,
752 						  BNO055_GYR_CONFIG_LPF_MASK,
753 						  &bno055_gyr_lpf);
754 		case IIO_ACCEL:
755 			return bno055_get_regmask(priv, val, val2,
756 						  BNO055_ACC_CONFIG_REG,
757 						  BNO055_ACC_CONFIG_LPF_MASK,
758 						  &bno055_acc_lpf);
759 		default:
760 			return -EINVAL;
761 		}
762 
763 	default:
764 		return -EINVAL;
765 	}
766 }
767 
bno055_sysfs_attr_avail(struct bno055_priv * priv,const struct bno055_sysfs_attr * attr,const int ** vals,int * length)768 static int bno055_sysfs_attr_avail(struct bno055_priv *priv,
769 				   const struct bno055_sysfs_attr *attr,
770 				   const int **vals, int *length)
771 {
772 	if (priv->operation_mode != BNO055_OPR_MODE_AMG) {
773 		/* locked when fusion enabled */
774 		*vals = attr->fusion_vals;
775 		if (attr->type == IIO_VAL_INT)
776 			*length = 1;
777 		else
778 			*length = 2; /* IIO_VAL_INT_PLUS_MICRO or IIO_VAL_FRACTIONAL*/
779 	} else {
780 		*vals = attr->vals;
781 		*length = attr->len;
782 	}
783 
784 	return attr->type;
785 }
786 
bno055_read_avail(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,const int ** vals,int * type,int * length,long mask)787 static int bno055_read_avail(struct iio_dev *indio_dev,
788 			     struct iio_chan_spec const *chan,
789 			     const int **vals, int *type, int *length,
790 			     long mask)
791 {
792 	struct bno055_priv *priv = iio_priv(indio_dev);
793 
794 	switch (mask) {
795 	case IIO_CHAN_INFO_SCALE:
796 		switch (chan->type) {
797 		case IIO_ANGL_VEL:
798 			*type = bno055_sysfs_attr_avail(priv, &bno055_gyr_scale,
799 							vals, length);
800 			return IIO_AVAIL_LIST;
801 		default:
802 			return -EINVAL;
803 		}
804 	case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY:
805 		switch (chan->type) {
806 		case IIO_ANGL_VEL:
807 			*type = bno055_sysfs_attr_avail(priv, &bno055_gyr_lpf,
808 							vals, length);
809 			return IIO_AVAIL_LIST;
810 		case IIO_ACCEL:
811 			*type = bno055_sysfs_attr_avail(priv, &bno055_acc_lpf,
812 							vals, length);
813 			return IIO_AVAIL_LIST;
814 		default:
815 			return -EINVAL;
816 		}
817 
818 		break;
819 	case IIO_CHAN_INFO_SAMP_FREQ:
820 		switch (chan->type) {
821 		case IIO_MAGN:
822 			*type = bno055_sysfs_attr_avail(priv, &bno055_mag_odr,
823 							vals, length);
824 			return IIO_AVAIL_LIST;
825 		default:
826 			return -EINVAL;
827 		}
828 	default:
829 		return -EINVAL;
830 	}
831 }
832 
bno055_read_temp_chan(struct iio_dev * indio_dev,int * val)833 static int bno055_read_temp_chan(struct iio_dev *indio_dev, int *val)
834 {
835 	struct bno055_priv *priv = iio_priv(indio_dev);
836 	unsigned int raw_val;
837 	int ret;
838 
839 	ret = regmap_read(priv->regmap, BNO055_TEMP_REG, &raw_val);
840 	if (ret < 0)
841 		return ret;
842 
843 	/*
844 	 * Tables 3-36 and 3-37: one byte of priv, signed, 1 LSB = 1C.
845 	 * ABI wants milliC.
846 	 */
847 	*val = raw_val * 1000;
848 
849 	return IIO_VAL_INT;
850 }
851 
bno055_read_quaternion(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,int size,int * vals,int * val_len,long mask)852 static int bno055_read_quaternion(struct iio_dev *indio_dev,
853 				  struct iio_chan_spec const *chan,
854 				  int size, int *vals, int *val_len,
855 				  long mask)
856 {
857 	struct bno055_priv *priv = iio_priv(indio_dev);
858 	__le16 raw_vals[4];
859 	int i, ret;
860 
861 	switch (mask) {
862 	case IIO_CHAN_INFO_RAW:
863 		if (size < 4)
864 			return -EINVAL;
865 		ret = regmap_bulk_read(priv->regmap,
866 				       BNO055_QUAT_DATA_W_LSB_REG,
867 				       raw_vals, sizeof(raw_vals));
868 		if (ret < 0)
869 			return ret;
870 		for (i = 0; i < 4; i++)
871 			vals[i] = sign_extend32(le16_to_cpu(raw_vals[i]), 15);
872 		*val_len = 4;
873 		return IIO_VAL_INT_MULTIPLE;
874 	case IIO_CHAN_INFO_SCALE:
875 		/* Table 3-31: 1 quaternion = 2^14 LSB */
876 		if (size < 2)
877 			return -EINVAL;
878 		vals[0] = 1;
879 		vals[1] = 14;
880 		return IIO_VAL_FRACTIONAL_LOG2;
881 	default:
882 		return -EINVAL;
883 	}
884 }
885 
bno055_is_chan_readable(struct iio_dev * indio_dev,struct iio_chan_spec const * chan)886 static bool bno055_is_chan_readable(struct iio_dev *indio_dev,
887 				    struct iio_chan_spec const *chan)
888 {
889 	struct bno055_priv *priv = iio_priv(indio_dev);
890 
891 	if (priv->operation_mode != BNO055_OPR_MODE_AMG)
892 		return true;
893 
894 	switch (chan->type) {
895 	case IIO_GRAVITY:
896 	case IIO_ROT:
897 		return false;
898 	case IIO_ACCEL:
899 		if (chan->channel2 == IIO_MOD_LINEAR_X ||
900 		    chan->channel2 == IIO_MOD_LINEAR_Y ||
901 		    chan->channel2 == IIO_MOD_LINEAR_Z)
902 			return false;
903 		return true;
904 	default:
905 		return true;
906 	}
907 }
908 
_bno055_read_raw_multi(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,int size,int * vals,int * val_len,long mask)909 static int _bno055_read_raw_multi(struct iio_dev *indio_dev,
910 				  struct iio_chan_spec const *chan,
911 				  int size, int *vals, int *val_len,
912 				  long mask)
913 {
914 	if (!bno055_is_chan_readable(indio_dev, chan))
915 		return -EBUSY;
916 
917 	switch (chan->type) {
918 	case IIO_MAGN:
919 	case IIO_ACCEL:
920 	case IIO_ANGL_VEL:
921 	case IIO_GRAVITY:
922 		if (size < 2)
923 			return -EINVAL;
924 		*val_len = 2;
925 		return bno055_read_simple_chan(indio_dev, chan,
926 					       &vals[0], &vals[1],
927 					       mask);
928 	case IIO_TEMP:
929 		*val_len = 1;
930 		return bno055_read_temp_chan(indio_dev, &vals[0]);
931 	case IIO_ROT:
932 		/*
933 		 * Rotation is exposed as either a quaternion or three
934 		 * Euler angles.
935 		 */
936 		if (chan->channel2 == IIO_MOD_QUATERNION)
937 			return bno055_read_quaternion(indio_dev, chan,
938 						      size, vals,
939 						      val_len, mask);
940 		if (size < 2)
941 			return -EINVAL;
942 		*val_len = 2;
943 		return bno055_read_simple_chan(indio_dev, chan,
944 					       &vals[0], &vals[1],
945 					       mask);
946 	default:
947 		return -EINVAL;
948 	}
949 }
950 
bno055_read_raw_multi(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,int size,int * vals,int * val_len,long mask)951 static int bno055_read_raw_multi(struct iio_dev *indio_dev,
952 				 struct iio_chan_spec const *chan,
953 				 int size, int *vals, int *val_len,
954 				 long mask)
955 {
956 	struct bno055_priv *priv = iio_priv(indio_dev);
957 	int ret;
958 
959 	mutex_lock(&priv->lock);
960 	ret = _bno055_read_raw_multi(indio_dev, chan, size,
961 				     vals, val_len, mask);
962 	mutex_unlock(&priv->lock);
963 	return ret;
964 }
965 
_bno055_write_raw(struct iio_dev * iio_dev,struct iio_chan_spec const * chan,int val,int val2,long mask)966 static int _bno055_write_raw(struct iio_dev *iio_dev,
967 			     struct iio_chan_spec const *chan,
968 			     int val, int val2, long mask)
969 {
970 	struct bno055_priv *priv = iio_priv(iio_dev);
971 
972 	switch (chan->type) {
973 	case IIO_MAGN:
974 		switch (mask) {
975 		case IIO_CHAN_INFO_SAMP_FREQ:
976 			return bno055_set_regmask(priv, val, val2,
977 						  BNO055_MAG_CONFIG_REG,
978 						  BNO055_MAG_CONFIG_ODR_MASK,
979 						  &bno055_mag_odr);
980 		default:
981 			return -EINVAL;
982 		}
983 	case IIO_ACCEL:
984 		switch (mask) {
985 		case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY:
986 			return bno055_set_regmask(priv, val, val2,
987 						  BNO055_ACC_CONFIG_REG,
988 						  BNO055_ACC_CONFIG_LPF_MASK,
989 						  &bno055_acc_lpf);
990 
991 		default:
992 			return -EINVAL;
993 		}
994 	case IIO_ANGL_VEL:
995 		switch (mask) {
996 		case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY:
997 			return bno055_set_regmask(priv, val, val2,
998 						  BNO055_GYR_CONFIG_REG,
999 						  BNO055_GYR_CONFIG_LPF_MASK,
1000 						  &bno055_gyr_lpf);
1001 		case IIO_CHAN_INFO_SCALE:
1002 			return bno055_set_regmask(priv, val, val2,
1003 						  BNO055_GYR_CONFIG_REG,
1004 						  BNO055_GYR_CONFIG_RANGE_MASK,
1005 						  &bno055_gyr_scale);
1006 		default:
1007 			return -EINVAL;
1008 		}
1009 	default:
1010 		return -EINVAL;
1011 	}
1012 }
1013 
bno055_write_raw(struct iio_dev * iio_dev,struct iio_chan_spec const * chan,int val,int val2,long mask)1014 static int bno055_write_raw(struct iio_dev *iio_dev,
1015 			    struct iio_chan_spec const *chan,
1016 			    int val, int val2, long mask)
1017 {
1018 	struct bno055_priv *priv = iio_priv(iio_dev);
1019 	int ret;
1020 
1021 	mutex_lock(&priv->lock);
1022 	ret = _bno055_write_raw(iio_dev, chan, val, val2, mask);
1023 	mutex_unlock(&priv->lock);
1024 
1025 	return ret;
1026 }
1027 
in_accel_range_raw_available_show(struct device * dev,struct device_attribute * attr,char * buf)1028 static ssize_t in_accel_range_raw_available_show(struct device *dev,
1029 						 struct device_attribute *attr,
1030 						 char *buf)
1031 {
1032 	struct bno055_priv *priv = iio_priv(dev_to_iio_dev(dev));
1033 	int len = 0;
1034 	int i;
1035 
1036 	if (priv->operation_mode != BNO055_OPR_MODE_AMG)
1037 		return sysfs_emit(buf, "%d\n", bno055_acc_range.fusion_vals[0]);
1038 
1039 	for (i = 0; i < bno055_acc_range.len; i++)
1040 		len += sysfs_emit_at(buf, len, "%d ", bno055_acc_range.vals[i]);
1041 	buf[len - 1] = '\n';
1042 
1043 	return len;
1044 }
1045 
fusion_enable_show(struct device * dev,struct device_attribute * attr,char * buf)1046 static ssize_t fusion_enable_show(struct device *dev,
1047 				  struct device_attribute *attr,
1048 				  char *buf)
1049 {
1050 	struct bno055_priv *priv = iio_priv(dev_to_iio_dev(dev));
1051 
1052 	return sysfs_emit(buf, "%d\n",
1053 			  priv->operation_mode != BNO055_OPR_MODE_AMG);
1054 }
1055 
fusion_enable_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)1056 static ssize_t fusion_enable_store(struct device *dev,
1057 				   struct device_attribute *attr,
1058 				   const char *buf, size_t len)
1059 {
1060 	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
1061 	struct bno055_priv *priv = iio_priv(indio_dev);
1062 	bool en;
1063 	int ret;
1064 
1065 	if (indio_dev->active_scan_mask &&
1066 	    !bitmap_empty(indio_dev->active_scan_mask, _BNO055_SCAN_MAX))
1067 		return -EBUSY;
1068 
1069 	ret = kstrtobool(buf, &en);
1070 	if (ret)
1071 		return -EINVAL;
1072 
1073 	if (!en)
1074 		return bno055_operation_mode_set(priv, BNO055_OPR_MODE_AMG) ?: len;
1075 
1076 	/*
1077 	 * Coming from AMG means the FMC was off, just switch to fusion but
1078 	 * don't change anything that doesn't belong to us (i.e let FMC stay off).
1079 	 * Coming from any other fusion mode means we don't need to do anything.
1080 	 */
1081 	if (priv->operation_mode == BNO055_OPR_MODE_AMG)
1082 		return  bno055_operation_mode_set(priv, BNO055_OPR_MODE_FUSION_FMC_OFF) ?: len;
1083 
1084 	return len;
1085 }
1086 
in_magn_calibration_fast_enable_show(struct device * dev,struct device_attribute * attr,char * buf)1087 static ssize_t in_magn_calibration_fast_enable_show(struct device *dev,
1088 						    struct device_attribute *attr,
1089 						    char *buf)
1090 {
1091 	struct bno055_priv *priv = iio_priv(dev_to_iio_dev(dev));
1092 
1093 	return sysfs_emit(buf, "%d\n",
1094 			  priv->operation_mode == BNO055_OPR_MODE_FUSION);
1095 }
1096 
in_magn_calibration_fast_enable_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)1097 static ssize_t in_magn_calibration_fast_enable_store(struct device *dev,
1098 						     struct device_attribute *attr,
1099 						     const char *buf, size_t len)
1100 {
1101 	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
1102 	struct bno055_priv *priv = iio_priv(indio_dev);
1103 	int ret;
1104 
1105 	if (indio_dev->active_scan_mask &&
1106 	    !bitmap_empty(indio_dev->active_scan_mask, _BNO055_SCAN_MAX))
1107 		return -EBUSY;
1108 
1109 	if (sysfs_streq(buf, "0")) {
1110 		if (priv->operation_mode == BNO055_OPR_MODE_FUSION) {
1111 			ret = bno055_operation_mode_set(priv, BNO055_OPR_MODE_FUSION_FMC_OFF);
1112 			if (ret)
1113 				return ret;
1114 		}
1115 	} else {
1116 		if (priv->operation_mode == BNO055_OPR_MODE_AMG)
1117 			return -EINVAL;
1118 
1119 		if (priv->operation_mode != BNO055_OPR_MODE_FUSION) {
1120 			ret = bno055_operation_mode_set(priv, BNO055_OPR_MODE_FUSION);
1121 			if (ret)
1122 				return ret;
1123 		}
1124 	}
1125 
1126 	return len;
1127 }
1128 
in_accel_range_raw_show(struct device * dev,struct device_attribute * attr,char * buf)1129 static ssize_t in_accel_range_raw_show(struct device *dev,
1130 				       struct device_attribute *attr,
1131 				       char *buf)
1132 {
1133 	struct bno055_priv *priv = iio_priv(dev_to_iio_dev(dev));
1134 	int val;
1135 	int ret;
1136 
1137 	ret = bno055_get_regmask(priv, &val, NULL,
1138 				 BNO055_ACC_CONFIG_REG,
1139 				 BNO055_ACC_CONFIG_RANGE_MASK,
1140 				 &bno055_acc_range);
1141 	if (ret < 0)
1142 		return ret;
1143 
1144 	return sysfs_emit(buf, "%d\n", val);
1145 }
1146 
in_accel_range_raw_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)1147 static ssize_t in_accel_range_raw_store(struct device *dev,
1148 					struct device_attribute *attr,
1149 					const char *buf, size_t len)
1150 {
1151 	struct bno055_priv *priv = iio_priv(dev_to_iio_dev(dev));
1152 	unsigned long val;
1153 	int ret;
1154 
1155 	ret = kstrtoul(buf, 10, &val);
1156 	if (ret)
1157 		return ret;
1158 
1159 	mutex_lock(&priv->lock);
1160 	ret = bno055_set_regmask(priv, val, 0,
1161 				 BNO055_ACC_CONFIG_REG,
1162 				 BNO055_ACC_CONFIG_RANGE_MASK,
1163 				 &bno055_acc_range);
1164 	mutex_unlock(&priv->lock);
1165 
1166 	return ret ?: len;
1167 }
1168 
bno055_get_calib_status(struct device * dev,char * buf,int which)1169 static ssize_t bno055_get_calib_status(struct device *dev, char *buf, int which)
1170 {
1171 	struct bno055_priv *priv = iio_priv(dev_to_iio_dev(dev));
1172 	int calib;
1173 	int ret;
1174 	int val;
1175 
1176 	if (priv->operation_mode == BNO055_OPR_MODE_AMG ||
1177 	    (priv->operation_mode == BNO055_OPR_MODE_FUSION_FMC_OFF &&
1178 	     which == BNO055_CALIB_STAT_MAGN_SHIFT)) {
1179 		calib = 0;
1180 	} else {
1181 		mutex_lock(&priv->lock);
1182 		ret = regmap_read(priv->regmap, BNO055_CALIB_STAT_REG, &val);
1183 		mutex_unlock(&priv->lock);
1184 
1185 		if (ret)
1186 			return -EIO;
1187 
1188 		calib = ((val >> which) & GENMASK(1, 0)) + 1;
1189 	}
1190 
1191 	return sysfs_emit(buf, "%d\n", calib);
1192 }
1193 
serialnumber_show(struct device * dev,struct device_attribute * attr,char * buf)1194 static ssize_t serialnumber_show(struct device *dev,
1195 				 struct device_attribute *attr,
1196 				 char *buf)
1197 {
1198 	struct bno055_priv *priv = iio_priv(dev_to_iio_dev(dev));
1199 
1200 	return sysfs_emit(buf, "%*ph\n", BNO055_UID_LEN, priv->uid);
1201 }
1202 
calibration_data_read(struct file * filp,struct kobject * kobj,const struct bin_attribute * bin_attr,char * buf,loff_t pos,size_t count)1203 static ssize_t calibration_data_read(struct file *filp, struct kobject *kobj,
1204 				     const struct bin_attribute *bin_attr, char *buf,
1205 				     loff_t pos, size_t count)
1206 {
1207 	struct bno055_priv *priv = iio_priv(dev_to_iio_dev(kobj_to_dev(kobj)));
1208 	u8 data[BNO055_CALDATA_LEN];
1209 	int ret;
1210 
1211 	/*
1212 	 * Calibration data is volatile; reading it in chunks will possibly
1213 	 * results in inconsistent data. We require the user to read the whole
1214 	 * blob in a single chunk
1215 	 */
1216 	if (count < BNO055_CALDATA_LEN || pos)
1217 		return -EINVAL;
1218 
1219 	mutex_lock(&priv->lock);
1220 	ret = bno055_operation_mode_do_set(priv, BNO055_OPR_MODE_CONFIG);
1221 	if (ret)
1222 		goto exit_unlock;
1223 
1224 	ret = regmap_bulk_read(priv->regmap, BNO055_CALDATA_START, data,
1225 			       BNO055_CALDATA_LEN);
1226 	if (ret)
1227 		goto exit_unlock;
1228 
1229 	ret = bno055_operation_mode_do_set(priv, priv->operation_mode);
1230 	if (ret)
1231 		goto exit_unlock;
1232 
1233 	memcpy(buf, data, BNO055_CALDATA_LEN);
1234 
1235 	ret = BNO055_CALDATA_LEN;
1236 exit_unlock:
1237 	mutex_unlock(&priv->lock);
1238 	return ret;
1239 }
1240 
sys_calibration_auto_status_show(struct device * dev,struct device_attribute * a,char * buf)1241 static ssize_t sys_calibration_auto_status_show(struct device *dev,
1242 						struct device_attribute *a,
1243 						char *buf)
1244 {
1245 	return bno055_get_calib_status(dev, buf, BNO055_CALIB_STAT_SYS_SHIFT);
1246 }
1247 
in_accel_calibration_auto_status_show(struct device * dev,struct device_attribute * a,char * buf)1248 static ssize_t in_accel_calibration_auto_status_show(struct device *dev,
1249 						     struct device_attribute *a,
1250 						     char *buf)
1251 {
1252 	return bno055_get_calib_status(dev, buf, BNO055_CALIB_STAT_ACCEL_SHIFT);
1253 }
1254 
in_gyro_calibration_auto_status_show(struct device * dev,struct device_attribute * a,char * buf)1255 static ssize_t in_gyro_calibration_auto_status_show(struct device *dev,
1256 						    struct device_attribute *a,
1257 						    char *buf)
1258 {
1259 	return bno055_get_calib_status(dev, buf, BNO055_CALIB_STAT_GYRO_SHIFT);
1260 }
1261 
in_magn_calibration_auto_status_show(struct device * dev,struct device_attribute * a,char * buf)1262 static ssize_t in_magn_calibration_auto_status_show(struct device *dev,
1263 						    struct device_attribute *a,
1264 						    char *buf)
1265 {
1266 	return bno055_get_calib_status(dev, buf, BNO055_CALIB_STAT_MAGN_SHIFT);
1267 }
1268 
bno055_debugfs_reg_access(struct iio_dev * iio_dev,unsigned int reg,unsigned int writeval,unsigned int * readval)1269 static int bno055_debugfs_reg_access(struct iio_dev *iio_dev, unsigned int reg,
1270 				     unsigned int writeval, unsigned int *readval)
1271 {
1272 	struct bno055_priv *priv = iio_priv(iio_dev);
1273 
1274 	if (readval)
1275 		return regmap_read(priv->regmap, reg, readval);
1276 	else
1277 		return regmap_write(priv->regmap, reg, writeval);
1278 }
1279 
bno055_show_fw_version(struct file * file,char __user * userbuf,size_t count,loff_t * ppos)1280 static ssize_t bno055_show_fw_version(struct file *file, char __user *userbuf,
1281 				      size_t count, loff_t *ppos)
1282 {
1283 	struct bno055_priv *priv = file->private_data;
1284 	int rev, ver;
1285 	char *buf;
1286 	int ret;
1287 
1288 	ret = regmap_read(priv->regmap, BNO055_SW_REV_LSB_REG, &rev);
1289 	if (ret)
1290 		return ret;
1291 
1292 	ret = regmap_read(priv->regmap, BNO055_SW_REV_MSB_REG, &ver);
1293 	if (ret)
1294 		return ret;
1295 
1296 	buf = kasprintf(GFP_KERNEL, "ver: 0x%x, rev: 0x%x\n", ver, rev);
1297 	if (!buf)
1298 		return -ENOMEM;
1299 
1300 	ret = simple_read_from_buffer(userbuf, count, ppos, buf, strlen(buf));
1301 	kfree(buf);
1302 
1303 	return ret;
1304 }
1305 
1306 static const struct file_operations bno055_fw_version_ops = {
1307 	.open = simple_open,
1308 	.read = bno055_show_fw_version,
1309 	.llseek = default_llseek,
1310 	.owner = THIS_MODULE,
1311 };
1312 
bno055_debugfs_remove(void * _priv)1313 static void bno055_debugfs_remove(void *_priv)
1314 {
1315 	struct bno055_priv *priv = _priv;
1316 
1317 	debugfs_remove(priv->debugfs);
1318 	priv->debugfs = NULL;
1319 }
1320 
bno055_debugfs_init(struct iio_dev * iio_dev)1321 static void bno055_debugfs_init(struct iio_dev *iio_dev)
1322 {
1323 	struct bno055_priv *priv = iio_priv(iio_dev);
1324 
1325 	priv->debugfs = debugfs_create_file("firmware_version", 0400,
1326 					    iio_get_debugfs_dentry(iio_dev),
1327 					    priv, &bno055_fw_version_ops);
1328 	if (!IS_ERR(priv->debugfs))
1329 		devm_add_action_or_reset(priv->dev, bno055_debugfs_remove,
1330 					 priv);
1331 	if (IS_ERR_OR_NULL(priv->debugfs))
1332 		dev_warn(priv->dev, "failed to setup debugfs");
1333 }
1334 
1335 static IIO_DEVICE_ATTR_RW(fusion_enable, 0);
1336 static IIO_DEVICE_ATTR_RW(in_magn_calibration_fast_enable, 0);
1337 static IIO_DEVICE_ATTR_RW(in_accel_range_raw, 0);
1338 
1339 static IIO_DEVICE_ATTR_RO(in_accel_range_raw_available, 0);
1340 static IIO_DEVICE_ATTR_RO(sys_calibration_auto_status, 0);
1341 static IIO_DEVICE_ATTR_RO(in_accel_calibration_auto_status, 0);
1342 static IIO_DEVICE_ATTR_RO(in_gyro_calibration_auto_status, 0);
1343 static IIO_DEVICE_ATTR_RO(in_magn_calibration_auto_status, 0);
1344 static IIO_DEVICE_ATTR_RO(serialnumber, 0);
1345 
1346 static struct attribute *bno055_attrs[] = {
1347 	&iio_dev_attr_in_accel_range_raw_available.dev_attr.attr,
1348 	&iio_dev_attr_in_accel_range_raw.dev_attr.attr,
1349 	&iio_dev_attr_fusion_enable.dev_attr.attr,
1350 	&iio_dev_attr_in_magn_calibration_fast_enable.dev_attr.attr,
1351 	&iio_dev_attr_sys_calibration_auto_status.dev_attr.attr,
1352 	&iio_dev_attr_in_accel_calibration_auto_status.dev_attr.attr,
1353 	&iio_dev_attr_in_gyro_calibration_auto_status.dev_attr.attr,
1354 	&iio_dev_attr_in_magn_calibration_auto_status.dev_attr.attr,
1355 	&iio_dev_attr_serialnumber.dev_attr.attr,
1356 	NULL
1357 };
1358 
1359 static const BIN_ATTR_RO(calibration_data, BNO055_CALDATA_LEN);
1360 
1361 static const struct bin_attribute *const bno055_bin_attrs[] = {
1362 	&bin_attr_calibration_data,
1363 	NULL
1364 };
1365 
1366 static const struct attribute_group bno055_attrs_group = {
1367 	.attrs = bno055_attrs,
1368 	.bin_attrs = bno055_bin_attrs,
1369 };
1370 
1371 static const struct iio_info bno055_info = {
1372 	.read_raw_multi = bno055_read_raw_multi,
1373 	.read_avail = bno055_read_avail,
1374 	.write_raw = bno055_write_raw,
1375 	.attrs = &bno055_attrs_group,
1376 	.debugfs_reg_access = bno055_debugfs_reg_access,
1377 };
1378 
1379 /*
1380  * Reads len samples from the HW, stores them in buf starting from buf_idx,
1381  * and applies mask to cull (skip) unneeded samples.
1382  * Updates buf_idx incrementing with the number of stored samples.
1383  * Samples from HW are transferred into buf, then in-place copy on buf is
1384  * performed in order to cull samples that need to be skipped.
1385  * This avoids copies of the first samples until we hit the 1st sample to skip,
1386  * and also avoids having an extra bounce buffer.
1387  * buf must be able to contain len elements in spite of how many samples we are
1388  * going to cull.
1389  */
bno055_scan_xfer(struct bno055_priv * priv,int start_ch,int len,unsigned long mask,__le16 * buf,int * buf_idx)1390 static int bno055_scan_xfer(struct bno055_priv *priv,
1391 			    int start_ch, int len, unsigned long mask,
1392 			    __le16 *buf, int *buf_idx)
1393 {
1394 	const int base = BNO055_ACC_DATA_X_LSB_REG;
1395 	bool quat_in_read = false;
1396 	int buf_base = *buf_idx;
1397 	__le16 *dst, *src;
1398 	int offs_fixup = 0;
1399 	int xfer_len = len;
1400 	int ret;
1401 	int i, n;
1402 
1403 	if (!mask)
1404 		return 0;
1405 
1406 	/*
1407 	 * All channels are made up 1 16-bit sample, except for quaternion that
1408 	 * is made up 4 16-bit values.
1409 	 * For us the quaternion CH is just like 4 regular CHs.
1410 	 * If our read starts past the quaternion make sure to adjust the
1411 	 * starting offset; if the quaternion is contained in our scan then make
1412 	 * sure to adjust the read len.
1413 	 */
1414 	if (start_ch > BNO055_SCAN_QUATERNION) {
1415 		start_ch += 3;
1416 	} else if ((start_ch <= BNO055_SCAN_QUATERNION) &&
1417 		 ((start_ch + len) > BNO055_SCAN_QUATERNION)) {
1418 		quat_in_read = true;
1419 		xfer_len += 3;
1420 	}
1421 
1422 	ret = regmap_bulk_read(priv->regmap,
1423 			       base + start_ch * sizeof(__le16),
1424 			       buf + buf_base,
1425 			       xfer_len * sizeof(__le16));
1426 	if (ret)
1427 		return ret;
1428 
1429 	for_each_set_bit(i, &mask, len) {
1430 		if (quat_in_read && ((start_ch + i) > BNO055_SCAN_QUATERNION))
1431 			offs_fixup = 3;
1432 
1433 		dst = buf + *buf_idx;
1434 		src = buf + buf_base + offs_fixup + i;
1435 
1436 		n = (start_ch + i == BNO055_SCAN_QUATERNION) ? 4 : 1;
1437 
1438 		if (dst != src)
1439 			memcpy(dst, src, n * sizeof(__le16));
1440 
1441 		*buf_idx += n;
1442 	}
1443 	return 0;
1444 }
1445 
bno055_trigger_handler(int irq,void * p)1446 static irqreturn_t bno055_trigger_handler(int irq, void *p)
1447 {
1448 	struct iio_poll_func *pf = p;
1449 	struct iio_dev *iio_dev = pf->indio_dev;
1450 	struct bno055_priv *priv = iio_priv(iio_dev);
1451 	int xfer_start, start, end, prev_end;
1452 	unsigned long mask;
1453 	int quat_extra_len;
1454 	bool first = true;
1455 	int buf_idx = 0;
1456 	bool thr_hit;
1457 	int ret;
1458 
1459 	mutex_lock(&priv->lock);
1460 
1461 	/*
1462 	 * Walk the bitmap and eventually perform several transfers.
1463 	 * Bitmap ones-fields that are separated by gaps <= xfer_burst_break_thr
1464 	 * will be included in same transfer.
1465 	 * Every time the bitmap contains a gap wider than xfer_burst_break_thr
1466 	 * then we split the transfer, skipping the gap.
1467 	 */
1468 	for_each_set_bitrange(start, end, iio_dev->active_scan_mask,
1469 			      iio_get_masklength(iio_dev)) {
1470 		/*
1471 		 * First transfer will start from the beginning of the first
1472 		 * ones-field in the bitmap
1473 		 */
1474 		if (first) {
1475 			xfer_start = start;
1476 		} else {
1477 			/*
1478 			 * We found the next ones-field; check whether to
1479 			 * include it in * the current transfer or not (i.e.
1480 			 * let's perform the current * transfer and prepare for
1481 			 * another one).
1482 			 */
1483 
1484 			/*
1485 			 * In case the zeros-gap contains the quaternion bit,
1486 			 * then its length is actually 4 words instead of 1
1487 			 * (i.e. +3 wrt other channels).
1488 			 */
1489 			quat_extra_len = ((start > BNO055_SCAN_QUATERNION) &&
1490 					  (prev_end <= BNO055_SCAN_QUATERNION)) ? 3 : 0;
1491 
1492 			/* If the gap is wider than xfer_burst_break_thr then.. */
1493 			thr_hit = (start - prev_end + quat_extra_len) >
1494 				priv->xfer_burst_break_thr;
1495 
1496 			/*
1497 			 * .. transfer all the data up to the gap. Then set the
1498 			 * next transfer start index at right after the gap
1499 			 * (i.e. at the start of this ones-field).
1500 			 */
1501 			if (thr_hit) {
1502 				mask = *iio_dev->active_scan_mask >> xfer_start;
1503 				ret = bno055_scan_xfer(priv, xfer_start,
1504 						       prev_end - xfer_start,
1505 						       mask, priv->buf.chans, &buf_idx);
1506 				if (ret)
1507 					goto done;
1508 				xfer_start = start;
1509 			}
1510 		}
1511 		first = false;
1512 		prev_end = end;
1513 	}
1514 
1515 	/*
1516 	 * We finished walking the bitmap; no more gaps to check for. Just
1517 	 * perform the current transfer.
1518 	 */
1519 	mask = *iio_dev->active_scan_mask >> xfer_start;
1520 	ret = bno055_scan_xfer(priv, xfer_start,
1521 			       prev_end - xfer_start,
1522 			       mask, priv->buf.chans, &buf_idx);
1523 
1524 	if (!ret)
1525 		iio_push_to_buffers_with_timestamp(iio_dev,
1526 						   &priv->buf, pf->timestamp);
1527 done:
1528 	mutex_unlock(&priv->lock);
1529 	iio_trigger_notify_done(iio_dev->trig);
1530 	return IRQ_HANDLED;
1531 }
1532 
bno055_buffer_preenable(struct iio_dev * indio_dev)1533 static int bno055_buffer_preenable(struct iio_dev *indio_dev)
1534 {
1535 	struct bno055_priv *priv = iio_priv(indio_dev);
1536 	const unsigned long fusion_mask =
1537 		BIT(BNO055_SCAN_YAW) |
1538 		BIT(BNO055_SCAN_ROLL) |
1539 		BIT(BNO055_SCAN_PITCH) |
1540 		BIT(BNO055_SCAN_QUATERNION) |
1541 		BIT(BNO055_SCAN_LIA_X) |
1542 		BIT(BNO055_SCAN_LIA_Y) |
1543 		BIT(BNO055_SCAN_LIA_Z) |
1544 		BIT(BNO055_SCAN_GRAVITY_X) |
1545 		BIT(BNO055_SCAN_GRAVITY_Y) |
1546 		BIT(BNO055_SCAN_GRAVITY_Z);
1547 
1548 	if (priv->operation_mode == BNO055_OPR_MODE_AMG &&
1549 	    bitmap_intersects(indio_dev->active_scan_mask, &fusion_mask,
1550 			      _BNO055_SCAN_MAX))
1551 		return -EBUSY;
1552 	return 0;
1553 }
1554 
1555 static const struct iio_buffer_setup_ops bno055_buffer_setup_ops = {
1556 	.preenable = bno055_buffer_preenable,
1557 };
1558 
bno055_probe(struct device * dev,struct regmap * regmap,int xfer_burst_break_thr,bool sw_reset)1559 int bno055_probe(struct device *dev, struct regmap *regmap,
1560 		 int xfer_burst_break_thr, bool sw_reset)
1561 {
1562 	const struct firmware *caldata = NULL;
1563 	struct bno055_priv *priv;
1564 	struct iio_dev *iio_dev;
1565 	char *fw_name_buf;
1566 	unsigned int val;
1567 	int rev, ver;
1568 	int ret;
1569 
1570 	iio_dev = devm_iio_device_alloc(dev, sizeof(*priv));
1571 	if (!iio_dev)
1572 		return -ENOMEM;
1573 
1574 	iio_dev->name = "bno055";
1575 	priv = iio_priv(iio_dev);
1576 	mutex_init(&priv->lock);
1577 	priv->regmap = regmap;
1578 	priv->dev = dev;
1579 	priv->xfer_burst_break_thr = xfer_burst_break_thr;
1580 	priv->sw_reset = sw_reset;
1581 
1582 	priv->reset_gpio = devm_gpiod_get_optional(dev, "reset", GPIOD_OUT_LOW);
1583 	if (IS_ERR(priv->reset_gpio))
1584 		return dev_err_probe(dev, PTR_ERR(priv->reset_gpio), "Failed to get reset GPIO\n");
1585 
1586 	priv->clk = devm_clk_get_optional_enabled(dev, "clk");
1587 	if (IS_ERR(priv->clk))
1588 		return dev_err_probe(dev, PTR_ERR(priv->clk), "Failed to get CLK\n");
1589 
1590 	if (priv->reset_gpio) {
1591 		usleep_range(5000, 10000);
1592 		gpiod_set_value_cansleep(priv->reset_gpio, 1);
1593 		usleep_range(650000, 750000);
1594 	} else if (!sw_reset) {
1595 		dev_warn(dev, "No usable reset method; IMU may be unreliable\n");
1596 	}
1597 
1598 	ret = regmap_read(priv->regmap, BNO055_CHIP_ID_REG, &val);
1599 	if (ret)
1600 		return ret;
1601 
1602 	if (val != BNO055_CHIP_ID_MAGIC)
1603 		dev_warn(dev, "Unrecognized chip ID 0x%x\n", val);
1604 
1605 	/*
1606 	 * In case we haven't a HW reset pin, we can still reset the chip via
1607 	 * register write. This is probably nonsense in case we can't even
1608 	 * communicate with the chip or the chip isn't the one we expect (i.e.
1609 	 * we don't write to unknown chips), so we perform SW reset only after
1610 	 * chip magic ID check
1611 	 */
1612 	if (!priv->reset_gpio) {
1613 		ret = bno055_system_reset(priv);
1614 		if (ret)
1615 			return ret;
1616 	}
1617 
1618 	ret = regmap_read(priv->regmap, BNO055_SW_REV_LSB_REG, &rev);
1619 	if (ret)
1620 		return ret;
1621 
1622 	ret = regmap_read(priv->regmap, BNO055_SW_REV_MSB_REG, &ver);
1623 	if (ret)
1624 		return ret;
1625 
1626 	/*
1627 	 * The stock FW version contains a bug (see comment at the beginning of
1628 	 * this file) that causes the anglvel scale to be changed depending on
1629 	 * the chip range setting. We workaround this, but we don't know what
1630 	 * other FW versions might do.
1631 	 */
1632 	if (ver != 0x3 || rev != 0x11)
1633 		dev_warn(dev, "Untested firmware version. Anglvel scale may not work as expected\n");
1634 
1635 	ret = regmap_bulk_read(priv->regmap, BNO055_UID_LOWER_REG,
1636 			       priv->uid, BNO055_UID_LEN);
1637 	if (ret)
1638 		return ret;
1639 
1640 	/* Sensor calibration data */
1641 	fw_name_buf = kasprintf(GFP_KERNEL, BNO055_FW_UID_FMT,
1642 				BNO055_UID_LEN, priv->uid);
1643 	if (!fw_name_buf)
1644 		return -ENOMEM;
1645 
1646 	ret = request_firmware(&caldata, fw_name_buf, dev);
1647 	kfree(fw_name_buf);
1648 	if (ret)
1649 		ret = request_firmware(&caldata, BNO055_FW_GENERIC_NAME, dev);
1650 	if (ret) {
1651 		dev_notice(dev, "Calibration file load failed. See instruction in kernel Documentation/iio/bno055.rst\n");
1652 		ret = bno055_init(priv, NULL, 0);
1653 	} else {
1654 		ret = bno055_init(priv, caldata->data, caldata->size);
1655 		release_firmware(caldata);
1656 	}
1657 	if (ret)
1658 		return ret;
1659 
1660 	priv->operation_mode = BNO055_OPR_MODE_FUSION;
1661 	ret = bno055_operation_mode_do_set(priv, priv->operation_mode);
1662 	if (ret)
1663 		return ret;
1664 
1665 	ret = devm_add_action_or_reset(dev, bno055_uninit, priv);
1666 	if (ret)
1667 		return ret;
1668 
1669 	iio_dev->channels = bno055_channels;
1670 	iio_dev->num_channels = ARRAY_SIZE(bno055_channels);
1671 	iio_dev->info = &bno055_info;
1672 	iio_dev->modes = INDIO_DIRECT_MODE;
1673 
1674 	ret = devm_iio_triggered_buffer_setup(dev, iio_dev,
1675 					      iio_pollfunc_store_time,
1676 					      bno055_trigger_handler,
1677 					      &bno055_buffer_setup_ops);
1678 	if (ret)
1679 		return ret;
1680 
1681 	ret = devm_iio_device_register(dev, iio_dev);
1682 	if (ret)
1683 		return ret;
1684 
1685 	bno055_debugfs_init(iio_dev);
1686 
1687 	return 0;
1688 }
1689 EXPORT_SYMBOL_NS_GPL(bno055_probe, "IIO_BNO055");
1690 
1691 MODULE_AUTHOR("Andrea Merello <andrea.merello@iit.it>");
1692 MODULE_DESCRIPTION("Bosch BNO055 driver");
1693 MODULE_LICENSE("GPL");
1694