xref: /linux/include/linux/blkdev.h (revision 26bb0d3f38a764b743a3ad5c8b6e5b5044d7ceb4)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Portions Copyright (C) 1992 Drew Eckhardt
4  */
5 #ifndef _LINUX_BLKDEV_H
6 #define _LINUX_BLKDEV_H
7 
8 #include <linux/types.h>
9 #include <linux/blk_types.h>
10 #include <linux/device.h>
11 #include <linux/list.h>
12 #include <linux/llist.h>
13 #include <linux/minmax.h>
14 #include <linux/timer.h>
15 #include <linux/workqueue.h>
16 #include <linux/wait.h>
17 #include <linux/bio.h>
18 #include <linux/gfp.h>
19 #include <linux/kdev_t.h>
20 #include <linux/rcupdate.h>
21 #include <linux/percpu-refcount.h>
22 #include <linux/blkzoned.h>
23 #include <linux/sched.h>
24 #include <linux/sbitmap.h>
25 #include <linux/uuid.h>
26 #include <linux/xarray.h>
27 #include <linux/file.h>
28 
29 struct module;
30 struct request_queue;
31 struct elevator_queue;
32 struct blk_trace;
33 struct request;
34 struct sg_io_hdr;
35 struct blkcg_gq;
36 struct blk_flush_queue;
37 struct kiocb;
38 struct pr_ops;
39 struct rq_qos;
40 struct blk_queue_stats;
41 struct blk_stat_callback;
42 struct blk_crypto_profile;
43 
44 extern const struct device_type disk_type;
45 extern const struct device_type part_type;
46 extern const struct class block_class;
47 
48 /*
49  * Maximum number of blkcg policies allowed to be registered concurrently.
50  * Defined here to simplify include dependency.
51  */
52 #define BLKCG_MAX_POLS		6
53 
54 #define DISK_MAX_PARTS			256
55 #define DISK_NAME_LEN			32
56 
57 #define PARTITION_META_INFO_VOLNAMELTH	64
58 /*
59  * Enough for the string representation of any kind of UUID plus NULL.
60  * EFI UUID is 36 characters. MSDOS UUID is 11 characters.
61  */
62 #define PARTITION_META_INFO_UUIDLTH	(UUID_STRING_LEN + 1)
63 
64 struct partition_meta_info {
65 	char uuid[PARTITION_META_INFO_UUIDLTH];
66 	u8 volname[PARTITION_META_INFO_VOLNAMELTH];
67 };
68 
69 /**
70  * DOC: genhd capability flags
71  *
72  * ``GENHD_FL_REMOVABLE``: indicates that the block device gives access to
73  * removable media.  When set, the device remains present even when media is not
74  * inserted.  Shall not be set for devices which are removed entirely when the
75  * media is removed.
76  *
77  * ``GENHD_FL_HIDDEN``: the block device is hidden; it doesn't produce events,
78  * doesn't appear in sysfs, and can't be opened from userspace or using
79  * blkdev_get*. Used for the underlying components of multipath devices.
80  *
81  * ``GENHD_FL_NO_PART``: partition support is disabled.  The kernel will not
82  * scan for partitions from add_disk, and users can't add partitions manually.
83  *
84  */
85 enum {
86 	GENHD_FL_REMOVABLE			= 1 << 0,
87 	GENHD_FL_HIDDEN				= 1 << 1,
88 	GENHD_FL_NO_PART			= 1 << 2,
89 };
90 
91 enum {
92 	DISK_EVENT_MEDIA_CHANGE			= 1 << 0, /* media changed */
93 	DISK_EVENT_EJECT_REQUEST		= 1 << 1, /* eject requested */
94 };
95 
96 enum {
97 	/* Poll even if events_poll_msecs is unset */
98 	DISK_EVENT_FLAG_POLL			= 1 << 0,
99 	/* Forward events to udev */
100 	DISK_EVENT_FLAG_UEVENT			= 1 << 1,
101 	/* Block event polling when open for exclusive write */
102 	DISK_EVENT_FLAG_BLOCK_ON_EXCL_WRITE	= 1 << 2,
103 };
104 
105 struct disk_events;
106 struct badblocks;
107 
108 enum blk_integrity_checksum {
109 	BLK_INTEGRITY_CSUM_NONE		= 0,
110 	BLK_INTEGRITY_CSUM_IP		= 1,
111 	BLK_INTEGRITY_CSUM_CRC		= 2,
112 	BLK_INTEGRITY_CSUM_CRC64	= 3,
113 } __packed ;
114 
115 struct blk_integrity {
116 	unsigned char				flags;
117 	enum blk_integrity_checksum		csum_type;
118 	unsigned char				tuple_size;
119 	unsigned char				pi_offset;
120 	unsigned char				interval_exp;
121 	unsigned char				tag_size;
122 };
123 
124 typedef unsigned int __bitwise blk_mode_t;
125 
126 /* open for reading */
127 #define BLK_OPEN_READ		((__force blk_mode_t)(1 << 0))
128 /* open for writing */
129 #define BLK_OPEN_WRITE		((__force blk_mode_t)(1 << 1))
130 /* open exclusively (vs other exclusive openers */
131 #define BLK_OPEN_EXCL		((__force blk_mode_t)(1 << 2))
132 /* opened with O_NDELAY */
133 #define BLK_OPEN_NDELAY		((__force blk_mode_t)(1 << 3))
134 /* open for "writes" only for ioctls (specialy hack for floppy.c) */
135 #define BLK_OPEN_WRITE_IOCTL	((__force blk_mode_t)(1 << 4))
136 /* open is exclusive wrt all other BLK_OPEN_WRITE opens to the device */
137 #define BLK_OPEN_RESTRICT_WRITES	((__force blk_mode_t)(1 << 5))
138 /* return partition scanning errors */
139 #define BLK_OPEN_STRICT_SCAN	((__force blk_mode_t)(1 << 6))
140 
141 struct gendisk {
142 	/*
143 	 * major/first_minor/minors should not be set by any new driver, the
144 	 * block core will take care of allocating them automatically.
145 	 */
146 	int major;
147 	int first_minor;
148 	int minors;
149 
150 	char disk_name[DISK_NAME_LEN];	/* name of major driver */
151 
152 	unsigned short events;		/* supported events */
153 	unsigned short event_flags;	/* flags related to event processing */
154 
155 	struct xarray part_tbl;
156 	struct block_device *part0;
157 
158 	const struct block_device_operations *fops;
159 	struct request_queue *queue;
160 	void *private_data;
161 
162 	struct bio_set bio_split;
163 
164 	int flags;
165 	unsigned long state;
166 #define GD_NEED_PART_SCAN		0
167 #define GD_READ_ONLY			1
168 #define GD_DEAD				2
169 #define GD_NATIVE_CAPACITY		3
170 #define GD_ADDED			4
171 #define GD_SUPPRESS_PART_SCAN		5
172 #define GD_OWNS_QUEUE			6
173 
174 	struct mutex open_mutex;	/* open/close mutex */
175 	unsigned open_partitions;	/* number of open partitions */
176 
177 	struct backing_dev_info	*bdi;
178 	struct kobject queue_kobj;	/* the queue/ directory */
179 	struct kobject *slave_dir;
180 #ifdef CONFIG_BLOCK_HOLDER_DEPRECATED
181 	struct list_head slave_bdevs;
182 #endif
183 	struct timer_rand_state *random;
184 	atomic_t sync_io;		/* RAID */
185 	struct disk_events *ev;
186 
187 #ifdef CONFIG_BLK_DEV_ZONED
188 	/*
189 	 * Zoned block device information. Reads of this information must be
190 	 * protected with blk_queue_enter() / blk_queue_exit(). Modifying this
191 	 * information is only allowed while no requests are being processed.
192 	 * See also blk_mq_freeze_queue() and blk_mq_unfreeze_queue().
193 	 */
194 	unsigned int		nr_zones;
195 	unsigned int		zone_capacity;
196 	unsigned int		last_zone_capacity;
197 	unsigned long		*conv_zones_bitmap;
198 	unsigned int            zone_wplugs_hash_bits;
199 	spinlock_t              zone_wplugs_lock;
200 	struct mempool_s	*zone_wplugs_pool;
201 	struct hlist_head       *zone_wplugs_hash;
202 	struct list_head        zone_wplugs_err_list;
203 	struct work_struct	zone_wplugs_work;
204 	struct workqueue_struct *zone_wplugs_wq;
205 #endif /* CONFIG_BLK_DEV_ZONED */
206 
207 #if IS_ENABLED(CONFIG_CDROM)
208 	struct cdrom_device_info *cdi;
209 #endif
210 	int node_id;
211 	struct badblocks *bb;
212 	struct lockdep_map lockdep_map;
213 	u64 diskseq;
214 	blk_mode_t open_mode;
215 
216 	/*
217 	 * Independent sector access ranges. This is always NULL for
218 	 * devices that do not have multiple independent access ranges.
219 	 */
220 	struct blk_independent_access_ranges *ia_ranges;
221 };
222 
223 /**
224  * disk_openers - returns how many openers are there for a disk
225  * @disk: disk to check
226  *
227  * This returns the number of openers for a disk.  Note that this value is only
228  * stable if disk->open_mutex is held.
229  *
230  * Note: Due to a quirk in the block layer open code, each open partition is
231  * only counted once even if there are multiple openers.
232  */
disk_openers(struct gendisk * disk)233 static inline unsigned int disk_openers(struct gendisk *disk)
234 {
235 	return atomic_read(&disk->part0->bd_openers);
236 }
237 
238 /**
239  * disk_has_partscan - return %true if partition scanning is enabled on a disk
240  * @disk: disk to check
241  *
242  * Returns %true if partitions scanning is enabled for @disk, or %false if
243  * partition scanning is disabled either permanently or temporarily.
244  */
disk_has_partscan(struct gendisk * disk)245 static inline bool disk_has_partscan(struct gendisk *disk)
246 {
247 	return !(disk->flags & (GENHD_FL_NO_PART | GENHD_FL_HIDDEN)) &&
248 		!test_bit(GD_SUPPRESS_PART_SCAN, &disk->state);
249 }
250 
251 /*
252  * The gendisk is refcounted by the part0 block_device, and the bd_device
253  * therein is also used for device model presentation in sysfs.
254  */
255 #define dev_to_disk(device) \
256 	(dev_to_bdev(device)->bd_disk)
257 #define disk_to_dev(disk) \
258 	(&((disk)->part0->bd_device))
259 
260 #if IS_REACHABLE(CONFIG_CDROM)
261 #define disk_to_cdi(disk)	((disk)->cdi)
262 #else
263 #define disk_to_cdi(disk)	NULL
264 #endif
265 
disk_devt(struct gendisk * disk)266 static inline dev_t disk_devt(struct gendisk *disk)
267 {
268 	return MKDEV(disk->major, disk->first_minor);
269 }
270 
271 /* blk_validate_limits() validates bsize, so drivers don't usually need to */
blk_validate_block_size(unsigned long bsize)272 static inline int blk_validate_block_size(unsigned long bsize)
273 {
274 	if (bsize < 512 || bsize > PAGE_SIZE || !is_power_of_2(bsize))
275 		return -EINVAL;
276 
277 	return 0;
278 }
279 
blk_op_is_passthrough(blk_opf_t op)280 static inline bool blk_op_is_passthrough(blk_opf_t op)
281 {
282 	op &= REQ_OP_MASK;
283 	return op == REQ_OP_DRV_IN || op == REQ_OP_DRV_OUT;
284 }
285 
286 /* flags set by the driver in queue_limits.features */
287 typedef unsigned int __bitwise blk_features_t;
288 
289 /* supports a volatile write cache */
290 #define BLK_FEAT_WRITE_CACHE		((__force blk_features_t)(1u << 0))
291 
292 /* supports passing on the FUA bit */
293 #define BLK_FEAT_FUA			((__force blk_features_t)(1u << 1))
294 
295 /* rotational device (hard drive or floppy) */
296 #define BLK_FEAT_ROTATIONAL		((__force blk_features_t)(1u << 2))
297 
298 /* contributes to the random number pool */
299 #define BLK_FEAT_ADD_RANDOM		((__force blk_features_t)(1u << 3))
300 
301 /* do disk/partitions IO accounting */
302 #define BLK_FEAT_IO_STAT		((__force blk_features_t)(1u << 4))
303 
304 /* don't modify data until writeback is done */
305 #define BLK_FEAT_STABLE_WRITES		((__force blk_features_t)(1u << 5))
306 
307 /* always completes in submit context */
308 #define BLK_FEAT_SYNCHRONOUS		((__force blk_features_t)(1u << 6))
309 
310 /* supports REQ_NOWAIT */
311 #define BLK_FEAT_NOWAIT			((__force blk_features_t)(1u << 7))
312 
313 /* supports DAX */
314 #define BLK_FEAT_DAX			((__force blk_features_t)(1u << 8))
315 
316 /* supports I/O polling */
317 #define BLK_FEAT_POLL			((__force blk_features_t)(1u << 9))
318 
319 /* is a zoned device */
320 #define BLK_FEAT_ZONED			((__force blk_features_t)(1u << 10))
321 
322 /* supports PCI(e) p2p requests */
323 #define BLK_FEAT_PCI_P2PDMA		((__force blk_features_t)(1u << 12))
324 
325 /* skip this queue in blk_mq_(un)quiesce_tagset */
326 #define BLK_FEAT_SKIP_TAGSET_QUIESCE	((__force blk_features_t)(1u << 13))
327 
328 /* bounce all highmem pages */
329 #define BLK_FEAT_BOUNCE_HIGH		((__force blk_features_t)(1u << 14))
330 
331 /* undocumented magic for bcache */
332 #define BLK_FEAT_RAID_PARTIAL_STRIPES_EXPENSIVE \
333 	((__force blk_features_t)(1u << 15))
334 
335 /*
336  * Flags automatically inherited when stacking limits.
337  */
338 #define BLK_FEAT_INHERIT_MASK \
339 	(BLK_FEAT_WRITE_CACHE | BLK_FEAT_FUA | BLK_FEAT_ROTATIONAL | \
340 	 BLK_FEAT_STABLE_WRITES | BLK_FEAT_ZONED | BLK_FEAT_BOUNCE_HIGH | \
341 	 BLK_FEAT_RAID_PARTIAL_STRIPES_EXPENSIVE)
342 
343 /* internal flags in queue_limits.flags */
344 typedef unsigned int __bitwise blk_flags_t;
345 
346 /* do not send FLUSH/FUA commands despite advertising a write cache */
347 #define BLK_FLAG_WRITE_CACHE_DISABLED	((__force blk_flags_t)(1u << 0))
348 
349 /* I/O topology is misaligned */
350 #define BLK_FLAG_MISALIGNED		((__force blk_flags_t)(1u << 1))
351 
352 struct queue_limits {
353 	blk_features_t		features;
354 	blk_flags_t		flags;
355 	unsigned long		seg_boundary_mask;
356 	unsigned long		virt_boundary_mask;
357 
358 	unsigned int		max_hw_sectors;
359 	unsigned int		max_dev_sectors;
360 	unsigned int		chunk_sectors;
361 	unsigned int		max_sectors;
362 	unsigned int		max_user_sectors;
363 	unsigned int		max_segment_size;
364 	unsigned int		physical_block_size;
365 	unsigned int		logical_block_size;
366 	unsigned int		alignment_offset;
367 	unsigned int		io_min;
368 	unsigned int		io_opt;
369 	unsigned int		max_discard_sectors;
370 	unsigned int		max_hw_discard_sectors;
371 	unsigned int		max_user_discard_sectors;
372 	unsigned int		max_secure_erase_sectors;
373 	unsigned int		max_write_zeroes_sectors;
374 	unsigned int		max_zone_append_sectors;
375 	unsigned int		discard_granularity;
376 	unsigned int		discard_alignment;
377 	unsigned int		zone_write_granularity;
378 
379 	/* atomic write limits */
380 	unsigned int		atomic_write_hw_max;
381 	unsigned int		atomic_write_max_sectors;
382 	unsigned int		atomic_write_hw_boundary;
383 	unsigned int		atomic_write_boundary_sectors;
384 	unsigned int		atomic_write_hw_unit_min;
385 	unsigned int		atomic_write_unit_min;
386 	unsigned int		atomic_write_hw_unit_max;
387 	unsigned int		atomic_write_unit_max;
388 
389 	unsigned short		max_segments;
390 	unsigned short		max_integrity_segments;
391 	unsigned short		max_discard_segments;
392 
393 	unsigned int		max_open_zones;
394 	unsigned int		max_active_zones;
395 
396 	/*
397 	 * Drivers that set dma_alignment to less than 511 must be prepared to
398 	 * handle individual bvec's that are not a multiple of a SECTOR_SIZE
399 	 * due to possible offsets.
400 	 */
401 	unsigned int		dma_alignment;
402 	unsigned int		dma_pad_mask;
403 
404 	struct blk_integrity	integrity;
405 };
406 
407 typedef int (*report_zones_cb)(struct blk_zone *zone, unsigned int idx,
408 			       void *data);
409 
410 #define BLK_ALL_ZONES  ((unsigned int)-1)
411 int blkdev_report_zones(struct block_device *bdev, sector_t sector,
412 		unsigned int nr_zones, report_zones_cb cb, void *data);
413 int blkdev_zone_mgmt(struct block_device *bdev, enum req_op op,
414 		sector_t sectors, sector_t nr_sectors);
415 int blk_revalidate_disk_zones(struct gendisk *disk);
416 
417 /*
418  * Independent access ranges: struct blk_independent_access_range describes
419  * a range of contiguous sectors that can be accessed using device command
420  * execution resources that are independent from the resources used for
421  * other access ranges. This is typically found with single-LUN multi-actuator
422  * HDDs where each access range is served by a different set of heads.
423  * The set of independent ranges supported by the device is defined using
424  * struct blk_independent_access_ranges. The independent ranges must not overlap
425  * and must include all sectors within the disk capacity (no sector holes
426  * allowed).
427  * For a device with multiple ranges, requests targeting sectors in different
428  * ranges can be executed in parallel. A request can straddle an access range
429  * boundary.
430  */
431 struct blk_independent_access_range {
432 	struct kobject		kobj;
433 	sector_t		sector;
434 	sector_t		nr_sectors;
435 };
436 
437 struct blk_independent_access_ranges {
438 	struct kobject				kobj;
439 	bool					sysfs_registered;
440 	unsigned int				nr_ia_ranges;
441 	struct blk_independent_access_range	ia_range[];
442 };
443 
444 struct request_queue {
445 	/*
446 	 * The queue owner gets to use this for whatever they like.
447 	 * ll_rw_blk doesn't touch it.
448 	 */
449 	void			*queuedata;
450 
451 	struct elevator_queue	*elevator;
452 
453 	const struct blk_mq_ops	*mq_ops;
454 
455 	/* sw queues */
456 	struct blk_mq_ctx __percpu	*queue_ctx;
457 
458 	/*
459 	 * various queue flags, see QUEUE_* below
460 	 */
461 	unsigned long		queue_flags;
462 
463 	unsigned int		rq_timeout;
464 
465 	unsigned int		queue_depth;
466 
467 	refcount_t		refs;
468 
469 	/* hw dispatch queues */
470 	unsigned int		nr_hw_queues;
471 	struct xarray		hctx_table;
472 
473 	struct percpu_ref	q_usage_counter;
474 
475 	struct request		*last_merge;
476 
477 	spinlock_t		queue_lock;
478 
479 	int			quiesce_depth;
480 
481 	struct gendisk		*disk;
482 
483 	/*
484 	 * mq queue kobject
485 	 */
486 	struct kobject *mq_kobj;
487 
488 	struct queue_limits	limits;
489 
490 #ifdef CONFIG_PM
491 	struct device		*dev;
492 	enum rpm_status		rpm_status;
493 #endif
494 
495 	/*
496 	 * Number of contexts that have called blk_set_pm_only(). If this
497 	 * counter is above zero then only RQF_PM requests are processed.
498 	 */
499 	atomic_t		pm_only;
500 
501 	struct blk_queue_stats	*stats;
502 	struct rq_qos		*rq_qos;
503 	struct mutex		rq_qos_mutex;
504 
505 	/*
506 	 * ida allocated id for this queue.  Used to index queues from
507 	 * ioctx.
508 	 */
509 	int			id;
510 
511 	/*
512 	 * queue settings
513 	 */
514 	unsigned long		nr_requests;	/* Max # of requests */
515 
516 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
517 	struct blk_crypto_profile *crypto_profile;
518 	struct kobject *crypto_kobject;
519 #endif
520 
521 	struct timer_list	timeout;
522 	struct work_struct	timeout_work;
523 
524 	atomic_t		nr_active_requests_shared_tags;
525 
526 	struct blk_mq_tags	*sched_shared_tags;
527 
528 	struct list_head	icq_list;
529 #ifdef CONFIG_BLK_CGROUP
530 	DECLARE_BITMAP		(blkcg_pols, BLKCG_MAX_POLS);
531 	struct blkcg_gq		*root_blkg;
532 	struct list_head	blkg_list;
533 	struct mutex		blkcg_mutex;
534 #endif
535 
536 	int			node;
537 
538 	spinlock_t		requeue_lock;
539 	struct list_head	requeue_list;
540 	struct delayed_work	requeue_work;
541 
542 #ifdef CONFIG_BLK_DEV_IO_TRACE
543 	struct blk_trace __rcu	*blk_trace;
544 #endif
545 	/*
546 	 * for flush operations
547 	 */
548 	struct blk_flush_queue	*fq;
549 	struct list_head	flush_list;
550 
551 	struct mutex		sysfs_lock;
552 	struct mutex		sysfs_dir_lock;
553 	struct mutex		limits_lock;
554 
555 	/*
556 	 * for reusing dead hctx instance in case of updating
557 	 * nr_hw_queues
558 	 */
559 	struct list_head	unused_hctx_list;
560 	spinlock_t		unused_hctx_lock;
561 
562 	int			mq_freeze_depth;
563 
564 #ifdef CONFIG_BLK_DEV_THROTTLING
565 	/* Throttle data */
566 	struct throtl_data *td;
567 #endif
568 	struct rcu_head		rcu_head;
569 	wait_queue_head_t	mq_freeze_wq;
570 	/*
571 	 * Protect concurrent access to q_usage_counter by
572 	 * percpu_ref_kill() and percpu_ref_reinit().
573 	 */
574 	struct mutex		mq_freeze_lock;
575 
576 	struct blk_mq_tag_set	*tag_set;
577 	struct list_head	tag_set_list;
578 
579 	struct dentry		*debugfs_dir;
580 	struct dentry		*sched_debugfs_dir;
581 	struct dentry		*rqos_debugfs_dir;
582 	/*
583 	 * Serializes all debugfs metadata operations using the above dentries.
584 	 */
585 	struct mutex		debugfs_mutex;
586 
587 	bool			mq_sysfs_init_done;
588 };
589 
590 /* Keep blk_queue_flag_name[] in sync with the definitions below */
591 enum {
592 	QUEUE_FLAG_DYING,		/* queue being torn down */
593 	QUEUE_FLAG_NOMERGES,		/* disable merge attempts */
594 	QUEUE_FLAG_SAME_COMP,		/* complete on same CPU-group */
595 	QUEUE_FLAG_FAIL_IO,		/* fake timeout */
596 	QUEUE_FLAG_NOXMERGES,		/* No extended merges */
597 	QUEUE_FLAG_SAME_FORCE,		/* force complete on same CPU */
598 	QUEUE_FLAG_INIT_DONE,		/* queue is initialized */
599 	QUEUE_FLAG_STATS,		/* track IO start and completion times */
600 	QUEUE_FLAG_REGISTERED,		/* queue has been registered to a disk */
601 	QUEUE_FLAG_QUIESCED,		/* queue has been quiesced */
602 	QUEUE_FLAG_RQ_ALLOC_TIME,	/* record rq->alloc_time_ns */
603 	QUEUE_FLAG_HCTX_ACTIVE,		/* at least one blk-mq hctx is active */
604 	QUEUE_FLAG_SQ_SCHED,		/* single queue style io dispatch */
605 	QUEUE_FLAG_MAX
606 };
607 
608 #define QUEUE_FLAG_MQ_DEFAULT	(1UL << QUEUE_FLAG_SAME_COMP)
609 
610 void blk_queue_flag_set(unsigned int flag, struct request_queue *q);
611 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q);
612 
613 #define blk_queue_dying(q)	test_bit(QUEUE_FLAG_DYING, &(q)->queue_flags)
614 #define blk_queue_init_done(q)	test_bit(QUEUE_FLAG_INIT_DONE, &(q)->queue_flags)
615 #define blk_queue_nomerges(q)	test_bit(QUEUE_FLAG_NOMERGES, &(q)->queue_flags)
616 #define blk_queue_noxmerges(q)	\
617 	test_bit(QUEUE_FLAG_NOXMERGES, &(q)->queue_flags)
618 #define blk_queue_nonrot(q)	(!((q)->limits.features & BLK_FEAT_ROTATIONAL))
619 #define blk_queue_io_stat(q)	((q)->limits.features & BLK_FEAT_IO_STAT)
620 #define blk_queue_dax(q)	((q)->limits.features & BLK_FEAT_DAX)
621 #define blk_queue_pci_p2pdma(q)	((q)->limits.features & BLK_FEAT_PCI_P2PDMA)
622 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
623 #define blk_queue_rq_alloc_time(q)	\
624 	test_bit(QUEUE_FLAG_RQ_ALLOC_TIME, &(q)->queue_flags)
625 #else
626 #define blk_queue_rq_alloc_time(q)	false
627 #endif
628 
629 #define blk_noretry_request(rq) \
630 	((rq)->cmd_flags & (REQ_FAILFAST_DEV|REQ_FAILFAST_TRANSPORT| \
631 			     REQ_FAILFAST_DRIVER))
632 #define blk_queue_quiesced(q)	test_bit(QUEUE_FLAG_QUIESCED, &(q)->queue_flags)
633 #define blk_queue_pm_only(q)	atomic_read(&(q)->pm_only)
634 #define blk_queue_registered(q)	test_bit(QUEUE_FLAG_REGISTERED, &(q)->queue_flags)
635 #define blk_queue_sq_sched(q)	test_bit(QUEUE_FLAG_SQ_SCHED, &(q)->queue_flags)
636 #define blk_queue_skip_tagset_quiesce(q) \
637 	((q)->limits.features & BLK_FEAT_SKIP_TAGSET_QUIESCE)
638 
639 extern void blk_set_pm_only(struct request_queue *q);
640 extern void blk_clear_pm_only(struct request_queue *q);
641 
642 #define list_entry_rq(ptr)	list_entry((ptr), struct request, queuelist)
643 
644 #define dma_map_bvec(dev, bv, dir, attrs) \
645 	dma_map_page_attrs(dev, (bv)->bv_page, (bv)->bv_offset, (bv)->bv_len, \
646 	(dir), (attrs))
647 
queue_is_mq(struct request_queue * q)648 static inline bool queue_is_mq(struct request_queue *q)
649 {
650 	return q->mq_ops;
651 }
652 
653 #ifdef CONFIG_PM
queue_rpm_status(struct request_queue * q)654 static inline enum rpm_status queue_rpm_status(struct request_queue *q)
655 {
656 	return q->rpm_status;
657 }
658 #else
queue_rpm_status(struct request_queue * q)659 static inline enum rpm_status queue_rpm_status(struct request_queue *q)
660 {
661 	return RPM_ACTIVE;
662 }
663 #endif
664 
blk_queue_is_zoned(struct request_queue * q)665 static inline bool blk_queue_is_zoned(struct request_queue *q)
666 {
667 	return IS_ENABLED(CONFIG_BLK_DEV_ZONED) &&
668 		(q->limits.features & BLK_FEAT_ZONED);
669 }
670 
671 #ifdef CONFIG_BLK_DEV_ZONED
disk_nr_zones(struct gendisk * disk)672 static inline unsigned int disk_nr_zones(struct gendisk *disk)
673 {
674 	return disk->nr_zones;
675 }
676 bool blk_zone_plug_bio(struct bio *bio, unsigned int nr_segs);
677 #else /* CONFIG_BLK_DEV_ZONED */
disk_nr_zones(struct gendisk * disk)678 static inline unsigned int disk_nr_zones(struct gendisk *disk)
679 {
680 	return 0;
681 }
blk_zone_plug_bio(struct bio * bio,unsigned int nr_segs)682 static inline bool blk_zone_plug_bio(struct bio *bio, unsigned int nr_segs)
683 {
684 	return false;
685 }
686 #endif /* CONFIG_BLK_DEV_ZONED */
687 
disk_zone_no(struct gendisk * disk,sector_t sector)688 static inline unsigned int disk_zone_no(struct gendisk *disk, sector_t sector)
689 {
690 	if (!blk_queue_is_zoned(disk->queue))
691 		return 0;
692 	return sector >> ilog2(disk->queue->limits.chunk_sectors);
693 }
694 
bdev_nr_zones(struct block_device * bdev)695 static inline unsigned int bdev_nr_zones(struct block_device *bdev)
696 {
697 	return disk_nr_zones(bdev->bd_disk);
698 }
699 
bdev_max_open_zones(struct block_device * bdev)700 static inline unsigned int bdev_max_open_zones(struct block_device *bdev)
701 {
702 	return bdev->bd_disk->queue->limits.max_open_zones;
703 }
704 
bdev_max_active_zones(struct block_device * bdev)705 static inline unsigned int bdev_max_active_zones(struct block_device *bdev)
706 {
707 	return bdev->bd_disk->queue->limits.max_active_zones;
708 }
709 
blk_queue_depth(struct request_queue * q)710 static inline unsigned int blk_queue_depth(struct request_queue *q)
711 {
712 	if (q->queue_depth)
713 		return q->queue_depth;
714 
715 	return q->nr_requests;
716 }
717 
718 /*
719  * default timeout for SG_IO if none specified
720  */
721 #define BLK_DEFAULT_SG_TIMEOUT	(60 * HZ)
722 #define BLK_MIN_SG_TIMEOUT	(7 * HZ)
723 
724 /* This should not be used directly - use rq_for_each_segment */
725 #define for_each_bio(_bio)		\
726 	for (; _bio; _bio = _bio->bi_next)
727 
728 int __must_check device_add_disk(struct device *parent, struct gendisk *disk,
729 				 const struct attribute_group **groups);
add_disk(struct gendisk * disk)730 static inline int __must_check add_disk(struct gendisk *disk)
731 {
732 	return device_add_disk(NULL, disk, NULL);
733 }
734 void del_gendisk(struct gendisk *gp);
735 void invalidate_disk(struct gendisk *disk);
736 void set_disk_ro(struct gendisk *disk, bool read_only);
737 void disk_uevent(struct gendisk *disk, enum kobject_action action);
738 
bdev_partno(const struct block_device * bdev)739 static inline u8 bdev_partno(const struct block_device *bdev)
740 {
741 	return atomic_read(&bdev->__bd_flags) & BD_PARTNO;
742 }
743 
bdev_test_flag(const struct block_device * bdev,unsigned flag)744 static inline bool bdev_test_flag(const struct block_device *bdev, unsigned flag)
745 {
746 	return atomic_read(&bdev->__bd_flags) & flag;
747 }
748 
bdev_set_flag(struct block_device * bdev,unsigned flag)749 static inline void bdev_set_flag(struct block_device *bdev, unsigned flag)
750 {
751 	atomic_or(flag, &bdev->__bd_flags);
752 }
753 
bdev_clear_flag(struct block_device * bdev,unsigned flag)754 static inline void bdev_clear_flag(struct block_device *bdev, unsigned flag)
755 {
756 	atomic_andnot(flag, &bdev->__bd_flags);
757 }
758 
get_disk_ro(struct gendisk * disk)759 static inline int get_disk_ro(struct gendisk *disk)
760 {
761 	return bdev_test_flag(disk->part0, BD_READ_ONLY) ||
762 		test_bit(GD_READ_ONLY, &disk->state);
763 }
764 
bdev_read_only(struct block_device * bdev)765 static inline int bdev_read_only(struct block_device *bdev)
766 {
767 	return bdev_test_flag(bdev, BD_READ_ONLY) || get_disk_ro(bdev->bd_disk);
768 }
769 
770 bool set_capacity_and_notify(struct gendisk *disk, sector_t size);
771 void disk_force_media_change(struct gendisk *disk);
772 void bdev_mark_dead(struct block_device *bdev, bool surprise);
773 
774 void add_disk_randomness(struct gendisk *disk) __latent_entropy;
775 void rand_initialize_disk(struct gendisk *disk);
776 
get_start_sect(struct block_device * bdev)777 static inline sector_t get_start_sect(struct block_device *bdev)
778 {
779 	return bdev->bd_start_sect;
780 }
781 
bdev_nr_sectors(struct block_device * bdev)782 static inline sector_t bdev_nr_sectors(struct block_device *bdev)
783 {
784 	return bdev->bd_nr_sectors;
785 }
786 
bdev_nr_bytes(struct block_device * bdev)787 static inline loff_t bdev_nr_bytes(struct block_device *bdev)
788 {
789 	return (loff_t)bdev_nr_sectors(bdev) << SECTOR_SHIFT;
790 }
791 
get_capacity(struct gendisk * disk)792 static inline sector_t get_capacity(struct gendisk *disk)
793 {
794 	return bdev_nr_sectors(disk->part0);
795 }
796 
sb_bdev_nr_blocks(struct super_block * sb)797 static inline u64 sb_bdev_nr_blocks(struct super_block *sb)
798 {
799 	return bdev_nr_sectors(sb->s_bdev) >>
800 		(sb->s_blocksize_bits - SECTOR_SHIFT);
801 }
802 
803 int bdev_disk_changed(struct gendisk *disk, bool invalidate);
804 
805 void put_disk(struct gendisk *disk);
806 struct gendisk *__blk_alloc_disk(struct queue_limits *lim, int node,
807 		struct lock_class_key *lkclass);
808 
809 /**
810  * blk_alloc_disk - allocate a gendisk structure
811  * @lim: queue limits to be used for this disk.
812  * @node_id: numa node to allocate on
813  *
814  * Allocate and pre-initialize a gendisk structure for use with BIO based
815  * drivers.
816  *
817  * Returns an ERR_PTR on error, else the allocated disk.
818  *
819  * Context: can sleep
820  */
821 #define blk_alloc_disk(lim, node_id)					\
822 ({									\
823 	static struct lock_class_key __key;				\
824 									\
825 	__blk_alloc_disk(lim, node_id, &__key);				\
826 })
827 
828 int __register_blkdev(unsigned int major, const char *name,
829 		void (*probe)(dev_t devt));
830 #define register_blkdev(major, name) \
831 	__register_blkdev(major, name, NULL)
832 void unregister_blkdev(unsigned int major, const char *name);
833 
834 bool disk_check_media_change(struct gendisk *disk);
835 void set_capacity(struct gendisk *disk, sector_t size);
836 
837 #ifdef CONFIG_BLOCK_HOLDER_DEPRECATED
838 int bd_link_disk_holder(struct block_device *bdev, struct gendisk *disk);
839 void bd_unlink_disk_holder(struct block_device *bdev, struct gendisk *disk);
840 #else
bd_link_disk_holder(struct block_device * bdev,struct gendisk * disk)841 static inline int bd_link_disk_holder(struct block_device *bdev,
842 				      struct gendisk *disk)
843 {
844 	return 0;
845 }
bd_unlink_disk_holder(struct block_device * bdev,struct gendisk * disk)846 static inline void bd_unlink_disk_holder(struct block_device *bdev,
847 					 struct gendisk *disk)
848 {
849 }
850 #endif /* CONFIG_BLOCK_HOLDER_DEPRECATED */
851 
852 dev_t part_devt(struct gendisk *disk, u8 partno);
853 void inc_diskseq(struct gendisk *disk);
854 void blk_request_module(dev_t devt);
855 
856 extern int blk_register_queue(struct gendisk *disk);
857 extern void blk_unregister_queue(struct gendisk *disk);
858 void submit_bio_noacct(struct bio *bio);
859 struct bio *bio_split_to_limits(struct bio *bio);
860 
861 extern int blk_lld_busy(struct request_queue *q);
862 extern int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags);
863 extern void blk_queue_exit(struct request_queue *q);
864 extern void blk_sync_queue(struct request_queue *q);
865 
866 /* Helper to convert REQ_OP_XXX to its string format XXX */
867 extern const char *blk_op_str(enum req_op op);
868 
869 int blk_status_to_errno(blk_status_t status);
870 blk_status_t errno_to_blk_status(int errno);
871 const char *blk_status_to_str(blk_status_t status);
872 
873 /* only poll the hardware once, don't continue until a completion was found */
874 #define BLK_POLL_ONESHOT		(1 << 0)
875 int bio_poll(struct bio *bio, struct io_comp_batch *iob, unsigned int flags);
876 int iocb_bio_iopoll(struct kiocb *kiocb, struct io_comp_batch *iob,
877 			unsigned int flags);
878 
bdev_get_queue(struct block_device * bdev)879 static inline struct request_queue *bdev_get_queue(struct block_device *bdev)
880 {
881 	return bdev->bd_queue;	/* this is never NULL */
882 }
883 
884 /* Helper to convert BLK_ZONE_ZONE_XXX to its string format XXX */
885 const char *blk_zone_cond_str(enum blk_zone_cond zone_cond);
886 
bio_zone_no(struct bio * bio)887 static inline unsigned int bio_zone_no(struct bio *bio)
888 {
889 	return disk_zone_no(bio->bi_bdev->bd_disk, bio->bi_iter.bi_sector);
890 }
891 
bio_straddles_zones(struct bio * bio)892 static inline bool bio_straddles_zones(struct bio *bio)
893 {
894 	return bio_sectors(bio) &&
895 		bio_zone_no(bio) !=
896 		disk_zone_no(bio->bi_bdev->bd_disk, bio_end_sector(bio) - 1);
897 }
898 
899 /*
900  * Return how much within the boundary is left to be used for I/O at a given
901  * offset.
902  */
blk_boundary_sectors_left(sector_t offset,unsigned int boundary_sectors)903 static inline unsigned int blk_boundary_sectors_left(sector_t offset,
904 		unsigned int boundary_sectors)
905 {
906 	if (unlikely(!is_power_of_2(boundary_sectors)))
907 		return boundary_sectors - sector_div(offset, boundary_sectors);
908 	return boundary_sectors - (offset & (boundary_sectors - 1));
909 }
910 
911 /**
912  * queue_limits_start_update - start an atomic update of queue limits
913  * @q:		queue to update
914  *
915  * This functions starts an atomic update of the queue limits.  It takes a lock
916  * to prevent other updates and returns a snapshot of the current limits that
917  * the caller can modify.  The caller must call queue_limits_commit_update()
918  * to finish the update.
919  *
920  * Context: process context.  The caller must have frozen the queue or ensured
921  * that there is outstanding I/O by other means.
922  */
923 static inline struct queue_limits
queue_limits_start_update(struct request_queue * q)924 queue_limits_start_update(struct request_queue *q)
925 {
926 	mutex_lock(&q->limits_lock);
927 	return q->limits;
928 }
929 int queue_limits_commit_update(struct request_queue *q,
930 		struct queue_limits *lim);
931 int queue_limits_set(struct request_queue *q, struct queue_limits *lim);
932 
933 /**
934  * queue_limits_cancel_update - cancel an atomic update of queue limits
935  * @q:		queue to update
936  *
937  * This functions cancels an atomic update of the queue limits started by
938  * queue_limits_start_update() and should be used when an error occurs after
939  * starting update.
940  */
queue_limits_cancel_update(struct request_queue * q)941 static inline void queue_limits_cancel_update(struct request_queue *q)
942 {
943 	mutex_unlock(&q->limits_lock);
944 }
945 
946 /*
947  * These helpers are for drivers that have sloppy feature negotiation and might
948  * have to disable DISCARD, WRITE_ZEROES or SECURE_DISCARD from the I/O
949  * completion handler when the device returned an indicator that the respective
950  * feature is not actually supported.  They are racy and the driver needs to
951  * cope with that.  Try to avoid this scheme if you can.
952  */
blk_queue_disable_discard(struct request_queue * q)953 static inline void blk_queue_disable_discard(struct request_queue *q)
954 {
955 	q->limits.max_discard_sectors = 0;
956 }
957 
blk_queue_disable_secure_erase(struct request_queue * q)958 static inline void blk_queue_disable_secure_erase(struct request_queue *q)
959 {
960 	q->limits.max_secure_erase_sectors = 0;
961 }
962 
blk_queue_disable_write_zeroes(struct request_queue * q)963 static inline void blk_queue_disable_write_zeroes(struct request_queue *q)
964 {
965 	q->limits.max_write_zeroes_sectors = 0;
966 }
967 
968 /*
969  * Access functions for manipulating queue properties
970  */
971 extern void blk_limits_io_min(struct queue_limits *limits, unsigned int min);
972 extern void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt);
973 extern void blk_set_queue_depth(struct request_queue *q, unsigned int depth);
974 extern void blk_set_stacking_limits(struct queue_limits *lim);
975 extern int blk_stack_limits(struct queue_limits *t, struct queue_limits *b,
976 			    sector_t offset);
977 void queue_limits_stack_bdev(struct queue_limits *t, struct block_device *bdev,
978 		sector_t offset, const char *pfx);
979 extern void blk_queue_rq_timeout(struct request_queue *, unsigned int);
980 
981 struct blk_independent_access_ranges *
982 disk_alloc_independent_access_ranges(struct gendisk *disk, int nr_ia_ranges);
983 void disk_set_independent_access_ranges(struct gendisk *disk,
984 				struct blk_independent_access_ranges *iars);
985 
986 bool __must_check blk_get_queue(struct request_queue *);
987 extern void blk_put_queue(struct request_queue *);
988 
989 void blk_mark_disk_dead(struct gendisk *disk);
990 
991 #ifdef CONFIG_BLOCK
992 /*
993  * blk_plug permits building a queue of related requests by holding the I/O
994  * fragments for a short period. This allows merging of sequential requests
995  * into single larger request. As the requests are moved from a per-task list to
996  * the device's request_queue in a batch, this results in improved scalability
997  * as the lock contention for request_queue lock is reduced.
998  *
999  * It is ok not to disable preemption when adding the request to the plug list
1000  * or when attempting a merge. For details, please see schedule() where
1001  * blk_flush_plug() is called.
1002  */
1003 struct blk_plug {
1004 	struct request *mq_list; /* blk-mq requests */
1005 
1006 	/* if ios_left is > 1, we can batch tag/rq allocations */
1007 	struct request *cached_rq;
1008 	u64 cur_ktime;
1009 	unsigned short nr_ios;
1010 
1011 	unsigned short rq_count;
1012 
1013 	bool multiple_queues;
1014 	bool has_elevator;
1015 
1016 	struct list_head cb_list; /* md requires an unplug callback */
1017 };
1018 
1019 struct blk_plug_cb;
1020 typedef void (*blk_plug_cb_fn)(struct blk_plug_cb *, bool);
1021 struct blk_plug_cb {
1022 	struct list_head list;
1023 	blk_plug_cb_fn callback;
1024 	void *data;
1025 };
1026 extern struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug,
1027 					     void *data, int size);
1028 extern void blk_start_plug(struct blk_plug *);
1029 extern void blk_start_plug_nr_ios(struct blk_plug *, unsigned short);
1030 extern void blk_finish_plug(struct blk_plug *);
1031 
1032 void __blk_flush_plug(struct blk_plug *plug, bool from_schedule);
blk_flush_plug(struct blk_plug * plug,bool async)1033 static inline void blk_flush_plug(struct blk_plug *plug, bool async)
1034 {
1035 	if (plug)
1036 		__blk_flush_plug(plug, async);
1037 }
1038 
1039 /*
1040  * tsk == current here
1041  */
blk_plug_invalidate_ts(struct task_struct * tsk)1042 static inline void blk_plug_invalidate_ts(struct task_struct *tsk)
1043 {
1044 	struct blk_plug *plug = tsk->plug;
1045 
1046 	if (plug)
1047 		plug->cur_ktime = 0;
1048 	current->flags &= ~PF_BLOCK_TS;
1049 }
1050 
1051 int blkdev_issue_flush(struct block_device *bdev);
1052 long nr_blockdev_pages(void);
1053 #else /* CONFIG_BLOCK */
1054 struct blk_plug {
1055 };
1056 
blk_start_plug_nr_ios(struct blk_plug * plug,unsigned short nr_ios)1057 static inline void blk_start_plug_nr_ios(struct blk_plug *plug,
1058 					 unsigned short nr_ios)
1059 {
1060 }
1061 
blk_start_plug(struct blk_plug * plug)1062 static inline void blk_start_plug(struct blk_plug *plug)
1063 {
1064 }
1065 
blk_finish_plug(struct blk_plug * plug)1066 static inline void blk_finish_plug(struct blk_plug *plug)
1067 {
1068 }
1069 
blk_flush_plug(struct blk_plug * plug,bool async)1070 static inline void blk_flush_plug(struct blk_plug *plug, bool async)
1071 {
1072 }
1073 
blk_plug_invalidate_ts(struct task_struct * tsk)1074 static inline void blk_plug_invalidate_ts(struct task_struct *tsk)
1075 {
1076 }
1077 
blkdev_issue_flush(struct block_device * bdev)1078 static inline int blkdev_issue_flush(struct block_device *bdev)
1079 {
1080 	return 0;
1081 }
1082 
nr_blockdev_pages(void)1083 static inline long nr_blockdev_pages(void)
1084 {
1085 	return 0;
1086 }
1087 #endif /* CONFIG_BLOCK */
1088 
1089 extern void blk_io_schedule(void);
1090 
1091 int blkdev_issue_discard(struct block_device *bdev, sector_t sector,
1092 		sector_t nr_sects, gfp_t gfp_mask);
1093 int __blkdev_issue_discard(struct block_device *bdev, sector_t sector,
1094 		sector_t nr_sects, gfp_t gfp_mask, struct bio **biop);
1095 int blkdev_issue_secure_erase(struct block_device *bdev, sector_t sector,
1096 		sector_t nr_sects, gfp_t gfp);
1097 
1098 #define BLKDEV_ZERO_NOUNMAP	(1 << 0)  /* do not free blocks */
1099 #define BLKDEV_ZERO_NOFALLBACK	(1 << 1)  /* don't write explicit zeroes */
1100 #define BLKDEV_ZERO_KILLABLE	(1 << 2)  /* interruptible by fatal signals */
1101 
1102 extern int __blkdev_issue_zeroout(struct block_device *bdev, sector_t sector,
1103 		sector_t nr_sects, gfp_t gfp_mask, struct bio **biop,
1104 		unsigned flags);
1105 extern int blkdev_issue_zeroout(struct block_device *bdev, sector_t sector,
1106 		sector_t nr_sects, gfp_t gfp_mask, unsigned flags);
1107 
sb_issue_discard(struct super_block * sb,sector_t block,sector_t nr_blocks,gfp_t gfp_mask,unsigned long flags)1108 static inline int sb_issue_discard(struct super_block *sb, sector_t block,
1109 		sector_t nr_blocks, gfp_t gfp_mask, unsigned long flags)
1110 {
1111 	return blkdev_issue_discard(sb->s_bdev,
1112 				    block << (sb->s_blocksize_bits -
1113 					      SECTOR_SHIFT),
1114 				    nr_blocks << (sb->s_blocksize_bits -
1115 						  SECTOR_SHIFT),
1116 				    gfp_mask);
1117 }
sb_issue_zeroout(struct super_block * sb,sector_t block,sector_t nr_blocks,gfp_t gfp_mask)1118 static inline int sb_issue_zeroout(struct super_block *sb, sector_t block,
1119 		sector_t nr_blocks, gfp_t gfp_mask)
1120 {
1121 	return blkdev_issue_zeroout(sb->s_bdev,
1122 				    block << (sb->s_blocksize_bits -
1123 					      SECTOR_SHIFT),
1124 				    nr_blocks << (sb->s_blocksize_bits -
1125 						  SECTOR_SHIFT),
1126 				    gfp_mask, 0);
1127 }
1128 
bdev_is_partition(struct block_device * bdev)1129 static inline bool bdev_is_partition(struct block_device *bdev)
1130 {
1131 	return bdev_partno(bdev) != 0;
1132 }
1133 
1134 enum blk_default_limits {
1135 	BLK_MAX_SEGMENTS	= 128,
1136 	BLK_SAFE_MAX_SECTORS	= 255,
1137 	BLK_MAX_SEGMENT_SIZE	= 65536,
1138 	BLK_SEG_BOUNDARY_MASK	= 0xFFFFFFFFUL,
1139 };
1140 
1141 /*
1142  * Default upper limit for the software max_sectors limit used for
1143  * regular file system I/O.  This can be increased through sysfs.
1144  *
1145  * Not to be confused with the max_hw_sector limit that is entirely
1146  * controlled by the driver, usually based on hardware limits.
1147  */
1148 #define BLK_DEF_MAX_SECTORS_CAP	2560u
1149 
queue_segment_boundary(const struct request_queue * q)1150 static inline unsigned long queue_segment_boundary(const struct request_queue *q)
1151 {
1152 	return q->limits.seg_boundary_mask;
1153 }
1154 
queue_virt_boundary(const struct request_queue * q)1155 static inline unsigned long queue_virt_boundary(const struct request_queue *q)
1156 {
1157 	return q->limits.virt_boundary_mask;
1158 }
1159 
queue_max_sectors(const struct request_queue * q)1160 static inline unsigned int queue_max_sectors(const struct request_queue *q)
1161 {
1162 	return q->limits.max_sectors;
1163 }
1164 
queue_max_bytes(struct request_queue * q)1165 static inline unsigned int queue_max_bytes(struct request_queue *q)
1166 {
1167 	return min_t(unsigned int, queue_max_sectors(q), INT_MAX >> 9) << 9;
1168 }
1169 
queue_max_hw_sectors(const struct request_queue * q)1170 static inline unsigned int queue_max_hw_sectors(const struct request_queue *q)
1171 {
1172 	return q->limits.max_hw_sectors;
1173 }
1174 
queue_max_segments(const struct request_queue * q)1175 static inline unsigned short queue_max_segments(const struct request_queue *q)
1176 {
1177 	return q->limits.max_segments;
1178 }
1179 
queue_max_discard_segments(const struct request_queue * q)1180 static inline unsigned short queue_max_discard_segments(const struct request_queue *q)
1181 {
1182 	return q->limits.max_discard_segments;
1183 }
1184 
queue_max_segment_size(const struct request_queue * q)1185 static inline unsigned int queue_max_segment_size(const struct request_queue *q)
1186 {
1187 	return q->limits.max_segment_size;
1188 }
1189 
1190 static inline unsigned int
queue_limits_max_zone_append_sectors(const struct queue_limits * l)1191 queue_limits_max_zone_append_sectors(const struct queue_limits *l)
1192 {
1193 	unsigned int max_sectors = min(l->chunk_sectors, l->max_hw_sectors);
1194 
1195 	return min_not_zero(l->max_zone_append_sectors, max_sectors);
1196 }
1197 
queue_max_zone_append_sectors(struct request_queue * q)1198 static inline unsigned int queue_max_zone_append_sectors(struct request_queue *q)
1199 {
1200 	if (!blk_queue_is_zoned(q))
1201 		return 0;
1202 
1203 	return queue_limits_max_zone_append_sectors(&q->limits);
1204 }
1205 
queue_emulates_zone_append(struct request_queue * q)1206 static inline bool queue_emulates_zone_append(struct request_queue *q)
1207 {
1208 	return blk_queue_is_zoned(q) && !q->limits.max_zone_append_sectors;
1209 }
1210 
bdev_emulates_zone_append(struct block_device * bdev)1211 static inline bool bdev_emulates_zone_append(struct block_device *bdev)
1212 {
1213 	return queue_emulates_zone_append(bdev_get_queue(bdev));
1214 }
1215 
1216 static inline unsigned int
bdev_max_zone_append_sectors(struct block_device * bdev)1217 bdev_max_zone_append_sectors(struct block_device *bdev)
1218 {
1219 	return queue_max_zone_append_sectors(bdev_get_queue(bdev));
1220 }
1221 
bdev_max_segments(struct block_device * bdev)1222 static inline unsigned int bdev_max_segments(struct block_device *bdev)
1223 {
1224 	return queue_max_segments(bdev_get_queue(bdev));
1225 }
1226 
queue_logical_block_size(const struct request_queue * q)1227 static inline unsigned queue_logical_block_size(const struct request_queue *q)
1228 {
1229 	return q->limits.logical_block_size;
1230 }
1231 
bdev_logical_block_size(struct block_device * bdev)1232 static inline unsigned int bdev_logical_block_size(struct block_device *bdev)
1233 {
1234 	return queue_logical_block_size(bdev_get_queue(bdev));
1235 }
1236 
queue_physical_block_size(const struct request_queue * q)1237 static inline unsigned int queue_physical_block_size(const struct request_queue *q)
1238 {
1239 	return q->limits.physical_block_size;
1240 }
1241 
bdev_physical_block_size(struct block_device * bdev)1242 static inline unsigned int bdev_physical_block_size(struct block_device *bdev)
1243 {
1244 	return queue_physical_block_size(bdev_get_queue(bdev));
1245 }
1246 
queue_io_min(const struct request_queue * q)1247 static inline unsigned int queue_io_min(const struct request_queue *q)
1248 {
1249 	return q->limits.io_min;
1250 }
1251 
bdev_io_min(struct block_device * bdev)1252 static inline int bdev_io_min(struct block_device *bdev)
1253 {
1254 	return queue_io_min(bdev_get_queue(bdev));
1255 }
1256 
queue_io_opt(const struct request_queue * q)1257 static inline unsigned int queue_io_opt(const struct request_queue *q)
1258 {
1259 	return q->limits.io_opt;
1260 }
1261 
bdev_io_opt(struct block_device * bdev)1262 static inline int bdev_io_opt(struct block_device *bdev)
1263 {
1264 	return queue_io_opt(bdev_get_queue(bdev));
1265 }
1266 
1267 static inline unsigned int
queue_zone_write_granularity(const struct request_queue * q)1268 queue_zone_write_granularity(const struct request_queue *q)
1269 {
1270 	return q->limits.zone_write_granularity;
1271 }
1272 
1273 static inline unsigned int
bdev_zone_write_granularity(struct block_device * bdev)1274 bdev_zone_write_granularity(struct block_device *bdev)
1275 {
1276 	return queue_zone_write_granularity(bdev_get_queue(bdev));
1277 }
1278 
1279 int bdev_alignment_offset(struct block_device *bdev);
1280 unsigned int bdev_discard_alignment(struct block_device *bdev);
1281 
bdev_max_discard_sectors(struct block_device * bdev)1282 static inline unsigned int bdev_max_discard_sectors(struct block_device *bdev)
1283 {
1284 	return bdev_get_queue(bdev)->limits.max_discard_sectors;
1285 }
1286 
bdev_discard_granularity(struct block_device * bdev)1287 static inline unsigned int bdev_discard_granularity(struct block_device *bdev)
1288 {
1289 	return bdev_get_queue(bdev)->limits.discard_granularity;
1290 }
1291 
1292 static inline unsigned int
bdev_max_secure_erase_sectors(struct block_device * bdev)1293 bdev_max_secure_erase_sectors(struct block_device *bdev)
1294 {
1295 	return bdev_get_queue(bdev)->limits.max_secure_erase_sectors;
1296 }
1297 
bdev_write_zeroes_sectors(struct block_device * bdev)1298 static inline unsigned int bdev_write_zeroes_sectors(struct block_device *bdev)
1299 {
1300 	return bdev_get_queue(bdev)->limits.max_write_zeroes_sectors;
1301 }
1302 
bdev_nonrot(struct block_device * bdev)1303 static inline bool bdev_nonrot(struct block_device *bdev)
1304 {
1305 	return blk_queue_nonrot(bdev_get_queue(bdev));
1306 }
1307 
bdev_synchronous(struct block_device * bdev)1308 static inline bool bdev_synchronous(struct block_device *bdev)
1309 {
1310 	return bdev->bd_disk->queue->limits.features & BLK_FEAT_SYNCHRONOUS;
1311 }
1312 
bdev_stable_writes(struct block_device * bdev)1313 static inline bool bdev_stable_writes(struct block_device *bdev)
1314 {
1315 	struct request_queue *q = bdev_get_queue(bdev);
1316 
1317 	if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) &&
1318 	    q->limits.integrity.csum_type != BLK_INTEGRITY_CSUM_NONE)
1319 		return true;
1320 	return q->limits.features & BLK_FEAT_STABLE_WRITES;
1321 }
1322 
blk_queue_write_cache(struct request_queue * q)1323 static inline bool blk_queue_write_cache(struct request_queue *q)
1324 {
1325 	return (q->limits.features & BLK_FEAT_WRITE_CACHE) &&
1326 		!(q->limits.flags & BLK_FLAG_WRITE_CACHE_DISABLED);
1327 }
1328 
bdev_write_cache(struct block_device * bdev)1329 static inline bool bdev_write_cache(struct block_device *bdev)
1330 {
1331 	return blk_queue_write_cache(bdev_get_queue(bdev));
1332 }
1333 
bdev_fua(struct block_device * bdev)1334 static inline bool bdev_fua(struct block_device *bdev)
1335 {
1336 	return bdev_get_queue(bdev)->limits.features & BLK_FEAT_FUA;
1337 }
1338 
bdev_nowait(struct block_device * bdev)1339 static inline bool bdev_nowait(struct block_device *bdev)
1340 {
1341 	return bdev->bd_disk->queue->limits.features & BLK_FEAT_NOWAIT;
1342 }
1343 
bdev_is_zoned(struct block_device * bdev)1344 static inline bool bdev_is_zoned(struct block_device *bdev)
1345 {
1346 	return blk_queue_is_zoned(bdev_get_queue(bdev));
1347 }
1348 
bdev_zone_no(struct block_device * bdev,sector_t sec)1349 static inline unsigned int bdev_zone_no(struct block_device *bdev, sector_t sec)
1350 {
1351 	return disk_zone_no(bdev->bd_disk, sec);
1352 }
1353 
bdev_zone_sectors(struct block_device * bdev)1354 static inline sector_t bdev_zone_sectors(struct block_device *bdev)
1355 {
1356 	struct request_queue *q = bdev_get_queue(bdev);
1357 
1358 	if (!blk_queue_is_zoned(q))
1359 		return 0;
1360 	return q->limits.chunk_sectors;
1361 }
1362 
bdev_offset_from_zone_start(struct block_device * bdev,sector_t sector)1363 static inline sector_t bdev_offset_from_zone_start(struct block_device *bdev,
1364 						   sector_t sector)
1365 {
1366 	return sector & (bdev_zone_sectors(bdev) - 1);
1367 }
1368 
bio_offset_from_zone_start(struct bio * bio)1369 static inline sector_t bio_offset_from_zone_start(struct bio *bio)
1370 {
1371 	return bdev_offset_from_zone_start(bio->bi_bdev,
1372 					   bio->bi_iter.bi_sector);
1373 }
1374 
bdev_is_zone_start(struct block_device * bdev,sector_t sector)1375 static inline bool bdev_is_zone_start(struct block_device *bdev,
1376 				      sector_t sector)
1377 {
1378 	return bdev_offset_from_zone_start(bdev, sector) == 0;
1379 }
1380 
queue_dma_alignment(const struct request_queue * q)1381 static inline int queue_dma_alignment(const struct request_queue *q)
1382 {
1383 	return q->limits.dma_alignment;
1384 }
1385 
1386 static inline unsigned int
queue_atomic_write_unit_max_bytes(const struct request_queue * q)1387 queue_atomic_write_unit_max_bytes(const struct request_queue *q)
1388 {
1389 	return q->limits.atomic_write_unit_max;
1390 }
1391 
1392 static inline unsigned int
queue_atomic_write_unit_min_bytes(const struct request_queue * q)1393 queue_atomic_write_unit_min_bytes(const struct request_queue *q)
1394 {
1395 	return q->limits.atomic_write_unit_min;
1396 }
1397 
1398 static inline unsigned int
queue_atomic_write_boundary_bytes(const struct request_queue * q)1399 queue_atomic_write_boundary_bytes(const struct request_queue *q)
1400 {
1401 	return q->limits.atomic_write_boundary_sectors << SECTOR_SHIFT;
1402 }
1403 
1404 static inline unsigned int
queue_atomic_write_max_bytes(const struct request_queue * q)1405 queue_atomic_write_max_bytes(const struct request_queue *q)
1406 {
1407 	return q->limits.atomic_write_max_sectors << SECTOR_SHIFT;
1408 }
1409 
bdev_dma_alignment(struct block_device * bdev)1410 static inline unsigned int bdev_dma_alignment(struct block_device *bdev)
1411 {
1412 	return queue_dma_alignment(bdev_get_queue(bdev));
1413 }
1414 
bdev_iter_is_aligned(struct block_device * bdev,struct iov_iter * iter)1415 static inline bool bdev_iter_is_aligned(struct block_device *bdev,
1416 					struct iov_iter *iter)
1417 {
1418 	return iov_iter_is_aligned(iter, bdev_dma_alignment(bdev),
1419 				   bdev_logical_block_size(bdev) - 1);
1420 }
1421 
blk_lim_dma_alignment_and_pad(struct queue_limits * lim)1422 static inline int blk_lim_dma_alignment_and_pad(struct queue_limits *lim)
1423 {
1424 	return lim->dma_alignment | lim->dma_pad_mask;
1425 }
1426 
blk_rq_aligned(struct request_queue * q,unsigned long addr,unsigned int len)1427 static inline int blk_rq_aligned(struct request_queue *q, unsigned long addr,
1428 				 unsigned int len)
1429 {
1430 	unsigned int alignment = blk_lim_dma_alignment_and_pad(&q->limits);
1431 
1432 	return !(addr & alignment) && !(len & alignment);
1433 }
1434 
1435 /* assumes size > 256 */
blksize_bits(unsigned int size)1436 static inline unsigned int blksize_bits(unsigned int size)
1437 {
1438 	return order_base_2(size >> SECTOR_SHIFT) + SECTOR_SHIFT;
1439 }
1440 
1441 int kblockd_schedule_work(struct work_struct *work);
1442 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork, unsigned long delay);
1443 
1444 #define MODULE_ALIAS_BLOCKDEV(major,minor) \
1445 	MODULE_ALIAS("block-major-" __stringify(major) "-" __stringify(minor))
1446 #define MODULE_ALIAS_BLOCKDEV_MAJOR(major) \
1447 	MODULE_ALIAS("block-major-" __stringify(major) "-*")
1448 
1449 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
1450 
1451 bool blk_crypto_register(struct blk_crypto_profile *profile,
1452 			 struct request_queue *q);
1453 
1454 #else /* CONFIG_BLK_INLINE_ENCRYPTION */
1455 
blk_crypto_register(struct blk_crypto_profile * profile,struct request_queue * q)1456 static inline bool blk_crypto_register(struct blk_crypto_profile *profile,
1457 				       struct request_queue *q)
1458 {
1459 	return true;
1460 }
1461 
1462 #endif /* CONFIG_BLK_INLINE_ENCRYPTION */
1463 
1464 enum blk_unique_id {
1465 	/* these match the Designator Types specified in SPC */
1466 	BLK_UID_T10	= 1,
1467 	BLK_UID_EUI64	= 2,
1468 	BLK_UID_NAA	= 3,
1469 };
1470 
1471 struct block_device_operations {
1472 	void (*submit_bio)(struct bio *bio);
1473 	int (*poll_bio)(struct bio *bio, struct io_comp_batch *iob,
1474 			unsigned int flags);
1475 	int (*open)(struct gendisk *disk, blk_mode_t mode);
1476 	void (*release)(struct gendisk *disk);
1477 	int (*ioctl)(struct block_device *bdev, blk_mode_t mode,
1478 			unsigned cmd, unsigned long arg);
1479 	int (*compat_ioctl)(struct block_device *bdev, blk_mode_t mode,
1480 			unsigned cmd, unsigned long arg);
1481 	unsigned int (*check_events) (struct gendisk *disk,
1482 				      unsigned int clearing);
1483 	void (*unlock_native_capacity) (struct gendisk *);
1484 	int (*getgeo)(struct block_device *, struct hd_geometry *);
1485 	int (*set_read_only)(struct block_device *bdev, bool ro);
1486 	void (*free_disk)(struct gendisk *disk);
1487 	/* this callback is with swap_lock and sometimes page table lock held */
1488 	void (*swap_slot_free_notify) (struct block_device *, unsigned long);
1489 	int (*report_zones)(struct gendisk *, sector_t sector,
1490 			unsigned int nr_zones, report_zones_cb cb, void *data);
1491 	char *(*devnode)(struct gendisk *disk, umode_t *mode);
1492 	/* returns the length of the identifier or a negative errno: */
1493 	int (*get_unique_id)(struct gendisk *disk, u8 id[16],
1494 			enum blk_unique_id id_type);
1495 	struct module *owner;
1496 	const struct pr_ops *pr_ops;
1497 
1498 	/*
1499 	 * Special callback for probing GPT entry at a given sector.
1500 	 * Needed by Android devices, used by GPT scanner and MMC blk
1501 	 * driver.
1502 	 */
1503 	int (*alternative_gpt_sector)(struct gendisk *disk, sector_t *sector);
1504 };
1505 
1506 #ifdef CONFIG_COMPAT
1507 extern int blkdev_compat_ptr_ioctl(struct block_device *, blk_mode_t,
1508 				      unsigned int, unsigned long);
1509 #else
1510 #define blkdev_compat_ptr_ioctl NULL
1511 #endif
1512 
blk_wake_io_task(struct task_struct * waiter)1513 static inline void blk_wake_io_task(struct task_struct *waiter)
1514 {
1515 	/*
1516 	 * If we're polling, the task itself is doing the completions. For
1517 	 * that case, we don't need to signal a wakeup, it's enough to just
1518 	 * mark us as RUNNING.
1519 	 */
1520 	if (waiter == current)
1521 		__set_current_state(TASK_RUNNING);
1522 	else
1523 		wake_up_process(waiter);
1524 }
1525 
1526 unsigned long bdev_start_io_acct(struct block_device *bdev, enum req_op op,
1527 				 unsigned long start_time);
1528 void bdev_end_io_acct(struct block_device *bdev, enum req_op op,
1529 		      unsigned int sectors, unsigned long start_time);
1530 
1531 unsigned long bio_start_io_acct(struct bio *bio);
1532 void bio_end_io_acct_remapped(struct bio *bio, unsigned long start_time,
1533 		struct block_device *orig_bdev);
1534 
1535 /**
1536  * bio_end_io_acct - end I/O accounting for bio based drivers
1537  * @bio:	bio to end account for
1538  * @start_time:	start time returned by bio_start_io_acct()
1539  */
bio_end_io_acct(struct bio * bio,unsigned long start_time)1540 static inline void bio_end_io_acct(struct bio *bio, unsigned long start_time)
1541 {
1542 	return bio_end_io_acct_remapped(bio, start_time, bio->bi_bdev);
1543 }
1544 
1545 int bdev_read_only(struct block_device *bdev);
1546 int set_blocksize(struct file *file, int size);
1547 
1548 int lookup_bdev(const char *pathname, dev_t *dev);
1549 
1550 void blkdev_show(struct seq_file *seqf, off_t offset);
1551 
1552 #define BDEVNAME_SIZE	32	/* Largest string for a blockdev identifier */
1553 #define BDEVT_SIZE	10	/* Largest string for MAJ:MIN for blkdev */
1554 #ifdef CONFIG_BLOCK
1555 #define BLKDEV_MAJOR_MAX	512
1556 #else
1557 #define BLKDEV_MAJOR_MAX	0
1558 #endif
1559 
1560 struct blk_holder_ops {
1561 	void (*mark_dead)(struct block_device *bdev, bool surprise);
1562 
1563 	/*
1564 	 * Sync the file system mounted on the block device.
1565 	 */
1566 	void (*sync)(struct block_device *bdev);
1567 
1568 	/*
1569 	 * Freeze the file system mounted on the block device.
1570 	 */
1571 	int (*freeze)(struct block_device *bdev);
1572 
1573 	/*
1574 	 * Thaw the file system mounted on the block device.
1575 	 */
1576 	int (*thaw)(struct block_device *bdev);
1577 };
1578 
1579 /*
1580  * For filesystems using @fs_holder_ops, the @holder argument passed to
1581  * helpers used to open and claim block devices via
1582  * bd_prepare_to_claim() must point to a superblock.
1583  */
1584 extern const struct blk_holder_ops fs_holder_ops;
1585 
1586 /*
1587  * Return the correct open flags for blkdev_get_by_* for super block flags
1588  * as stored in sb->s_flags.
1589  */
1590 #define sb_open_mode(flags) \
1591 	(BLK_OPEN_READ | BLK_OPEN_RESTRICT_WRITES | \
1592 	 (((flags) & SB_RDONLY) ? 0 : BLK_OPEN_WRITE))
1593 
1594 struct file *bdev_file_open_by_dev(dev_t dev, blk_mode_t mode, void *holder,
1595 		const struct blk_holder_ops *hops);
1596 struct file *bdev_file_open_by_path(const char *path, blk_mode_t mode,
1597 		void *holder, const struct blk_holder_ops *hops);
1598 int bd_prepare_to_claim(struct block_device *bdev, void *holder,
1599 		const struct blk_holder_ops *hops);
1600 void bd_abort_claiming(struct block_device *bdev, void *holder);
1601 
1602 /* just for blk-cgroup, don't use elsewhere */
1603 struct block_device *blkdev_get_no_open(dev_t dev);
1604 void blkdev_put_no_open(struct block_device *bdev);
1605 
1606 struct block_device *I_BDEV(struct inode *inode);
1607 struct block_device *file_bdev(struct file *bdev_file);
1608 bool disk_live(struct gendisk *disk);
1609 unsigned int block_size(struct block_device *bdev);
1610 
1611 #ifdef CONFIG_BLOCK
1612 void invalidate_bdev(struct block_device *bdev);
1613 int sync_blockdev(struct block_device *bdev);
1614 int sync_blockdev_range(struct block_device *bdev, loff_t lstart, loff_t lend);
1615 int sync_blockdev_nowait(struct block_device *bdev);
1616 void sync_bdevs(bool wait);
1617 void bdev_statx(struct path *, struct kstat *, u32);
1618 void printk_all_partitions(void);
1619 int __init early_lookup_bdev(const char *pathname, dev_t *dev);
1620 #else
invalidate_bdev(struct block_device * bdev)1621 static inline void invalidate_bdev(struct block_device *bdev)
1622 {
1623 }
sync_blockdev(struct block_device * bdev)1624 static inline int sync_blockdev(struct block_device *bdev)
1625 {
1626 	return 0;
1627 }
sync_blockdev_nowait(struct block_device * bdev)1628 static inline int sync_blockdev_nowait(struct block_device *bdev)
1629 {
1630 	return 0;
1631 }
sync_bdevs(bool wait)1632 static inline void sync_bdevs(bool wait)
1633 {
1634 }
bdev_statx(struct path * path,struct kstat * stat,u32 request_mask)1635 static inline void bdev_statx(struct path *path, struct kstat *stat,
1636 				u32 request_mask)
1637 {
1638 }
printk_all_partitions(void)1639 static inline void printk_all_partitions(void)
1640 {
1641 }
early_lookup_bdev(const char * pathname,dev_t * dev)1642 static inline int early_lookup_bdev(const char *pathname, dev_t *dev)
1643 {
1644 	return -EINVAL;
1645 }
1646 #endif /* CONFIG_BLOCK */
1647 
1648 int bdev_freeze(struct block_device *bdev);
1649 int bdev_thaw(struct block_device *bdev);
1650 void bdev_fput(struct file *bdev_file);
1651 
1652 struct io_comp_batch {
1653 	struct request *req_list;
1654 	bool need_ts;
1655 	void (*complete)(struct io_comp_batch *);
1656 };
1657 
bdev_can_atomic_write(struct block_device * bdev)1658 static inline bool bdev_can_atomic_write(struct block_device *bdev)
1659 {
1660 	struct request_queue *bd_queue = bdev->bd_queue;
1661 	struct queue_limits *limits = &bd_queue->limits;
1662 
1663 	if (!limits->atomic_write_unit_min)
1664 		return false;
1665 
1666 	if (bdev_is_partition(bdev)) {
1667 		sector_t bd_start_sect = bdev->bd_start_sect;
1668 		unsigned int alignment =
1669 			max(limits->atomic_write_unit_min,
1670 			    limits->atomic_write_hw_boundary);
1671 
1672 		if (!IS_ALIGNED(bd_start_sect, alignment >> SECTOR_SHIFT))
1673 			return false;
1674 	}
1675 
1676 	return true;
1677 }
1678 
1679 #define DEFINE_IO_COMP_BATCH(name)	struct io_comp_batch name = { }
1680 
1681 #endif /* _LINUX_BLKDEV_H */
1682