xref: /linux/drivers/iio/accel/bmc150-accel-core.c (revision 0d5ec7919f3747193f051036b2301734a4b5e1d6)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * 3-axis accelerometer driver supporting many Bosch-Sensortec chips
4  * Copyright (c) 2014, Intel Corporation.
5  */
6 
7 #include <linux/module.h>
8 #include <linux/i2c.h>
9 #include <linux/interrupt.h>
10 #include <linux/delay.h>
11 #include <linux/slab.h>
12 #include <linux/acpi.h>
13 #include <linux/pm.h>
14 #include <linux/pm_runtime.h>
15 #include <linux/property.h>
16 #include <linux/iio/iio.h>
17 #include <linux/iio/sysfs.h>
18 #include <linux/iio/buffer.h>
19 #include <linux/iio/events.h>
20 #include <linux/iio/trigger.h>
21 #include <linux/iio/trigger_consumer.h>
22 #include <linux/iio/triggered_buffer.h>
23 #include <linux/regmap.h>
24 #include <linux/regulator/consumer.h>
25 
26 #include "bmc150-accel.h"
27 
28 #define BMC150_ACCEL_REG_CHIP_ID		0x00
29 
30 #define BMC150_ACCEL_REG_INT_STATUS_2		0x0B
31 #define BMC150_ACCEL_ANY_MOTION_MASK		0x07
32 #define BMC150_ACCEL_ANY_MOTION_BIT_X		BIT(0)
33 #define BMC150_ACCEL_ANY_MOTION_BIT_Y		BIT(1)
34 #define BMC150_ACCEL_ANY_MOTION_BIT_Z		BIT(2)
35 #define BMC150_ACCEL_ANY_MOTION_BIT_SIGN	BIT(3)
36 
37 #define BMC150_ACCEL_REG_PMU_LPW		0x11
38 #define BMC150_ACCEL_PMU_MODE_MASK		0xE0
39 #define BMC150_ACCEL_PMU_MODE_SHIFT		5
40 #define BMC150_ACCEL_PMU_BIT_SLEEP_DUR_MASK	0x17
41 #define BMC150_ACCEL_PMU_BIT_SLEEP_DUR_SHIFT	1
42 
43 #define BMC150_ACCEL_REG_PMU_RANGE		0x0F
44 
45 #define BMC150_ACCEL_DEF_RANGE_2G		0x03
46 #define BMC150_ACCEL_DEF_RANGE_4G		0x05
47 #define BMC150_ACCEL_DEF_RANGE_8G		0x08
48 #define BMC150_ACCEL_DEF_RANGE_16G		0x0C
49 
50 /* Default BW: 125Hz */
51 #define BMC150_ACCEL_REG_PMU_BW		0x10
52 #define BMC150_ACCEL_DEF_BW			125
53 
54 #define BMC150_ACCEL_REG_RESET			0x14
55 #define BMC150_ACCEL_RESET_VAL			0xB6
56 
57 #define BMC150_ACCEL_REG_INT_MAP_0		0x19
58 #define BMC150_ACCEL_INT_MAP_0_BIT_INT1_SLOPE	BIT(2)
59 
60 #define BMC150_ACCEL_REG_INT_MAP_1		0x1A
61 #define BMC150_ACCEL_INT_MAP_1_BIT_INT1_DATA	BIT(0)
62 #define BMC150_ACCEL_INT_MAP_1_BIT_INT1_FWM	BIT(1)
63 #define BMC150_ACCEL_INT_MAP_1_BIT_INT1_FFULL	BIT(2)
64 #define BMC150_ACCEL_INT_MAP_1_BIT_INT2_FFULL	BIT(5)
65 #define BMC150_ACCEL_INT_MAP_1_BIT_INT2_FWM	BIT(6)
66 #define BMC150_ACCEL_INT_MAP_1_BIT_INT2_DATA	BIT(7)
67 
68 #define BMC150_ACCEL_REG_INT_MAP_2		0x1B
69 #define BMC150_ACCEL_INT_MAP_2_BIT_INT2_SLOPE	BIT(2)
70 
71 #define BMC150_ACCEL_REG_INT_RST_LATCH		0x21
72 #define BMC150_ACCEL_INT_MODE_LATCH_RESET	0x80
73 #define BMC150_ACCEL_INT_MODE_LATCH_INT	0x0F
74 #define BMC150_ACCEL_INT_MODE_NON_LATCH_INT	0x00
75 
76 #define BMC150_ACCEL_REG_INT_EN_0		0x16
77 #define BMC150_ACCEL_INT_EN_BIT_SLP_X		BIT(0)
78 #define BMC150_ACCEL_INT_EN_BIT_SLP_Y		BIT(1)
79 #define BMC150_ACCEL_INT_EN_BIT_SLP_Z		BIT(2)
80 
81 #define BMC150_ACCEL_REG_INT_EN_1		0x17
82 #define BMC150_ACCEL_INT_EN_BIT_DATA_EN		BIT(4)
83 #define BMC150_ACCEL_INT_EN_BIT_FFULL_EN	BIT(5)
84 #define BMC150_ACCEL_INT_EN_BIT_FWM_EN		BIT(6)
85 
86 #define BMC150_ACCEL_REG_INT_OUT_CTRL		0x20
87 #define BMC150_ACCEL_INT_OUT_CTRL_INT1_LVL	BIT(0)
88 #define BMC150_ACCEL_INT_OUT_CTRL_INT2_LVL	BIT(2)
89 
90 #define BMC150_ACCEL_REG_INT_5			0x27
91 #define BMC150_ACCEL_SLOPE_DUR_MASK		0x03
92 
93 #define BMC150_ACCEL_REG_INT_6			0x28
94 #define BMC150_ACCEL_SLOPE_THRES_MASK		0xFF
95 
96 /* Slope duration in terms of number of samples */
97 #define BMC150_ACCEL_DEF_SLOPE_DURATION		1
98 /* in terms of multiples of g's/LSB, based on range */
99 #define BMC150_ACCEL_DEF_SLOPE_THRESHOLD	1
100 
101 #define BMC150_ACCEL_REG_XOUT_L		0x02
102 
103 #define BMC150_ACCEL_MAX_STARTUP_TIME_MS	100
104 
105 /* Sleep Duration values */
106 #define BMC150_ACCEL_SLEEP_500_MICRO		0x05
107 #define BMC150_ACCEL_SLEEP_1_MS		0x06
108 #define BMC150_ACCEL_SLEEP_2_MS		0x07
109 #define BMC150_ACCEL_SLEEP_4_MS		0x08
110 #define BMC150_ACCEL_SLEEP_6_MS		0x09
111 #define BMC150_ACCEL_SLEEP_10_MS		0x0A
112 #define BMC150_ACCEL_SLEEP_25_MS		0x0B
113 #define BMC150_ACCEL_SLEEP_50_MS		0x0C
114 #define BMC150_ACCEL_SLEEP_100_MS		0x0D
115 #define BMC150_ACCEL_SLEEP_500_MS		0x0E
116 #define BMC150_ACCEL_SLEEP_1_SEC		0x0F
117 
118 #define BMC150_ACCEL_REG_TEMP			0x08
119 #define BMC150_ACCEL_TEMP_CENTER_VAL		23
120 
121 #define BMC150_ACCEL_AXIS_TO_REG(axis)	(BMC150_ACCEL_REG_XOUT_L + (axis * 2))
122 #define BMC150_AUTO_SUSPEND_DELAY_MS		2000
123 
124 #define BMC150_ACCEL_REG_FIFO_STATUS		0x0E
125 #define BMC150_ACCEL_REG_FIFO_CONFIG0		0x30
126 #define BMC150_ACCEL_REG_FIFO_CONFIG1		0x3E
127 #define BMC150_ACCEL_REG_FIFO_DATA		0x3F
128 #define BMC150_ACCEL_FIFO_LENGTH		32
129 
130 enum bmc150_accel_axis {
131 	AXIS_X,
132 	AXIS_Y,
133 	AXIS_Z,
134 	AXIS_MAX,
135 };
136 
137 enum bmc150_power_modes {
138 	BMC150_ACCEL_SLEEP_MODE_NORMAL,
139 	BMC150_ACCEL_SLEEP_MODE_DEEP_SUSPEND,
140 	BMC150_ACCEL_SLEEP_MODE_LPM,
141 	BMC150_ACCEL_SLEEP_MODE_SUSPEND = 0x04,
142 };
143 
144 struct bmc150_scale_info {
145 	int scale;
146 	u8 reg_range;
147 };
148 
149 struct bmc150_accel_chip_info {
150 	const char *name;
151 	u8 chip_id;
152 	const struct iio_chan_spec *channels;
153 	int num_channels;
154 	const struct bmc150_scale_info scale_table[4];
155 };
156 
157 static const struct {
158 	int val;
159 	int val2;
160 	u8 bw_bits;
161 } bmc150_accel_samp_freq_table[] = { {15, 620000, 0x08},
162 				     {31, 260000, 0x09},
163 				     {62, 500000, 0x0A},
164 				     {125, 0, 0x0B},
165 				     {250, 0, 0x0C},
166 				     {500, 0, 0x0D},
167 				     {1000, 0, 0x0E},
168 				     {2000, 0, 0x0F} };
169 
170 static __maybe_unused const struct {
171 	int bw_bits;
172 	int msec;
173 } bmc150_accel_sample_upd_time[] = { {0x08, 64},
174 				     {0x09, 32},
175 				     {0x0A, 16},
176 				     {0x0B, 8},
177 				     {0x0C, 4},
178 				     {0x0D, 2},
179 				     {0x0E, 1},
180 				     {0x0F, 1} };
181 
182 static const struct {
183 	int sleep_dur;
184 	u8 reg_value;
185 } bmc150_accel_sleep_value_table[] = { {0, 0},
186 				       {500, BMC150_ACCEL_SLEEP_500_MICRO},
187 				       {1000, BMC150_ACCEL_SLEEP_1_MS},
188 				       {2000, BMC150_ACCEL_SLEEP_2_MS},
189 				       {4000, BMC150_ACCEL_SLEEP_4_MS},
190 				       {6000, BMC150_ACCEL_SLEEP_6_MS},
191 				       {10000, BMC150_ACCEL_SLEEP_10_MS},
192 				       {25000, BMC150_ACCEL_SLEEP_25_MS},
193 				       {50000, BMC150_ACCEL_SLEEP_50_MS},
194 				       {100000, BMC150_ACCEL_SLEEP_100_MS},
195 				       {500000, BMC150_ACCEL_SLEEP_500_MS},
196 				       {1000000, BMC150_ACCEL_SLEEP_1_SEC} };
197 
198 const struct regmap_config bmc150_regmap_conf = {
199 	.reg_bits = 8,
200 	.val_bits = 8,
201 	.max_register = 0x3f,
202 };
203 EXPORT_SYMBOL_NS_GPL(bmc150_regmap_conf, "IIO_BMC150");
204 
bmc150_accel_set_mode(struct bmc150_accel_data * data,enum bmc150_power_modes mode,int dur_us)205 static int bmc150_accel_set_mode(struct bmc150_accel_data *data,
206 				 enum bmc150_power_modes mode,
207 				 int dur_us)
208 {
209 	struct device *dev = regmap_get_device(data->regmap);
210 	int i;
211 	int ret;
212 	u8 lpw_bits;
213 	int dur_val = -1;
214 
215 	if (dur_us > 0) {
216 		for (i = 0; i < ARRAY_SIZE(bmc150_accel_sleep_value_table);
217 									 ++i) {
218 			if (bmc150_accel_sleep_value_table[i].sleep_dur ==
219 									dur_us)
220 				dur_val =
221 				bmc150_accel_sleep_value_table[i].reg_value;
222 		}
223 	} else {
224 		dur_val = 0;
225 	}
226 
227 	if (dur_val < 0)
228 		return -EINVAL;
229 
230 	lpw_bits = mode << BMC150_ACCEL_PMU_MODE_SHIFT;
231 	lpw_bits |= (dur_val << BMC150_ACCEL_PMU_BIT_SLEEP_DUR_SHIFT);
232 
233 	dev_dbg(dev, "Set Mode bits %x\n", lpw_bits);
234 
235 	ret = regmap_write(data->regmap, BMC150_ACCEL_REG_PMU_LPW, lpw_bits);
236 	if (ret < 0) {
237 		dev_err(dev, "Error writing reg_pmu_lpw\n");
238 		return ret;
239 	}
240 
241 	return 0;
242 }
243 
bmc150_accel_set_bw(struct bmc150_accel_data * data,int val,int val2)244 static int bmc150_accel_set_bw(struct bmc150_accel_data *data, int val,
245 			       int val2)
246 {
247 	int i;
248 	int ret;
249 
250 	for (i = 0; i < ARRAY_SIZE(bmc150_accel_samp_freq_table); ++i) {
251 		if (bmc150_accel_samp_freq_table[i].val == val &&
252 		    bmc150_accel_samp_freq_table[i].val2 == val2) {
253 			ret = regmap_write(data->regmap,
254 				BMC150_ACCEL_REG_PMU_BW,
255 				bmc150_accel_samp_freq_table[i].bw_bits);
256 			if (ret < 0)
257 				return ret;
258 
259 			data->bw_bits =
260 				bmc150_accel_samp_freq_table[i].bw_bits;
261 			return 0;
262 		}
263 	}
264 
265 	return -EINVAL;
266 }
267 
bmc150_accel_update_slope(struct bmc150_accel_data * data)268 static int bmc150_accel_update_slope(struct bmc150_accel_data *data)
269 {
270 	struct device *dev = regmap_get_device(data->regmap);
271 	int ret;
272 
273 	ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_6,
274 					data->slope_thres);
275 	if (ret < 0) {
276 		dev_err(dev, "Error writing reg_int_6\n");
277 		return ret;
278 	}
279 
280 	ret = regmap_update_bits(data->regmap, BMC150_ACCEL_REG_INT_5,
281 				 BMC150_ACCEL_SLOPE_DUR_MASK, data->slope_dur);
282 	if (ret < 0) {
283 		dev_err(dev, "Error updating reg_int_5\n");
284 		return ret;
285 	}
286 
287 	dev_dbg(dev, "%x %x\n", data->slope_thres, data->slope_dur);
288 
289 	return ret;
290 }
291 
bmc150_accel_any_motion_setup(struct bmc150_accel_trigger * t,bool state)292 static int bmc150_accel_any_motion_setup(struct bmc150_accel_trigger *t,
293 					 bool state)
294 {
295 	if (state)
296 		return bmc150_accel_update_slope(t->data);
297 
298 	return 0;
299 }
300 
bmc150_accel_get_bw(struct bmc150_accel_data * data,int * val,int * val2)301 static int bmc150_accel_get_bw(struct bmc150_accel_data *data, int *val,
302 			       int *val2)
303 {
304 	int i;
305 
306 	for (i = 0; i < ARRAY_SIZE(bmc150_accel_samp_freq_table); ++i) {
307 		if (bmc150_accel_samp_freq_table[i].bw_bits == data->bw_bits) {
308 			*val = bmc150_accel_samp_freq_table[i].val;
309 			*val2 = bmc150_accel_samp_freq_table[i].val2;
310 			return IIO_VAL_INT_PLUS_MICRO;
311 		}
312 	}
313 
314 	return -EINVAL;
315 }
316 
317 #ifdef CONFIG_PM
bmc150_accel_get_startup_times(struct bmc150_accel_data * data)318 static int bmc150_accel_get_startup_times(struct bmc150_accel_data *data)
319 {
320 	int i;
321 
322 	for (i = 0; i < ARRAY_SIZE(bmc150_accel_sample_upd_time); ++i) {
323 		if (bmc150_accel_sample_upd_time[i].bw_bits == data->bw_bits)
324 			return bmc150_accel_sample_upd_time[i].msec;
325 	}
326 
327 	return BMC150_ACCEL_MAX_STARTUP_TIME_MS;
328 }
329 
bmc150_accel_set_power_state(struct bmc150_accel_data * data,bool on)330 static int bmc150_accel_set_power_state(struct bmc150_accel_data *data, bool on)
331 {
332 	struct device *dev = regmap_get_device(data->regmap);
333 	int ret;
334 
335 	if (on) {
336 		ret = pm_runtime_resume_and_get(dev);
337 	} else {
338 		pm_runtime_mark_last_busy(dev);
339 		ret = pm_runtime_put_autosuspend(dev);
340 	}
341 
342 	if (ret < 0) {
343 		dev_err(dev,
344 			"Failed: %s for %d\n", __func__, on);
345 		return ret;
346 	}
347 
348 	return 0;
349 }
350 #else
bmc150_accel_set_power_state(struct bmc150_accel_data * data,bool on)351 static int bmc150_accel_set_power_state(struct bmc150_accel_data *data, bool on)
352 {
353 	return 0;
354 }
355 #endif
356 
357 #ifdef CONFIG_ACPI
358 /*
359  * Support for getting accelerometer information from BOSC0200 ACPI nodes.
360  *
361  * There are 2 variants of the BOSC0200 ACPI node. Some 2-in-1s with 360 degree
362  * hinges declare 2 I2C ACPI-resources for 2 accelerometers, 1 in the display
363  * and 1 in the base of the 2-in-1. On these 2-in-1s the ROMS ACPI object
364  * contains the mount-matrix for the sensor in the display and ROMK contains
365  * the mount-matrix for the sensor in the base. On devices using a single
366  * sensor there is a ROTM ACPI object which contains the mount-matrix.
367  *
368  * Here is an incomplete list of devices known to use 1 of these setups:
369  *
370  * Yoga devices with 2 accelerometers using ROMS + ROMK for the mount-matrices:
371  * Lenovo Thinkpad Yoga 11e 3th gen
372  * Lenovo Thinkpad Yoga 11e 4th gen
373  *
374  * Tablets using a single accelerometer using ROTM for the mount-matrix:
375  * Chuwi Hi8 Pro (CWI513)
376  * Chuwi Vi8 Plus (CWI519)
377  * Chuwi Hi13
378  * Irbis TW90
379  * Jumper EZpad mini 3
380  * Onda V80 plus
381  * Predia Basic Tablet
382  */
bmc150_apply_bosc0200_acpi_orientation(struct device * dev,struct iio_mount_matrix * orientation)383 static bool bmc150_apply_bosc0200_acpi_orientation(struct device *dev,
384 						   struct iio_mount_matrix *orientation)
385 {
386 	struct iio_dev *indio_dev = dev_get_drvdata(dev);
387 	acpi_handle handle = ACPI_HANDLE(dev);
388 	char *name, *alt_name, *label;
389 
390 	if (strcmp(dev_name(dev), "i2c-BOSC0200:base") == 0) {
391 		alt_name = "ROMK";
392 		label = "accel-base";
393 	} else {
394 		alt_name = "ROMS";
395 		label = "accel-display";
396 	}
397 
398 	if (acpi_has_method(handle, "ROTM")) {
399 		name = "ROTM";
400 	} else if (acpi_has_method(handle, alt_name)) {
401 		name = alt_name;
402 		indio_dev->label = label;
403 	} else {
404 		return false;
405 	}
406 
407 	return iio_read_acpi_mount_matrix(dev, orientation, name);
408 }
409 
bmc150_apply_dual250e_acpi_orientation(struct device * dev,struct iio_mount_matrix * orientation)410 static bool bmc150_apply_dual250e_acpi_orientation(struct device *dev,
411 						   struct iio_mount_matrix *orientation)
412 {
413 	struct iio_dev *indio_dev = dev_get_drvdata(dev);
414 
415 	if (strcmp(dev_name(dev), "i2c-DUAL250E:base") == 0)
416 		indio_dev->label = "accel-base";
417 	else
418 		indio_dev->label = "accel-display";
419 
420 	return false; /* DUAL250E fwnodes have no mount matrix info */
421 }
422 
bmc150_apply_acpi_orientation(struct device * dev,struct iio_mount_matrix * orientation)423 static bool bmc150_apply_acpi_orientation(struct device *dev,
424 					  struct iio_mount_matrix *orientation)
425 {
426 	struct acpi_device *adev = ACPI_COMPANION(dev);
427 
428 	if (adev && acpi_dev_hid_uid_match(adev, "BOSC0200", NULL))
429 		return bmc150_apply_bosc0200_acpi_orientation(dev, orientation);
430 
431 	if (adev && acpi_dev_hid_uid_match(adev, "DUAL250E", NULL))
432 		return bmc150_apply_dual250e_acpi_orientation(dev, orientation);
433 
434 	return false;
435 }
436 #else
bmc150_apply_acpi_orientation(struct device * dev,struct iio_mount_matrix * orientation)437 static bool bmc150_apply_acpi_orientation(struct device *dev,
438 					  struct iio_mount_matrix *orientation)
439 {
440 	return false;
441 }
442 #endif
443 
444 struct bmc150_accel_interrupt_info {
445 	u8 map_reg;
446 	u8 map_bitmask;
447 	u8 en_reg;
448 	u8 en_bitmask;
449 };
450 
451 static const struct bmc150_accel_interrupt_info
452 bmc150_accel_interrupts_int1[BMC150_ACCEL_INTERRUPTS] = {
453 	{ /* data ready interrupt */
454 		.map_reg = BMC150_ACCEL_REG_INT_MAP_1,
455 		.map_bitmask = BMC150_ACCEL_INT_MAP_1_BIT_INT1_DATA,
456 		.en_reg = BMC150_ACCEL_REG_INT_EN_1,
457 		.en_bitmask = BMC150_ACCEL_INT_EN_BIT_DATA_EN,
458 	},
459 	{  /* motion interrupt */
460 		.map_reg = BMC150_ACCEL_REG_INT_MAP_0,
461 		.map_bitmask = BMC150_ACCEL_INT_MAP_0_BIT_INT1_SLOPE,
462 		.en_reg = BMC150_ACCEL_REG_INT_EN_0,
463 		.en_bitmask =  BMC150_ACCEL_INT_EN_BIT_SLP_X |
464 			BMC150_ACCEL_INT_EN_BIT_SLP_Y |
465 			BMC150_ACCEL_INT_EN_BIT_SLP_Z
466 	},
467 	{ /* fifo watermark interrupt */
468 		.map_reg = BMC150_ACCEL_REG_INT_MAP_1,
469 		.map_bitmask = BMC150_ACCEL_INT_MAP_1_BIT_INT1_FWM,
470 		.en_reg = BMC150_ACCEL_REG_INT_EN_1,
471 		.en_bitmask = BMC150_ACCEL_INT_EN_BIT_FWM_EN,
472 	},
473 };
474 
475 static const struct bmc150_accel_interrupt_info
476 bmc150_accel_interrupts_int2[BMC150_ACCEL_INTERRUPTS] = {
477 	{ /* data ready interrupt */
478 		.map_reg = BMC150_ACCEL_REG_INT_MAP_1,
479 		.map_bitmask = BMC150_ACCEL_INT_MAP_1_BIT_INT2_DATA,
480 		.en_reg = BMC150_ACCEL_REG_INT_EN_1,
481 		.en_bitmask = BMC150_ACCEL_INT_EN_BIT_DATA_EN,
482 	},
483 	{  /* motion interrupt */
484 		.map_reg = BMC150_ACCEL_REG_INT_MAP_2,
485 		.map_bitmask = BMC150_ACCEL_INT_MAP_2_BIT_INT2_SLOPE,
486 		.en_reg = BMC150_ACCEL_REG_INT_EN_0,
487 		.en_bitmask =  BMC150_ACCEL_INT_EN_BIT_SLP_X |
488 			BMC150_ACCEL_INT_EN_BIT_SLP_Y |
489 			BMC150_ACCEL_INT_EN_BIT_SLP_Z
490 	},
491 	{ /* fifo watermark interrupt */
492 		.map_reg = BMC150_ACCEL_REG_INT_MAP_1,
493 		.map_bitmask = BMC150_ACCEL_INT_MAP_1_BIT_INT2_FWM,
494 		.en_reg = BMC150_ACCEL_REG_INT_EN_1,
495 		.en_bitmask = BMC150_ACCEL_INT_EN_BIT_FWM_EN,
496 	},
497 };
498 
bmc150_accel_interrupts_setup(struct iio_dev * indio_dev,struct bmc150_accel_data * data,int irq)499 static void bmc150_accel_interrupts_setup(struct iio_dev *indio_dev,
500 					  struct bmc150_accel_data *data, int irq)
501 {
502 	const struct bmc150_accel_interrupt_info *irq_info = NULL;
503 	struct device *dev = regmap_get_device(data->regmap);
504 	int i;
505 
506 	/*
507 	 * For now we map all interrupts to the same output pin.
508 	 * However, some boards may have just INT2 (and not INT1) connected,
509 	 * so we try to detect which IRQ it is based on the interrupt-names.
510 	 * Without interrupt-names, we assume the irq belongs to INT1.
511 	 */
512 	irq_info = bmc150_accel_interrupts_int1;
513 	if (data->type == BOSCH_BMC156 ||
514 	    irq == fwnode_irq_get_byname(dev_fwnode(dev), "INT2"))
515 		irq_info = bmc150_accel_interrupts_int2;
516 
517 	for (i = 0; i < BMC150_ACCEL_INTERRUPTS; i++)
518 		data->interrupts[i].info = &irq_info[i];
519 }
520 
bmc150_accel_set_interrupt(struct bmc150_accel_data * data,int i,bool state)521 static int bmc150_accel_set_interrupt(struct bmc150_accel_data *data, int i,
522 				      bool state)
523 {
524 	struct device *dev = regmap_get_device(data->regmap);
525 	struct bmc150_accel_interrupt *intr = &data->interrupts[i];
526 	const struct bmc150_accel_interrupt_info *info = intr->info;
527 	int ret;
528 
529 	if (state) {
530 		if (atomic_inc_return(&intr->users) > 1)
531 			return 0;
532 	} else {
533 		if (atomic_dec_return(&intr->users) > 0)
534 			return 0;
535 	}
536 
537 	/*
538 	 * We will expect the enable and disable to do operation in reverse
539 	 * order. This will happen here anyway, as our resume operation uses
540 	 * sync mode runtime pm calls. The suspend operation will be delayed
541 	 * by autosuspend delay.
542 	 * So the disable operation will still happen in reverse order of
543 	 * enable operation. When runtime pm is disabled the mode is always on,
544 	 * so sequence doesn't matter.
545 	 */
546 	ret = bmc150_accel_set_power_state(data, state);
547 	if (ret < 0)
548 		return ret;
549 
550 	/* map the interrupt to the appropriate pins */
551 	ret = regmap_update_bits(data->regmap, info->map_reg, info->map_bitmask,
552 				 (state ? info->map_bitmask : 0));
553 	if (ret < 0) {
554 		dev_err(dev, "Error updating reg_int_map\n");
555 		goto out_fix_power_state;
556 	}
557 
558 	/* enable/disable the interrupt */
559 	ret = regmap_update_bits(data->regmap, info->en_reg, info->en_bitmask,
560 				 (state ? info->en_bitmask : 0));
561 	if (ret < 0) {
562 		dev_err(dev, "Error updating reg_int_en\n");
563 		goto out_fix_power_state;
564 	}
565 
566 	return 0;
567 
568 out_fix_power_state:
569 	bmc150_accel_set_power_state(data, false);
570 	return ret;
571 }
572 
bmc150_accel_set_scale(struct bmc150_accel_data * data,int val)573 static int bmc150_accel_set_scale(struct bmc150_accel_data *data, int val)
574 {
575 	struct device *dev = regmap_get_device(data->regmap);
576 	int ret, i;
577 
578 	for (i = 0; i < ARRAY_SIZE(data->chip_info->scale_table); ++i) {
579 		if (data->chip_info->scale_table[i].scale == val) {
580 			ret = regmap_write(data->regmap,
581 				     BMC150_ACCEL_REG_PMU_RANGE,
582 				     data->chip_info->scale_table[i].reg_range);
583 			if (ret < 0) {
584 				dev_err(dev, "Error writing pmu_range\n");
585 				return ret;
586 			}
587 
588 			data->range = data->chip_info->scale_table[i].reg_range;
589 			return 0;
590 		}
591 	}
592 
593 	return -EINVAL;
594 }
595 
bmc150_accel_get_temp(struct bmc150_accel_data * data,int * val)596 static int bmc150_accel_get_temp(struct bmc150_accel_data *data, int *val)
597 {
598 	struct device *dev = regmap_get_device(data->regmap);
599 	int ret;
600 	unsigned int value;
601 
602 	mutex_lock(&data->mutex);
603 
604 	ret = regmap_read(data->regmap, BMC150_ACCEL_REG_TEMP, &value);
605 	if (ret < 0) {
606 		dev_err(dev, "Error reading reg_temp\n");
607 		mutex_unlock(&data->mutex);
608 		return ret;
609 	}
610 	*val = sign_extend32(value, 7);
611 
612 	mutex_unlock(&data->mutex);
613 
614 	return IIO_VAL_INT;
615 }
616 
bmc150_accel_get_axis(struct bmc150_accel_data * data,struct iio_chan_spec const * chan,int * val)617 static int bmc150_accel_get_axis(struct bmc150_accel_data *data,
618 				 struct iio_chan_spec const *chan,
619 				 int *val)
620 {
621 	struct device *dev = regmap_get_device(data->regmap);
622 	int ret;
623 	int axis = chan->scan_index;
624 	__le16 raw_val;
625 
626 	mutex_lock(&data->mutex);
627 	ret = bmc150_accel_set_power_state(data, true);
628 	if (ret < 0) {
629 		mutex_unlock(&data->mutex);
630 		return ret;
631 	}
632 
633 	ret = regmap_bulk_read(data->regmap, BMC150_ACCEL_AXIS_TO_REG(axis),
634 			       &raw_val, sizeof(raw_val));
635 	if (ret < 0) {
636 		dev_err(dev, "Error reading axis %d\n", axis);
637 		bmc150_accel_set_power_state(data, false);
638 		mutex_unlock(&data->mutex);
639 		return ret;
640 	}
641 	*val = sign_extend32(le16_to_cpu(raw_val) >> chan->scan_type.shift,
642 			     chan->scan_type.realbits - 1);
643 	ret = bmc150_accel_set_power_state(data, false);
644 	mutex_unlock(&data->mutex);
645 	if (ret < 0)
646 		return ret;
647 
648 	return IIO_VAL_INT;
649 }
650 
bmc150_accel_read_raw(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,int * val,int * val2,long mask)651 static int bmc150_accel_read_raw(struct iio_dev *indio_dev,
652 				 struct iio_chan_spec const *chan,
653 				 int *val, int *val2, long mask)
654 {
655 	struct bmc150_accel_data *data = iio_priv(indio_dev);
656 	int ret;
657 
658 	switch (mask) {
659 	case IIO_CHAN_INFO_RAW:
660 		switch (chan->type) {
661 		case IIO_TEMP:
662 			return bmc150_accel_get_temp(data, val);
663 		case IIO_ACCEL:
664 			if (iio_buffer_enabled(indio_dev))
665 				return -EBUSY;
666 			else
667 				return bmc150_accel_get_axis(data, chan, val);
668 		default:
669 			return -EINVAL;
670 		}
671 	case IIO_CHAN_INFO_OFFSET:
672 		if (chan->type == IIO_TEMP) {
673 			*val = BMC150_ACCEL_TEMP_CENTER_VAL;
674 			return IIO_VAL_INT;
675 		} else {
676 			return -EINVAL;
677 		}
678 	case IIO_CHAN_INFO_SCALE:
679 		*val = 0;
680 		switch (chan->type) {
681 		case IIO_TEMP:
682 			*val2 = 500000;
683 			return IIO_VAL_INT_PLUS_MICRO;
684 		case IIO_ACCEL:
685 		{
686 			int i;
687 			const struct bmc150_scale_info *si;
688 			int st_size = ARRAY_SIZE(data->chip_info->scale_table);
689 
690 			for (i = 0; i < st_size; ++i) {
691 				si = &data->chip_info->scale_table[i];
692 				if (si->reg_range == data->range) {
693 					*val2 = si->scale;
694 					return IIO_VAL_INT_PLUS_MICRO;
695 				}
696 			}
697 			return -EINVAL;
698 		}
699 		default:
700 			return -EINVAL;
701 		}
702 	case IIO_CHAN_INFO_SAMP_FREQ:
703 		mutex_lock(&data->mutex);
704 		ret = bmc150_accel_get_bw(data, val, val2);
705 		mutex_unlock(&data->mutex);
706 		return ret;
707 	default:
708 		return -EINVAL;
709 	}
710 }
711 
bmc150_accel_write_raw(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,int val,int val2,long mask)712 static int bmc150_accel_write_raw(struct iio_dev *indio_dev,
713 				  struct iio_chan_spec const *chan,
714 				  int val, int val2, long mask)
715 {
716 	struct bmc150_accel_data *data = iio_priv(indio_dev);
717 	int ret;
718 
719 	switch (mask) {
720 	case IIO_CHAN_INFO_SAMP_FREQ:
721 		mutex_lock(&data->mutex);
722 		ret = bmc150_accel_set_bw(data, val, val2);
723 		mutex_unlock(&data->mutex);
724 		break;
725 	case IIO_CHAN_INFO_SCALE:
726 		if (val)
727 			return -EINVAL;
728 
729 		mutex_lock(&data->mutex);
730 		ret = bmc150_accel_set_scale(data, val2);
731 		mutex_unlock(&data->mutex);
732 		return ret;
733 	default:
734 		ret = -EINVAL;
735 	}
736 
737 	return ret;
738 }
739 
bmc150_accel_read_event(struct iio_dev * indio_dev,const struct iio_chan_spec * chan,enum iio_event_type type,enum iio_event_direction dir,enum iio_event_info info,int * val,int * val2)740 static int bmc150_accel_read_event(struct iio_dev *indio_dev,
741 				   const struct iio_chan_spec *chan,
742 				   enum iio_event_type type,
743 				   enum iio_event_direction dir,
744 				   enum iio_event_info info,
745 				   int *val, int *val2)
746 {
747 	struct bmc150_accel_data *data = iio_priv(indio_dev);
748 
749 	*val2 = 0;
750 	switch (info) {
751 	case IIO_EV_INFO_VALUE:
752 		*val = data->slope_thres;
753 		break;
754 	case IIO_EV_INFO_PERIOD:
755 		*val = data->slope_dur;
756 		break;
757 	default:
758 		return -EINVAL;
759 	}
760 
761 	return IIO_VAL_INT;
762 }
763 
bmc150_accel_write_event(struct iio_dev * indio_dev,const struct iio_chan_spec * chan,enum iio_event_type type,enum iio_event_direction dir,enum iio_event_info info,int val,int val2)764 static int bmc150_accel_write_event(struct iio_dev *indio_dev,
765 				    const struct iio_chan_spec *chan,
766 				    enum iio_event_type type,
767 				    enum iio_event_direction dir,
768 				    enum iio_event_info info,
769 				    int val, int val2)
770 {
771 	struct bmc150_accel_data *data = iio_priv(indio_dev);
772 
773 	if (data->ev_enable_state)
774 		return -EBUSY;
775 
776 	switch (info) {
777 	case IIO_EV_INFO_VALUE:
778 		data->slope_thres = val & BMC150_ACCEL_SLOPE_THRES_MASK;
779 		break;
780 	case IIO_EV_INFO_PERIOD:
781 		data->slope_dur = val & BMC150_ACCEL_SLOPE_DUR_MASK;
782 		break;
783 	default:
784 		return -EINVAL;
785 	}
786 
787 	return 0;
788 }
789 
bmc150_accel_read_event_config(struct iio_dev * indio_dev,const struct iio_chan_spec * chan,enum iio_event_type type,enum iio_event_direction dir)790 static int bmc150_accel_read_event_config(struct iio_dev *indio_dev,
791 					  const struct iio_chan_spec *chan,
792 					  enum iio_event_type type,
793 					  enum iio_event_direction dir)
794 {
795 	struct bmc150_accel_data *data = iio_priv(indio_dev);
796 
797 	return data->ev_enable_state;
798 }
799 
bmc150_accel_write_event_config(struct iio_dev * indio_dev,const struct iio_chan_spec * chan,enum iio_event_type type,enum iio_event_direction dir,bool state)800 static int bmc150_accel_write_event_config(struct iio_dev *indio_dev,
801 					   const struct iio_chan_spec *chan,
802 					   enum iio_event_type type,
803 					   enum iio_event_direction dir,
804 					   bool state)
805 {
806 	struct bmc150_accel_data *data = iio_priv(indio_dev);
807 	int ret;
808 
809 	if (state == data->ev_enable_state)
810 		return 0;
811 
812 	mutex_lock(&data->mutex);
813 
814 	ret = bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_ANY_MOTION,
815 					 state);
816 	if (ret < 0) {
817 		mutex_unlock(&data->mutex);
818 		return ret;
819 	}
820 
821 	data->ev_enable_state = state;
822 	mutex_unlock(&data->mutex);
823 
824 	return 0;
825 }
826 
bmc150_accel_validate_trigger(struct iio_dev * indio_dev,struct iio_trigger * trig)827 static int bmc150_accel_validate_trigger(struct iio_dev *indio_dev,
828 					 struct iio_trigger *trig)
829 {
830 	struct bmc150_accel_data *data = iio_priv(indio_dev);
831 	int i;
832 
833 	for (i = 0; i < BMC150_ACCEL_TRIGGERS; i++) {
834 		if (data->triggers[i].indio_trig == trig)
835 			return 0;
836 	}
837 
838 	return -EINVAL;
839 }
840 
bmc150_accel_get_fifo_watermark(struct device * dev,struct device_attribute * attr,char * buf)841 static ssize_t bmc150_accel_get_fifo_watermark(struct device *dev,
842 					       struct device_attribute *attr,
843 					       char *buf)
844 {
845 	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
846 	struct bmc150_accel_data *data = iio_priv(indio_dev);
847 	int wm;
848 
849 	mutex_lock(&data->mutex);
850 	wm = data->watermark;
851 	mutex_unlock(&data->mutex);
852 
853 	return sprintf(buf, "%d\n", wm);
854 }
855 
bmc150_accel_get_fifo_state(struct device * dev,struct device_attribute * attr,char * buf)856 static ssize_t bmc150_accel_get_fifo_state(struct device *dev,
857 					   struct device_attribute *attr,
858 					   char *buf)
859 {
860 	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
861 	struct bmc150_accel_data *data = iio_priv(indio_dev);
862 	bool state;
863 
864 	mutex_lock(&data->mutex);
865 	state = data->fifo_mode;
866 	mutex_unlock(&data->mutex);
867 
868 	return sprintf(buf, "%d\n", state);
869 }
870 
871 static const struct iio_mount_matrix *
bmc150_accel_get_mount_matrix(const struct iio_dev * indio_dev,const struct iio_chan_spec * chan)872 bmc150_accel_get_mount_matrix(const struct iio_dev *indio_dev,
873 				const struct iio_chan_spec *chan)
874 {
875 	struct bmc150_accel_data *data = iio_priv(indio_dev);
876 
877 	return &data->orientation;
878 }
879 
880 static const struct iio_chan_spec_ext_info bmc150_accel_ext_info[] = {
881 	IIO_MOUNT_MATRIX(IIO_SHARED_BY_DIR, bmc150_accel_get_mount_matrix),
882 	{ }
883 };
884 
885 IIO_STATIC_CONST_DEVICE_ATTR(hwfifo_watermark_min, "1");
886 IIO_STATIC_CONST_DEVICE_ATTR(hwfifo_watermark_max,
887 			     __stringify(BMC150_ACCEL_FIFO_LENGTH));
888 static IIO_DEVICE_ATTR(hwfifo_enabled, S_IRUGO,
889 		       bmc150_accel_get_fifo_state, NULL, 0);
890 static IIO_DEVICE_ATTR(hwfifo_watermark, S_IRUGO,
891 		       bmc150_accel_get_fifo_watermark, NULL, 0);
892 
893 static const struct iio_dev_attr *bmc150_accel_fifo_attributes[] = {
894 	&iio_dev_attr_hwfifo_watermark_min,
895 	&iio_dev_attr_hwfifo_watermark_max,
896 	&iio_dev_attr_hwfifo_watermark,
897 	&iio_dev_attr_hwfifo_enabled,
898 	NULL,
899 };
900 
bmc150_accel_set_watermark(struct iio_dev * indio_dev,unsigned val)901 static int bmc150_accel_set_watermark(struct iio_dev *indio_dev, unsigned val)
902 {
903 	struct bmc150_accel_data *data = iio_priv(indio_dev);
904 
905 	if (val > BMC150_ACCEL_FIFO_LENGTH)
906 		val = BMC150_ACCEL_FIFO_LENGTH;
907 
908 	mutex_lock(&data->mutex);
909 	data->watermark = val;
910 	mutex_unlock(&data->mutex);
911 
912 	return 0;
913 }
914 
915 /*
916  * We must read at least one full frame in one burst, otherwise the rest of the
917  * frame data is discarded.
918  */
bmc150_accel_fifo_transfer(struct bmc150_accel_data * data,char * buffer,int samples)919 static int bmc150_accel_fifo_transfer(struct bmc150_accel_data *data,
920 				      char *buffer, int samples)
921 {
922 	struct device *dev = regmap_get_device(data->regmap);
923 	int sample_length = 3 * 2;
924 	int ret;
925 	int total_length = samples * sample_length;
926 
927 	ret = regmap_raw_read(data->regmap, BMC150_ACCEL_REG_FIFO_DATA,
928 			      buffer, total_length);
929 	if (ret)
930 		dev_err(dev,
931 			"Error transferring data from fifo: %d\n", ret);
932 
933 	return ret;
934 }
935 
__bmc150_accel_fifo_flush(struct iio_dev * indio_dev,unsigned samples,bool irq)936 static int __bmc150_accel_fifo_flush(struct iio_dev *indio_dev,
937 				     unsigned samples, bool irq)
938 {
939 	struct bmc150_accel_data *data = iio_priv(indio_dev);
940 	struct device *dev = regmap_get_device(data->regmap);
941 	int ret, i;
942 	u8 count;
943 	u16 buffer[BMC150_ACCEL_FIFO_LENGTH * 3];
944 	int64_t tstamp;
945 	uint64_t sample_period;
946 	unsigned int val;
947 
948 	ret = regmap_read(data->regmap, BMC150_ACCEL_REG_FIFO_STATUS, &val);
949 	if (ret < 0) {
950 		dev_err(dev, "Error reading reg_fifo_status\n");
951 		return ret;
952 	}
953 
954 	count = val & 0x7F;
955 
956 	if (!count)
957 		return 0;
958 
959 	/*
960 	 * If we getting called from IRQ handler we know the stored timestamp is
961 	 * fairly accurate for the last stored sample. Otherwise, if we are
962 	 * called as a result of a read operation from userspace and hence
963 	 * before the watermark interrupt was triggered, take a timestamp
964 	 * now. We can fall anywhere in between two samples so the error in this
965 	 * case is at most one sample period.
966 	 */
967 	if (!irq) {
968 		data->old_timestamp = data->timestamp;
969 		data->timestamp = iio_get_time_ns(indio_dev);
970 	}
971 
972 	/*
973 	 * Approximate timestamps for each of the sample based on the sampling
974 	 * frequency, timestamp for last sample and number of samples.
975 	 *
976 	 * Note that we can't use the current bandwidth settings to compute the
977 	 * sample period because the sample rate varies with the device
978 	 * (e.g. between 31.70ms to 32.20ms for a bandwidth of 15.63HZ). That
979 	 * small variation adds when we store a large number of samples and
980 	 * creates significant jitter between the last and first samples in
981 	 * different batches (e.g. 32ms vs 21ms).
982 	 *
983 	 * To avoid this issue we compute the actual sample period ourselves
984 	 * based on the timestamp delta between the last two flush operations.
985 	 */
986 	sample_period = (data->timestamp - data->old_timestamp);
987 	do_div(sample_period, count);
988 	tstamp = data->timestamp - (count - 1) * sample_period;
989 
990 	if (samples && count > samples)
991 		count = samples;
992 
993 	ret = bmc150_accel_fifo_transfer(data, (u8 *)buffer, count);
994 	if (ret)
995 		return ret;
996 
997 	/*
998 	 * Ideally we want the IIO core to handle the demux when running in fifo
999 	 * mode but not when running in triggered buffer mode. Unfortunately
1000 	 * this does not seem to be possible, so stick with driver demux for
1001 	 * now.
1002 	 */
1003 	for (i = 0; i < count; i++) {
1004 		int j, bit;
1005 
1006 		j = 0;
1007 		iio_for_each_active_channel(indio_dev, bit)
1008 			memcpy(&data->scan.channels[j++], &buffer[i * 3 + bit],
1009 			       sizeof(data->scan.channels[0]));
1010 
1011 		iio_push_to_buffers_with_timestamp(indio_dev, &data->scan,
1012 						   tstamp);
1013 
1014 		tstamp += sample_period;
1015 	}
1016 
1017 	return count;
1018 }
1019 
bmc150_accel_fifo_flush(struct iio_dev * indio_dev,unsigned samples)1020 static int bmc150_accel_fifo_flush(struct iio_dev *indio_dev, unsigned samples)
1021 {
1022 	struct bmc150_accel_data *data = iio_priv(indio_dev);
1023 	int ret;
1024 
1025 	mutex_lock(&data->mutex);
1026 	ret = __bmc150_accel_fifo_flush(indio_dev, samples, false);
1027 	mutex_unlock(&data->mutex);
1028 
1029 	return ret;
1030 }
1031 
1032 static IIO_CONST_ATTR_SAMP_FREQ_AVAIL(
1033 		"15.620000 31.260000 62.50000 125 250 500 1000 2000");
1034 
1035 static struct attribute *bmc150_accel_attributes[] = {
1036 	&iio_const_attr_sampling_frequency_available.dev_attr.attr,
1037 	NULL,
1038 };
1039 
1040 static const struct attribute_group bmc150_accel_attrs_group = {
1041 	.attrs = bmc150_accel_attributes,
1042 };
1043 
1044 static const struct iio_event_spec bmc150_accel_event = {
1045 		.type = IIO_EV_TYPE_ROC,
1046 		.dir = IIO_EV_DIR_EITHER,
1047 		.mask_separate = BIT(IIO_EV_INFO_VALUE) |
1048 				 BIT(IIO_EV_INFO_ENABLE) |
1049 				 BIT(IIO_EV_INFO_PERIOD)
1050 };
1051 
1052 #define BMC150_ACCEL_CHANNEL(_axis, bits) {				\
1053 	.type = IIO_ACCEL,						\
1054 	.modified = 1,							\
1055 	.channel2 = IIO_MOD_##_axis,					\
1056 	.info_mask_separate = BIT(IIO_CHAN_INFO_RAW),			\
1057 	.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) |		\
1058 				BIT(IIO_CHAN_INFO_SAMP_FREQ),		\
1059 	.scan_index = AXIS_##_axis,					\
1060 	.scan_type = {							\
1061 		.sign = 's',						\
1062 		.realbits = (bits),					\
1063 		.storagebits = 16,					\
1064 		.shift = 16 - (bits),					\
1065 		.endianness = IIO_LE,					\
1066 	},								\
1067 	.ext_info = bmc150_accel_ext_info,				\
1068 	.event_spec = &bmc150_accel_event,				\
1069 	.num_event_specs = 1						\
1070 }
1071 
1072 #define BMC150_ACCEL_CHANNELS(bits) {					\
1073 	{								\
1074 		.type = IIO_TEMP,					\
1075 		.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |		\
1076 				      BIT(IIO_CHAN_INFO_SCALE) |	\
1077 				      BIT(IIO_CHAN_INFO_OFFSET),	\
1078 		.scan_index = -1,					\
1079 	},								\
1080 	BMC150_ACCEL_CHANNEL(X, bits),					\
1081 	BMC150_ACCEL_CHANNEL(Y, bits),					\
1082 	BMC150_ACCEL_CHANNEL(Z, bits),					\
1083 	IIO_CHAN_SOFT_TIMESTAMP(3),					\
1084 }
1085 
1086 static const struct iio_chan_spec bma222e_accel_channels[] =
1087 	BMC150_ACCEL_CHANNELS(8);
1088 static const struct iio_chan_spec bma250e_accel_channels[] =
1089 	BMC150_ACCEL_CHANNELS(10);
1090 static const struct iio_chan_spec bmc150_accel_channels[] =
1091 	BMC150_ACCEL_CHANNELS(12);
1092 static const struct iio_chan_spec bma280_accel_channels[] =
1093 	BMC150_ACCEL_CHANNELS(14);
1094 
1095 /*
1096  * The range for the Bosch sensors is typically +-2g/4g/8g/16g, distributed
1097  * over the amount of bits (see above). The scale table can be calculated using
1098  *     (range / 2^bits) * g = (range / 2^bits) * 9.80665 m/s^2
1099  * e.g. for +-2g and 12 bits: (4 / 2^12) * 9.80665 m/s^2 = 0.0095768... m/s^2
1100  * Multiply 10^6 and round to get the values listed below.
1101  */
1102 static const struct bmc150_accel_chip_info bmc150_accel_chip_info_tbl[] = {
1103 	{
1104 		.name = "BMA222",
1105 		.chip_id = 0x03,
1106 		.channels = bma222e_accel_channels,
1107 		.num_channels = ARRAY_SIZE(bma222e_accel_channels),
1108 		.scale_table = { {153229, BMC150_ACCEL_DEF_RANGE_2G},
1109 				 {306458, BMC150_ACCEL_DEF_RANGE_4G},
1110 				 {612916, BMC150_ACCEL_DEF_RANGE_8G},
1111 				 {1225831, BMC150_ACCEL_DEF_RANGE_16G} },
1112 	},
1113 	{
1114 		.name = "BMA222E",
1115 		.chip_id = 0xF8,
1116 		.channels = bma222e_accel_channels,
1117 		.num_channels = ARRAY_SIZE(bma222e_accel_channels),
1118 		.scale_table = { {153229, BMC150_ACCEL_DEF_RANGE_2G},
1119 				 {306458, BMC150_ACCEL_DEF_RANGE_4G},
1120 				 {612916, BMC150_ACCEL_DEF_RANGE_8G},
1121 				 {1225831, BMC150_ACCEL_DEF_RANGE_16G} },
1122 	},
1123 	{
1124 		.name = "BMA250E",
1125 		.chip_id = 0xF9,
1126 		.channels = bma250e_accel_channels,
1127 		.num_channels = ARRAY_SIZE(bma250e_accel_channels),
1128 		.scale_table = { {38307, BMC150_ACCEL_DEF_RANGE_2G},
1129 				 {76614, BMC150_ACCEL_DEF_RANGE_4G},
1130 				 {153229, BMC150_ACCEL_DEF_RANGE_8G},
1131 				 {306458, BMC150_ACCEL_DEF_RANGE_16G} },
1132 	},
1133 	{
1134 		.name = "BMA253/BMA254/BMA255/BMC150/BMC156/BMI055",
1135 		.chip_id = 0xFA,
1136 		.channels = bmc150_accel_channels,
1137 		.num_channels = ARRAY_SIZE(bmc150_accel_channels),
1138 		.scale_table = { {9577, BMC150_ACCEL_DEF_RANGE_2G},
1139 				 {19154, BMC150_ACCEL_DEF_RANGE_4G},
1140 				 {38307, BMC150_ACCEL_DEF_RANGE_8G},
1141 				 {76614, BMC150_ACCEL_DEF_RANGE_16G} },
1142 	},
1143 	{
1144 		.name = "BMA280",
1145 		.chip_id = 0xFB,
1146 		.channels = bma280_accel_channels,
1147 		.num_channels = ARRAY_SIZE(bma280_accel_channels),
1148 		.scale_table = { {2394, BMC150_ACCEL_DEF_RANGE_2G},
1149 				 {4788, BMC150_ACCEL_DEF_RANGE_4G},
1150 				 {9577, BMC150_ACCEL_DEF_RANGE_8G},
1151 				 {19154, BMC150_ACCEL_DEF_RANGE_16G} },
1152 	},
1153 };
1154 
1155 static const struct iio_info bmc150_accel_info = {
1156 	.attrs			= &bmc150_accel_attrs_group,
1157 	.read_raw		= bmc150_accel_read_raw,
1158 	.write_raw		= bmc150_accel_write_raw,
1159 	.read_event_value	= bmc150_accel_read_event,
1160 	.write_event_value	= bmc150_accel_write_event,
1161 	.write_event_config	= bmc150_accel_write_event_config,
1162 	.read_event_config	= bmc150_accel_read_event_config,
1163 };
1164 
1165 static const struct iio_info bmc150_accel_info_fifo = {
1166 	.attrs			= &bmc150_accel_attrs_group,
1167 	.read_raw		= bmc150_accel_read_raw,
1168 	.write_raw		= bmc150_accel_write_raw,
1169 	.read_event_value	= bmc150_accel_read_event,
1170 	.write_event_value	= bmc150_accel_write_event,
1171 	.write_event_config	= bmc150_accel_write_event_config,
1172 	.read_event_config	= bmc150_accel_read_event_config,
1173 	.validate_trigger	= bmc150_accel_validate_trigger,
1174 	.hwfifo_set_watermark	= bmc150_accel_set_watermark,
1175 	.hwfifo_flush_to_buffer	= bmc150_accel_fifo_flush,
1176 };
1177 
1178 static const unsigned long bmc150_accel_scan_masks[] = {
1179 					BIT(AXIS_X) | BIT(AXIS_Y) | BIT(AXIS_Z),
1180 					0};
1181 
bmc150_accel_trigger_handler(int irq,void * p)1182 static irqreturn_t bmc150_accel_trigger_handler(int irq, void *p)
1183 {
1184 	struct iio_poll_func *pf = p;
1185 	struct iio_dev *indio_dev = pf->indio_dev;
1186 	struct bmc150_accel_data *data = iio_priv(indio_dev);
1187 	int ret;
1188 
1189 	mutex_lock(&data->mutex);
1190 	ret = regmap_bulk_read(data->regmap, BMC150_ACCEL_REG_XOUT_L,
1191 			       data->buffer, AXIS_MAX * 2);
1192 	mutex_unlock(&data->mutex);
1193 	if (ret < 0)
1194 		goto err_read;
1195 
1196 	iio_push_to_buffers_with_timestamp(indio_dev, data->buffer,
1197 					   pf->timestamp);
1198 err_read:
1199 	iio_trigger_notify_done(indio_dev->trig);
1200 
1201 	return IRQ_HANDLED;
1202 }
1203 
bmc150_accel_trig_reen(struct iio_trigger * trig)1204 static void bmc150_accel_trig_reen(struct iio_trigger *trig)
1205 {
1206 	struct bmc150_accel_trigger *t = iio_trigger_get_drvdata(trig);
1207 	struct bmc150_accel_data *data = t->data;
1208 	struct device *dev = regmap_get_device(data->regmap);
1209 	int ret;
1210 
1211 	/* new data interrupts don't need ack */
1212 	if (t == &t->data->triggers[BMC150_ACCEL_TRIGGER_DATA_READY])
1213 		return;
1214 
1215 	mutex_lock(&data->mutex);
1216 	/* clear any latched interrupt */
1217 	ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_RST_LATCH,
1218 			   BMC150_ACCEL_INT_MODE_LATCH_INT |
1219 			   BMC150_ACCEL_INT_MODE_LATCH_RESET);
1220 	mutex_unlock(&data->mutex);
1221 	if (ret < 0)
1222 		dev_err(dev, "Error writing reg_int_rst_latch\n");
1223 }
1224 
bmc150_accel_trigger_set_state(struct iio_trigger * trig,bool state)1225 static int bmc150_accel_trigger_set_state(struct iio_trigger *trig,
1226 					  bool state)
1227 {
1228 	struct bmc150_accel_trigger *t = iio_trigger_get_drvdata(trig);
1229 	struct bmc150_accel_data *data = t->data;
1230 	int ret;
1231 
1232 	mutex_lock(&data->mutex);
1233 
1234 	if (t->enabled == state) {
1235 		mutex_unlock(&data->mutex);
1236 		return 0;
1237 	}
1238 
1239 	if (t->setup) {
1240 		ret = t->setup(t, state);
1241 		if (ret < 0) {
1242 			mutex_unlock(&data->mutex);
1243 			return ret;
1244 		}
1245 	}
1246 
1247 	ret = bmc150_accel_set_interrupt(data, t->intr, state);
1248 	if (ret < 0) {
1249 		mutex_unlock(&data->mutex);
1250 		return ret;
1251 	}
1252 
1253 	t->enabled = state;
1254 
1255 	mutex_unlock(&data->mutex);
1256 
1257 	return ret;
1258 }
1259 
1260 static const struct iio_trigger_ops bmc150_accel_trigger_ops = {
1261 	.set_trigger_state = bmc150_accel_trigger_set_state,
1262 	.reenable = bmc150_accel_trig_reen,
1263 };
1264 
bmc150_accel_handle_roc_event(struct iio_dev * indio_dev)1265 static int bmc150_accel_handle_roc_event(struct iio_dev *indio_dev)
1266 {
1267 	struct bmc150_accel_data *data = iio_priv(indio_dev);
1268 	struct device *dev = regmap_get_device(data->regmap);
1269 	int dir;
1270 	int ret;
1271 	unsigned int val;
1272 
1273 	ret = regmap_read(data->regmap, BMC150_ACCEL_REG_INT_STATUS_2, &val);
1274 	if (ret < 0) {
1275 		dev_err(dev, "Error reading reg_int_status_2\n");
1276 		return ret;
1277 	}
1278 
1279 	if (val & BMC150_ACCEL_ANY_MOTION_BIT_SIGN)
1280 		dir = IIO_EV_DIR_FALLING;
1281 	else
1282 		dir = IIO_EV_DIR_RISING;
1283 
1284 	if (val & BMC150_ACCEL_ANY_MOTION_BIT_X)
1285 		iio_push_event(indio_dev,
1286 			       IIO_MOD_EVENT_CODE(IIO_ACCEL,
1287 						  0,
1288 						  IIO_MOD_X,
1289 						  IIO_EV_TYPE_ROC,
1290 						  dir),
1291 			       data->timestamp);
1292 
1293 	if (val & BMC150_ACCEL_ANY_MOTION_BIT_Y)
1294 		iio_push_event(indio_dev,
1295 			       IIO_MOD_EVENT_CODE(IIO_ACCEL,
1296 						  0,
1297 						  IIO_MOD_Y,
1298 						  IIO_EV_TYPE_ROC,
1299 						  dir),
1300 			       data->timestamp);
1301 
1302 	if (val & BMC150_ACCEL_ANY_MOTION_BIT_Z)
1303 		iio_push_event(indio_dev,
1304 			       IIO_MOD_EVENT_CODE(IIO_ACCEL,
1305 						  0,
1306 						  IIO_MOD_Z,
1307 						  IIO_EV_TYPE_ROC,
1308 						  dir),
1309 			       data->timestamp);
1310 
1311 	return ret;
1312 }
1313 
bmc150_accel_irq_thread_handler(int irq,void * private)1314 static irqreturn_t bmc150_accel_irq_thread_handler(int irq, void *private)
1315 {
1316 	struct iio_dev *indio_dev = private;
1317 	struct bmc150_accel_data *data = iio_priv(indio_dev);
1318 	struct device *dev = regmap_get_device(data->regmap);
1319 	bool ack = false;
1320 	int ret;
1321 
1322 	mutex_lock(&data->mutex);
1323 
1324 	if (data->fifo_mode) {
1325 		ret = __bmc150_accel_fifo_flush(indio_dev,
1326 						BMC150_ACCEL_FIFO_LENGTH, true);
1327 		if (ret > 0)
1328 			ack = true;
1329 	}
1330 
1331 	if (data->ev_enable_state) {
1332 		ret = bmc150_accel_handle_roc_event(indio_dev);
1333 		if (ret > 0)
1334 			ack = true;
1335 	}
1336 
1337 	if (ack) {
1338 		ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_RST_LATCH,
1339 				   BMC150_ACCEL_INT_MODE_LATCH_INT |
1340 				   BMC150_ACCEL_INT_MODE_LATCH_RESET);
1341 		if (ret)
1342 			dev_err(dev, "Error writing reg_int_rst_latch\n");
1343 
1344 		ret = IRQ_HANDLED;
1345 	} else {
1346 		ret = IRQ_NONE;
1347 	}
1348 
1349 	mutex_unlock(&data->mutex);
1350 
1351 	return ret;
1352 }
1353 
bmc150_accel_irq_handler(int irq,void * private)1354 static irqreturn_t bmc150_accel_irq_handler(int irq, void *private)
1355 {
1356 	struct iio_dev *indio_dev = private;
1357 	struct bmc150_accel_data *data = iio_priv(indio_dev);
1358 	bool ack = false;
1359 	int i;
1360 
1361 	data->old_timestamp = data->timestamp;
1362 	data->timestamp = iio_get_time_ns(indio_dev);
1363 
1364 	for (i = 0; i < BMC150_ACCEL_TRIGGERS; i++) {
1365 		if (data->triggers[i].enabled) {
1366 			iio_trigger_poll(data->triggers[i].indio_trig);
1367 			ack = true;
1368 			break;
1369 		}
1370 	}
1371 
1372 	if (data->ev_enable_state || data->fifo_mode)
1373 		return IRQ_WAKE_THREAD;
1374 
1375 	if (ack)
1376 		return IRQ_HANDLED;
1377 
1378 	return IRQ_NONE;
1379 }
1380 
1381 static const struct {
1382 	int intr;
1383 	const char *name;
1384 	int (*setup)(struct bmc150_accel_trigger *t, bool state);
1385 } bmc150_accel_triggers[BMC150_ACCEL_TRIGGERS] = {
1386 	{
1387 		.intr = 0,
1388 		.name = "%s-dev%d",
1389 	},
1390 	{
1391 		.intr = 1,
1392 		.name = "%s-any-motion-dev%d",
1393 		.setup = bmc150_accel_any_motion_setup,
1394 	},
1395 };
1396 
bmc150_accel_unregister_triggers(struct bmc150_accel_data * data,int from)1397 static void bmc150_accel_unregister_triggers(struct bmc150_accel_data *data,
1398 					     int from)
1399 {
1400 	int i;
1401 
1402 	for (i = from; i >= 0; i--) {
1403 		if (data->triggers[i].indio_trig) {
1404 			iio_trigger_unregister(data->triggers[i].indio_trig);
1405 			data->triggers[i].indio_trig = NULL;
1406 		}
1407 	}
1408 }
1409 
bmc150_accel_triggers_setup(struct iio_dev * indio_dev,struct bmc150_accel_data * data)1410 static int bmc150_accel_triggers_setup(struct iio_dev *indio_dev,
1411 				       struct bmc150_accel_data *data)
1412 {
1413 	struct device *dev = regmap_get_device(data->regmap);
1414 	int i, ret;
1415 
1416 	for (i = 0; i < BMC150_ACCEL_TRIGGERS; i++) {
1417 		struct bmc150_accel_trigger *t = &data->triggers[i];
1418 
1419 		t->indio_trig = devm_iio_trigger_alloc(dev,
1420 						       bmc150_accel_triggers[i].name,
1421 						       indio_dev->name,
1422 						       iio_device_id(indio_dev));
1423 		if (!t->indio_trig) {
1424 			ret = -ENOMEM;
1425 			break;
1426 		}
1427 
1428 		t->indio_trig->ops = &bmc150_accel_trigger_ops;
1429 		t->intr = bmc150_accel_triggers[i].intr;
1430 		t->data = data;
1431 		t->setup = bmc150_accel_triggers[i].setup;
1432 		iio_trigger_set_drvdata(t->indio_trig, t);
1433 
1434 		ret = iio_trigger_register(t->indio_trig);
1435 		if (ret)
1436 			break;
1437 	}
1438 
1439 	if (ret)
1440 		bmc150_accel_unregister_triggers(data, i - 1);
1441 
1442 	return ret;
1443 }
1444 
1445 #define BMC150_ACCEL_FIFO_MODE_STREAM          0x80
1446 #define BMC150_ACCEL_FIFO_MODE_FIFO            0x40
1447 #define BMC150_ACCEL_FIFO_MODE_BYPASS          0x00
1448 
bmc150_accel_fifo_set_mode(struct bmc150_accel_data * data)1449 static int bmc150_accel_fifo_set_mode(struct bmc150_accel_data *data)
1450 {
1451 	struct device *dev = regmap_get_device(data->regmap);
1452 	u8 reg = BMC150_ACCEL_REG_FIFO_CONFIG1;
1453 	int ret;
1454 
1455 	ret = regmap_write(data->regmap, reg, data->fifo_mode);
1456 	if (ret < 0) {
1457 		dev_err(dev, "Error writing reg_fifo_config1\n");
1458 		return ret;
1459 	}
1460 
1461 	if (!data->fifo_mode)
1462 		return 0;
1463 
1464 	ret = regmap_write(data->regmap, BMC150_ACCEL_REG_FIFO_CONFIG0,
1465 			   data->watermark);
1466 	if (ret < 0)
1467 		dev_err(dev, "Error writing reg_fifo_config0\n");
1468 
1469 	return ret;
1470 }
1471 
bmc150_accel_buffer_preenable(struct iio_dev * indio_dev)1472 static int bmc150_accel_buffer_preenable(struct iio_dev *indio_dev)
1473 {
1474 	struct bmc150_accel_data *data = iio_priv(indio_dev);
1475 
1476 	return bmc150_accel_set_power_state(data, true);
1477 }
1478 
bmc150_accel_buffer_postenable(struct iio_dev * indio_dev)1479 static int bmc150_accel_buffer_postenable(struct iio_dev *indio_dev)
1480 {
1481 	struct bmc150_accel_data *data = iio_priv(indio_dev);
1482 	int ret = 0;
1483 
1484 	if (iio_device_get_current_mode(indio_dev) == INDIO_BUFFER_TRIGGERED)
1485 		return 0;
1486 
1487 	mutex_lock(&data->mutex);
1488 
1489 	if (!data->watermark)
1490 		goto out;
1491 
1492 	ret = bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_WATERMARK,
1493 					 true);
1494 	if (ret)
1495 		goto out;
1496 
1497 	data->fifo_mode = BMC150_ACCEL_FIFO_MODE_FIFO;
1498 
1499 	ret = bmc150_accel_fifo_set_mode(data);
1500 	if (ret) {
1501 		data->fifo_mode = 0;
1502 		bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_WATERMARK,
1503 					   false);
1504 	}
1505 
1506 out:
1507 	mutex_unlock(&data->mutex);
1508 
1509 	return ret;
1510 }
1511 
bmc150_accel_buffer_predisable(struct iio_dev * indio_dev)1512 static int bmc150_accel_buffer_predisable(struct iio_dev *indio_dev)
1513 {
1514 	struct bmc150_accel_data *data = iio_priv(indio_dev);
1515 
1516 	if (iio_device_get_current_mode(indio_dev) == INDIO_BUFFER_TRIGGERED)
1517 		return 0;
1518 
1519 	mutex_lock(&data->mutex);
1520 
1521 	if (!data->fifo_mode)
1522 		goto out;
1523 
1524 	bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_WATERMARK, false);
1525 	__bmc150_accel_fifo_flush(indio_dev, BMC150_ACCEL_FIFO_LENGTH, false);
1526 	data->fifo_mode = 0;
1527 	bmc150_accel_fifo_set_mode(data);
1528 
1529 out:
1530 	mutex_unlock(&data->mutex);
1531 
1532 	return 0;
1533 }
1534 
bmc150_accel_buffer_postdisable(struct iio_dev * indio_dev)1535 static int bmc150_accel_buffer_postdisable(struct iio_dev *indio_dev)
1536 {
1537 	struct bmc150_accel_data *data = iio_priv(indio_dev);
1538 
1539 	return bmc150_accel_set_power_state(data, false);
1540 }
1541 
1542 static const struct iio_buffer_setup_ops bmc150_accel_buffer_ops = {
1543 	.preenable = bmc150_accel_buffer_preenable,
1544 	.postenable = bmc150_accel_buffer_postenable,
1545 	.predisable = bmc150_accel_buffer_predisable,
1546 	.postdisable = bmc150_accel_buffer_postdisable,
1547 };
1548 
bmc150_accel_chip_init(struct bmc150_accel_data * data)1549 static int bmc150_accel_chip_init(struct bmc150_accel_data *data)
1550 {
1551 	struct device *dev = regmap_get_device(data->regmap);
1552 	int ret, i;
1553 	unsigned int val;
1554 
1555 	/*
1556 	 * Reset chip to get it in a known good state. A delay of 1.8ms after
1557 	 * reset is required according to the data sheets of supported chips.
1558 	 */
1559 	regmap_write(data->regmap, BMC150_ACCEL_REG_RESET,
1560 		     BMC150_ACCEL_RESET_VAL);
1561 	usleep_range(1800, 2500);
1562 
1563 	ret = regmap_read(data->regmap, BMC150_ACCEL_REG_CHIP_ID, &val);
1564 	if (ret < 0) {
1565 		dev_err(dev, "Error: Reading chip id\n");
1566 		return ret;
1567 	}
1568 
1569 	dev_dbg(dev, "Chip Id %x\n", val);
1570 	for (i = 0; i < ARRAY_SIZE(bmc150_accel_chip_info_tbl); i++) {
1571 		if (bmc150_accel_chip_info_tbl[i].chip_id == val) {
1572 			data->chip_info = &bmc150_accel_chip_info_tbl[i];
1573 			break;
1574 		}
1575 	}
1576 
1577 	if (!data->chip_info) {
1578 		dev_err(dev, "Invalid chip %x\n", val);
1579 		return -ENODEV;
1580 	}
1581 
1582 	ret = bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_NORMAL, 0);
1583 	if (ret < 0)
1584 		return ret;
1585 
1586 	/* Set Bandwidth */
1587 	ret = bmc150_accel_set_bw(data, BMC150_ACCEL_DEF_BW, 0);
1588 	if (ret < 0)
1589 		return ret;
1590 
1591 	/* Set Default Range */
1592 	ret = regmap_write(data->regmap, BMC150_ACCEL_REG_PMU_RANGE,
1593 			   BMC150_ACCEL_DEF_RANGE_4G);
1594 	if (ret < 0) {
1595 		dev_err(dev, "Error writing reg_pmu_range\n");
1596 		return ret;
1597 	}
1598 
1599 	data->range = BMC150_ACCEL_DEF_RANGE_4G;
1600 
1601 	/* Set default slope duration and thresholds */
1602 	data->slope_thres = BMC150_ACCEL_DEF_SLOPE_THRESHOLD;
1603 	data->slope_dur = BMC150_ACCEL_DEF_SLOPE_DURATION;
1604 	ret = bmc150_accel_update_slope(data);
1605 	if (ret < 0)
1606 		return ret;
1607 
1608 	/* Set default as latched interrupts */
1609 	ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_RST_LATCH,
1610 			   BMC150_ACCEL_INT_MODE_LATCH_INT |
1611 			   BMC150_ACCEL_INT_MODE_LATCH_RESET);
1612 	if (ret < 0) {
1613 		dev_err(dev, "Error writing reg_int_rst_latch\n");
1614 		return ret;
1615 	}
1616 
1617 	return 0;
1618 }
1619 
bmc150_accel_core_probe(struct device * dev,struct regmap * regmap,int irq,enum bmc150_type type,const char * name,bool block_supported)1620 int bmc150_accel_core_probe(struct device *dev, struct regmap *regmap, int irq,
1621 			    enum bmc150_type type, const char *name,
1622 			    bool block_supported)
1623 {
1624 	const struct iio_dev_attr **fifo_attrs;
1625 	struct bmc150_accel_data *data;
1626 	struct iio_dev *indio_dev;
1627 	int ret;
1628 
1629 	indio_dev = devm_iio_device_alloc(dev, sizeof(*data));
1630 	if (!indio_dev)
1631 		return -ENOMEM;
1632 
1633 	data = iio_priv(indio_dev);
1634 	dev_set_drvdata(dev, indio_dev);
1635 
1636 	data->regmap = regmap;
1637 	data->type = type;
1638 
1639 	if (!bmc150_apply_acpi_orientation(dev, &data->orientation)) {
1640 		ret = iio_read_mount_matrix(dev, &data->orientation);
1641 		if (ret)
1642 			return ret;
1643 	}
1644 
1645 	/*
1646 	 * VDD   is the analog and digital domain voltage supply
1647 	 * VDDIO is the digital I/O voltage supply
1648 	 */
1649 	data->regulators[0].supply = "vdd";
1650 	data->regulators[1].supply = "vddio";
1651 	ret = devm_regulator_bulk_get(dev,
1652 				      ARRAY_SIZE(data->regulators),
1653 				      data->regulators);
1654 	if (ret)
1655 		return dev_err_probe(dev, ret, "failed to get regulators\n");
1656 
1657 	ret = regulator_bulk_enable(ARRAY_SIZE(data->regulators),
1658 				    data->regulators);
1659 	if (ret) {
1660 		dev_err(dev, "failed to enable regulators: %d\n", ret);
1661 		return ret;
1662 	}
1663 	/*
1664 	 * 2ms or 3ms power-on time according to datasheets, let's better
1665 	 * be safe than sorry and set this delay to 5ms.
1666 	 */
1667 	msleep(5);
1668 
1669 	ret = bmc150_accel_chip_init(data);
1670 	if (ret < 0)
1671 		goto err_disable_regulators;
1672 
1673 	mutex_init(&data->mutex);
1674 
1675 	indio_dev->channels = data->chip_info->channels;
1676 	indio_dev->num_channels = data->chip_info->num_channels;
1677 	indio_dev->name = name ? name : data->chip_info->name;
1678 	indio_dev->available_scan_masks = bmc150_accel_scan_masks;
1679 	indio_dev->modes = INDIO_DIRECT_MODE;
1680 	indio_dev->info = &bmc150_accel_info;
1681 
1682 	if (block_supported) {
1683 		indio_dev->modes |= INDIO_BUFFER_SOFTWARE;
1684 		indio_dev->info = &bmc150_accel_info_fifo;
1685 		fifo_attrs = bmc150_accel_fifo_attributes;
1686 	} else {
1687 		fifo_attrs = NULL;
1688 	}
1689 
1690 	ret = iio_triggered_buffer_setup_ext(indio_dev,
1691 					     &iio_pollfunc_store_time,
1692 					     bmc150_accel_trigger_handler,
1693 					     IIO_BUFFER_DIRECTION_IN,
1694 					     &bmc150_accel_buffer_ops,
1695 					     fifo_attrs);
1696 	if (ret < 0) {
1697 		dev_err(dev, "Failed: iio triggered buffer setup\n");
1698 		goto err_disable_regulators;
1699 	}
1700 
1701 	if (irq > 0) {
1702 		ret = devm_request_threaded_irq(dev, irq,
1703 						bmc150_accel_irq_handler,
1704 						bmc150_accel_irq_thread_handler,
1705 						IRQF_TRIGGER_RISING,
1706 						"bmc150_accel_event",
1707 						indio_dev);
1708 		if (ret)
1709 			goto err_buffer_cleanup;
1710 
1711 		/*
1712 		 * Set latched mode interrupt. While certain interrupts are
1713 		 * non-latched regardless of this settings (e.g. new data) we
1714 		 * want to use latch mode when we can to prevent interrupt
1715 		 * flooding.
1716 		 */
1717 		ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_RST_LATCH,
1718 				   BMC150_ACCEL_INT_MODE_LATCH_RESET);
1719 		if (ret < 0) {
1720 			dev_err(dev, "Error writing reg_int_rst_latch\n");
1721 			goto err_buffer_cleanup;
1722 		}
1723 
1724 		bmc150_accel_interrupts_setup(indio_dev, data, irq);
1725 
1726 		ret = bmc150_accel_triggers_setup(indio_dev, data);
1727 		if (ret)
1728 			goto err_buffer_cleanup;
1729 	}
1730 
1731 	ret = pm_runtime_set_active(dev);
1732 	if (ret)
1733 		goto err_trigger_unregister;
1734 
1735 	pm_runtime_enable(dev);
1736 	pm_runtime_set_autosuspend_delay(dev, BMC150_AUTO_SUSPEND_DELAY_MS);
1737 	pm_runtime_use_autosuspend(dev);
1738 
1739 	ret = iio_device_register(indio_dev);
1740 	if (ret < 0) {
1741 		dev_err(dev, "Unable to register iio device\n");
1742 		goto err_pm_cleanup;
1743 	}
1744 
1745 	return 0;
1746 
1747 err_pm_cleanup:
1748 	pm_runtime_dont_use_autosuspend(dev);
1749 	pm_runtime_disable(dev);
1750 err_trigger_unregister:
1751 	bmc150_accel_unregister_triggers(data, BMC150_ACCEL_TRIGGERS - 1);
1752 err_buffer_cleanup:
1753 	iio_triggered_buffer_cleanup(indio_dev);
1754 err_disable_regulators:
1755 	regulator_bulk_disable(ARRAY_SIZE(data->regulators),
1756 			       data->regulators);
1757 
1758 	return ret;
1759 }
1760 EXPORT_SYMBOL_NS_GPL(bmc150_accel_core_probe, "IIO_BMC150");
1761 
bmc150_accel_core_remove(struct device * dev)1762 void bmc150_accel_core_remove(struct device *dev)
1763 {
1764 	struct iio_dev *indio_dev = dev_get_drvdata(dev);
1765 	struct bmc150_accel_data *data = iio_priv(indio_dev);
1766 
1767 	iio_device_unregister(indio_dev);
1768 
1769 	pm_runtime_disable(dev);
1770 	pm_runtime_set_suspended(dev);
1771 
1772 	bmc150_accel_unregister_triggers(data, BMC150_ACCEL_TRIGGERS - 1);
1773 
1774 	iio_triggered_buffer_cleanup(indio_dev);
1775 
1776 	mutex_lock(&data->mutex);
1777 	bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_DEEP_SUSPEND, 0);
1778 	mutex_unlock(&data->mutex);
1779 
1780 	regulator_bulk_disable(ARRAY_SIZE(data->regulators),
1781 			       data->regulators);
1782 }
1783 EXPORT_SYMBOL_NS_GPL(bmc150_accel_core_remove, "IIO_BMC150");
1784 
1785 #ifdef CONFIG_PM_SLEEP
bmc150_accel_suspend(struct device * dev)1786 static int bmc150_accel_suspend(struct device *dev)
1787 {
1788 	struct iio_dev *indio_dev = dev_get_drvdata(dev);
1789 	struct bmc150_accel_data *data = iio_priv(indio_dev);
1790 
1791 	mutex_lock(&data->mutex);
1792 	bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_SUSPEND, 0);
1793 	mutex_unlock(&data->mutex);
1794 
1795 	return 0;
1796 }
1797 
bmc150_accel_resume(struct device * dev)1798 static int bmc150_accel_resume(struct device *dev)
1799 {
1800 	struct iio_dev *indio_dev = dev_get_drvdata(dev);
1801 	struct bmc150_accel_data *data = iio_priv(indio_dev);
1802 
1803 	mutex_lock(&data->mutex);
1804 	bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_NORMAL, 0);
1805 	bmc150_accel_fifo_set_mode(data);
1806 	mutex_unlock(&data->mutex);
1807 
1808 	if (data->resume_callback)
1809 		data->resume_callback(dev);
1810 
1811 	return 0;
1812 }
1813 #endif
1814 
1815 #ifdef CONFIG_PM
bmc150_accel_runtime_suspend(struct device * dev)1816 static int bmc150_accel_runtime_suspend(struct device *dev)
1817 {
1818 	struct iio_dev *indio_dev = dev_get_drvdata(dev);
1819 	struct bmc150_accel_data *data = iio_priv(indio_dev);
1820 	int ret;
1821 
1822 	ret = bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_SUSPEND, 0);
1823 	if (ret < 0)
1824 		return -EAGAIN;
1825 
1826 	return 0;
1827 }
1828 
bmc150_accel_runtime_resume(struct device * dev)1829 static int bmc150_accel_runtime_resume(struct device *dev)
1830 {
1831 	struct iio_dev *indio_dev = dev_get_drvdata(dev);
1832 	struct bmc150_accel_data *data = iio_priv(indio_dev);
1833 	int ret;
1834 	int sleep_val;
1835 
1836 	ret = bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_NORMAL, 0);
1837 	if (ret < 0)
1838 		return ret;
1839 	ret = bmc150_accel_fifo_set_mode(data);
1840 	if (ret < 0)
1841 		return ret;
1842 
1843 	sleep_val = bmc150_accel_get_startup_times(data);
1844 	if (sleep_val < 20)
1845 		usleep_range(sleep_val * 1000, 20000);
1846 	else
1847 		msleep_interruptible(sleep_val);
1848 
1849 	return 0;
1850 }
1851 #endif
1852 
1853 const struct dev_pm_ops bmc150_accel_pm_ops = {
1854 	SET_SYSTEM_SLEEP_PM_OPS(bmc150_accel_suspend, bmc150_accel_resume)
1855 	SET_RUNTIME_PM_OPS(bmc150_accel_runtime_suspend,
1856 			   bmc150_accel_runtime_resume, NULL)
1857 };
1858 EXPORT_SYMBOL_NS_GPL(bmc150_accel_pm_ops, "IIO_BMC150");
1859 
1860 MODULE_AUTHOR("Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>");
1861 MODULE_LICENSE("GPL v2");
1862 MODULE_DESCRIPTION("BMC150 accelerometer driver");
1863