xref: /linux/drivers/mtd/nand/raw/cadence-nand-controller.c (revision edd2b9832d604a234b60a4910c7496f351cd1e12)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Cadence NAND flash controller driver
4  *
5  * Copyright (C) 2019 Cadence
6  *
7  * Author: Piotr Sroka <piotrs@cadence.com>
8  */
9 
10 #include <linux/bitfield.h>
11 #include <linux/clk.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/dmaengine.h>
14 #include <linux/interrupt.h>
15 #include <linux/module.h>
16 #include <linux/mtd/mtd.h>
17 #include <linux/mtd/rawnand.h>
18 #include <linux/iopoll.h>
19 #include <linux/of.h>
20 #include <linux/platform_device.h>
21 #include <linux/property.h>
22 #include <linux/slab.h>
23 
24 /*
25  * HPNFC can work in 3 modes:
26  * -  PIO - can work in master or slave DMA
27  * -  CDMA - needs Master DMA for accessing command descriptors.
28  * -  Generic mode - can use only slave DMA.
29  * CDMA and PIO modes can be used to execute only base commands.
30  * Generic mode can be used to execute any command
31  * on NAND flash memory. Driver uses CDMA mode for
32  * block erasing, page reading, page programing.
33  * Generic mode is used for executing rest of commands.
34  */
35 
36 #define MAX_ADDRESS_CYC		6
37 #define MAX_ERASE_ADDRESS_CYC	3
38 #define MAX_DATA_SIZE		0xFFFC
39 #define DMA_DATA_SIZE_ALIGN	8
40 
41 /* Register definition. */
42 /*
43  * Command register 0.
44  * Writing data to this register will initiate a new transaction
45  * of the NF controller.
46  */
47 #define CMD_REG0			0x0000
48 /* Command type field mask. */
49 #define		CMD_REG0_CT		GENMASK(31, 30)
50 /* Command type CDMA. */
51 #define		CMD_REG0_CT_CDMA	0uL
52 /* Command type generic. */
53 #define		CMD_REG0_CT_GEN		3uL
54 /* Command thread number field mask. */
55 #define		CMD_REG0_TN		GENMASK(27, 24)
56 
57 /* Command register 2. */
58 #define CMD_REG2			0x0008
59 /* Command register 3. */
60 #define CMD_REG3			0x000C
61 /* Pointer register to select which thread status will be selected. */
62 #define CMD_STATUS_PTR			0x0010
63 /* Command status register for selected thread. */
64 #define CMD_STATUS			0x0014
65 
66 /* Interrupt status register. */
67 #define INTR_STATUS			0x0110
68 #define		INTR_STATUS_SDMA_ERR	BIT(22)
69 #define		INTR_STATUS_SDMA_TRIGG	BIT(21)
70 #define		INTR_STATUS_UNSUPP_CMD	BIT(19)
71 #define		INTR_STATUS_DDMA_TERR	BIT(18)
72 #define		INTR_STATUS_CDMA_TERR	BIT(17)
73 #define		INTR_STATUS_CDMA_IDL	BIT(16)
74 
75 /* Interrupt enable register. */
76 #define INTR_ENABLE				0x0114
77 #define		INTR_ENABLE_INTR_EN		BIT(31)
78 #define		INTR_ENABLE_SDMA_ERR_EN		BIT(22)
79 #define		INTR_ENABLE_SDMA_TRIGG_EN	BIT(21)
80 #define		INTR_ENABLE_UNSUPP_CMD_EN	BIT(19)
81 #define		INTR_ENABLE_DDMA_TERR_EN	BIT(18)
82 #define		INTR_ENABLE_CDMA_TERR_EN	BIT(17)
83 #define		INTR_ENABLE_CDMA_IDLE_EN	BIT(16)
84 
85 /* Controller internal state. */
86 #define CTRL_STATUS				0x0118
87 #define		CTRL_STATUS_INIT_COMP		BIT(9)
88 #define		CTRL_STATUS_CTRL_BUSY		BIT(8)
89 
90 /* Command Engine threads state. */
91 #define TRD_STATUS				0x0120
92 
93 /* Command Engine interrupt thread error status. */
94 #define TRD_ERR_INT_STATUS			0x0128
95 /* Command Engine interrupt thread error enable. */
96 #define TRD_ERR_INT_STATUS_EN			0x0130
97 /* Command Engine interrupt thread complete status. */
98 #define TRD_COMP_INT_STATUS			0x0138
99 
100 /*
101  * Transfer config 0 register.
102  * Configures data transfer parameters.
103  */
104 #define TRAN_CFG_0				0x0400
105 /* Offset value from the beginning of the page. */
106 #define		TRAN_CFG_0_OFFSET		GENMASK(31, 16)
107 /* Numbers of sectors to transfer within singlNF device's page. */
108 #define		TRAN_CFG_0_SEC_CNT		GENMASK(7, 0)
109 
110 /*
111  * Transfer config 1 register.
112  * Configures data transfer parameters.
113  */
114 #define TRAN_CFG_1				0x0404
115 /* Size of last data sector. */
116 #define		TRAN_CFG_1_LAST_SEC_SIZE	GENMASK(31, 16)
117 /* Size of not-last data sector. */
118 #define		TRAN_CFG_1_SECTOR_SIZE		GENMASK(15, 0)
119 
120 /* ECC engine configuration register 0. */
121 #define ECC_CONFIG_0				0x0428
122 /* Correction strength. */
123 #define		ECC_CONFIG_0_CORR_STR		GENMASK(10, 8)
124 /* Enable erased pages detection mechanism. */
125 #define		ECC_CONFIG_0_ERASE_DET_EN	BIT(1)
126 /* Enable controller ECC check bits generation and correction. */
127 #define		ECC_CONFIG_0_ECC_EN		BIT(0)
128 
129 /* ECC engine configuration register 1. */
130 #define ECC_CONFIG_1				0x042C
131 
132 /* Multiplane settings register. */
133 #define MULTIPLANE_CFG				0x0434
134 /* Cache operation settings. */
135 #define CACHE_CFG				0x0438
136 
137 /* DMA settings register. */
138 #define DMA_SETINGS				0x043C
139 /* Enable SDMA error report on access unprepared slave DMA interface. */
140 #define		DMA_SETINGS_SDMA_ERR_RSP	BIT(17)
141 
142 /* Transferred data block size for the slave DMA module. */
143 #define SDMA_SIZE				0x0440
144 
145 /* Thread number associated with transferred data block
146  * for the slave DMA module.
147  */
148 #define SDMA_TRD_NUM				0x0444
149 /* Thread number mask. */
150 #define		SDMA_TRD_NUM_SDMA_TRD		GENMASK(2, 0)
151 
152 #define CONTROL_DATA_CTRL			0x0494
153 /* Thread number mask. */
154 #define		CONTROL_DATA_CTRL_SIZE		GENMASK(15, 0)
155 
156 #define CTRL_VERSION				0x800
157 #define		CTRL_VERSION_REV		GENMASK(7, 0)
158 
159 /* Available hardware features of the controller. */
160 #define CTRL_FEATURES				0x804
161 /* Support for NV-DDR2/3 work mode. */
162 #define		CTRL_FEATURES_NVDDR_2_3		BIT(28)
163 /* Support for NV-DDR work mode. */
164 #define		CTRL_FEATURES_NVDDR		BIT(27)
165 /* Support for asynchronous work mode. */
166 #define		CTRL_FEATURES_ASYNC		BIT(26)
167 /* Support for asynchronous work mode. */
168 #define		CTRL_FEATURES_N_BANKS		GENMASK(25, 24)
169 /* Slave and Master DMA data width. */
170 #define		CTRL_FEATURES_DMA_DWITH64	BIT(21)
171 /* Availability of Control Data feature.*/
172 #define		CTRL_FEATURES_CONTROL_DATA	BIT(10)
173 
174 /* BCH Engine identification register 0 - correction strengths. */
175 #define BCH_CFG_0				0x838
176 #define		BCH_CFG_0_CORR_CAP_0		GENMASK(7, 0)
177 #define		BCH_CFG_0_CORR_CAP_1		GENMASK(15, 8)
178 #define		BCH_CFG_0_CORR_CAP_2		GENMASK(23, 16)
179 #define		BCH_CFG_0_CORR_CAP_3		GENMASK(31, 24)
180 
181 /* BCH Engine identification register 1 - correction strengths. */
182 #define BCH_CFG_1				0x83C
183 #define		BCH_CFG_1_CORR_CAP_4		GENMASK(7, 0)
184 #define		BCH_CFG_1_CORR_CAP_5		GENMASK(15, 8)
185 #define		BCH_CFG_1_CORR_CAP_6		GENMASK(23, 16)
186 #define		BCH_CFG_1_CORR_CAP_7		GENMASK(31, 24)
187 
188 /* BCH Engine identification register 2 - sector sizes. */
189 #define BCH_CFG_2				0x840
190 #define		BCH_CFG_2_SECT_0		GENMASK(15, 0)
191 #define		BCH_CFG_2_SECT_1		GENMASK(31, 16)
192 
193 /* BCH Engine identification register 3. */
194 #define BCH_CFG_3				0x844
195 #define		BCH_CFG_3_METADATA_SIZE		GENMASK(23, 16)
196 
197 /* Ready/Busy# line status. */
198 #define RBN_SETINGS				0x1004
199 
200 /* Common settings. */
201 #define COMMON_SET				0x1008
202 #define OPR_MODE_NVDDR				BIT(0)
203 /* 16 bit device connected to the NAND Flash interface. */
204 #define		COMMON_SET_DEVICE_16BIT		BIT(8)
205 
206 /* Skip_bytes registers. */
207 #define SKIP_BYTES_CONF				0x100C
208 #define		SKIP_BYTES_MARKER_VALUE		GENMASK(31, 16)
209 #define		SKIP_BYTES_NUM_OF_BYTES		GENMASK(7, 0)
210 
211 #define SKIP_BYTES_OFFSET			0x1010
212 #define		 SKIP_BYTES_OFFSET_VALUE	GENMASK(23, 0)
213 
214 /* Timings configuration. */
215 #define TOGGLE_TIMINGS_0			0x1014
216 #define TOGGLE_TIMINGS_1			0x1018
217 
218 #define ASYNC_TOGGLE_TIMINGS			0x101c
219 #define		ASYNC_TOGGLE_TIMINGS_TRH	GENMASK(28, 24)
220 #define		ASYNC_TOGGLE_TIMINGS_TRP	GENMASK(20, 16)
221 #define		ASYNC_TOGGLE_TIMINGS_TWH	GENMASK(12, 8)
222 #define		ASYNC_TOGGLE_TIMINGS_TWP	GENMASK(4, 0)
223 
224 #define	SYNC_TIMINGS				0x1020
225 #define		SYNC_TCKWR			GENMASK(21, 16)
226 #define		SYNC_TWRCK			GENMASK(13, 8)
227 #define		SYNC_TCAD			GENMASK(5, 0)
228 
229 #define	TIMINGS0				0x1024
230 #define		TIMINGS0_TADL			GENMASK(31, 24)
231 #define		TIMINGS0_TCCS			GENMASK(23, 16)
232 #define		TIMINGS0_TWHR			GENMASK(15, 8)
233 #define		TIMINGS0_TRHW			GENMASK(7, 0)
234 
235 #define	TIMINGS1				0x1028
236 #define		TIMINGS1_TRHZ			GENMASK(31, 24)
237 #define		TIMINGS1_TWB			GENMASK(23, 16)
238 #define		TIMINGS1_TCWAW			GENMASK(15, 8)
239 #define		TIMINGS1_TVDLY			GENMASK(7, 0)
240 
241 #define	TIMINGS2				0x102c
242 #define		TIMINGS2_TFEAT			GENMASK(25, 16)
243 #define		TIMINGS2_CS_HOLD_TIME		GENMASK(13, 8)
244 #define		TIMINGS2_CS_SETUP_TIME		GENMASK(5, 0)
245 
246 /* Configuration of the resynchronization of slave DLL of PHY. */
247 #define DLL_PHY_CTRL				0x1034
248 #define		DLL_PHY_CTRL_DLL_RST_N		BIT(24)
249 #define		DLL_PHY_CTRL_EXTENDED_WR_MODE	BIT(17)
250 #define		DLL_PHY_CTRL_EXTENDED_RD_MODE	BIT(16)
251 #define		DLL_PHY_CTRL_RS_HIGH_WAIT_CNT	GENMASK(11, 8)
252 #define		DLL_PHY_CTRL_RS_IDLE_CNT	GENMASK(7, 0)
253 
254 /* Register controlling DQ related timing. */
255 #define PHY_DQ_TIMING				0x2000
256 #define		PHY_DQ_TIMING_OE_END	GENMASK(2, 0)
257 #define		PHY_DQ_TIMING_OE_START	GENMASK(6, 4)
258 #define		PHY_DQ_TIMING_TSEL_END	GENMASK(11, 8)
259 #define		PHY_DQ_TIMING_TSEL_START	GENMASK(15, 12)
260 
261 /* Register controlling DSQ related timing.  */
262 #define PHY_DQS_TIMING				0x2004
263 #define		PHY_DQS_TIMING_DQS_SEL_OE_END	GENMASK(3, 0)
264 #define		PHY_DQS_TIMING_DQS_SEL_OE_START	GENMASK(7, 4)
265 #define		PHY_DQS_TIMING_DQS_SEL_TSEL_END	GENMASK(11, 8)
266 #define		PHY_DQS_TIMING_PHONY_DQS_SEL	BIT(16)
267 #define		PHY_DQS_TIMING_USE_PHONY_DQS	BIT(20)
268 
269 /* Register controlling the gate and loopback control related timing. */
270 #define PHY_GATE_LPBK_CTRL			0x2008
271 #define		PHY_GATE_LPBK_CTRL_GATE_CFG		GENMASK(3, 0)
272 #define		PHY_GATE_LPBK_CTRL_GATE_CFG_CLOSE	GENMASK(5, 4)
273 #define		PHY_GATE_LPBK_CTRL_RDS		GENMASK(24, 19)
274 
275 /* Register holds the control for the master DLL logic. */
276 #define PHY_DLL_MASTER_CTRL			0x200C
277 #define		PHY_DLL_MASTER_CTRL_BYPASS_MODE	BIT(23)
278 
279 /* Register holds the control for the slave DLL logic. */
280 #define PHY_DLL_SLAVE_CTRL			0x2010
281 
282 /* Register controls the DQS related timing. */
283 #define PHY_IE_TIMING				0x2014
284 #define		PHY_IE_TIMING_DQS_IE_START		GENMASK(10, 8)
285 #define		PHY_IE_TIMING_DQ_IE_START		GENMASK(18, 16)
286 #define		PHY_IE_TIMING_IE_ALWAYS_ON		BIT(20)
287 
288 /* This register handles the global control settings for the PHY. */
289 #define PHY_CTRL				0x2080
290 #define		PHY_CTRL_SDR_DQS		BIT(14)
291 #define		PHY_CTRL_PHONY_DQS		GENMASK(9, 4)
292 
293 /*
294  * This register handles the global control settings
295  * for the termination selects for reads.
296  */
297 #define PHY_TSEL				0x2084
298 
299 /* Generic command layout. */
300 #define GCMD_LAY_CS			GENMASK_ULL(11, 8)
301 /*
302  * This bit informs the minicotroller if it has to wait for tWB
303  * after sending the last CMD/ADDR/DATA in the sequence.
304  */
305 #define GCMD_LAY_TWB			BIT_ULL(6)
306 /* Type of generic instruction. */
307 #define GCMD_LAY_INSTR			GENMASK_ULL(5, 0)
308 
309 /* Generic CMD sequence type. */
310 #define		GCMD_LAY_INSTR_CMD	0
311 /* Generic ADDR sequence type. */
312 #define		GCMD_LAY_INSTR_ADDR	1
313 /* Generic data transfer sequence type. */
314 #define		GCMD_LAY_INSTR_DATA	2
315 
316 /* Input part of generic command type of input is command. */
317 #define GCMD_LAY_INPUT_CMD		GENMASK_ULL(23, 16)
318 
319 /* Generic command address sequence - address fields. */
320 #define GCMD_LAY_INPUT_ADDR		GENMASK_ULL(63, 16)
321 /* Generic command address sequence - address size. */
322 #define GCMD_LAY_INPUT_ADDR_SIZE	GENMASK_ULL(13, 11)
323 
324 /* Transfer direction field of generic command data sequence. */
325 #define GCMD_DIR			BIT_ULL(11)
326 /* Read transfer direction of generic command data sequence. */
327 #define		GCMD_DIR_READ		0
328 /* Write transfer direction of generic command data sequence. */
329 #define		GCMD_DIR_WRITE		1
330 
331 /* ECC enabled flag of generic command data sequence - ECC enabled. */
332 #define GCMD_ECC_EN			BIT_ULL(12)
333 /* Generic command data sequence - sector size. */
334 #define GCMD_SECT_SIZE			GENMASK_ULL(31, 16)
335 /* Generic command data sequence - sector count. */
336 #define GCMD_SECT_CNT			GENMASK_ULL(39, 32)
337 /* Generic command data sequence - last sector size. */
338 #define GCMD_LAST_SIZE			GENMASK_ULL(55, 40)
339 
340 /* CDMA descriptor fields. */
341 /* Erase command type of CDMA descriptor. */
342 #define CDMA_CT_ERASE		0x1000
343 /* Program page command type of CDMA descriptor. */
344 #define CDMA_CT_WR		0x2100
345 /* Read page command type of CDMA descriptor. */
346 #define CDMA_CT_RD		0x2200
347 
348 /* Flash pointer memory shift. */
349 #define CDMA_CFPTR_MEM_SHIFT	24
350 /* Flash pointer memory mask. */
351 #define CDMA_CFPTR_MEM		GENMASK(26, 24)
352 
353 /*
354  * Command DMA descriptor flags. If set causes issue interrupt after
355  * the completion of descriptor processing.
356  */
357 #define CDMA_CF_INT		BIT(8)
358 /*
359  * Command DMA descriptor flags - the next descriptor
360  * address field is valid and descriptor processing should continue.
361  */
362 #define CDMA_CF_CONT		BIT(9)
363 /* DMA master flag of command DMA descriptor. */
364 #define CDMA_CF_DMA_MASTER	BIT(10)
365 
366 /* Operation complete status of command descriptor. */
367 #define CDMA_CS_COMP		BIT(15)
368 /* Operation complete status of command descriptor. */
369 /* Command descriptor status - operation fail. */
370 #define CDMA_CS_FAIL		BIT(14)
371 /* Command descriptor status - page erased. */
372 #define CDMA_CS_ERP		BIT(11)
373 /* Command descriptor status - timeout occurred. */
374 #define CDMA_CS_TOUT		BIT(10)
375 /*
376  * Maximum amount of correction applied to one ECC sector.
377  * It is part of command descriptor status.
378  */
379 #define CDMA_CS_MAXERR		GENMASK(9, 2)
380 /* Command descriptor status - uncorrectable ECC error. */
381 #define CDMA_CS_UNCE		BIT(1)
382 /* Command descriptor status - descriptor error. */
383 #define CDMA_CS_ERR		BIT(0)
384 
385 /* Status of operation - OK. */
386 #define STAT_OK			0
387 /* Status of operation - FAIL. */
388 #define STAT_FAIL		2
389 /* Status of operation - uncorrectable ECC error. */
390 #define STAT_ECC_UNCORR		3
391 /* Status of operation - page erased. */
392 #define STAT_ERASED		5
393 /* Status of operation - correctable ECC error. */
394 #define STAT_ECC_CORR		6
395 /* Status of operation - unsuspected state. */
396 #define STAT_UNKNOWN		7
397 /* Status of operation - operation is not completed yet. */
398 #define STAT_BUSY		0xFF
399 
400 #define BCH_MAX_NUM_CORR_CAPS		8
401 #define BCH_MAX_NUM_SECTOR_SIZES	2
402 
403 /* NVDDR mode specific parameters and register values based on cadence specs */
404 #define NVDDR_PHY_RD_DELAY		29
405 #define NVDDR_PHY_RD_DELAY_MAX		31
406 #define NVDDR_GATE_CFG_OPT		14
407 #define NVDDR_GATE_CFG_STD		7
408 #define NVDDR_GATE_CFG_MAX		15
409 #define NVDDR_DATA_SEL_OE_START		1
410 #define NVDDR_DATA_SEL_OE_START_MAX	7
411 #define NVDDR_DATA_SEL_OE_END		6
412 #define NVDDR_DATA_SEL_OE_END_MIN	4
413 #define NVDDR_DATA_SEL_OE_END_MAX	15
414 #define NVDDR_RS_HIGH_WAIT_CNT		7
415 #define NVDDR_RS_IDLE_CNT		7
416 #define NVDDR_TCWAW_DELAY		250000
417 #define NVDDR_TVDLY_DELAY		500000
418 #define NVDDR_TOGGLE_TIMINGS_0		0x00000301
419 #define NVDDR_TOGGLE_TIMINGS_1		0x0a060102
420 #define NVDDR_ASYNC_TOGGLE_TIMINGS	0
421 #define NVDDR_PHY_CTRL			0x00004000
422 #define NVDDR_PHY_TSEL			0
423 #define NVDDR_PHY_DLL_MASTER_CTRL	0x00140004
424 #define NVDDR_PHY_DLL_SLAVE_CTRL	0x00003c3c
425 
426 struct cadence_nand_timings {
427 	u32 async_toggle_timings;
428 	u32 sync_timings;
429 	u32 timings0;
430 	u32 timings1;
431 	u32 timings2;
432 	u32 dll_phy_ctrl;
433 	u32 phy_ctrl;
434 	u32 phy_dq_timing;
435 	u32 phy_dqs_timing;
436 	u32 phy_gate_lpbk_ctrl;
437 	u32 phy_ie_timing;
438 };
439 
440 /* Command DMA descriptor. */
441 struct cadence_nand_cdma_desc {
442 	/* Next descriptor address. */
443 	u64 next_pointer;
444 
445 	/* Flash address is a 32-bit address comprising of BANK and ROW ADDR. */
446 	u32 flash_pointer;
447 	/*field appears in HPNFC version 13*/
448 	u16 bank;
449 	u16 rsvd0;
450 
451 	/* Operation the controller needs to perform. */
452 	u16 command_type;
453 	u16 rsvd1;
454 	/* Flags for operation of this command. */
455 	u16 command_flags;
456 	u16 rsvd2;
457 
458 	/* System/host memory address required for data DMA commands. */
459 	u64 memory_pointer;
460 
461 	/* Status of operation. */
462 	u32 status;
463 	u32 rsvd3;
464 
465 	/* Address pointer to sync buffer location. */
466 	u64 sync_flag_pointer;
467 
468 	/* Controls the buffer sync mechanism. */
469 	u32 sync_arguments;
470 	u32 rsvd4;
471 
472 	/* Control data pointer. */
473 	u64 ctrl_data_ptr;
474 };
475 
476 /* Interrupt status. */
477 struct cadence_nand_irq_status {
478 	/* Thread operation complete status. */
479 	u32 trd_status;
480 	/* Thread operation error. */
481 	u32 trd_error;
482 	/* Controller status. */
483 	u32 status;
484 };
485 
486 /* Cadence NAND flash controller capabilities get from driver data. */
487 struct cadence_nand_dt_devdata {
488 	/* Skew value of the output signals of the NAND Flash interface. */
489 	u32 if_skew;
490 	/* It informs if slave DMA interface is connected to DMA engine. */
491 	unsigned int has_dma:1;
492 };
493 
494 /* Cadence NAND flash controller capabilities read from registers. */
495 struct cdns_nand_caps {
496 	/* Maximum number of banks supported by hardware. */
497 	u8 max_banks;
498 	/* Slave and Master DMA data width in bytes (4 or 8). */
499 	u8 data_dma_width;
500 	/* Control Data feature supported. */
501 	bool data_control_supp;
502 	/* Is PHY type DLL. */
503 	bool is_phy_type_dll;
504 };
505 
506 struct cdns_nand_ctrl {
507 	struct device *dev;
508 	struct nand_controller controller;
509 	struct cadence_nand_cdma_desc *cdma_desc;
510 	/* IP capability. */
511 	const struct cadence_nand_dt_devdata *caps1;
512 	struct cdns_nand_caps caps2;
513 	u8 ctrl_rev;
514 	dma_addr_t dma_cdma_desc;
515 	u8 *buf;
516 	u32 buf_size;
517 	u8 curr_corr_str_idx;
518 
519 	/* Register interface. */
520 	void __iomem *reg;
521 
522 	struct {
523 		void __iomem *virt;
524 		dma_addr_t dma;
525 		dma_addr_t iova_dma;
526 		u32 size;
527 	} io;
528 
529 	int irq;
530 	/* Interrupts that have happened. */
531 	struct cadence_nand_irq_status irq_status;
532 	/* Interrupts we are waiting for. */
533 	struct cadence_nand_irq_status irq_mask;
534 	struct completion complete;
535 	/* Protect irq_mask and irq_status. */
536 	spinlock_t irq_lock;
537 
538 	int ecc_strengths[BCH_MAX_NUM_CORR_CAPS];
539 	struct nand_ecc_step_info ecc_stepinfos[BCH_MAX_NUM_SECTOR_SIZES];
540 	struct nand_ecc_caps ecc_caps;
541 
542 	int curr_trans_type;
543 
544 	struct dma_chan *dmac;
545 
546 	u32 nf_clk_rate;
547 	/*
548 	 * Estimated Board delay. The value includes the total
549 	 * round trip delay for the signals and is used for deciding on values
550 	 * associated with data read capture.
551 	 */
552 	u32 board_delay;
553 
554 	struct nand_chip *selected_chip;
555 
556 	unsigned long assigned_cs;
557 	struct list_head chips;
558 	u8 bch_metadata_size;
559 };
560 
561 struct cdns_nand_chip {
562 	struct cadence_nand_timings timings;
563 	struct nand_chip chip;
564 	u8 nsels;
565 	struct list_head node;
566 
567 	/*
568 	 * part of oob area of NAND flash memory page.
569 	 * This part is available for user to read or write.
570 	 */
571 	u32 avail_oob_size;
572 
573 	/* Sector size. There are few sectors per mtd->writesize */
574 	u32 sector_size;
575 	u32 sector_count;
576 
577 	/* Offset of BBM. */
578 	u8 bbm_offs;
579 	/* Number of bytes reserved for BBM. */
580 	u8 bbm_len;
581 	/* ECC strength index. */
582 	u8 corr_str_idx;
583 
584 	u8 cs[] __counted_by(nsels);
585 };
586 
587 static inline struct
588 cdns_nand_chip *to_cdns_nand_chip(struct nand_chip *chip)
589 {
590 	return container_of(chip, struct cdns_nand_chip, chip);
591 }
592 
593 static inline struct
594 cdns_nand_ctrl *to_cdns_nand_ctrl(struct nand_controller *controller)
595 {
596 	return container_of(controller, struct cdns_nand_ctrl, controller);
597 }
598 
599 static bool
600 cadence_nand_dma_buf_ok(struct cdns_nand_ctrl *cdns_ctrl, const void *buf,
601 			u32 buf_len)
602 {
603 	u8 data_dma_width = cdns_ctrl->caps2.data_dma_width;
604 
605 	return buf && virt_addr_valid(buf) &&
606 		likely(IS_ALIGNED((uintptr_t)buf, data_dma_width)) &&
607 		likely(IS_ALIGNED(buf_len, DMA_DATA_SIZE_ALIGN));
608 }
609 
610 static int cadence_nand_wait_for_value(struct cdns_nand_ctrl *cdns_ctrl,
611 				       u32 reg_offset, u32 timeout_us,
612 				       u32 mask, bool is_clear)
613 {
614 	u32 val;
615 	int ret;
616 
617 	ret = readl_relaxed_poll_timeout(cdns_ctrl->reg + reg_offset,
618 					 val, !(val & mask) == is_clear,
619 					 10, timeout_us);
620 
621 	if (ret < 0) {
622 		dev_err(cdns_ctrl->dev,
623 			"Timeout while waiting for reg %x with mask %x is clear %d\n",
624 			reg_offset, mask, is_clear);
625 	}
626 
627 	return ret;
628 }
629 
630 static int cadence_nand_set_ecc_enable(struct cdns_nand_ctrl *cdns_ctrl,
631 				       bool enable)
632 {
633 	u32 reg;
634 
635 	if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS,
636 					1000000,
637 					CTRL_STATUS_CTRL_BUSY, true))
638 		return -ETIMEDOUT;
639 
640 	reg = readl_relaxed(cdns_ctrl->reg + ECC_CONFIG_0);
641 
642 	if (enable)
643 		reg |= ECC_CONFIG_0_ECC_EN;
644 	else
645 		reg &= ~ECC_CONFIG_0_ECC_EN;
646 
647 	writel_relaxed(reg, cdns_ctrl->reg + ECC_CONFIG_0);
648 
649 	return 0;
650 }
651 
652 static void cadence_nand_set_ecc_strength(struct cdns_nand_ctrl *cdns_ctrl,
653 					  u8 corr_str_idx)
654 {
655 	u32 reg;
656 
657 	if (cdns_ctrl->curr_corr_str_idx == corr_str_idx)
658 		return;
659 
660 	reg = readl_relaxed(cdns_ctrl->reg + ECC_CONFIG_0);
661 	reg &= ~ECC_CONFIG_0_CORR_STR;
662 	reg |= FIELD_PREP(ECC_CONFIG_0_CORR_STR, corr_str_idx);
663 	writel_relaxed(reg, cdns_ctrl->reg + ECC_CONFIG_0);
664 
665 	cdns_ctrl->curr_corr_str_idx = corr_str_idx;
666 }
667 
668 static int cadence_nand_get_ecc_strength_idx(struct cdns_nand_ctrl *cdns_ctrl,
669 					     u8 strength)
670 {
671 	int i, corr_str_idx = -1;
672 
673 	for (i = 0; i < BCH_MAX_NUM_CORR_CAPS; i++) {
674 		if (cdns_ctrl->ecc_strengths[i] == strength) {
675 			corr_str_idx = i;
676 			break;
677 		}
678 	}
679 
680 	return corr_str_idx;
681 }
682 
683 static int cadence_nand_set_skip_marker_val(struct cdns_nand_ctrl *cdns_ctrl,
684 					    u16 marker_value)
685 {
686 	u32 reg;
687 
688 	if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS,
689 					1000000,
690 					CTRL_STATUS_CTRL_BUSY, true))
691 		return -ETIMEDOUT;
692 
693 	reg = readl_relaxed(cdns_ctrl->reg + SKIP_BYTES_CONF);
694 	reg &= ~SKIP_BYTES_MARKER_VALUE;
695 	reg |= FIELD_PREP(SKIP_BYTES_MARKER_VALUE,
696 			  marker_value);
697 
698 	writel_relaxed(reg, cdns_ctrl->reg + SKIP_BYTES_CONF);
699 
700 	return 0;
701 }
702 
703 static int cadence_nand_set_skip_bytes_conf(struct cdns_nand_ctrl *cdns_ctrl,
704 					    u8 num_of_bytes,
705 					    u32 offset_value,
706 					    int enable)
707 {
708 	u32 reg, skip_bytes_offset;
709 
710 	if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS,
711 					1000000,
712 					CTRL_STATUS_CTRL_BUSY, true))
713 		return -ETIMEDOUT;
714 
715 	if (!enable) {
716 		num_of_bytes = 0;
717 		offset_value = 0;
718 	}
719 
720 	reg = readl_relaxed(cdns_ctrl->reg + SKIP_BYTES_CONF);
721 	reg &= ~SKIP_BYTES_NUM_OF_BYTES;
722 	reg |= FIELD_PREP(SKIP_BYTES_NUM_OF_BYTES,
723 			  num_of_bytes);
724 	skip_bytes_offset = FIELD_PREP(SKIP_BYTES_OFFSET_VALUE,
725 				       offset_value);
726 
727 	writel_relaxed(reg, cdns_ctrl->reg + SKIP_BYTES_CONF);
728 	writel_relaxed(skip_bytes_offset, cdns_ctrl->reg + SKIP_BYTES_OFFSET);
729 
730 	return 0;
731 }
732 
733 /* Functions enables/disables hardware detection of erased data */
734 static void cadence_nand_set_erase_detection(struct cdns_nand_ctrl *cdns_ctrl,
735 					     bool enable,
736 					     u8 bitflips_threshold)
737 {
738 	u32 reg;
739 
740 	reg = readl_relaxed(cdns_ctrl->reg + ECC_CONFIG_0);
741 
742 	if (enable)
743 		reg |= ECC_CONFIG_0_ERASE_DET_EN;
744 	else
745 		reg &= ~ECC_CONFIG_0_ERASE_DET_EN;
746 
747 	writel_relaxed(reg, cdns_ctrl->reg + ECC_CONFIG_0);
748 	writel_relaxed(bitflips_threshold, cdns_ctrl->reg + ECC_CONFIG_1);
749 }
750 
751 static int cadence_nand_set_access_width16(struct cdns_nand_ctrl *cdns_ctrl,
752 					   bool bit_bus16)
753 {
754 	u32 reg;
755 
756 	if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS,
757 					1000000,
758 					CTRL_STATUS_CTRL_BUSY, true))
759 		return -ETIMEDOUT;
760 
761 	reg = readl_relaxed(cdns_ctrl->reg + COMMON_SET);
762 
763 	if (!bit_bus16)
764 		reg &= ~COMMON_SET_DEVICE_16BIT;
765 	else
766 		reg |= COMMON_SET_DEVICE_16BIT;
767 	writel_relaxed(reg, cdns_ctrl->reg + COMMON_SET);
768 
769 	return 0;
770 }
771 
772 static void
773 cadence_nand_clear_interrupt(struct cdns_nand_ctrl *cdns_ctrl,
774 			     struct cadence_nand_irq_status *irq_status)
775 {
776 	writel_relaxed(irq_status->status, cdns_ctrl->reg + INTR_STATUS);
777 	writel_relaxed(irq_status->trd_status,
778 		       cdns_ctrl->reg + TRD_COMP_INT_STATUS);
779 	writel_relaxed(irq_status->trd_error,
780 		       cdns_ctrl->reg + TRD_ERR_INT_STATUS);
781 }
782 
783 static void
784 cadence_nand_read_int_status(struct cdns_nand_ctrl *cdns_ctrl,
785 			     struct cadence_nand_irq_status *irq_status)
786 {
787 	irq_status->status = readl_relaxed(cdns_ctrl->reg + INTR_STATUS);
788 	irq_status->trd_status = readl_relaxed(cdns_ctrl->reg
789 					       + TRD_COMP_INT_STATUS);
790 	irq_status->trd_error = readl_relaxed(cdns_ctrl->reg
791 					      + TRD_ERR_INT_STATUS);
792 }
793 
794 static u32 irq_detected(struct cdns_nand_ctrl *cdns_ctrl,
795 			struct cadence_nand_irq_status *irq_status)
796 {
797 	cadence_nand_read_int_status(cdns_ctrl, irq_status);
798 
799 	return irq_status->status || irq_status->trd_status ||
800 		irq_status->trd_error;
801 }
802 
803 static void cadence_nand_reset_irq(struct cdns_nand_ctrl *cdns_ctrl)
804 {
805 	unsigned long flags;
806 
807 	spin_lock_irqsave(&cdns_ctrl->irq_lock, flags);
808 	memset(&cdns_ctrl->irq_status, 0, sizeof(cdns_ctrl->irq_status));
809 	memset(&cdns_ctrl->irq_mask, 0, sizeof(cdns_ctrl->irq_mask));
810 	spin_unlock_irqrestore(&cdns_ctrl->irq_lock, flags);
811 }
812 
813 /*
814  * This is the interrupt service routine. It handles all interrupts
815  * sent to this device.
816  */
817 static irqreturn_t cadence_nand_isr(int irq, void *dev_id)
818 {
819 	struct cdns_nand_ctrl *cdns_ctrl = dev_id;
820 	struct cadence_nand_irq_status irq_status;
821 	irqreturn_t result = IRQ_NONE;
822 
823 	spin_lock(&cdns_ctrl->irq_lock);
824 
825 	if (irq_detected(cdns_ctrl, &irq_status)) {
826 		/* Handle interrupt. */
827 		/* First acknowledge it. */
828 		cadence_nand_clear_interrupt(cdns_ctrl, &irq_status);
829 		/* Status in the device context for someone to read. */
830 		cdns_ctrl->irq_status.status |= irq_status.status;
831 		cdns_ctrl->irq_status.trd_status |= irq_status.trd_status;
832 		cdns_ctrl->irq_status.trd_error |= irq_status.trd_error;
833 		/* Notify anyone who cares that it happened. */
834 		complete(&cdns_ctrl->complete);
835 		/* Tell the OS that we've handled this. */
836 		result = IRQ_HANDLED;
837 	}
838 	spin_unlock(&cdns_ctrl->irq_lock);
839 
840 	return result;
841 }
842 
843 static void cadence_nand_set_irq_mask(struct cdns_nand_ctrl *cdns_ctrl,
844 				      struct cadence_nand_irq_status *irq_mask)
845 {
846 	writel_relaxed(INTR_ENABLE_INTR_EN | irq_mask->status,
847 		       cdns_ctrl->reg + INTR_ENABLE);
848 
849 	writel_relaxed(irq_mask->trd_error,
850 		       cdns_ctrl->reg + TRD_ERR_INT_STATUS_EN);
851 }
852 
853 static void
854 cadence_nand_wait_for_irq(struct cdns_nand_ctrl *cdns_ctrl,
855 			  struct cadence_nand_irq_status *irq_mask,
856 			  struct cadence_nand_irq_status *irq_status)
857 {
858 	unsigned long timeout = msecs_to_jiffies(10000);
859 	unsigned long time_left;
860 
861 	time_left = wait_for_completion_timeout(&cdns_ctrl->complete,
862 						timeout);
863 
864 	*irq_status = cdns_ctrl->irq_status;
865 	if (time_left == 0) {
866 		/* Timeout error. */
867 		dev_err(cdns_ctrl->dev, "timeout occurred:\n");
868 		dev_err(cdns_ctrl->dev, "\tstatus = 0x%x, mask = 0x%x\n",
869 			irq_status->status, irq_mask->status);
870 		dev_err(cdns_ctrl->dev,
871 			"\ttrd_status = 0x%x, trd_status mask = 0x%x\n",
872 			irq_status->trd_status, irq_mask->trd_status);
873 		dev_err(cdns_ctrl->dev,
874 			"\t trd_error = 0x%x, trd_error mask = 0x%x\n",
875 			irq_status->trd_error, irq_mask->trd_error);
876 	}
877 }
878 
879 /* Execute generic command on NAND controller. */
880 static int cadence_nand_generic_cmd_send(struct cdns_nand_ctrl *cdns_ctrl,
881 					 u8 chip_nr,
882 					 u64 mini_ctrl_cmd)
883 {
884 	u32 mini_ctrl_cmd_l, mini_ctrl_cmd_h, reg;
885 
886 	mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_CS, chip_nr);
887 	mini_ctrl_cmd_l = mini_ctrl_cmd & 0xFFFFFFFF;
888 	mini_ctrl_cmd_h = mini_ctrl_cmd >> 32;
889 
890 	if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS,
891 					1000000,
892 					CTRL_STATUS_CTRL_BUSY, true))
893 		return -ETIMEDOUT;
894 
895 	cadence_nand_reset_irq(cdns_ctrl);
896 
897 	writel_relaxed(mini_ctrl_cmd_l, cdns_ctrl->reg + CMD_REG2);
898 	writel_relaxed(mini_ctrl_cmd_h, cdns_ctrl->reg + CMD_REG3);
899 
900 	/* Select generic command. */
901 	reg = FIELD_PREP(CMD_REG0_CT, CMD_REG0_CT_GEN);
902 	/* Thread number. */
903 	reg |= FIELD_PREP(CMD_REG0_TN, 0);
904 
905 	/* Issue command. */
906 	writel_relaxed(reg, cdns_ctrl->reg + CMD_REG0);
907 
908 	return 0;
909 }
910 
911 /* Wait for data on slave DMA interface. */
912 static int cadence_nand_wait_on_sdma(struct cdns_nand_ctrl *cdns_ctrl,
913 				     u8 *out_sdma_trd,
914 				     u32 *out_sdma_size)
915 {
916 	struct cadence_nand_irq_status irq_mask, irq_status;
917 
918 	irq_mask.trd_status = 0;
919 	irq_mask.trd_error = 0;
920 	irq_mask.status = INTR_STATUS_SDMA_TRIGG
921 		| INTR_STATUS_SDMA_ERR
922 		| INTR_STATUS_UNSUPP_CMD;
923 
924 	cadence_nand_set_irq_mask(cdns_ctrl, &irq_mask);
925 	cadence_nand_wait_for_irq(cdns_ctrl, &irq_mask, &irq_status);
926 	if (irq_status.status == 0) {
927 		dev_err(cdns_ctrl->dev, "Timeout while waiting for SDMA\n");
928 		return -ETIMEDOUT;
929 	}
930 
931 	if (irq_status.status & INTR_STATUS_SDMA_TRIGG) {
932 		*out_sdma_size = readl_relaxed(cdns_ctrl->reg + SDMA_SIZE);
933 		*out_sdma_trd  = readl_relaxed(cdns_ctrl->reg + SDMA_TRD_NUM);
934 		*out_sdma_trd =
935 			FIELD_GET(SDMA_TRD_NUM_SDMA_TRD, *out_sdma_trd);
936 	} else {
937 		dev_err(cdns_ctrl->dev, "SDMA error - irq_status %x\n",
938 			irq_status.status);
939 		return -EIO;
940 	}
941 
942 	return 0;
943 }
944 
945 static void cadence_nand_get_caps(struct cdns_nand_ctrl *cdns_ctrl)
946 {
947 	u32  reg;
948 
949 	reg = readl_relaxed(cdns_ctrl->reg + CTRL_FEATURES);
950 
951 	cdns_ctrl->caps2.max_banks = 1 << FIELD_GET(CTRL_FEATURES_N_BANKS, reg);
952 
953 	if (FIELD_GET(CTRL_FEATURES_DMA_DWITH64, reg))
954 		cdns_ctrl->caps2.data_dma_width = 8;
955 	else
956 		cdns_ctrl->caps2.data_dma_width = 4;
957 
958 	if (reg & CTRL_FEATURES_CONTROL_DATA)
959 		cdns_ctrl->caps2.data_control_supp = true;
960 
961 	if (reg & (CTRL_FEATURES_NVDDR_2_3
962 		   | CTRL_FEATURES_NVDDR))
963 		cdns_ctrl->caps2.is_phy_type_dll = true;
964 }
965 
966 /* Prepare CDMA descriptor. */
967 static void
968 cadence_nand_cdma_desc_prepare(struct cdns_nand_ctrl *cdns_ctrl,
969 			       char nf_mem, u32 flash_ptr, dma_addr_t mem_ptr,
970 				   dma_addr_t ctrl_data_ptr, u16 ctype)
971 {
972 	struct cadence_nand_cdma_desc *cdma_desc = cdns_ctrl->cdma_desc;
973 
974 	memset(cdma_desc, 0, sizeof(struct cadence_nand_cdma_desc));
975 
976 	/* Set fields for one descriptor. */
977 	cdma_desc->flash_pointer = flash_ptr;
978 	if (cdns_ctrl->ctrl_rev >= 13)
979 		cdma_desc->bank = nf_mem;
980 	else
981 		cdma_desc->flash_pointer |= (nf_mem << CDMA_CFPTR_MEM_SHIFT);
982 
983 	cdma_desc->command_flags |= CDMA_CF_DMA_MASTER;
984 	cdma_desc->command_flags  |= CDMA_CF_INT;
985 
986 	cdma_desc->memory_pointer = mem_ptr;
987 	cdma_desc->status = 0;
988 	cdma_desc->sync_flag_pointer = 0;
989 	cdma_desc->sync_arguments = 0;
990 
991 	cdma_desc->command_type = ctype;
992 	cdma_desc->ctrl_data_ptr = ctrl_data_ptr;
993 }
994 
995 static u8 cadence_nand_check_desc_error(struct cdns_nand_ctrl *cdns_ctrl,
996 					u32 desc_status)
997 {
998 	if (desc_status & CDMA_CS_ERP)
999 		return STAT_ERASED;
1000 
1001 	if (desc_status & CDMA_CS_UNCE)
1002 		return STAT_ECC_UNCORR;
1003 
1004 	if (desc_status & CDMA_CS_ERR) {
1005 		dev_err(cdns_ctrl->dev, ":CDMA desc error flag detected.\n");
1006 		return STAT_FAIL;
1007 	}
1008 
1009 	if (FIELD_GET(CDMA_CS_MAXERR, desc_status))
1010 		return STAT_ECC_CORR;
1011 
1012 	return STAT_FAIL;
1013 }
1014 
1015 static int cadence_nand_cdma_finish(struct cdns_nand_ctrl *cdns_ctrl)
1016 {
1017 	struct cadence_nand_cdma_desc *desc_ptr = cdns_ctrl->cdma_desc;
1018 	u8 status = STAT_BUSY;
1019 
1020 	if (desc_ptr->status & CDMA_CS_FAIL) {
1021 		status = cadence_nand_check_desc_error(cdns_ctrl,
1022 						       desc_ptr->status);
1023 		dev_err(cdns_ctrl->dev, ":CDMA error %x\n", desc_ptr->status);
1024 	} else if (desc_ptr->status & CDMA_CS_COMP) {
1025 		/* Descriptor finished with no errors. */
1026 		if (desc_ptr->command_flags & CDMA_CF_CONT) {
1027 			dev_info(cdns_ctrl->dev, "DMA unsupported flag is set");
1028 			status = STAT_UNKNOWN;
1029 		} else {
1030 			/* Last descriptor.  */
1031 			status = STAT_OK;
1032 		}
1033 	}
1034 
1035 	return status;
1036 }
1037 
1038 static int cadence_nand_cdma_send(struct cdns_nand_ctrl *cdns_ctrl,
1039 				  u8 thread)
1040 {
1041 	u32 reg;
1042 	int status;
1043 
1044 	/* Wait for thread ready. */
1045 	status = cadence_nand_wait_for_value(cdns_ctrl, TRD_STATUS,
1046 					     1000000,
1047 					     BIT(thread), true);
1048 	if (status)
1049 		return status;
1050 
1051 	cadence_nand_reset_irq(cdns_ctrl);
1052 	reinit_completion(&cdns_ctrl->complete);
1053 
1054 	writel_relaxed((u32)cdns_ctrl->dma_cdma_desc,
1055 		       cdns_ctrl->reg + CMD_REG2);
1056 	writel_relaxed(0, cdns_ctrl->reg + CMD_REG3);
1057 
1058 	/* Select CDMA mode. */
1059 	reg = FIELD_PREP(CMD_REG0_CT, CMD_REG0_CT_CDMA);
1060 	/* Thread number. */
1061 	reg |= FIELD_PREP(CMD_REG0_TN, thread);
1062 	/* Issue command. */
1063 	writel_relaxed(reg, cdns_ctrl->reg + CMD_REG0);
1064 
1065 	return 0;
1066 }
1067 
1068 /* Send SDMA command and wait for finish. */
1069 static u32
1070 cadence_nand_cdma_send_and_wait(struct cdns_nand_ctrl *cdns_ctrl,
1071 				u8 thread)
1072 {
1073 	struct cadence_nand_irq_status irq_mask, irq_status = {0};
1074 	int status;
1075 
1076 	irq_mask.trd_status = BIT(thread);
1077 	irq_mask.trd_error = BIT(thread);
1078 	irq_mask.status = INTR_STATUS_CDMA_TERR;
1079 
1080 	cadence_nand_set_irq_mask(cdns_ctrl, &irq_mask);
1081 
1082 	status = cadence_nand_cdma_send(cdns_ctrl, thread);
1083 	if (status)
1084 		return status;
1085 
1086 	cadence_nand_wait_for_irq(cdns_ctrl, &irq_mask, &irq_status);
1087 
1088 	if (irq_status.status == 0 && irq_status.trd_status == 0 &&
1089 	    irq_status.trd_error == 0) {
1090 		dev_err(cdns_ctrl->dev, "CDMA command timeout\n");
1091 		return -ETIMEDOUT;
1092 	}
1093 	if (irq_status.status & irq_mask.status) {
1094 		dev_err(cdns_ctrl->dev, "CDMA command failed\n");
1095 		return -EIO;
1096 	}
1097 
1098 	return 0;
1099 }
1100 
1101 /*
1102  * ECC size depends on configured ECC strength and on maximum supported
1103  * ECC step size.
1104  */
1105 static int cadence_nand_calc_ecc_bytes(int max_step_size, int strength)
1106 {
1107 	int nbytes = DIV_ROUND_UP(fls(8 * max_step_size) * strength, 8);
1108 
1109 	return ALIGN(nbytes, 2);
1110 }
1111 
1112 #define CADENCE_NAND_CALC_ECC_BYTES(max_step_size) \
1113 	static int \
1114 	cadence_nand_calc_ecc_bytes_##max_step_size(int step_size, \
1115 						    int strength)\
1116 	{\
1117 		return cadence_nand_calc_ecc_bytes(max_step_size, strength);\
1118 	}
1119 
1120 CADENCE_NAND_CALC_ECC_BYTES(256)
1121 CADENCE_NAND_CALC_ECC_BYTES(512)
1122 CADENCE_NAND_CALC_ECC_BYTES(1024)
1123 CADENCE_NAND_CALC_ECC_BYTES(2048)
1124 CADENCE_NAND_CALC_ECC_BYTES(4096)
1125 
1126 /* Function reads BCH capabilities. */
1127 static int cadence_nand_read_bch_caps(struct cdns_nand_ctrl *cdns_ctrl)
1128 {
1129 	struct nand_ecc_caps *ecc_caps = &cdns_ctrl->ecc_caps;
1130 	int max_step_size = 0, nstrengths, i;
1131 	u32 reg;
1132 
1133 	reg = readl_relaxed(cdns_ctrl->reg + BCH_CFG_3);
1134 	cdns_ctrl->bch_metadata_size = FIELD_GET(BCH_CFG_3_METADATA_SIZE, reg);
1135 	if (cdns_ctrl->bch_metadata_size < 4) {
1136 		dev_err(cdns_ctrl->dev,
1137 			"Driver needs at least 4 bytes of BCH meta data\n");
1138 		return -EIO;
1139 	}
1140 
1141 	reg = readl_relaxed(cdns_ctrl->reg + BCH_CFG_0);
1142 	cdns_ctrl->ecc_strengths[0] = FIELD_GET(BCH_CFG_0_CORR_CAP_0, reg);
1143 	cdns_ctrl->ecc_strengths[1] = FIELD_GET(BCH_CFG_0_CORR_CAP_1, reg);
1144 	cdns_ctrl->ecc_strengths[2] = FIELD_GET(BCH_CFG_0_CORR_CAP_2, reg);
1145 	cdns_ctrl->ecc_strengths[3] = FIELD_GET(BCH_CFG_0_CORR_CAP_3, reg);
1146 
1147 	reg = readl_relaxed(cdns_ctrl->reg + BCH_CFG_1);
1148 	cdns_ctrl->ecc_strengths[4] = FIELD_GET(BCH_CFG_1_CORR_CAP_4, reg);
1149 	cdns_ctrl->ecc_strengths[5] = FIELD_GET(BCH_CFG_1_CORR_CAP_5, reg);
1150 	cdns_ctrl->ecc_strengths[6] = FIELD_GET(BCH_CFG_1_CORR_CAP_6, reg);
1151 	cdns_ctrl->ecc_strengths[7] = FIELD_GET(BCH_CFG_1_CORR_CAP_7, reg);
1152 
1153 	reg = readl_relaxed(cdns_ctrl->reg + BCH_CFG_2);
1154 	cdns_ctrl->ecc_stepinfos[0].stepsize =
1155 		FIELD_GET(BCH_CFG_2_SECT_0, reg);
1156 
1157 	cdns_ctrl->ecc_stepinfos[1].stepsize =
1158 		FIELD_GET(BCH_CFG_2_SECT_1, reg);
1159 
1160 	nstrengths = 0;
1161 	for (i = 0; i < BCH_MAX_NUM_CORR_CAPS; i++) {
1162 		if (cdns_ctrl->ecc_strengths[i] != 0)
1163 			nstrengths++;
1164 	}
1165 
1166 	ecc_caps->nstepinfos = 0;
1167 	for (i = 0; i < BCH_MAX_NUM_SECTOR_SIZES; i++) {
1168 		/* ECC strengths are common for all step infos. */
1169 		cdns_ctrl->ecc_stepinfos[i].nstrengths = nstrengths;
1170 		cdns_ctrl->ecc_stepinfos[i].strengths =
1171 			cdns_ctrl->ecc_strengths;
1172 
1173 		if (cdns_ctrl->ecc_stepinfos[i].stepsize != 0)
1174 			ecc_caps->nstepinfos++;
1175 
1176 		if (cdns_ctrl->ecc_stepinfos[i].stepsize > max_step_size)
1177 			max_step_size = cdns_ctrl->ecc_stepinfos[i].stepsize;
1178 	}
1179 	ecc_caps->stepinfos = &cdns_ctrl->ecc_stepinfos[0];
1180 
1181 	switch (max_step_size) {
1182 	case 256:
1183 		ecc_caps->calc_ecc_bytes = &cadence_nand_calc_ecc_bytes_256;
1184 		break;
1185 	case 512:
1186 		ecc_caps->calc_ecc_bytes = &cadence_nand_calc_ecc_bytes_512;
1187 		break;
1188 	case 1024:
1189 		ecc_caps->calc_ecc_bytes = &cadence_nand_calc_ecc_bytes_1024;
1190 		break;
1191 	case 2048:
1192 		ecc_caps->calc_ecc_bytes = &cadence_nand_calc_ecc_bytes_2048;
1193 		break;
1194 	case 4096:
1195 		ecc_caps->calc_ecc_bytes = &cadence_nand_calc_ecc_bytes_4096;
1196 		break;
1197 	default:
1198 		dev_err(cdns_ctrl->dev,
1199 			"Unsupported sector size(ecc step size) %d\n",
1200 			max_step_size);
1201 		return -EIO;
1202 	}
1203 
1204 	return 0;
1205 }
1206 
1207 /* Hardware initialization. */
1208 static int cadence_nand_hw_init(struct cdns_nand_ctrl *cdns_ctrl)
1209 {
1210 	int status;
1211 	u32 reg;
1212 
1213 	status = cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS,
1214 					     1000000,
1215 					     CTRL_STATUS_INIT_COMP, false);
1216 	if (status)
1217 		return status;
1218 
1219 	reg = readl_relaxed(cdns_ctrl->reg + CTRL_VERSION);
1220 	cdns_ctrl->ctrl_rev = FIELD_GET(CTRL_VERSION_REV, reg);
1221 
1222 	dev_info(cdns_ctrl->dev,
1223 		 "%s: cadence nand controller version reg %x\n",
1224 		 __func__, reg);
1225 
1226 	/* Disable cache and multiplane. */
1227 	writel_relaxed(0, cdns_ctrl->reg + MULTIPLANE_CFG);
1228 	writel_relaxed(0, cdns_ctrl->reg + CACHE_CFG);
1229 
1230 	/* Clear all interrupts. */
1231 	writel_relaxed(0xFFFFFFFF, cdns_ctrl->reg + INTR_STATUS);
1232 
1233 	cadence_nand_get_caps(cdns_ctrl);
1234 	if (cadence_nand_read_bch_caps(cdns_ctrl))
1235 		return -EIO;
1236 
1237 #ifndef CONFIG_64BIT
1238 	if (cdns_ctrl->caps2.data_dma_width == 8) {
1239 		dev_err(cdns_ctrl->dev,
1240 			"cannot access 64-bit dma on !64-bit architectures");
1241 		return -EIO;
1242 	}
1243 #endif
1244 
1245 	/*
1246 	 * Set IO width access to 8.
1247 	 * It is because during SW device discovering width access
1248 	 * is expected to be 8.
1249 	 */
1250 	status = cadence_nand_set_access_width16(cdns_ctrl, false);
1251 
1252 	return status;
1253 }
1254 
1255 #define TT_MAIN_OOB_AREAS	2
1256 #define TT_RAW_PAGE		3
1257 #define TT_BBM			4
1258 #define TT_MAIN_OOB_AREA_EXT	5
1259 
1260 /* Prepare size of data to transfer. */
1261 static void
1262 cadence_nand_prepare_data_size(struct nand_chip *chip,
1263 			       int transfer_type)
1264 {
1265 	struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
1266 	struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
1267 	struct mtd_info *mtd = nand_to_mtd(chip);
1268 	u32 sec_size = 0, offset = 0, sec_cnt = 1;
1269 	u32 last_sec_size = cdns_chip->sector_size;
1270 	u32 data_ctrl_size = 0;
1271 	u32 reg = 0;
1272 
1273 	if (cdns_ctrl->curr_trans_type == transfer_type)
1274 		return;
1275 
1276 	switch (transfer_type) {
1277 	case TT_MAIN_OOB_AREA_EXT:
1278 		sec_cnt = cdns_chip->sector_count;
1279 		sec_size = cdns_chip->sector_size;
1280 		data_ctrl_size = cdns_chip->avail_oob_size;
1281 		break;
1282 	case TT_MAIN_OOB_AREAS:
1283 		sec_cnt = cdns_chip->sector_count;
1284 		last_sec_size = cdns_chip->sector_size
1285 			+ cdns_chip->avail_oob_size;
1286 		sec_size = cdns_chip->sector_size;
1287 		break;
1288 	case TT_RAW_PAGE:
1289 		last_sec_size = mtd->writesize + mtd->oobsize;
1290 		break;
1291 	case TT_BBM:
1292 		offset = mtd->writesize + cdns_chip->bbm_offs;
1293 		last_sec_size = 8;
1294 		break;
1295 	}
1296 
1297 	reg = 0;
1298 	reg |= FIELD_PREP(TRAN_CFG_0_OFFSET, offset);
1299 	reg |= FIELD_PREP(TRAN_CFG_0_SEC_CNT, sec_cnt);
1300 	writel_relaxed(reg, cdns_ctrl->reg + TRAN_CFG_0);
1301 
1302 	reg = 0;
1303 	reg |= FIELD_PREP(TRAN_CFG_1_LAST_SEC_SIZE, last_sec_size);
1304 	reg |= FIELD_PREP(TRAN_CFG_1_SECTOR_SIZE, sec_size);
1305 	writel_relaxed(reg, cdns_ctrl->reg + TRAN_CFG_1);
1306 
1307 	if (cdns_ctrl->caps2.data_control_supp) {
1308 		reg = readl_relaxed(cdns_ctrl->reg + CONTROL_DATA_CTRL);
1309 		reg &= ~CONTROL_DATA_CTRL_SIZE;
1310 		reg |= FIELD_PREP(CONTROL_DATA_CTRL_SIZE, data_ctrl_size);
1311 		writel_relaxed(reg, cdns_ctrl->reg + CONTROL_DATA_CTRL);
1312 	}
1313 
1314 	cdns_ctrl->curr_trans_type = transfer_type;
1315 }
1316 
1317 static int
1318 cadence_nand_cdma_transfer(struct cdns_nand_ctrl *cdns_ctrl, u8 chip_nr,
1319 			   int page, void *buf, void *ctrl_dat, u32 buf_size,
1320 			   u32 ctrl_dat_size, enum dma_data_direction dir,
1321 			   bool with_ecc)
1322 {
1323 	dma_addr_t dma_buf, dma_ctrl_dat = 0;
1324 	u8 thread_nr = chip_nr;
1325 	int status;
1326 	u16 ctype;
1327 
1328 	if (dir == DMA_FROM_DEVICE)
1329 		ctype = CDMA_CT_RD;
1330 	else
1331 		ctype = CDMA_CT_WR;
1332 
1333 	cadence_nand_set_ecc_enable(cdns_ctrl, with_ecc);
1334 
1335 	dma_buf = dma_map_single(cdns_ctrl->dev, buf, buf_size, dir);
1336 	if (dma_mapping_error(cdns_ctrl->dev, dma_buf)) {
1337 		dev_err(cdns_ctrl->dev, "Failed to map DMA buffer\n");
1338 		return -EIO;
1339 	}
1340 
1341 	if (ctrl_dat && ctrl_dat_size) {
1342 		dma_ctrl_dat = dma_map_single(cdns_ctrl->dev, ctrl_dat,
1343 					      ctrl_dat_size, dir);
1344 		if (dma_mapping_error(cdns_ctrl->dev, dma_ctrl_dat)) {
1345 			dma_unmap_single(cdns_ctrl->dev, dma_buf,
1346 					 buf_size, dir);
1347 			dev_err(cdns_ctrl->dev, "Failed to map DMA buffer\n");
1348 			return -EIO;
1349 		}
1350 	}
1351 
1352 	cadence_nand_cdma_desc_prepare(cdns_ctrl, chip_nr, page,
1353 				       dma_buf, dma_ctrl_dat, ctype);
1354 
1355 	status = cadence_nand_cdma_send_and_wait(cdns_ctrl, thread_nr);
1356 
1357 	dma_unmap_single(cdns_ctrl->dev, dma_buf,
1358 			 buf_size, dir);
1359 
1360 	if (ctrl_dat && ctrl_dat_size)
1361 		dma_unmap_single(cdns_ctrl->dev, dma_ctrl_dat,
1362 				 ctrl_dat_size, dir);
1363 	if (status)
1364 		return status;
1365 
1366 	return cadence_nand_cdma_finish(cdns_ctrl);
1367 }
1368 
1369 static void cadence_nand_set_timings(struct cdns_nand_ctrl *cdns_ctrl,
1370 				     struct cadence_nand_timings *t)
1371 {
1372 	writel_relaxed(t->async_toggle_timings,
1373 		       cdns_ctrl->reg + ASYNC_TOGGLE_TIMINGS);
1374 	writel_relaxed(t->timings0, cdns_ctrl->reg + TIMINGS0);
1375 	writel_relaxed(t->timings1, cdns_ctrl->reg + TIMINGS1);
1376 	writel_relaxed(t->timings2, cdns_ctrl->reg + TIMINGS2);
1377 
1378 	if (cdns_ctrl->caps2.is_phy_type_dll)
1379 		writel_relaxed(t->dll_phy_ctrl, cdns_ctrl->reg + DLL_PHY_CTRL);
1380 
1381 	writel_relaxed(t->phy_ctrl, cdns_ctrl->reg + PHY_CTRL);
1382 
1383 	if (cdns_ctrl->caps2.is_phy_type_dll) {
1384 		writel_relaxed(0, cdns_ctrl->reg + PHY_TSEL);
1385 		writel_relaxed(2, cdns_ctrl->reg + PHY_DQ_TIMING);
1386 		writel_relaxed(t->phy_dqs_timing,
1387 			       cdns_ctrl->reg + PHY_DQS_TIMING);
1388 		writel_relaxed(t->phy_gate_lpbk_ctrl,
1389 			       cdns_ctrl->reg + PHY_GATE_LPBK_CTRL);
1390 		writel_relaxed(PHY_DLL_MASTER_CTRL_BYPASS_MODE,
1391 			       cdns_ctrl->reg + PHY_DLL_MASTER_CTRL);
1392 		writel_relaxed(0, cdns_ctrl->reg + PHY_DLL_SLAVE_CTRL);
1393 	}
1394 }
1395 
1396 static int cadence_nand_select_target(struct nand_chip *chip)
1397 {
1398 	struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
1399 	struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
1400 
1401 	if (chip == cdns_ctrl->selected_chip)
1402 		return 0;
1403 
1404 	if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS,
1405 					1000000,
1406 					CTRL_STATUS_CTRL_BUSY, true))
1407 		return -ETIMEDOUT;
1408 
1409 	cadence_nand_set_timings(cdns_ctrl, &cdns_chip->timings);
1410 
1411 	cadence_nand_set_ecc_strength(cdns_ctrl,
1412 				      cdns_chip->corr_str_idx);
1413 
1414 	cadence_nand_set_erase_detection(cdns_ctrl, true,
1415 					 chip->ecc.strength);
1416 
1417 	cdns_ctrl->curr_trans_type = -1;
1418 	cdns_ctrl->selected_chip = chip;
1419 
1420 	return 0;
1421 }
1422 
1423 static int cadence_nand_erase(struct nand_chip *chip, u32 page)
1424 {
1425 	struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
1426 	struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
1427 	int status;
1428 	u8 thread_nr = cdns_chip->cs[chip->cur_cs];
1429 
1430 	cadence_nand_cdma_desc_prepare(cdns_ctrl,
1431 				       cdns_chip->cs[chip->cur_cs],
1432 				       page, 0, 0,
1433 				       CDMA_CT_ERASE);
1434 	status = cadence_nand_cdma_send_and_wait(cdns_ctrl, thread_nr);
1435 	if (status) {
1436 		dev_err(cdns_ctrl->dev, "erase operation failed\n");
1437 		return -EIO;
1438 	}
1439 
1440 	status = cadence_nand_cdma_finish(cdns_ctrl);
1441 	if (status)
1442 		return status;
1443 
1444 	return 0;
1445 }
1446 
1447 static int cadence_nand_read_bbm(struct nand_chip *chip, int page, u8 *buf)
1448 {
1449 	int status;
1450 	struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
1451 	struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
1452 	struct mtd_info *mtd = nand_to_mtd(chip);
1453 
1454 	cadence_nand_prepare_data_size(chip, TT_BBM);
1455 
1456 	cadence_nand_set_skip_bytes_conf(cdns_ctrl, 0, 0, 0);
1457 
1458 	/*
1459 	 * Read only bad block marker from offset
1460 	 * defined by a memory manufacturer.
1461 	 */
1462 	status = cadence_nand_cdma_transfer(cdns_ctrl,
1463 					    cdns_chip->cs[chip->cur_cs],
1464 					    page, cdns_ctrl->buf, NULL,
1465 					    mtd->oobsize,
1466 					    0, DMA_FROM_DEVICE, false);
1467 	if (status) {
1468 		dev_err(cdns_ctrl->dev, "read BBM failed\n");
1469 		return -EIO;
1470 	}
1471 
1472 	memcpy(buf + cdns_chip->bbm_offs, cdns_ctrl->buf, cdns_chip->bbm_len);
1473 
1474 	return 0;
1475 }
1476 
1477 static int cadence_nand_write_page(struct nand_chip *chip,
1478 				   const u8 *buf, int oob_required,
1479 				   int page)
1480 {
1481 	struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
1482 	struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
1483 	struct mtd_info *mtd = nand_to_mtd(chip);
1484 	int status;
1485 	u16 marker_val = 0xFFFF;
1486 
1487 	status = cadence_nand_select_target(chip);
1488 	if (status)
1489 		return status;
1490 
1491 	cadence_nand_set_skip_bytes_conf(cdns_ctrl, cdns_chip->bbm_len,
1492 					 mtd->writesize
1493 					 + cdns_chip->bbm_offs,
1494 					 1);
1495 
1496 	if (oob_required) {
1497 		marker_val = *(u16 *)(chip->oob_poi
1498 				      + cdns_chip->bbm_offs);
1499 	} else {
1500 		/* Set oob data to 0xFF. */
1501 		memset(cdns_ctrl->buf + mtd->writesize, 0xFF,
1502 		       cdns_chip->avail_oob_size);
1503 	}
1504 
1505 	cadence_nand_set_skip_marker_val(cdns_ctrl, marker_val);
1506 
1507 	cadence_nand_prepare_data_size(chip, TT_MAIN_OOB_AREA_EXT);
1508 
1509 	if (cadence_nand_dma_buf_ok(cdns_ctrl, buf, mtd->writesize) &&
1510 	    cdns_ctrl->caps2.data_control_supp) {
1511 		u8 *oob;
1512 
1513 		if (oob_required)
1514 			oob = chip->oob_poi;
1515 		else
1516 			oob = cdns_ctrl->buf + mtd->writesize;
1517 
1518 		status = cadence_nand_cdma_transfer(cdns_ctrl,
1519 						    cdns_chip->cs[chip->cur_cs],
1520 						    page, (void *)buf, oob,
1521 						    mtd->writesize,
1522 						    cdns_chip->avail_oob_size,
1523 						    DMA_TO_DEVICE, true);
1524 		if (status) {
1525 			dev_err(cdns_ctrl->dev, "write page failed\n");
1526 			return -EIO;
1527 		}
1528 
1529 		return 0;
1530 	}
1531 
1532 	if (oob_required) {
1533 		/* Transfer the data to the oob area. */
1534 		memcpy(cdns_ctrl->buf + mtd->writesize, chip->oob_poi,
1535 		       cdns_chip->avail_oob_size);
1536 	}
1537 
1538 	memcpy(cdns_ctrl->buf, buf, mtd->writesize);
1539 
1540 	cadence_nand_prepare_data_size(chip, TT_MAIN_OOB_AREAS);
1541 
1542 	return cadence_nand_cdma_transfer(cdns_ctrl,
1543 					  cdns_chip->cs[chip->cur_cs],
1544 					  page, cdns_ctrl->buf, NULL,
1545 					  mtd->writesize
1546 					  + cdns_chip->avail_oob_size,
1547 					  0, DMA_TO_DEVICE, true);
1548 }
1549 
1550 static int cadence_nand_write_oob(struct nand_chip *chip, int page)
1551 {
1552 	struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
1553 	struct mtd_info *mtd = nand_to_mtd(chip);
1554 
1555 	memset(cdns_ctrl->buf, 0xFF, mtd->writesize);
1556 
1557 	return cadence_nand_write_page(chip, cdns_ctrl->buf, 1, page);
1558 }
1559 
1560 static int cadence_nand_write_page_raw(struct nand_chip *chip,
1561 				       const u8 *buf, int oob_required,
1562 				       int page)
1563 {
1564 	struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
1565 	struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
1566 	struct mtd_info *mtd = nand_to_mtd(chip);
1567 	int writesize = mtd->writesize;
1568 	int oobsize = mtd->oobsize;
1569 	int ecc_steps = chip->ecc.steps;
1570 	int ecc_size = chip->ecc.size;
1571 	int ecc_bytes = chip->ecc.bytes;
1572 	void *tmp_buf = cdns_ctrl->buf;
1573 	int oob_skip = cdns_chip->bbm_len;
1574 	size_t size = writesize + oobsize;
1575 	int i, pos, len;
1576 	int status = 0;
1577 
1578 	status = cadence_nand_select_target(chip);
1579 	if (status)
1580 		return status;
1581 
1582 	/*
1583 	 * Fill the buffer with 0xff first except the full page transfer.
1584 	 * This simplifies the logic.
1585 	 */
1586 	if (!buf || !oob_required)
1587 		memset(tmp_buf, 0xff, size);
1588 
1589 	cadence_nand_set_skip_bytes_conf(cdns_ctrl, 0, 0, 0);
1590 
1591 	/* Arrange the buffer for syndrome payload/ecc layout. */
1592 	if (buf) {
1593 		for (i = 0; i < ecc_steps; i++) {
1594 			pos = i * (ecc_size + ecc_bytes);
1595 			len = ecc_size;
1596 
1597 			if (pos >= writesize)
1598 				pos += oob_skip;
1599 			else if (pos + len > writesize)
1600 				len = writesize - pos;
1601 
1602 			memcpy(tmp_buf + pos, buf, len);
1603 			buf += len;
1604 			if (len < ecc_size) {
1605 				len = ecc_size - len;
1606 				memcpy(tmp_buf + writesize + oob_skip, buf,
1607 				       len);
1608 				buf += len;
1609 			}
1610 		}
1611 	}
1612 
1613 	if (oob_required) {
1614 		const u8 *oob = chip->oob_poi;
1615 		u32 oob_data_offset = (cdns_chip->sector_count - 1) *
1616 			(cdns_chip->sector_size + chip->ecc.bytes)
1617 			+ cdns_chip->sector_size + oob_skip;
1618 
1619 		/* BBM at the beginning of the OOB area. */
1620 		memcpy(tmp_buf + writesize, oob, oob_skip);
1621 
1622 		/* OOB free. */
1623 		memcpy(tmp_buf + oob_data_offset, oob,
1624 		       cdns_chip->avail_oob_size);
1625 		oob += cdns_chip->avail_oob_size;
1626 
1627 		/* OOB ECC. */
1628 		for (i = 0; i < ecc_steps; i++) {
1629 			pos = ecc_size + i * (ecc_size + ecc_bytes);
1630 			if (i == (ecc_steps - 1))
1631 				pos += cdns_chip->avail_oob_size;
1632 
1633 			len = ecc_bytes;
1634 
1635 			if (pos >= writesize)
1636 				pos += oob_skip;
1637 			else if (pos + len > writesize)
1638 				len = writesize - pos;
1639 
1640 			memcpy(tmp_buf + pos, oob, len);
1641 			oob += len;
1642 			if (len < ecc_bytes) {
1643 				len = ecc_bytes - len;
1644 				memcpy(tmp_buf + writesize + oob_skip, oob,
1645 				       len);
1646 				oob += len;
1647 			}
1648 		}
1649 	}
1650 
1651 	cadence_nand_prepare_data_size(chip, TT_RAW_PAGE);
1652 
1653 	return cadence_nand_cdma_transfer(cdns_ctrl,
1654 					  cdns_chip->cs[chip->cur_cs],
1655 					  page, cdns_ctrl->buf, NULL,
1656 					  mtd->writesize +
1657 					  mtd->oobsize,
1658 					  0, DMA_TO_DEVICE, false);
1659 }
1660 
1661 static int cadence_nand_write_oob_raw(struct nand_chip *chip,
1662 				      int page)
1663 {
1664 	return cadence_nand_write_page_raw(chip, NULL, true, page);
1665 }
1666 
1667 static int cadence_nand_read_page(struct nand_chip *chip,
1668 				  u8 *buf, int oob_required, int page)
1669 {
1670 	struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
1671 	struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
1672 	struct mtd_info *mtd = nand_to_mtd(chip);
1673 	int status = 0;
1674 	int ecc_err_count = 0;
1675 
1676 	status = cadence_nand_select_target(chip);
1677 	if (status)
1678 		return status;
1679 
1680 	cadence_nand_set_skip_bytes_conf(cdns_ctrl, cdns_chip->bbm_len,
1681 					 mtd->writesize
1682 					 + cdns_chip->bbm_offs, 1);
1683 
1684 	/*
1685 	 * If data buffer can be accessed by DMA and data_control feature
1686 	 * is supported then transfer data and oob directly.
1687 	 */
1688 	if (cadence_nand_dma_buf_ok(cdns_ctrl, buf, mtd->writesize) &&
1689 	    cdns_ctrl->caps2.data_control_supp) {
1690 		u8 *oob;
1691 
1692 		if (oob_required)
1693 			oob = chip->oob_poi;
1694 		else
1695 			oob = cdns_ctrl->buf + mtd->writesize;
1696 
1697 		cadence_nand_prepare_data_size(chip, TT_MAIN_OOB_AREA_EXT);
1698 		status = cadence_nand_cdma_transfer(cdns_ctrl,
1699 						    cdns_chip->cs[chip->cur_cs],
1700 						    page, buf, oob,
1701 						    mtd->writesize,
1702 						    cdns_chip->avail_oob_size,
1703 						    DMA_FROM_DEVICE, true);
1704 	/* Otherwise use bounce buffer. */
1705 	} else {
1706 		cadence_nand_prepare_data_size(chip, TT_MAIN_OOB_AREAS);
1707 		status = cadence_nand_cdma_transfer(cdns_ctrl,
1708 						    cdns_chip->cs[chip->cur_cs],
1709 						    page, cdns_ctrl->buf,
1710 						    NULL, mtd->writesize
1711 						    + cdns_chip->avail_oob_size,
1712 						    0, DMA_FROM_DEVICE, true);
1713 
1714 		memcpy(buf, cdns_ctrl->buf, mtd->writesize);
1715 		if (oob_required)
1716 			memcpy(chip->oob_poi,
1717 			       cdns_ctrl->buf + mtd->writesize,
1718 			       mtd->oobsize);
1719 	}
1720 
1721 	switch (status) {
1722 	case STAT_ECC_UNCORR:
1723 		mtd->ecc_stats.failed++;
1724 		ecc_err_count++;
1725 		break;
1726 	case STAT_ECC_CORR:
1727 		ecc_err_count = FIELD_GET(CDMA_CS_MAXERR,
1728 					  cdns_ctrl->cdma_desc->status);
1729 		mtd->ecc_stats.corrected += ecc_err_count;
1730 		break;
1731 	case STAT_ERASED:
1732 	case STAT_OK:
1733 		break;
1734 	default:
1735 		dev_err(cdns_ctrl->dev, "read page failed\n");
1736 		return -EIO;
1737 	}
1738 
1739 	if (oob_required)
1740 		if (cadence_nand_read_bbm(chip, page, chip->oob_poi))
1741 			return -EIO;
1742 
1743 	return ecc_err_count;
1744 }
1745 
1746 /* Reads OOB data from the device. */
1747 static int cadence_nand_read_oob(struct nand_chip *chip, int page)
1748 {
1749 	struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
1750 
1751 	return cadence_nand_read_page(chip, cdns_ctrl->buf, 1, page);
1752 }
1753 
1754 static int cadence_nand_read_page_raw(struct nand_chip *chip,
1755 				      u8 *buf, int oob_required, int page)
1756 {
1757 	struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
1758 	struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
1759 	struct mtd_info *mtd = nand_to_mtd(chip);
1760 	int oob_skip = cdns_chip->bbm_len;
1761 	int writesize = mtd->writesize;
1762 	int ecc_steps = chip->ecc.steps;
1763 	int ecc_size = chip->ecc.size;
1764 	int ecc_bytes = chip->ecc.bytes;
1765 	void *tmp_buf = cdns_ctrl->buf;
1766 	int i, pos, len;
1767 	int status = 0;
1768 
1769 	status = cadence_nand_select_target(chip);
1770 	if (status)
1771 		return status;
1772 
1773 	cadence_nand_set_skip_bytes_conf(cdns_ctrl, 0, 0, 0);
1774 
1775 	cadence_nand_prepare_data_size(chip, TT_RAW_PAGE);
1776 	status = cadence_nand_cdma_transfer(cdns_ctrl,
1777 					    cdns_chip->cs[chip->cur_cs],
1778 					    page, cdns_ctrl->buf, NULL,
1779 					    mtd->writesize
1780 					    + mtd->oobsize,
1781 					    0, DMA_FROM_DEVICE, false);
1782 
1783 	switch (status) {
1784 	case STAT_ERASED:
1785 	case STAT_OK:
1786 		break;
1787 	default:
1788 		dev_err(cdns_ctrl->dev, "read raw page failed\n");
1789 		return -EIO;
1790 	}
1791 
1792 	/* Arrange the buffer for syndrome payload/ecc layout. */
1793 	if (buf) {
1794 		for (i = 0; i < ecc_steps; i++) {
1795 			pos = i * (ecc_size + ecc_bytes);
1796 			len = ecc_size;
1797 
1798 			if (pos >= writesize)
1799 				pos += oob_skip;
1800 			else if (pos + len > writesize)
1801 				len = writesize - pos;
1802 
1803 			memcpy(buf, tmp_buf + pos, len);
1804 			buf += len;
1805 			if (len < ecc_size) {
1806 				len = ecc_size - len;
1807 				memcpy(buf, tmp_buf + writesize + oob_skip,
1808 				       len);
1809 				buf += len;
1810 			}
1811 		}
1812 	}
1813 
1814 	if (oob_required) {
1815 		u8 *oob = chip->oob_poi;
1816 		u32 oob_data_offset = (cdns_chip->sector_count - 1) *
1817 			(cdns_chip->sector_size + chip->ecc.bytes)
1818 			+ cdns_chip->sector_size + oob_skip;
1819 
1820 		/* OOB free. */
1821 		memcpy(oob, tmp_buf + oob_data_offset,
1822 		       cdns_chip->avail_oob_size);
1823 
1824 		/* BBM at the beginning of the OOB area. */
1825 		memcpy(oob, tmp_buf + writesize, oob_skip);
1826 
1827 		oob += cdns_chip->avail_oob_size;
1828 
1829 		/* OOB ECC */
1830 		for (i = 0; i < ecc_steps; i++) {
1831 			pos = ecc_size + i * (ecc_size + ecc_bytes);
1832 			len = ecc_bytes;
1833 
1834 			if (i == (ecc_steps - 1))
1835 				pos += cdns_chip->avail_oob_size;
1836 
1837 			if (pos >= writesize)
1838 				pos += oob_skip;
1839 			else if (pos + len > writesize)
1840 				len = writesize - pos;
1841 
1842 			memcpy(oob, tmp_buf + pos, len);
1843 			oob += len;
1844 			if (len < ecc_bytes) {
1845 				len = ecc_bytes - len;
1846 				memcpy(oob, tmp_buf + writesize + oob_skip,
1847 				       len);
1848 				oob += len;
1849 			}
1850 		}
1851 	}
1852 
1853 	return 0;
1854 }
1855 
1856 static int cadence_nand_read_oob_raw(struct nand_chip *chip,
1857 				     int page)
1858 {
1859 	return cadence_nand_read_page_raw(chip, NULL, true, page);
1860 }
1861 
1862 static void cadence_nand_slave_dma_transfer_finished(void *data)
1863 {
1864 	struct completion *finished = data;
1865 
1866 	complete(finished);
1867 }
1868 
1869 static int cadence_nand_slave_dma_transfer(struct cdns_nand_ctrl *cdns_ctrl,
1870 					   void *buf,
1871 					   dma_addr_t dev_dma, size_t len,
1872 					   enum dma_data_direction dir)
1873 {
1874 	DECLARE_COMPLETION_ONSTACK(finished);
1875 	struct dma_chan *chan;
1876 	struct dma_device *dma_dev;
1877 	dma_addr_t src_dma, dst_dma, buf_dma;
1878 	struct dma_async_tx_descriptor *tx;
1879 	dma_cookie_t cookie;
1880 
1881 	chan = cdns_ctrl->dmac;
1882 	dma_dev = chan->device;
1883 
1884 	buf_dma = dma_map_single(dma_dev->dev, buf, len, dir);
1885 	if (dma_mapping_error(dma_dev->dev, buf_dma)) {
1886 		dev_err(cdns_ctrl->dev, "Failed to map DMA buffer\n");
1887 		goto err;
1888 	}
1889 
1890 	if (dir == DMA_FROM_DEVICE) {
1891 		src_dma = cdns_ctrl->io.iova_dma;
1892 		dst_dma = buf_dma;
1893 	} else {
1894 		src_dma = buf_dma;
1895 		dst_dma = cdns_ctrl->io.iova_dma;
1896 	}
1897 
1898 	tx = dmaengine_prep_dma_memcpy(cdns_ctrl->dmac, dst_dma, src_dma, len,
1899 				       DMA_CTRL_ACK | DMA_PREP_INTERRUPT);
1900 	if (!tx) {
1901 		dev_err(cdns_ctrl->dev, "Failed to prepare DMA memcpy\n");
1902 		goto err_unmap;
1903 	}
1904 
1905 	tx->callback = cadence_nand_slave_dma_transfer_finished;
1906 	tx->callback_param = &finished;
1907 
1908 	cookie = dmaengine_submit(tx);
1909 	if (dma_submit_error(cookie)) {
1910 		dev_err(cdns_ctrl->dev, "Failed to do DMA tx_submit\n");
1911 		goto err_unmap;
1912 	}
1913 
1914 	dma_async_issue_pending(cdns_ctrl->dmac);
1915 	wait_for_completion(&finished);
1916 
1917 	dma_unmap_single(dma_dev->dev, buf_dma, len, dir);
1918 
1919 	return 0;
1920 
1921 err_unmap:
1922 	dma_unmap_single(dma_dev->dev, buf_dma, len, dir);
1923 
1924 err:
1925 	dev_dbg(cdns_ctrl->dev, "Fall back to CPU I/O\n");
1926 
1927 	return -EIO;
1928 }
1929 
1930 static int cadence_nand_read_buf(struct cdns_nand_ctrl *cdns_ctrl,
1931 				 u8 *buf, int len)
1932 {
1933 	u8 thread_nr = 0;
1934 	u32 sdma_size;
1935 	int status;
1936 
1937 	/* Wait until slave DMA interface is ready to data transfer. */
1938 	status = cadence_nand_wait_on_sdma(cdns_ctrl, &thread_nr, &sdma_size);
1939 	if (status)
1940 		return status;
1941 
1942 	if (!cdns_ctrl->caps1->has_dma) {
1943 		u8 data_dma_width = cdns_ctrl->caps2.data_dma_width;
1944 
1945 		int len_in_words = (data_dma_width == 4) ? len >> 2 : len >> 3;
1946 
1947 		/* read alignment data */
1948 		if (data_dma_width == 4)
1949 			ioread32_rep(cdns_ctrl->io.virt, buf, len_in_words);
1950 #ifdef CONFIG_64BIT
1951 		else
1952 			readsq(cdns_ctrl->io.virt, buf, len_in_words);
1953 #endif
1954 
1955 		if (sdma_size > len) {
1956 			int read_bytes = (data_dma_width == 4) ?
1957 				len_in_words << 2 : len_in_words << 3;
1958 
1959 			/* read rest data from slave DMA interface if any */
1960 			if (data_dma_width == 4)
1961 				ioread32_rep(cdns_ctrl->io.virt,
1962 					     cdns_ctrl->buf,
1963 					     sdma_size / 4 - len_in_words);
1964 #ifdef CONFIG_64BIT
1965 			else
1966 				readsq(cdns_ctrl->io.virt, cdns_ctrl->buf,
1967 				       sdma_size / 8 - len_in_words);
1968 #endif
1969 
1970 			/* copy rest of data */
1971 			memcpy(buf + read_bytes, cdns_ctrl->buf,
1972 			       len - read_bytes);
1973 		}
1974 		return 0;
1975 	}
1976 
1977 	if (cadence_nand_dma_buf_ok(cdns_ctrl, buf, len)) {
1978 		status = cadence_nand_slave_dma_transfer(cdns_ctrl, buf,
1979 							 cdns_ctrl->io.dma,
1980 							 len, DMA_FROM_DEVICE);
1981 		if (status == 0)
1982 			return 0;
1983 
1984 		dev_warn(cdns_ctrl->dev,
1985 			 "Slave DMA transfer failed. Try again using bounce buffer.");
1986 	}
1987 
1988 	/* If DMA transfer is not possible or failed then use bounce buffer. */
1989 	status = cadence_nand_slave_dma_transfer(cdns_ctrl, cdns_ctrl->buf,
1990 						 cdns_ctrl->io.dma,
1991 						 sdma_size, DMA_FROM_DEVICE);
1992 
1993 	if (status) {
1994 		dev_err(cdns_ctrl->dev, "Slave DMA transfer failed");
1995 		return status;
1996 	}
1997 
1998 	memcpy(buf, cdns_ctrl->buf, len);
1999 
2000 	return 0;
2001 }
2002 
2003 static int cadence_nand_write_buf(struct cdns_nand_ctrl *cdns_ctrl,
2004 				  const u8 *buf, int len)
2005 {
2006 	u8 thread_nr = 0;
2007 	u32 sdma_size;
2008 	int status;
2009 
2010 	/* Wait until slave DMA interface is ready to data transfer. */
2011 	status = cadence_nand_wait_on_sdma(cdns_ctrl, &thread_nr, &sdma_size);
2012 	if (status)
2013 		return status;
2014 
2015 	if (!cdns_ctrl->caps1->has_dma) {
2016 		u8 data_dma_width = cdns_ctrl->caps2.data_dma_width;
2017 
2018 		int len_in_words = (data_dma_width == 4) ? len >> 2 : len >> 3;
2019 
2020 		if (data_dma_width == 4)
2021 			iowrite32_rep(cdns_ctrl->io.virt, buf, len_in_words);
2022 #ifdef CONFIG_64BIT
2023 		else
2024 			writesq(cdns_ctrl->io.virt, buf, len_in_words);
2025 #endif
2026 
2027 		if (sdma_size > len) {
2028 			int written_bytes = (data_dma_width == 4) ?
2029 				len_in_words << 2 : len_in_words << 3;
2030 
2031 			/* copy rest of data */
2032 			memcpy(cdns_ctrl->buf, buf + written_bytes,
2033 			       len - written_bytes);
2034 
2035 			/* write all expected by nand controller data */
2036 			if (data_dma_width == 4)
2037 				iowrite32_rep(cdns_ctrl->io.virt,
2038 					      cdns_ctrl->buf,
2039 					      sdma_size / 4 - len_in_words);
2040 #ifdef CONFIG_64BIT
2041 			else
2042 				writesq(cdns_ctrl->io.virt, cdns_ctrl->buf,
2043 					sdma_size / 8 - len_in_words);
2044 #endif
2045 		}
2046 
2047 		return 0;
2048 	}
2049 
2050 	if (cadence_nand_dma_buf_ok(cdns_ctrl, buf, len)) {
2051 		status = cadence_nand_slave_dma_transfer(cdns_ctrl, (void *)buf,
2052 							 cdns_ctrl->io.dma,
2053 							 len, DMA_TO_DEVICE);
2054 		if (status == 0)
2055 			return 0;
2056 
2057 		dev_warn(cdns_ctrl->dev,
2058 			 "Slave DMA transfer failed. Try again using bounce buffer.");
2059 	}
2060 
2061 	/* If DMA transfer is not possible or failed then use bounce buffer. */
2062 	memcpy(cdns_ctrl->buf, buf, len);
2063 
2064 	status = cadence_nand_slave_dma_transfer(cdns_ctrl, cdns_ctrl->buf,
2065 						 cdns_ctrl->io.dma,
2066 						 sdma_size, DMA_TO_DEVICE);
2067 
2068 	if (status)
2069 		dev_err(cdns_ctrl->dev, "Slave DMA transfer failed");
2070 
2071 	return status;
2072 }
2073 
2074 static int cadence_nand_force_byte_access(struct nand_chip *chip,
2075 					  bool force_8bit)
2076 {
2077 	struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
2078 
2079 	/*
2080 	 * Callers of this function do not verify if the NAND is using a 16-bit
2081 	 * an 8-bit bus for normal operations, so we need to take care of that
2082 	 * here by leaving the configuration unchanged if the NAND does not have
2083 	 * the NAND_BUSWIDTH_16 flag set.
2084 	 */
2085 	if (!(chip->options & NAND_BUSWIDTH_16))
2086 		return 0;
2087 
2088 	return cadence_nand_set_access_width16(cdns_ctrl, !force_8bit);
2089 }
2090 
2091 static int cadence_nand_cmd_opcode(struct nand_chip *chip,
2092 				   const struct nand_subop *subop)
2093 {
2094 	struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
2095 	struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
2096 	const struct nand_op_instr *instr;
2097 	unsigned int op_id = 0;
2098 	u64 mini_ctrl_cmd = 0;
2099 	int ret;
2100 
2101 	instr = &subop->instrs[op_id];
2102 
2103 	if (instr->delay_ns > 0)
2104 		mini_ctrl_cmd |= GCMD_LAY_TWB;
2105 
2106 	mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INSTR,
2107 				    GCMD_LAY_INSTR_CMD);
2108 	mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INPUT_CMD,
2109 				    instr->ctx.cmd.opcode);
2110 
2111 	ret = cadence_nand_generic_cmd_send(cdns_ctrl,
2112 					    cdns_chip->cs[chip->cur_cs],
2113 					    mini_ctrl_cmd);
2114 	if (ret)
2115 		dev_err(cdns_ctrl->dev, "send cmd %x failed\n",
2116 			instr->ctx.cmd.opcode);
2117 
2118 	return ret;
2119 }
2120 
2121 static int cadence_nand_cmd_address(struct nand_chip *chip,
2122 				    const struct nand_subop *subop)
2123 {
2124 	struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
2125 	struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
2126 	const struct nand_op_instr *instr;
2127 	unsigned int op_id = 0;
2128 	u64 mini_ctrl_cmd = 0;
2129 	unsigned int offset, naddrs;
2130 	u64 address = 0;
2131 	const u8 *addrs;
2132 	int ret;
2133 	int i;
2134 
2135 	instr = &subop->instrs[op_id];
2136 
2137 	if (instr->delay_ns > 0)
2138 		mini_ctrl_cmd |= GCMD_LAY_TWB;
2139 
2140 	mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INSTR,
2141 				    GCMD_LAY_INSTR_ADDR);
2142 
2143 	offset = nand_subop_get_addr_start_off(subop, op_id);
2144 	naddrs = nand_subop_get_num_addr_cyc(subop, op_id);
2145 	addrs = &instr->ctx.addr.addrs[offset];
2146 
2147 	for (i = 0; i < naddrs; i++)
2148 		address |= (u64)addrs[i] << (8 * i);
2149 
2150 	mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INPUT_ADDR,
2151 				    address);
2152 	mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INPUT_ADDR_SIZE,
2153 				    naddrs - 1);
2154 
2155 	ret = cadence_nand_generic_cmd_send(cdns_ctrl,
2156 					    cdns_chip->cs[chip->cur_cs],
2157 					    mini_ctrl_cmd);
2158 	if (ret)
2159 		dev_err(cdns_ctrl->dev, "send address %llx failed\n", address);
2160 
2161 	return ret;
2162 }
2163 
2164 static int cadence_nand_cmd_erase(struct nand_chip *chip,
2165 				  const struct nand_subop *subop)
2166 {
2167 	unsigned int op_id;
2168 
2169 	if (subop->instrs[0].ctx.cmd.opcode == NAND_CMD_ERASE1) {
2170 		int i;
2171 		const struct nand_op_instr *instr = NULL;
2172 		unsigned int offset, naddrs;
2173 		const u8 *addrs;
2174 		u32 page = 0;
2175 
2176 		instr = &subop->instrs[1];
2177 		offset = nand_subop_get_addr_start_off(subop, 1);
2178 		naddrs = nand_subop_get_num_addr_cyc(subop, 1);
2179 		addrs = &instr->ctx.addr.addrs[offset];
2180 
2181 		for (i = 0; i < naddrs; i++)
2182 			page |= (u32)addrs[i] << (8 * i);
2183 
2184 		return cadence_nand_erase(chip, page);
2185 	}
2186 
2187 	/*
2188 	 * If it is not an erase operation then handle operation
2189 	 * by calling exec_op function.
2190 	 */
2191 	for (op_id = 0; op_id < subop->ninstrs; op_id++) {
2192 		int ret;
2193 		const struct nand_operation nand_op = {
2194 			.cs = chip->cur_cs,
2195 			.instrs =  &subop->instrs[op_id],
2196 			.ninstrs = 1};
2197 		ret = chip->controller->ops->exec_op(chip, &nand_op, false);
2198 		if (ret)
2199 			return ret;
2200 	}
2201 
2202 	return 0;
2203 }
2204 
2205 static int cadence_nand_cmd_data(struct nand_chip *chip,
2206 				 const struct nand_subop *subop)
2207 {
2208 	struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
2209 	struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
2210 	const struct nand_op_instr *instr;
2211 	unsigned int offset, op_id = 0;
2212 	u64 mini_ctrl_cmd = 0;
2213 	int len = 0;
2214 	int ret;
2215 
2216 	instr = &subop->instrs[op_id];
2217 
2218 	if (instr->delay_ns > 0)
2219 		mini_ctrl_cmd |= GCMD_LAY_TWB;
2220 
2221 	mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INSTR,
2222 				    GCMD_LAY_INSTR_DATA);
2223 
2224 	if (instr->type == NAND_OP_DATA_OUT_INSTR)
2225 		mini_ctrl_cmd |= FIELD_PREP(GCMD_DIR,
2226 					    GCMD_DIR_WRITE);
2227 
2228 	len = nand_subop_get_data_len(subop, op_id);
2229 	offset = nand_subop_get_data_start_off(subop, op_id);
2230 	mini_ctrl_cmd |= FIELD_PREP(GCMD_SECT_CNT, 1);
2231 	mini_ctrl_cmd |= FIELD_PREP(GCMD_LAST_SIZE, len);
2232 	if (instr->ctx.data.force_8bit) {
2233 		ret = cadence_nand_force_byte_access(chip, true);
2234 		if (ret) {
2235 			dev_err(cdns_ctrl->dev,
2236 				"cannot change byte access generic data cmd failed\n");
2237 			return ret;
2238 		}
2239 	}
2240 
2241 	ret = cadence_nand_generic_cmd_send(cdns_ctrl,
2242 					    cdns_chip->cs[chip->cur_cs],
2243 					    mini_ctrl_cmd);
2244 	if (ret) {
2245 		dev_err(cdns_ctrl->dev, "send generic data cmd failed\n");
2246 		return ret;
2247 	}
2248 
2249 	if (instr->type == NAND_OP_DATA_IN_INSTR) {
2250 		void *buf = instr->ctx.data.buf.in + offset;
2251 
2252 		ret = cadence_nand_read_buf(cdns_ctrl, buf, len);
2253 	} else {
2254 		const void *buf = instr->ctx.data.buf.out + offset;
2255 
2256 		ret = cadence_nand_write_buf(cdns_ctrl, buf, len);
2257 	}
2258 
2259 	if (ret) {
2260 		dev_err(cdns_ctrl->dev, "data transfer failed for generic command\n");
2261 		return ret;
2262 	}
2263 
2264 	if (instr->ctx.data.force_8bit) {
2265 		ret = cadence_nand_force_byte_access(chip, false);
2266 		if (ret) {
2267 			dev_err(cdns_ctrl->dev,
2268 				"cannot change byte access generic data cmd failed\n");
2269 		}
2270 	}
2271 
2272 	return ret;
2273 }
2274 
2275 static int cadence_nand_cmd_waitrdy(struct nand_chip *chip,
2276 				    const struct nand_subop *subop)
2277 {
2278 	int status;
2279 	unsigned int op_id = 0;
2280 	struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
2281 	struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
2282 	const struct nand_op_instr *instr = &subop->instrs[op_id];
2283 	u32 timeout_us = instr->ctx.waitrdy.timeout_ms * 1000;
2284 
2285 	status = cadence_nand_wait_for_value(cdns_ctrl, RBN_SETINGS,
2286 					     timeout_us,
2287 					     BIT(cdns_chip->cs[chip->cur_cs]),
2288 					     false);
2289 	return status;
2290 }
2291 
2292 static const struct nand_op_parser cadence_nand_op_parser = NAND_OP_PARSER(
2293 	NAND_OP_PARSER_PATTERN(
2294 		cadence_nand_cmd_erase,
2295 		NAND_OP_PARSER_PAT_CMD_ELEM(false),
2296 		NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ERASE_ADDRESS_CYC),
2297 		NAND_OP_PARSER_PAT_CMD_ELEM(false),
2298 		NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
2299 	NAND_OP_PARSER_PATTERN(
2300 		cadence_nand_cmd_opcode,
2301 		NAND_OP_PARSER_PAT_CMD_ELEM(false)),
2302 	NAND_OP_PARSER_PATTERN(
2303 		cadence_nand_cmd_address,
2304 		NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC)),
2305 	NAND_OP_PARSER_PATTERN(
2306 		cadence_nand_cmd_data,
2307 		NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, MAX_DATA_SIZE)),
2308 	NAND_OP_PARSER_PATTERN(
2309 		cadence_nand_cmd_data,
2310 		NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, MAX_DATA_SIZE)),
2311 	NAND_OP_PARSER_PATTERN(
2312 		cadence_nand_cmd_waitrdy,
2313 		NAND_OP_PARSER_PAT_WAITRDY_ELEM(false))
2314 	);
2315 
2316 static int cadence_nand_exec_op(struct nand_chip *chip,
2317 				const struct nand_operation *op,
2318 				bool check_only)
2319 {
2320 	if (!check_only) {
2321 		int status = cadence_nand_select_target(chip);
2322 
2323 		if (status)
2324 			return status;
2325 	}
2326 
2327 	return nand_op_parser_exec_op(chip, &cadence_nand_op_parser, op,
2328 				      check_only);
2329 }
2330 
2331 static int cadence_nand_ooblayout_free(struct mtd_info *mtd, int section,
2332 				       struct mtd_oob_region *oobregion)
2333 {
2334 	struct nand_chip *chip = mtd_to_nand(mtd);
2335 	struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
2336 
2337 	if (section)
2338 		return -ERANGE;
2339 
2340 	oobregion->offset = cdns_chip->bbm_len;
2341 	oobregion->length = cdns_chip->avail_oob_size
2342 		- cdns_chip->bbm_len;
2343 
2344 	return 0;
2345 }
2346 
2347 static int cadence_nand_ooblayout_ecc(struct mtd_info *mtd, int section,
2348 				      struct mtd_oob_region *oobregion)
2349 {
2350 	struct nand_chip *chip = mtd_to_nand(mtd);
2351 	struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
2352 
2353 	if (section)
2354 		return -ERANGE;
2355 
2356 	oobregion->offset = cdns_chip->avail_oob_size;
2357 	oobregion->length = chip->ecc.total;
2358 
2359 	return 0;
2360 }
2361 
2362 static const struct mtd_ooblayout_ops cadence_nand_ooblayout_ops = {
2363 	.free = cadence_nand_ooblayout_free,
2364 	.ecc = cadence_nand_ooblayout_ecc,
2365 };
2366 
2367 static int calc_cycl(u32 timing, u32 clock)
2368 {
2369 	if (timing == 0 || clock == 0)
2370 		return 0;
2371 
2372 	if ((timing % clock) > 0)
2373 		return timing / clock;
2374 	else
2375 		return timing / clock - 1;
2376 }
2377 
2378 /* Calculate max data valid window. */
2379 static inline u32 calc_tdvw_max(u32 trp_cnt, u32 clk_period, u32 trhoh_min,
2380 				u32 board_delay_skew_min, u32 ext_mode)
2381 {
2382 	if (ext_mode == 0)
2383 		clk_period /= 2;
2384 
2385 	return (trp_cnt + 1) * clk_period + trhoh_min +
2386 		board_delay_skew_min;
2387 }
2388 
2389 /* Calculate data valid window. */
2390 static inline u32 calc_tdvw(u32 trp_cnt, u32 clk_period, u32 trhoh_min,
2391 			    u32 trea_max, u32 ext_mode)
2392 {
2393 	if (ext_mode == 0)
2394 		clk_period /= 2;
2395 
2396 	return (trp_cnt + 1) * clk_period + trhoh_min - trea_max;
2397 }
2398 
2399 static int cadence_nand_setup_sdr_interface(struct nand_chip *chip,
2400 					    const struct nand_sdr_timings *sdr)
2401 {
2402 	struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
2403 	struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
2404 	struct cadence_nand_timings *t = &cdns_chip->timings;
2405 	u32 reg;
2406 	u32 board_delay = cdns_ctrl->board_delay;
2407 	u32 clk_period = DIV_ROUND_DOWN_ULL(1000000000000ULL,
2408 					    cdns_ctrl->nf_clk_rate);
2409 	u32 tceh_cnt, tcs_cnt, tadl_cnt, tccs_cnt;
2410 	u32 tfeat_cnt, trhz_cnt, tvdly_cnt;
2411 	u32 trhw_cnt, twb_cnt, twh_cnt = 0, twhr_cnt;
2412 	u32 twp_cnt = 0, trp_cnt = 0, trh_cnt = 0;
2413 	u32 if_skew = cdns_ctrl->caps1->if_skew;
2414 	u32 board_delay_skew_min = board_delay - if_skew;
2415 	u32 board_delay_skew_max = board_delay + if_skew;
2416 	u32 dqs_sampl_res, phony_dqs_mod;
2417 	u32 tdvw, tdvw_min, tdvw_max;
2418 	u32 ext_rd_mode, ext_wr_mode;
2419 	u32 dll_phy_dqs_timing = 0, phony_dqs_timing = 0, rd_del_sel = 0;
2420 	u32 sampling_point;
2421 
2422 	memset(t, 0, sizeof(*t));
2423 	/* Sampling point calculation. */
2424 	if (cdns_ctrl->caps2.is_phy_type_dll)
2425 		phony_dqs_mod = 2;
2426 	else
2427 		phony_dqs_mod = 1;
2428 
2429 	dqs_sampl_res = clk_period / phony_dqs_mod;
2430 
2431 	tdvw_min = sdr->tREA_max + board_delay_skew_max;
2432 	/*
2433 	 * The idea of those calculation is to get the optimum value
2434 	 * for tRP and tRH timings. If it is NOT possible to sample data
2435 	 * with optimal tRP/tRH settings, the parameters will be extended.
2436 	 * If clk_period is 50ns (the lowest value) this condition is met
2437 	 * for SDR timing modes 1, 2, 3, 4 and 5.
2438 	 * If clk_period is 20ns the condition is met only for SDR timing
2439 	 * mode 5.
2440 	 */
2441 	if (sdr->tRC_min <= clk_period &&
2442 	    sdr->tRP_min <= (clk_period / 2) &&
2443 	    sdr->tREH_min <= (clk_period / 2)) {
2444 		/* Performance mode. */
2445 		ext_rd_mode = 0;
2446 		tdvw = calc_tdvw(trp_cnt, clk_period, sdr->tRHOH_min,
2447 				 sdr->tREA_max, ext_rd_mode);
2448 		tdvw_max = calc_tdvw_max(trp_cnt, clk_period, sdr->tRHOH_min,
2449 					 board_delay_skew_min,
2450 					 ext_rd_mode);
2451 		/*
2452 		 * Check if data valid window and sampling point can be found
2453 		 * and is not on the edge (ie. we have hold margin).
2454 		 * If not extend the tRP timings.
2455 		 */
2456 		if (tdvw > 0) {
2457 			if (tdvw_max <= tdvw_min ||
2458 			    (tdvw_max % dqs_sampl_res) == 0) {
2459 				/*
2460 				 * No valid sampling point so the RE pulse need
2461 				 * to be widen widening by half clock cycle.
2462 				 */
2463 				ext_rd_mode = 1;
2464 			}
2465 		} else {
2466 			/*
2467 			 * There is no valid window
2468 			 * to be able to sample data the tRP need to be widen.
2469 			 * Very safe calculations are performed here.
2470 			 */
2471 			trp_cnt = (sdr->tREA_max + board_delay_skew_max
2472 				   + dqs_sampl_res) / clk_period;
2473 			ext_rd_mode = 1;
2474 		}
2475 
2476 	} else {
2477 		/* Extended read mode. */
2478 		u32 trh;
2479 
2480 		ext_rd_mode = 1;
2481 		trp_cnt = calc_cycl(sdr->tRP_min, clk_period);
2482 		trh = sdr->tRC_min - ((trp_cnt + 1) * clk_period);
2483 		if (sdr->tREH_min >= trh)
2484 			trh_cnt = calc_cycl(sdr->tREH_min, clk_period);
2485 		else
2486 			trh_cnt = calc_cycl(trh, clk_period);
2487 
2488 		tdvw = calc_tdvw(trp_cnt, clk_period, sdr->tRHOH_min,
2489 				 sdr->tREA_max, ext_rd_mode);
2490 		/*
2491 		 * Check if data valid window and sampling point can be found
2492 		 * or if it is at the edge check if previous is valid
2493 		 * - if not extend the tRP timings.
2494 		 */
2495 		if (tdvw > 0) {
2496 			tdvw_max = calc_tdvw_max(trp_cnt, clk_period,
2497 						 sdr->tRHOH_min,
2498 						 board_delay_skew_min,
2499 						 ext_rd_mode);
2500 
2501 			if ((((tdvw_max / dqs_sampl_res)
2502 			      * dqs_sampl_res) <= tdvw_min) ||
2503 			    (((tdvw_max % dqs_sampl_res) == 0) &&
2504 			     (((tdvw_max / dqs_sampl_res - 1)
2505 			       * dqs_sampl_res) <= tdvw_min))) {
2506 				/*
2507 				 * Data valid window width is lower than
2508 				 * sampling resolution and do not hit any
2509 				 * sampling point to be sure the sampling point
2510 				 * will be found the RE low pulse width will be
2511 				 *  extended by one clock cycle.
2512 				 */
2513 				trp_cnt = trp_cnt + 1;
2514 			}
2515 		} else {
2516 			/*
2517 			 * There is no valid window to be able to sample data.
2518 			 * The tRP need to be widen.
2519 			 * Very safe calculations are performed here.
2520 			 */
2521 			trp_cnt = (sdr->tREA_max + board_delay_skew_max
2522 				   + dqs_sampl_res) / clk_period;
2523 		}
2524 	}
2525 
2526 	tdvw_max = calc_tdvw_max(trp_cnt, clk_period,
2527 				 sdr->tRHOH_min,
2528 				 board_delay_skew_min, ext_rd_mode);
2529 
2530 	if (sdr->tWC_min <= clk_period &&
2531 	    (sdr->tWP_min + if_skew) <= (clk_period / 2) &&
2532 	    (sdr->tWH_min + if_skew) <= (clk_period / 2)) {
2533 		ext_wr_mode = 0;
2534 	} else {
2535 		u32 twh;
2536 
2537 		ext_wr_mode = 1;
2538 		twp_cnt = calc_cycl(sdr->tWP_min + if_skew, clk_period);
2539 		if ((twp_cnt + 1) * clk_period < (sdr->tALS_min + if_skew))
2540 			twp_cnt = calc_cycl(sdr->tALS_min + if_skew,
2541 					    clk_period);
2542 
2543 		twh = (sdr->tWC_min - (twp_cnt + 1) * clk_period);
2544 		if (sdr->tWH_min >= twh)
2545 			twh = sdr->tWH_min;
2546 
2547 		twh_cnt = calc_cycl(twh + if_skew, clk_period);
2548 	}
2549 
2550 	reg = FIELD_PREP(ASYNC_TOGGLE_TIMINGS_TRH, trh_cnt);
2551 	reg |= FIELD_PREP(ASYNC_TOGGLE_TIMINGS_TRP, trp_cnt);
2552 	reg |= FIELD_PREP(ASYNC_TOGGLE_TIMINGS_TWH, twh_cnt);
2553 	reg |= FIELD_PREP(ASYNC_TOGGLE_TIMINGS_TWP, twp_cnt);
2554 	t->async_toggle_timings = reg;
2555 	dev_dbg(cdns_ctrl->dev, "ASYNC_TOGGLE_TIMINGS_SDR\t%x\n", reg);
2556 
2557 	tadl_cnt = calc_cycl((sdr->tADL_min + if_skew), clk_period);
2558 	tccs_cnt = calc_cycl((sdr->tCCS_min + if_skew), clk_period);
2559 	twhr_cnt = calc_cycl((sdr->tWHR_min + if_skew), clk_period);
2560 	trhw_cnt = calc_cycl((sdr->tRHW_min + if_skew), clk_period);
2561 	reg = FIELD_PREP(TIMINGS0_TADL, tadl_cnt);
2562 
2563 	/*
2564 	 * If timing exceeds delay field in timing register
2565 	 * then use maximum value.
2566 	 */
2567 	if (FIELD_FIT(TIMINGS0_TCCS, tccs_cnt))
2568 		reg |= FIELD_PREP(TIMINGS0_TCCS, tccs_cnt);
2569 	else
2570 		reg |= TIMINGS0_TCCS;
2571 
2572 	reg |= FIELD_PREP(TIMINGS0_TWHR, twhr_cnt);
2573 	reg |= FIELD_PREP(TIMINGS0_TRHW, trhw_cnt);
2574 	t->timings0 = reg;
2575 	dev_dbg(cdns_ctrl->dev, "TIMINGS0_SDR\t%x\n", reg);
2576 
2577 	/* The following is related to single signal so skew is not needed. */
2578 	trhz_cnt = calc_cycl(sdr->tRHZ_max, clk_period);
2579 	trhz_cnt = trhz_cnt + 1;
2580 	twb_cnt = calc_cycl((sdr->tWB_max + board_delay), clk_period);
2581 	/*
2582 	 * Because of the two stage syncflop the value must be increased by 3
2583 	 * first value is related with sync, second value is related
2584 	 * with output if delay.
2585 	 */
2586 	twb_cnt = twb_cnt + 3 + 5;
2587 	/*
2588 	 * The following is related to the we edge of the random data input
2589 	 * sequence so skew is not needed.
2590 	 */
2591 	tvdly_cnt = calc_cycl(500000 + if_skew, clk_period);
2592 	reg = FIELD_PREP(TIMINGS1_TRHZ, trhz_cnt);
2593 	reg |= FIELD_PREP(TIMINGS1_TWB, twb_cnt);
2594 	reg |= FIELD_PREP(TIMINGS1_TVDLY, tvdly_cnt);
2595 	t->timings1 = reg;
2596 	dev_dbg(cdns_ctrl->dev, "TIMINGS1_SDR\t%x\n", reg);
2597 
2598 	tfeat_cnt = calc_cycl(sdr->tFEAT_max, clk_period);
2599 	if (tfeat_cnt < twb_cnt)
2600 		tfeat_cnt = twb_cnt;
2601 
2602 	tceh_cnt = calc_cycl(sdr->tCEH_min, clk_period);
2603 	tcs_cnt = calc_cycl((sdr->tCS_min + if_skew), clk_period);
2604 
2605 	reg = FIELD_PREP(TIMINGS2_TFEAT, tfeat_cnt);
2606 	reg |= FIELD_PREP(TIMINGS2_CS_HOLD_TIME, tceh_cnt);
2607 	reg |= FIELD_PREP(TIMINGS2_CS_SETUP_TIME, tcs_cnt);
2608 	t->timings2 = reg;
2609 	dev_dbg(cdns_ctrl->dev, "TIMINGS2_SDR\t%x\n", reg);
2610 
2611 	if (cdns_ctrl->caps2.is_phy_type_dll) {
2612 		reg = DLL_PHY_CTRL_DLL_RST_N;
2613 		if (ext_wr_mode)
2614 			reg |= DLL_PHY_CTRL_EXTENDED_WR_MODE;
2615 		if (ext_rd_mode)
2616 			reg |= DLL_PHY_CTRL_EXTENDED_RD_MODE;
2617 
2618 		reg |= FIELD_PREP(DLL_PHY_CTRL_RS_HIGH_WAIT_CNT, 7);
2619 		reg |= FIELD_PREP(DLL_PHY_CTRL_RS_IDLE_CNT, 7);
2620 		t->dll_phy_ctrl = reg;
2621 		dev_dbg(cdns_ctrl->dev, "DLL_PHY_CTRL_SDR\t%x\n", reg);
2622 	}
2623 
2624 	/* Sampling point calculation. */
2625 	if ((tdvw_max % dqs_sampl_res) > 0)
2626 		sampling_point = tdvw_max / dqs_sampl_res;
2627 	else
2628 		sampling_point = (tdvw_max / dqs_sampl_res - 1);
2629 
2630 	if (sampling_point * dqs_sampl_res > tdvw_min) {
2631 		dll_phy_dqs_timing =
2632 			FIELD_PREP(PHY_DQS_TIMING_DQS_SEL_OE_END, 4);
2633 		dll_phy_dqs_timing |= PHY_DQS_TIMING_USE_PHONY_DQS;
2634 		phony_dqs_timing = sampling_point / phony_dqs_mod;
2635 
2636 		if ((sampling_point % 2) > 0) {
2637 			dll_phy_dqs_timing |= PHY_DQS_TIMING_PHONY_DQS_SEL;
2638 			if ((tdvw_max % dqs_sampl_res) == 0)
2639 				/*
2640 				 * Calculation for sampling point at the edge
2641 				 * of data and being odd number.
2642 				 */
2643 				phony_dqs_timing = (tdvw_max / dqs_sampl_res)
2644 					/ phony_dqs_mod - 1;
2645 
2646 			if (!cdns_ctrl->caps2.is_phy_type_dll)
2647 				phony_dqs_timing--;
2648 
2649 		} else {
2650 			phony_dqs_timing--;
2651 		}
2652 		rd_del_sel = phony_dqs_timing + 3;
2653 	} else {
2654 		dev_warn(cdns_ctrl->dev,
2655 			 "ERROR : cannot find valid sampling point\n");
2656 	}
2657 
2658 	reg = FIELD_PREP(PHY_CTRL_PHONY_DQS, phony_dqs_timing);
2659 	if (cdns_ctrl->caps2.is_phy_type_dll)
2660 		reg  |= PHY_CTRL_SDR_DQS;
2661 	t->phy_ctrl = reg;
2662 	dev_dbg(cdns_ctrl->dev, "PHY_CTRL_REG_SDR\t%x\n", reg);
2663 
2664 	if (cdns_ctrl->caps2.is_phy_type_dll) {
2665 		dev_dbg(cdns_ctrl->dev, "PHY_TSEL_REG_SDR\t%x\n", 0);
2666 		dev_dbg(cdns_ctrl->dev, "PHY_DQ_TIMING_REG_SDR\t%x\n", 2);
2667 		dev_dbg(cdns_ctrl->dev, "PHY_DQS_TIMING_REG_SDR\t%x\n",
2668 			dll_phy_dqs_timing);
2669 		t->phy_dqs_timing = dll_phy_dqs_timing;
2670 
2671 		reg = FIELD_PREP(PHY_GATE_LPBK_CTRL_RDS, rd_del_sel);
2672 		dev_dbg(cdns_ctrl->dev, "PHY_GATE_LPBK_CTRL_REG_SDR\t%x\n",
2673 			reg);
2674 		t->phy_gate_lpbk_ctrl = reg;
2675 
2676 		dev_dbg(cdns_ctrl->dev, "PHY_DLL_MASTER_CTRL_REG_SDR\t%lx\n",
2677 			PHY_DLL_MASTER_CTRL_BYPASS_MODE);
2678 		dev_dbg(cdns_ctrl->dev, "PHY_DLL_SLAVE_CTRL_REG_SDR\t%x\n", 0);
2679 	}
2680 	return 0;
2681 }
2682 
2683 static int
2684 cadence_nand_setup_nvddr_interface(struct nand_chip *chip,
2685 				   const struct nand_nvddr_timings *nvddr)
2686 {
2687 	struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
2688 	struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
2689 	struct cadence_nand_timings *t = &cdns_chip->timings;
2690 	u32 board_delay = cdns_ctrl->board_delay;
2691 	u32 clk_period = DIV_ROUND_DOWN_ULL(1000000000000ULL,
2692 					    cdns_ctrl->nf_clk_rate);
2693 	u32 ddr_clk_ctrl_period = clk_period * 2;
2694 	u32 if_skew = cdns_ctrl->caps1->if_skew;
2695 	u32 tceh_cnt, tcs_cnt, tadl_cnt, tccs_cnt;
2696 	u32 twrck_cnt, tcad_cnt, tckwr_cnt = 0;
2697 	u32 tfeat_cnt, trhz_cnt, tvdly_cnt, tcwaw_cnt;
2698 	u32 trhw_cnt, twb_cnt, twhr_cnt;
2699 	u32 oe_start, oe_end, oe_end_dqsd;
2700 	u32 rd_del_sel = 0;
2701 	u32 dqs_driven_by_device, dqs_toogle_by_device, gate_open_delay;
2702 	u32 dll_phy_gate_open_delay, gate_close_delay, ie_start;
2703 	u32 dll_phy_rd_delay;
2704 	u32 reg;
2705 
2706 	memset(t, 0, sizeof(*t));
2707 	twrck_cnt = calc_cycl(nvddr->tWRCK_min, ddr_clk_ctrl_period);
2708 	tcad_cnt = calc_cycl(nvddr->tCAD_min, ddr_clk_ctrl_period);
2709 
2710 	reg = FIELD_PREP(SYNC_TWRCK, twrck_cnt);
2711 	reg |= FIELD_PREP(SYNC_TCAD, tcad_cnt);
2712 	t->sync_timings = reg;
2713 	dev_dbg(cdns_ctrl->dev, "SYNC_TIMINGS_NVDDR\t%08x\n", reg);
2714 
2715 	tadl_cnt = calc_cycl((nvddr->tADL_min + if_skew), ddr_clk_ctrl_period);
2716 	tccs_cnt = calc_cycl((nvddr->tCCS_min + if_skew), ddr_clk_ctrl_period);
2717 	twhr_cnt = calc_cycl((nvddr->tWHR_min + if_skew), ddr_clk_ctrl_period);
2718 	trhw_cnt = calc_cycl((nvddr->tRHW_min + if_skew), ddr_clk_ctrl_period);
2719 	reg = FIELD_PREP(TIMINGS0_TADL, tadl_cnt);
2720 	reg |= FIELD_PREP(TIMINGS0_TCCS, tccs_cnt);
2721 	reg |= FIELD_PREP(TIMINGS0_TWHR, twhr_cnt);
2722 	reg |= FIELD_PREP(TIMINGS0_TRHW, trhw_cnt);
2723 	t->timings0 = reg;
2724 	dev_dbg(cdns_ctrl->dev, "TIMINGS0_NVDDR\t%08x\n", reg);
2725 
2726 	twb_cnt = calc_cycl((nvddr->tWB_max + board_delay),
2727 			    ddr_clk_ctrl_period);
2728 	/*
2729 	 * Because of the two stage syncflop the value must be increased by 3
2730 	 * first value is related with sync, second value is related
2731 	 * with output if delay.
2732 	 */
2733 	twb_cnt = twb_cnt + 3 + 5;
2734 	tvdly_cnt = calc_cycl(NVDDR_TVDLY_DELAY + if_skew, ddr_clk_ctrl_period);
2735 	tcwaw_cnt = calc_cycl(NVDDR_TCWAW_DELAY, ddr_clk_ctrl_period);
2736 	trhz_cnt = 1;
2737 	reg = FIELD_PREP(TIMINGS1_TWB, twb_cnt);
2738 	reg |= FIELD_PREP(TIMINGS1_TVDLY, tvdly_cnt);
2739 	reg |= FIELD_PREP(TIMINGS1_TRHZ, trhz_cnt);
2740 	reg |= FIELD_PREP(TIMINGS1_TCWAW, tcwaw_cnt);
2741 	t->timings1 = reg;
2742 	dev_dbg(cdns_ctrl->dev, "TIMINGS1_NVDDR\t%08x\n", reg);
2743 
2744 	tfeat_cnt = calc_cycl(nvddr->tFEAT_max, ddr_clk_ctrl_period);
2745 	if (tfeat_cnt < twb_cnt)
2746 		tfeat_cnt = twb_cnt;
2747 
2748 	tceh_cnt = calc_cycl(nvddr->tCEH_min, ddr_clk_ctrl_period);
2749 	tcs_cnt = calc_cycl((nvddr->tCS_min + if_skew), ddr_clk_ctrl_period);
2750 	reg = FIELD_PREP(TIMINGS2_TFEAT, tfeat_cnt);
2751 	reg |= FIELD_PREP(TIMINGS2_CS_HOLD_TIME, tceh_cnt);
2752 	reg |= FIELD_PREP(TIMINGS2_CS_SETUP_TIME, tcs_cnt);
2753 	t->timings2 = reg;
2754 	dev_dbg(cdns_ctrl->dev, "TIMINGS2_NVDDR\t%08x\n", reg);
2755 
2756 	reg = FIELD_PREP(DLL_PHY_CTRL_RS_HIGH_WAIT_CNT, NVDDR_RS_HIGH_WAIT_CNT);
2757 	reg |= FIELD_PREP(DLL_PHY_CTRL_RS_IDLE_CNT, NVDDR_RS_IDLE_CNT);
2758 	t->dll_phy_ctrl = reg;
2759 	dev_dbg(cdns_ctrl->dev, "DLL_PHY_CTRL_NVDDR\t%08x\n", reg);
2760 
2761 	reg  = PHY_CTRL_SDR_DQS;
2762 	t->phy_ctrl = reg;
2763 	dev_dbg(cdns_ctrl->dev, "PHY_CTRL_REG_NVDDR\t%08x\n", reg);
2764 
2765 	dqs_driven_by_device = (nvddr->tDQSD_max + board_delay) / 1000 +
2766 				if_skew;
2767 	dqs_toogle_by_device = (nvddr->tDQSCK_max + board_delay) / 1000 -
2768 				if_skew;
2769 	gate_open_delay = dqs_toogle_by_device / (clk_period / 1000);
2770 	if (dqs_toogle_by_device > clk_period / 1000) {
2771 		if (gate_open_delay > NVDDR_GATE_CFG_OPT)
2772 			dll_phy_gate_open_delay = NVDDR_GATE_CFG_MAX;
2773 		else
2774 			dll_phy_gate_open_delay = gate_open_delay + 1;
2775 		gate_close_delay = 0;
2776 	} else {
2777 		twrck_cnt = calc_cycl(dqs_driven_by_device * 1000, clk_period);
2778 		dll_phy_gate_open_delay = 1;
2779 		gate_close_delay = 0;
2780 
2781 		reg = FIELD_PREP(SYNC_TCKWR, tckwr_cnt);
2782 		reg |= FIELD_PREP(SYNC_TWRCK, twrck_cnt);
2783 		reg |= FIELD_PREP(SYNC_TCAD, tcad_cnt);
2784 		t->sync_timings = reg;
2785 		dev_dbg(cdns_ctrl->dev, "SYNC_TIMINGS_NVDDR\t%08x\n", reg);
2786 	}
2787 
2788 	if (dll_phy_gate_open_delay > NVDDR_GATE_CFG_STD)
2789 		ie_start = NVDDR_GATE_CFG_STD;
2790 	else
2791 		ie_start = dll_phy_gate_open_delay;
2792 
2793 	dll_phy_rd_delay = ((nvddr->tDQSCK_max + board_delay) +
2794 				(clk_period / 2)) / clk_period;
2795 	if (dll_phy_rd_delay <= NVDDR_PHY_RD_DELAY)
2796 		rd_del_sel = dll_phy_rd_delay + 2;
2797 	else
2798 		rd_del_sel = NVDDR_PHY_RD_DELAY_MAX;
2799 
2800 	reg = FIELD_PREP(PHY_GATE_LPBK_CTRL_GATE_CFG, dll_phy_gate_open_delay);
2801 	reg |= FIELD_PREP(PHY_GATE_LPBK_CTRL_GATE_CFG_CLOSE, gate_close_delay);
2802 	reg |= FIELD_PREP(PHY_GATE_LPBK_CTRL_RDS, rd_del_sel);
2803 	t->phy_gate_lpbk_ctrl = reg;
2804 	dev_dbg(cdns_ctrl->dev, "PHY_GATE_LPBK_CTRL_REG_NVDDR\t%08x\n", reg);
2805 
2806 	oe_end_dqsd = ((nvddr->tDQSD_max / 1000) / ((clk_period / 2) / 1000))
2807 				+ NVDDR_DATA_SEL_OE_END_MIN;
2808 	oe_end = (NVDDR_DATA_SEL_OE_END_MIN + oe_end_dqsd) / 2;
2809 	if (oe_end > NVDDR_DATA_SEL_OE_END_MAX)
2810 		oe_end = NVDDR_DATA_SEL_OE_END_MAX;
2811 
2812 	oe_start = ((nvddr->tDQSHZ_max / 1000) / ((clk_period / 2) / 1000)) + 1;
2813 	if (oe_start > NVDDR_DATA_SEL_OE_START_MAX)
2814 		oe_start = NVDDR_DATA_SEL_OE_START_MAX;
2815 
2816 	reg = FIELD_PREP(PHY_DQ_TIMING_OE_END, NVDDR_DATA_SEL_OE_END);
2817 	reg |= FIELD_PREP(PHY_DQ_TIMING_OE_START, NVDDR_DATA_SEL_OE_START);
2818 	reg |= FIELD_PREP(PHY_DQ_TIMING_TSEL_END, NVDDR_DATA_SEL_OE_END);
2819 	reg |= FIELD_PREP(PHY_DQ_TIMING_TSEL_START, NVDDR_DATA_SEL_OE_START);
2820 	t->phy_dq_timing = reg;
2821 	dev_dbg(cdns_ctrl->dev, "PHY_DQ_TIMING_REG_NVDDR\t%08x\n", reg);
2822 
2823 	reg = FIELD_PREP(PHY_DQS_TIMING_DQS_SEL_OE_END, oe_end);
2824 	reg |= FIELD_PREP(PHY_DQS_TIMING_DQS_SEL_OE_START, oe_start);
2825 	reg |= FIELD_PREP(PHY_DQS_TIMING_DQS_SEL_TSEL_END, oe_end);
2826 	t->phy_dqs_timing = reg;
2827 	dev_dbg(cdns_ctrl->dev, "PHY_DQS_TIMING_REG_NVDDR\t%08x\n", reg);
2828 
2829 	reg = FIELD_PREP(PHY_IE_TIMING_DQS_IE_START, ie_start);
2830 	reg |= FIELD_PREP(PHY_IE_TIMING_DQ_IE_START, ie_start);
2831 	reg |= FIELD_PREP(PHY_IE_TIMING_IE_ALWAYS_ON, 0);
2832 	t->phy_ie_timing = reg;
2833 	dev_dbg(cdns_ctrl->dev, "PHY_IE_TIMING_REG_NVDDR\t%08x\n", reg);
2834 
2835 	reg = readl_relaxed(cdns_ctrl->reg + DLL_PHY_CTRL);
2836 	reg &= ~(DLL_PHY_CTRL_DLL_RST_N |
2837 		 DLL_PHY_CTRL_EXTENDED_RD_MODE |
2838 		 DLL_PHY_CTRL_EXTENDED_WR_MODE);
2839 	writel_relaxed(reg, cdns_ctrl->reg + DLL_PHY_CTRL);
2840 	writel_relaxed(OPR_MODE_NVDDR, cdns_ctrl->reg + COMMON_SET);
2841 	writel_relaxed(NVDDR_TOGGLE_TIMINGS_0,
2842 		       cdns_ctrl->reg + TOGGLE_TIMINGS_0);
2843 	writel_relaxed(NVDDR_TOGGLE_TIMINGS_1,
2844 		       cdns_ctrl->reg + TOGGLE_TIMINGS_1);
2845 	writel_relaxed(NVDDR_ASYNC_TOGGLE_TIMINGS,
2846 		       cdns_ctrl->reg + ASYNC_TOGGLE_TIMINGS);
2847 	writel_relaxed(t->sync_timings, cdns_ctrl->reg + SYNC_TIMINGS);
2848 	writel_relaxed(t->timings0, cdns_ctrl->reg + TIMINGS0);
2849 	writel_relaxed(t->timings1, cdns_ctrl->reg + TIMINGS1);
2850 	writel_relaxed(t->timings2, cdns_ctrl->reg + TIMINGS2);
2851 	writel_relaxed(t->dll_phy_ctrl, cdns_ctrl->reg + DLL_PHY_CTRL);
2852 	writel_relaxed(t->phy_ctrl, cdns_ctrl->reg + PHY_CTRL);
2853 	writel_relaxed(NVDDR_PHY_TSEL, cdns_ctrl->reg + PHY_TSEL);
2854 	writel_relaxed(t->phy_dq_timing, cdns_ctrl->reg + PHY_DQ_TIMING);
2855 	writel_relaxed(t->phy_dqs_timing, cdns_ctrl->reg + PHY_DQS_TIMING);
2856 	writel_relaxed(t->phy_gate_lpbk_ctrl,
2857 		       cdns_ctrl->reg + PHY_GATE_LPBK_CTRL);
2858 	writel_relaxed(NVDDR_PHY_DLL_MASTER_CTRL,
2859 		       cdns_ctrl->reg + PHY_DLL_MASTER_CTRL);
2860 	writel_relaxed(NVDDR_PHY_DLL_SLAVE_CTRL,
2861 		       cdns_ctrl->reg + PHY_DLL_SLAVE_CTRL);
2862 	writel_relaxed(t->phy_ie_timing, cdns_ctrl->reg + PHY_IE_TIMING);
2863 	writel_relaxed((reg | DLL_PHY_CTRL_DLL_RST_N),
2864 		       cdns_ctrl->reg + DLL_PHY_CTRL);
2865 	return 0;
2866 }
2867 
2868 static int
2869 cadence_nand_setup_interface(struct nand_chip *chip, int chipnr,
2870 			     const struct nand_interface_config *conf)
2871 {
2872 	int ret = 0;
2873 
2874 	if (chipnr < 0)
2875 		return ret;
2876 
2877 	if (nand_interface_is_sdr(conf)) {
2878 		const struct nand_sdr_timings *sdr = nand_get_sdr_timings(conf);
2879 
2880 		if (IS_ERR(sdr))
2881 			return PTR_ERR(sdr);
2882 
2883 		ret = cadence_nand_setup_sdr_interface(chip, sdr);
2884 	} else {
2885 		const struct nand_nvddr_timings *nvddr = nand_get_nvddr_timings(conf);
2886 
2887 		if (IS_ERR(nvddr))
2888 			return PTR_ERR(nvddr);
2889 
2890 		ret = cadence_nand_setup_nvddr_interface(chip, nvddr);
2891 	}
2892 	return ret;
2893 }
2894 
2895 static int cadence_nand_attach_chip(struct nand_chip *chip)
2896 {
2897 	struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
2898 	struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
2899 	u32 ecc_size;
2900 	struct mtd_info *mtd = nand_to_mtd(chip);
2901 	int ret;
2902 
2903 	if (chip->options & NAND_BUSWIDTH_16) {
2904 		ret = cadence_nand_set_access_width16(cdns_ctrl, true);
2905 		if (ret)
2906 			return ret;
2907 	}
2908 
2909 	chip->bbt_options |= NAND_BBT_USE_FLASH;
2910 	chip->bbt_options |= NAND_BBT_NO_OOB;
2911 	chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;
2912 
2913 	chip->options |= NAND_NO_SUBPAGE_WRITE;
2914 
2915 	cdns_chip->bbm_offs = chip->badblockpos;
2916 	cdns_chip->bbm_offs &= ~0x01;
2917 	/* this value should be even number */
2918 	cdns_chip->bbm_len = 2;
2919 
2920 	ret = nand_ecc_choose_conf(chip,
2921 				   &cdns_ctrl->ecc_caps,
2922 				   mtd->oobsize - cdns_chip->bbm_len);
2923 	if (ret) {
2924 		dev_err(cdns_ctrl->dev, "ECC configuration failed\n");
2925 		return ret;
2926 	}
2927 
2928 	dev_dbg(cdns_ctrl->dev,
2929 		"chosen ECC settings: step=%d, strength=%d, bytes=%d\n",
2930 		chip->ecc.size, chip->ecc.strength, chip->ecc.bytes);
2931 
2932 	/* Error correction configuration. */
2933 	cdns_chip->sector_size = chip->ecc.size;
2934 	cdns_chip->sector_count = mtd->writesize / cdns_chip->sector_size;
2935 	ecc_size = cdns_chip->sector_count * chip->ecc.bytes;
2936 
2937 	cdns_chip->avail_oob_size = mtd->oobsize - ecc_size;
2938 
2939 	if (cdns_chip->avail_oob_size > cdns_ctrl->bch_metadata_size)
2940 		cdns_chip->avail_oob_size = cdns_ctrl->bch_metadata_size;
2941 
2942 	if ((cdns_chip->avail_oob_size + cdns_chip->bbm_len + ecc_size)
2943 	    > mtd->oobsize)
2944 		cdns_chip->avail_oob_size -= 4;
2945 
2946 	ret = cadence_nand_get_ecc_strength_idx(cdns_ctrl, chip->ecc.strength);
2947 	if (ret < 0)
2948 		return -EINVAL;
2949 
2950 	cdns_chip->corr_str_idx = (u8)ret;
2951 
2952 	if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS,
2953 					1000000,
2954 					CTRL_STATUS_CTRL_BUSY, true))
2955 		return -ETIMEDOUT;
2956 
2957 	cadence_nand_set_ecc_strength(cdns_ctrl,
2958 				      cdns_chip->corr_str_idx);
2959 
2960 	cadence_nand_set_erase_detection(cdns_ctrl, true,
2961 					 chip->ecc.strength);
2962 
2963 	/* Override the default read operations. */
2964 	chip->ecc.read_page = cadence_nand_read_page;
2965 	chip->ecc.read_page_raw = cadence_nand_read_page_raw;
2966 	chip->ecc.write_page = cadence_nand_write_page;
2967 	chip->ecc.write_page_raw = cadence_nand_write_page_raw;
2968 	chip->ecc.read_oob = cadence_nand_read_oob;
2969 	chip->ecc.write_oob = cadence_nand_write_oob;
2970 	chip->ecc.read_oob_raw = cadence_nand_read_oob_raw;
2971 	chip->ecc.write_oob_raw = cadence_nand_write_oob_raw;
2972 
2973 	if ((mtd->writesize + mtd->oobsize) > cdns_ctrl->buf_size)
2974 		cdns_ctrl->buf_size = mtd->writesize + mtd->oobsize;
2975 
2976 	/* Is 32-bit DMA supported? */
2977 	ret = dma_set_mask(cdns_ctrl->dev, DMA_BIT_MASK(32));
2978 	if (ret) {
2979 		dev_err(cdns_ctrl->dev, "no usable DMA configuration\n");
2980 		return ret;
2981 	}
2982 
2983 	mtd_set_ooblayout(mtd, &cadence_nand_ooblayout_ops);
2984 
2985 	return 0;
2986 }
2987 
2988 static const struct nand_controller_ops cadence_nand_controller_ops = {
2989 	.attach_chip = cadence_nand_attach_chip,
2990 	.exec_op = cadence_nand_exec_op,
2991 	.setup_interface = cadence_nand_setup_interface,
2992 };
2993 
2994 static int cadence_nand_chip_init(struct cdns_nand_ctrl *cdns_ctrl,
2995 				  struct device_node *np)
2996 {
2997 	struct cdns_nand_chip *cdns_chip;
2998 	struct mtd_info *mtd;
2999 	struct nand_chip *chip;
3000 	int nsels, ret, i;
3001 	u32 cs;
3002 
3003 	nsels = of_property_count_elems_of_size(np, "reg", sizeof(u32));
3004 	if (nsels <= 0) {
3005 		dev_err(cdns_ctrl->dev, "missing/invalid reg property\n");
3006 		return -EINVAL;
3007 	}
3008 
3009 	/* Allocate the nand chip structure. */
3010 	cdns_chip = devm_kzalloc(cdns_ctrl->dev, sizeof(*cdns_chip) +
3011 				 (nsels * sizeof(u8)),
3012 				 GFP_KERNEL);
3013 	if (!cdns_chip) {
3014 		dev_err(cdns_ctrl->dev, "could not allocate chip structure\n");
3015 		return -ENOMEM;
3016 	}
3017 
3018 	cdns_chip->nsels = nsels;
3019 
3020 	for (i = 0; i < nsels; i++) {
3021 		/* Retrieve CS id. */
3022 		ret = of_property_read_u32_index(np, "reg", i, &cs);
3023 		if (ret) {
3024 			dev_err(cdns_ctrl->dev,
3025 				"could not retrieve reg property: %d\n",
3026 				ret);
3027 			return ret;
3028 		}
3029 
3030 		if (cs >= cdns_ctrl->caps2.max_banks) {
3031 			dev_err(cdns_ctrl->dev,
3032 				"invalid reg value: %u (max CS = %d)\n",
3033 				cs, cdns_ctrl->caps2.max_banks);
3034 			return -EINVAL;
3035 		}
3036 
3037 		if (test_and_set_bit(cs, &cdns_ctrl->assigned_cs)) {
3038 			dev_err(cdns_ctrl->dev,
3039 				"CS %d already assigned\n", cs);
3040 			return -EINVAL;
3041 		}
3042 
3043 		cdns_chip->cs[i] = cs;
3044 	}
3045 
3046 	chip = &cdns_chip->chip;
3047 	chip->controller = &cdns_ctrl->controller;
3048 	nand_set_flash_node(chip, np);
3049 
3050 	mtd = nand_to_mtd(chip);
3051 	mtd->dev.parent = cdns_ctrl->dev;
3052 
3053 	/*
3054 	 * Default to HW ECC engine mode. If the nand-ecc-mode property is given
3055 	 * in the DT node, this entry will be overwritten in nand_scan_ident().
3056 	 */
3057 	chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;
3058 
3059 	ret = nand_scan(chip, cdns_chip->nsels);
3060 	if (ret) {
3061 		dev_err(cdns_ctrl->dev, "could not scan the nand chip\n");
3062 		return ret;
3063 	}
3064 
3065 	ret = mtd_device_register(mtd, NULL, 0);
3066 	if (ret) {
3067 		dev_err(cdns_ctrl->dev,
3068 			"failed to register mtd device: %d\n", ret);
3069 		nand_cleanup(chip);
3070 		return ret;
3071 	}
3072 
3073 	list_add_tail(&cdns_chip->node, &cdns_ctrl->chips);
3074 
3075 	return 0;
3076 }
3077 
3078 static void cadence_nand_chips_cleanup(struct cdns_nand_ctrl *cdns_ctrl)
3079 {
3080 	struct cdns_nand_chip *entry, *temp;
3081 	struct nand_chip *chip;
3082 	int ret;
3083 
3084 	list_for_each_entry_safe(entry, temp, &cdns_ctrl->chips, node) {
3085 		chip = &entry->chip;
3086 		ret = mtd_device_unregister(nand_to_mtd(chip));
3087 		WARN_ON(ret);
3088 		nand_cleanup(chip);
3089 		list_del(&entry->node);
3090 	}
3091 }
3092 
3093 static int cadence_nand_chips_init(struct cdns_nand_ctrl *cdns_ctrl)
3094 {
3095 	struct device_node *np = cdns_ctrl->dev->of_node;
3096 	int max_cs = cdns_ctrl->caps2.max_banks;
3097 	int nchips, ret;
3098 
3099 	nchips = of_get_child_count(np);
3100 
3101 	if (nchips > max_cs) {
3102 		dev_err(cdns_ctrl->dev,
3103 			"too many NAND chips: %d (max = %d CS)\n",
3104 			nchips, max_cs);
3105 		return -EINVAL;
3106 	}
3107 
3108 	for_each_child_of_node_scoped(np, nand_np) {
3109 		ret = cadence_nand_chip_init(cdns_ctrl, nand_np);
3110 		if (ret) {
3111 			cadence_nand_chips_cleanup(cdns_ctrl);
3112 			return ret;
3113 		}
3114 	}
3115 
3116 	return 0;
3117 }
3118 
3119 static void
3120 cadence_nand_irq_cleanup(int irqnum, struct cdns_nand_ctrl *cdns_ctrl)
3121 {
3122 	/* Disable interrupts. */
3123 	writel_relaxed(INTR_ENABLE_INTR_EN, cdns_ctrl->reg + INTR_ENABLE);
3124 }
3125 
3126 static int cadence_nand_init(struct cdns_nand_ctrl *cdns_ctrl)
3127 {
3128 	dma_cap_mask_t mask;
3129 	struct dma_device *dma_dev;
3130 	int ret;
3131 
3132 	cdns_ctrl->cdma_desc = dma_alloc_coherent(cdns_ctrl->dev,
3133 						  sizeof(*cdns_ctrl->cdma_desc),
3134 						  &cdns_ctrl->dma_cdma_desc,
3135 						  GFP_KERNEL);
3136 	if (!cdns_ctrl->dma_cdma_desc)
3137 		return -ENOMEM;
3138 
3139 	cdns_ctrl->buf_size = SZ_16K;
3140 	cdns_ctrl->buf = kmalloc(cdns_ctrl->buf_size, GFP_KERNEL);
3141 	if (!cdns_ctrl->buf) {
3142 		ret = -ENOMEM;
3143 		goto free_buf_desc;
3144 	}
3145 
3146 	if (devm_request_irq(cdns_ctrl->dev, cdns_ctrl->irq, cadence_nand_isr,
3147 			     IRQF_SHARED, "cadence-nand-controller",
3148 			     cdns_ctrl)) {
3149 		dev_err(cdns_ctrl->dev, "Unable to allocate IRQ\n");
3150 		ret = -ENODEV;
3151 		goto free_buf;
3152 	}
3153 
3154 	spin_lock_init(&cdns_ctrl->irq_lock);
3155 	init_completion(&cdns_ctrl->complete);
3156 
3157 	ret = cadence_nand_hw_init(cdns_ctrl);
3158 	if (ret)
3159 		goto disable_irq;
3160 
3161 	dma_cap_zero(mask);
3162 	dma_cap_set(DMA_MEMCPY, mask);
3163 
3164 	if (cdns_ctrl->caps1->has_dma) {
3165 		cdns_ctrl->dmac = dma_request_chan_by_mask(&mask);
3166 		if (IS_ERR(cdns_ctrl->dmac)) {
3167 			ret = dev_err_probe(cdns_ctrl->dev, PTR_ERR(cdns_ctrl->dmac),
3168 					    "%d: Failed to get a DMA channel\n", ret);
3169 			goto disable_irq;
3170 		}
3171 	}
3172 
3173 	dma_dev = cdns_ctrl->dmac->device;
3174 	cdns_ctrl->io.iova_dma = dma_map_resource(dma_dev->dev, cdns_ctrl->io.dma,
3175 						  cdns_ctrl->io.size,
3176 						  DMA_BIDIRECTIONAL, 0);
3177 
3178 	ret = dma_mapping_error(dma_dev->dev, cdns_ctrl->io.iova_dma);
3179 	if (ret) {
3180 		dev_err(cdns_ctrl->dev, "Failed to map I/O resource to DMA\n");
3181 		goto dma_release_chnl;
3182 	}
3183 
3184 	nand_controller_init(&cdns_ctrl->controller);
3185 	INIT_LIST_HEAD(&cdns_ctrl->chips);
3186 
3187 	cdns_ctrl->controller.ops = &cadence_nand_controller_ops;
3188 	cdns_ctrl->curr_corr_str_idx = 0xFF;
3189 
3190 	ret = cadence_nand_chips_init(cdns_ctrl);
3191 	if (ret) {
3192 		dev_err(cdns_ctrl->dev, "Failed to register MTD: %d\n",
3193 			ret);
3194 		goto unmap_dma_resource;
3195 	}
3196 
3197 	kfree(cdns_ctrl->buf);
3198 	cdns_ctrl->buf = kzalloc(cdns_ctrl->buf_size, GFP_KERNEL);
3199 	if (!cdns_ctrl->buf) {
3200 		ret = -ENOMEM;
3201 		goto unmap_dma_resource;
3202 	}
3203 
3204 	return 0;
3205 
3206 unmap_dma_resource:
3207 	dma_unmap_resource(dma_dev->dev, cdns_ctrl->io.iova_dma,
3208 			   cdns_ctrl->io.size, DMA_BIDIRECTIONAL, 0);
3209 
3210 dma_release_chnl:
3211 	if (cdns_ctrl->dmac)
3212 		dma_release_channel(cdns_ctrl->dmac);
3213 
3214 disable_irq:
3215 	cadence_nand_irq_cleanup(cdns_ctrl->irq, cdns_ctrl);
3216 
3217 free_buf:
3218 	kfree(cdns_ctrl->buf);
3219 
3220 free_buf_desc:
3221 	dma_free_coherent(cdns_ctrl->dev, sizeof(struct cadence_nand_cdma_desc),
3222 			  cdns_ctrl->cdma_desc, cdns_ctrl->dma_cdma_desc);
3223 
3224 	return ret;
3225 }
3226 
3227 /* Driver exit point. */
3228 static void cadence_nand_remove(struct cdns_nand_ctrl *cdns_ctrl)
3229 {
3230 	cadence_nand_chips_cleanup(cdns_ctrl);
3231 	if (cdns_ctrl->dmac)
3232 		dma_unmap_resource(cdns_ctrl->dmac->device->dev,
3233 				   cdns_ctrl->io.iova_dma, cdns_ctrl->io.size,
3234 				   DMA_BIDIRECTIONAL, 0);
3235 	cadence_nand_irq_cleanup(cdns_ctrl->irq, cdns_ctrl);
3236 	kfree(cdns_ctrl->buf);
3237 	dma_free_coherent(cdns_ctrl->dev, sizeof(struct cadence_nand_cdma_desc),
3238 			  cdns_ctrl->cdma_desc, cdns_ctrl->dma_cdma_desc);
3239 
3240 	if (cdns_ctrl->dmac)
3241 		dma_release_channel(cdns_ctrl->dmac);
3242 }
3243 
3244 struct cadence_nand_dt {
3245 	struct cdns_nand_ctrl cdns_ctrl;
3246 	struct clk *clk;
3247 };
3248 
3249 static const struct cadence_nand_dt_devdata cadence_nand_default = {
3250 	.if_skew = 0,
3251 	.has_dma = 1,
3252 };
3253 
3254 static const struct of_device_id cadence_nand_dt_ids[] = {
3255 	{
3256 		.compatible = "cdns,hp-nfc",
3257 		.data = &cadence_nand_default
3258 	}, {}
3259 };
3260 
3261 MODULE_DEVICE_TABLE(of, cadence_nand_dt_ids);
3262 
3263 static int cadence_nand_dt_probe(struct platform_device *ofdev)
3264 {
3265 	struct resource *res;
3266 	struct cadence_nand_dt *dt;
3267 	struct cdns_nand_ctrl *cdns_ctrl;
3268 	int ret;
3269 	const struct cadence_nand_dt_devdata *devdata;
3270 	u32 val;
3271 
3272 	devdata = device_get_match_data(&ofdev->dev);
3273 	if (!devdata) {
3274 		pr_err("Failed to find the right device id.\n");
3275 		return -ENOMEM;
3276 	}
3277 
3278 	dt = devm_kzalloc(&ofdev->dev, sizeof(*dt), GFP_KERNEL);
3279 	if (!dt)
3280 		return -ENOMEM;
3281 
3282 	cdns_ctrl = &dt->cdns_ctrl;
3283 	cdns_ctrl->caps1 = devdata;
3284 
3285 	cdns_ctrl->dev = &ofdev->dev;
3286 	cdns_ctrl->irq = platform_get_irq(ofdev, 0);
3287 	if (cdns_ctrl->irq < 0)
3288 		return cdns_ctrl->irq;
3289 
3290 	dev_info(cdns_ctrl->dev, "IRQ: nr %d\n", cdns_ctrl->irq);
3291 
3292 	cdns_ctrl->reg = devm_platform_ioremap_resource(ofdev, 0);
3293 	if (IS_ERR(cdns_ctrl->reg))
3294 		return PTR_ERR(cdns_ctrl->reg);
3295 
3296 	cdns_ctrl->io.virt = devm_platform_get_and_ioremap_resource(ofdev, 1, &res);
3297 	if (IS_ERR(cdns_ctrl->io.virt))
3298 		return PTR_ERR(cdns_ctrl->io.virt);
3299 
3300 	cdns_ctrl->io.dma = res->start;
3301 	cdns_ctrl->io.size = resource_size(res);
3302 
3303 	dt->clk = devm_clk_get(cdns_ctrl->dev, "nf_clk");
3304 	if (IS_ERR(dt->clk))
3305 		return PTR_ERR(dt->clk);
3306 
3307 	cdns_ctrl->nf_clk_rate = clk_get_rate(dt->clk);
3308 
3309 	ret = of_property_read_u32(ofdev->dev.of_node,
3310 				   "cdns,board-delay-ps", &val);
3311 	if (ret) {
3312 		val = 4830;
3313 		dev_info(cdns_ctrl->dev,
3314 			 "missing cdns,board-delay-ps property, %d was set\n",
3315 			 val);
3316 	}
3317 	cdns_ctrl->board_delay = val;
3318 
3319 	ret = cadence_nand_init(cdns_ctrl);
3320 	if (ret)
3321 		return ret;
3322 
3323 	platform_set_drvdata(ofdev, dt);
3324 	return 0;
3325 }
3326 
3327 static void cadence_nand_dt_remove(struct platform_device *ofdev)
3328 {
3329 	struct cadence_nand_dt *dt = platform_get_drvdata(ofdev);
3330 
3331 	cadence_nand_remove(&dt->cdns_ctrl);
3332 }
3333 
3334 static struct platform_driver cadence_nand_dt_driver = {
3335 	.probe		= cadence_nand_dt_probe,
3336 	.remove		= cadence_nand_dt_remove,
3337 	.driver		= {
3338 		.name	= "cadence-nand-controller",
3339 		.of_match_table = cadence_nand_dt_ids,
3340 	},
3341 };
3342 
3343 module_platform_driver(cadence_nand_dt_driver);
3344 
3345 MODULE_AUTHOR("Piotr Sroka <piotrs@cadence.com>");
3346 MODULE_LICENSE("GPL v2");
3347 MODULE_DESCRIPTION("Driver for Cadence NAND flash controller");
3348 
3349